8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD780053, 780054, 780055, 780056, 780058, and 780058B (hereafter, referred to as μ PD78005x) are products of the $\mu \mathrm{PD} 780058$ Subseries in the $78 \mathrm{~K} / 0$ Series.

The μ PD780053Y, 780054Y, 780055Y, 780056Y, and 780058BY (hereafter referred to as μ PD78005xY) are products of the μ PD780058Y Subseries in the $78 \mathrm{~K} / 0$ Series.

These microcontrollers show a reduction in the EMI (Electro Magnetic Interference) noise generated internally compared to the conventional type, the μ PD78054 Subseries. Also they have provided is an 8 -bit resolution A/D converter, 8-bit resolution D/A converter, timers, serial interfaces, real-time output ports, interrupt functions, and various other peripheral hardware.

The μ PD780058Y Subseries is based on the μ PD780058 Subseries but with the addition of an $I^{2} \mathrm{C}$ bus interface function supporting multi-master.

Flash memory versions, the μ PD78F0058 and 78F0058Y and various development tools are also available.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

$$
\begin{array}{ll}
\mu \text { PD780058, 780058Y Subseries User's Manual: } & \text { U12013E } \\
\text { 78K/0 Series User's Manual - Instruction: } & \text { U12326E }
\end{array}
$$

FEATURES

Part Number Item	Program Memory (ROM)	Data Memory		
		Internal High-Speed RAM	Internal Buffer RAM	Internal Expansion RAM
$\mu \mathrm{PD} 780053,780053 \mathrm{Y}$	24 KB	1,024 bytes	32 bytes	None
$\mu \mathrm{PD} 780054,780054 \mathrm{Y}$	32 KB			
$\mu \mathrm{PD} 780055,780055 \mathrm{Y}$	40 KB			
$\mu \mathrm{PD} 780056,780056 \mathrm{Y}$	48 KB			
$\begin{aligned} & \mu \text { PD780058B, 780058BY } \\ & 780058 \end{aligned}$	60 KB			1,024 bytes

- Internal high-capacity ROM \& RAM
- External memory expansion space: 64 KB
- Minimum instruction execution time can be changed from high-speed ($0.4 \mu \mathrm{~s}$) to ultra-low-speed ($122 \mu \mathrm{~s}$)
- I/O ports: 68 (N-ch open-drain: 4)
- 8-bit resolution A/D converter: 8 channels ($V_{D D}=1.8$ to $5.5 \mathrm{~V}^{\text {Note }}$)
- 8-bit resolution D/A converter: 2 channels (VDD $=1.8$ to $5.5 \mathrm{~V}^{\text {Note }}$)
- Serial interface: 3 channels
- Timer: 5 channels
- Supply voltage: $\quad V_{D D}=1.8$ to 5.5 V

Note The operation voltage of the A/D converter and D/A converter of the μ PD780058 is VdD $=2.7$ to 5.5 V .

> The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
> Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

APPLICATIONS

Car audio systems, cellular phones, pagers, printers, AV equipment, cameras, PPCs, vending machines, etc.

ORDERING INFORMATION

Part Number	Package
μ PD780053GC-×××-8BT	80-pin plastic QFP (14×14)
μ PD780053GK-xxx-9EU	80-pin plastic TQFP (fine pitch) (12×12)
μ PD780054GC-×××-8BT	80-pin plastic QFP (14×14)
μ PD780054GK-xxx-9EU	$80-\mathrm{pin}$ plastic TQFP (fine pitch) (12×12)
$\mu \mathrm{PD} 780055 \mathrm{GC}-\times \times \times-8 \mathrm{BT}$	80-pin plastic QFP (14×14)
μ PD780055GK-×××-9EU	$80-$ pin plastic TQFP (fine pitch) (12×12)
$\mu \mathrm{PD} 780056 \mathrm{GC}-\times \times \times$-8BT	80-pin plastic QFP (14×14)
μ PD780056GK-xxx-9EU	$80-\mathrm{pin}$ plastic TQFP (fine pitch) (12×12)
$\mu \mathrm{PD} 780058 \mathrm{GC}-\times \times \times-8 \mathrm{BT}$	$80-$ pin plastic QFP (14×14)
μ PD780058GK-xxx-9EU	80-pin plastic TQFP (fine pitch) (12×12)
μ PD780058BGC-×xx-8BT	80 -pin plastic QFP (14×14)
μ PD780058BGK- $\times \times \times$-9EU	$80-\mathrm{pin}$ plastic TQFP (fine pitch) (12×12)
μ PD780053YGC-×××-8BT	80-pin plastic QFP (14×14)
μ PD780053YGK-××x-9EU	$80-$ pin plastic TQFP (fine pitch) (12×12)
μ PD780054YGC-×××-8BT	80-pin plastic QFP (14×14)
μ PD780054YGK-×xx-9EU	80-pin plastic TQFP (fine pitch) (12×12)
μ PD780055YGC-×××-8BT	$80-$ pin plastic QFP (14×14)
μ PD780055YGK- $\times \times \times$-9EU	$80-\mathrm{pin}$ plastic TQFP (fine pitch) (12×12)
$\mu \mathrm{PD} 780056 \mathrm{YGC}-\times \times \times-8 \mathrm{BT}$	80-pin plastic QFP (14×14)
μ PD780056YGK- $\times \times \times$-9EU	$80-$ pin plastic TQFP (fine pitch) (12×12)
μ PD780058BYGC-×××-8BT	80-pin plastic QFP (14×14)
μ PD780058BYGK-×××-9EU	$80-\mathrm{pin}$ plastic TQFP (fine pitch) (12×12)

Remark $x x \times$ indicates ROM code suffix.

78K/0 SERIES LINEUP

The products in the $78 \mathrm{~K} / 0$ Series are listed below. The names enclosed in boxes are subseries name.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIP ${ }^{\text {TM }}$ (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major functional differences among the subseries are listed below.

- Non-Y subseries

Subseries Name		Capacity (Bytes)	Timer				$\begin{aligned} & \hline \text { 8-Bit } \\ & \text { A/D } \end{aligned}$	$\begin{array}{\|c\|} \hline 10-\mathrm{Bit} \\ \mathrm{~A} / \mathrm{D} \end{array}$	$\begin{array}{\|c\|} \hline \text { 8-Bit } \\ \text { D/A } \end{array}$	Serial Interface	I/O	VDD MIN. Value	External Expansion	
		8-Bit	16-Bit	Watch	WDT									
Control	μ PD78075B		32 K to 40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	Yes
	μ PD78078	48 K to 60 K												
	μ PD78070A	-	61									2.7 V		
	μ PD780058	24 K to 60 K	2 ch	3 ch (time-division UART: 1 ch)							68	1.8 V		
	μ PD78058F	48 K to 60 K		3 ch (UART: 1 ch)							69	2.7 V		
	μ PD78054	16 K to 60 K												
	μ PD780065	40 K to 48 K		-						4 ch (UART: 1 ch)	60	2.7 V		
	μ PD780078	48 K to 60 K			2 ch			-	8 ch	3 ch (UART: 2 ch)	52	1.8 V		
	μ PD780034A	8 K to 32 K			1 ch					3 ch (UART: 1 ch)	51			
	μ PD780024A							8 ch	-					
	μ PD78014H									2 ch	53			
	μ PD78018F	8 K to 60 K												
	μ PD78083	8 K to 16 K			-	-				1 ch (UART: 1 ch)	33		-	
Inverter control	μ PD780988	16 K to 60 K	3 ch	Note	-	1 ch	-	8 ch	-	3 ch (UART: 2 ch)	47	4.0 V	Yes	
VFD drive	μ PD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74	2.7 V	-	
	μ PD780232	16 K to 24 K	3 ch	-	-		4 ch				40	4.5 V		
	μ PD78044H	32 K to 48 K	2 ch	1 ch	1 ch		8 ch			1 ch	68	2.7 V		
	μ PD78044F	16 K to 40 K								2 ch				
LCD drive	μ PD780338	48 K to 60 K	3 ch	2 ch	1 ch	1 ch	-	10 ch	1 ch	2 ch (UART: 1 ch)	54	1.8 V	-	
	μ PD780328										62			
	μ PD780318										70			
	μ PD780308	48 K to 60 K	2 ch	1 ch			8 ch	-	-	3 ch (time-division UART: 1 ch)	57	2.0 V		
	μ PD78064B	32 K								2 ch (UART: 1 ch)				
	μ PD78064	16 K to 32 K												
Bus interface supported	μ PD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	-	-	3 ch (UART: 1 ch)	79	4.0 V	Yes	
	$\mu \mathrm{PD} 78098 \mathrm{~B}$	40 K to 60 K		1 ch					2 ch		69	2.7 V	-	
	μ PD780816	32 K to 60 K		2 ch			12 ch		-	2 ch (UART: 1 ch)	46	4.0 V		
Meter control	μ PD780958	48 K to 60 K	4 ch	2 ch	-	1 ch	-	-	-	2 ch (UART: 1 ch)	69	2.2 V	-	
Dashboard control	μ PD780852	32 K to 40 K	3 ch	1 ch	1 ch	1 ch	5 ch	-	-	3 ch (UART: 1 ch)	56	4.0 V	-	
	μ PD780828B	32 K to 60 K									59			

Note 16-bit timer: 2 channels
10-bit timer: 1 channel

The major functional differences among the subseries are listed below.

- Y subseries

Subseries Name		ROM Capacity	Timer				$\begin{aligned} & \hline \text { 8-Bit } \\ & \text { A/D } \end{aligned}$	$\begin{gathered} 10-\mathrm{Bit} \\ \mathrm{~A} / \mathrm{D} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { 8-Bit } \\ \text { D/A } \end{array}$	Serial Interface	I/O	VDD MIN. Value	External Expansion	
		8-Bit	16-Bit	Watch	WDT									
Control	μ PD78078Y		48 K to 60 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	$3 \mathrm{ch}\left(\right.$ UART: $\left.1 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	88	1.8 V	\checkmark
	μ PD78070AY	-	61									2.7 V		
	$\mu \mathrm{PD} 780018 \mathrm{AY}$	48 K to 60 K	-							$3 \mathrm{ch}\left({ }^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	88			
	μ PD780058Y	24 K to 60 K	2 ch	2 ch						3 ch (ime-division UART: $1 \mathrm{ch}, \mathrm{I}^{20}$: 1 ch)	68	1.8 V		
	$\mu \mathrm{PD} 78058 \mathrm{FY}$	48 K to 60 K								$3 \mathrm{ch}\left(\right.$ UART: $\left.1 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	69	2.7 V		
	$\mu \mathrm{PD} 78054 \mathrm{Y}$	16 K to 60 K										2.0 V		
	μ PD780078Y	48 K to 60 K		2 ch	-			8 ch	-	$4 \mathrm{ch}\left(\right.$ UART: $\left.2 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	52	1.8 V		
	μ PD780034AY	8 K to 32 K		1 ch						3 ch (UART: $\left.1 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	51			
	$\mu \mathrm{PD} 780024 \mathrm{AY}$				8 ch			-						
	μ PD78018FY	8 K to 60 K								$2 \mathrm{ch}\left({ }^{2} \mathrm{C}: 1 \mathrm{ch}\right)$	53			
\|LCD	μ PD780308Y	48 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	3 ch (time-division UART: 1 ch, $1^{2} \mathrm{C}$: 1 ch)	57	2.0 V	-	
drive	μ PD78064Y	16 K to 32 K								2 ch (UART: $\left.1 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}: 1 \mathrm{ch}\right)$				
Bus interface supported	μ PD780701Y	60 K	3 ch	2 ch	1 ch	1 ch	16 ch	-	-	4 ch (UART: $1 \mathrm{ch}, \mathrm{I}^{2} \mathrm{C}$: 1 ch)	67	3.5 V	-	
	μ PD780703Y													
	μ PD780833Y										65	4.5 V		

Remark Functions other than the serial interface are common to both the Y and non- Y subseries.

