Preliminary User's Manual

V850ES/KE1+

32-Bit Single-Chip Microcontrollers

Hardware

DataShee

μPD703302 μPD703302Y μPD70F3302 μPD70F3302Y

Document No. U16896EJ1V0UD00 (1st edition) Date Published June 2004 N CP(K)

© NEC Electronics Corporation 2004 DataSheet4UPrinted in Japan

www.DataSheet4U.com

www.DataSheet4U.com

[MEMO]

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

DataShe

NOTES FOR CMOS DEVICES —

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to V_{DD} or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

Purchase of NEC Electronics I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Caution: μ PD70F3302 and 70F3302Y use SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries

DataSheet4U.com including the United States and Japan.

DataShe

www.DataSheet4U.com

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production.
- Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, deliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics products depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

DataSheet4U.com

et4U.com

DataShe

M5D 02.WHAW.DataSheet4U.com

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT] http://www.necel.com/en/support/support.html

et4U.com

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd. Duesseldorf, Germany Santa Clara, California Hong Kong Tel: 408-588-6000 Tel: 0211-65030 Tel: 2886-9318 800-366-9782 • Sucursal en España NEC Electronics Hong Kong Ltd. Seoul Branch Madrid, Spain Tel: 091-504 27 87 Seoul, Korea Tel: 02-558-3737 • Succursale Française Vélizy-Villacoublay, France **NEC Electronics Shanghai Ltd.** Tel: 01-30-67 58 00 Shanghai, P.R. China Tel: 021-5888-5400 Filiale Italiana Milano, Italy **NEC Electronics Taiwan Ltd.** Tel: 02-66 75 41 Taipei, Taiwan Tel: 02-2719-2377 Branch The Netherlands Eindhoven, The Netherlands

Tel: 040-2445845

 United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133

• Tyskland Filial Taeby, Sweden Tel: 08-63 80 820 NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311

J04.1

PREFACE

	Readers	This manual is intended for users w V850ES/KE1+ and design application sy	who wish to understand the functions of the stems using these products.	
	Purpose	This manual is intended to give users an V850ES/KE1+ shown in the Organizatio	n understanding of the hardware functions of the on below.	
	Organization	This manual is divided into two parts: Ha Architecture User's Manual).	ardware (this manual) and Architecture (V850ES	
		Hardware Pin functions CPU function On-chip peripheral functions Flash memory programming Electrical specifications (target) 	Architecture Data types Register set Instruction format and instruction set Interrupts and exceptions Pipeline operation	
	How to Read This Manual	It is assumed that the readers of this r electrical engineering, logic circuits, and	manual have general knowledge in the fields of microcontrollers.	
et4U.com		To find the details of a register where the \rightarrow Refer to APPENDIX C REGISTER IN		DataShe
		To understand the details of an instruction \rightarrow Refer to the V850ES Architecture Us		
			r is in angle brackets (<>) in the figure of the ned as a reserved word in the device file.	
		To understand the overall functions of the \rightarrow Read this manual according to the CC		
		To know the electrical specifications of the \rightarrow Refer to CHAPTER 27 ELECTRICAL		
			bed as the "xxx.yyy bit" in this manual. Note with escribed as is in a program, however, the correctly.	

www.DataSheet4U.com

Conventions	Data significance: Active low representation	Higher digits on the left and lower digits on the right :: xxx (overscore over pin or signal name)
	Memory map address:	Higher addresses on the top and lower addresses on the bottom
	Note:	Footnote for item marked with Note in the text
	Caution:	Information requiring particular attention
	Remark:	Supplementary information
	Numeric representation:	Binary xxxx or xxxxB
		Decimal xxxx
		Hexadecimal xxxxH
	Prefix indicating power of	f 2 (address space, memory capacity):
		K (kilo): 2 ¹⁰ = 1,024
		M (mega): 2 ²⁰ = 1,024 ²
		G (giga): $2^{30} = 1,024^{3}$

Related DocumentsThe related documents indicated in this publication may include preliminary versions.However, preliminary versions are not marked as such.

Documents related to V850ES/KE1+

Document Name	Document No.
V850ES Architecture User's Manual	U15943E
V850ES/Kx1, V850ES/Kx1+ On-chip Debug User's Manual	U16972E
V850ES/KE1+ Hardware User's Manual	This manual

et4U.com

Documents related to development tools (user's manuals)

Document Name		Document No.
CA850 Ver. 2.50 C Compiler Package	Operation	U16053E
	C Language	U16054E
	Assembly Language	U16042E
PM plus Ver. 5.10		U16569E
ID850QB Ver. 2.80 Integrated Debugger	Operation	U16973E
SM plus Ver. 1.00 System Simulator	Operation	U16906E
	User Open Interface Specifications	U16907E
RX850 Ver. 3.13 or Later Real-Time OS	Basics	U13430E
	Installation	U13410E
	Technical	U13431E
RX850 Pro Ver. 3.15 Real-Time OS	Basics	U13773E
	Installation	U13774E
	Technical	U13772E
RD850 Ver. 3.01 Task Debugger		U13737E
RD850 Pro Ver. 3.01 Task Debugger		U13916E
AZ850 Ver. 3.20 System Performance Analyze	er	U14410E
PG-FP4 Flash Memory Programmer		U15260E

CONTENTS

	СНАРТ	ER 1 INTRODUCTION	16	
	1.1	K1 Family Product Lineup	16	
		1.1.1 V850ES/Kx1+, V850ES/Kx1 products lineup	16	
		1.1.2 78K0/Kx1+, 78K0/Kx1 products lineup	19	
	1.2	Features	22	
	1.3	Applications	23	
	1.4	Ordering Information	23	
	1.5	Pin Configuration (Top View)	24	
	1.6	Function Block Configuration	26	
	1.7	Overview of Functions	30	
	СНАРТ	ER 2 PIN FUNCTIONS	31	
	2.1	List of Pin Functions	31	
	2.2	Pin I/O Circuits and Recommended Connection of Unused Pins	35	
	2.3	Pin I/O Circuits	37	
	0114.57			
		ER 3 CPU FUNCTIONS		
	3.1	Features		
et4U.com	3.2	CPU Register Set		
240.000		3.2.1 Program register set		DataShe
		3.2.2 System register set Operating Modes	42	
	3.3			
	3.4	Address Space		
		3.4.1 CPU address space		
		3.4.2 Wraparound of CPU address space		
		3.4.3 Memory map	51	
		3.4.4 Areas	53	
		3.4.5 Recommended use of address space	55	
		3.4.6 Peripheral I/O registers	57	
		3.4.7 Special registers	64	
		3.4.8 Cautions	67	
	СНАРТ	ER 4 PORT FUNCTIONS	70	
	4.1	Features	70	
	4.2	Basic Port Configuration	70	
	4.3	Port Configuration	71	
		4.3.1 Port 0	76	
		4.3.2 Port 3	78	
		4.3.3 Port 4	84	
		4.3.4 Port 5	86	
		4.3.5 Port 7	89	
		4.3.6 Port 9	90	
		4.3.7 Port CM		
		4.3.8 Port DL		
DataSheet	4.4 4U.com	Block Diagrams		4U.com

4.5	Port Register Setting When Alternate Function Is Used	
4.6	Cautions	
	4.6.1 Cautions on bit manipulation instruction for port n register (Pn)	
	4.6.2 Hysteresis characteristics	
СНАРТ	TER 5 CLOCK GENERATION FUNCTION	
5.1	Overview	
5.2	Configuration	125
5.3	Registers	127
5.4	Operation	132
	5.4.1 Operation of each clock	132
	5.4.2 Clock output function	132
	5.4.3 External clock input function	132
5.5	PLL Function	133
	5.5.1 Overview	133
	5.5.2 Register	133
	5.5.3 Usage	134
СНАРТ	ER 6 16-BIT TIMER/EVENT COUNTER P (TMP)	
6.1	Overview	
6.2	Functions	
6.3	Configuration	
6.4	Registers	
6.5	Operation	
	6.5.1 Interval timer mode (TP0MD2 to TP0MD0 bits = 000)	
	6.5.2 External event count mode (TP0MD2 to TP0MD0 bits = 001)	
	6.5.3 External trigger pulse output mode (TP0MD2 to TP0MD0 bits = 010)	
	6.5.4 One-shot pulse output mode (TP0MD2 to TP0MD0 bits = 011)	
	6.5.5 PWM output mode (TP0MD2 to TP0MD0 bits = 100)	
	6.5.6 Free-running timer mode (TP0MD2 to TP0MD0 bits = 101)	
	6.5.7 Pulse width measurement mode (TP0MD2 to TP0MD0 bits = 110)	
	6.5.8 Timer output operations	
6.6	Eliminating Noise on Capture Trigger Input Pin (TIP0a)	
6.7	Cautions	
		000
спарт 7.1	ER 7 16-BIT TIMER/EVENT COUNTER 0 Functions	
7.1		
7.2 7.3	Configuration Registers	
7.3 7.4	Operation	
1.4	-	
	7.4.2 PPG output operation	
	7.4.3 Pulse width measurement	
	7.4.4 Operation as external event counter	
	7.4.5 Square-wave output operation	
	7.4.6 One-shot pulse output operation7.4.7 Cautions	

et4U.com

DataShe

DataSheet4U.com

9

8.1	ER 8 8-BIT TIMER/EVENT COUNTER 5	
8.2	Configuration	
8.3	Registers	
8.4	Operation	
	8.4.1 Operation as interval timer	
	8.4.2 Operation as external event counter	
	8.4.3 Square-wave output operation	
	8.4.4 8-bit PWM output operation	
	8.4.5 Operation as interval timer (16 bits)	
	8.4.6 Operation as external event counter (16 bits)	
	8.4.7 Square-wave output operation (16-bit resolution)	
	8.4.8 Cautions	
СНАРТ	ER 9 8-BIT TIMER H	288
9.1	Functions	
9.2	Configuration	
9.3	Registers	
9.4	Operation	
	9.4.1 Operation as interval timer/square wave output	
	9.4.2 PWM output mode operation	
	9.4.3 Carrier generator mode operation	
СНАРТ	ER 10 INTERVAL TIMER, WATCH TIMER	
10.1	ER 10 INTERVAL TIMER, WATCH TIMER Interval Timer BRGDataSheet4U.com	
	10.1.1 Functions	
	10.1.2 Configuration	
	10.1.3 Registers	
	10.1.4 Operation	
10.2	Watch Timer	
	10.2.1 Functions	
	10.2.2 Configuration	
	10.2.3 Register	
	10.2.4 Operation	
10.3	Cautions	
СНАРТ	ER 11 WATCHDOG TIMER FUNCTIONS	
11.1	Watchdog Timer 1	
	11.1.1 Functions	
	11.1.2 Configuration	
	11.1.3 Registers	
	11.1.4 Operation	
44.0	Watchdog Timer 2	
11.2	11.2.1 Functions	
11.2		
11.2	11.2.2 Configuration	
11.2		

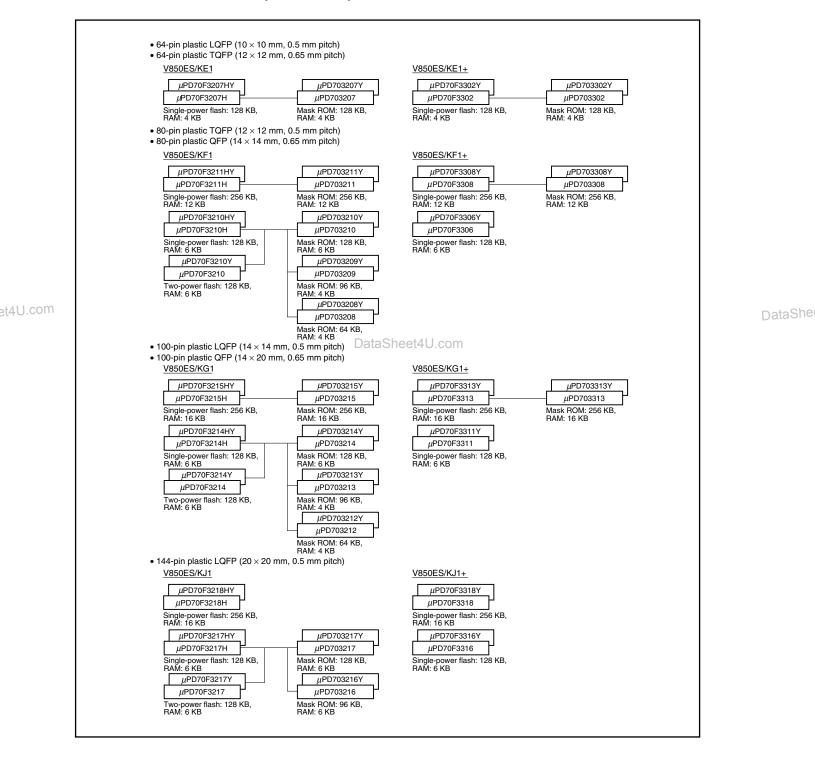
DataSheet4U.com

	СНАРТІ	ER 12 REAL-TIME OUTPUT FUNCTION (RTO)		
	12.1	Function	332	
	12.2	Configuration	333	
	12.3	Registers	334	
	12.4	Operation	336	
	12.5	Usage	337	
	12.6	Cautions	337	
	12.7	Security Function	338	
	СНАРТІ	ER 13 A/D CONVERTER	340	
	13.1	Overview	340	
	13.2	Functions	340	
	13.3	Configuration	341	
	13.4	Registers		
	13.5	Operation	351	
		13.5.1 Basic operation	351	
		13.5.2 Trigger modes	352	
		13.5.3 Operation modes	353	
		13.5.4 Power fail detection function	356	
		13.5.5 Setting method		
	13.6			
	13.7	How to Read A/D Converter Characteristics Table		
et4U.com				DataShe
		ER 14 ASYNCHRONOUS SERIAL INTERFACE (UART) DataSheet4U.com		
	14.1			
	14.2	Configuration		
	14.3	Registers		
	14.4	Interrupt Request Signals		
	14.5	Operation		
		14.5.1 Data format		
		14.5.2 Transmit operation		
		14.5.3 Continuous transmission operation		
		14.5.4 Receive operation		
		14.5.5 Reception error14.5.6 Parity types and corresponding operation		
		14.5.7 Receive data noise filter		
		14.5.7 Receive data hoise liner		
	14.6			
	14.0	14.6.1 Baud rate generator n (BRGn) configuration		
		14.6.2 Serial clock generation		
		14.6.3 Baud rate setting example		
		14.6.4 Allowable baud rate range during reception		
		14.6.5 Transfer rate during continuous transmission		
	14.7	Cautions		
		ER 15 CLOCKED SERIAL INTERFACE 0 (CSI0)		
	15.1	Features		
DataSheet4U.com	15.2	Configuration	'mww:DataShe	et4U.com

	15.3	Registers	408	
	15.4	Operation	417	
		15.4.1 Transmission/reception completion interrupt request signal (INTCSI0n)	417	
		15.4.2 Single transfer mode	419	
		15.4.3 Continuous transfer mode	422	
	15.5	Output Pins	430	
			404	
		ER 16 I [°] C BUS		
	16.1	Features		
	16.2	Configuration		
	16.3	Registers		
	16.4	Functions	-	
	10 5	16.4.1 Pin configuration		
	16.5	I ² C Bus Definitions and Control Methods		
		16.5.1 Start condition		
		16.5.2 Addresses		
		16.5.3 Transfer direction specification		
		16.5.4 Acknowledge signal (ACK)		
		16.5.5 Stop condition		
		16.5.6 Wait signal (WAIT)		
	16.6	I ² C Interrupt Request Signals (INTIIC0)		
HIL COM		16.6.1 Master device operation		
et4U.com		16.6.2 Slave device operation (when receiving slave address data (match with address))		DataShe
		16.6.3 Slave device operation (when receiving extension code)	463	
		DataSheet4U.com		
		16.6.5 Arbitration loss operation (operation as slave after arbitration loss)		
		16.6.6 Operation when arbitration loss occurs (no communication after arbitration loss)		
	16.7	Interrupt Request Signal (INTIIC0) Generation Timing and Wait Control		
	16.8	Address Match Detection Method		
	16.9	Error Detection		
		Extension Code		
		Arbitration		
		Wakeup Function		
	16.13	Communication Reservation		
		16.13.1 When communication reservation function is enabled (IICF0.IICRSV0 bit = 0)		
		16.13.2 When communication reservation function is disabled (IICF0.IICRSV0 bit = 1)		
		Cautions		
	16.15	Communication Operations	483	
		16.15.1 Master operation 1		
		16.15.2 Master operation 2		
		16.15.3 Slave operation		
	16.16	Timing of Data Communication		
	СНАРТЕ	ER 17 INTERRUPT/EXCEPTION PROCESSING FUNCTION	496	
	17.1	Overview	496	
		17.1.1 Features	496	
	17.2	Non-Maskable Interrupts		
DataSheet4		17.2.1 Operation		Sheet4U.com

		17.2.2 Restore		
		17.2.3 NP flag		
	17.3	Maskable Interrupts	505	
		17.3.1 Operation	505	
		17.3.2 Restore	507	
		17.3.3 Priorities of maskable interrupts	508	
		17.3.4 Interrupt control register (xxICn)	512	
		17.3.5 Interrupt mask registers 0, 1, 3 (IMR0, IMR1, IMR3)	514	
		17.3.6 In-service priority register (ISPR)	515	
		17.3.7 ID flag	516	
		17.3.8 Watchdog timer mode register 1 (WDTM1)	517	
	17.4	External Interrupt Request Input Pins (NMI, INTP0 to INTP7)	518	
		17.4.1 Noise elimination	518	
		17.4.2 Edge detection		
	17.5	Software Exceptions	524	
		17.5.1 Operation		
		17.5.2 Restore		
		17.5.3 EP flag		
	17.6			
		17.6.1 Illegal opcode		
		17.6.2 Debug trap		
	17.7	Multiple Interrupt Servicing Control		
et4U.com	17.8	Interrupt Response Time		DataShe
	-	• •		Dataono
	17.9	Periods in Which Interrupts Are Not Acknowledged by CPU DataSheet4U.com		
	17.10			
	снарті	ER 18 KEY INTERRUPT FUNCTION	535	
	18.1			
		Register		
	10.2			
	СНАРТІ	ER 19 STANDBY FUNCTION		
	-	Overview		
	19.2	Registers		
	19.3	HALT Mode		
	10.0	19.3.1 Setting and operation status		
		19.3.2 Releasing HALT mode		
	19.4			
	15.4			
		19.4.1 Setting and operation status		
	10 F	19.4.2 Releasing IDLE mode		
	19.5			
		19.5.1 Setting and operation status		
		19.5.2 Releasing STOP mode		
		19.5.3 Securing oscillation stabilization time when STOP mode is released		
	19.6	Subclock Operation Mode		
		19.6.1 Setting and operation status	550	
		19.6.2 Releasing subclock operation mode		
	19.7	Sub-IDLE Mode		
DataSheet4U.com		19.7.1 Setting and operation status	www.DataShee	et4U.com

	19.7.2 Releasing sub-IDLE mode	552	
CHAP.	FER 20 RESET FUNCTION	554	
20.1			
20.2			
20.3			
20.4	•		
	20.4.1 Reset operation via RESET pin		
	20.4.2 Reset operation by WDTRES1 signal		
	20.4.3 Reset operation by WDTRES2 signal		
	20.4.4 Power-on-clear reset operation		
	20.4.5 Reset operation by low-voltage detector	565	
	20.4.6 Reset operation by clock monitor		
20.5			
CHAP.	FER 21 CLOCK MONITOR	568	
21.1	Function	568	
21.2	Registers	568	
21.3			
21.4	-		
	21.4.1 Setting and operation status		
	21.4.2 Releasing ring clock operation mode		
J.com 21.5			ataShe
	-		
	21.5.1 Setting and operation status 21.5.2 Releasing ring HALT mode	575	
CHAP.	TER 22 LOW-VOLTAGE DETECTOR	577	
22.1			
22.2			
22.3			
22.4			
CHAP.	TER 23 POWER-ON-CLEAR CIRCUIT	582	
23.1	Function	582	
23.2	Configuration	582	
23.3	-		
CHAP.	FER 24 ROM CORRECTION FUNCTION	584	
24.1			
24.2	Control Registers	585	
	24.2.1 Correction address registers 0 to 3 (CORAD0 to CORAD3)		
	24.2.2 Correction control register (CORCN)		
24.3			
CHAP.	TER 25 MASK OPTION/OPTION BYTE	588	
25.1			
25.2			
aSheet4U.com		www.DataSheet4	U.com


26.1		es	
26.2		ry Configuration	
26.3		onal Outline	
26.4		ing by Dedicated Flash Programmer	
		Programming environment	
	-	Communication mode	
		Flash memory control	
		Selection of communication mode	
	26.4.5	Communication commands	60
		Pin connection	
26.5	Rewrit	ing by Self Programming	60
	26.5.1	Overview	60
		Features	
	26.5.3	Standard self programming flow	60
			0.
	26.5.4	Flash functions	
	26.5.4 26.5.5	Pin processing	
НАРТ	26.5.5 26.5.6		6
	26.5.5 26.5.6 ER 27	Pin processing	6 6
НАРТ	26.5.5 26.5.6 ER 27 ER 28	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS	6
НАРТ	26.5.5 26.5.6 ER 27 ER 28	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS	6
CHAPT APPEN A.1	26.5.5 26.5.6 ER 27 ER 28 DIX A Softwa	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS DEVELOPMENT TOOLS Development TOOLS DataSheet4U.com	
НАРТ	26.5.5 26.5.6 ER 27 ER 28 DIX A Softwa Langu	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS DEVELOPMENT TOOLS DataSheet4U.com age Processing Software	
CHAPT APPEN A.1 A.2	26.5.5 26.5.6 ER 27 ER 28 DIX A Softwa Langu Contro	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS DEVELOPMENT TOOLS DataSheet4U.com age Processing Software I Software	
CHAPT APPEN A.1 A.2 A.3	26.5.5 26.5.6 ER 27 ER 28 DIX A Softwa Langu Contro	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS DEVELOPMENT TOOLS DataSheet4U.com age Processing Software	
CHAPT APPEN A.1 A.2 A.3	26.5.5 26.5.6 ER 27 ER 28 DIX A Softwa Langu Contro Debug A.4.1	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS DEVELOPMENT TOOLS DataSheet4U.com age Processing Software of Software ging Tools (Hardware) When using in-circuit emulator QB-V850ESKX1H	
CHAPT APPEN A.1 A.2 A.3 A.4	26.5.5 26.5.6 ER 27 ER 28 DIX A Softwa Langu Contro Debug A.4.1 Debug	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS DEVELOPMENT TOOLS DataSheet4U.com are Package age Processing Software of Software ging Tools (Hardware)	
CHAPT APPEN A.1 A.2 A.3 A.4 A.5 A.6	26.5.5 26.5.6 ER 27 ER 28 DIX A Softwa Langu Contro Debug A.4.1 Debug Embeo	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS DEVELOPMENT TOOLS DataSheet4U.com age Processing Software of Software ging Tools (Hardware) When using in-circuit emulator QB-V850ESKX1H ging Tools (Software) ded Software	
CHAPT APPEN A.1 A.2 A.3 A.4 A.5	26.5.5 26.5.6 ER 27 ER 28 DIX A Softwa Langu Contro Debug A.4.1 Debug Embeo	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS DEVELOPMENT TOOLS DataSheet4U.com age Processing Software of Software ging Tools (Hardware) When using in-circuit emulator QB-V850ESKX1H ging Tools (Software)	
CHAPT A.1 A.2 A.3 A.4 A.5 A.6 A.7	26.5.5 26.5.6 ER 27 ER 28 DIX A Softwa Langu Contro Debug A.4.1 Debug Embeo Flash	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS DEVELOPMENT TOOLS DataSheet4U.com age Processing Software of Software ging Tools (Hardware) When using in-circuit emulator QB-V850ESKX1H ging Tools (Software) ded Software	
CHAPT A.1 A.2 A.3 A.4 A.5 A.6 A.7	26.5.5 26.5.6 ER 27 ER 28 DIX A Softwa Langu Contro Debug A.4.1 Debug Embeo Flash	Pin processing Internal resources used ELECTRICAL SPECIFICATIONS (TARGET) PACKAGE DRAWINGS DEVELOPMENT TOOLS Development tools	

et4U.com

CHAPTER 1 INTRODUCTION

1.1 K1 Family Product Lineup

1.1.1 V850ES/Kx1+, V850ES/Kx1 products lineup

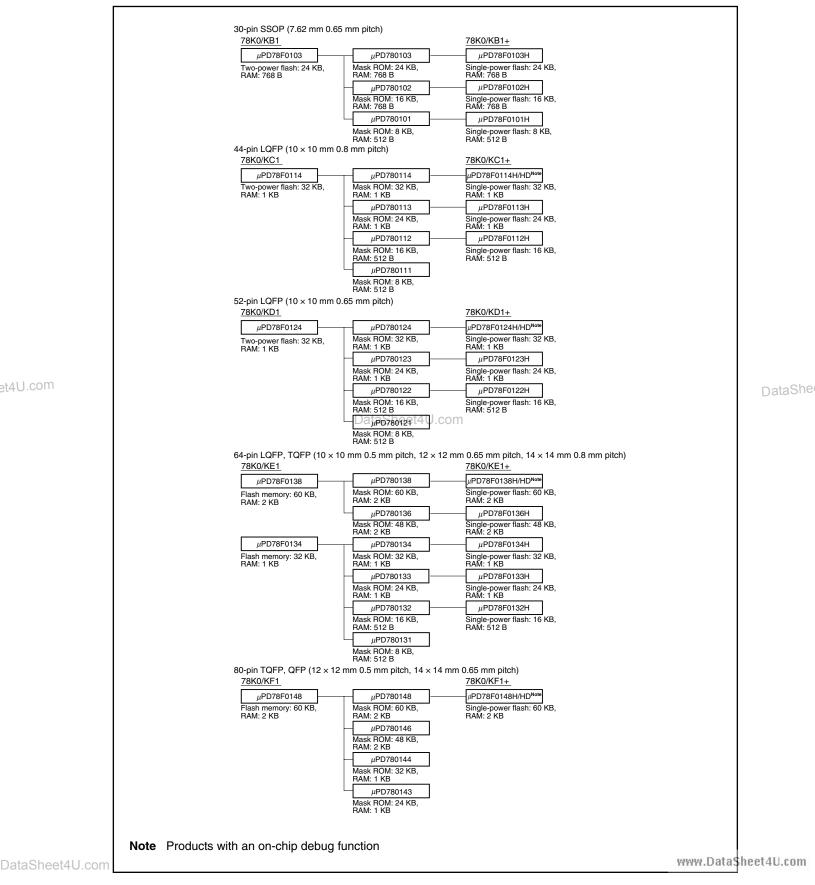
Product Name		V850E	V850ES/KF1+			V8	50ES/K0	G1+	V850ES/KJ1+				
Number of	pins	64	pins		80 pins			100 pins	S	144	pins		
Internal	Mask ROM	128	-	-	256	-	-	256	-	-	-		
memory	Flash memory	-	128	128	-	256	128	-	256	128	256		
(KB)	RAM		4	6	1	2	6		16	6	16		
Supply vol	tage	2.7 to 5.5 V		•									
Minimum i	nstruction execution time	50 ns @20 I	MHz										
Clock	X1 input	2 to 10 MHz	to 10 MHz										
	Subclock	32.768 kHz	32.768 kHz										
	Ring-OSC	240 kHz (TY	240 kHz (TYP.)										
Port	CMOS input	8		8			8			16			
	CMOS I/O	43	59			76			112				
	N-ch open-drain I/O	2	2			4			6				
Timer	16-bit (TMP)	1 ch		1 ch			1 ch			1 ch			
	16-bit (TM0)	1 ch	2 ch			4 ch			6 ch				
	8-bit (TM5)	2 ch	2 ch			2 ch			2 ch				
	8-bit (TMH)	2 ch		2 ch			2 ch	-	-	2 ch	-		
	Interval timer	1 ch	1 ch			1 ch			1 ch				
	Watch	1 ch	1 ch	1 ch					1 ch				
	WDT1	1 ch	1 ch			1 ch			1 ch				
	WDT2	1 ch		1 ch			1 ch			1 ch			
RTO		6 bits $ imes$ 1 ch		6 bits \times	1 ch		6 bits \times	1 ch		6 bits \times 2 ch			
Serial	CSI	2 ch		2 ch			2 ch			3 ch			
interface	Automatic transmit/receive 3-wire CSI		_ DataSh	eet4U	.com		2 ch			2 ch			
	UART	1 ch		1 ch			2 ch			2 ch			
	UART supporting LIN-bus	1 ch		1 ch		1 ch			1 ch				
	I ² C ^{Note}	1 ch		1 ch		1 ch			2 ch				
External	Address space		_	128 KB			3 MB			15 MB			
bus	Address bus		_	16 bits			22 bits			24 bits			
	Mode		_	Multiplex only			Multiplex/separate						
DMA contr	oller		_		-		4 ch			4 ch			
10-bit A/D	converter	8 ch		8 ch			8 ch			16 ch			
8-bit D/A c	onverter		_		-		2 ch			2 ch			
Interrupt	External	9		9			9			9			
	Internal	27		30			42			48			
Key return	input	8 ch		8 ch			8 ch			8 ch			
Reset	RESET pin	Provided											
	POC	2.7 V or less	sfixed										
	LVI	3.1 V/3.3 V	±0.15 V or 3.5	5 V/3.7 V/3	3.9 V/4.1	V/4.3 V ±	0.2 V (se	lectable	by softwa	ire)			
	Clock monitor	Provided (m	onitor by Ring	g-OSC)									
	WDT1	Provided											
	WDT2	Provided											
ROM corre	ection	4								None			
Regulator		None		Provide	d								
Standby fu	nction	HALT/IDLE/	STOP/sub-ID	LE mode									
Operating	ambient temperature	$T_A = -40$ to \cdot	+85°C										

The function list of the V850ES/Kx1+ is shown below.

Note Only in products with an I²C bus (Y products). For the product name, refer to each user's manual.

