
Product Family: High Power Chip Resistor

	 <u>Construction</u>: 99.5% BeO or 99.6% Alumina Ceramic Nickel alloy thin film resistive element Epoxy-resin overcoat Pre-tinned (Sn100, matte) terminations over Ni barrier 	 Features: TCR's to ± 25ppm Tolerances less than ± 1% Custom and standard sizes available High volume production, suitable for commercial and special applications
--	--	---

Description:

These power resistors are designed to tolerate high current and establish a low thermal resistance interface with the circuit board. A lower thermal resistance more efficiently sinks heat to the board, enabling a larger effective area for heat dissipation. As a result, much lower surface temperatures are achievable in comparison to standard chip resistors for the same chip size and applied power. The BP series effectively integrates the power resistor with the board, providing a thermal resistance comparable with aluminum heat-sinks.

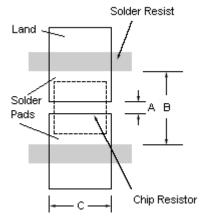
Dimensions:

Electrical Specifications:

Size: Inch (Metric)	2512 (6332) 252	25 (6363)	100									_
Rated Power at 70°C ¹ (BeO)	Up to 5W ¹ Up	to 8W 1	90			_				\rightarrow	\rightarrow	_
Rated Power at 70°C ¹ (Alumina)	Up to 2W ¹ Up	to $3W^{1}$	Ja 80 7 0									
Rated Voltage	$\sqrt{(PxR)}$		Ê 60			_				\leftarrow	-+	_
Resistance Tolerance	± 1 to 5%		Rated 20							$\mathbf{\lambda}$		
Resistance Values	5 to 200 Ω , call for other					_				\rightarrow	-+	-
	values		₽ 20 10									
TCR (ppm/°C) ²	± 25 to 200	0	ĨŬ									
Operating Temperature Range ³	-55 to 150°	С	-	75 -5	0 -25	0	25 5	0 7	5 10	0 125	5 150	175
Insulation Resistance (100V, 1min) ⁴	$> 1G\Omega$		Ambient Temperature in °C									

Derating Curve:

Notes:


- 1. Dependent on effective thermal conductivity of board construction/land design and size of board greater power capability for board/land with lower thermal resistance. For relatively high thermal resistance mountings, the power resistors are capable of reflowing solder bonds before device damage occurs.
- 2. Per MIL-PRF-55342 (-55/25/125°C).
- 3. Per MIL-PRF-55342, see derating curve.
- 4. Per IEC 60115-1.

Test	Reference	Conditions of Test	Requirement		
Life	MIL-PRF-55342,	70°C, 2000h, rated power, 1.5h on, 0.5h off	$\pm 0.5\% + 0.01\Omega$		
	MIL-STD-202				
	Method 108A				
Thermal Shock	MIL-PRF-55342,	Condition F-3, -65°C/0.25h to 150°C/0.25h, 100 cycles	$\pm 0.1\% + 0.01\Omega$		
	MIL-STD-202				
	Method 107G				
High Temperature Exposure	MIL-PRF-55342	150°C, 100h	$\pm 0.1\% \pm 0.01\Omega$		
Short Time Overload	MIL-PRF-55342	6.25x rated power, 5 sec.	$\pm 0.1\% \pm 0.01\Omega$		
Moisture Resistance	MIL-PRF-55342,	25/65/25/65/25/-10°C, 90% to 98%RH, 10 cycles,	$\pm 0.1\% + 0.01\Omega$		
	MIL-STD-202	24h/cycle, with and without bias, bias = 1.5h on, 0.5h			
	Method 106G	off @ $1/10^{\text{th}}$ rated power			
Resistance to Soldering Heat ¹	MIL-PRF-55342,	260°C for 15 sec., over 220°C for 60 sec., 3 cycles	$\pm 0.1\% \pm 0.01\Omega$		
	MIL-STD-202				
	Method 210F				
Solderability ²	MIL-PRF-55342,	Precondition E: 150°C dry bake for 16h,	Min 95%		
	MIL-STD-202	Method 1 "Dip and Look Test", 245°C, 5 sec., Pb-free	coverage of		
	Method 208H	(SnAgCu) Solder	critical area		
Board Flex	IEC 60115-1 /	Bend amount of 3mm, measurements during and after	$\pm 0.1\% + 0.01\Omega$		
	JIS C 5202	bend	No mechanical		
			damage		
Terminal Strength	MIL-PRF-55342	Force of 3kg for 30 sec.	No mechanical		
			damage		

Notes:

- 1. Test conditions modified to represent the high temperature Pb-free reflow conditions and an extra cycle is added.
- 2. JESD22-B102D adds test conditions for Pb-free and is aligned with J-STD-002B referenced in MIL-STD-202 Method 208H. JESD22-B102D procedure comes from EIA-638, "Surface Mount Solderability Test".

Recommended Solder Pad Dimensions:

	Dimensions (mm)				
Size: Metric (Inch)	2512 (6332)	2525 (6363)			
А	1.6	1.6			
В	7.7	7.7			
С	3.5	6.7			

Notes on board construction and land design:

- 1. A multi-layer board with several ground or power planes significantly reduces thermal resistance.
- 2. Plated via holes around the power resistor further reduces thermal resistance.
- 3. Maximize land area beyond solder pad area in both width and length to further reduce thermal resistance.
- 4. Optimizing the thermal resistance of the board helps dissipate heat, enabling higher power handling and lower surface temperatures.

BP	2512	S	27R0	J
Product Designator	Size, Inch	TCR	Resistance Value	Tolerance
BP for BeO	Refer to table above	$E = \pm 25 \text{ ppm/C}$	Ex. $27R0 = 27.0 \Omega$	$F = \pm 1\%$
CP for Alumina		$H = \pm 50 \text{ ppm/C}$		$G = \pm 2\%$
		$K = \pm 100 \text{ ppm/C}$		$J = \pm 5\%$
		$S = \pm 200 \text{ ppm/C}$		

Part Numbering: (Ex. BP2512S27R0J)

Thin Film Technology Corp., 1980 Commerce Drive, North Mankato, MN 56003, (507) 625-8445 www.thin-film.com