OVERVIEW OF FUNCTIONS

Product Name Item		$\begin{gathered} \mu \text { PD780053 } \\ \mu \text { PD780053Y } \end{gathered}$	$\begin{gathered} \mu \mathrm{PD} 780054 \\ \mu \mathrm{PD} 780054 \mathrm{Y} \end{gathered}$	$\begin{gathered} \mu \text { PD780055 } \\ \mu \text { PD780055Y } \end{gathered}$	$\begin{gathered} \mu \mathrm{PD} 780056 \\ \mu \mathrm{PD} 780056 \mathrm{Y} \end{gathered}$	μ PD780058B μ PD780058BY	μ PD780058
Internal memory	ROM	24 KB	32 KB	40 KB	48 KB	60 KB	
	High-speed RAM	1,024 bytes					
	Buffer RAM	32 bytes					
	Expanded RAM	None				1,024 bytes	
Memory space		64 KB					
General-purpose registers		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)					
Minimum instruction		On-chip minimum instruction execution time variable function					
execution time	When main system clock is selected	$0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s} / 12.8 \mu \mathrm{~s}$ (@5.0 MHz operation)					
	When subsystem clock is selected	$122 \mu \mathrm{~s}$ (@32.768 kHz operation)					
Instruction set		- 16 -bit operation - Multiply/divide (8 bits $\times 8$ bits, 16 bits $\div 8$ bits) - Bit manipulation (set, reset, test, Boolean operation) - BCD adjust, etc.					
1/O ports		Total: 68					
		- CMOS input : 2 - CMOS I/O : 62 - N-ch open-drain I/O: 4					
A/D converter		- 8-bit resolution $\times 8$ channels					
Operating voltage range		VDD $=1.8$ to 5.5 V					$V_{D D}=2.7$ to 5.5
D/A converter		- 8 -bit resolution $\times 2$ channels					
Operating voltage range		$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V					$V_{D D}=2.7$ to 5.5
Serial interface		 - 3-wire serial I/O mode (automatic data transmit/receive function for up to 32 bytes provided on-chip): 1 channel - 3-wire serial I/O/UART mode (time division transfer function provided on-chip) selectable: 1 channel					
Timers		- 16 -bit timer/event counter: 1 channel - 8 -bit timer/event counter: 2 channels - Watch timer: 1 channel - Watchdog timer: 1 channel					
Timer outputs		3 (14-bit PWM output $\times 1$)					
Clock output		$19.5 \mathrm{kHz}, 39.1 \mathrm{kHz}, 78.1 \mathrm{kHz}, 156 \mathrm{kHz}, 313 \mathrm{kHz}, 625 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5.0 \mathrm{MHz}$ (@5.0 MHz operation with main system clock) 32.768 kHz (@32.768 kHz operation with subsystem clock)					
Buzzer output		$1.2 \mathrm{kHz}, 2.4 \mathrm{kHz}, 4.9 \mathrm{kHz}, 9.8 \mathrm{kHz}$ (@5.0 MHz operation with main system clock)					
Vectored interrupt sources	Maskable	Internal: 13, External: 6					
	Non-maskable	Internal: 1					
	Software	1					
Test inputs		Internal: 1, external: 1					
Supply voltage		$\mathrm{V}_{\text {DD }}=1.8$ to 5.5 V					
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$					
Package		- 80-pin plastic QFP (14×14) - 80-pin plastic TQFP (fine pitch) (12×12)					

Notes 1. μ PD78005x only
2. μ PD78005xY only

CONTENTS

1. PIN CONFIGURATION (TOP VIEW) 8
2. BLOCK DIAGRAM 10
3. PIN FUNCTIONS 11
3.1 Port Pins 11
3.2 Non-Port Pins 13
3.3 Pin I/O Circuits and Recommended Connection of Unused Pins 15
4. MEMORY SPACE 19
5. PERIPHERAL HARDWARE FUNCTION FEATURES 20
5.1 Ports 20
5.2 Clock Generator 21
5.3 Timer/Event Counter 21
5.4 Clock Output Controller 24
5.5 Buzzer Output Controller 24
5.6 A/D Converter 25
5.7 D/A Converter 26
5.8 Serial Interfaces 27
5.9 Real-Time Output Ports 29
6. INTERRUPT AND TEST FUNCTIONS 30
6.1 Interrupt Functions 30
6.2 Test Functions 34
7. EXTERNAL DEVICE EXPANSION FUNCTION 35
8. STANDBY FUNCTION 35
9. RESET FUNCTION 35
10. MASK OPTION 36
11. INSTRUCTION SET 37
12. ELECTRICAL SPECIFICATIONS 39
13. CHARACTERISTICS CURVES (REFERENCE VALUES) 69
14. PACKAGE DRAWINGS 71
15. RECOMMENDED SOLDERING CONDITIONS 73
APPENDIX A. DEVELOPMENT TOOLS 75
APPENDIX B. RELATED DOCUMENTS 77

1. PIN CONFIGURATION (TOP VIEW)

- 80-pin plastic QFP (14×14)
$\mu \mathrm{PD} 780053 \mathrm{GC}-\times x \times-8 \mathrm{BT}$, $780054 \mathrm{GC}-\times \times x-8 \mathrm{BT}, 780055 \mathrm{GC}-\times \times x-8 \mathrm{BT}, 780056 \mathrm{GC}-\times \times x-8 \mathrm{BT}, 780058 \mathrm{GC}-\times \times x-8 \mathrm{BT}$, * 780058BGC-××x-8BT,780053YGC-××x-8BT,780054YGC-x×x-8BT,780055YGC-××x-8BT,780056YGC-xxx-8BT, * $780058 \mathrm{BYGC}-\times \times x-8 \mathrm{BT}$
- 80-pin plastic TQFP (fine pitch) (12×12)
μ PD780053GK-xxx-9EU, 780054GK-xxx-9EU, 780055GK-xxx-9EU, 780056GK-xxx-9EU, 780058GK-xxx-9EU,
780058BGK-xxx-9EU,780053YGK-xxx-9EU,780054YGK-xxx-9EU,780055YGK-xxx-9EU,780056YGK-xxx-9EU,
780058BYGK-××x-9EU

Cautions 1. Connect the IC (Internally Connected) pin directly to Vsso or Vssi.
2. Connect the AVss pin to Vsso.

Remarks 1. []: μ PD78005xY only
2. When the microcontroller is used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to $V_{D D o}$ and $V_{D D 1}$ individually and connecting $V_{s s o}$ and $\mathrm{V}_{\text {ss }}$ to different ground lines, is recommended.

PIN IDENTIFICATION

A8 to A15:	Address bus	PCL:	Programmable clock
AD0 to AD7:	Address/data bus	$\overline{\mathrm{RD}}$:	Read strobe
ANIO to ANI7:	Analog input	RESET:	Reset
ANO0, ANO1:	Analog output	RTP0 to RTP7:	Real-time output port
ASCK:	Asynchronous serial clock	RxD0, RxD1:	Receive data
ASTB:	Address strobe	SB0, SB1:	Serial bus
AVrefo, AVreft:	Analog reference voltage	SCK0 to SCK2:	Serial clock
AVss:	Analog ground	SCL:	Serial clock
BUSY:	Busy	SDA0, SDA1:	Serial data
BUZ:	Buzzer clock	SIO to SI2:	Serial input
IC:	Internally connected	SO0 to SO2:	Serial output
INTP0 to INTP5:	Interrupt from peripherals	STB:	Strobe
P00 to P05, P07:	Port 0	TIO0, TIO1:	Timer input
P10 to P17:	Port 1	TI1, Tl2:	Timer input
P20 to P27:	Port 2	TO0 to TO2:	Timer output
P30 to P37:	Port 3	TxD0, TxD1:	Transmit data
P40 to P47:	Port 4	Vddo, Vdd1:	Power supply
P50 to P57:	Port 5	Vsso, Vssi:	Ground
P60 to P67:	Port 6	WAIT:	Wait
P70 to P72:	Port 7	$\overline{\mathrm{WR}}$:	Write strobe
P120 to P127:	Port 12	X1, X2:	Crystal (main system clock)
P130, P131:	Port 13	XT1, XT2:	Crystal (subsystem clock)

2. BLOCK DIAGRAM

Remarks 1. The internal ROM and RAM capacity varies depending on the product.
2. []: $\mu \mathrm{PD} 78005 \mathrm{xY}$ only

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function	
P00	Input	Port 0 7-bit I/O port	Input only	Input	INTP0/TIO0	
P01	I/O		Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.	Input	INTP1/TI01	
P02					INTP2	
P03					INTP3	
P04					INTP4	
P05					INTP5	
P07Note 1	Input		Input only	Input	XT1	
P10 to P17	I/O	Port 1 8-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software ${ }^{\text {Note } 2}$.		Input	ANIO to ANI7	
P20	I/O	Port 2 8-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.		Input	SI1	
P21				SO1		
P22				$\overline{\text { SCK1 }}$		
P23				STB/TxD1		
P24				BUSY/RxD1		
P25				SIO/SB0[/SDA0]		
P26				S00/SB1/[SDA1]		
P27				$\overline{\text { SCKO }}$ [/SCL]		
P30	I/O	Port 3 8-bit I/O port. Input/output can be specified in 1 -bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.			Input	TOO
P31				TO1		
P32				TO2		
P33				TI1		
P34				TI2		
P35				PCL		
P36				BUZ		
P37				-		
P40 to P47	I/O	Port 4 8-bit I/O port. Input/output can be specified in 8-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software. The test input flag (KRIF) is set to 1 by falling edge detection.			Input	AD0 to AD7

Notes 1. When using the P07/XT1 pins as an input port, set bit 6 (FRC) of the processor clock control register (PCC) to 1. Do not use the on-chip feedback resistor of the subsystem clock oscillator.
2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input pins, set port 1 to the input mode. At this time, on-chip pull-up resistors are automatically disconnected.

Remark [] μ PD78005xY only

3.1 Port Pins (2/2)

Pin Name	I/O	Function		After Reset	Alternate Function	
P50 to P57	I/O	Port 5 8-bit I/O port. LEDs can be driven directly. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.		Input	A8 to A15	
P60	I/O	Port 6 8-bit I/O port. Input/output can be specified in 1-bit units.	N-ch open-drain input/ output port. An on-chip pullup resistor can be specified by the mask option. LEDs can be driven directly.	Input	-	
P61						
P62						
P63						
P64			When used as an input port, an on-chip pull-up resistor can be specified by software.		RD	
P65					$\overline{\mathrm{WR}}$	
P66					$\overline{\text { WAIT }}$	
P67					ASTB	
P70	I/O	Port 7 3-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.		Input	SI2/RxD0	
P71				SO2/TxD0		
P72				$\overline{\text { SCK2/ASCK }}$		
P120 to P127	I/O	Port 12 8-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistor can be specified by software.			Input	RTP0 to RTP7
P130, P131	I/O	Port 13 2-bit I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.			Input	ANO0, ANO1