DataSheet4U.com

et4U.com


et4U.com

	Product Name	V850ES/KE1			V850ES/KF1					V850ES/KG1					V850ES/KJ1		
Number of	f pins	64 pins		80 pins				100 pins					144 pins				
Internal memory	Mask ROM	128	-	64/ 96	128	-	256	-	64/ 96	128	-	256	-	96/128	-	-	
(KB)	Flash memory	-	128	-	-	128	-	256	-	-	128	-	256	-	128	256	
	RAM		4	4		6	1	2	4		6	1	6	6		16	
Supply vol	Itage	2.7 to 5.5 V															
Minimum i	instruction execution time	50 ns @20 I	ИHz														
Clock	X1 input	2 to 10 MHz															
	Subclock	32.768 kHz	32.768 kHz														
	Ring-OSC								_								
Port	CMOS input	8		8					8					16			
	CMOS I/O	43			59			76					112				
	N-ch open-drain I/O	2			2			4					6				
Timer	16-bit (TMP)	1 ch			-		1 ch	ı		-		1 ch	ı	-	-	1 ch	
	16-bit (TM0)	1 ch			2 ch			4 ch	ı				6 ch				
	8-bit (TM5)	2 ch			2 ch			2 ch	1				2 ch				
	8-bit (TMH)	2 ch		2 ch	2 ch			2 ch				2 ch					
	Interval timer	1 ch			1 ch				1 ch				1 ch				
	Watch	1 ch		1 ch	1				1 ch				1 ch				
	WDT1	1 ch			ı				1 ch	۱				1 ch			
	WDT2	1 ch		1 ch	ı				1 ch	۱				1 ch			
RTO		6 bits \times 1 ch		6 bi	ts $ imes$ 1	ch			6 bit	ts × 1	ch			6 bits \times	2 ch		
Serial	erial CSI 2			D21ch	She	et4	U.co	om	2 ch	ı				3 ch			
interface	Automatic transmit/receive 3-wire CSI	-		1 ch	1 ch				2 ch	ı				2 ch			
	UART	2 ch		2 ch	2 ch			2 ch	ı				3 ch				
	UART supporting LIN-bus	_		_			-						-				
	I ² C ^{Note}	1 ch		1 ch			1 ch	ı				2 ch					
External	Address space		-	128	128 KB			3 MB					15 MB				
bus	Address bus		_	16 b	16 bits			22 bits					24 bits				
	Mode		-	Multiplex only			Multiplex/separate										
DMA cont	roller		-			-					-				-		
10-bit A/D	converter	8 ch		8 ch	1				8 ch	ı				16 ch			
8-bit D/A c	converter		-			-			2 ch	ı				2 ch			
Interrupt	External	8		8					8					8			
	Internal	26		26			29		31			34		40		43	
Key return	input	8 ch		8 ch	1				8 ch	1				8 ch			
Reset	RESET pin	Provided															
	POC	None															
	LVI	None															
	Clock monitor	None															
	WDT1	Provided															
	WDT2	Provided															
ROM corre	ection	4															
Regulator		None Provided															
Standby fu	unction	HALT/IDLE/	STOP/sub-ID	LE mo	ode												
Operating	ambient temperature	$T_{A} = -40$ to -	+85°C														

The function list of the V850ES/Kx1 is shown below.

DataSheet4U.cNote Only in products with an I²C bus (Y products). For the product name, refer to each user's manual.

1.1.2 78K0/Kx1+, 78K0/Kx1 products lineup

The function list of the 78K0/Kx1+ is shown below.

Item	Product Name	78K0/	/KB1+	78K0	/KC1+	78K0	/KD1+	7	8K0/KE	1+	78K0/KF1+
Number of	f pins	30 pins		44 pins		52 pins		64 pins			80 pins
Internal memory	Flash memory	8 K	16 K/24 K	16 K	24 K/32 K	16 K	24 K/32 K	16 K	24 K/ 32 K	48 K/ 60 K	60 K
(byte)	RAM	512	768	512	1 K	512	1 K	512	1 K	2 K	2K
Supply vol	ltage	V _{DD} = 2.7 t	to 5.5 V								
Minimum i time	nstruction execution	0.125 μ s (16 MHz, when V ₅₀ = 4.0 to 5.5 V) 0.24 μ s (8.38 MHz, when V ₅₀ = 3.3 to 5.5 V) 0.4 μ s (5 MHz, when V ₅₀ = 2.7 to 5.5 V)									
Clock	X1 input	2 to 16 MH	Ηz								
	RC	3 to 4 MHz	z (V _{DD} = 2.7	to 5.5 V)					-		
	Sub	-	_	32.768 k⊢	łz						
	Ring-OSC	240 kHz (TYP.)								
Port	CMOS I/O	17		19		26	38			54	
	CMOS input	4		8							
	CMOS output	1	1								
	N-ch open-drain I/O	-	_	4							
Timer	16-bit (TM0)	1 ch					2 ch				
	8-bit (TM5)	2 ch	2 ch								
	8-bit (TMH)	1 ch		2 ch							
	Watch	-	_	1 ch							
	WDT	1 ch									
Serial	3-wire CSI ^{Note}	1 ch		L	ataShee	et4U.cor	2 ch				
interface	Automatic transmit/ receive 3-wire CSI				-	_					1 ch
	UART ^{Note}	_	1 ch								
	UART supporting LIN-bus	1 ch									
10-bit A/D	converter	4 ch		8 ch							
Interrupt	External	6		7		8	9			9	
	Internal	11	12	15		15		16	19		20
Key return	input		_	4 ch		8 ch					
Reset	RESET pin	Provided									
	POC		V (detectio	n voltage fiz	xed)						
	LVI			0	:0.15 V/3.5 \	//3.7 V/3.9	V/4.1 V/4.3 V	V ±0.2 ∖	/ (select	table bv	software)
	Clock monitor	Provided							,	~~~~	
	WDT	Provided									
Clock outr	out/buzzer output			_		Clock out	put only	Provid	led		
External bus interface Multiplier/divider		_ Clock output only									Provided
					_			16 bits	s × 16 hi	its. 32 h	its ÷ 16 bits
ROM correction					_					1	
Self programming function		Provided – Provided									
p.0910		Provided Function provided only in μPD78F0114HD, 78F0124HD, 78F0138HD, and 78F0148HD									
On-chin de	ebua function	Function n	provided only	v in <i>u</i> PD78	F0114HD 7	8F0124HD	78F0138H	D. and 7	'8F0148	BHD	
On-chip de Standby fu	ebug function	Function p		y in <i>µ</i> PD78l	F0114HD, 7	8F0124HD,	78F0138HI	D, and 7	'8F0148	BHD	

Note If the pin is an alternate-function pin, either function is selected for use.

DataSheet4U.com

et4U.com

The function list of the 78K0/Kx1 is shown below.

	Product Name	78	3K0/KE	81	7	8K0/K0	C1	7	8K0/KE	D1		78	BK0/KE	E1		7	8K0/KF	1	
Item								ļ											
Number of	30 pins		44 pins		52 pins		64 pins					80 pins	;						
Internal memory	Mask ROM	8 K	16 K/ 24 K	-	8 K/ 16 K	24 K/ 32 K	-	8 K/ 16 K	24 K/ 32 K	-	8 K/ 16 K			-	24 K/ 32 K	48 K/ 60 K	-		
(byte)	Flash memory	-	-	24 K	-	_	32 K	-	_	32 K		_	32 K	-	60 K	-	_	60 k	
	RAM	512	76	68	512	1	к	512	1	к	512	1	к	2	к	1 K	2	к	
Supply vol	tage		V _{DD} = 2.7 to 5.5 V																
Minimum i time	0.24 μ	$0.2 \ \mu s$ (10 MHz, when $V_{DD} = 4.0$ to 5.5 V) <regc <math="" connected="" pin="" to="">V_{DD}> $0.24 \ \mu s$ (8.38 MHz, when $V_{DD} = 3.3$ to 5.5 V) $0.2 \ \mu s$ (10 MHz, when $V_{DD} = 4.0$ to 5.5 V) $0.4 \ \mu s$ (5 MHz, when $V_{DD} = 2.7$ to 5.5 V) $0.24 \ \mu s$ (8.38 MHz, when $V_{DD} = 3.3$ to 5.5 V) $0.4 \ \mu s$ (5 MHz, when $V_{DD} = 2.7$ to 5.5 V) $0.4 \ \mu s$ (5 MHz, when $V_{DD} = 2.7$ to 5.5 V)</regc>																	
Clock	X1 input		2 to 10 MHz																
	Sub		_								32.76	8 kHz							
	RC																		
	Ring-OSC		240 kHz (TYP.)																
Port	CMOS I/O		17			19			26	,	,		38				54		
	CMOS input		4									8							
	CMOS output		1																
	N-ch open-drain I/O	4																	
Timer						1	ch					•	2	ch		1 ch	2	ch	
Timer	8-bit (TM5)		1 ch 2 ch								1 Ch	2							
	8-bit (TMH)		T CIT							2 ch	2	CII							
	Watch		_		Da	taSh	leet4	U.coi	n	2 011	1	ch							
	WDT	1 ch																	
Serial	3-wire CSI ^{Note}						- 1-			T Cri			0			4	0	- -	
interface	Automatic transmit/					1	ch						2	ch		1 ch	2	cn	
	receive 3-wire CSI	– 1 ch																	
	UART ^{№ote}	1 ch																	
	UART supporting LIN-bus	1 ch																	
10-bit A/D	converter		4 ch								8	8 ch							
Interrupt	External		6			7			8				9				9		
	Internal	11	1	2			1	5			16		1	9		17	2	0	
Key return	input		-			4 ch							8 ch						
Reset	RESET pin								F	Provide	d								
	POC					2.85	V ±0.15	5 V/3.5	V ±0.2	0 V (se	lectabl	e by a i	mask c	ption)					
	LVI			3.1	V/3.3	V ±0.1	5 V/3.5	V/3.7	V/3.9 \	//4.1 V/	4.3 V ±	0.2 V (selecta	able by	softwa	ure)			
	Clock monitor								F	Provide	d								
	WDT								F	Provide	d								
Clock outp			-	-			Clo	ock out	put				Prov	rided					
Multiplier/c					_		•				16	$bits \times$	16 bits,	32 bits	s ÷ 16 k	oits			
ROM corre						-	-			·				vided		-			
Standby fu									HALT	/STOP	mode			1					
	ambient temperature	HALT/STOP mode Standard products, special grade (A) products: -40 to +85°C Special grade (A1) products: -40 to +110°C (mask ROM version), -40 to +105°C (flash memory version) Special grade (A2) products: -40 to +125°C (mask ROM version)																	

DataSheet4U.com **Note** If the pin is an alternate-function pin, either function is selected for use.

DataShee

et4U.com

www.DataSheet4U.com

1.2 Features

O General-purpose registers: 32 bits \times 32 registers

	-9
O CPU features:	Signed multiplication (16 \times 16 \rightarrow 32): 1 to 2 clocks
	(Instructions without creating register hazards can be continuously executed in parallel)
	Saturated operations (overflow and underflow detection functions are included)
	32-bit shift instruction: 1 clock
	Bit manipulation instructions

- Load/store instructions with long/short format
- O Memory space: 64 MB of linear address space

U	memory space.	of MB of lifear address space
	 Internal ı 	nemory
		μPD703302, 703302Y (Mask ROM: 128 KB/RAM: 4 KB)
		µPD70F3302, 70F3302Y (Single-power flash memory: 128 KB/RAM: 4 KB)
0	Interrupts and ex	ceptions

Non-maskable interrupts:	3 sources
Maskable interrupts:	32 sources (µPD703302, 70F3302)
	33 sources (µPD703302Y, 70F3302Y)
Software exceptions:	32 sources
Exception trap:	1 source

et4

DataShe

		•									
		Exception trap:	1 source								
	O I/O lines:	Total: 51									
	 Key interrupt fu 	Inction									
J.com	O Timer function										
		16-bit timer/event counter	P: 1 channel								
		16-bit timer/event counter	0: 1 channel								
		8-bit timer/event counter 5									
		8-bit timer H:	2 channels								
		8-bit interval timer BRG:	1 channel								
		Watch timer/interval timer:	: 1 channel								
		Watchdog timers									
		Watchdog timer 1 (a	also usable as oscillatio	n stabilization timer): 1 channel							
		Watchdog timer 2:		1 channel							
	O Serial interface										
		Asynchronous serial interface (UART) (supporting LIN): 1 channel									
		Asynchronous serial interf	ace (UART):	1 channel							
		3-wire serial I/O (CSI0):		2 channels							
		I ² C bus interface (I ² C):		1 channel							
		(<i>µ</i> PD703302Y, 70F3302Y)								
	O A/D converter:	10-bit resolution × 8 channels	6								
	O Real-time output	ut port: 6 bits $ imes$ 1 channel									
	 Standby function 	ons: HALT/IDLE/STOP mode	s, subclock/sub-IDLE m	odes, ring clock operation/ring HALT mode	\$S						
	O ROM correction	n: 4 correction addresses spe	ecifiable								
	O Clock generato	r									

Main clock oscillation (fx)/subclock oscillation (fxT)/Ring-OSC (fR)

CPU clock (fcPu) 7 steps (fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, fxt)

Clock-through mode/PLL mode selectable

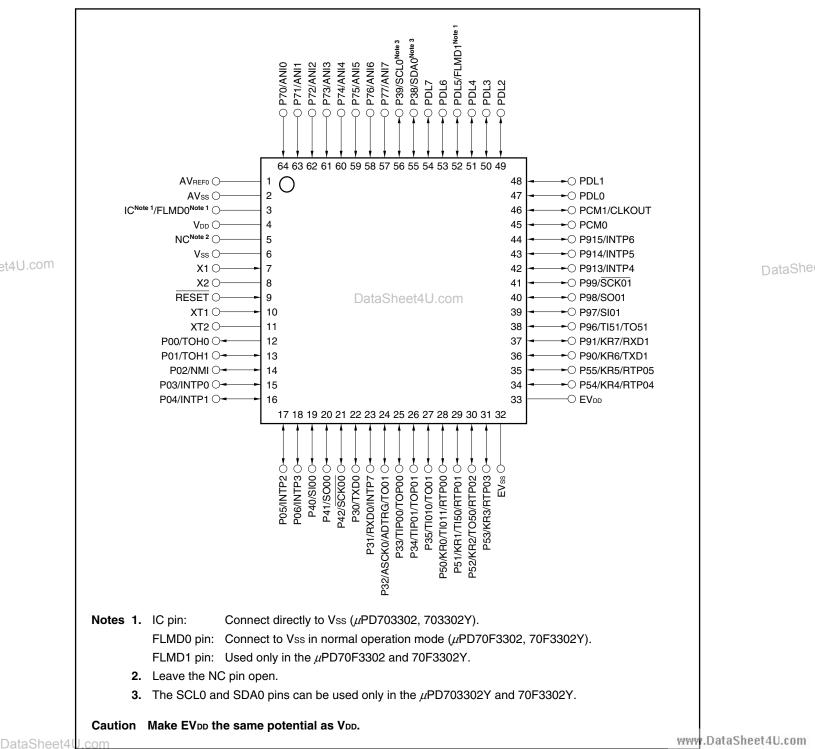
O Ring-OSC: 240 kHz (TYP.)

- O Reset
- Reset by RESET pin
- Reset by overflow of watchdog timer 1 (WDTRES1)
- Reset by overflow of watchdog timer 2 (WDTRES2)
- Reset by low-voltage detector (LVIRES)
- Reset by power-on-clear (POCRES)
- Reset by clock monitor (CLMRES)
- Reset output function (P00/TOH0 pin)
- O Low-voltage detector (LVI)
- O Power-on-clear (POC) circuit
- O Clock monitor (CLM) circuit
- O Package: 64-pin plastic TQFP (12×12)
 - 64-pin plastic LQFP (fine pitch) (10×10)

1.3 Applications

- O Automotive
 - System control of body electrical system (power windows, keyless entry reception, etc.)
 - Submicrocontroller of control system
- O Home audio, car audio
- O AV equipment
- O PC peripheral devices (keyboards, etc.)
- O Household appliances
 - Outdoor units of air conditioners
 - Microwave ovens, rice cookers
- DataSheet4U.com

- O Industrial devices
 - Pumps
 - Vending machines
 - FA


1.4 Ordering Information

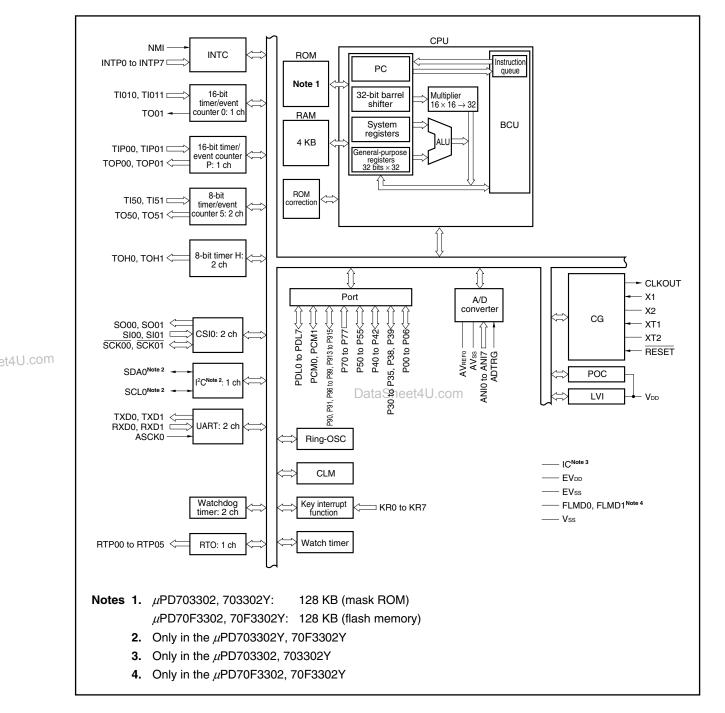
Part Number	Package	Quality Grade
μPD703302GK-×××-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μPD703302GB-×××-8EU	64-pin plastic LQFP (fine pitch) (10 $ imes$ 10)	Standard
μPD703302YGK-×××-9ΕΤ	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μPD703302YGB-×××-8EU	64-pin plastic LQFP (fine pitch) (10 $ imes$ 10)	Standard
μPD70F3302GK-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μPD70F3302GB-8EU	64-pin plastic LQFP (fine pitch) (10 $ imes$ 10)	Standard
μPD70F3302YGK-9ET	64-pin plastic TQFP (12 $ imes$ 12)	Standard
μPD70F3302YGB-8EU	64-pin plastic LQFP (fine pitch) (10 $ imes$ 10)	Standard

Remark ××× indicates ROM code suffix.

1.5 Pin Configuration (Top View)

64-pin plastic TQFP (12 $ imes$ 12)	
64-pin plastic LQFP (fine pitch) (10	× 10)
μPD703302GK-×××-9ET	μ PD70F3302GK-9ET
μPD703302GB-×××-8EU	μPD70F3302GB-8EU
μ PD703302YGK-×××-9ET	μ PD70F3302YGK-9ET
μPD703302YGB-×××-8EU	μPD70F3302YGB-8EU

Pin identification


ADTRG:	A/D trigger input	PDL0 to PDL7:	Port DL
ANI0 to ANI7:	Analog input	RESET:	Reset
ASCK0:	Asynchronous serial clock	RTP00 to RTP05:	Real-time output port
AVREF0:	Analog reference voltage	RXD0, RXD1:	Receive data
AVss:	Ground for analog	SCK00, SCK01:	Serial clock
CLKOUT:	Clock output	SCL0:	Serial clock
EVDD:	Power supply for port	SDA0:	Serial data
EVss:	Ground for port	SI00, SI01:	Serial input
FLMD0, FLMD1:	Flash programming mode	SO00, SO01:	Serial output
IC:	Internally connected	TI010, TI011,	
INTP0 to INTP7:	External interrupt input	TI50, TI51,	
KR0 to KR7:	Key return	TIP00, TIP01:	Timer input
NC:	Non-connection	TO01,	
NMI:	Non-maskable interrupt request	TO50, TO51,	
P00 to P06:	Port 0	TOH0, TOH1,	
P30 to P35, P38, P39:	Port 3	TOP00, TOP01:	Timer output
P40 to P42:	Port 4	TXD0, TXD1:	Transmit data
P50 to P55:	Port 5	VDD:	Power supply
P70 to P77:	Port 7	Vss:	Ground
P90, P91, P96 to P99,		X1, X2:	Crystal for main clock
P913 to P915:	Port 9	XT1, XT2:	Crystal for subclock
PCM0, PCM1:	Port CM		
	DataSheet4	U.COM	

et4U.com

DataSheet4U.com

1.6 Function Block Configuration

(1) Internal block diagram

DataShe

(2) Internal units

(a) CPU

The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic operations, data transfers, and almost all other types of instruction processing. Other dedicated on-chip hardware, such as a multiplier (16 bits \times 16 bits \rightarrow 32 bits) and a barrel shifter (32 bits) help accelerate complex processing.

(b) Bus control unit (BCU)

The BCU controls the internal bus.

(c) ROM

This consists of a 128 KB mask ROM or flash memory mapped to the address spaces from 0000000H to 001FFFFH.

ROM can be accessed by the CPU in one clock cycle during instruction fetch.

(d) RAM

This consists of a 4 KB RAM mapped to the address spaces from 3FFE000H to 3FFEFFFH. RAM can be accessed by the CPU in one clock cycle during data access.

(e) Interrupt controller (INTC)

This controller handles hardware interrupt requests (NMI, INTPO to INTP7) from on-chip peripheral hardware and external hardware. Eight levels of interrupt priorities can be specified for these interrupt requests, and multiplexed servicing control can be performed.

DataShee

(f) Clock generator (CG)

A main clock oscillator and subclock oscillator are provided and generate the main clock oscillation frequency (fx) and subclock frequency (fxT), respectively.

There are two modes: In the clock-through mode, f_x is used as the main clock frequency (f_{xx}) as is. In the PLL mode, f_x is used multiplied by 4.

The CPU clock frequency (fcPu) can be selected from among fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, and fxt.

(g) Timer/counter

One 16-bit timer/event counter 0 channel, one 16-bit timer/event counter P channel, and two 8-bit timer/event counter 5 channels are incorporated, enabling measurement of pulse intervals and frequency as well as programmable pulse output.

Two 8-bit timer/event counter 5 channels can be connected in cascade to configure a 16-bit timer. Two 8-bit timer H channels enabling programmable pulse output are provided on chip.

(h) Watch timer

This timer counts the reference time (0.5 seconds) for counting the clock from the subclock (32.768 kHz) or fBRG (32.768 kHz) from the clock generator. At the same time, the watch timer can be used as an interval timer.

et4U.com

(i) Watchdog timer

Two watchdog timer channels are provided on chip to detect program loops and system abnormalities. Watchdog timer 1 can be used as an interval timer. When used as a watchdog timer, it generates a non-maskable interrupt request signal (INTWDT1) or system reset signal (WDTRES1) after an overflow occurs. When used as an interval timer, it generates a maskable interrupt request signal (INTWDT1) after an overflow occurs.

Watchdog timer 2 operates by default following reset release.

It generates a non-maskable interrupt request signal (INTWDT2) or system reset signal (WDTRES2) after an overflow occurs.

(j) Serial interface (SIO)

The V850ES/KE1+ includes three kinds of serial interfaces: an asynchronous serial interface (UARTn) (supporting 1-channel LIN), a clocked serial interface (CSI0n), and an I^2C bus interface (I^2C0), and can simultaneously use up to five channels.

For UARTn, data is transferred via the TXDn and RXDn pins.

For CSI0n, data is transferred via the SO0n, SI0n, and SCK0n pins.

For I²C0, data is transferred via the SDA0 and SCL0 pins.

 I^2C0 is provided only in the μ PD703302Y and 70F3302Y.

Remark n = 0, 1

(k) A/D converter

This high-speed, high-resolution 10-bit A/D converter includes 8 analog input pins. Conversion is performed using the successive approximation method.

DataSheet4U.com

(I) ROM correction

This function is used to replace part of a program in the mask ROM with that contained in the internal RAM. Up to four correction addresses can be specified.

(m) Key interrupt function

A key interrupt request signal (INTKR) can be generated by inputting a falling edge to the eight key input pins.

(n) Real-time output function

This function transfers 6-bit data set beforehand to output latches upon occurrence of a timer compare register match signal.

A 1-channel 6-bit data real-time output function is provided on chip.

(o) Clock monitor

The clock monitor samples the main clock (fx) using the on-chip Ring-OSC clock (fR), and generates a reset request signal when the oscillation of the main clock is stopped.

(p) Low-voltage detector (LVI)

The low-voltage detector compares the supply voltage (V_{DD}) and detection voltage (V_{LVI}), and generates an internal interrupt signal or internal reset signal when $V_{DD} < V_{LVI}$.

et4U.com

(q) Power-on-clear (POC) circuit

The power-on-clear circuit generates an internal reset signal at power on.

The power-on-clear circuit compares the supply voltage (V_{DD}) and detection voltage (V_{POC}), and generates an internal reset signal when $V_{DD} < V_{POC}$.

(r) Ports

As shown below, the following ports have general-purpose port functions and control pin functions.

Port	I/O	Alternate Function			
P0	7-bit I/O	NMI, external interrupt, timer output			
P3	8-bit I/O	Serial interface, timer I/O, external interrupt, A/D converter trigger			
P4	3-bit I/O	Serial interface			
P5	6-bit I/O	Timer I/O, key interrupt function, real-time output function			
P7	8-bit input	A/D converter analog input			
P9	9-bit I/O	Serial interface, timer I/O, external interrupt, key interrupt function			
PCM	2-bit I/O	Clock output			
PDL	8-bit I/O	_			

et4U.com

DataShe

1.7 Overview of Functions

Part Number		μPD703302	2, 703302Y	μPD70F3302, 70F3302Y				
Internal	ROM	128	КВ	128 KB (single-power flash memory)				
memory	High-speed RAM	4 KB						
Memory s	pace		64 MB					
General-p	urpose registers		32 bits \times 3	32 registers				
Main cloc	k	Ceramic/crystal/external cloc	ĸ					
(oscillation	n frequency)	When PLL not used 2 to 8 MHz ^{Note 1} : 2.7 to 5.5 V						
		When PLL used 2 to 5 MHz: 4.5 to 5.5 V, 2 MHz: 2.7 to 5.5 V						
Subclock (oscillation	n frequency)		=	ternal clock 88 kHz)				
	instruction			operated at (f _{xx}) = 20 MHz)				
DSP function		32 × 32 = 64: 200 to 250 ns (at 20 MHz) 32 × 32 + 32 = 32: 300 ns (at 20 MHz) 16 × 16 = 32: 50 to 100 ns (at 20 MHz) 16 × 16 + 32 = 32: 150 ns (at 20 MHz)						
I/O ports		 51 Input: 8 I/O: 43 (among these, N-ch open-drain output selectable: 4, fixed to N-ch open-drain output: 2) 						
Timer		16-bit timer/event counter P: 1 channel 16-bit timer/event counter 0: 1 channel 8-bit timer/event counter 5: 2 channels (16-bit timer/event counter: Usable as 1 channel) 8-bit timer H: 2 channels Watchdog timer: 2 channels Watch timer: 1 channel 8-bit interval timer: 1 channel						
Real-time	output port	4 bits \times 1, 2 bits \times 1, or 6 bits \times 1						
A/D conve	erter		10-bit resolution	on \times 8 channels				
Serial interface		CSI: 2 channels UART (supporting LIN): 1 channel UART: 1 channel I ² C bus: 1 channel ^{Note 2} Dedicated baud rate generator: 2 channels						
Interrupt sources		External: 10 (10) ^{Note 3} , internal: 27/26 ^{Note 2}						
Power save function		STOP/IDLE/HALT/sub-IDLE mode						
Operating	supply voltage	4.5 to 5.5 V (at 20 MHz)/2.7 to 5.5 V (at 8 MHz)						
Package		64-pin plastic TQFP (12×12 mm) 64-pin plastic LQFP (fine pitch) (10×10 mm)						

DataShe

Notes 1. The value may change after evaluation.

- **2.** Only in the μ PD703302Y, 70F3302Y
- **3.** The figure in parentheses indicates the number of external interrupts for which STOP mode can be released.

et4U.com

CHAPTER 2 PIN FUNCTIONS

The names and functions of the pins of the V850ES/KE1+ are described below, divided into port pins and non-port pins.

The pin I/O buffer power supplies are divided into two systems; AVREF0 and EVDD. The relationship between these power supplies and the pins is shown below.

Power Supply	Corresponding Pins
AV _{REF0}	Port 7
EVDD	RESET, ports 0, 3 to 5, 9, CM, DL

Table 2-1. Pin I/O Buffer Power Supplies

2.1 List of Pin Functions

(1) Port pins

		1	1	r	(1/2)
Pin Name	Pin No.	I/O	Pull-up Resistor	Function	Alternate Function
P00	12	I/O	Yes	Port 0	ТОНО
P01	13			I/O port	TOH1
P02	14			Input/output can be specified in 1-bit units.	NMI
P03	15				INTP0
P04	16			DataShaat4Llaam	INTP1
P05	17			DataSheet4U.com	INTP2
P06	18				INTP3
P30	22	I/O	Yes	Port 3	TXD0
P31	23			I/O port	RXD0/INTP7
P32	24			Input/output can be specified in 1-bit units. P38 and P39 are fixed to N-ch open-drain	ASCK0/ADTRG/TO01
P33	25			output.	TIP00/TOP00
P34	26				TIP01/TOP01
P35	27				TI010/TO01
P38	55		No ^{Note 1}		SDA0 ^{Note 2}
P39	56				SCL0 ^{Note 2}
P40	19	I/O	Yes	Port 4	SI00
P41	20			I/O port Input/output can be specified in 1-bit units.	SO00
P42	21			P41 and P42 can be specified as N-ch open- drain output in 1-bit units.	SCK00

Notes 1. An on-chip pull-up resistor can be provided by a mask option (only in the μ PD703302, 703302Y).

