Features

- $50-\mathrm{MHz}$ to $\mathbf{2 0 0}-\mathrm{MHz}$ operating range
- 650-ps Total Timing Budget ${ }^{\text {TM }}$ (TTB ${ }^{\text {TM }}$) window
- Multiple configurations (see Table 2)
- Eight low-skew outputs
—Output-output skew < 200 ps
—Device-device skew < 500 ps
- Input-output skew < 250 ps
- Three-stateable outputs
- < 50- $\mu \mathrm{A}$ shutdown current
- Phase-locked loop (PLL) bypass mode (see Table 1)
- Spread Aware ${ }^{\text {TM }}$
- 16-pin TSSOP
- 3.3V operation
- Commercial/Industrial temperature

Functional Description

The CY2308A is a high-performance $200-\mathrm{MHz}$ zero delay buffer designed for high-speed clock distribution. The integrated PLL is designed for low jitter and optimized for noise rejection. These parameters are critical for reference clock distribution in systems using high-performance ASICs and microprocessors. The CY2308A PLL feedback is external and is required to be driven into the FBK pin using anyone of the outputs.
The device features a guaranteed maximum TTB window specifying all occurrences of output clocks with respect to the input reference clock across variations in output frequency, supply voltage, operating temperature, input edge rate, and process.
The CY2308A has two banks of four outputs each that can be controlled by the Select inputs as shown in Table 1. If all output clocks are not required, Bank B can be three-stated. The select inputs also allow the input clock to be directly applied to the output for chip and system testing purposes
The CY2308A PLL enters a power-down state when there are no rising edges on the REF input. In this mode, all outputs are three-stated and the PLL is turned off, resulting in less than $50 \mu \mathrm{~A}$ of current draw. The PLL shuts down in two additional cases, as shown in Table 1.
The CY2308A is available in five different configurations, as shown in Table 2. The CY2308A-1 is the base part with the output frequencies equal to the reference if there is no divider in the feedback path. The CY2308A-1H is the high-drive version of the -1 with faster rise and fall times.
The CY2308A-2 allows the user to obtain 1X/1/2X frequencies on each output bank. The exact configuration and output frequencies depends on which output drives FBK.

Pin Configuration

Pin Description

Pin	Signal	
1	REF	Description
2	CLKB1 $^{[2]}$	Clock output, Bank B
3	CLKB2 $^{[2]}$	Clock output, Bank B
4	$V_{\text {DD }}$	3.3V supply
5	GND	Ground
6	CLKB3 ${ }^{[2]}$	Clock output, Bank B
7	CLKB4 $^{[2]}$	Clock output, Bank B
8	S2 $^{[1]}$	Select input, 5V-tolerant input
9	S1 $^{[1]}$	Select input, 5V-tolerant input
10	CLKA4 $^{[2]}$	Clock output, Bank A
11	CLKA3 $^{[2]}$	Clock output, Bank A
12	GND	Ground
13	$\mathrm{~V}_{\text {DD }}$	3.3V supply
14	CLKA2 ${ }^{[2]}$	Clock output, Bank A
15	CLKA1 ${ }^{[2]}$	Clock output, Bank A
16	FBK	PLL feedback input

Table 1. Select Input Decoding

S2	S1	CLOCK A1-A4	CLOCK B1-B4	Output Source	PLL Shutdown
0	0	Three-state	Three-state	PLL	Y
0	1	Driven	Three-state	PLL	N
1	0	Driven	Driven	Reference	Y
1	1	Driven	Driven	PLL	N

Table 2. Available CY2308A Configurations

Device	Feedback From	Bank A Frequency	Bank B Frequency
CY2308A-1	Bank A or Bank B	Reference	Reference
CY2308A-1H	Bank A or Bank B	Reference	Reference
CY2308A-2	Bank A	Reference	Reference/2
CY2308A-2	Bank B	Reference X2	Reference

Notes:

1. Weak pull-up
2. Weak pull-down

Maximum Ratings

Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Input Voltage
(Except Ref, S1, S2) \qquad -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
DC Input Voltage (REF, S1, S2). \qquad . -0.5 to 7 V
Storage Temperature
........................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Table 3. Operating Conditions for CY2308AZC-XX Commercial Temperature Devices

Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage	3.135	3.465	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature (Ambient Temperature)	0	70	${ }^{\circ} \mathrm{C}$
C_{IN}	Input Capacitance		7	pF
t_{PU}	Power-up time for all VDDs to reach minimum specified voltage (power ramps must be monotonic)	0.05	500	ms

Table 4. Electrical Characteristics for CY2308AZC-XX Commercial Temperature Devices

Parameter	Description	Test Conditions	Min.	Max.	Unit
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	CMOS Levels, 30% of V_{DD}		0.25	V_{DD}
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	CMOS Levels, 70% of $\mathrm{V}_{\text {DD }}$	0.7		V_{DD}
ILL	Input LOW Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		50.0	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		10.0	$\mu \mathrm{A}$
IOL	Output LOW Current ${ }^{[3]}(-1,-2)$	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	12		mA
	(-1H)		18		
IOH^{\prime}	Output HIGH Current ${ }^{[3]}(-1,-2)$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		-12	mA
	(-1H)			-18	
IDDS	Power-down Supply Current	$\mathrm{REF}=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{V}_{\mathrm{DD}}, \mathrm{S} 2=\mathrm{V}_{\mathrm{DD}}$		50	$\mu \mathrm{A}$
I_{DD}	Supply Current	Unloaded outputs @ 200 MHz		115	mA
		Loaded outputs @ $200 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		145	

Table 5. Switching Characteristics for CY2308AZC-XX Commercial Temperature Devices ${ }^{[4]}$

Parameter	Name	Test Conditions	Min.	Typ.	Max.	Unit
	Reference Frequency		50		200	MHz
	Reference Edge Rate	30% to 70% of $V_{D D}$	0.5		4	V/ns
	Reference Duty Cycle		25		75	\%
t_{1}	Output Frequency	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	50		200	MHz
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	50		140	MHz
	Duty Cycle ${ }^{[3]}=\mathrm{t}_{2} \div \mathrm{t}_{1}$	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$	45.0	50.0	55.0	\%
t_{3}	Rising Edge Rate ${ }^{[3]}(-1,-2)$	20% to 80% of $V_{D D}, C_{L}=15 \mathrm{pF}$	0.8		4	V / ns
	Rising Edge Rate ${ }^{[3]}$ (-1 H)	20% to 80% of $V_{D D}, C_{L}=15 \mathrm{pF}$	1		4	V / ns
t_{4}	Falling Edge Rate ${ }^{[3]}(-1,-2)$	80% to 20% of $V_{D D}, C_{L}=15 \mathrm{pF}$	0.8		4	V / ns
	Falling Edge Rate ${ }^{[3]}$ (-1H)	80% to 20% of $V_{D D}, C_{L}=15 \mathrm{pF}$	1		4	V/ns
${ }_{\text {t }}$	TTB window, Bank A and B Same Frequency ${ }^{[5]}$	Outputs @ 200 MHz, Tracking Skew Not Included			650	ps
	TTB window, Bank A and B Different Frequency ${ }^{[5]}$				850	

Notes:

3. Parameter is guaranteed by design and characterization. Not 100% tested in production.
4. All parameters are specified with loaded outputs.
5. t_{TB} is the window between the earliest and the latest output clocks with respect to the input reference clock across variations in output frequency, supply voltage, operating temperature, input clock edge rate, and process. The measurements are taken with the AC test load specified and include output-output skew, cyclecycle jitter, and dynamic phase error. T $_{\text {TB }}$ will be equal to or smaller than the maximum specified value at a given output frequency.