3.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising edge and falling edges) can be specified.	Input	P00/TIO0
INTP1				P01/TI01
INTP2				P02
INTP3				P03
INTP4				P04
INTP5				P05
SIO	Input	Serial interface serial data input	Input	P25/SB0 [/SDA0]
SI1				P20
SI2				P70/RxD
SO0	Output	Serial interface serial data output	Input	P26/SB1 [/SDA1]
SO1				P21
SO2				P71/TxD
SB0	1/O	Serial interface serial data input/output$\mu \mathrm{PD} 78005 \times \mathrm{Y} \text { only }$	Input	P25/SIO [/SDA0]
SB1				P26/SO0 [/SDA1]
SDA0				P25/SI0/SB0
SDA1				P26/SO0/SB1
SCK0	1/O	Serial interface serial clock input/output	Input	P27 [/SCL]
$\overline{\text { SCK1 }}$				P22
$\overline{\text { SCK2 }}$				P72/ASCK
SCL		μ PD78005xY only		P27/SCK0
STB	Output	Serial interface automatic transmit/receive strobe output	Input	P23/TxD1
BUSY	Input	Serial interface automatic transmit/receive busy input	Input	P24/RxD1
RxD0	Input	Asynchronous serial interface serial data input	Input	P70/SI2
RxD1				P24/BUSY
TxD0	Output	Asynchronous serial interface serial data output	Input	P71/SO2
TxD1				P23/STB
ASCK	Input	Asynchronous serial interface serial clock input	Input	P72/डCK2
TIOO	Input	External count clock input to the 16-bit timer (TM0)	Input	P00/INTP0
TI01		Capture trigger signal input to the capture register (CR00)		P01/INTP1
TI1		External count clock input to the 8-bit timer (TM1)		P33
TI2		External count clock input to the 8-bit timer (TM2)		P34
TOO	Output	16-bit timer (TM0) output (also used for 14-bit PWM output)	Input	P30
TO1		8 -bit timer (TM1) output		P31
TO2		8-bit timer (TM2) output		P32
PCL	Output	Clock output (for trimming of main system clock and subsystem clock)	Input	P35
BUZ	Output	Buzzer output	Input	P36
RTP0 to RTP7	Output	Real-time output port from which data is output in synchronization with a trigger	Input	P120 to P127
AD0 to AD7	I/O	Lower address/data bus for expanding memory externally	Input	P40 to P47

Remark []: μ PD78005xY only

3.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
A8 to A15	Output	Higher address bus for expanding memory externally	Input	P50 to P57
$\overline{\mathrm{RD}}$	Output	Strobe signal output for reading from external memory	Input	P64
$\overline{\mathrm{WR}}$		Strobe signal output for writing to external memory		P65
$\overline{\text { WAIT }}$	Input	Wait insertion at external memory access	Input	P66
ASTB	Output	Strobe output that externally latches address information output to ports 4 and 5 to access external memory.	Input	P67
ANIO to ANI7	Input	A/D converter analog input	Input	P10 to P17
ANOO, ANO1	Output	D/A converter analog output	Input	P130, P131
AVrefo	Input	A/D converter reference voltage input (also used for analog power supply)	-	-
AVref1	Input	D/A converter reference voltage input	-	-
AVss	-	A/D converter and D/A converter ground potential Use at the same potential as Vsso.	-	-
RESET	Input	System reset input	-	-
X1	Input	Connecting crystal resonator for main system clock oscillation	-	-
X2	-		-	-
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	Input	P07
XT2	-		-	-
VDDo	-	Port block positive power supply	-	-
Vsso	-	Port block ground potential	-	-
VDD1	-	Positive power supply (except for port and analog blocks)	-	-
Vss1	-	Ground potential (except for port and analog blocks)	-	-
IC	-	Internally connected. Connect directly to Vsso or Vssı.	-	-

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the I/O circuit configuration of each type, see Figure 3-1.

Table 3-1. Pin I/O Circuit Type (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection
P00/INTP0/TI00	2	Input	Connect to Vsso.
P01/INTP1/TI01	8-C	I/O	Input: Independently connect to Vsso via a resistor. Output:Leave open.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P07/XT1	16	Input	Connect to Vodo.
P10/ANI0 to P17/ANI7	11-D	I/O	Input: Independently connect to $\mathrm{V}_{\text {do }}$ or Vsso via a resistor. Output:Leave open.
P20/SI1	8-C		
P21/SO1	$5-\mathrm{H}$		
P22/SCK1	8-C		
P23/STB/TxD1	5-H		
P24/BUSY/RxD1	8-C		
P25/SI0/SB0 [/SDA0]	10-B		
P26/SO0/SB1 [/SDA1]			
P27/SCK0 [/SCL]			
P30/TO0	5-H		
P31/TO1			
P32/TO2			
P33/TI1	8-C		
P34/TI2			
P35/PCL	5-H		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	$5-\mathrm{N}$		Input: Independently connect to Vddo via a resistor. Output: Leave open.
P50/A8 to P57/A15	5-H		Input: Independently connect to Vodo or $V_{s s o}$ via a resistor. Output:Leave open.
P60 to P63	13-J		Input: Independently connect to Vddo via a resistor. Output:Leave open.
P64/RD	5-H		Input: Independently connect to Vddo or Vsso via a resistor. Output: Leave open.
P65/WR			
P66/WAIT			
P67/ASTB			

Remark []: μ PD78005xY only.

Table 3-1. Pin I/O Circuit Type (2/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection
P70/SI2/RxD0	8-C	I/O	Input: Independently connect to Vodo or Vsso via a resistor. Output: Leave open.
P71/SO2/TxD0	5-H		
P72/SCK2/ASCK	8-C		
P120/RTP0 to P127/RTP7	5-H		
$\begin{aligned} & \mathrm{P} 130 / \mathrm{ANO}, \\ & \mathrm{P} 131 / \mathrm{ANO} \end{aligned}$	12-C		Input: Independently connect to Vsso via a resistor. Output: Leave open.
RESET	2	Input	-
XT2	16	-	Leave open.
AVrefo	-		Connect to Vsso.
AVref1			Connect to Vddo.
AVss			Connect to Vsso.
IC			Directly connect to Vsso or Vssi.

Figure 3-1. Pin I/O Circuits (1/2)

Figure 3-1. Pin Input/Output Circuits (2/2)

4. MEMORY SPACE

Figure $4-1$ shows the memory map of the μ PD78005x and 78005 xY .

Figure 4-1. Memory Map

Notes 1. μ PD780058, 780058B, 780058BY only
2. If external device expansion functions are to be employed for the μ PD780058, 780058B, or 780058BY, set the size of the internal ROM to 56 KB or less using internal the memory size switching register (IMS).
3. The internal ROM capacity depends on the product (see the table below).

Part Number	Last Address of Internal ROM nnnnH
μ PD780053, 780053Y	$5 F F F H$
μ PD780054, 780054Y	7FFFH
μ PD780055, 780055Y	$9 F F F H$
μ PD780056, 780056Y	BFFFH
μ PD780058B, 780058BY, 780058	EFFFH

5. PERIPHERAL HARDWARE FUNCTION FEATURES

5.1 Ports

The following three types of I/O ports are available.

- CMOS input (P00, P07): 2
- CMOS I/O (P01 to P05, port 1 to port 5, P64 to P67, port 7, port 12, port 13): 62
- N-ch open-drain I/O (P60 to P63): 4

Total: 68

Table 5-1. Port Functions

Port Name	Pin Name	Function
Port 0	P00, P07	Input only
	P01 to P05	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.
Port 1	P10 to P17	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.
Port 2	P20 to P27	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.
Port 3	P30 to P37	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.
Port 4	P40 to P47	I/O port. Input/output can be specified in 8-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software. The test flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software. LEDs can be driven directly.
Port 6	P60 to P63	N-ch open-drain I/O port. Input/output can be specified in 1-bit units. On-chip pull-up resistor can be used by mask option. LEDs can be driven directly.
	P64 to P67	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.
Port 7	P70 to P72	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.
Port 12	P120 to P127	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.
Port 13	P130, P131	I/O port. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by software.

5.2 Clock Generator

Two types of generators, a main system clock generator and a subsystem clock generator, are available.
The minimum instruction execution time can be changed.

- $0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s} / 12.8 \mu \mathrm{~s}$ (@5.0 MHz operation with main system clock)
- $122 \mu \mathrm{~s}$ (@32.768 kHz operation with subsystem clock)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer/Event Counter

Five timer/event counter channels are incorporated.

- 16-bit timer/event counter: 1 channel
- 8 -bit timer/event counter: 2 channels
- Watch timer: 1 channel
- Watchdog timer: 1 channel

Table 5-2. Operations of Timer/Event Counter

		16 -Bit Timer/ Event Counter	$8-B i t ~ T i m e r /$ Event Counter	Watch Timer	Watchdog Timer
Operation mode	Interval timer	1 channel	2 channels	1 channel	1 channel
	External event counter	1 channel	2 channels	-	-
	Timer output	1 output	2 outputs	-	-
	PWM output	1 output	-	-	-
	Pulse width measurement	1 input	-	-	-
	Square wave output	1 output	2 outputs	-	-
	One-shot pulse output	1 output	-	-	-

Figure 5-2. Block Diagram of 16-Bit Timer/Event Counter

Figure 5-3. Block Diagram of 8-Bit Timer/Event Counter

Figure 5-4. Block Diagram of Watch Timer

Figure 5-5. Block Diagram of Watchdog Timer

5.4 Clock Output Controller

Clocks with the following frequencies can be output as the clock output.

- $19.5 \mathrm{kHz} / 39.1 \mathrm{kHz} / 78.1 \mathrm{kHz} / 156 \mathrm{kHz} / 313 \mathrm{kHz} / 625 \mathrm{kHz} / 1.25 \mathrm{MHz} / 2.5 \mathrm{MHz} / 5.0 \mathrm{MHz}$ (@5.0 MHz operation with main system clock)
- 32.768 kHz (@32.768 kHz operation with subsystem clock)

Figure 5-6. Block Diagram of Clock Output Controller

5.5 Buzzer Output Controller

Clocks with the following frequencies can be output as the buzzer output.

- $1.2 \mathrm{kHz} / 2.4 \mathrm{kHz} / 4.9 \mathrm{kHz} / 9.8 \mathrm{kHz}$ (@5.0 MHz operation with main system clock)

Figure 5-7. Block Diagram of Buzzer Output Controller

5.6 A/D Converter

An A/D converter consists of eight 8-bit resolution channels is incorporated.
The following two types of the A/D conversion operation startup methods are available.

- Hardware start
- Software start

Figure 5-8. Block Diagram of A/D Converter

5.7 D/A Converter

A D/A converter consisting of two 8-bit resolution channels is incorporated.
The conversion method is the R-2R resistor ladder method.

Figure 5-9. D/A Converter Block Diagram

$\mathrm{n}=0,1$
$\mathrm{m}=4,5$
$x=1,2$

5.8 Serial Interfaces

Three clocked serial interface channels are incorporated.

- Serial interface channel 0
- Serial interface channel 1
- Serial interface channel 2

Table 5-3. Types and Functions of Serial Interface

Function	Serial Interface Channel 0		Serial Interface Channel 1	Serial Interface Channel 2
	μ PD78005x	μ PD78005xY		
3-wire serial I/O mode	\checkmark (MSB/LSB first switching possible)		\checkmark (MSB/LSB first switching possible)	\checkmark (MSB/LSB first switching possible)
3-wire serial I/O mode with automatic transmit/receive function	-		\checkmark (MSB/LSB first switching possible)	-
SBI (serial bus interface) mode	\checkmark (MSB first)	-	-	-
$1^{2} \mathrm{C}$ bus mode	-	\checkmark (MSB first)	-	-
2-wire serial I/O mode	\checkmark (MSB first)		-	-
Asynchronous serial interface (UART) mode (on-chip time division transfer function)	-		-	$\sqrt{ }$ (On-chip dedicated baud rate generator)

Figure 5-10. Block Diagram of Serial Interface Channel 0 (1/2)

Figure 5-10. Block Diagram of Serial Interface Channel 0 (2/2)

Figure 5-11. Block Diagram of Serial Interface Channel 1

Figure 5-12. Block Diagram of Serial Interface Channel 2

5.9 Real-Time Output Ports

Data set previously in the real-time output buffer register is transferred to the output latch by hardware concurrently with timer interrupt request and external interrupt request generation in order to output off-chip. This is the real-time output function. Pins used to output off-chip are called real-time output ports.

By using a real-time output port, a signal with no jitter can be output. This is most applicable to control of stepper motors, etc.

Figure 5-13. Block Diagram of Real-Time Output Port

6. INTERRUPT AND TEST FUNCTIONS

6.1 Interrupt Functions

The interrupt function includes, three different kinds of interrupts from 21 sources, as shown below.