2. Only in the μ PD703302Y, 70F3302Y

et4U.com

DataSheet4U.com

www.DataSheet4U.com

					(2/2)	
Pin Name	Pin No.	I/O	Pull-up Resistor	Function	Alternate Function	
P50	28	I/O	Yes	Port 5	TI011/RTP00/KR0	
P51	29			I/O port	TI50/RTP01/KR1	
P52	30			Input/output can be specified in 1-bit units.	TO50/RTP02/KR2	
P53	31				RTP03/KR3	
P54	34				RTP04/KR4	
P55	35				RTP05/KR5	
P70	64	Input	No	Port 7	ANIO	
P71	63			Input port	ANI1	
P72	62				ANI2	
P73	61				ANI3	
P74	60				ANI4	
P75	59				ANI5	
P76	58				ANI6	
P77	57				ANI7	
P90	36	I/O	Yes	Port 9	TXD1/KR6	
P91	37	-		I/O port Input/output can be specified in 1-bit units.	RXD1/KR7	
P96	38					P98 and P99 can be specified as N-ch open-
P97	39			drain output in 1-bit units.	SI01	
P98	40				SO01	
P99	41			DataSheet4U.com	SCK01	
P913	42			DataSheet+0.com	INTP4	
P914	43				INTP5	
P915	44				INTP6	
PCM0	45	I/O	Yes	Port CM	-	
PCM1	46	-		I/O port Input/output can be specified in 1-bit units.	CLKOUT	
PDL0	47	I/O	Yes	Port DL	-	
PDL1	48			I/O port	_	
PDL2	49	-		Input/output can be specified in 1-bit units.	-	
PDL3	50	1			_	
PDL4	51	1			_	
PDL5	52	1			FLMD1 ^{Note}	
PDL6	53	1			_	
PDL7	54	1			_	

Note Only in the μ PD70F3302, 70F3302Y

(2) Non-port pins

Pin Name	Pin No.	I/O	Pull-up Resistor	Function	Alternate Function
ADTRG	24	Input	Yes	A/D converter external trigger input	P32/ASCK0/TO01
ANI0	64	Input	No	Analog voltage input for A/D converter	P70
ANI1	63				P71
ANI2	62				P72
ANI3	61				P73
ANI4	60				P74
ANI5	59				P75
ANI6	58				P76
ANI7	57				P77
ASCK0	24	Input	Yes	UART0 serial clock input	P32/ADTRG/TO01
AV _{REF0}	1	-	-	Reference voltage for A/D converter and positive power supply for alternate-function ports	-
AVss	2	-	_	Ground potential for A/D converter and alternate-function ports	-
CLKOUT	46	Output	No	Internal system clock output	PCM1
EVDD	33	_	_	Positive power supply for external	-
EVss	32	_	_	Ground potential for external	-
FLMD0 ^{Note 1}	3	Input	No	Flash programming mode setting pin	-
FLMD1 ^{Note 1}	52		Yes		PDL5
IC ^{Note 2}	3	_	_	Internally connected	-
INTP0	15	Input	Yes	External interrupt request input	P03
INTP1	16			(maskable, analog noise elimination)	P04
INTP2	17				P05
INTP3	18			External interrupt request input (maskable, digital + analog noise elimination)	P06
INTP4	42			External interrupt request input	P913
INTP5	43			(maskable, analog noise elimination)	P914
INTP6	44				P915
INTP7	23				P31/RXD0
KR0	28	Input	Yes	Key return input	P50/TI011/RTP00
KR1	29				P51/TI50/RTP01
KR2	30	1			P52/TO50/RTP02
KR3	31				P53/RTP03
KR4	34	1			P54/RTP04
KR5	35	1			P55/RTP05
KR6	36	1			P90/TXD1
KR7	37	1			P91/RXD1
NC	5	-	-	Not internally connected. Leave open.	-
NMI	14	Input	Yes	External interrupt input P02 (non-maskable, analog noise elimination)	
RESET	9	Input	_	System reset input	_

Notes 1. Only in the *μ*PD70F3302, 70F3302Y

2. Only in the μPD703302, 703302Y

DataSheet4U.com

et4U.com

Din Nome	Din No.	1/0	Dull un Desister	Eurotion	(2/2
Pin Name	Pin No.	I/O	Pull-up Resistor	Function	Alternate Function
RTP00	28	Output	Yes	Real-time output port	P50/TI011/KR0
RTP01	29	-			P51/TI50/KR1
RTP02	30				P52/TO50/KR2
RTP03	31				P53/KR3
RTP04	34	-			P54/KR4
RTP05	35				P55/KR5
RXD0	23	Input	Yes	Serial receive data input for UART0	P31/INTP7
RXD1	37			Serial receive data input for UART1	P91/KR7
SCK00	21	I/O	Yes	Serial clock I/O for CSI00 and CSI01	P42
SCK01	41			N-ch open-drain output can be specified in 1- bit units.	P99
SCL0 ^{Note 1}	56	I/O	No ^{Note 2}	Serial clock I/O for I ² C0 Fixed to N-ch open-drain output	P39
SDA0 ^{Note 1}	55	I/O	No ^{Note 2}	Serial transmit/receive data I/O for I ² C0 Fixed to N-ch open-drain output	P38
SI00	19	Input	Yes	Serial receive data input for CSI00	P40
SI01	39			Serial receive data input for CSI01	P97
SO00	20	Output	Yes	Serial transmit data output for CSI00 and CSI01 N-ch open-drain output can be specified in 1-bit	P41
SO01	40			units.	P98
TI010	27	Input	Yes	Capture trigger input/external event input for TM01	P35/TO01
TI011	28			Capture trigger input for TM01	P50/RTP00/KR0
TI50	29			External event input for TM50	P51/RTP01/KR1
TI51	38			External event input for TM51	P96/TO51
TIP00	25			Capture trigger input/external event input for TMP0	P33/TOP00
TIP01	26			Capture trigger input for TMP0	P34/TOP01
TO01	24	Output	Yes	Timer output for TM01	P32/ASCK0/ADTRG
	27				P35/TI010
TO50	30			Timer output for TM50	P52/RTP02/KR2
TO51	38	1		Timer output for TM51	P96/TI51
ТОН0	12			Timer output for TMH0	P00
TOH1	13	1		Timer output for TMH1	P01
TOP00	25	-		Timer output for TMP0	P33/TIP00
TOP01	26				P34/TIP01
TXD0	22	Output	Yes	Serial transmit data output for UART0	P30
TXD1	36	1		Serial transmit data output for UART1	P90/KR6
VDD	4	_	_	Positive power supply pin for internal	_
Vss	6	_	_	Ground potential for internal	
X1	7	Input	No	Connecting resonator for main clock	_
X2	8		No		_
XT1	10	Input	No	Connecting resonator for subclock	_
XT2	11	mpar	No		

Notes 1. Only in the μ PD703302Y, 70F3302Y

2. An on-chip pull-up resistor can be provided by a mask option (only in the μ PD703302Y).

DataSheet4U.com

et4U.com

Pin	Alternate Function	Pin No.	I/O Circuit Type	Recommended Connection		
P00	ТОН0	12	5-A	Input: Independently connect to EVDD or EVSS		
P01	TOH1	13		via a resistor.		
P02	NMI	14	5-W	Output: Leave open.		
P03 to P06	INTP0 to INTP3	15 to 18				
P30	TXD0	22	5-A			
P31	RXD0/INTP7	23	5-W			
P32	ASCK0/ADTRG	24				
P33	TIP00/TOP00	25				
P34	TIP01/TOP01	26				
P35	TI010/TO01	27				
P38	SDA0 ^{Note}	55	13-AE			
P39	SCL0 ^{Note}	56]			
P40	SI00	19	5-W]		
P41	SO00	20	10-E			
P42	SCK00	21	10-F			
P50	TI011/RTP00/KR0	28	8-A			
P51	TI50/RTP01/KR1	29				
P52	TO50/RTP02/KR2	30			Data	
P53	RTP03/KR3	31 DataShoot4	Leom			
P54	RTP04/KR4	34	10-A			
P55	RTP05/KR5	35				
P70 to P77	ANI0 to ANI7	64 to 57	9-C	Connect to AVREFO or AVSS.		
P90	TXD1/KR6	36	8-A	Input: Independently connect to EVDD or EVSS		
P91	RXD1/KR7	37		via a resistor.		
P96	TI51/TO51	38		Output: Leave open.		
P97	SI01	39	5-W			
P98	SO01	40	10-E			
P99	SCK01	41	10-F			
P913 to P915	INTP4 to INTP6	42 to 44	5-W			
PCM0	-	45	5-A			
PCM1	CLKOUT	46				
PDL0 to PDL4	-	47 to 51				
PDL5	FLMD1	52				
PDL6, PDL7	-	53, 54				
AV _{REF0}	-	1	-	Directly connect to VDD.		
AVss	-	2	-	_		
EVDD	_	33	-	_		
EVss	_	32	_	_		

Note Only in the μ PD703302Y, 70F3302Y

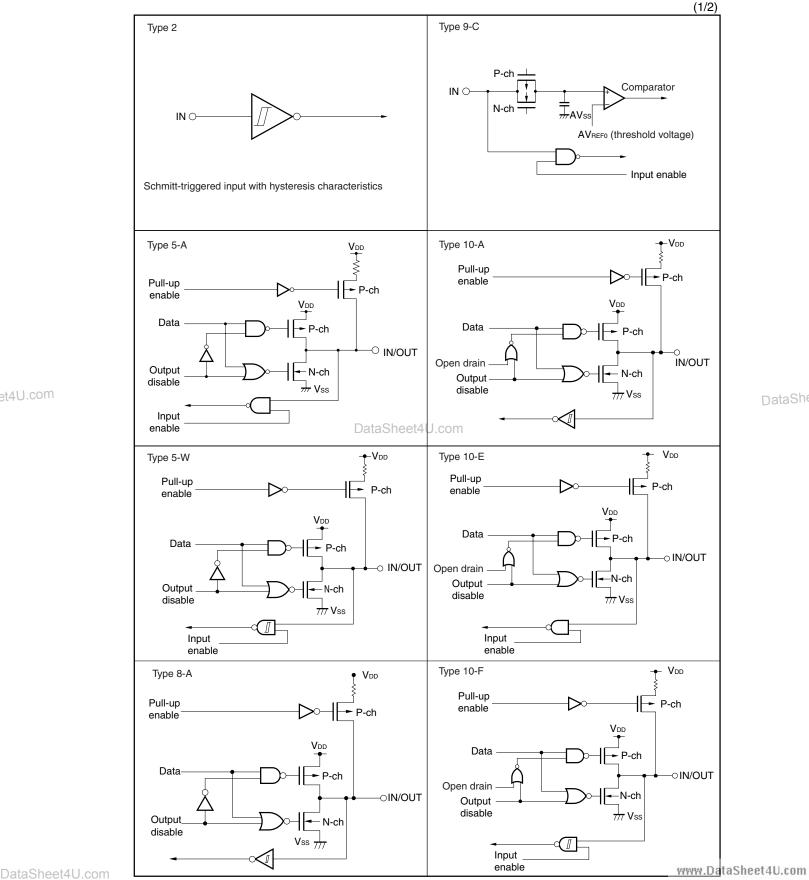
DataSheet4U.com

et4U.com

				(2/2)
Pin	Alternate Function	Pin No.	I/O Circuit Type	Recommended Connection
IC ^{Note 1}	_	3	_	Directly connect to EVss or Vss or pull down with a 10 $k\Omega$ resistor.
NC	_	5	—	Leave open.
RESET	_	9	2	-
FLMD0 ^{Note 2}	_	3	_	Directly connect to EVss or Vss or pull down with a 10 $k\Omega$ resistor.
VDD	-	4	-	_
Vss	-	6	-	_
X1	-	7	-	_
X2	_	8	-	_
XT1	-	10	16	Directly connect to Vss ^{Note 3} .
XT2	-	11	16	Leave open.

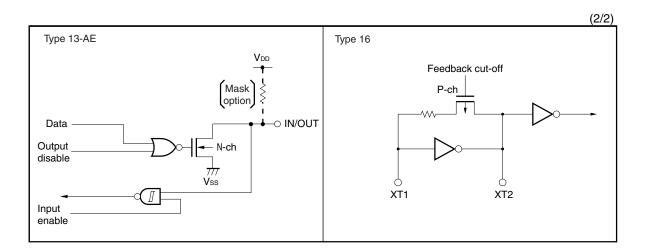
Notes 1. Only in the *μ*PD703302, 703302Y

2. Only in the μ PD70F3302, 70F3302Y


3. Be sure to set the PSMR.XTSTP bit to 1 when this pin is not used.

et4U.com

DataShe


DataSheet4U.com

2.3 Pin I/O Circuits

DataShe

DataSheet4U.com

Remark Read VDD as EVDD. Also, read Vss as EVss.

et4U.com

DataShee

DataSheet4U.com

DataSheet4U.com

CHAPTER 3 CPU FUNCTIONS

The CPU of the V850ES/KE1+ is based on the RISC architecture and executes most instructions in one clock cycle by using 5-stage pipeline control.

3.1 Features

• TST1

O Number of instructions:	83	
O Minimum instruction execution tim	e: 50.0 ns (@ 20 MHz operation: 4.5 to 5.5 V)	
	125 ns ^{Note} (@ 8 MHz operation: 2.7 to 5.5 V)	
O Memory space Program (physic	cal address) space: 64 MB linear	
Data (logical ad	dress) space: 4 GB linear	
O General-purpose registers: 32 bits	s × 32	
O Internal 32-bit architecture		
○ 5-stage pipeline control		
O Multiply/divide instructions		
O Saturated operation instructions		
O 32-bit shift instruction: 1 clock		
O Load/store instruction with long/sh	ort format	
O Four types of bit manipulation inst	ructions	
• SET1		
CLR1		DataShe
• NOT1		
• TST1	DataSheet4U.com	

Note This value may change after evaluation.

DataSheet4U.com

et4U.com

www.DataSheet4U.com

3.2 CPU Register Set

The CPU registers of the V850ES/KE1+ can be classified into two categories: a general-purpose program register set and a dedicated system register set. All the registers have 32-bit width.

For details, refer to the V850ES Architecture User's Manual.

	(1) Program register set			(2) System register set
1		0	31	<u>0</u>
r0	(Zero register)		EIPC	(Interrupt status saving register)
r1	(Assembler-reserved register)		EIPSW	(Interrupt status saving register)
r2				
r3	(Stack pointer (SP))		FEPC	(NMI status saving register)
r4	(Global pointer (GP))		FEPSW	(NMI status saving register)
r5	(Text pointer (TP))			
r6			ECR	(Interrupt source register)
r7				
r8			PSW	(Program status word)
r9				
r10			CTPC	(CALLT execution status saving register)
r11			CTPSW	(CALLT execution status saving register)
r12			0017	
r13			DBPC	(Evention/debug tran status souring register)
r14			DBPC	(Exception/debug trap status saving register)
r15		ataSheet	DBPSW	(Exception/debug trap status saving register)
r16				
r17			CTBP	(CALLT base pointer)
r18				
r19				
r20				
r21				
r22				
r23				
r24				
r25				
r26				
r27				
r28				
r29				
r30	(Element pointer (EP))			
r31	(Link pointer (LP))			

et4U.com

DataSheet4U.com

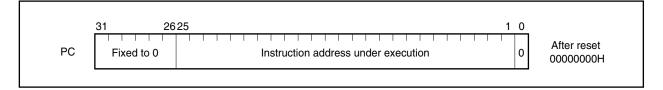
3.2.1 Program register set

The program register set includes general-purpose registers and a program counter.

(1) General-purpose registers (r0 to r31)

Thirty-two general-purpose registers, r0 to r31, are available. All of these registers can be used as a data variable or address variable.

However, r0 and r30 are implicitly used by instructions and care must be exercised when using these registers. r0 always holds 0 and is used for operations that use 0 and offset 0 addressing. r30 is used as a base pointer when performing memory access with the SLD and SST instructions.


Also, r1, r3 to r5, and r31 are implicitly used by the assembler and C compiler. Therefore, before using these registers, their contents must be saved so that they are not lost, and they must be restored to the registers after the registers have been used. There are cases when r2 is used by the real-time OS. If r2 is not used by the real-time OS, r2 can be used as a variable register.

Name	Usage	Operation
rO	Zero register	Always holds 0
r1	Assembler-reserved register	Working register for generating 32-bit immediate
r2	Address/data variable register (v	vhen r2 is not used by the real-time OS to be used)
r3 Stack pointer Used to generate stack f		Used to generate stack frame when function is called
r4	Global pointer	Used to access global variable in data area
r5	Text pointer	Register to indicate the start of the text area (area for placing program code)
r6 to r29	Address/data variable register	DataSheet4U.com
r30	Element pointer	Base pointer when memory is accessed
r31	Link pointer	Used by compiler when calling function
PC	Program counter	Holds instruction address during program execution

Table 3-1. Program Registers

(2) Program counter (PC)

This register holds the address of the instruction under execution. The lower 26 bits of this register are valid, and bits 31 to 26 are fixed to 0. If a carry occurs from bit 25 to bit 26, it is ignored. Bit 0 is fixed to 0, and branching to an odd address cannot be performed.

et4U.com

3.2.2 System register set

System registers control the status of the CPU and hold interrupt information.

Read from and write to system registers are performed by setting the system register numbers shown below with the system register load/store instructions (LDSR, STSR instructions).

System	System Register Name	Operand Specif	ication Enabled
Register No.		LDSR	STSR
		Instruction	Instruction
0	Interrupt status saving register (EIPC) ^{Note 1}	Yes	Yes
1	Interrupt status saving register (EIPSW) ^{Note 1}	Yes	Yes
2	NMI status saving register (FEPC) ^{Note 1}	Yes	Yes
3	NMI status saving register (FEPSW) ^{Note 1}	Yes	Yes
4	Interrupt source register (ECR)	No	Yes
5	Program status word (PSW)	Yes	Yes
6 to 15	Reserved numbers for future function expansion (The operation is not guaranteed	No	No
	if accessed.)		
16	CALLT execution status saving register (CTPC)	Yes	Yes
17	CALLT execution status saving register (CTPSW)	Yes	Yes
18	Exception/debug trap status saving register (DBPC)	Yes ^{Note 2}	Yes ^{Note 2}
19	Exception/debug trap status saving register (DBPSW)	Yes ^{Note 2}	Yes ^{Note 2}
20	CALLT base pointer (CTBP)	Yes	Yes
21 to 31	Reserved numbers for future function expansion (The operation is not guaranteed	No	No
	if accessed.)		

Table 3-2. System Register Numbers

DataShe

Notes 1. Since only one set of these registers is available, the contents of this register must be saved by the program when multiple interrupt servicing is enabled.

2. Can be accessed only during the period from the DBTRAP instruction to the DBRET instruction.

Caution Even if bit 0 of EIPC, FEPC, or CTPC is set (1) by the LDSR instruction, bit 0 is ignored during return with the RETI instruction following interrupt servicing (because bit 0 of PC is fixed to 0). When setting a value to EIPC, FEPC, and CTPC, set an even number (bit 0 = 0).

(1) Interrupt status saving registers (EIPC, EIPSW)

There are two interrupt status saving registers, EIPC and EIPSW.


Upon occurrence of a software exception or a maskable interrupt, the contents of the program counter (PC) are saved to EIPC and the contents of the program status word (PSW) are saved to EIPSW (upon occurrence of a non-maskable interrupt (NMI), the contents are saved to the NMI status saving registers (FEPC, FEPSW)). The address of the next instruction following the instruction executed when a software exception or maskable interrupt occurs is saved to EIPC, except for some instructions (refer to **17.9 Periods in Which Interrupts Are Not Acknowledged by CPU**).

The current PSW contents are saved to EIPSW.

Since there is only one set of interrupt status saving registers, the contents of these registers must be saved by the program when multiple interrupt servicing is enabled.

Bits 31 to 26 of EIPC and bits 31 to 8 of EIPSW are reserved (fixed to 0) for future function expansion.

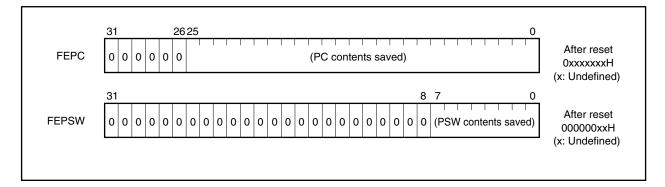
When the RETI instruction is executed, the values in EIPC and EIPSW are restored to the PC and PSW, respectively.

et4U.com

DataSheet4U.com

(2) NMI status saving registers (FEPC, FEPSW)

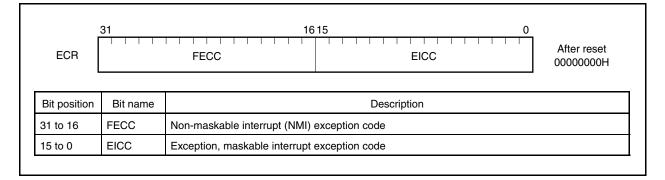
There are two NMI status saving registers, FEPC and FEPSW.


Upon occurrence of a non-maskable interrupt (NMI), the contents of the program counter (PC) are saved to FEPC and the contents of the program status word (PSW) are saved to FEPSW.

The address of the next instruction following the instruction executed when a non-maskable interrupt occurs is saved to FEPC, except for some instructions.

The current PSW contents are saved to FEPSW.

Since there is only one set of NMI status saving registers, the contents of these registers must be saved by the program when multiple interrupt servicing is performed.


Bits 31 to 26 of FEPC and bits 31 to 8 of FEPSW are reserved (fixed to 0) for future function expansion.

et4U.com

(3) Interrupt source register (ECR)

Upon occurrence of an interrupt or an exception, the interrupt source register (ECR) holds the source of an interrupt or an exception. The value held by ECR is the exception code coded for each interrupt source. This register is a read-only register, and thus data cannot be written to it using the LDSR instruction.

(4) Program status word (PSW)

The program status word (PSW) is a collection of flags that indicate the program status (instruction execution result) and the CPU status.

When the contents of this register are changed using the LDSR instruction, the new contents become valid immediately following completion of LDSR instruction execution. Interrupt request acknowledgment is held pending while a write to the PSW is being executed by the LDSR instruction.

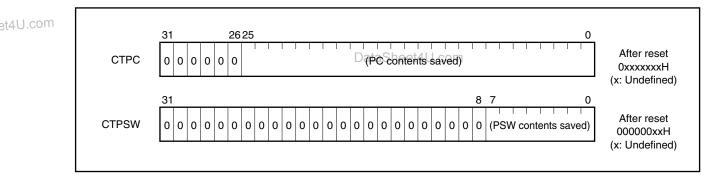
Bits 31 to 8 are reserved (fixed to 0) for future function expansion.

	31	876543210	
PSW		RFU NP EP ID SAT CY OV S Z After reset 00000020H	
Bit position	Flag name	Description	1
31 to 8	RFU	Reserved field. Fixed to 0.	1
7	NP	Indicates that non-maskable interrupt (NMI) servicing is in progress. This flag is set to 1 when an NMI request is acknowledged, and disables multiple interrupts. 0: NMI servicing not in progress 1: NMI servicing in progress	
6	EP	Indicates that exception processing is in progress. This flag is set to 1 when an exception occurs. Moreover, interrupt requests can be acknowledged even when this bit is set.0: Exception processing not in progress1: Exception processing in progress	Data
5	ID	Indicates whether maskable interrupt request acknowledgment is enabled. 0: Interrupt enabled 1: Interrupt disabled	
4	SAT ^{Note}	Indicates that the result of executing a saturated operation instruction has overflowed and that the calculation result is saturated. Since this is a cumulative flag, it is set to 1 when the result of a saturated operation instruction becomes saturated, and it is not cleared to 0 even if the operation results of successive instructions do not become saturated. This flag is neither set nor cleared when arithmetic operation instructions are executed. 0: Not saturated 1: Saturated	
3	CY	Indicates whether carry or borrow occurred as the result of an operation. 0: No carry or borrow occurred 1: Carry or borrow occurred	
2	OV ^{Note}	Indicates whether overflow occurred during an operation. 0: No overflow occurred 1: Overflow occurred.	
1	S ^{Note}	Indicates whether the result of an operation is negative. 0: Operation result is positive or 0. 1: Operation result is negative.	
0	Z	Indicates whether operation result is 0. 0: Operation result is not 0. 1: Operation result is 0.	

Remark Note is explained on the following page.

DataSheet4U.com

Note During saturated operation, the saturated operation results are determined by the contents of the OV flag and S flag. The SAT flag is set (to 1) only when the OV flag is set (to 1) during saturated operation. Operation result status Flag status Saturated operation result Maximum positive value exceeded 1 1 0 7FFFFFFH Maximum negative value exceeded 1 1 1 8000000H Positive (maximum value not exceeded) Holds value 0 0 Actual operation result						(2/2
Maximum positive value exceeded 1 0V S operation result Maximum negative value exceeded 1 1 0 7FFFFFFH Maximum negative value exceeded 1 1 1 80000000H Positive (maximum value not exceeded) Holds value 0 0 Actual operation	Note		-		-	
Maximum positive value exceeded 1 0 7FFFFFH Maximum negative value exceeded 1 1 8000000H Positive (maximum value not exceeded) Holds value 0 0 Actual operation		Operation result status	Saturated			
Maximum negative value exceeded 1 1 8000000H Positive (maximum value not exceeded) Holds value 0 0 Actual operation			SAT	OV	S	operation result
Positive (maximum value not exceeded) Holds value 0 0 Actual operation		Maximum positive value exceeded	1	1	0	7FFFFFFH
hefere anaration		Maximum negative value exceeded	1	1	1	8000000H
Negative (maximum value not avecaded) before operation 1 result		Positive (maximum value not exceeded)	Holds value	0	0	Actual operation
		Negative (maximum value not exceeded)	before operation		1	result


(5) CALLT execution status saving registers (CTPC, CTPSW)

There are two CALLT execution status saving registers, CTPC and CTPSW.

When the CALLT instruction is executed, the contents of the program counter (PC) are saved to CTPC, and the program status word (PSW) contents are saved to CTPSW.

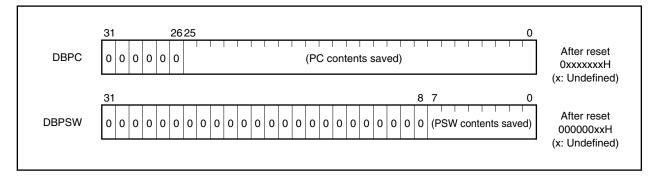
The contents saved to CTPC consist of the address of the next instruction after the CALLT instruction. The current PSW contents are saved to CTPSW.

Bits 31 to 26 of CTPC and bits 31 to 8 of CTPSW are reserved (fixed to 0) for future function expansion.

DataShe

www.DataSheet4U.com

(6) Exception/debug trap status saving registers (DBPC, DBPSW)

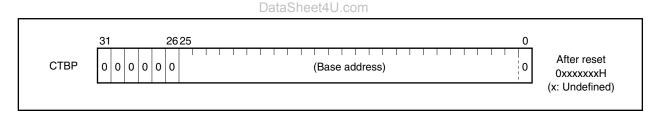

There are two exception/debug trap status saving registers, DBPC and DBPSW.

Upon occurrence of an exception trap or debug trap, the contents of the program counter (PC) are saved to DBPC, and the program status word (PSW) contents are saved to DBPSW.

The contents saved to DBPC consist of the address of the next instruction after the instruction executed when an exception trap or debug trap occurs.

The current PSW contents are saved to DBPSW.

Bits 31 to 26 of DBPC and bits 31 to 8 of DBPSW are reserved (fixed to 0) for future function expansion.



(7) CALLT base pointer (CTBP)

The CALLT base pointer (CTBP) is used to specify table addresses and generate target addresses (bit 0 is fixed to 0).

Bits 31 to 26 are reserved (fixed to 0) for future function expansion.

DataShe

et4U.com

DataSheet4U.com

www.DataSheet4U.com

3.3 Operating Modes

The V850ES/KE1+ has the following operating modes.

(1) Normal operating mode

After the system has been released from the reset state, the pins related to the bus interface are set to the port mode, execution branches to the reset entry address of the internal ROM, and instruction processing is started.

(2) Flash memory programming mode

This mode is valid only in flash memory versions (μ PD70F3302 and 70F3302Y). When this mode is specified, the internal flash memory can be programmed by using a flash programmer.

(a) Specifying operating mode

The operating mode is specified according to the status (input level) of the FLMD0 and FLMD1 pins. In the normal operating mode, input a low level to the FLMD0 pin during the reset period.

A high level is input to the FLMD0 pin by the flash programmer in the flash memory programming mode if a flash programmer is connected. In the self-programming mode, input a high level to this pin from an external circuit.

Fix the specification of these pins in the application system and do not change the setting of these pins during operation.

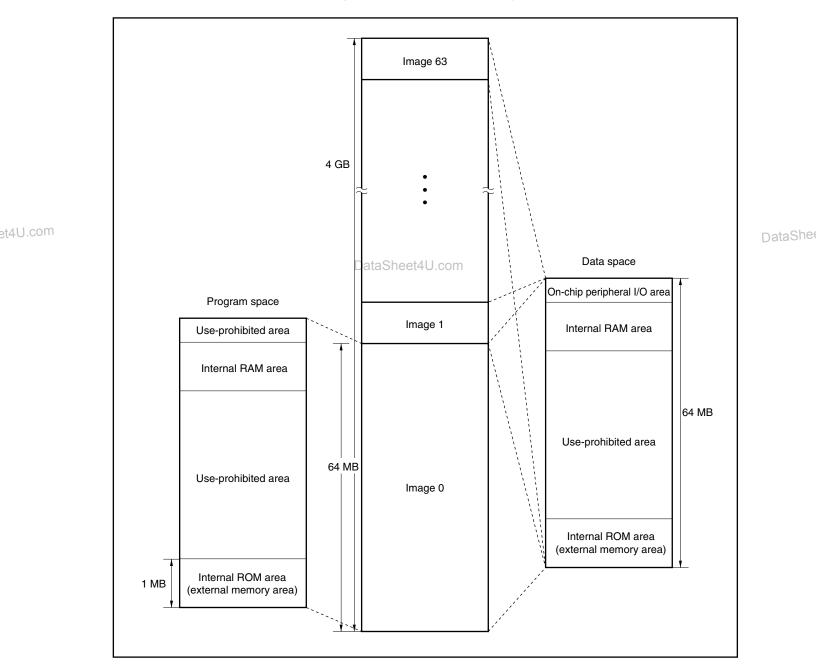
FLMD0	FLMD1	Operating Mode
L	×	Normal operating mode
Н	L	Flash memory programming mode
Н	Н	Setting prohibited

DataShe

www.DataSheet4U.com

Remark H: High level

L: Low level

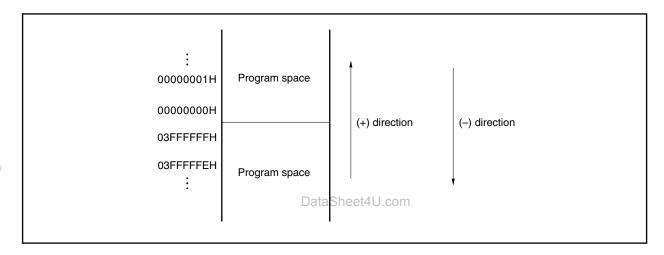

×: don't care

3.4 Address Space

3.4.1 CPU address space

In a linear address space (program space) of up to 64 MB, up to 1 MB of internal ROM area and internal RAM area are supported for instruction address addressing. During operand addressing (data access), up to 4 GB of linear address space (data space) is supported. However, the 4 GB address space is viewed as 64 images of a 64 MB physical address space. In other words, the same 64 MB physical address space is accessed regardless of the value of bits 31 to 26.

49

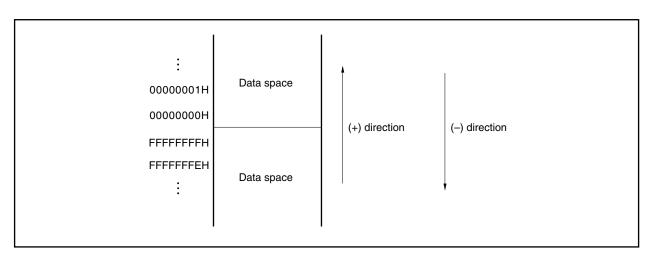

3.4.2 Wraparound of CPU address space

(1) Program space

Of the 32 bits of the program counter (PC), the higher 6 bits are fixed to 0 and only the lower 26 bits are valid. Even if a carry or borrow occurs from bit 25 to bit 26 as a result of branch address calculation, the higher 6 bits ignore this and remain 0.