Table 5. Switching Characteristics for CY2308AZC-XX Commercial Temperature Devices ${ }^{[4]}$ (continued)

Parameter	Name	Test Conditions	Min.	Typ.	Max.	Unit
t_{5}	Output-to-Output Skew ${ }^{[3]}$	All Outputs Equally Loaded			200	ps
t_{6}	Input-to-Output Skew (Static Phase Error) ${ }^{[3]}$	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$, REF to FBK			250	ps
t_{7}	Device-to-Device Skew ${ }^{[3]}$	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$			500	ps
t_{J}	Cycle-to-Cycle Jitter, ${ }^{[3]}$ Bank A and B Same Frequency	Loaded Outputs			200	ps
					35	$\mathrm{ps}_{\text {RMS }}$
	Cycle-to-Cycle Jitter, ${ }^{[3]}$ Bank A and B Different Frequency	Loaded Outputs			400	ps
					70	$\mathrm{ps}_{\text {RMS }}$
t LOCK	PLL Lock Time ${ }^{[3]}$	Stable Power Supply, Valid Clock at REF			1.0	ms

Table 6. Operating Conditions for CY2308AZI-XX Industrial Temperature Devices

Parameter	Description	Min.	Max.	Unit
V_{DD}	Supply Voltage	3.135	3.465	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature (Ambient Temperature)	-40	85	${ }^{\circ} \mathrm{C}$
C_{IN}	Input Capacitance		7	pF
t_{PU}	Power-up time for all VDDs to reach minimum specified voltage (power ramps must be monotonic)	0.05	500	ms

Table 7. Electrical Characteristics for CY2308AZI-XX Industrial Temperature Devices

Parameter	Description	Test Conditions	Min.	Max.	Unit
V_{IL}	Input LOW Voltage	CMOS Levels, 30% of V_{DD}		0.25	V_{DD}
V_{IH}	Input HIGH Voltage	CMOS Levels, 70% of $V_{\text {DD }}$	0.7		V_{DD}
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		50.0	$\mu \mathrm{A}$
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		10.0	$\mu \mathrm{A}$
$\mathrm{IOL}^{\text {l }}$	Output LOW Current ${ }^{[3]}(-1,-2)$	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	10		mA
	(-1H)		15		
IOH	Output HIGH Current ${ }^{[3]}(-1,-2)$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$		-10	mA
	(-1H)			-15	
IDDS	Power-down Supply Current	$\mathrm{REF}=0 \mathrm{~V}, \mathrm{~S} 1=\mathrm{V}_{\mathrm{DD}}, \mathrm{S} 2=\mathrm{V}_{\mathrm{DD}}$		50	$\mu \mathrm{A}$
I_{DD}	Supply Current	Unloaded outputs @ 133 MHz		80.0	mA
		Loaded outputs @ $133 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$		110.0	

Table 8. Switching Characteristics for CY2308AZI-XX Industrial Temperature Devices ${ }^{[4]}$

Parameter	Name	Test Conditions	Min.	Typ.	Max.	Unit
	Reference Frequency		50		133	MHz
	Reference Edge Rate	30% to 70% of V_{DD}	0.5		4	$\mathrm{~V} / \mathrm{ns}$
	Reference Duty Cycle		25		75	$\%$
t_{1}	Output Frequency	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	50		133	MHz
	Duty Cycle ${ }^{[3]}=\mathrm{t}_{2} \div \mathrm{t}_{1}$	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$	40.0	50.0	60.0	$\%$
t_{3}	Rising Edge Rate ${ }^{[3]}(-1,-2)$	20% to 80% of $\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	0.5		3	$\mathrm{~V} / \mathrm{ns}$
	Rising Edge Rate ${ }^{[3]}(-1 \mathrm{H})$	20% to 80% of $\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	0.8		4	$\mathrm{~V} / \mathrm{ns}$
t_{4}	Falling Edge Rate ${ }^{[3]}(-1,-2)$	80% to 20% of $\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	0.5		3	$\mathrm{~V} / \mathrm{ns}$
	Falling Edge Rate ${ }^{[3]}(-1 \mathrm{H})$	80% to 20% of $\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	0.8		4	$\mathrm{~V} / \mathrm{ns}$

Table 8. Switching Characteristics for CY2308AZI-XX Industrial Temperature Devices ${ }^{[4]}$ (continued)