- Non-maskable: 1
- Maskable: 19
- Software: 1

Table 6-1. Interrupt Source List (1/2)

Interrupt Type	Note 1 Default Priority	Interrupt Source		Internal/ External	Vector Table Address	Basic Configuration Type ${ }^{\text {Note } 2}$
		Name	Trigger			
Non-maskable	-	INTWDT	Watchdog timer overflow (with watchdog timer mode 1 selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Watchdog timer overflow (with interval timer mode selected)			(B)
	1	INTP0	Pin input edge detection	External	0006H	(C)
	2	INTP1			0008H	(D)
	3	INTP2			000AH	
	4	INTP3			000 CH	
	5	INTP4			000EH	
	6	INTP5			0010H	
	7	INTCSIO	End of serial interface channel 0 transfer	Internal	0014H	(B)
	8	INTCSI1	End of serial interface channel 1 transfer		0016H	
	9	INTSER	Occurrence of serial interface channel 2 UART reception error		0018H	
	10	INTSR	End of serial interface channel 2 UART reception		001AH	
		INTCSI2	End of serial interface channel 2 3-wire transfer			
	11	INTST	End of serial interface channel 2 UART transmission		001CH	

Notes 1. Default priority is the priority order when several maskable interrupt requests are generated simultaneously. 0 is the highest order and 17 is the lowest.
2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1.

Remark There are two types of interrupt source for the watchdog timer: Non-maskable interrupts and maskable interrupts (internal). Only one of these interrupts can be selected.

Table 6-1. Interrupt Source List (2/2)

Interrupt Type	Note 1 Default Priority	Interrupt Source		Internal/ External	Vector Table Address	Basic Configuration Type ${ }^{\text {Note }} 2$
		Name	Trigger			
Maskable	12	INTTM3	Reference time interval signal from watch timer	Internal	001EH	(B)
	13	INTTM00	Generation of match signal of 16 -bit timer counter and capture/compare register (CROO)		0020H	
	14	INTTM01	Generation of match signal of 16-bit timer counter and capture/compare register (CR01)		0022H	
	15	INTTM1	Generation of match signal of 8 -bit timer/event counter 1		0024H	
	16	INTTM2	Generation of match signal of 8-bittimer/ event counter 2		0026H	
	17	INTAD	End of conversion by A/D converter		0028H	
Software	-	BRK	Execution of BRK instruction	-	003EH	(E)

Notes 1. Default priority is the priority order when several maskable interrupt requests are generated simultaneously. 0 is the highest order and 17 is the lowest.
2. Basic configuration types (A) to (E) correspond to (A) to (E) in Figure 6-1.

Figure 6-1. Basic Configuration of Interrupt Function (1/2)
(A) Internal non-maskable interrupt

(B) Internal maskable interrupt

(C) External maskable interrupt (INTPO)

Figure 6-1. Basic Configuration of Interrupt Function (2/2)
(D) External maskable interrupt (except INTPO)

(E) Software interrupt

IF: Interrupt request flag
IE: Interrupt enable flag
ISP: In-service priority flag
MK: Interrupt mask flag
PR: Priority specification flag

6.2 Test Functions

The test function includes the two test input sources shown in Table 6-2 below.
Table 6-2. Test Input Source List

Test Input Source		Internal/External
Name	Trigger	
INTWT	Watch timer overflow	Internal
INTPT4	Port 4 falling edge detection	External

Figure 6-2. Basic Configuration of Test Function

IF: Test input flag
MK: Test mask flag

7. EXTERNAL DEVICE EXPANSION FUNCTION

The external device expansion function connects external devices to areas other than the internal ROM, RAM, and SFR areas.

Ports 4 to 6 are used for external device connection.

8. STANDBY FUNCTION

The following two standby functions are available for further reduction of system current consumption.

- HALT mode: In this mode, the CPU operating clock is stopped.

The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.

- STOP mode: In this mode oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and only the subsystem clock is used, resulting in extremely small power consumption.

Figure 8-1. Standby Function

Note The current consumption can be reduced by stopping the main system clock.
When the CPU is operating on the subsystem clock, set the MCC (bit 7 of the processor clock control register (PCC)) to stop the main system clock. The STOP instruction cannot be used.

Caution When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark CSS: Bit 4 of the processor clock control register (PCC).

9. RESET FUNCTION

The following two reset methods are available.

- External reset by RESET signal input
- Internal reset by watchdog timer program loop time detection

10. MASK OPTION

The μ PD78005x and 78005xY have the following mask options.

- Pull-up resistor

An on-chip pull-up resistor for P60 to P63 (I/O port) can be specified in 1-bit units.
$<1>$ Specifies on-chip pull-up resistor.
<2> Does not specify on-chip pull-up resistor.

11. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand First Operand	\#byte	A	$\mathrm{r}^{\text {Note }}$	sfr	saddr	!addr16	PSW	[DE]	[HL]	$\left[\begin{array}{l} {[\mathrm{HL}+\text { Byte] }} \\ {[\mathrm{HL}+\mathrm{B}]} \\ {[\mathrm{HL}+\mathrm{C}]} \end{array}\right]$	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		$\begin{aligned} & \text { MOV } \\ & \text { XCH } \\ & \text { ADD } \\ & \text { ADDC } \\ & \text { SUB } \\ & \text { SUBC } \\ & \text { AND } \\ & \text { OR } \\ & \text { XOR } \\ & \text { CMP } \end{aligned}$	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { XCH } \\ & \text { ADD } \\ & \text { ADDC } \\ & \text { SUB } \\ & \text { SUBC } \\ & \text { AND } \\ & \text { OR } \\ & \text { XOR } \\ & \text { CMP } \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{XCH} \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { XCH } \\ & \text { ADD } \\ & \text { ADDC } \\ & \text { SUB } \\ & \text { SUBC } \\ & \text { AND } \\ & \text { OR } \\ & \text { XOR } \\ & \text { CMP } \end{aligned}$	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											$\begin{aligned} & \text { INC } \\ & \text { DEC } \end{aligned}$
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		$\begin{aligned} & \text { INC } \\ & \text { DEC } \end{aligned}$
!addr16		MOV											
PSW	MOV	MOV											$\begin{aligned} & \text { PUSH } \\ & \text { POP } \end{aligned}$
[DE]													
[HL]		MOV											$\begin{aligned} & \text { ROR4 } \\ & \text { ROL4 } \end{aligned}$
$\begin{aligned} & {[\mathrm{HL}+\text { Byte }]} \\ & {[\mathrm{HL}+\mathrm{B}]} \\ & {[\mathrm{HL}+\mathrm{C}]} \end{aligned}$		MOV											
X													MULU
C													DIVUW

Note Except $r=A$
(2) 16-bit instructions

MOV, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second Operand First Operand	\#word	AX	rpNote	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVWNote					INCW DECW PUSH POP	
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
laddr16		MOVW						
SP	MOVW	MOVW						

Note Only when $\mathrm{rp}=\mathrm{BC}, \mathrm{DE}$, or HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second Operand First Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	$\begin{aligned} & \text { SET1 } \\ & \text { CLR1 } \end{aligned}$
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
CY	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1				

(4) Call instruction/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

Second Operand First Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

12. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Note The rms value should be calculated as follows: $[\mathrm{rms}$ value $]=[$ Peak value $] \times \sqrt{\text { Duty }}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Main System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx) Note 1	$V_{D D}=$ Oscillation voltage range	1.0		5.0	MHz
		Oscillation stabilization time ${ }^{\text {Note } 2}$	After Vod reaches oscillation voltage range MIN.			4	ms
Crystal resonator		Oscillation frequency (fx) Note 1		1.0		5.0	MHz
		Oscillation stabilization time ${ }^{\text {Note } 2}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			10	ms
						30	
External clock		X1 input frequency (fx) Note 1		1.0		5.0	MHz
		X1 input high-/low-level width (txh, txL)		85		500	ns

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Subsystem Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=1.8$ to 5.5 V)

| Resonator
 Crystal
 resonator
 Recommended Circuit | Parameter | Conditions | MIN. | TYP. | MAX. | Unit |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- | :---: | :---: |

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after VDD reaches oscillation voltage MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=\mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .				15	pF
I/O capacitance	Cıo	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .	P01 to P05, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P120 to P127, P130, P131			15	pF
			P60 to P63			20	pF

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathbf{H + 1}}$	```P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P71, P120 to P127, P130, P131```	$V_{D D}=2.7$ to 5.5 V	0.7 VdD		V DD	V
				0.8VDD		V DD	V
	V ${ }^{\text {H2}}$	P00 to P05, P20, P22, P24 to P27, P33, P34, P70, P72, $\overline{R E S E T}$	$V_{D D}=2.7$ to 5.5 V	0.8 VdD		VDD	V
				0.85 VDD		VDD	V
	Vнн	P60 to P63 (N -ch open drain)	VDD $=2.7$ to 5.5 V	$0.7 \mathrm{~V}_{\mathrm{DD}}$		15	V
				0.8 V DD		15	V
	V_{1+4}	X1, X2	$V_{D D}=2.7$ to 5.5 V	VDD - 0.5		Vdo	V
				VDD - 0.2		Vdo	V
	V ${ }_{\text {H5 }}$	XT1/P07, XT2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.8 Vdd		Vdo	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0.9VDD		VDD	V
			Note	0.9Vdd		VDD	V
Input voltage, low	VIL1	```P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P71, P120 to P127, P130, P131```	$V_{D D}=2.7$ to 5.5 V	0		0.3 VDD	V
				0		0.2 Vdo	V
	VIL2	P00 to P05, P20, P22, P24 to P27, P33, P34, P70, P72, $\overline{\text { RESET }}$	$V_{\text {DD }}=2.7$ to 5.5 V	0		$0.2 \mathrm{~V}_{\text {do }}$	V
				0		0.15 Vdo	V
	VIL3	P60 to P63	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.3 VdD	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		0.2 VDD	V
				0		0.1 V VD	V
	VIL4	$\mathrm{X} 1, \mathrm{X} 2$	$V_{D D}=2.7$ to 5.5 V	0		0.4	V
				0		0.2	V
	VIL5	XT1/P07, XT2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.2 VdD	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		$0.1 \mathrm{~V}_{\mathrm{DD}}$	V
			Note	0		0.1 V DD	V
Output voltage, high	Vон	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V , $\mathrm{loh}^{\prime}=-1 \mathrm{~mA}$		$V_{D D}-1.0$			V
		$\mathrm{I} \mathrm{H}=-100 \mu \mathrm{~A}$		$V_{D D}-0.5$			V
Output voltage, Iow	Vol1	P50 to P57, P60 to P63	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$		0.4	2.0	V
		P01 to P05, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P70 to P72, P120 to P127, P130, P131	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{loL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vot2	SB0, SB1, $\overline{\text { SCKO }}$	$V_{D D}=4.5 \text { to } 5.5 \mathrm{~V} \text {, }$ open drain, pulled-up ($\mathrm{R}=1 \mathrm{k} \Omega$)			0.2 VDD	V
	Voı3	loL $=400 \mu \mathrm{~A}$				0.5	V

Note When P07/XT1 pin is used as P07, the inverse phase of P07 should be input to XT2 pin using an inverter.
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	lııн	$\mathrm{V} \mathrm{IN}=\mathrm{V}_{\mathrm{DD}}$	P00 to P05, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P72, P120 to P127, P130, P131, $\overline{\text { RESET }}$			3	$\mu \mathrm{A}$
	ІІн2		X1, X2, XT1/P07, XT2			20	$\mu \mathrm{A}$
	ІІнз	V in $=15 \mathrm{~V}$	P60 to P63			80	$\mu \mathrm{A}$
Input leakage current, low	lıL1	V IN $=0 \mathrm{~V}$	P00 to P05, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P120 to P127, P130, P131, $\overline{\text { RESET }}$			-3	$\mu \mathrm{A}$
	ILıL		X1, X2, XT1/P07, XT2			-20	$\mu \mathrm{A}$
	Iııз		P60 to P63			$-3^{\text {Note }}$	$\mu \mathrm{A}$
Output leakage current, high	ILon	Vout $=\mathrm{V}_{\text {DD }}$				3	$\mu \mathrm{A}$
Output leakage current, low	ILoL	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Mask option pull-up resistor	R1	VIN $=0$ V, P60 to P63		20	40	120	k Ω
Software pull-up resistor	R2	Vin $=0$ V, P01 to P05, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P72, P120 to P127, P130, P131		15	30	90	k Ω