Therefore, the lower-limit address of the program space, 00000000H, and the upper-limit address, 03FFFFFFH, are contiguous addresses, and the program space is wrapped around at the boundary of these addresses.

Caution No instructions can be fetched from the 4 KB area of 03FFF000H to 03FFFFFH because this area is an on-chip peripheral I/O area. Therefore, do not execute any branch operation instructions in which the destination address will reside in any part of this area.



et4U.com

(2) Data space

The result of an operand address calculation that exceeds 32 bits is ignored.


Therefore, the lower-limit address of the data space, address 00000000H, and the upper-limit address, FFFFFFFH, are contiguous addresses, and the data space is wrapped around at the boundary of these addresses.

DataSheet4U.com

3.4.3 Memory map

The V850ES/KE1+ has reserved areas as shown below.

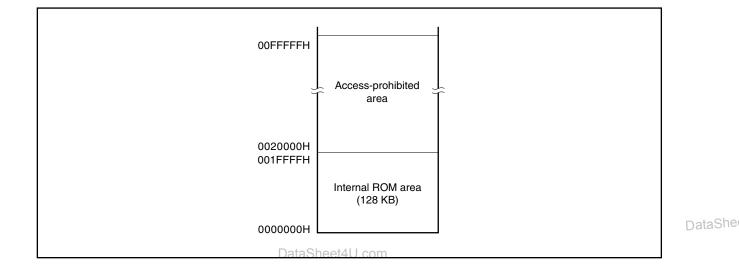
Г

	03FFFFFH	Use-prohibited area	
	03FFF000H 03FFEFFH	(Program fetch disabled area)	
	0311211111		
		Internal RAM area (60 KB)	
	03FF0000H		
	03FEFFFH		
		Use-prohibited area (Program fetch disabled area)	
et4U.com			DataShee
		DataShaat411.com	
		DataSheet4U.com	
	00100000H 000FFFFH	Internal ROM area	
	00000000Н	Internal ROM area (1 MB)	
	1		

Figure 3-3. Program Memory Map

٦

3.4.4 Areas

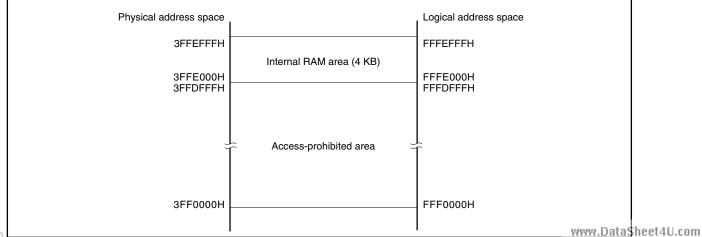

(1) Internal ROM area

An area of 1 MB from 0000000H to 00FFFFFH is reserved for the internal ROM area.

(a) Internal ROM (128 KB)

A 128 KB area from 0000000H to 001FFFFH is provided in the V850ES/KE1+. Addresses 0020000H to 00FFFFFH are an access-prohibited area.

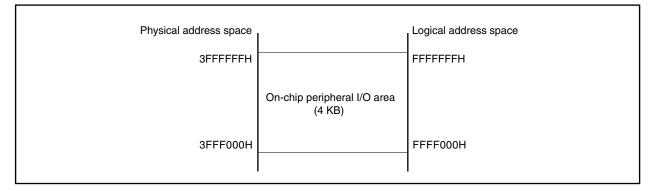
et4U.com


(2) Internal RAM area

An area of 60 KB maximum from 3FF0000H to 3FFEFFFH is reserved for the internal RAM area.

(a) Internal RAM (4 KB)

A 4 KB area from 3FFE000H to 3FFEFFFH is provided as physical internal RAM in the V850ES/KE1+. Addresses 3FF0000H to 3FFDFFFH are an access-prohibited area.


Figure 3-5.	Internal	RAM	Area	(4 KB)
-------------	----------	-----	------	--------

DataSheet4U.com

(3) On-chip peripheral I/O area

A 4 KB area from 3FFF000H to 3FFFFFFH is reserved as the on-chip peripheral I/O area.

Peripheral I/O registers assigned with functions such as on-chip peripheral I/O operation mode specification and state monitoring are mapped to the on-chip peripheral I/O area. Program fetches are not allowed in this area.

Cautions 1. If word access of a register is attempted, halfword access to the word area is performed twice, first for the lower bits, then for the higher bits, ignoring the lower 2 address bits.

et4U.com

- 2. If a register that can be accessed in byte units is accessed in halfword units, the higher 8 bits become undefined if the access is a read operation. If a write access is performed, only the data in the lower 8 bits is written to the register.
- 3. Addresses that are not defined as registers are reserved for future expansion. If these addresses are accessed, the operation is undefined and not guaranteed.

www.DataSheet4U.com

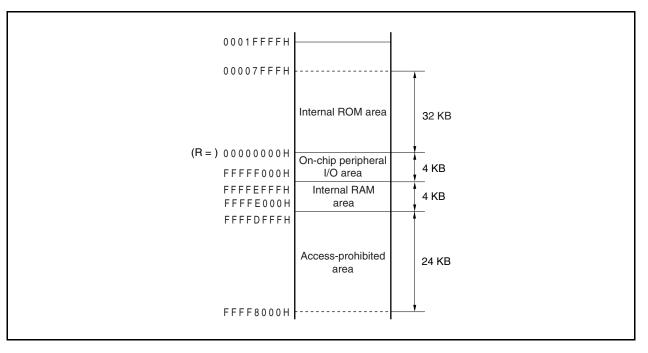
3.4.5 Recommended use of address space

The architecture of the V850ES/KE1+ requires that a register that serves as a pointer be secured for address generation when operand data in the data space is accessed. The address stored in this pointer ±32 KB can be directly accessed by an instruction for operand data. Because the number of general-purpose registers that can be used as a pointer is limited, however, by keeping the performance from dropping during address calculation when a pointer value is changed, as many general-purpose registers as possible can be secured for variables, and the program size can be reduced.

(1) Program space

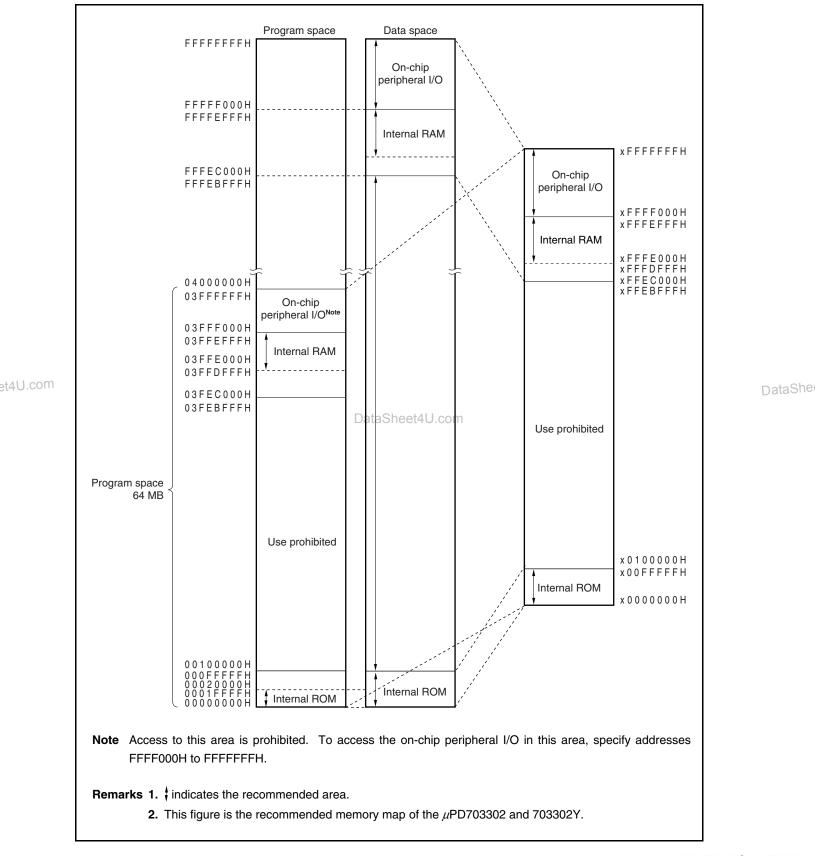
Of the 32 bits of the PC (program counter), the higher 6 bits are fixed to 0, and only the lower 26 bits are valid. Regarding the program space, therefore, a 64 MB space of contiguous addresses starting from 0000000H unconditionally corresponds to the memory map.

To use the internal RAM area as the program space, access the addresses 3FFE000H to 3FFEFFFH (4 KB).


(2) Data space

With the V850ES/KE1+, it seems that there are sixty-four 64 MB address spaces on the 4 GB CPU address space. Therefore, the least significant bit (bit 25) of a 26-bit address is sign-extended to 32 bits and allocated as an address.

(a) Application example of wraparound


If R = r0 (zero register) is specified for the LD/ST disp16 [R] instruction, a range of addresses 00000000H ±32 KB can be addressed by sign-extended disp16. All the resources, including the internal hardware, can be addressed by one pointer.

The zero register (r0) is a register fixed to 0 by hardware, and practically eliminates the need for registers dedicated to pointers.

Example: *µ*PD703302, 703302Y

et4U.com

DataSheet4U.com

Address	Function Register Name	Symbol	R/W	Operable Bit Unit			After Reset
				1	8	16	
FFFFF004H	Port DL register	PDL	R/W		\checkmark		00H ^{Note 1}
FFFFF00CH	Port CM register	PCM	R/W				00H ^{Note 1}
FFFFF024H	Port DL mode register	PMDL	R/W				FFH
FFFFF02CH	Port CM mode register	PMCM	R/W				FFH
FFFFF04CH	Port CM mode control register	PMCCM	R/W				00H
FFFFF06EH	System wait control register	VSWC	R/W				77H
FFFFF100H	Interrupt mask register 0	IMR0	R/W				FFFFH
FFFFF100H	Interrupt mask register 0L	IMR0L	R/W	\checkmark			FFH
FFFFF101H	Interrupt mask register 0H	IMR0H	R/W				FFH
FFFFF102H	Interrupt mask register 1	IMR1	R/W				FFFFH
FFFFF102H	Interrupt mask register 1L	IMR1L	R/W				FFH
FFFFF103H	Interrupt mask register 1H	IMR1H	R/W		\checkmark		FFH
FFFFF106H	Interrupt mask register 3	IMR3	R/W			\checkmark	FFFFH
FFFFF106H	Interrupt mask register 3L	IMR3L	R/W				FFH
FFFFF110H	Interrupt control register	WDT1IC	R/W				47H
FFFFF112H	Interrupt control register	PIC0	R/W				47H
FFFFF114H	Interrupt control register	PIC1	R/W				47H
FFFFF116H	Interrupt control register	PIC2	R/W				47H
FFFFF118H	Interrupt control register DataSheet4U.com	PIC3	R/W				47H
FFFFF11AH	Interrupt control register	PIC4	R/W				47H
FFFFF11CH	Interrupt control register	PIC5	R/W				47H
FFFFF11EH	Interrupt control register	PIC6	R/W				47H
FFFFF124H	Interrupt control register	TM0IC10	R/W				47H
FFFFF126H	Interrupt control register	TM0IC11	R/W				47H
FFFFF128H	Interrupt control register	TM5IC0	R/W				47H
FFFFF12AH	Interrupt control register	TM5IC1	R/W	\checkmark			47H
FFFFF12CH	Interrupt control register	CSI0IC0	R/W	\checkmark	\checkmark		47H
FFFFF12EH	Interrupt control register	CSI0IC1	R/W	\checkmark	\checkmark		47H
FFFFF130H	Interrupt control register	SREIC0	R/W	\checkmark	\checkmark		47H
FFFFF132H	Interrupt control register	SRIC0	R/W	\checkmark	\checkmark		47H
FFFFF134H	Interrupt control register	STIC0	R/W	\checkmark	\checkmark		47H
FFFFF136H	Interrupt control register	SREIC1	R/W	\checkmark	\checkmark		47H
FFFFF138H	Interrupt control register	SRIC1	R/W	\checkmark	\checkmark		47H
FFFFF13AH	Interrupt control register	STIC1	R/W	\checkmark	\checkmark		47H
FFFFF13CH	Interrupt control register	TMHIC0	R/W	\checkmark	\checkmark		47H
FFFFF13EH	Interrupt control register	TMHIC1	R/W	\checkmark	\checkmark		47H
FFFFF142H	Interrupt control register	IICIC0 ^{Note 2}	R/W	\checkmark	\checkmark		47H
FFFFF144H	Interrupt control register	ADIC	R/W	\checkmark	\checkmark		47H
FFFFF146H	Interrupt control register	KRIC	R/W		\checkmark		47H

3.4.6 Peripheral I/O registers

Notes 1. The output latch is 00H. When input, the pin status is read.

DataSheet4U.com

et4U.com

2. Only in the μPD703302Y, 70F3302Y

www.DataSheet4U.com

et4U.com

Address	Function Register Name	Symbol	R/W	Oper	able B	it Unit	(2/7 After Reset
				1	8	16	
FFFFF148H	Interrupt control register	WTIIC	R/W				47H
FFFFF14AH	Interrupt control register	WTIC	R/W				47H
FFFFF14CH	Interrupt control register	BRGIC	R/W				47H
FFFFF170H	Interrupt control register	LVIIC	R/W				47H
FFFFF172H	Interrupt control register	PIC7	R/W				47H
FFFFF174H	Interrupt control register	TP00VIC	R/W				47H
FFFFF176H	Interrupt control register	TP0CCIC0	R/W				47H
FFFFF178H	Interrupt control register	TP0CCIC1	R/W				47H
FFFFF1FAH	In-service priority register	ISPR	R				00H
FFFFF1FCH	Command register	PRCMD	W				Undefined
FFFFF1FEH	Power save control register	PSC	R/W				00H
FFFFF200H	A/D converter mode register	ADM	R/W				00H
FFFFF201H	Analog input channel specification register	ADS	R/W				00H
FFFFF202H	Power fail comparison mode register	PFM	R/W				00H
FFFFF203H	Power fail comparison threshold register	PFT	R/W				00H
FFFFF204H	A/D conversion result register	ADCR	R				Undefined
FFFFF205H	A/D conversion result register H	ADCRH	R				Undefined
FFFFF300H	Key return mode register	KRM	R/W				00H
FFFFF308H	Selector operation control register 0	SELCNT0	R/W				00H
FFFFF30AH	Selector operation control register 1	SELCNT1	R/W				00H
FFFFF318H	Digital noise elimination control register	NFC	R/W				00H
FFFFF400H	Port 0 register	P0	R/W				00H ^{Note}
FFFFF406H	Port 3 register	P3	R/W				0000H ^{Note}
FFFFF406H	Port 3 register L	P3L	R/W				00H ^{Note}
FFFFF407H	Port 3 register H	РЗН	R/W	\checkmark	\checkmark		00H ^{Note}
FFFFF408H	Port 4 register	P4	R/W	\checkmark	\checkmark		00H ^{Note}
FFFFF40AH	Port 5 register	P5	R/W				00H ^{Note}
FFFFF40EH	Port 7 register	P7	R				Undefined
FFFFF412H	Port 9 register	P9	R/W			\checkmark	0000H ^{Note}
FFFFF412H	Port 9 register L	P9L	R/W				00H ^{Note}
FFFFF413H	Port 9 register H	P9H	R/W		\checkmark		00H ^{Note}
FFFFF420H	Port 0 mode register	PM0	R/W				FFH
FFFFF426H	Port 3 mode register	PM3	R/W			\checkmark	FFFFH
FFFFF426H	Port 3 mode register L	PM3L	R/W	\checkmark	\checkmark		FFH
FFFFF427H	Port 3 mode register H	РМЗН	R/W		\checkmark		FFH
FFFFF428H	Port 4 mode register	PM4	R/W	\checkmark	\checkmark		FFH
FFFFF42AH	Port 5 mode register	PM5	R/W	\checkmark			FFH
FFFFF432H	Port 9 mode register	PM9	R/W			\checkmark	FFFFH
FFFFF432H	Port 9 mode register L	PM9L	R/W				FFH
FFFFF433H	Port 9 mode register H	PM9H	R/W			l	FFH
FFFFF440H	Port 0 mode control register	PMC0	R/W				00H

DataShe

Note The output latch is 00H or 0000H. When input, the pin status is read. DataSheet4U.com

www.DataSheet4U.com

Address	Function Register Name Sym		R/W	/W Operable Bit Unit			After Reset
				1	8	16	
FFFFF446H	Port 3 mode control register	PMC3	R/W			\checkmark	0000H
FFFFF446H	Port 3 mode control register L	PMC3L	R/W	\checkmark	\checkmark		00H
FFFFF447H	Port 3 mode control register H	PMC3H	R/W	\checkmark	\checkmark		00H
FFFFF448H	Port 4 mode control register	PMC4	R/W	\checkmark	\checkmark		00H
FFFFF44AH	Port 5 mode control register	PMC5	R/W	\checkmark	\checkmark		00H
FFFFF452H	Port 9 mode control register	PMC9	R/W			\checkmark	0000H
FFFFF452H	Port 9 mode control register L	PMC9L	R/W	\checkmark	\checkmark		00H
FFFFF453H	Port 9 mode control register H	PMC9H	R/W	\checkmark	\checkmark		00H
FFFFF466H	Port 3 function control register	PFC3	R/W	\checkmark	\checkmark		00H
FFFFF46AH	Port 5 function control register	PFC5	R/W	\checkmark	\checkmark		00H
FFFFF472H	Port 9 function control register	PFC9	R/W			\checkmark	0000H
FFFFF472H	Port 9 function control register L	PFC9L	R/W	\checkmark	\checkmark		00H
FFFFF473H	Port 9 function control register H	PFC9H	R/W				00H
FFFFF580H	8-bit timer H mode register 0	TMHMD0	R/W				00H
FFFFF581H	8-bit timer H carrier control register 0	TMCYC0	R/W				00H
FFFF582H	8-bit timer H compare register 00	CMP00	R/W				00H
FFFF583H	8-bit timer H compare register 01	CMP01	R/W				00H
FFFF590H	8-bit timer H mode register 1	TMHMD1	R/W		\checkmark		00H
FFFFF591H	8-bit timer H carrier control register 1	TMCYC1	R/W	\checkmark	\checkmark		00H
FFFFF592H	8-bit timer H compare register 10 DataSheet4U.com	CMP10	R/W		\checkmark		00H
FFFFF593H	8-bit timer H compare register 11	CMP11	R/W		\checkmark		00H
FFFFF5A0H	TMP0 control register 0	TP0CTL0	R/W	\checkmark	\checkmark		00H
FFFFF5A1H	TMP0 control register 1	TP0CTL1	R/W	\checkmark	\checkmark		00H
FFFFF5A2H	TMP0 I/O control register 0	TP0IOC0	R/W	\checkmark	\checkmark		00H
FFFFF5A3H	TMP0 I/O control register 1	TP0IOC1	R/W	\checkmark	\checkmark		00H
FFFFF5A4H	TMP0 I/O control register 2	TP0IOC2	R/W	\checkmark	\checkmark		00H
FFFFF5A5H	TMP0 option register 0	TP0OPT0	R/W	\checkmark	\checkmark		00H
FFFFF5A6H	TMP0 capture/compare register 0	TP0CCR0	R/W			\checkmark	0000H
FFFFF5A8H	TMP0 capture/compare register 1	TP0CCR1	R/W			\checkmark	0000H
FFFFF5AAH	TMP0 counter read buffer register	TP0CNT	R			\checkmark	0000H
FFFF5C0H	16-bit timer counter 5	TM5	R			\checkmark	0000H
FFFF5C0H	8-bit timer counter 50	TM50	R		\checkmark		00H
FFFF5C1H	8-bit timer counter 51	TM51	R		\checkmark		00H
FFFFF5C2H	16-bit timer compare register 5	CR5	R/W			\checkmark	0000H
FFFF5C2H	8-bit timer compare register 50	CR50	R/W		\checkmark		00H
FFFF5C3H	8-bit timer compare register 51	CR51	R/W		\checkmark		00H
FFFF5C4H	Timer clock selection register 5	TCL5	R/W			\checkmark	0000H
FFFF5C4H	Timer clock selection register 50	TCL50	R/W		\checkmark		00H
FFFF5C5H	Timer clock selection register 51	TCL51	R/W				00H

et4U.com

DataSheet4U.com

www.DataSheet4U.com

		1	1	ī			(4/7
Address	Function Register Name	Symbol	R/W	Operable Bit Unit			After Reset
				1 8 16			
FFFF5C6H	16-bit timer mode control register 5	TMC5	R/W			\checkmark	0000H
FFFF5C6H	8-bit timer mode control register 50	TMC50	R/W	\checkmark	\checkmark		00H
FFFF5C7H	8-bit timer mode control register 51	TMC51	R/W				00H
FFFFF610H	16-bit timer counter 01	TM01	R			\checkmark	0000H
FFFFF612H	16-bit timer capture/compare register 010	CR010	R/W			\checkmark	0000H
FFFFF614H	16-bit timer capture/compare register 011	CR011	R/W			\checkmark	0000H
FFFFF616H	16-bit timer mode control register 01	TMC01	R/W	\checkmark	\checkmark		00H
FFFFF617H	Prescaler mode register 01	PRM01	R/W	\checkmark	\checkmark		00H
FFFFF618H	Capture/compare control register 01	CRC01	R/W	\checkmark	\checkmark		00H
FFFFF619H	16-bit timer output control register 01	TOC01	R/W	\checkmark	\checkmark		00H
FFFFF680H	Watch timer operation mode register	WTM	R/W		\checkmark		00H
FFFF6C0H	Oscillation stabilization time selection register	OSTS	R/W		\checkmark		Note
FFFF6C1H	Watchdog timer clock selection register	WDCS	R/W				00H
FFFF6C2H	Watchdog timer mode register 1	WDTM1	R/W	\checkmark	\checkmark		00H
FFFF6D0H	Watchdog timer mode register 2	WDTM2	R/W		\checkmark		67H
FFFF6D1H	Watchdog timer enable register	WDTE	R/W				9AH
FFFF6E0H	Real-time output buffer register L0	RTBL0	R/W	\checkmark	\checkmark		00H
FFFF6E2H	Real-time output buffer register H0	RTBH0	R/W		\checkmark		00H
FFFF6E4H	Real-time output port mode register 0	RTPM0	R/W	\checkmark	\checkmark		00H
FFFF6E5H	Real-time output port control register 0 DataSheet4U.co	rRTPC0	R/W				00H
FFFFF706H	Port 3 function control expansion register	PFCE3	R/W				00H
FFFFF802H	System status register	SYS	R/W				00H
FFFFF806H	PLL control register	PLLCTL	R/W				01H
FFFFF80CH	Ring-OSC mode register	RCM	R/W				00H

DataShe

www.DataSheet4U.com

For details, refer to CHAPTER 25 MASK OPTION/OPTION BYTE.

DataSheet4U.com

Address	Function Register Name	Symbol	R/W	Op	berab	le Bit I	t Unit	After Reset
				1	8	16	32	
FFFFF820H	Power save mode register	PSMR	R/W		\checkmark			00H
FFFFF828H	Processor clock control register	PCC	R/W					03H
FFFFF82EH	CPU operation clock status register	CCLS	R	\checkmark	\checkmark			00H
FFFFF840H	Correction address register 0	CORAD0	R/W					0000000
FFFFF840H	Correction address register 0L	CORAD0L	R/W					0000H
FFFFF842H	Correction address register 0H	CORAD0H	R/W					0000H
FFFFF844H	Correction address register 1	CORAD1	R/W					00000000
FFFFF844H	Correction address register 1L	CORAD1L	R/W					0000H
FFFFF846H	Correction address register 1H	CORAD1H	R/W					0000H
FFFFF848H	Correction address register 2	CORAD2	R/W					00000001
FFFFF848H	Correction address register 2L	CORAD2L	R/W					0000H
FFFFF84AH	Correction address register 2H	CORAD2H	R/W					0000H
FFFFF84CH	Correction address register 3	CORAD3	R/W					00000000
FFFFF84CH	Correction address register 3L	CORAD3L	R/W					0000H
FFFFF84EH	Correction address register 3H	CORAD3H	R/W					0000H
FFFFF860H	Reset noise elimination control register	RNZC	R/W					00H
FFFFF870H	Clock monitor mode register	CLM	R/W	\checkmark	\checkmark			00H
FFFFF880H	Correction control register	CORCN	R/W					00H
FFFF888H	Reset source flag register	RESF	R/W					Note
FFFFF890H	Low-voltage detection register	LVIM	R/W	\checkmark	\checkmark			00H
FFFFF891H	Low-voltage detection level selection register	LVIS	R/W		\checkmark			00H
FFFFF8B0H	Interval timer BRG mode register	PRSM	R/W		\checkmark			00H
FFFFF8B1H	Interval timer BRG compare register	PRSCM	R/W		\checkmark			00H
FFFFFA00H	Asynchronous serial interface mode register 0	ASIM0	R/W	\checkmark	\checkmark			01H
FFFFFA02H	Receive buffer register 0	RXB0	R					FFH
FFFFFA03H	Asynchronous serial interface status register 0	ASIS0	R					00H
FFFFFA04H	Transmit buffer register 0	TXB0	R/W					FFH
FFFFFA05H	Asynchronous serial interface transmit status register 0	ASIF0	R	\checkmark	\checkmark			00H
FFFFFA06H	Clock select register 0	CKSR0	R/W					00H
FFFFFA07H	Baud rate generator control register 0	BRGC0	R/W					FFH
FFFFFA08H	LIN operation control register 0	ASICL0	R/W					16H
FFFFFA10H	Asynchronous serial interface mode register 1	ASIM1	R/W	\checkmark	\checkmark			01H
FFFFFA12H	Receive buffer register 1	RXB1	R		\checkmark			FFH
FFFFFA13H	Asynchronous serial interface status register 1	ASIS1	R					00H
FFFFFA14H	Transmit buffer register 1	TXB1	R/W		\checkmark	1		FFH
FFFFFA15H	Asynchronous serial interface transmit status register 1	ASIF1	R			1		00H
FFFFFA16H	Clock select register 1	CKSR1	R/W		√	-		00H
FFFFFA17H	Baud rate generator control register 1	BRGC1	R/W	-	, √	+		FFH

Note The value varies depending on the reset source (refer to 20.3 (1) Reset source flag register (RESF)).

DataSheet4U.com

et4U.com

www.DataSheet4U.com

Address	Function Register Name	Symbol	R/W	Oper	able B	lit Unit	After Reset
				1	8	16	
FFFFFB00H	TIP00 noise elimination control register	P0NFC	R/W				00H
FFFFFB04H	TIP01 noise elimination control register	P1NFC	R/W				00H
FFFFFC00H	External interrupt falling edge specification register 0	INTF0	R/W	\checkmark			00H
FFFFFC06H	External interrupt falling edge specification register 3	INTF3	R/W	\checkmark			00H
FFFFFC13H	External interrupt falling edge specification register 9H	INTF9H	R/W	\checkmark			00H
FFFFFC20H	External interrupt rising edge specification register 0	INTR0	R/W	\checkmark			00H
FFFFFC26H	External interrupt rising edge specification register 3	INTR3	R/W	\checkmark			00H
FFFFFC33H	External interrupt rising edge specification register 9H	INTR9H	R/W	\checkmark			00H
FFFFFC40H	Pull-up resistor option register 0	PU0	R/W	\checkmark			00H
FFFFFC46H	Pull-up resistor option register 3	PU3	R/W	\checkmark			00H
FFFFFC48H	Pull-up resistor option register 4	PU4	R/W	\checkmark			00H
FFFFFC4AH	Pull-up resistor option register 5	PU5	R/W	\checkmark		1	00H
FFFFFC52H	Pull-up resistor option register 9	PU9	R/W				0000H
FFFFFC52H	Pull-up resistor option register 9L	PU9L	R/W				00H
FFFFFC53H	Pull-up resistor option register 9H	PU9H	R/W				00H
FFFFFC67H	Port 3 function register H	PF3H	R/W				00H
FFFFFC68H	Port 4 function register	PF4	R/W				00H
FFFFFC73H	Port 9 function register H	PF9H	R/W				00H
FFFFFD00H	Clocked serial interface mode register 00	CSIM00	R/W				00H
FFFFFD01H	Clocked serial interface clock selection register the et4U.co	r C SIC0	R/W				00H
FFFFFD02H	Clocked serial interface receive buffer register 0	SIRB0	R				0000H
FFFFFD02H	Clocked serial interface receive buffer register 0L	SIRB0L	R				00H
FFFFFD04H	Clocked serial interface transmit buffer register 0	SOTB0	R/W				0000H
FFFFFD04H	Clocked serial interface transmit buffer register 0L	SOTBOL	R/W				00H
FFFFFD06H	Clocked serial interface read-only receive buffer register 0	SIRBE0	R				0000H
FFFFFD06H	Clocked serial interface read-only receive buffer register 0L	SIRBE0L	R				00H
FFFFFD08H	Clocked serial interface initial transmit buffer register 0	SOTBF0	R/W				0000H
FFFFFD08H	Clocked serial interface initial transmit buffer register 0L	SOTBF0L	R/W				00H
FFFFFD0AH	Serial I/O shift register 0	SIO00	R/W				00H
FFFFFD0AH	Serial I/O shift register 0L	SIO00L	R/W				0000H
FFFFFD10H	Clocked serial interface mode register 01	CSIM01	R/W				00H
FFFFFD11H	Clocked serial interface clock selection register 1	CSIC1	R/W				00H
FFFFFD12H	Clocked serial interface receive buffer register 1	SIRB1	R				0000H
FFFFFD12H	Clocked serial interface receive buffer register 1L	SIRB1L	R			1	00H
FFFFFD14H	Clocked serial interface transmit buffer register 1	SOTB1	R/W				0000H
FFFFFD14H	Clocked serial interface transmit buffer register 1L	SOTB1L	R/W			1	00H
FFFFFD16H	Clocked serial interface read-only receive buffer register 1	SIRBE1	R				0000H
FFFFFD16H	Clocked serial interface read-only receive buffer register 1L	SIRBE1L	R				00H
FFFFFD18H	Clocked serial interface initial transmit buffer register 1	SOTBF1	R/W				0000H
FFFFFD18H	Clocked serial interface initial transmit buffer register 1L	SOTBF1L	R/W	1			00H

DataSheet4U.com

							(7/7)
Address	Function Register Name	Symbol	R/W	Opera	able B	it Unit	After Reset
				1	8	16	
FFFFFD1AH	Serial I/O shift register 1	SIO01	R/W				00H
FFFFFD1AH	Serial I/O shift register 1L	SIO01L	R/W		\checkmark		0000H
FFFFFD80H	IIC shift register 0	IIC0 ^{Note}	R/W		\checkmark		00H
FFFFFD82H	IIC control register 0	IICC0 ^{Note}	R/W	\checkmark	\checkmark		00H
FFFFD83H	Slave address register 0	SVA0 ^{Note}	R/W				00H
FFFFFD84H	IIC clock selection register 0	IICCL0 ^{Note}	R/W	\checkmark	\checkmark		00H
FFFFFD85H	IIC function expansion register 0	IICX0 ^{Note}	R/W	\checkmark	\checkmark		00H
FFFFFD86H	IIC status register 0	IICS0 ^{Note}	R	\checkmark			00H
FFFFD8AH	IIC flag register 0	IICF0 ^{Note}	R/W	\checkmark	\checkmark		00H
FFFFFF44H	Pull-up resistor option register DL	PUDL	R/W	\checkmark	\checkmark		00H
FFFFFF4CH	Pull-up resistor option register CM	PUCM	R/W	\checkmark	\checkmark		00H

Note Only in the μ PD703302Y, 70F3302Y

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

3.4.7 Special registers

Special registers are registers that prevent invalid data from being written when an inadvertent program loop occurs.