Parameter	Name	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {TB }}$	Total Timing Budget window, Bank A and B Same Frequency ${ }^{[5]}$	Outputs @ 133 MHz, Tracking Skew Not Included			650	ps
	Total Timing Budget window, Bank A and B Different Frequency ${ }^{[5]}$				850	
t_{5}	Output-to-Output Skew ${ }^{[3]}$	All Outputs Equally Loaded			200	ps
t_{6}	Input-to-Output Skew (Static Phase Error $)^{[3]}$	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$, REF to FBK			250	ps
t_{7}	Device-to-Device Skew ${ }^{[3]}$	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$			500	ps
t_{J}	Cycle-to-Cycle Jitter ${ }^{[3]}$, Bank A and B Same Frequency	Loaded Outputs			200	ps
					35	$\mathrm{ps}_{\text {RMS }}$
	Cycle-to-Cycle Jitter ${ }^{[3]}$, Bank A and B Different Frequency	Loaded Outputs			400	ps
					70	ps ${ }_{\text {RMS }}$
t LOCK	PLL Lock Time ${ }^{[3]}$	Stable Power Supply, Valid Clock at REF			1.0	ms

Output Load Difference: FBK Load-CLKAKLKB Load (pF)

Zero Delay and Skew Control

To close the feedback loop of the CY2308A, the FBK can be driven from any of the eight available output pins. The output driving the FBK will be driving a total load of 7 pF plus any additional load that it drives. The relative loading of this output (with respect to the remaining outputs) can adjust the inputoutput delay. See REF Input to CLK Delay vs. Loading Difference.

For applications requiring zero input-output delay, all outputs including the one providing feedback should be equally loaded. If input-output delay adjustments are required, use the above graph to calculate loading differences between the feedback output and remaining outputs.
For zero output-output skew, be sure to load outputs equally. For further information on using CY2308A, refer to the application note CY2308: Zero Delay Buffer.

Duty Cycle Timing

Test Circuits

$0.1 \mu \mathrm{~F}$

Switching Waveforms

All Outputs Rise/Fall Time

Input-Output Propagation Delay

Ordering Information

Ordering Code	Package Type	Operating Range
CY2308AZC-1	16-pin 4.4-mm TSSOP	Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CY2308AZC-1T	$16-$ pin $4.4-\mathrm{mm}$ TSSOP - Tape and Reel	Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CY2308AZC-1H	$16-$ pin 4.4-mm TSSOP	Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CY2308AZC-1HT	$16-$ pin $4.4-\mathrm{mm}$ TSSOP - Tape and Reel	Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CY2308AZC-2	$16-$ pin 4.4-mm TSSOP	Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CY2308AZC-2T	$16-$ pin 4.4-mm TSSOP - Tape and Reel	Commercial, $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CY2308AZI-1	$16-$ pin 4.4-mm TSSOP	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
CY2308AZI-1T	$16-$ pin $4.4-\mathrm{mm}$ TSSOP - Tape and Reel	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Ordering Information (continued)

Ordering Code	Package Type	Operating Range
CY2308AZI-1H	16-pin 4.4-mm TSSOP	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
CY2308AZI-1HT	16-pin 4.4-mm TSSOP - Tape and Reel	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
CY2308AZI-2	16-pin 4.4-mm TSSOP	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
CY2308AZI-2T	16-pin 4.4-mm TSSOP - Tape and Reel	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Package Diagram

16-Lead Thin Shrunk Small Outline Package (4.40 MM Body) Z16

DIMENSIDNS IN MILLIMETERS

$$
\frac{M I N}{M A X}
$$

Spread Aware, Total Timing Budget, and TTB are trademarks of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY2308A Eight-Output, 200-MHz Zero Delay Buffer
Document Number: 38-07377

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	112938	04/02/02	CTK	New Data Sheet
*A	114685	07/17/02	HWT	Change freq. of operation to $50 \mathrm{MHz}-200 \mathrm{MHz}$ Eliminate specification related to $30-\mathrm{pF}$ load
*B	121892	12/14/02	RBI	Power-up requirements added to Operating Conditions information
*C	124597	03/06/03	RGL	Changed V_{IL} max value in Commercial Temp. Device from 0.3 V to 0.25 V Changed IDD max values in Commercial Temp. Device from 75 and 150 to 115 and 145 mA , respectively Changed V_{IL} max value in Industrial Temp Device from 0.3 V to 0.25 V Changed IDD max value in Industrial Temp Device from 60 and 120 mA to 80 and 110 mA Removed Preliminary (final data sheet)