Note When pull-up resistors are not connected to P60 to P63 (specified by the mask option), a low-level input leakage current of $-200 \mu \mathrm{~A}$ (MAX.) flows only for 1.5 clocks (without wait) after a read instruction has been executed to port 6 (P6) or port mode register 6 (PM6). At times other than this 1.5-clock interval, a $-3 \mu \mathrm{~A}$ (MAX.) current flows.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ${ }^{\text {Note }} 5$	ldD1	5.0 MHz crystal oscillation operating mode $(f x x=2.5 \mathrm{MHz})^{\text {Note } 3}$	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$ Note 1		3.5	7.7	mA
			$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$ Note 2		0.92	2.2	mA
			$\mathrm{V}_{\text {DD }}=2.0 \mathrm{~V} \pm 10 \%$ Note 2		0.47	1.2	mA
		5.0 MHz crystal oscillation operating mode $(f x x=5.0 \mathrm{MHz})^{\text {Note } 4}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$ Note 1		6.1	12.3	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note }} 2$		1.6	3.5	mA
	lod2	5.0 MHz crystal oscillation HALT mode $(f x x=2.5 \mathrm{MHz})^{\text {Note } 3}$	V DD $=5.0 \mathrm{~V} \pm 10 \%$				
			Peripheral functions operating			5.5	mA
			Peripheral functions not operating		0.97	2.4	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$				
			Peripheral functions operating			2.1	mA
			Peripheral functions not operating		0.38	0.92	mA
			V DD $=2.0 \mathrm{~V} \pm 10 \%$				
			Peripheral functions operating			1.1	mA
			Peripheral functions not operating		0.19	0.46	mA
		5.0 MHz crystal oscillation HALT mode $(f x x=5.0 \mathrm{MHz})^{\text {Note }} 4$	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$				
			Peripheral functions operating			7.5	mA
			Peripheral functions not operating		1.2	2.9	mA
			V DD $=3.0 \mathrm{~V} \pm 10 \%$				
			Peripheral functions operating			3.3	mA
			Peripheral functions not operating		0.48	1.2	mA
	IDD3	32.768 kHz crystal oscillation operating mode ${ }^{\text {Note } 6}$	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$		46	92	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$		25	50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 10 \%$		12.5	25	$\mu \mathrm{A}$
	IDD4	32.768 kHz crystal oscillation HALT modeNote 6	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$		22.5	50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		3.2	13.2	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 10 \%$		1.5	11.5	$\mu \mathrm{A}$
	IdD5	$\mathrm{XT} 1=\mathrm{V} \mathrm{DD}$ STOP mode When feedback resistor is used	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$		1.0	30	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$		0.5	10	$\mu \mathrm{A}$
			$V_{\text {DD }}=2.0 \mathrm{~V} \pm 10 \%$		0.3	10	$\mu \mathrm{A}$
	Ido6	$\mathrm{XT} 1=\mathrm{V}_{\mathrm{DD}}$ STOP mode When feedback resistor is not used	V DD $=5.0 \mathrm{~V} \pm 10 \%$		0.1	30	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$
			V DD $=2.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$

Notes 1. High-speed mode operation (when the processor clock control register (PCC) is set to 00 H).
2. Low-speed mode operation (when the PCC is set to 04 H).
3. Operation with main system clock $f x x=f x / 2$ (when the oscillation mode select register (OSMS) is set to 00H)
4. Operation with main system clock $\mathrm{fxx}_{\mathrm{x}}=\mathrm{fx}$ (when OSMS is set to 01H)
5. Refer to the current flowing to the Vodo and Vodi pins. The current flowing to the A/D converter, D/A converter, and on-chip pull-up resistor is not included.
6. When the main system clock operation is stopped.

AC Characteristics

(1) Basic operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Cycle time (Minimum instruction execution time)	Tcy	Operating with main system clock ($\mathrm{fxx}=2.5 \mathrm{MHz}$) ${ }^{\text {Note } 1}$	$V_{D D}=2.7$ to 5.5 V	0.8		64	$\mu \mathrm{s}$
				2.0		64	$\mu \mathrm{s}$
		Operating with main system clock (fxx =5.0 MHz) ${ }^{\text {Note } 2}$	$3.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.4		32	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 3.5 \mathrm{~V}$	0.8		32	$\mu \mathrm{s}$
		Operating on subsystem clock		$40^{\text {Note } 3}$	122	125	$\mu \mathrm{s}$
TIOO input high-/ low-level width	$\begin{aligned} & \text { tтіноо } \\ & \text { tтiloo } \end{aligned}$	$3.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		$2 /$ sam $+0.1{ }^{\text {Note }} 4$			$\mu \mathrm{s}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.5 \mathrm{~V}$		$2 / \mathrm{fsam}+0.2^{\text {Note }} 4$			$\mu \mathrm{s}$
				$2 /$ ssam $+0.5^{\text {Note }} 4$			$\mu \mathrm{s}$
TIO1 input high-/ low-level width	tTiHO1 ttloor			10			$\mu \mathrm{s}$
				20			$\mu \mathrm{s}$
TI1, TI2 input frequency	ftil	$\mathrm{V} D \mathrm{DD}=4.5$ to 5.5 V		0		4	MHz
				0		275	kHz
TI1, TI2 input high-/low-level width	ttiH1 tTIL1	$\mathrm{V} D \mathrm{D}=4.5$ to 5.5 V		100			ns
				1.8			$\mu \mathrm{s}$
Interrupt request input high-/ low-level width	tinth tintl	INTPO	$3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	$2 /$ sam $+0.1{ }^{\text {Note }} 4$			$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.5 \mathrm{~V}$	$2 /$ sam $+0.2^{\text {Note }} 4$			$\mu \mathrm{s}$
				$2 /$ ssam $+0.5^{\text {Note }} 4$			$\mu \mathrm{s}$
		INTP1 to INTP5, P40 to P47	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	10			$\mu \mathrm{s}$
				20			$\mu \mathrm{s}$
RESET lowlevel width	trsL	$V_{D D}=2.7$ to 5.5 V		10			$\mu \mathrm{s}$
				20			$\mu \mathrm{s}$

Notes 1. Operation with main system clock $f x x=f x / 2$ (when the oscillation mode select register (OSMS) is set to 00H)
2. Operation with main system clock $f x x=f x$ (when OSMS is set to $01 H$)
3. Value when external clock is used. When a crystal resonator is used, it is $114 \mu \mathrm{~s}$ (MIN.)
4. Selection of $f_{s a m}=f x x / 2^{N}, f_{x x} / 32, f_{x x} / 64$, and $f x x / 128$ is possible with bits 0 and 1 (SCS0, SCS1) of the sampling clock selection register (SCS) (when $\mathrm{N}=0$ to 4).

Tcy vs. VDD (@fxx = fx/2 main system clock operation)

Tcy vs. VdD (@fxx = fx main system clock operation)

(2) Read/write operation
(a) When MCS $=1, \mathrm{PCC} 2$ to $\mathrm{PCCO}=000 \mathrm{~B}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.5$ to 5.5 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	$\mathrm{tasth}^{\text {a }}$		0.85 tcy - 50		ns
Address setup time	tads		0.85 tcy - 50		ns
Address hold time	$\mathrm{tadH}^{\text {a }}$		50		ns
Time from address to data input	tadD1			$(2.85+2 n)$ tcy - 80	ns
	tadD2			$(4+2 n)$ tcy- 100	ns
Time from $\overline{\mathrm{RD}} \downarrow$ to data input	trDD1			$(2+2 n)$ tcy- 100	ns
	trdo2			$(2.85+2 n)$ tcy - 100	ns
Read data hold time	trin		0		ns
$\overline{\mathrm{RD}}$ low-level width	trdL1		$(2+2 n)$ tcy -60		ns
	trdL2		$(2.85+2 n)$ tcy - 60		ns
Time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$ input	trowt1			$0.85 \mathrm{tcy}-50$	ns
	trowt2			2tcy-60	ns
Time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$ input	twrwt			2tcy-60	ns
$\overline{\text { WAIT }}$ low-level width	twtL		$(1.15+2 n)$ tcy	$(2+2 n)$ tcy	ns
Write data setup time	twos		$(2.85+2 n)$ tcr - 100		ns
Write data hold time	twor		20		ns
$\overline{\mathrm{WR}}$ low-level width	twRL		$(2.85+2 n)$ tcr -60		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tastrd		25		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		$0.85 \mathrm{tcy}+20$		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to ASTB \uparrow at external fetch	trdast		0.85tcy - 10	$1.15 t c y+20$	ns
Time from $\overline{\mathrm{RD}} \uparrow$ to address hold at external fetch	trdadh		0.85tcy - 50	$1.15 t c y+50$	ns
Time from $\overline{\mathrm{RD}} \uparrow$ to write data output	trowd		40		ns
Time from $\overline{\mathrm{WR}} \downarrow$ to write data output	twrwo		0	50	ns
Time from $\overline{\mathrm{WR} \uparrow \text { to address hold }}$	twradh		0.85tcy	$1.15 \mathrm{tcy}+40$	ns
	twTRD		$1.15 \mathrm{tcy}+40$	$3.15 \mathrm{tcy}+40$	ns
Delay time from $\overline{\mathrm{WAIT}} \uparrow$ to $\overline{\mathrm{WR}} \uparrow$	twTwr		$1.15 \mathrm{tcy}+30$	$3.15 \mathrm{tcy}+30$	ns

Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)
2. PCC2 to PCC0: Bits 2 to 0 of the processor clock control register (PCC)
3. $\mathrm{tcy}=\mathrm{Tcy} / 4$
4. n indicates the number of waits.
（b）When MCS $=0$ or PCC 2 to $\mathrm{PCCO} \neq 000 \mathrm{~B}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dD}}=2.7$ to 5.5 V ）

Parameter	Symbol	Conditions	MIN．	MAX．	Unit
ASTB high－level width	$\mathrm{t}_{\text {ASTH }}$		tcy－ 80		ns
Address setup time	tads		tcy－ 80		ns
Address hold time	tadh		$0.4 \mathrm{tcy} \mathrm{-} 10$		ns
Time from address to data input	tadD1			$(3+2 n)$ tcy－ 160	ns
	tadD2			$(4+2 n)$ tcy－ 200	ns
Time from $\overline{\mathrm{RD}} \downarrow$ to data input	trdD1			$(1.4+2 n)$ tcy－ 70	ns
	trdo2			$(2.4+2 n)$ tcy－ 70	ns
Read data hold time	trin		0		ns
$\overline{\mathrm{RD}}$ low－level width	trdL1		$(1.4+2 n)$ tcy－ 20		ns
	trdL2		$(2.4+2 n)$ tcy－ 20		ns
Time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$ input	trowt1			tcy－ 100	ns
	trowt2			2tcr－ 100	ns
Time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$ input	twrwt			2tcy－ 100	ns
$\overline{\text { WAIT }}$ low－level width	twTL		$(1+2 n)$ tcy	$(2+2 n)$ tcy	ns
Write data setup time	twds		$(2.4+2 n)$ tcy -60		ns
Write data hold time	twde		20		ns
$\overline{\mathrm{WR}}$ low－level width	twri		$(2.4+2 n)$ tcy－ 20		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tastrd		$0.4 \mathrm{tcr}-30$		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		$1.4 \mathrm{tcy}-30$		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to ASTB \uparrow at external fetch	trdast		tcy－ 10	tcy +20	ns
Time from $\overline{\mathrm{RD}} \uparrow$ to address hold at external fetch	trdadh		tcy－ 50	tcy +50	ns
Time from $\overline{\mathrm{RD}} \uparrow$ to write data output	trdwd		$0.4 \mathrm{tcy} \mathrm{-} 20$		ns
Time from $\overline{\mathrm{WR}} \downarrow$ to write data output	twrwd		0	60	ns
Time from $\overline{\mathrm{WR} \uparrow \text { to address hold }}$	twradh		tcy	tcy＋ 60	ns
Delay time from $\overline{\text { WAIT } \uparrow \text { to } \overline{\mathrm{RD}} \uparrow\} .0{ }^{\text {a }} \text {（ }}$	twTRD		$0.6 \mathrm{tcy}+180$	$2.6 \mathrm{tcy}+180$	ns
Delay time from $\overline{\text { WAIT } \uparrow \text { to } \overline{\mathrm{WR}} \uparrow ⿱ ⿻ 土 一 ⺝ ⿱ 丆 贝 ⿴ 囗 十 力}$	twTwr		$0.6 \mathrm{tcy}+120$	$2.6 \mathrm{tcr}+120$	ns