The V850ES/KE1+ has the following six special registers.

- Power save control register (PSC)
- Processor clock control register (PCC)
- Watchdog timer mode register (WDTM1)
- Clock monitor mode register (CLM)
- Reset source flag register (RESF)
- Low-voltage detection register (LVIM)

Moreover, there is also the PRCMD register, which is a protection register for write operations to the special registers that prevents the application system from unexpectedly stopping due to an inadvertent program loop. Write access to the special registers is performed with a special sequence and illegal store operations are notified to the SYS register.

(1) Setting data to special registers

Setting data to a special register is done in the following sequence.

- <1> Prepare the data to be set to the special register in a general-purpose register.
- <2> Write the data prepared in step <1> to the PRCMD register.
- <3> Write the setting data to the special register (using following instructions).
- et4U.com

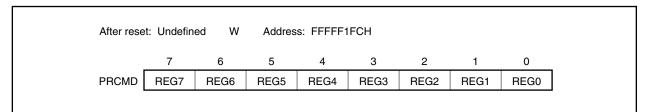
- Store instruction (ST/SST instruction)
- Bit manipulation instruction (SET1/CLR1/NOT1 instruction)

<4> to <8> Insert NOP instructions (5 instructions).

Note When switching to the IDLE mode or the STOP mode (PSC.STP bit = 1), 5 NOP instructions must be inserted immediately after switching is performed.

[Description Example] When using PSC register (standby mode setting)

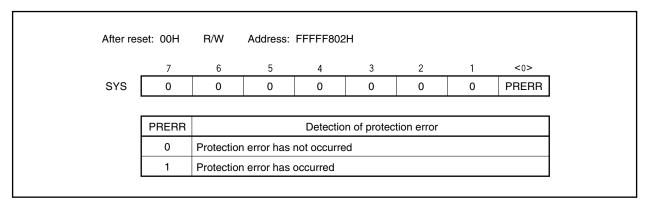
ST.B r11,	PSMR[r0]	;	PSMR register setting (IDLE, STOP mode setting)
<1>MOV 0x02,	r10		
<2>ST.B r10,	PRCMD[r0]	;	PRCMD register write
<3>ST.B r10,	PSC[r0]	;	PSC register setting
$< 4 > \text{NOP}^{Note}$;	Dummy instruction
$< 5 > \text{NOP}^{Note}$;	Dummy instruction
$< 6 > \text{NOP}^{Note}$;	Dummy instruction
$< 7 > \text{NOP}^{Note}$;	Dummy instruction
$< 8 > \text{NOP}^{Note}$;	Dummy instruction
(next instruc	ction)		


No special sequence is required to read special registers.

- **Note** When switching to the IDLE mode or the STOP mode (PSC.STP bit = 1), 5 NOP instructions must be inserted immediately after switching is performed.
- Cautions 1. Interrupts are not acknowledged for the store instruction for the PRCMD register. This is because continuous execution of store instructions by the program in steps <2> and <3> above is assumed. If another instruction is placed between step <2> and <3>, the above sequence may not be realized when an interrupt is acknowledged for that instruction, which may cause malfunction.
 - 2. The data written to the PRCMD register is dummy data, but use the same register as the general-purpose register used for setting data to the special register (step <3>) when writing to the PRCMD register (step <2>). The same applies to when using a general-purpose register for addressing.

(2) Command register (PRCMD)

The PRCMD register is an 8-bit register used to prevent data from being written to registers that may have a large influence on the system, possibly causing the application system to unexpectedly stop, when an inadvertent program loop occurs. Only the first write operation to the special register following the execution of a previously executed write operation to the PRCMD register, is valid.


As a result, register values can be overwritten only using a preset sequence, preventing invalid write operations.

This register can only be written in 8-bit units (if it is read, an undefined value is returned).

(3) System status register (SYS)

This register is allocated with status flags showing the operating state of the entire system. This register can be read or written in 8-bit or 1-bit units.

The operation conditions of the PRERR flag are described below.

(a) Set conditions (PRERR = 1)

- (i) When a write operation to the special register takes place without write operation being performed to the PRCMD register (when step <3> is performed without performing step <2> as described in 3.4.7 (1) Setting data to special registers).
- et4U.com
- (ii) When a write operation (including bit manipulation instruction) to an on-chip peripheral I/O register other than a special register is performed following write to the PRCMD register (when <3> in 3.4.7 (1) Setting data to special registers is not a special register).

DataSheet4U.com

Remark Regarding the special registers other than the WDTM register (PCC and PSC registers), even if on-chip peripheral I/O register read (except bit manipulation instruction) (internal RAM access, etc.) is performed in between write to the PRCMD register and write to a special register, the PRERR flag is not set and setting data can be written to the special register.

(b) Clear conditions (PRERR = 0)

- (i) When 0 is written to the PRERR flag
- (ii) When system reset is performed
- Cautions 1. If 0 is written to the PRERR bit of the SYS register that is not a special register immediately following write to the PRCMD register, the PRERR bit becomes 0 (write priority).
 - 2. If data is written to the PRCMD register that is not a special register immediately following write to the PRCMD register, the PRERR bit becomes 1.

www.DataSheet4U.com

3.4.8 Cautions

(1) Wait when accessing register

Be sure to set the following register before using the V850ES/KE1+.

• System wait control register (VSWC)

After setting the VSWC register, set the other registers as required.

When using an external bus, set the VSWC register and then set the various pins to the control mode by setting the port-related registers.

(a) System wait control register (VSWC)

The VSWC register controls the bus access wait time for the on-chip peripheral I/O registers. Access to the on-chip peripheral I/O register lasts 3 clocks (during no wait), but in the V850ES/KE1+, waits are required according to the internal system clock frequency. Set the values shown below to the VSWC register according to the internal system clock frequency that is used.

This register can be read or written in 8-bit units (Address: FFFF06EH, After reset: 77H).

Operation Conditions	Internal System Clock Frequency (fc∟κ)	VSWC Register Setting
VDD = 5 V ±10%	$32 \text{ kHz} \le \text{fclk} < 16.6 \text{ MHz}$	00H
	16.6 MHz \leq fclk \leq 20 MHz	01H
VDD = 4.0 to 5.5 V	$32 \text{ kHz} \le \text{fclk} \le 16 \text{ MHz}$	00H
VDD = 2.7 to 4.0 V DataSheet	32 kHz ≤ fcικ ≤ 8 MHz	00H

DataShe

(b) Access to special on-chip peripheral I/O register

This product has two types of internal system buses.

One type is for the CPU bus and the other is for the peripheral bus to interface with low-speed peripheral hardware.

Since the CPU bus clock and peripheral bus clock are asynchronous, if a conflict occurs during access between the CPU and peripheral hardware, illegal data may be passed unexpectedly. Therefore, when accessing peripheral hardware that may cause a conflict, the number of access cycles is changed so that the data is received/passed correctly in the CPU. As a result, the CPU does not shift to the next instruction processing and enters the wait status. When this wait status occurs, the number of execution clocks of the instruction is increased by the number of wait clocks.

Note this with caution when performing real-time processing.

When accessing a special on-chip peripheral I/O register, additional waits may be required further to the waits set by the VSWC register.

The access conditions at that time and the method to calculate the number of waits to be inserted (number of CPU clocks) are shown below.

Peripheral Function	Register Name	Access	k		
Watchdog timer 1 (WDT1)	WDTM1	Write	1 to 5		
	$ \begin{array}{l} < Calculation of number of wa \\ \{(1/f_{X}) \times 2/((2 + m)/f_{CPU})\} + \\ f_{X}: Main clock oscillation \end{array} $	1			
Watchdog timer 2 (WDT2)	WDTM2	Write	3 (fixed)		
16-bit timer/event counter P0 (TMP0)	TP0CCR0, TP0CCR1, TP0CNT	Read	1		
	<calculation number="" of="" wa<br="">{(1/fxx)/((2 + m)/fcPU)} + 1</calculation>	iits>			
	TP0CCR0, TP0CCR1	Write	0 to 2		
	<calculation <math="" number="" of="" wa="">\{(1/fxx) \times 5/((2 + m)/fcPU)\} A wait occurs when per</calculation>	hits>	ame register		
16-bit timer/event counter 01 (TM01)	TMC01	Read-modify-write	1 (fixed) A wait occurs during write		
I ² CO ^{Note}	IICS0	Read	1 (fixed)		
Asynchronous serial interfaces 0, 1 (UART0, UART1)	ASIS0, ASIS1	Read	1 (fixed)		
Real-time output function 0 (RTO0)	RTBL0, RTBH0	Write (when RTPC0.RTPOE0 bit = 0)	1		
A/D converter	ADM, ADS, PFM, PFT	Write	1 to 2		
	ADCR, ADCRH	Read	1 to 2		
	<calculation maximum="" number="" of="" waits=""> ${(1/f_{xx}) \times 2/[(2 + m)/f_{CPU}]} + 1$</calculation>				

DataShe

www.DataSheet4U.com

Number of waits to be added = $(2 + m) \times k$ [clocks]

Note I^2C0 is available only in the μ PD703302Y and 70F3302Y.

- Caution When the CPU operates on the subclock and no clock is input to the X1 pin, do not access a register in which a wait occurs using an access method that causes a wait. If a wait occurs, it can only be released by a reset.
- **Remark** In the calculation for the number of waits:
 - fCPU: CPU clock frequency
 - m: Set value of bits 2 to 0 of the VSWC register
 - fclk: Internal system clock

When fclk < 16.6 MHz: m=0 When fclk \geq 16.6 MHz: m=1

The digits below the decimal point are truncated if less than $(1/f_{CPU})/(2 + m)$ or rounded up if larger than $(1/f_{CPU})/(2 + m)$ when multiplied by $(1/f_{CPU})$.

(2) Restriction on conflict between sld instruction and interrupt request

(a) Description

If a conflict occurs between the decode operation of an instruction in <2> immediately before the sld instruction following an instruction in <1> and an interrupt request before the instruction in <1> is complete, the execution result of the instruction in <1> may not be stored in a register.

Instruction <1>

- Id instruction: Id.b, Id.h, Id.w, Id.bu, Id.hu
- sld instruction: sld.b, sld.h, sld.w, sld.bu, sld.hu
- Multiplication instruction: mul, mulh, mulhi, mulu

Instruction <2>

mov reg1, reg2	not reg1, reg2	satsubr reg1, reg2	satsub reg1, reg2
satadd reg1, reg2	satadd imm5, reg2	or reg1, reg2	xor reg1, reg2
and reg1, reg2	tst reg1, reg2	subr reg1, reg2	sub reg1, reg2
add reg1, reg2	add imm5, reg2	cmp reg1, reg2	cmp imm5, reg2
mulh reg1, reg2	shr imm5, reg2	sar imm5, reg2	shl imm5, reg2

<Example>

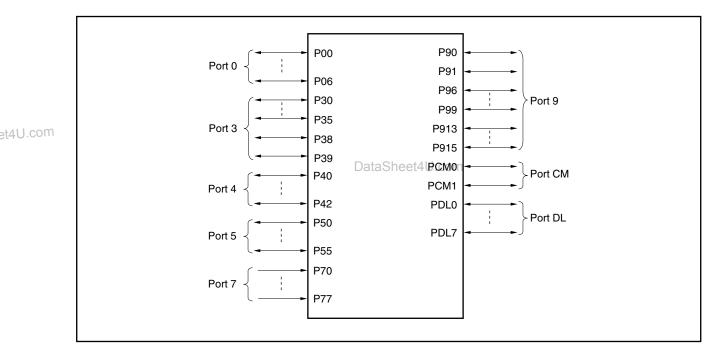
<i> ld.w</i>	[r11], r10 • •	If the decode operation of the mov instruction <ii> immediately before the sld instruction <iii> and an interrupt request conflict before execution of the ld</iii></ii>
<ii> mov</ii>	• r10. r28	instruction <i> is complete, the execution result of instruction <i> may not be stored in a register. DataSheet4U.com</i></i>

<ii> mov r10, r28 <iii> sld.w 0x28, r10

(b) Countermeasure

When executing the sld instruction immediately after instruction <ii>, avoid the above operation using either of the following methods.

- · Insert a nop instruction immediately before the sld instruction.
- Do not use the same register as the sld instruction destination register in the above instruction <ii>executed immediately before the sld instruction.


CHAPTER 4 PORT FUNCTIONS

4.1 Features

- O Input-only ports: 8 pins
- O I/O ports: 43 pins
 - Fixed to N-ch open-drain output: 2
 - Switchable to N-ch open-drain output: 6
- O Input/output can be specified in 1-bit units

4.2 Basic Port Configuration

The V850ES/KE1+ incorporates a total of 51 I/O port pins consisting of ports 0, 3 to 5, 7, 9, CM, and DL (including 8 input-only port pins). The port configuration is shown below.

Power Supply	Corresponding Pins
AV _{REF0}	Port 7
EVDD	RESET, ports 0, 3 to 5, 9, CM, DL

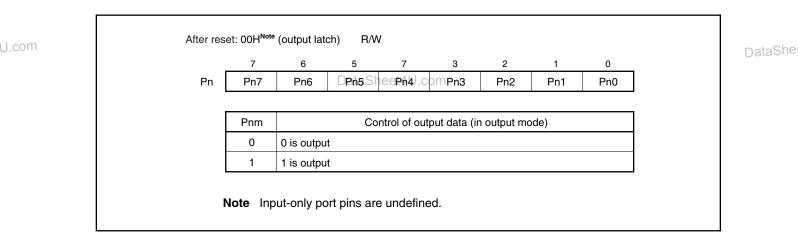

4.3 Port Configuration

Table 4-2. Port Configuration

ltem	Configuration
Control registers	Port n register (Pn: $n = 0, 3 \text{ to } 5, 7, 9, CM, DL$) Port n mode register (PMn: $n = 0, 3 \text{ to } 5, 9, CM, DL$) Port n mode control register (PMCn: $n = 0, 3 \text{ to } 5, 9, CM$) Port n function control register (PFCn: $n = 3, 5, 9$)
	Port n function register (PFn: n = 3, 4, 9) Port 3 function control expansion register (PFCE3) Pull-up resistor option register (PUn: n = 0, 3 to 5, 9, CM, DL)
Ports	Input only: 8 I/O: 43
Pull-up resistors	Software control: 41

(1) Port n register (Pn)

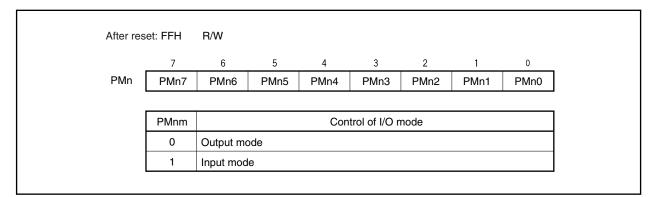
Data I/O with external devices is performed by writing to and reading from the Pn register. The Pn register is configured of a port latch that retains the output data and a circuit that reads the pin status. Each bit of the Pn register corresponds to one pin of port n and can be read or written in 1-bit units.

Writing to and reading from the Pn register is executed as follows independent of the setting of the PMCn register.

Table 4-3. Reading to/Writing from Pn Register

Setting of PMn Register	Writing to Pn Register	Reading from Pn Register
Output mode (PMnm bit = 0)	Write to the output latch ^{Note} . In the port mode (PMCnm bit = 0), the contents of the output latch are output from the pin.	The value of the output latch is read.
Input mode (PMnm bit = 1)	Write to the output latch. The status of the pin is not affected ^{Note} .	The pin status is read.

Note The value written to the output latch is retained until a value is next written to the output latch.


DataSheet4U.com

www.DataSheet4U.com

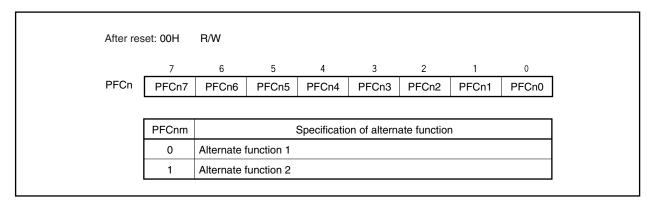
(2) Port n mode register (PMn)

PMn specifies the input mode/output mode of the port.

Each bit of the PMn register corresponds to one pin of port n and can be specified in 1-bit units.

(3) Port n mode control register (PMCn)

PMCn specifies the port mode/alternate function.

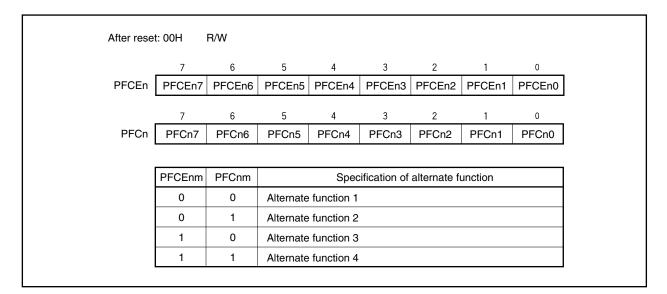

Each bit of the PMCn register corresponds to one pin of port n and can be specified in 1-bit units.

	After reset: 00H R/W								
		7	6	5	4	3	2	1	0
4U.com	PMCn	PMCn7	PMCn6	PMCn5	PMCn4	PMCn3	PMCn2	PMCn1	PMCn0
		PMCnm	Specification of operation mode						
		0	Port mode						
		1	Alternate function mode						

(4) Port n function control register (PFCn)

PFCn is a register that specifies the alternate function to be used when one pin has two or more alternate functions.

Each bit of the PFCn register corresponds to one pin of port n and can be specified in 1-bit units.

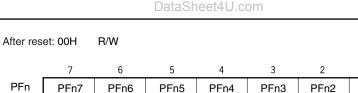


DataSheet4U.com

(5) Port n function control expansion register (PFCEn)

PFCEn is a register that specifies the alternate function to be used when one pin has three or more alternate functions.

Each bit of the PFCEn register corresponds to one pin of port n and can be specified in 1-bit units.


(6) Port n function register (PFn)

PFn

PFn is a register that specifies normal output/N-ch open-drain output.

DataShe

Each bit of the PFn register corresponds to one pin of port n and can be specified in 1-bit units.

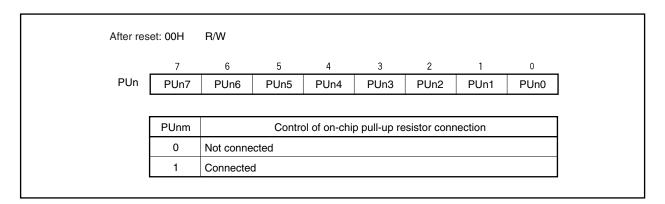
PFnm ^{Note}	Control of normal output/N-ch open-drain output
0	Normal output (CMOS output)
1	N-ch open-drain output

1

PFn1

0

PFn0

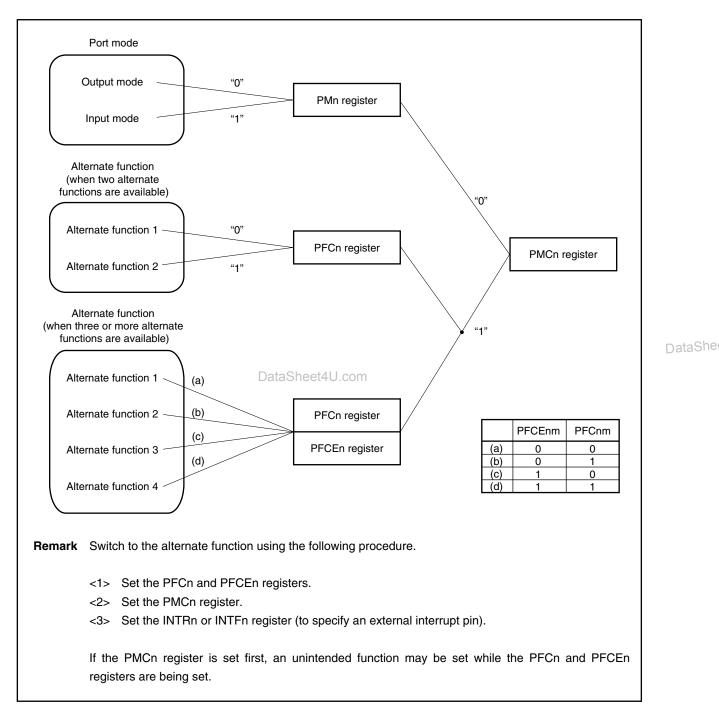

Note The PFnm bit is valid only when the PMn.PMnm bit is 0 (output mode) regardless of the setting of the PMCn register. When the PMnm bit is 1 (input mode), the set value in the PFn register is invalid.

Example <1> When the value of the PFn register is valid PFnm bit = 1 ... N-ch open-drain output is specified. PMnm bit = 0 ... Output mode is specified. PMCnm bit = 0 or 1 <2> When the value of the PFn register is invalid PFnm bit = 0 ... N-ch open-drain output is specified. PMnm bit = 1 ... Input mode is specified. PMCnm bit = 0 or 1

et4U.com

(7) Pull-up resistor option register (PUn)

PUn is a register that specifies the connection of an on-chip pull-up resistor. Each bit of the PUn register corresponds to one pin of port n and can be specified in 1-bit units.



et4U.com

DataShe

(8) Port settings

Set the ports as follows.

et4U.com

4.3.1 Port 0

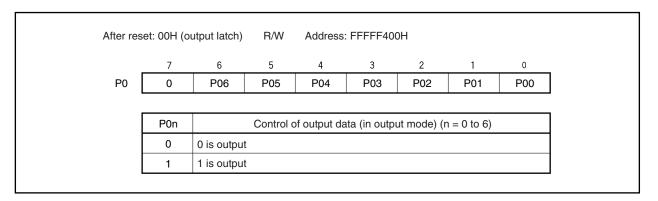
Port 0 is a 7-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 0 includes the following alternate functions.

Table 4-4. Alternate-Function Pins of Port 0

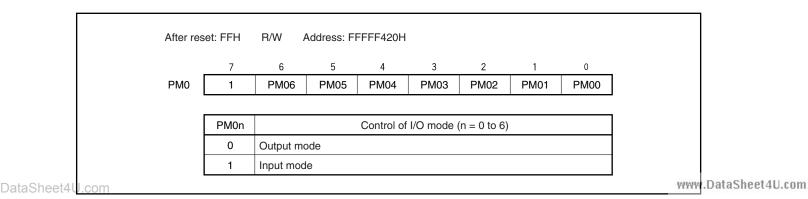
Pin No.	Pin Name	Alternate Function	I/O	PULL ^{Note 1}	Remark	Block Type
12	P00 ^{Note 2}	ТОН0	Output	Yes	-	D0-U
13	P01	TOH1	Output			D0-U
14	P02	NMI	Input		Analog noise elimination	D1-SUIL
15	P03	INTP0	Input			D1-SUIL
16	P04	INTP1	Input			D1-SUIL
17	P05	INTP2	Input			D1-SUIL
18	P06	INTP3	Input		Analog/digital noise elimination	D1-SUIL

Notes 1. Software pull-up function

2. Only the P00 pin outputs a low level after reset (other port pins are in input mode). Therefore, the low-level output from the P00 pin after reset can be used as a dummy reset signal from the CPU.


Caution P02 to P06 have hysteresis characteristics when the alternate function is input, but not in the port mode.

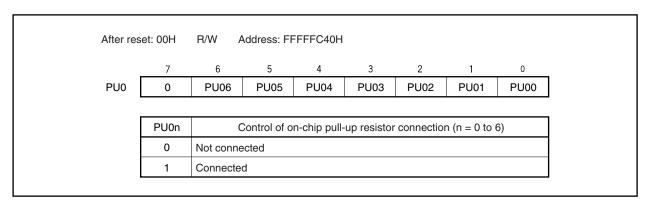
DataShe


(1) Port 0 register (P0)

et4U.com

DataSheet4U.com

(2) Port 0 mode register (PM0)



76

	7	6	5	4	3	2	1	0	
PMC0	0	PMC06	PMC05	PMC04	PMC03	PMC02	PMC01	PMC00	
	PMC06		Cra						
		1/0	Spe	ecification o	or PU6 pin c	peration r	lode		
	0	I/O port							
	1	INTP3 inp	ul						
	PMC05		Spe	ecification o	of P05 pin c	peration m	node		
	0	I/O port							
	1	INTP2 inp	out						
	PMC04		Spe	ecification o	of P04 pin c	peration m	node		
	0	I/O port							
	1	INTP1 inp	out						
	PMC03		Spe	ecification of	of P03 pin c	peration m	node		
	0	I/O port							
	1	INTP0 inp	out						
	PMC02		Spe	ecification o	of P02 pin c	peration m	node		
	0	I/O port							
	1	NMI input	DataSh	eet4U.co	om				
	PMC01		Spe	ecification o	of P01 pin c	peration m	node		
	0	I/O port							
	1	TOH1 out	put						
	PMC00		Spe	ecification o	of P00 pin c	peration m	node		
	0	I/O port							
	1	TOH0 out	nut						

(3) Port 0 mode control register (PMC0)

(4) Pull-up resistor option register 0 (PU0)

DataSheet4U.com

77

4.3.2 Port 3

Port 3 is an 8-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 3 includes the following alternate functions.

Table 4-5. Alternate-Function Pins of Port 3

Pin No.	Pin Name	Alternate Function	I/O	PULL ^{Note 1}	Remark	Block Type
22	P30	TXD0	Output	Yes	-	D-U
23	P31	RXD0/INTP7	Input			D1-SUIHL
24	P32	ASCK0/ADTRG/TO01	I/O			E10-SUL
25	P33	TIP00/TOP00	I/O			Gxx10-SUL
26	P34	TIP01/TOP01	I/O			Gxx10-SUL
27	P35	TI010/TO01	I/O			E10-SUL
55	P38	SDA0 ^{Note 3}	I/O	No ^{Note 2}	N-ch open-drain output	D2-SNMUFH
56	P39	SCL0 ^{Note 3}	I/O			D2-SNMUFH

Notes 1. Software pull-up function

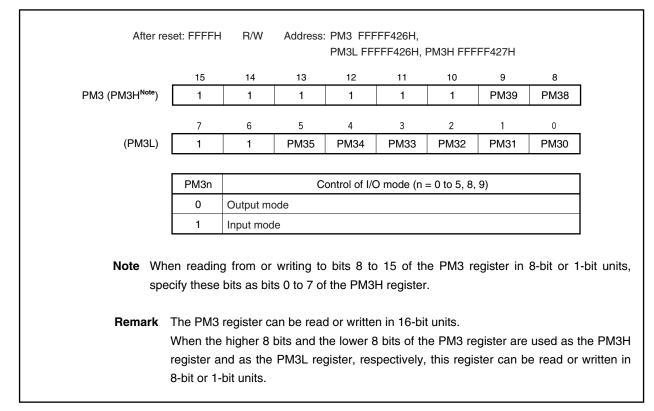
2. An on-chip pull-up resistor can be provided by a mask option (only in the μ PD703302, 703302Y).