Remarks 1．MCS：Bit 0 of the oscillation mode selection register（OSMS）
2．PCC2 to PCC0：Bits 2 to 0 of the processor clock control register（PCC）
3． $\mathrm{tcy}=\mathrm{Tcy} / 4$
4． n indicates the number of waits．
(c) When MCS $=0$ or PCC2 to $\mathrm{PCCO} \neq 000 \mathrm{~B}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 2.7 V$)$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		tcy - 150		ns
Address setup time	tads		tcy - 150		ns
Address hold time	tadh		$0.37 \mathrm{tcy}-40$		ns
Time from address to data input	tadD1			$(3+2 n)$ tcy - 320	ns
	tadD2			$(4+2 n)$ tcy - 300	ns
Time from $\overline{\mathrm{RD}} \downarrow$ to data input	trdo1			$(1.37+2 n)$ tcr - 120	ns
	trdo2			$(2.37+2 n)$ tcy - 120	ns
Read data hold time	trin		0		ns
$\overline{\mathrm{RD}}$ low-level width	trDL1		$(1.37+2 n)$ tcr - 20		ns
	trdi2		$(2.37+2 n)$ tcr - 20		ns
Time from $\overline{\mathrm{RD}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$ input	trowt1			tcy - 200	ns
	trdwt2			2tcr - 200	ns
Time from $\overline{\mathrm{WR}} \downarrow$ to $\overline{\mathrm{WAIT}} \downarrow$ input	twrwt			2tcy - 200	ns
$\overline{\text { WAIT }}$ low-level width	twTL		$(1+2 n)$ tcy	(2+2n) tcy	ns
Write data setup time	twos		$(2.37+2 n)$ tcy - 100		ns
Write data hold time	twDH		20		ns
$\overline{\mathrm{WR}}$ low-level width	twrL		$(2.37+2 n)$ tcr - 20		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{RD}} \downarrow$	tastrd		$0.37 \mathrm{tcy}-50$		ns
Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		$1.37 \mathrm{tcy}-50$		ns
Delay time from $\overline{\mathrm{RD}} \uparrow$ to ASTB at external fetch	triast		tcy - 10	tcy +20	ns
Time from $\overline{\mathrm{RD}} \uparrow$ to address hold at external fetch	trdadh		tcy - 50	tcy +50	ns
Time from $\overline{\mathrm{RD}} \uparrow$ to write data output	trdwd		$0.37 \mathrm{tcy}-40$		ns
Time from $\overline{\mathrm{WR}} \downarrow$ to write data output	twrwd		0	120	ns
Time from $\overline{\mathrm{WR}} \uparrow$ to address hold	twradh		tcr	tcy +120	ns
Delay time from $\overline{\text { WAIT }} \uparrow$ to $\overline{\mathrm{RD}} \uparrow$	twTRD		0.63 tcr + 350	$2.63 \mathrm{tcy}+350$	ns
Delay time from $\overline{\mathrm{WAIT}} \uparrow$ to $\overline{\mathrm{WR}} \uparrow$	twTwr		0.63 tcr +240	2.63 tcy +240	ns

Remarks 1. MCS: Bit 0 of the oscillation mode selection register (OSMS)
2. PCC2 to PCC0: Bits 2 to 0 of the processor clock control register (PCC)
3. $\mathrm{tcy}=\mathrm{Tcy} / 4$
4. n indicates the number of waits.
(3) Serial interface ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)
(a) Serial interface channel 0
(i) 3-wire serial I/O mode ($\overline{\text { SCKO}}$... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX	Unit
$\overline{\text { SCK0 }}$ cycle time	tkcy1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1,600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	3,200			ns
			4,800			ns
$\overline{\text { SCK0 }}$ high-/low-level width	tkh1, $_{\text {tkL1 }}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tксу1/2-50			ns
			tксү1/2-100			ns
SIO setup time (to SCKO \uparrow)	tsik1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	300			ns
			400			ns
SIO hold time (from $\overline{\mathrm{SCKO}} \uparrow$)	tksı1		400			ns
Delay time from $\overline{\text { SCKO }} \downarrow$ to SOO output	tKsO1	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of the SCKO and SOO output lines.
(ii) 3-wire serial I/O mode ($\overline{\mathrm{SCKO}} .$. External clock input)

Note C is the load capacitance of the SO0 output line.

(iii) 2-wire serial I/O mode (SCKO... Internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксуз	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1,600			ns
			$2.0 \mathrm{~V} \leq \mathrm{V} D \leq 2.7 \mathrm{~V}$	3,200			ns
				4,800			ns
$\overline{\text { SCKO }}$ high-level width	ткнз		$V_{\text {DD }}=2.7$ to 5.5 V	tксүз/2-160			ns
				tксуз/2-190			ns
$\overline{\text { SCKO }}$ low-level width	tкı3		$V_{D D}=4.5$ to 5.5 V	tксу3/2-50			ns
				tксуз/2-100			ns
SB0, SB1 setup time (to $\overline{\text { SCKO }} \uparrow$)	tsik3		$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	300			ns
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	350			ns
			$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	400			ns
				500			ns
SB0, SB1 hold time (from SCKO \uparrow)	tksi3			600			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Delay time from $\overline{\text { SCKO }} \downarrow$ to SB0, SB1 output	tkso3			0		300	ns

Note R and C are the load resistance and load capacitance of the SCK0, SB0, and SB1 output lines.
(iv) 2-wire serial I/O mode ($\overline{\text { SCKO }}$... Internal clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксу4	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		1,600			ns
		$2.0 \mathrm{~V} \leq \mathrm{VDD}^{\text {< }} 2.7 \mathrm{~V}$		3,200			ns
				4,800			ns
SCK0 high-level width	tkH4	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		650			ns
		$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$		1,300			ns
				2,100			ns
$\overline{\text { SCKO }}$ low-level width	tkL4	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1,600			ns
				2,400			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsik4	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 5.5 V		100			ns
				150			ns
SB0, SB1 hold time (from $\overline{\mathrm{SCKO}} \uparrow$)	tksi4			tксү4/2			ns
Delay time from $\overline{\text { SCKO }} \downarrow$ to SB0, SB1 output	tks04	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0		300	ns
			$2.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<4.5 \mathrm{~V}$	0		500	ns
				0		800	ns
$\overline{\text { SCKO }}$ rise/fall time	$\mathrm{t}_{\text {R4, }} \mathrm{tF}^{4}$	When using external device expansion function				160	ns
		When not using external device expansion function				1,000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.
(v) SBI mode (SCKO... Internal clock output) (μ PD78005x only)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tkcy	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		3,200			ns
				4,800			ns
$\overline{\text { SCKO }}$ high-/low-level width	tкH5, tkL5	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		tксү5/2-50			ns
				tkcys/2-150			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsiks	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		100			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		300			ns
				400			ns
SB0, SB1 hold time (from $\overline{\text { SCKO }} \uparrow$)	tks15			tkcys/2			ns
Delay time from $\overline{\text { SCKO }} \downarrow$ to SB0, SB1 output	tksos	$\begin{aligned} & R=1 \mathrm{k} \Omega, \\ & C=100 \mathrm{pF} \text { Note } \end{aligned}$	$V_{\text {DD }}=4.5$ to 5.5 V	0		250	ns
				0		1,000	ns
SB0, SB1 \downarrow from $\overline{\text { SCK0 } \uparrow}$	tкsb			tkcy			ns
$\overline{\text { SCK0 }} \downarrow$ from SB0, SB1 \downarrow	tsbk			tkcy			ns
SB0, SB1 high-level width	tsbh			tkcys			ns
SB0, SB1 low-level width	tsbl			tkcy			ns

Note $\quad R$ and C are the load resistance and load capacitance of the $\overline{\text { SCKO }}$, SB0, and SB1 output lines.
(vi) SBI mode (SCKO \ldots External clock input) (μ PD78005x only)

Note $\quad R$ and C are the load resistance and load capacitance of the SB0 and SB1 output lines.
(vii) $\mathrm{I}^{2} \mathrm{C}$ bus mode (SCL ... Internal clock output) (μ PD78005xY only)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcy7	$\begin{aligned} & \mathrm{R}=1 \mathrm{~K} \Omega, \\ & \mathrm{C}=100 \mathrm{pF}^{\text {Note }} \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	10			$\mu \mathrm{s}$
			$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	20			$\mu \mathrm{s}$
				30			$\mu \mathrm{s}$
SCL high-level width	tkH7		$V_{D D}=2.7$ to 5.5 V	tксу7 - 160			ns
				tксу7 - 190			ns
SCL low-level width	tкı7		$V_{D D}=4.5$ to 5.5 V	tксу7 - 50			ns
				tксу7 - 100			ns
SDA0, SDA1 setup time (to SCL \uparrow)	tsik7		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	200			ns
			$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	300			ns
				400			ns
SDA0, SDA1 hold time (from SCL \downarrow)	tksi7			0			ns
Delay time from SCL \downarrow to SDA0, SDA1 output	tksot		$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		300	ns
			$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		500	ns
				0		600	ns
SDA0, SDA1 \downarrow from SCL \uparrow or SDA0, SDA1 \uparrow from SCL \downarrow	tksb			200			ns
SCL \downarrow from SDA0, SDA1 \downarrow	tsbk		$\mathrm{V}_{\text {DD }}=2.0$ to 5.5 V	400			ns
				500			ns
SDA0, SDA1 high-level width	tsb			500			ns

Note R and C are the load resistance and load capacitance of the SCL, SDA0, and SDA1 output lines.
(viii) $I^{2} \mathrm{C}$ bus mode (SCL ... External clock input) (μ PD78005xY only)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCL cycle time	tксу8			1,000			ns
SCL high-/low-level width	tкнв, tkL8	$V_{D D}=2.0$ to 5.5 V		400			ns
				600			ns
SDAO, SDA1 setup time (to SCLT)	tsik8	$V_{D D}=2.0 \text { to } 5.5 \mathrm{~V}$		200			ns
				300			ns
SDA0, SDA1 hold time (from SCL \downarrow)	tksis			0			ns
Delay time from SCL \downarrow to SDA0, SDA1 output	tksos	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{Vdo}^{5} 5.5 \mathrm{~V}$	0		300	ns
			$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		500	ns
				0		600	ns
SDA0, SDA1 \downarrow from SCL \uparrow or SDA0, SDA1 \uparrow from SCL \uparrow	tкsb			200			ns
SCL \downarrow from SDA0, SDA1 \downarrow	tsbk	$\mathrm{V} D \mathrm{DD}=2.0$ to 5.5 V		400			ns
				500			ns
SDA0, SDA1 high-level width	tsb	$V_{D D}=2.0$ to 5.5 V		500			ns
				800			ns
SCL rise/fall time	$\mathrm{t}_{\mathrm{R} 8},$t;8	When using external device expansion function				160	ns
		When not using external device expansion function				1	$\mu \mathrm{s}$

Note R and C are the load resistance and load capacitance of the SDA0 and SDA1 output lines.
(b) Serial interface channel 1
(i) 3-wire serial I/O mode (SCK1...Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tксу9	$4.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1,600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	3,200			ns
			4,800			ns
$\overline{\text { SCK1 }}$ high/low-level width	tкня, tкıя	$V_{D D}=4.5$ to 5.5 V	tксү9/2-50			ns
			tкcy9/2-100			ns
SI1 setup time (to $\overline{\text { SCK } 1} \uparrow$)	tsik9	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	300			ns
			400			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tksı9		400			ns
Delay time from $\overline{\mathrm{SCK} 1} \downarrow$ to SO1 output	tkso9	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of the $\overline{\text { SCK1 }}$ and SO1 output lines.
(ii) 3-wire serial I/O mode (SCK1...External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcyı0	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$		1,600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		3,200			ns
				4,800			ns
$\overline{\text { SCK1 }}$ high/low-level width	tKH10,tkL10	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$		1,600			ns
				2,400			ns
SI1 setup time (to $\overline{\text { SCK1 }} \uparrow$)	tsı1/10	V DD $=2.0$ to 5.5 V		100			ns
				150			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tkis10			400			ns
Delay time from $\overline{\mathrm{SCK}} \downarrow$ to SO1 output	tksolo	$\mathrm{C}=100 \mathrm{pF}$ Note	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 5.5 V			300	ns
						500	ns
$\overline{\text { SCK1 }}$ rise/fall time	$\mathrm{trin}^{10} \mathrm{tF} 10$	When using external device expansion function				160	ns
		When not using external device expansion function				1,000	ns

Note C is the load capacitance of the SO1 output line.
(iii) 3-wire serial I/O mode with automatic transmit/receive function ($\overline{\text { SCK1 }}$...Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcrı11	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1,600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$	3,200			ns
			4,800			ns
SCK1 high-/low-level width	tKH11, ,KL11	$V_{D D}=4.5$ to 5.5 V	tкcy $11 / 2$ - 50			ns
			tkcry1/2-100			ns
SI1 setup time (to $\overline{\text { SCK1 }} \uparrow$)	tsik11	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$	300			ns
			400			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tksı11		400			ns
Delay time from $\overline{\mathrm{SCK} 1} \downarrow$ to SO1 output	tksol1	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$			300	ns
STB \uparrow from $\overline{\text { SCK } 1} \uparrow$	tsbo		tкcry1/2-100		tkcyi1/2 +100	ns
Strobe signal high-level width	tsbw	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$	tkcyl1-30		tkcy ${ }^{\text {r }}$ + 30	ns
		$2.0 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	tксү11-60		tксү11 + 60	ns
			tкčy11-90		tkcy $11+90$	ns
Busy signal setup time (to busy signal detection timing)	ters		100			ns
Busy signal hold time (from busy signal detection timing)	teym	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	200			ns
			300			ns
$\overline{\text { SCK1 }} \downarrow$ from busy inactive	tsps				2tkcy11	ns

Note C is the load capacitance of the SCK1 and SO1 output lines.
(iv) 3-wire serial I/O mode with automatic transmit/receive function ($\overline{\text { SCK1 }} \ldots$..External clock input)

Note C is the load capacitance of the SO1 output line.
(c) Serial interface channel 2
(i) 3-wire serial I/O mode ($\overline{\text { SCK2 }}$...Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tксү13	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.5 \mathrm{~V}$	1,600			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$	3,200			ns
			4,800			ns
SCK2 high-/low-level width	tkн13, tkL13	$V_{\text {DD }}=4.5$ to 5.5 V	tксү $13 / 2-50$			ns
			tксу11/2-100			ns
SI2 setup time (to $\overline{\mathrm{SCK}} \uparrow \uparrow$)	tsıк13	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	300			ns
			400			ns
SI2 hold time (from $\overline{\text { SCK2 }} \uparrow$)	tks113		400			ns
Delay time from $\overline{\mathrm{SCK} 2} \downarrow$ to SO2 output	tksol3	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$			300	ns

Note C is the load capacitance of the SO 2 output line.
(ii) 3-wire serial I/O mode (SCK2...External clock input)

Note C is the load capacitance of the SO 2 output line.
(iii) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$			78,125	bps
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			39,063	bps
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			19,531	bps
					9,766	bps

(iv) UART mode (External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tkcy 15	$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	1,600			ns
		$2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	3,200			ns
			4,800			ns
ASCK high-/low-level width	tKH15, tkL15	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.5 \mathrm{~V}$	800			ns
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1,600			ns
			2,400			ns
Transfer rate		$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			39,063	bps
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			19,531	bps
		$2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			9,766	bps
					6,510	bps
ASCK rise/fall time	$\begin{aligned} & \mathrm{t}_{\mathrm{R} 15,} \\ & \mathrm{t}_{\mathrm{F} 15} \end{aligned}$	$V_{D D}=4.5 \text { to } 5.5 \mathrm{~V},$ when not using external device expansion function.			1,000	ns
					160	ns

AC Timing Measurement Points (Excluding X1, XT1 Inputs)

Clock Timing

TI Timing

TIOO, TIO1

TI1, TI2

Read/Write Operation

External fetch (no wait):

External fetch (wait insertion):

External data access (no wait):

External data access (wait insertion):

Serial Transfer Timing

3-wire serial I/O mode:

$m=1,2,9,10,13,14$
$\mathrm{n}=2,10,14$

2-wire serial I/O mode:

SBI mode (bus release signal transfer):

SBI mode (command signal transfer):

$I^{2} C$ bus mode:

3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

UART mode (external clock input):

ASCK

* A/D Converter Characteristics

(μ PD780053, 780054, 780055, 780056, 780058B, 780053Y, 780054Y, 780055Y, 780056Y, 780058BY)
($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=1.8$ to 5.5 V , AV ss $=\mathrm{V} s \mathrm{~s}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall errorNote 1		$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFO }}<2.7 \mathrm{~V}$			± 1.4	\%FSR
		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REFO }}<5.5 \mathrm{~V}$			± 0.6	\%FSR
Conversion time	Tconv1	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REF0 }}<2.7 \mathrm{~V}$	40		100	$\mu \mathrm{s}$
	Tconv2	$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<5.5 \mathrm{~V}$	16		100	$\mu \mathrm{s}$
Analog input voltage	Vian		AVss		AV $\mathrm{V}_{\text {efo }}$	V
Reference voltage	AV VEFFO		1.8		VDD	V
AVrefo current	Irefo	When A/D converter is operating ${ }^{\text {Note } 2}$		500	1,500	$\mu \mathrm{A}$
		When A/D converter is not operating ${ }^{\text {Note } 3}$		0	3	$\mu \mathrm{A}$

Notes 1. Excludes quantization error ($\pm 1 / 2 \mathrm{LSB})$. This value is indicated as a ratio to the full-scale value (\%FSR).
2. The current flowing to the $A V_{\text {refo }}$ pin when bit 7 (CS) of the A / D converter mode register (ADM) is 1 .
3. The current flowing to the $A V_{\text {refo }}$ pin when bit 7 (CS) of the A/D converter mode register (ADM) is 0 .

A/D Converter Characteristics (μ PD780058)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V , $\mathrm{AV} \mathrm{Vs}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ${ }^{\text {Note } 1}$					± 0.6	\%FSR
Conversion time	Tconv		16		100	$\mu \mathrm{s}$
Analog input voltage	Vian		AVss		AVrefo	V
Reference voltage	AV refo		2.7		V ${ }_{\text {d }}$	V
AV $\mathrm{R}_{\text {refo }}$ current	Irefo	When A/D converter is operating ${ }^{\text {Note } 2}$		500	1,500	$\mu \mathrm{A}$
		When A/D converter is not operatingNote 3		0	3	$\mu \mathrm{A}$

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB). This value is indicated as a ratio to the full-scale value (\%FSR).
2. The current flowing to the $A V_{\text {refo }}$ pin when bit 7 (CS) of the A / D converter mode register (ADM) is 1 .
3. The current flowing to the $A V_{\text {refo }}$ pin when bit 7 (CS) of the A / D converter mode register (ADM) is 0 .

Caution The operating voltage range of the A/D converter and D/A converter of the μ PD780058 is VDD $=2.7$ to 5.5 V .

* D/A Converter Characteristics

(μ PD780053, 780054, 780055, 780056, 780058B, 780053Y, 780054Y, 780055Y, 780056Y, 780058BY)
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{Vdd}=1.8$ to $\left.5.5 \mathrm{~V}, \mathrm{AV} s \mathrm{~s}=\mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution						8	bit
Overall error		$\mathrm{R}=2 \mathrm{M} \Omega^{\text {Note } 1}$				1.2	\%
		$\mathrm{R}=4 \mathrm{M} \Omega^{\text {Note } 1}$				0.8	\%
		$\mathrm{R}=10 \mathrm{M} \Omega^{\text {Note } 1}$				0.6	\%
Settling time		$\mathrm{C}=30 \mathrm{pF}^{\text {Note } 1}$	$A V_{\text {REF } 1}=1.8$ to 2.7 V			10	$\mu \mathrm{s}$
						15	$\mu \mathrm{s}$
Output resistance	Ro	Note 2			8		$\mathrm{k} \Omega$
Analog reference voltage	AV REF			1.8		VDD	V
AVREF1 current	Iref1	Note 2				2.5	mA
Resistance between $\mathrm{AV}_{\text {ReF1 }}$ and $\mathrm{AV}_{\text {Ss }}$	Ratiref 1	DACS0, DACS1 $=55 \mathrm{H}^{\text {Note } 2}$		4	8		k Ω

Notes 1. R and C are the D / A converter output pin load resistance and load capacitance, respectively.
2. Value for one D/A converter channel

Remark DACS0 and DACS1: D/A conversion value setting registers 0,1

D/A Converter Characteristics (μ PD780058)

($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V , AV ss $=\mathrm{V} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					8	bit
Overall error		$\mathrm{R}=2 \mathrm{M} \Omega^{\text {Note } 1}$			1.2	\%
		$\mathrm{R}=4 \mathrm{M} \Omega^{\text {Note } 1}$			0.8	\%
		$\mathrm{R}=10 \mathrm{M} \Omega^{\text {Note } 1}$			0.6	\%
Settling time		$\mathrm{C}=30 \mathrm{pF}$ Note 1			15	$\mu \mathrm{s}$
Output resistance	Ro	Note 2		8		$\mathrm{k} \Omega$
Analog reference voltage	AV $\mathrm{VeFF}^{\text {f }}$		2.7		VDD	V
AV ${ }_{\text {REF } 1}$ current	Iref1	Note 2			2.5	mA
Resistance between $\mathrm{AV}_{\text {REF1 }}$ and $A V_{\text {ss }}$	Ratief1	DACS0, DACS1 $=55 \mathrm{H}^{\text {Note } 2}$	4	8		$\mathrm{k} \Omega$

Notes 1. R and C are the D / A converter output pin load resistance and load capacitance, respectively.
2. Value for one D/A converter channel

Remark DACS0 and DACS1: D/A conversion value setting registers 0, 1
Caution The operating voltage range of the A/D converter and D/A converter of the μ PD780058 is VdD $=2.7$ to 5.5 V.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.8		5.5	V
Data retention supply current	IDDDR	VDDDR $=1.8 \mathrm{~V}$ Subsystem clock stop and feed-back resistor disconnected		0.1	10	$\mu \mathrm{~A}$
Release signal set time	tsREL		0			$\mu \mathrm{~s}$
Oscillation stabilization wait time	twalt	Release by $\overline{\text { RESET }}$		$2^{17 / f x}$		ms
		Release by interrupt request	Note	ms		

Note Selection of $2^{12} / \mathrm{fxx}$ and $2^{14} / \mathrm{fxx}$ to $2^{17} / \mathrm{fxx}$ is possible with bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register (OSTS).