3. Only in the µPD703302Y, 70F3302Y

Caution P31 to P35, P38, and P39 have hysteresis characteristics when the alternate function is input, but not in the port mode.

et4U.com

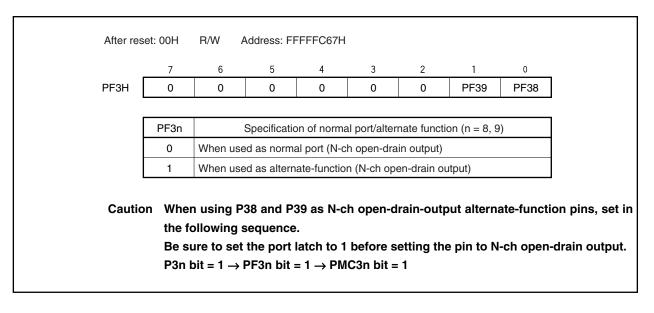
DataSheet4U.com

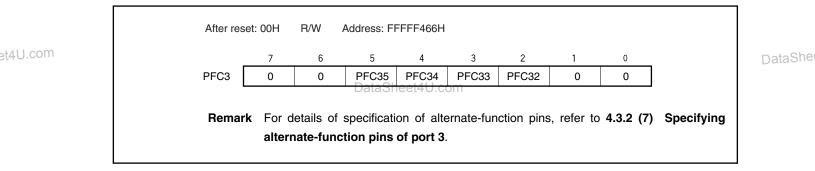

(1) Port 3 register (P3)

After re	set: 00H (c	output latch)	R/W	Address	P3 FFFF	,		
					P3L FFF	FF406H, P	3H FFFFF	407H
	15	14	13	12	11	10	9	8
P3 (P3H ^{Note})	0	0	0	0	0	0	P39	P38
	7	6	5	4	3	2	1	0
(P3L)	0	0	P35	P34	P33	P32	P31	P30
		1						
	P3n	(Control of a	output data	(in output	mode) (n =	= 0 to 5, 8, 9	9)
	0	0 is outpu	t					
	1	1 is output	t					
	becify thes The P3	ing from c se bits as b register ca	its 0 to 7 In be read	of the P3I d or writter	H register n in 16-bit	t units.	-	
		er, when th	-			er 8 bits o spectively		-

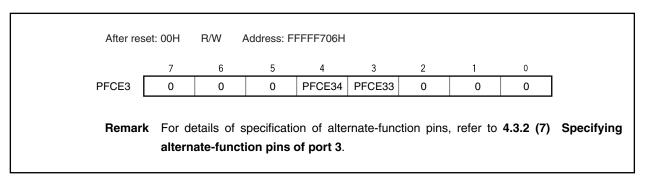
et4U.com

(2) Port 3 mode register (PM3)


DataSheet4U.com


(3) Port 3 mode control register (PMC3)

PMC3 (PMC3H ^{Note 1}) (PMC3L)	15 0 7 0 PMC39 0 1 PMC38 0 1	14 0 6 0 I/O port SCL0 I/O)	12 0 4 PMC34 ecification o	11 0 3 PMC33 of P39 pin c	10 0 2 PMC32	1 PMC31	8 PMC38 ^{Note 2} 0 PMC30]		
· · · · ·	7 0 PMC39 0 1 PMC38 0	6 0 I/O port SCL0 I/O	5 PMC35 Spe	4 PMC34	3 PMC33	2 PMC32	1 PMC31	0			
(PMC3L)	0 PMC39 0 1 PMC38 0	0 I/O port SCL0 I/O	PMC35 Spe	PMC34	PMC33	PMC32]		
(PMC3L)	PMC39 0 1 PMC38 0	I/O port SCL0 I/O	PMC35 Spe			PMC32		PMC30			
	0 1 PMC38 0	SCL0 I/O)	ecification	of P39 pin c	operation r	node		1		
	0 1 PMC38 0	SCL0 I/O)			-1			4		
	PMC38 0										
	0	I/O port	Sne								
		I/O port	She	ecification	of P38 pin c	operation r	mode		1		
	1										
		SDA0 I/O)								
	PMC35		Spr	ecification	of P35 pin c	operation r	mode				
	0	I/O port									
	1	TI010 inp	out/TO01 ou	ıtput					l		
	PMC34		Sp	ecification	of P34 pin c	operation r	node				
	0	I/O port									
	1	TIP01 inp	ut/TOP01	output					1		DataShe
	PMC33		Specification of P33 pin operation mode								
		•									
				•	(D00 ala] 		
		1/O port	Spe	ecification of	of P32 pin c	operation r	node				
	1	-	nput/ADTR(G input/TO	01 output						
			•			neration i	mode	<u> </u>	T I		
	0	I/O port		5011041.011	///01 p	poration					
	1	•	out/INTP7 ir	nput ^{Note 3}							
	PMC30		Sp	ecification	of P30 pin (operation r	mode		1		
	0	I/O port									
	1	TXD0 out	iput								
spu 2. Va 3. Th RX IN sto Remark Th Wh	ecify these alid only in le INTP7 KD0 pin, TF3.INTF3 op the UAF he PMC3 m hen the h	The probability of the PMC3H register. In the μ PD703302Y and 70F3302Y. In all other products, set this bit to 0. The and RXD0 pins are alternate-function pins. When using the pin as the the disable edge detection of the alternate-function INTP7 pin (clear the F31 and INTR3.INTR31 bits to 0). When using the pin as the INTP7 pin ART0 receive operation (clear the ASIM0.RXE0 bit to 0). Fregister can be read or written in 16-bit units.									
	spo 2. Va 3. The RX INT sto Remark The Wh PM	0 1 PMC33 0 1 PMC32 0 1 PMC31 0 1 PMC31 0 1 PMC31 0 1 PMC30 0 1 PMC31 Remark The PMC3 r When the h PMC3H regit	0 I/O port 1 TIP01 inp PMC33 0 0 I/O port 1 TIP00 inp PMC32 0 0 I/O port 1 ASCK0 in PMC31 0 0 I/O port 1 ASCK0 in PMC31 0 0 I/O port 1 RXD0 inp PMC30 0 0 I/O port 1 TXD0 out Notes 1. When reading from o specify these bits as 2. Valid only in the µPD 3. The INTP7 and RXE RXD0 pin, disable o INTF3.INTF31 and II stop the UART0 rece Remark The PMC3 register ca When the higher 8 to PMC3H register and	0 I/O port 1 TIP01 input/TOP01 of PMC33 DataS 0 I/O port 1 TIP00 input/TOP00 of PMC32 Spe 0 I/O port 1 TIP00 input/TOP00 of PMC32 Spe 0 I/O port 1 ASCK0 input/ADTRO PMC31 Spe 0 I/O port 1 RXD0 input/INTP7 in PMC30 Spe 0 I/O port 1 RXD0 input/INTP7 in PMC30 Spe 0 I/O port 1 TXD0 output Notes 1 When reading from or writing to specify these bits as bits 0 to 7 2. Valid only in the µPD703302Y 3 The INTP7 and RXD0 pins a RXD0 pin, disable edge det INTF3.INTF31 and INTR3.INT stop the UART0 receive opera Remark The PMC3 register can be rea When the higher 8 bits and to the proceive opera	0 I/O port 1 TIP01 input/TOP01 output PMC33 DataSheet1U.c. 0 I/O port 1 TIP00 input/TOP00 output PMC32 Specification of 0 I/O port 1 TIP00 input/TOP00 output PMC32 Specification of 0 I/O port 1 ASCK0 input/ADTRG input/TOO PMC31 Specification of 0 I/O port 1 RXD0 input/INTP7 input ^{Note 3} PMC30 Specification of 0 I/O port 1 RXD0 output/INTP7 input ^{Note 3} PMC30 Specification of 0 I/O port 1 TXD0 output Notes 1. When reading from or writing to bits 8 to specify these bits as bits 0 to 7 of the PI 2. Valid only in the µPD703302Y and 70F3 3. The INTP7 and RXD0 pins are alterna RXD0 pin, disable edge detection of INTF3.INTF31 and INTR3.INTR31 bits stop the UART0 receive operation (clea Remark The PMC3 register can be read or writte When the higher 8 bits and the lower PMC3H register and as the PMC3L reg	0 I/O port 1 TIP01 input/TOP01 output PMC33 Specification of P33 pin of Data SheetH U. Contin 0 I/O port 1 TIP00 input/TOP00 output PMC32 Specification of P32 pin of O 0 I/O port 1 ASCK0 input/ADTRG input/TO01 output PMC31 Specification of P31 pin of O 0 I/O port 1 RXD0 input/INTP7 input ^{Note 3} PMC30 Specification of P30 pin of O 0 I/O port 1 TXD0 output Notes Notes for the PMC31 Valid only in the µPD703302Y and 70F3302Y. If The INTP7 and RXD0 pins are alternate-function RXD0 pin, disable edge detection of the alternate-function RXD0 pin disable edge detection of the alternate-function RXD0 pin disable edge detection of the alternate-function RXD0 pin disable edge detection of the alternate-function RXD0	0 I/O port 1 TIP01 input/TOP01 output PMC33 DataStricture of P33 pin operation of 0 0 I/O port 1 TIP00 input/TOP00 output PMC32 Specification of P32 pin operation of 0 1 TIP00 input/TOP00 output PMC32 Specification of P32 pin operation of 0 1 ASCK0 input/ADTRG input/TO01 output PMC31 Specification of P31 pin operation of 0 1 RXD0 input/INTP7 input ^{Note 3} PMC30 Specification of P30 pin operation of 0 1 RXD0 output Notes 1 When reading from or writing to bits 8 to 15 of the PMC3 specify these bits as bits 0 to 7 of the PMC3H register. 2. Valid only in the µPD703302Y and 70F3302Y. In all othe 3. The INTP7 and RXD0 pins are alternate-function pins. RXD0 pin, disable edge detection of the alternate-function pins. RXD0 pin, disable edge detection of the alternate-function pins. REMark The PMC3 register can be read or written in 16-bit units. When the higher 8 bits and the lower 8 bits of the PM PMC3H register and as the PMC3L register, respectively	0 I/O port 1 TIP01 input/TOP01 output PMC33 DataSpecification of P33 pin operation mode 0 I/O port 1 TIP00 input/TOP00 output PMC32 Specification of P32 pin operation mode 0 I/O port 1 TIP00 input/TOP00 output PMC32 Specification of P32 pin operation mode 0 I/O port 1 ASCK0 input/ADTRG input/TO01 output PMC31 Specification of P31 pin operation mode 0 I/O port 1 RXD0 input/INTP7 input ^{Note 3} PMC30 Specification of P30 pin operation mode 0 I/O port 1 TXD0 output Notes Nothen reading from or writing to bits 8 to 15 of the PMC3 register in specify these bits as bits 0 to 7 of the PMC3H register. 2. Valid only in the µPD703302Y and 70F3302Y. In all other products 3. The INTP7 and RXD0 pins are alternate-function pins. When u RXD0 pin, disable edge detection of the alternate-function INI INTF3.INTF31 and INTR3.INTR31 bits to 0). When using the pin stop the UART0 receive operation (clear the ASIM0.RXE0 bit to 0). Remark The PMC3 register can be read or written in 16-bit units. When the higher 8 bits and the low	0 I/O port 1 TIP01 input/TOP01 output PMC33	0 I/O port 1 TIP01 input/TOP01 output PMC33	0 I/O port 1 TIP01 input/TOP01 output Datastructure Datastructure 0 I/O port 1 TIP00 input/TOP00 output PMC32 Specification of P32 pin operation mode 0 I/O port 1 TIP00 input/TOP00 output PMC32 Specification of P32 pin operation mode 0 I/O port 1 ASCK0 input/ADTRG input/TO01 output PMC31 Specification of P31 pin operation mode 0 I/O port 1 RXD0 input/INTP7 input ^{Notes 3} PMC30 Specification of P30 pin operation mode 0 I/O port 1 TXD0 output Notes 1. When reading from or writing to bits 8 to 15 of the PMC3 register in 8-bit or 1-bit units, specify these bits as bits 0 to 7 of the PMC3H register. 2. Valid only in the µPD703302Y and 70F3302Y. In all other products, set this bit to 0. 3. The INTP7 and RXD0 pins are alternate-function pins. When using the pin as the RXD0 pin, disable edge detection of the alternate-function INTP7 pin (clear the INTF3.INTF31 and INTR3.INTR31 bits to 0). When using the pin as the INTP7 pin, stop the UART0 receive operation (clear the ASIM0.RXE0 bit to 0). Remark The PMC3 register can be read or written in 16-bit units. When the higher 8 bits and the lower 8 bits of the PMC3 register are used as the PMC3H register


(4) Port 3 function register H (PF3H)

(5) Port 3 function control register (PFC3)

(6) Port 3 function control expansion register (PFCE3)

(7) Specifying alternate-function pins of port 3

PFC35	Specification of Alternate-Function Pin of P35 Pin
0	TI010 input
1	TO01 output

PFCE34	PFC34	Specification of Alternate-Function Pin of P34 Pin
0	0	Setting prohibited
0	1	Setting prohibited
1	0	TIP01 input
1	1	TOP01 output

PFCE33	PFC33	Specification of Alternate-Function Pin of P33 Pin
0	0	Setting prohibited
0	1	Setting prohibited
1	0	TIP00 input
1	1	TOP00 output

PFC32	Specification of Alternate-Function Pin of P32 Pin
0	ASCK0/ADTRG ^{№0®} input
1	TO01 output

et4U.com

- **Note** The ASCK0 and ADTRG pins are alternate function pink. When using the pin as the ASCK0 pin, disable the trigger input of the alternate-function ADTRG pin (clear the ADS.TRG bit to 0 or set the ADS.ADTMD bit to 1). When using the pin as the ADTRG pin, do not set the UART0 operation clock to external input (set the CKSR0.TPS03 to CKSR0.TPS00 bits to other than 1011).
 - Caution When the P3n pin is specified as an alternate function by the PMC3.PMC3n bit with the PFC3n and PFCE3n bits maintaining the initial value (0), output becomes undefined. Therefore, to specify the P3n pin as an alternate function, set the PFC3n and PFCE3n bits to 1 first and then set the PMC3n bit to 1 (n = 3, 4).

(8) Pull-up resistor option register 3 (PU3)

After res	et: 00H	R/W	Address: FF	FFFC46H	3	2	1	0	
PU3	0	0	PU35	PU34	PU33	PU32	PU31	PU30	
		1							' I
	PU3n		Control of o	n-chip pull-	up resistor	connectior	n (n = 0 to \$	5)	
	0	Not conn	ected						
	1	Connecte	ed						
Cautio			ull-up res PD703302		-	ided for I	P38 and	P39 by a	mask option

et4U.com

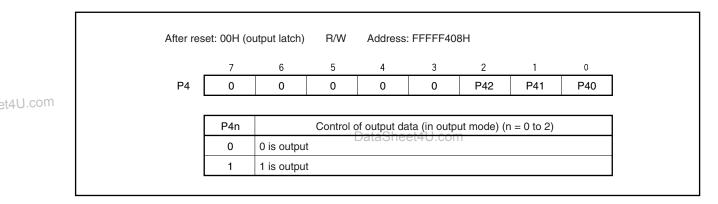
DataSheet4U.com

DataSheet4U.com

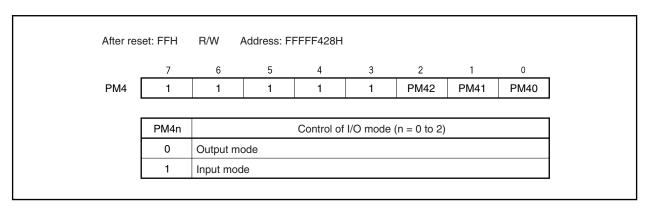
www.DataSheet4U.com

4.3.3 Port 4

Port 4 is a 3-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 4 includes the following alternate functions.

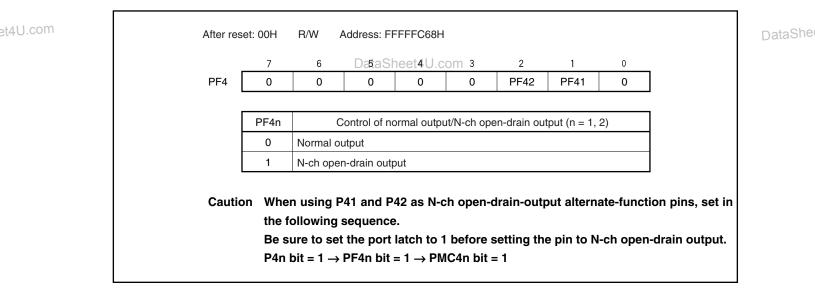

Table 4-6. Alternate-Function Pins of Port 4

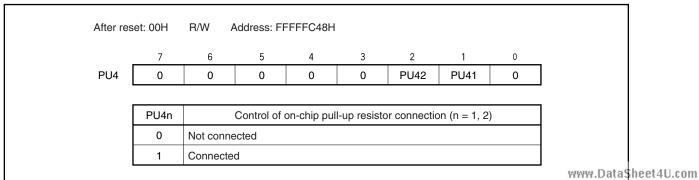
Pin No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
19	P40	SI00	Input	Yes	_	D1-SUL
20	P41	SO00	Output		N-ch open-drain output can	D0-UF
21	P42	SCK00	I/O]	be selected.	D2-SUFL


Note Software pull-up function

Caution P40 and P42 have hysteresis characteristics when the alternate function is input, but not in the port mode.

(1) Port 4 register (P4)


(2) Port 4 mode register (PM4)


After res	set: 00H	R/W	Address: FI	FFF448H				
	7	6	5	4	3	2	1	0
PMC4	0	0	0	0	0	PMC42	PMC41	PMC40
	PMC42		Spe	ecification o	f P42 pin	operation m	iode	
	0	I/O port						
	1	SCK00 I	/0					
	PMC41		Spe	ecification o	f P41 pin	operation m	iode	
	0	I/O port						
	1	SO00 οι	ıtput					
	PMC40		Spe	ecification o	f P40 pin	operation m	ode	
	0	I/O port						
	1	SI00 inp	ut					

(3) Port 4 mode control register (PMC4)

(4) Port 4 function register (PF4)

(5) Pull-up resistor option register 4 (PU4)

DataSheet4U.com

4.3.4 Port 5

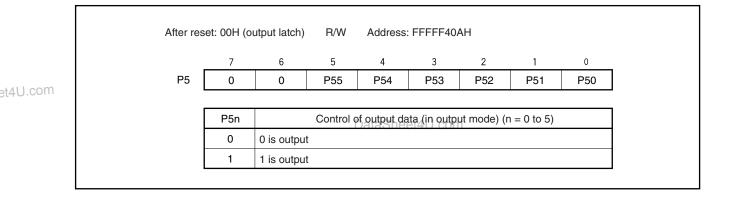
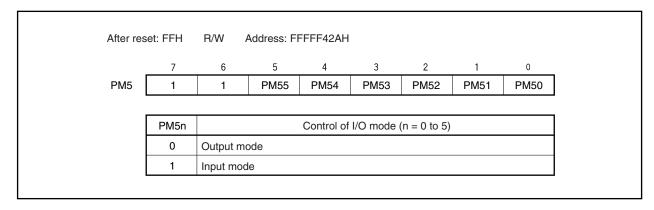

Port 5 is a 6-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 5 includes the following alternate functions.

Table 4-7. Alternate-Function Pins of Port 5


Pin No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
28	P50	TI011/RTP00/KR0	I/O	Yes	-	E10-SULT
29	P51	TI50/RTP01/KR1	I/O			E10-SULT
30	P52	TO50/RTP02/KR2	I/O			E00-SUT
31	P53	RTP03/KR3	I/O			Ex0-SUT
34	P54	RTP04/KR4	I/O			Ex0-SUT
35	P55	RTP05/KR5	I/O			Ex0-SUT

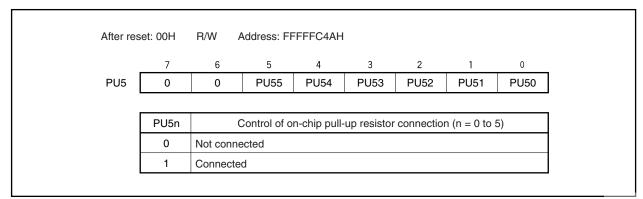
Note Software pull-up function

(1) Port 5 register (P5)

(2) Port 5 mode register (PM5)

DataSheet4U.com

	7	6	5	4	3	2	1	0	
PMC5	0	0	PMC55	PMC54	PMC53	PMC52	PMC51	PMC50	
	PMC55			ecification c	of P55 pin o	peration m	node		
	0	I/O port/	KR5 input						
	1	RTP05	output						
	PMC54		Spe	ecification c	of P54 pin o	peration m	node		
	0	I/O port/	KR4 input						
	1	RTP04 of	output						
	PMC53		Spe	ecification o	of P53 pin c	peration m	node		
	0	I/O port/	KR3 input		-				
	1	RTP03 (output						
	PMC52		Spe	ecification c	of P52 pin o	peration m	node		
	0	I/O port/	KR2 input						
	1		utput/RTP02	output					
	PMC51		Spe	ecification c	of P51 pin c	peration m	node		
	0	I/O port/	KR1 input						
	1	TI50 inp	ut/RTP01Su	tput4U.co	om				
	PMC50		Spe	ecification c	of P50 pin c	peration m	node		
	0	I/O port/	KR0 input						
	1	TI011 in	put/RTP00 c	utout					


(3) Port 5 mode control register (PMC5)

(4) Port 5 function control register (PFC5)

Caution When the P5n pin is specified as an alternate function by the PMC5.PMC5n bit with the PFC5n bit maintaining the initial value (0), output becomes undefined. Therefore, to specify the P5n pin as alternate function 2, set the PFC5n bit to 1 first and then set the PMC5n bit to 1 (n = 3 to 5).

	7	6	5	4	3	2	1	0
PFC5	0	0	PFC55	PFC54	PFC53	PFC52	PFC51	PFC50
	PFC55		Specific	cation of all	ternate-fun	ction pin of	P55 pin	
	1	RTP05 out	put					
	PFC54		Specifi	cation of all	ternate-fun	ction nin of	P54 pin	
	1	RTP04 out					10101	
	PFC53			cation of all	ternate-fun	ction pin of	P53 pin	
	1	RTP03 out	put					
	PFC52		Specifi	cation of all	ternate-fun	ction pin of	P52 pin	
	0	TO50 outp	ut	DataSha	et4U.con	0		
	1	RTP02 out	put	Jalaonet	2140.001			
	PFC51		Specifi	cation of all	ternate-fun	ction pin of	P51 pin	
	0	TI50 input						
	1	RTP01 out	put					
	PFC50	TIO11		cation of all	ternate-fun	ction pin of	P50 pin	
	0	TI011 input						
	1	RTP00 out	րու					

(5) Pull-up resistor option register 5 (PU5)

4.3.5 Port 7

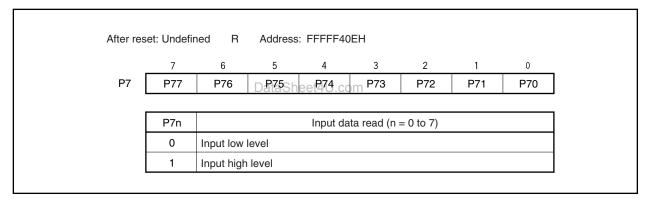

Port 7 is an 8-bit input-only port for which all the pins are fixed to input. Port 7 includes the following alternate functions.

Table 4-8. Alternate-Function Pins of Port 7

Pin No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
64	P70	ANIO	Input	No	-	A-A
63	P71	ANI1	Input			A-A
62	P72	ANI2	Input			A-A
61	P73	ANI3	Input			A-A
60	P74	ANI4	Input			A-A
59	P75	ANI5	Input			A-A
58	P76	ANI6	Input			A-A
57	P77	ANI7	Input			A-A

Note Software pull-up function

(1) Port 7 register (P7)

DataShee

et4U.com

4.3.6 Port 9

Port 9 is a 9-bit I/O port for which I/O settings can be controlled in 1-bit units. Port 9 includes the following alternate functions.

Pin No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
36	P90	TXD1/KR6	I/O	Yes	-	Ex0-SUT
37	P91	RXD1/KR7	Input			Ex1-SUHT
38	P96	TI51/TO51	I/O			Ex0-SUT
39	P97	SI01	Input			Ex1-SUL
40	P98	SO01	Output		N-ch open-drain output can	Ex0-UF
41	P99	SCK01	I/O		be specified.	Ex2-SUFL
42	P913	INTP4	Input		Analog noise elimination	Ex1-SUILZ
43	P914	INTP5	Input			Ex1-SUILZ
44	P915	INTP6	Input			Ex1-SUILZ

Table 4-9. Alternate-Function Pins of Port 9

Note Software pull-up function

Caution P97, P99, and P913 to P915 have hysteresis characteristics when the alternate function is input, but not in the port mode.

et4U.com

DataShe

(1) Port 9 register (P9)

After res	et: 00H (o	utput latch)	R/W	Address	P9 FFFF	=412H,			
					P9L FFFF	F412H, P	9H FFFFF4	413H	
	15	14	13	12	11	10	9	8	
P9 (P9H ^{Note})	P915	P914	P913	0	0	0	P99	P98	
	7	6	5	4	3	2	1	0	
(P9L)	P97	P96	0	0	0	0	P91	P90	
		1							
	P9n	Contr	ol of outpu	t data (in o	utput mode	e) (n = 0, 1	, 6 to 9, 13	to 15)	
	0	0 is output	t						
	1	1 is output	t						
		ing from o se bits as b	-				egister in	8-bit or 1	-bit unit
Remark	The P9	register ca	n be read	l or writter	n in 16-bit	units.			
	Howeve	er, when th	e higher	8 bits and	the lowe	er 8 bits o	of the P9 i	register are	e used a
	the P9⊦	I register a	nd as the	P9L regi	ster, resp	ectively, t	these regi	sters can b	be read o
		n 8-bit or 1							

et4U.com

(2) Port 9 mode register (PM9)

DataSheet4U.com After reset: FFFFH Address: PM9 FFFFF432H, R/W PM9L FFFFF432H, PM9H FFFFF433H 15 14 13 12 11 10 9 8 PM9 (PM9H^{Note}) PM915 PM914 PM913 1 1 1 PM99 PM98 7 5 2 6 4 3 1 0 (PM9L) PM97 PM96 1 1 1 1 PM91 PM90 PM9n Control of I/O mode (n = 0, 1, 6 to 9, 13 to 15) 0 Output mode 1 Input mode Note When reading from or writing to bits 8 to 15 of the PM9 register in 8-bit or 1-bit units, specify these bits as bits 0 to 7 of the PM9H register. **Remark** The PM9 register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the PM9 register are used as the PM9H register and as the PM9L register, respectively, this register can be read or written in 8-bit or 1-bit units.

(3) Port 9 mode control register (PMC9)

	After re	set: 0000H	R/W	Address:	PMC9 F	FFFF452H,						
					PMC9L	FFFFF452H	, PMC9H	FFFFF453H				
		15	14	13	12	11	10	9	8			
	PMC9 (PMC9H ^{Note})	PMC915	PMC914	PMC913	0	0	0	PMC99	PMC98			
		7	6	5	4	3	2	1	0			
	(PMC9L)	PMC97	PMC96	0	0	0	0	PMC91	PMC90			
		PMC915		Sne	cification	of P915 pin	operation	mode				
		0	I/O port	Oper	cincation		operation	mode				
		1	INTP6 inp	ut								
		PMC914		Spee	cification	of P914 pin	operation	mode				
		0	I/O port									
		1	INTP5 inp	ut								
		PMC913		Spee	cification	of P913 pin	operation	mode				
		0	I/O port									
		1	INTP4 inp	ut								
		PMC99		Spe	cificatior	of P99 pin	operation	mode				
et4U.com		0	I/O port									
340.0011		1	SCK01 I/C)								DataS
		PMC98		Datsp	cification	of P98 pin	operation	mode				
		0	I/O port									
		1	SO01 outp	out								
		PMC97		Spe	ecificatior	n of P97 pin	operation	mode				
		0	I/O port									
		1	SI01 input	t								
		PMC96		Spe	ecificatior	n of P96 pin	operation	mode				
		0	I/O port/TI	51 input								
		1	TO51 outp	out								
		PMC91		Spe	ecificatior	n of P91 pin	operation	mode				
		0	I/O port/K	R7 input								
		1	RXD1 inp	ut								
		PMC90		Spe	ecificatior	n of P90 pin	operation	mode				
		0	I/O port/K	R6 input								
		1	TXD1 out	out								
	Note When specify	-		-		15 of the C9H registe		register in	8-bit or 1-t	oit units,		
	Remark Th		agistor as	n ha raa		ton in 164	nit unito					
			-					the PMC	9 register a	are used		
									hese regis			
		read or w					, 100					
DataSheet4U.co	m									WW	w.DataSh	eet4U.co

(4) Port 9 function register H (PF9H)

DataSheet4U.com

7 6 5 4 3 2	1 0
	-99 PF98
PF9n Control of normal output/N-ch open-drain output (n = 8, 9)
0 Normal output	
1 N-ch open-drain output	

et4U.com

DataShe

(5) Port 9 function control register (PFC9)

Caution When port 9 is specified as an alternate function by the PMC9.PMC9n bit with the PFC9n bit maintaining the initial value (0), output becomes undefined. Therefore, to specify port 9 as alternate function 2, set the PFC9n bit to 1 first and then set the PMC9n bit to 1 (n = 0, 1, 6 to 9, 13 to 15).

				PFC9L FF	FFF472H,	PFC9H F	FFFF473H		
	15	14	13	12	11	10	9	8	
PFC9 (PFC9H ^{Note})	PFC915	PFC914	PFC913	0	0	0	PFC99	PFC98	
	7	6	5	4	3	2	1	0	
(PFC9L)	PFC97	PFC96	0	0	0	0	PFC91	PFC90	
	PFC915		Specifica	tion of alte	ernate-func	tion pin o	f P915 pin		
	1	INTP6 inp	ut						
	PFC914		Specifica	tion of alte	ernate-func	tion pin o	f P914 pin		
	1	INTP5 inp	ut						
	PFC913		Specifica	tion of alte	ernate-func	tion pin o	f P913 pin		
	1	INTP4 inp	ut						
	PFC99		DataS Specific	heet4U. ation of alt	com ternate-fund	ction pin d	of P99 pin		
	1	SCK01 I/C	-			•			
	PFC98		Specific	ation of alt	ernate-fund	ction pin d	of P98 pin		
	1	SO01 out	out						
	PFC97		Specific	ation of alt	ternate-fun	ction pin d	of P97 pin		
	1	SI01 input	t						
	PFC96		Specific	ation of alt	ternate-fun	ction pin o	of P96 pin		
	1	TO51 outp	out						
	PFC91		Specific	ation of alt	ternate-fun	ction pin o	of P91 pin		
	1	RXD1 inp	ut						
	PFC90		Specific	ation of alt	ternate-fun	ction pin o	of P90 pin		
	1	TXD1 out	out						

(6) Pull-up resistor option register 9 (PU9)

7 6 5 4 3 2 1 0 (PU9L) PU97 PU96 0 0 0 0 PU91 PU90 PU9n Control of on-chip pull-up resistor connection (n = 0, 1, 6 to 9, 13 to 15) 0 Not connected 1 Connected 1 Connected 1 Connected 1 Connected	PU9 (PU9H ^{Note}) PU915 PU914 PU913 0 0 0 PU99 PU98 (PU9L) 7 6 5 4 3 2 1 0 (PU9L) PU97 PU96 0 0 0 0 PU91 PU90 PU97 PU96 0 0 0 0 PU91 PU90 PU9n Control of on-chip pull-up resistor connection (n = 0, 1, 6 to 9, 13 to 15) 0 Not connected Velocity					PU9L FFF	FFC52H, F	PU9H FFF	FFC53H	
7 6 5 4 3 2 1 0 PU91 PU97 PU96 0 0 0 0 PU91 PU90 PU9n Control of on-chip pull-up resistor connection (n = 0, 1, 6 to 9, 13 to 15) 0 Not connected 1 Connected 1 Connected 1 Connected 1 Connected 1	7 6 5 4 3 2 1 0 (PU9L) PU97 PU96 0 0 0 0 PU91 PU90 PU9n Control of on-chip pull-up resistor connection (n = 0, 1, 6 to 9, 13 to 15) 0 Not connected 1 Connected 1 Connected 0 0 15 0 0 15 Note When reading from or writing to bits 8 to 15 of the PU9 register in 8-bit or 15 15 15		15	14	13	12	11	10	9	8
PU9L PU97 PU96 0 0 0 PU91 PU90 PU9n Control of on-chip pull-up resistor connection (n = 0, 1, 6 to 9, 13 to 15) 0 Not connected 1 Connected	PU91 PU96 0 0 0 0 PU91 PU90 PU9n Control of on-chip pull-up resistor connection (n = 0, 1, 6 to 9, 13 to 15) 0 Not connected 1 Connected 1 Connected Vertice Vertice Vertice Vertice Vertice Note When reading from or writing to bits 8 to 15 of the PU9 register in 8-bit or Vertice Vertice<	PU9 (PU9H ^{Note})	PU915	PU914	PU913	0	0	0	PU99	PU98
PU9n Control of on-chip pull-up resistor connection (n = 0, 1, 6 to 9, 13 to 15) 0 Not connected 1 Connected	PU9n Control of on-chip pull-up resistor connection (n = 0, 1, 6 to 9, 13 to 15) 0 Not connected 1 Connected Note When reading from or writing to bits 8 to 15 of the PU9 register in 8-bit or		7	6	5	4	3	2	1	0
0 Not connected 1 Connected	0 Not connected 1 Connected Note When reading from or writing to bits 8 to 15 of the PU9 register in 8-bit or	(PU9L)	PU97	PU96	0	0	0	0	PU91	PU90
	specify these bits as bits 0 to 7 of the PU9H register.		1 en readin	Connecte g from or	writing to				egister in	8-bit or
Remark The PU9 register can be read or written in 16-bit units. However, when the higher 8 bits and the lower 8 bits of the PU9 register a					and as the					-

DataShee

DataSheet4U.com

DataSheet4U.com

et4U.com

4.3.7 Port CM

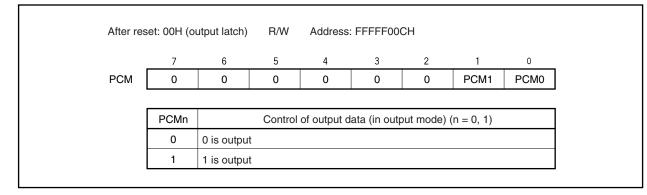
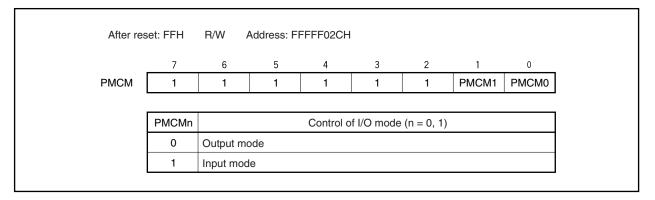

Port CM is a 2-bit I/O port for which I/O settings can be controlled in 1-bit units. Port CM includes the following alternate functions.