Remark $\quad \mathrm{fxx}$: Main system clock frequency (fx or $\mathrm{fx} / 2$)
fx : Main system clock oscillation frequency

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

Interrupt Request Input Timing

$\overline{\text { RESET }}$ Input Timing

13. CHARACTERISTICS CURVES (REFERENCE VALUES)

VdD vs $\operatorname{ldd}(f x=f x x=5.0 \mathrm{MHz})$

14. PACKAGE DRAWINGS

80-PIN PLASTIC QFP (14x14)

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	17.20 ± 0.20
B	14.00 ± 0.20
C	14.00 ± 0.20
D	17.20 ± 0.20
F	0.825
G	0.825
H	0.32 ± 0.06
I	0.13
J	0.65 (T.P.)
K	1.60 ± 0.20
L	0.80 ± 0.20
M	$0.17_{-0}^{+0.03}$
N	0.10
P	1.40 ± 0.10
Q	0.125 ± 0.075
R	$3^{\circ+7^{\circ}}$
S	1.70 MAX.
	P80GC-65-8BT-1

80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	14.0 ± 0.2
B	12.0 ± 0.2
C	12.0 ± 0.2
D	14.0 ± 0.2
F	1.25
G	1.25
H	0.22 ± 0.05
I	0.08
J	$0.5($ T.P. $)$
K	1.0 ± 0.2
L	0.5
M	0.145 ± 0.05
N	0.08
P	1.0
Q	0.1 ± 0.05
R	$3^{\circ}+3^{\circ}{ }^{\circ}$
S	1.1 ± 0.1
T	0.25
U	0.6 ± 0.15
	P80GK-50-9EU-1

15. RECOMMENDED SOLDERING CONDITIONS

The μ PD78005x and $78005 x$ Y should be soldered and mounted under the following recommended conditions. For details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 15-1. Surface Mounting Type Soldering Conditions (1/2)

$$
\begin{aligned}
& \mu \text { PD780053GC- } \times \times \times-8 B T: 80-\text { pin plastic QFP }(14 \times 14) \\
& \mu \text { PD780054GC- } \times \times \times-8 \text { BT: } 80 \text {-pin plastic QFP }(14 \times 14) \\
& \mu \text { PD780055GC- } \times \times \times-8 \text { BT: } 80-\text { pin plastic QFP }(14 \times 14) \\
& \mu \text { PD780056GC-×××-8BT: 80-pin plastic QFP }(14 \times 14) \\
& \mu \text { PD780058GC-×xx-8BT: 80-pin plastic QFP }(14 \times 14) \\
& \mu \text { PD780058BGC-×××-8BT: 80-pin plastic QFP }(14 \times 14) \\
& \mu \text { PD780053YGC- } \times \times \times-8 \text { BT: } 80-\text { pin plastic QFP }(14 \times 14) \\
& \mu \text { PD780054YGC- } x \times x-8 \text { BT: } 80 \text {-pin plastic QFP }(14 \times 14) \\
& \mu \text { PD780055YGC- } \times \times \times-8 \text { BT: } 80-\text { pin plastic QFP }(14 \times 14) \\
& \mu \text { PD780056YGC-×××-8BT: 80-pin plastic QFP }(14 \times 14) \\
& \mu \text { PD780058BYGC- } \times x \times-8 \text { BT: } 80-\text { pin plastic QFP }(14 \times 14)
\end{aligned}
$$

$\begin{array}{c}\text { Soldering } \\ \text { Method }\end{array}$		Soldering Conditions		
Condition Symbol			$]$	Recommended
:---:				
Infrared reflow				
Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max.				
(at $210^{\circ} \mathrm{C}$ or higher), Count: Twice or less				

Caution Do not use different soldering methods together (except for partial heating).

Table 15-1. Surface Mounting Type Soldering Conditions (2/2)

```
    \muPD780053GK-x\timesx-9EU: 80-pin plastic TQFP (12 < 12)
    \muPD780054GK-xxx-9EU: 80-pin plastic TQFP (12 < 12)
    \muPD780055GK-×××-9EU: 80-pin plastic TQFP (12 < 12)
    \muPD780056GK-×××-9EU: 80-pin plastic TQFP (12 < 12)
    \muPD780058GK-xxx-9EU: 80-pin plastic TQFP (12 < 12)
\muPD780058BGK-xxx-9EU: 80-pin plastic TQFP (12 \times 12)
\muPD780053YGK-×××-9EU: 80-pin plastic TQFP (12 < 12)
\muPD780054YGK-×××-9EU: 80-pin plastic TQFP (12 }\times12\mathrm{ (12)
\muPD780055YGK-xxx-9EU: 80-pin plastic TQFP (12 < 12)
\muPD780056YGK-xxx-9EU: 80-pin plastic TQFP (12 < 12)
\muPD780058BYGK-×××-9EU: 80-pin plastic TQFP (12 < 12)
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Twice or less, Exposure limit: 7 days $^{\text {Note } \text { (after that, prebake at } 125^{\circ} \mathrm{C} \text { for } 10 \text { hours) }}$	IR35-107-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Twice or less, Exposure limit: 7 days $^{\text {Note } \text { (after that, prebake at } 125^{\circ} \mathrm{C} \text { for } 10 \text { hours) }}$	VP15-107-2
Wave soldering		-
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or less, Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it below $25^{\circ} \mathrm{C}$ and 65% RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780058 and 780058Y Subseries. Also, refer to (6) Cautions on using development tools.

(1) Software package

SP78K0	CD-ROM that integrates the development tools (software) common to the 78K/0 Series in one package

(2) Language processing software

RA78K0	Assembler package common to the $78 \mathrm{~K} / 0$ Series
CC78K0	C compiler package common to the $78 \mathrm{~K} / 0$ Series
DF780058	Device file for the μ PD780058, 780058 Y Subseries
CC78K0-L	C compiler library source file common to the $78 \mathrm{~K} / 0$ Series

(3) Flash memory writing tools

Flashpro III (Part number:	Dedicated flash programmer for microcontrollers incorporating flash memory
FL-PR3, PG-FL3)	
FA-80GC-8BT	Adapter for flash memory writing
FA-80GK-9EU	

(4) Debugging tools

- When using the IE-78K0-NS, IE-78K0-NS-A in-circuit emulator

IE-78K0-NS	In-circuit emulator common to the 78K/0 Series
IE-78K0-NS-PA	Performance board to enhance and expand the functions of the IE-78K0-NS
IE-78K0-NS-A	In-circuit emulator that combines IE-78K0-NS and IE-78K0-NS-PA
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS and IE-78K0-NS-A
IE-70000-98-IF-C	Interface adapter used when a PC-9800 series PC (except notebook types) is used as the host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable used when a PC-9800 series notebook-types PC is used as the host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Adapter necessary when an IBM PC/AT (ISA or compatible is used as the host machine (IE-70000-PCI-IF-A
IE-780308-NS-EM1	Interface adapter necessary when using a PC with PCI bus as the host machine
NP-80GC	Emulation board common to the μ PD780308 Subseries
NP-80GK	Emulation probe for 80-pin plastic TQFP (GK-9EU type)
TGK-080SDW	Conversion adapter to connect the NP-80GK and a target system board 80-pin plastic TQFP (GK-9EU type) can be mounted
EV-9200GC-80	Socket to be mounted on a target system board made for 80-pin plastic QFP (GC-8BT type)
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to the 78K/0 Series

- When using the IE-78001-R-A in-circuit emulator

IE-78001-R-A	In-circuit emulator common to the 78K/0 Series
IE-70000-98-IF-C	Adapter used when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT or compatible as host machine (ISA bus supported)
IE-780308-R-EM	Emulation board common to the μ PD780308 Subseries
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EP-78054GK-R	Emulation probe for 80-pin plastic TQFP (GK-9EU type)
TGK-080SDW	Conversion adapter to connect the EP-78054GK-R and a target system on which an 80- pin plastic TQFP (GK-9EU type) can be mounted
EV-9200GC-80	Socket to be mounted on a target system board made for 80-pin plastic QFP (GC-8BT type)
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	$78 K / 0$ Series common system simulator
DF780058	Device file for the μ PD780058, 780058Y Subseries

(5) Real-time OS

RX78K0	Real-time OS for the $78 \mathrm{~K} / 0$ Series

(6) Cautions on using development tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780058.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and DF780058.
- The FL-PR3, FA-80GC-8BT, FA80GK-9EU, NP-80GC, and NP-80GK are products of Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-45-475-4191).
- TGK-080SDW is a product made by TOKYO ELETECH CORPORATION.

For further information, contact Daimaru Kogyo, Ltd.
Tokyo Electronics Department (TEL: +81-3-3820-7112) Osaka Electronics Department (TEL: +81-6-6-244-6672)

- For third-party development tools, see the Single-Chip Microcontroller Development Tool Selection Guide (U11069E).
- The host machine and OS suitable for each software are as follows:

\triangle Host Machine [OS]	PC	EWS
Software	PC-9800 series [Japanese Windows ${ }^{\text {TM }}$] IBM PC/AT compatibles [Japanese/English Windows]	HP9000 series $700^{\text {TM }}$ [HP-UX ${ }^{\text {TM }}$] SPARCstation ${ }^{\text {TM }}$ [SunOS ${ }^{\text {TM }}$]
SP78K0	\checkmark	-
RA78K0	$\sqrt{\text { Note }}$	\checkmark
CC78K0	$\sqrt{ }$ Note	\checkmark
ID78K0-NS	\checkmark	-
ID78K0	\checkmark	\checkmark
SM78K0	\checkmark	-
RX78K0	\checkmark Note	\checkmark

Note DOS-based software

^ APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μ PD780058, 780058Y Subseries User's Manual	U12013E
μ PD780053, 780054, 780055, 780056, 780058, 780058B, $780053 Y, 780054 Y, 780055 Y, 780056 Y, ~$ $780058 B Y$ Data Sheet	This document
μ PD780053(A), 780054(A), 780055(A), 780056(A), 780058B(A), 780053Y(A), 780054Y(A), 780055Y(A), $780056 Y(A), 780058 B Y(A) ~ D a t a ~ S h e e t ~$	U15443E
μ PD78F0058, 78F0058Y Data Sheet	U12092E
$78 K / 0$ Series User's Manual Instruction	U12326E
$78 K / 0$ Series Application Note Basic (III)	U10182E

Documents Related to Development Tools (Software) (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Assembly Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K0S, SM78K0 System Simulator Ver.2.10 or Later Windows Based	Operation	U14611E
SM78K Series System Simulator Ver.2.10 or Later	External Part User Open Interface Specifications	U15006E
ID78K0-NS Integrated Debugger Ver.2.00 or Later Windows Based	Operation	U14379E
		U11539E
RX78K0 Real-Time OS	Reference	U11649E
Guide	U11537E	
Project Manager Ver. 3.12 or Later (Windows-Based)	Fundamental	U14610E
		Installation

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Development Tools (Hardware) (User's Manuals)

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-780308-NS-EM1 Emulation Board	U13304E
IE-78001-R-A In-Circuit Emulator	U14142E
IE-780308-R-EM Emulation Board	U11362E

Documents Related to Flash ROM Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E

Other Related Documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE -Products \& Packages-	X13769E
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

NEC $\quad \mu$ PD780053, 780054, 780055, 780056, 780058, 780058B, 780053Y, 780054Y, 780055Y, 780056Y, 780058BY
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

[^0]
Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.I.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-3067-5800
Fax: 01-3067-5899
NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 091-504-2787
Fax: 091-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810
Fax: 11-6462-6829

Abstract

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of August, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

[^0]: FIP and IEBus are trademarks of NEC Corporation.
 Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.
 PC/AT is a trademark of IBM Corporation.
 HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.
 SPARCstation is a trademark of SPARC International, Inc.
 Solaris and SunOS are trademarks of Sun Microsystems, Inc.