Table 4-10. Alternate-Function Pins of Port CM

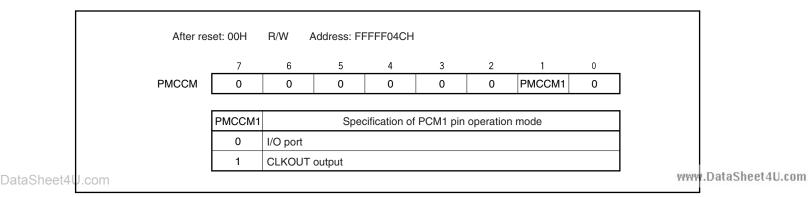
Pin No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
45	PCM0	-	-	Yes	_	C-U
46	PCM1	CLKOUT	Output			D0-U

Note Software pull-up function

(1) Port CM register (PCM)



et4U.com


(2) Port CM mode register (PMCM)

DataSheet4U.com

DataShe

(3) Port CM mode control register (PMCCM)

96

(4) Pull-up resistor option register CM (PUCM)

After res	set: 00H	R/W	Address: FF	FFFF4CH					
	7	6	5	4	3	2	1	0	
PUCM	0	0	0	0	0	0	PUCM1	PUCM0	
	PUCMn		Control of on-chip pull-up resistor connection $(n = 0, 1)$						
	0	Not con	nected						
	1	Connect	ted						

et4U.com

DataShe

DataSheet4U.com

4.3.8 Port DL

Port DL is an 8-bit I/O port for which I/O settings can be controlled in 1-bit units. Port DL includes the following alternate functions.

Table 4-11. Alternate-Function Pins of Port DL

Pin No.	Pin Name	Alternate Function	I/O	PULL ^{Note}	Remark	Block Type
47	PDL0	-	-	Yes	-	C-U
48	PDL1	-	_			C-U
49	PDL2	-	_			C-U
50	PDL3	-	-			C-U
51	PDL4	-	-			C-U
52	PDL5	-	_			C-U
53	PDL6	_	_			C-U
54	PDL7	_	_			C-U

Note Software pull-up function

et4U.com

DataShe

(1) Port DL register (PDL)

After res	After reset: 00H (output latch)		R/W	Address:	FFFFF004	4H			
	7	6	5	4	3	2	1	0	
PDL	PDL7	PDL6	PDL5	PDL4	PDL3	PDL2	PDL1	PDL0	
	PDLn		Control of output data (in output mode) ($n = 0$ to 7)						
	0	0 is output							

(2) Port DL mode register (PMDL)

After res	set: FFH	R/W	Address: Ff	FFF024H					
	7	6	5	4	3	2	1	0	
PMDL	PMDL7	PMDL6	PMDL5	PMDL4	PMDL3	PMDL2	PMDL1	PMDL0	
	PMDLn		Control of I/O mode (n = 0 to 7)						
	0	Output mo	Output mode						
	1	Input mod	le						

et4U.com

(3) Pull-up resistor option register DL (PUDL)

After res	set: 00H	R/W A	Address: F	FFFFF44H					
	7	6	5	4	3	2	1	0	
PUDL	PUDL7	PUDL6	PUDL5	PUDL4	PUDL3	PUDL2	PUDL1	PUDL0	
	PUDLn	C	Control of on-chip pull-up resistor connection $(n = 0 \text{ to } 7)$						
	0	Not conne	Not connected						
	1	Connected							

4.4 Block Diagrams

Figure 4-2. Block Diagram of Type A-A

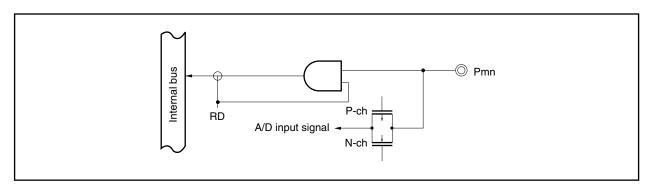
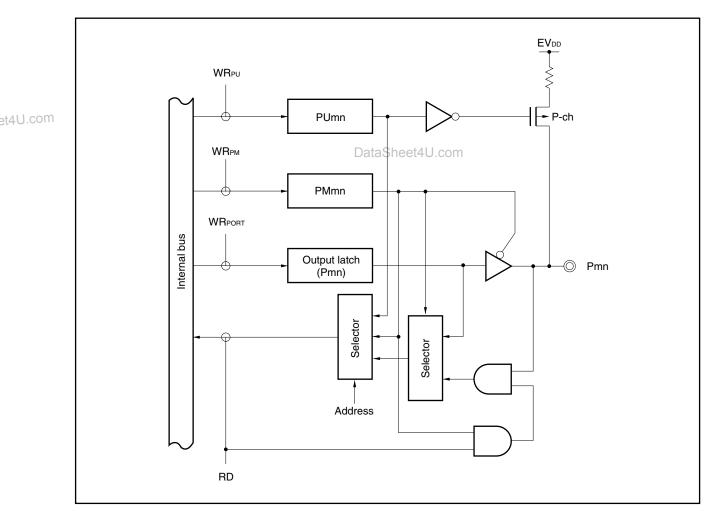



Figure 4-3. Block Diagram of Type C-U

www.DataSheet4U.com

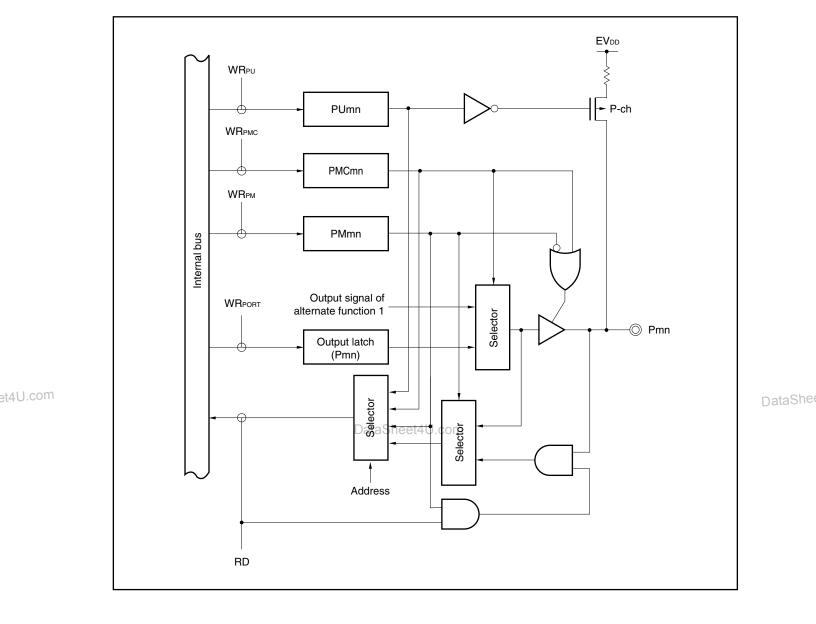


Figure 4-4. Block Diagram of Type D0-U

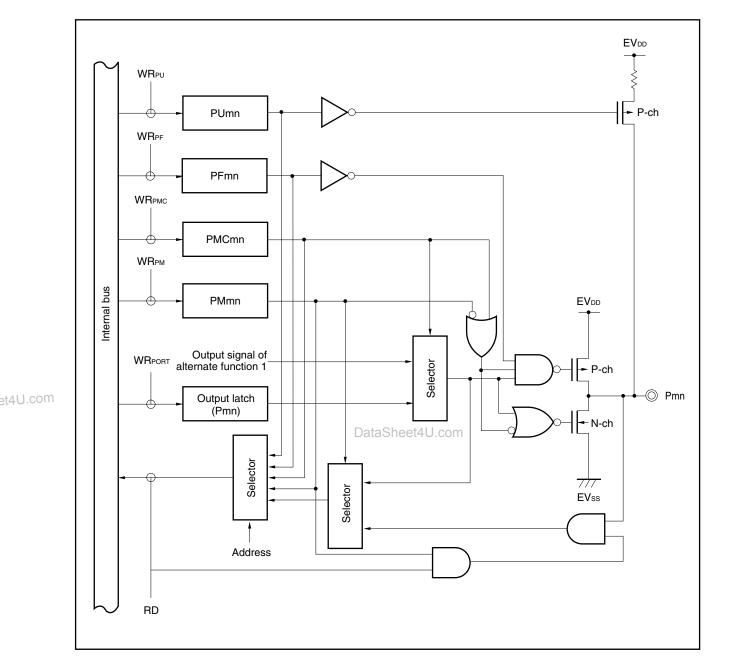
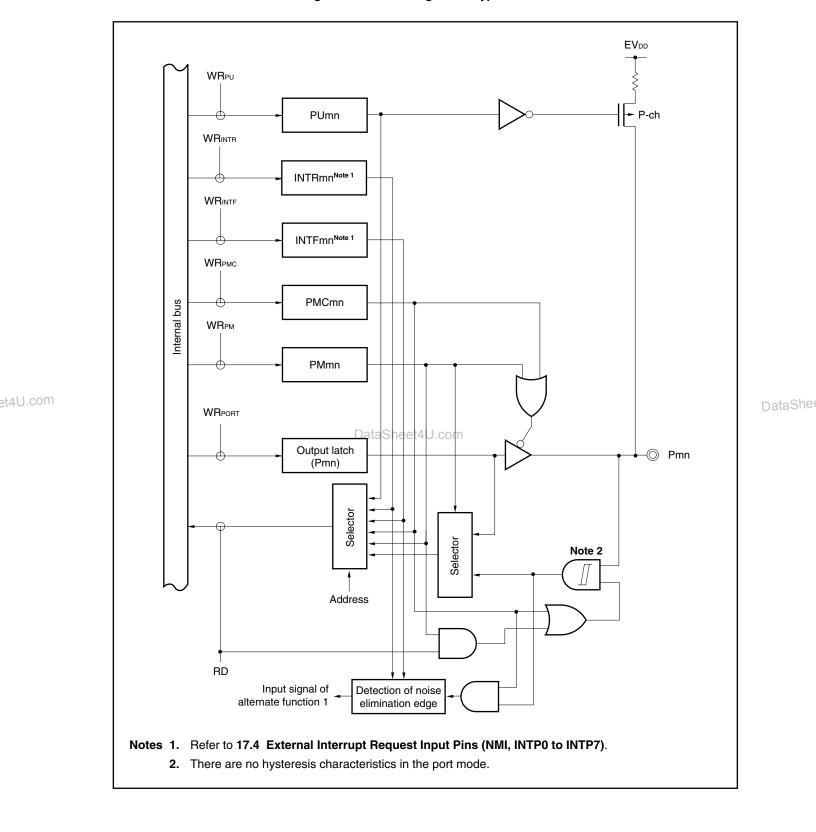
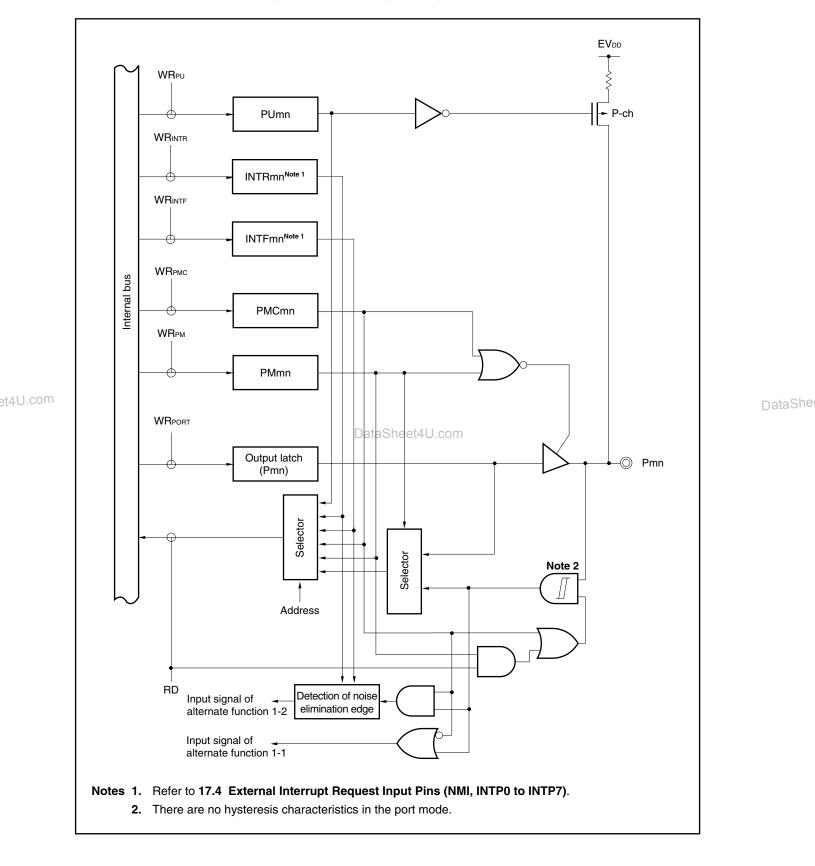




Figure 4-5. Block Diagram of Type D0-UF

DataSheet4U.com

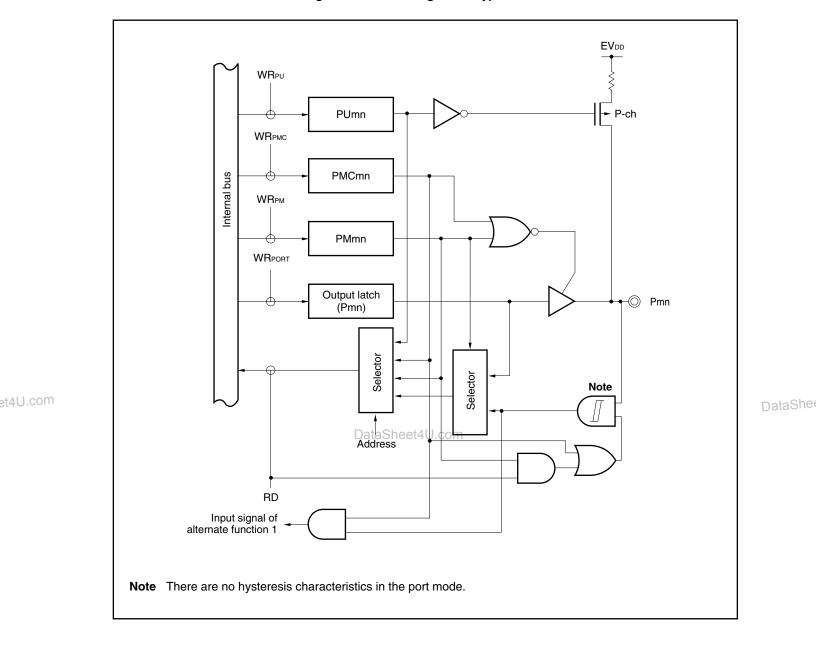
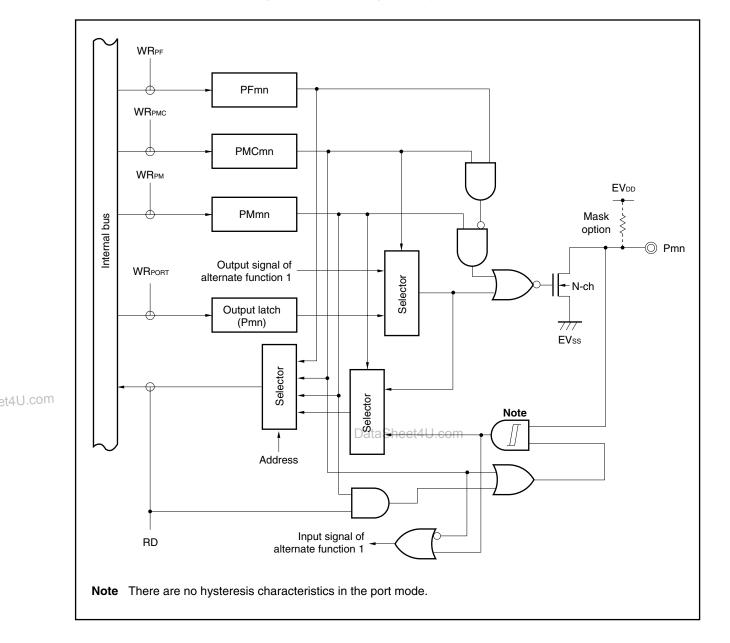



Figure 4-8. Block Diagram of Type D1-SUL

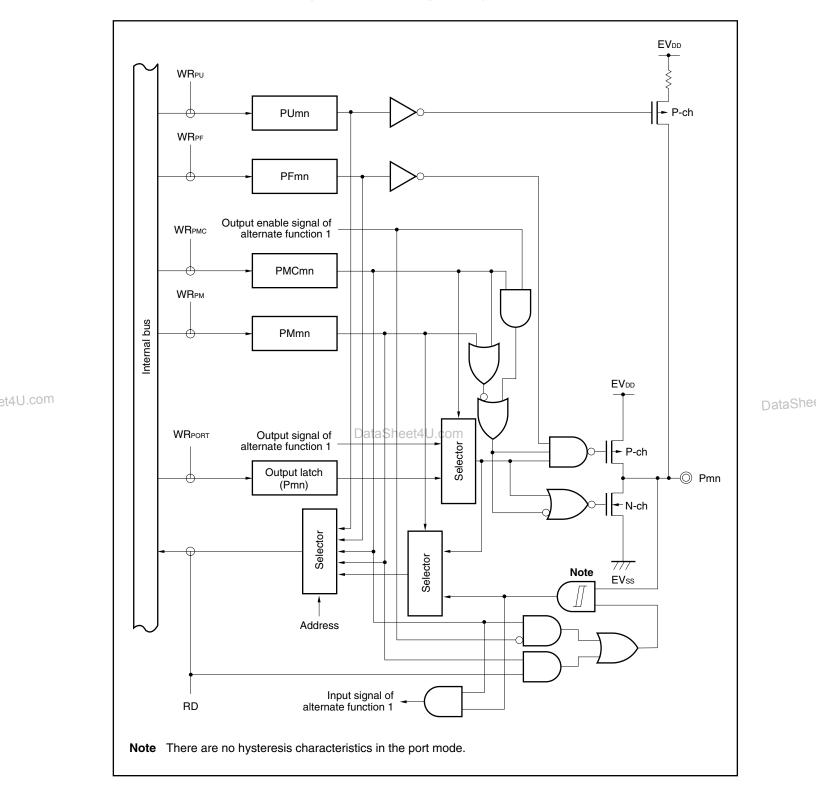
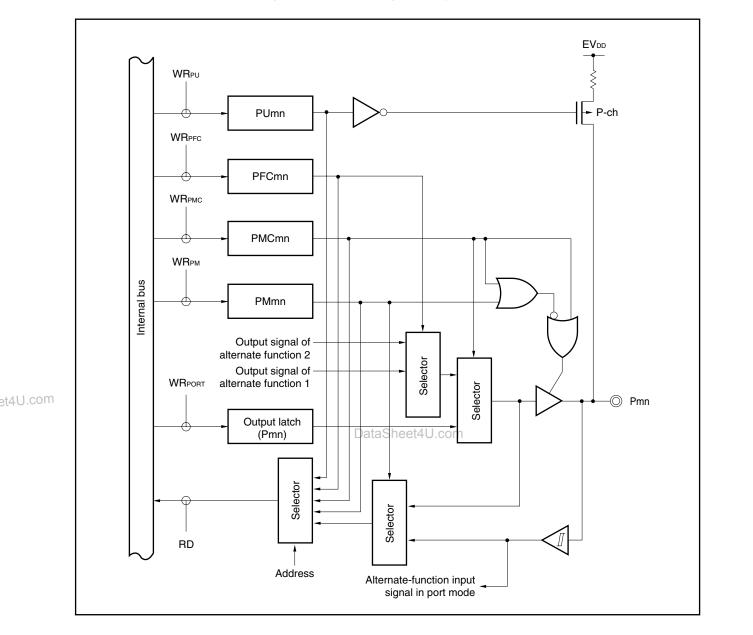



Figure 4-10. Block Diagram of Type D2-SUFL

DataSheet4U.com

www.DataSheet4U.com

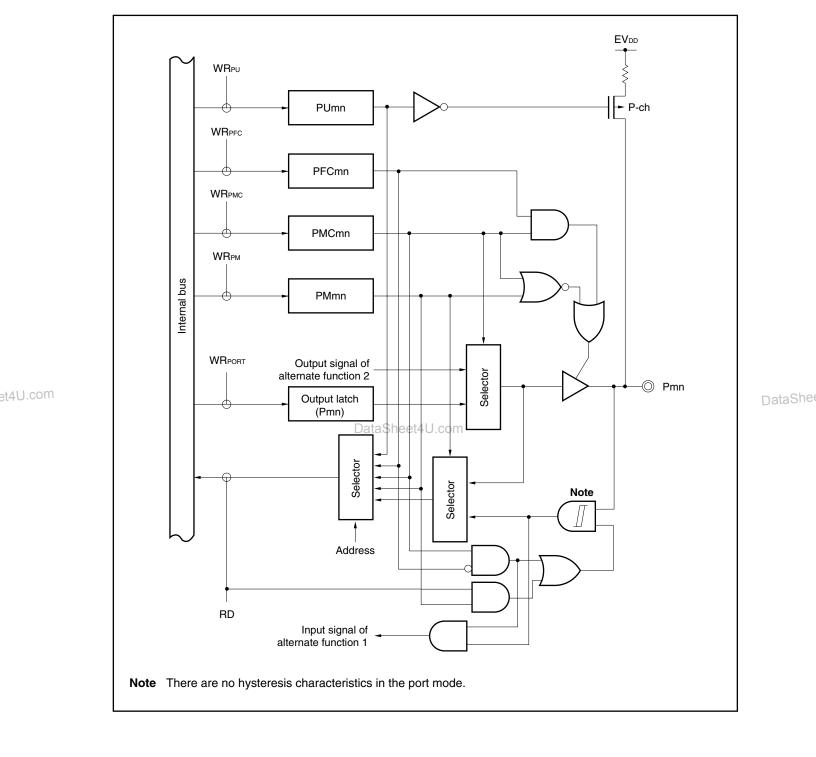
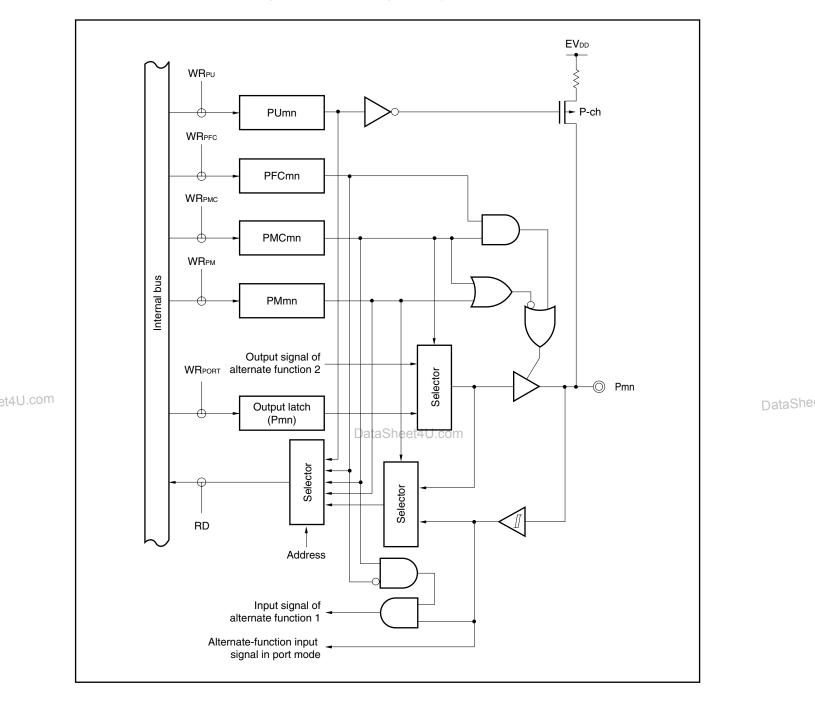



Figure 4-12. Block Diagram of Type E10-SUL

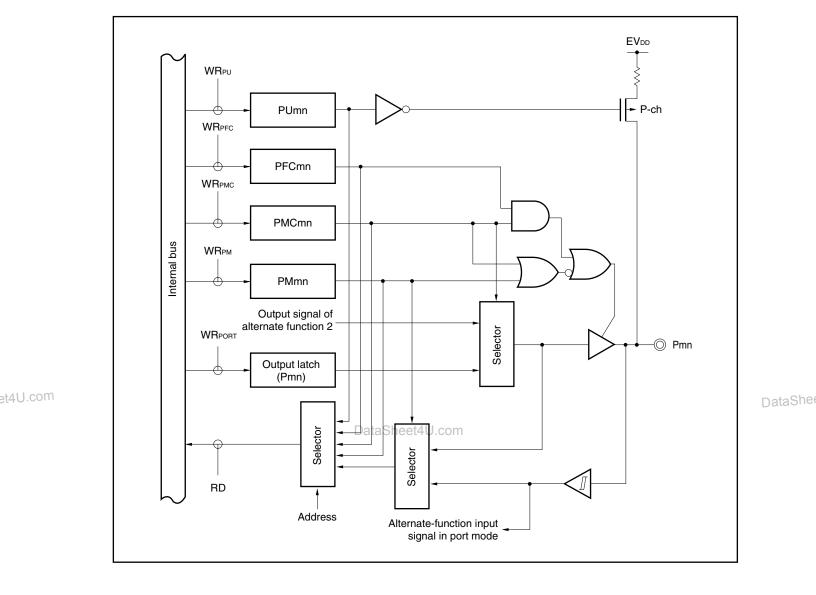
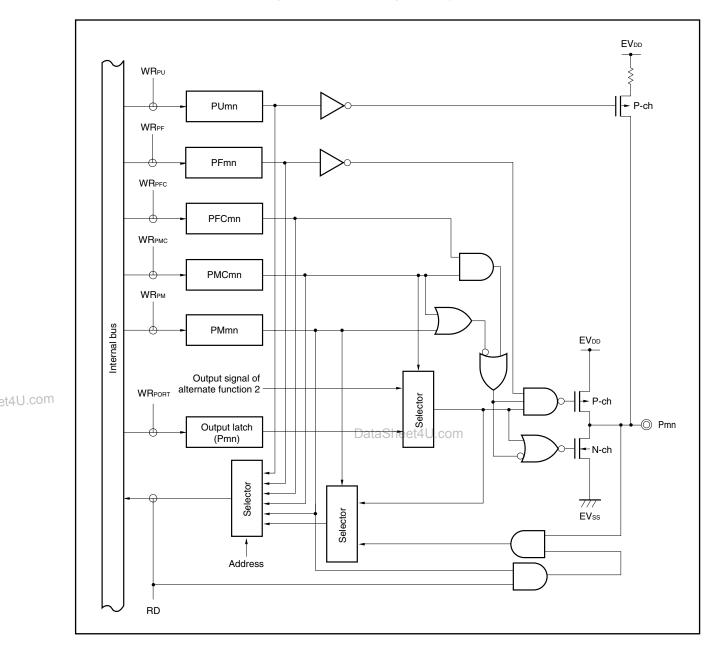



Figure 4-14. Block Diagram of Type Ex0-SUT

DataShe

www.DataSheet4U.com

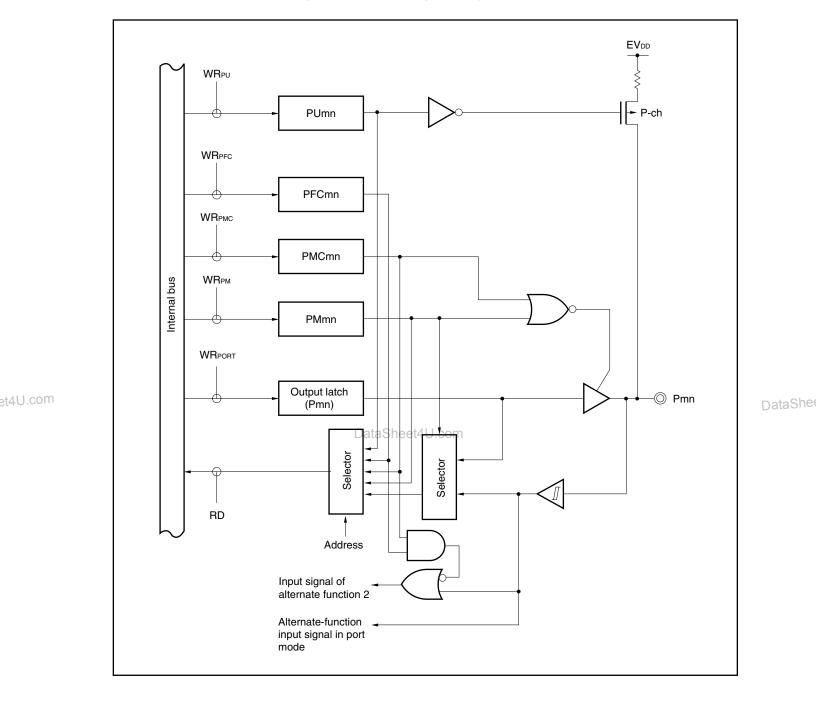
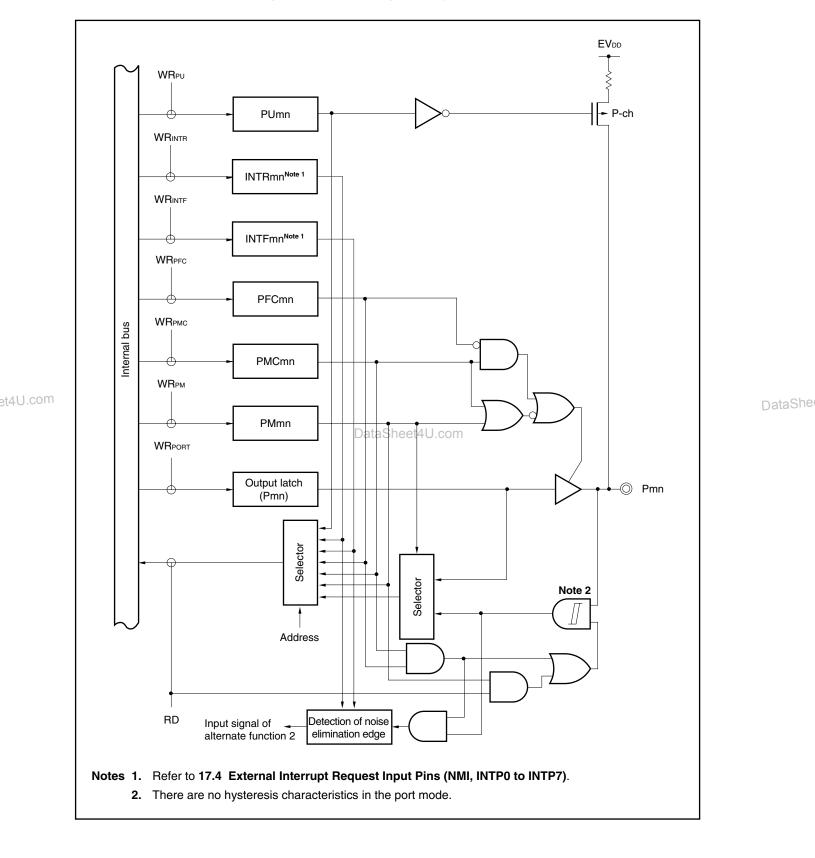



Figure 4-16. Block Diagram of Type Ex1-SUHT

DataSheet4U.com

www.DataSheet4U.com

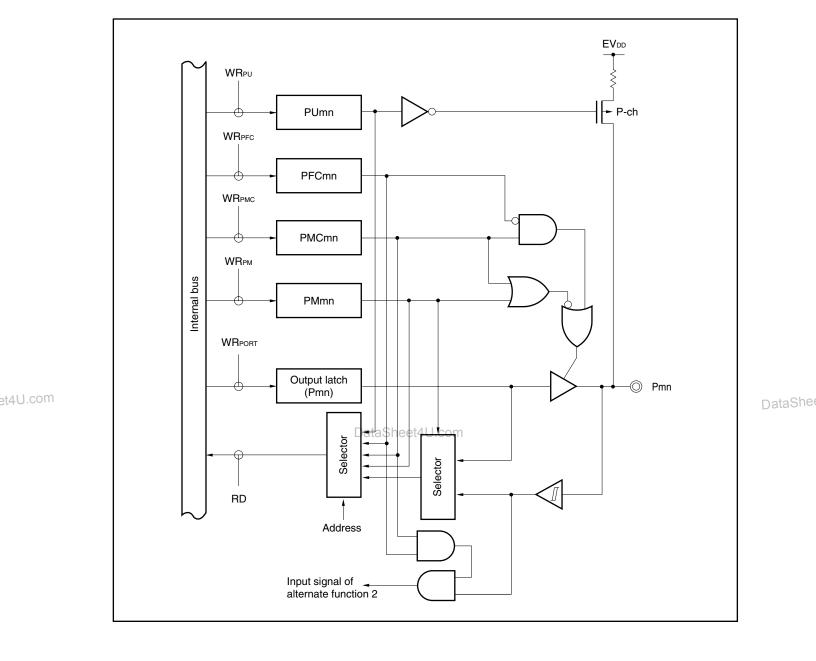
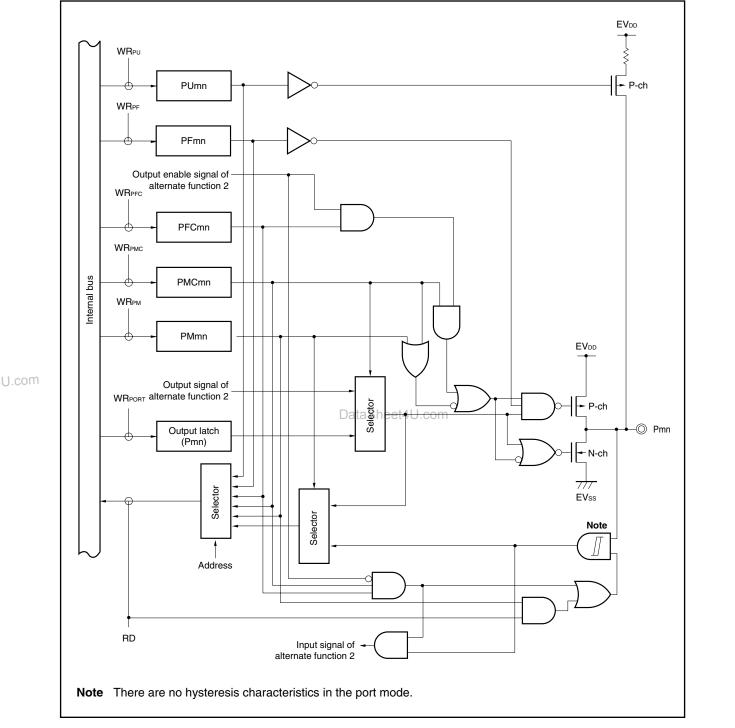
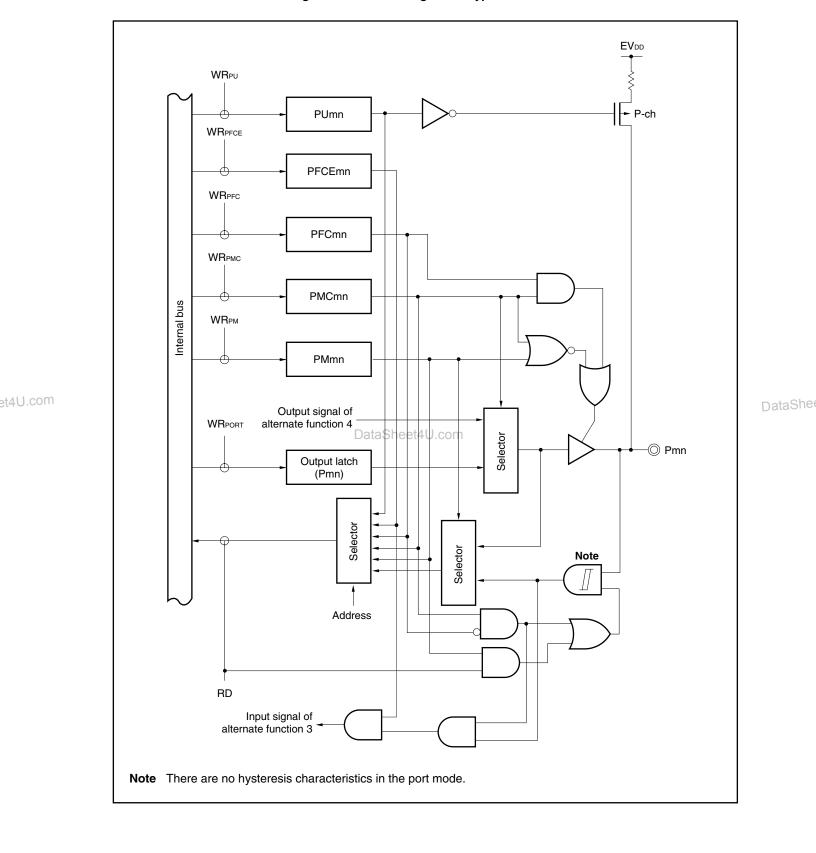
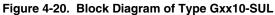



Figure 4-18. Block Diagram of Type Ex1-SUL





et4U.com

DataSheet4U.com

www.DataSheet4U.com

DataSheet4U.com

4.5 Port Register Setting When Alternate Function Is Used

Table 4-12 shows the port register settings when each port is used for an alternate function. When using a port pin as an alternate-function pin, refer to description of each pin.

et4U.com

DataSheet4U.com

DataSheet4U.com

DataSheet4U.com

Pin Name	Name Alternate Function		Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of PFCn	Other Bits (Registers)
	Function Name	I/O			PMCn Register	PFCEn Register	Register	
P00	ТОН0	Output	P00 = Setting not required	PM00 = Setting not required	PMC00 = 1	_	-	-
P01	TOH1	Output	P01 = Setting not required	PM01 = Setting not required	PMC01 = 1	-	_	-
P02	NMI	Input	P02 = Setting not required	PM02 = Setting not required	PMC02 = 1	-	-	-
P03	INTP0	Input	P03 = Setting not required	PM03 = Setting not required	PMC03 = 1	_	PFC03 = 0	-
P04	INTP1	Input	P04 = Setting not required	PM04 = Setting not required	PMC04 = 1	_	-	-
P05	INTP2	Input	P05 = Setting not required	PM05 = Setting not required	PMC05 = 1	_	-	-
P06	INTP3	Input	P06 = Setting not required	PM06 = Setting not required	PMC06 = 1	_	-	-
P30	TXD0	Output	P30 = Setting not required	PM30 = Setting not required	PMC30 = 1	_	PFC30 = 0	-
P31	RXD0	Input	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	_	Note 1 , PFC31 = 0	-
	INTP7	Input	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	_	Note 1 , PFC31 = 0	-
P32	ASCK0	Input	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	_	Note 2 , PFC32 = 0	-
	ADTRG	Input	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	-	Note 2, PFC32 = 0	-
	TO01	Output	P32 = Setting not required	PM32 = Setting not required	PMC32 = 1	-	PFC32 = 1	-
P33	TIP00	Input	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	PFCE33 = 1	PFC33 = 0	-
	TOP00	Output	P33 = Setting not required	PM33 = Setting not required	PMC33 = 1	PFCE33 = 1	PFC33 = 1	-
P34	TIP10	Input	P34 = Setting not required	PM34 = Setting not required	PMC34 = 1	PFCE34 = 1	PFC34 = 0	-
	TOP10	Output	P34 = Setting not required	PM34 = Setting not required	PMC34 = 1	PFCE34 = 1	PFC34 = 1	-
P35	TI010	Input	P35 = Setting not required	PM35 = Setting not required	PMC35 = 1	_	PFC35 = 0	_
	TO01	Output	P35 = Setting not required	PM35 = Setting not required	PMC35 = 1	-	PFC35 = 1	-

Table 4-12. Settings When Port Pins Are Used for Alternate Functions (1/3)

et4U.com

Notes 1. The INTP7 and RXD0 pins are alternate-function pins. When using the pin as the RXD0 pin, disable edge detection of the alternate-function INTP7 pin (clear the INTF3.INTF31 and INTR3.INTR31 bits to 0). When using the pin as the INTP7 pin, stop the UART0 receive operation (clear the ASIM0.RXE0 bit to 0).

2. The ASCK0 and ADTRG pins are alternate-function pins. When using the pin as the ASCK0 pin, disable the trigger input of the alternate-function ADTRG pin (clear the ADS.TRG bit to 0 or set the ADS.ADTMD bit to 1). When using the pin as the ADTRG pin, do not set the UART0 operation clock to external input (set the CKSR0.TPS03 to CKSR0.TPS00 bits to other than 1011).

DataShee

www.DataSheet4U.com

\leq
2
2
2
ũ
ā
ົດ
Φ
<u>D</u>
4
\Box
8
Ĕ

Data				et4U.			
She				.com			
ataSheet4U				2			
U.com			Table 4-12. Settings W	/hen Port Pins Are Used for	Alternate Func	tions (2/3)	
Pin Name	Alternat	e Function	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name I/O				PMCn Register	PFCn Register	
P38	SDA0 ^{Note}	I/O	P38 = Setting not required	PM38 = Setting not required	PMC38 = 1	-	-
P39	SCL0 ^{Note}	I/O	P39 = Setting not required	PM39 = Setting not required	PMC39 = 1	-	-
P40	SI00	Input	P40 = Setting not required	PM40 = Setting not required	PMC40 = 1	PFC40 = 0	-
P41	SO00	Output	P41 = Setting not required	PM41 = Setting not required	PMC41 = 1	PFC41 = 0	-
P42	SCK00	I/O	P42 = Setting not required	PM42 = Setting not required	PMC42 = 1	-	-
P50	TI011	Input	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFC50 = 0	-
	RTP00	Output	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFC50 = 1	_
	KR0	Input	P50 = Setting not required	PM50 = 1	PMC50 = 0	PFC50 = 0	KRM0 (KRM) = 1
P51	TI50	Input	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFC51 = 0	-
	RTP01	Output	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFC51 = 1	-
	KR1	Input	P51 = Setting not required	PM51 = 1	PMC51 = 0	PFC51 = 0	KRM1 (KRM) = 1
P52	TO50	Output	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFC52 = 0	-
	RTP02	Output	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFC52 = 1	_
	KR2	Input	P52 = Setting not required	PM52 = 1	PMC52 = 0	PFC52 = 0	KRM2 (KRM) = 1
P53	RTP03	Output	P53 = Setting not required	PM53 = Setting not required	PMC53 = 1	PFC53 = 1	-
	KR3	Input	P53 = Setting not required	PM53 = 1	PMC53 = 0	PFC53 = 0	KRM3 (KRM) = 1
P54	RTP04	Output	P54 = Setting not required	PM54 = Setting not required	PMC54 = 1	PFC54 = 1	PF54 (PF5) = 0
	KR4	Input	P54 = Setting not required	PM54 = 1	PMC54 = 0	PFC54 = 0	PF54 (PF5) = 0, KRM4 (KRM) = 1
P55	RTP05	Output	P55 = Setting not required	PM55 = Setting not required	PMC55 = 1	PFC55 = 1	PF55 (PF5) = 0
	KR5	Input	P55 = Setting not required	PM55 = 1	PMC55 = 0	PFC55 = 0	PF55 (PF5) = 0, KRM5 (KRM) = 1

Note Only in the μ PD703302Y, 70F3302Y

DataShe

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

			Tuble 4 12. Octanige M	ien i ort i ins Are osed ior /			
Pin Name	Alternat	e Function	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of	PFCnx Bit of	Other Bits (Registers)
	Function Name	I/O			PMCn Register	PFCn Register	
P70	ANIO	Input	P70 = Setting not required	-	-	-	_
P71	ANI1	Input	P71 = Setting not required	_	-	_	_
P72	ANI2	Input	P72 = Setting not required	-	-	-	-
P73	ANI3	Input	P73 = Setting not required	-	-	-	_
P74	ANI4	Input	P74 = Setting not required	-	-	_	_
P75	ANI5	Input	P75 = Setting not required	-	-	-	_
P76	ANI6	Input	P76 = Setting not required	-	-	-	_
P77	ANI7	Input	P77 = Setting not required	U.	-	-	_
P90	TXD1	Output	P90 = Setting not required	PM90 = Setting not required	PMC90 = 1	PFC90 = 1	-
	KR6	Input	P90 = Setting not required	PM90 = 1	PMC90 = 0	PFC90 = 0	KRM6 (KRM) = 1
P91	RXD1	Input	P91 = Setting not required	PM91 = Setting not required	PMC91 = 1	PFC91 = 1	-
	KR7	Input	P91 = Setting not required	PM91 = 1	PMC91 = 0	PFC91 = 0	KRM7 (KRM) = 1
P96	TI51	Input	P96 = Setting not required	PM96 = 1 [⊐]	PMC96 = 0	PFC96 = 0	_
	TO51	Output	P96 = Setting not required	PM96 = Setting not required	PMC96 = 1	PFC96 = 1	_
P97	SI01	Input	P97 = Setting not required	PM97 = Setting not required	PMC97 = 1	PFC97 = 1	_
P98	SO01	Output	P98 = Setting not required	PM98 = Setting not required	PMC98 = 1	PFC98 = 1	PF98 (PF9) = Don't care
P99	SCK01	I/O	P99 = Setting not required	PM99 = Setting not required	PMC99 = 1	PFC99 = 1	PF98 (PF9) = Don't care
P913	INTP4	Input	P913 = Setting not required	PM913 = Setting not required	PMC913 = 1	PFC913 = 1	_
P914	INTP5	Input	P914 = Setting not required	PM914 = Setting not required	PMC914 = 1	PFC914 = 1	-
P915	INTP6	Input	P915 = Setting not required	PM915 = Setting not required	PMC915 = 1	PFC915 = 1	-
PCM1	CLKOUT	Output	PCM1 = Setting not required	PMCM1 = Setting not required	PMCCM1 = 1	-	-

Table 4-12. Settings When Port Pins Are Used for Alternate Functions (3/3)

121

Preliminary User's Manual U16896EJ1V0UD

4.6 Cautions

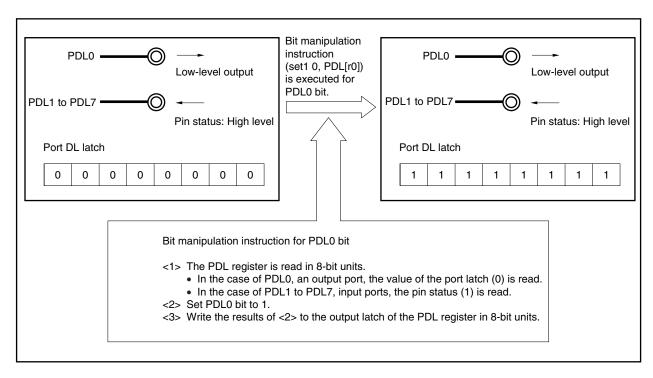
4.6.1 Cautions on bit manipulation instruction for port n register (Pn)

When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the value of the output latch of an input port that is not subject to manipulation may be written in addition to the targeted bit.

Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.

<Example> When PDL0 is an output port, PDL1 to PDL7 are input ports (all pin statuses are high level), and the value of the port latch is 00H, if the output of output port PDL0 is changed from low level to high level via a bit manipulation instruction, the value of the port latch is FFH. Explanation: The targets of writing to and reading from the Pn register of a port whose PMnm bit is 1 are the output latch and pin status, respectively.

A bit manipulation instruction is executed in the following order in the V850ES/KE1+.


- <1> The Pn register is read in 8-bit units.
- <2> The targeted one bit is manipulated.
- <3> The Pn register is written in 8-bit units.

In step <1>, the value of the output latch (0) of PDL0, which is an output port, is read, while the pin statuses of PDL1 to PDL7, which are input ports, are read. If the pin statuses of PDL1 to PDL7 are high level at this time, the read value is FEH.

The value is changed to FFH by the manipulation in <2>.

FFH is written to the output latch by the manipulation in <3>.

DataShe

Figure 4-21. Bit Manipulation Instruction (PDL0)

et4U.com

4.6.2 Hysteresis characteristics

In port mode, the following ports do not have hysteresis characteristics.

P02 to P06 P31 to P35, P38, P39 P40, P42 P97, P99, P913 to P915

et4U.com

DataSheet4U.com

DataSheet4U.com

CHAPTER 5 CLOCK GENERATION FUNCTION

5.1 Overview

The following clock generation functions are available.

- O Main clock oscillator
 - fx = 2 MHz (fxx = 8 MHz, VDD = 2.7 to 5.5 V, in PLL mode)
 - fx = 2 to 5 MHz (fxx = 8 to 20 MHz, VDD = 4.5 to 5.5 V, in PLL mode)
 - $f_x = 2$ to 8^{Note} MHz (f_{xx} = 2 to 8^{Note} MHz, V_{DD} = 2.7 to 5.5 V, in clock-through mode)
- O Subclock oscillator
 - 32.768 kHz
- O On-chip ring oscillator (Ring-OSC)
 - fR = 120 to 480 kHz (240 kHz (TYP.))
- O Multiplication (×4) function by PLL (Phase Locked Loop)
 - Clock-through mode/PLL mode selectable
 - Usable voltage: VDD = 2.7 to 5.5 V
- O Internal system clock generation
 - 7 steps (fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, fxt)
 - Operates at fR after the reset signal for the clock monitor is generated upon detection of main clock stop.
- O Peripheral clock generation
- O Clock output function

et4U.com

DataShee

www.DataSheet4U.com

Note This value may change after evaluation.

- Remark fx: Main clock oscillation frequency
 - fxx: Main clock frequency
 - fR: Ring-OSC clock frequency

5.2 Configuration

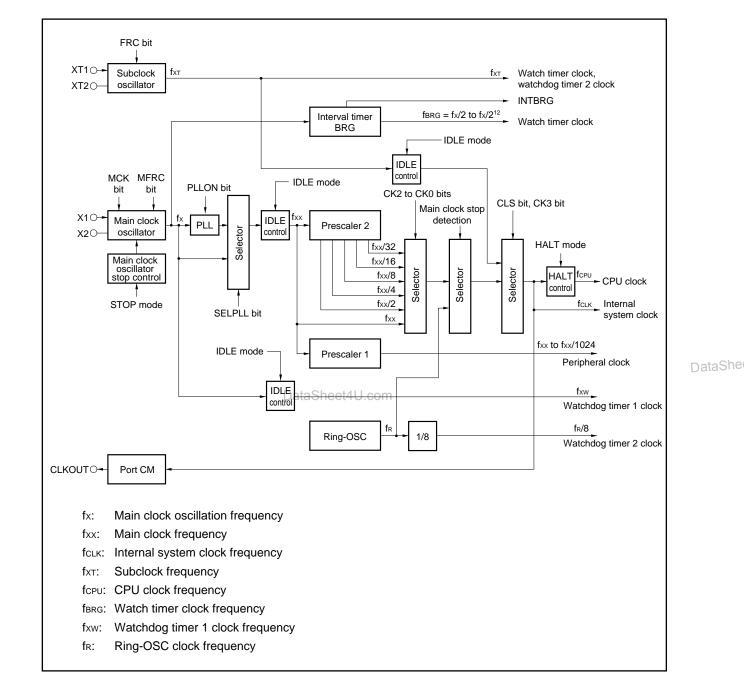


Figure 5-1. Clock Generator

et4U.com

(1) Main clock oscillator

The main clock oscillator oscillates the following frequencies (fx).

- fx = 2 MHz (V_{DD} = 2.7 to 5.5 V, in PLL mode)
- fx = 2 to 5 MHz (V_{DD} = 4.5 to 5.5 V, in PLL mode)
- $f_x = 2 \text{ to } 8^{\text{Note}} \text{ MHz} (V_{DD} = 2.7 \text{ to } 5.5 \text{ V}, \text{ in clock-through mode})$

Note This value may change after evaluation.

(2) Subclock oscillator

The subclock oscillator oscillates a frequency of 32.768 kHz (fxr).

(3) Main clock oscillator stop control

This circuit generates a control signal that stops oscillation of the main clock oscillator. Oscillation of the main clock oscillator is stopped in the STOP mode or when the PCC.MCK bit = 1 (valid only when the PCC.CLS bit = 1).

(4) Prescaler 1

This prescaler generates the clock (fxx to fxx/1024) to be supplied to the following on-chip peripheral functions: TMP0, TM01, TM50, TM51, TMH0, TMH1, CSI00, CSI01, UART0, UART1, I²C0, and ADC

(5) Prescaler 2

et4U.com

This circuit divides the main clock (fxx).

DataShe

www.DataSheet4U.com

The clock generated by prescaler 2 (fxx to fxx/32) is supplied to the selector that generates the CPU clock (fcPu) and internal system clock (fcLk). fcLk is the clock supplied to the INTC, ROM correction, ROM, and RAM blocks, and can be output from the

(6) Interval timer BRG

CLKOUT pin.

This circuit divides the clock (fx) generated by the main clock oscillator to a specific frequency (32.768 kHz) and supplies that clock to the watch timer block. It can also be used as an interval timer. For details, refer to **CHAPTER 10 INTERVAL TIMER**, **WATCH TIMER**.

(7) PLL

This circuit multiplies the clock (fx) generated by the main clock oscillator. It operates in two modes: clock-through mode in which fx is output as is, and PLL mode in which a multiplied clock is output. These modes can be selected by using the PLLCTL.SELPLL bit. Operation of the PLL can be started or stopped by the PLLCTL.PLLON bit.

(8) Ring-OSC (on-chip ring oscillator)

The Ring-OSC oscillator oscillates a frequency (fR) of 120 to 480 kHz (240 kHz (TYP.)).

5.3 Registers

(1) Processor clock control register (PCC)

The PCC register is a special register. Data can be written to this register only in combination of specific sequences (refer to **3.4.7 Special registers**).

This register can be read or written in 8-bit or 1-bit units.

After reset, PCC is set to 03H.

	7	<6>	5	<4>	<3>	2	1	0	
PCC	FRC	MCK	MFRC	CLS ^{Note}	CK3	CK2	CK1	CK0	
	FRC		Use	of subclock	on-chip fe	edback re	sistor		
	0	Used							
	1	Not used							
	MCK			Control of	main cloc	k oscillator			
	0		n enabled						
	1		n stopped	while the s					
	When the the MC	ne main clo K bit to 0 a	ock is stopp nd wait unt	I to the subc ed and the o il the oscillat back to the	levice is c ion stabili	zation time			
	MFRC		Use	of main cloc	k on-chip	feedback r	esistor		
	0	Used							
	1	Not used							
	CLS ^{Note}			Statua a		ol: (f)			
	0	Main alac	konoration		of CPU clo	CK (ICPU)			
	1		k operation	1					
		SUDCIOCK	operation						

СКЗ	CK2	CK1	CK0	Clock selection (fcLk/fcPU)
0	0	0	0	fxx
0	0	0	1	fxx/2
0	0	1	0	fxx/4
0	0	1	1	fxx/8 (default value)
0	1	0	0	fxx/16
0	1	0	1	fxx/32
0	1	1	×	Setting prohibited
1	×	×	×	fхт
o not cha tput.	nge the	CPU cloo	k (by us	sing the CK3 to CK0 bits) while CLI

- (a) Example of setting main clock operation \rightarrow subclock operation
 - <1> CK3 bit \leftarrow 1: Use of a bit manipulation instruction is recommended. Do not change the CK2 to CK0 bits.
 - <2> Subclock operation: Read the CLS bit to check if subclock operation has started. It takes the following time after the CK3 bit is set until subclock operation is started.

Max.: 1/fxT (1/subclock frequency)

<3> MCK bit \leftarrow 1: Set the MCK bit to 1 only when stopping the main clock.

Cautions 1. When stopping the main clock, stop the PLL.

2. If the following conditions are not satisfied, change the CK2 to CK0 bits so that the conditions are satisfied, then change to the subclock operation mode.

Main clock (fxx) > Subclock (fxr: 32.768 kHz) × 4

[Description example]

<1>	_SET_SUB_R	JN :		
	st.b	r0, PRCMD[r0]		
	set1	3, PCC[r0]	CK3 bit \leftarrow 1	
<2>	_CHECK_CLS	:		
	tst1	4, PCC[r0]	Wait until subclock operation starts.	
	bz	_CHECK_CLS		DataShee
<3>	_STOP_MAIN	_CLOCK :		
	st.b	r0, prCMD[r0]	J.com	
	set1	6, PCC[r0]	MCK bit \leftarrow 1, main clock is stopped	

Remark The above description is an example. Note with caution that the CLS bit is read in a closed loop in <2>.

et4U.com

DataSheet4U.com

www.DataSheet4U.com

(b) Example of setting subclock operation \rightarrow main clock operation

<1> MCK bit <	← 0:	Main clock starts oscillating
---------------	------	-------------------------------

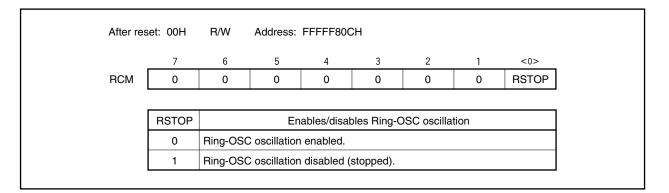
- <2> Insert waits by the program and wait until the oscillation stabilization time of the main clock elapses.
- <3> CK3 bit \leftarrow 0: Use of a bit manipulation instruction is recommended. Do not change the CK2 to CK0 bits.
- <4> Main clock operation: It takes the following time after the CK3 bit is set until main clock operation is started.

Max.: 1/fxT (1/subclock frequency)

Therefore, insert one NOP instruction immediately after setting the CK3 bit to 0 or read the CLS bit to check if main clock operation has started.

[Description example] <1> _START_MAIN_OSC : st.b r0, PRCMD[r0] -- Release of protection of special registers 6, PCC[r0] -- Main clock starts oscillating clr1 <2> movea 0x55, r0, r11 -- Wait for oscillation stabilization time _WAIT_OST : nop nop nop DataShe addi -1, r11, r11 r0, r11 mp DataSheet4U.com bne _PROGRAM_WAIT <3> st.b r0, PRCMD[r0] -- CK3 \leftarrow 0 clr1 3, PCC[r0] <4> _CHECK_CLS : 4, PCC[r0] -- Wait until main clock operation starts tst1 bnz _CHECK_CLS

Remark The above description is an example. Note with caution that the CLS bit is read in a closed loop in <4>.


et4U.com

(2) Ring-OSC mode register (RCM)

The RCM register is an 8-bit register that sets the operation mode of the Ring-OSC oscillator. This register can be read or written in 8-bit or 1-bit units. After reset, RCM is cleared to 00H.

Caution The settings of the RCM register differ for a mask ROM version and flash memory version. Refer to CHAPTER 25 MASK OPTION/OPTION BYTE for details.

- Mask ROM version (µPD703302, 703302Y)
 - Valid when "(Ring-OSC) Can be stopped by software" is selected by the mask option.
- Flash memory version (µPD70F3302, 70F3302Y) Valid when RINGSTP is cleared to 0 by the option byte setting.

et4U.com

(3) CPU operation clock status register (CCLS)

The CCLS register indicates the CPU operation clock status. This register is read-only, in 8-bit or 1-bit units. After reset, CCLS is cleared to 00H.

After res	et: 00H	R A	ddress: FF	FFF82EH						
	7	6	5	4	3	2	1	0		
CCLS	0	0	0	0	0	0	0	CCLSF		
	CCLSF	SF CPU operation clock status								
	0	Operates	Operates on main clock (fx) or subclock (fxr).							
	1	Operates	on Ring-O	SC (f _R).						

5.4 Operation

5.4.1 Operation of each clock

The following table shows the operation status of each clock.

Register Setting and	PCC Register										
Operation Status	CLS bit = MCK bit =	,				CLS bit = MCK bit =	,	CLS bit = 1, MCK bit = 1			
Target Clock	During reset	During oscillation stabilization time count	HALT mode	IDLE mode	STOP mode	Subclock mode	Sub-IDLE mode	Subclock mode	Sub-IDLE mode		
Main clock oscillator (fx)	×	0	0	0	×	0	0	×	×		
Subclock oscillator (fxT)	0	0	0	0	0	0	0	0	0		
CPU clock (fcpu)	×	×	×	×	×	0	×	0	×		
Internal system clock (fcLK)	×	×	0	×	×	0	×	0	×		
Peripheral clock (fxx to fxx/1024)	×	×	0	×	×	0	×	×	×		
WT clock (main)	×	0	0	0	×	0	0	×	×		
WT clock (sub)	0	0	0	0	0	0	0	0	0		
WDT1 clock (fxw)	×	0	0	0	×	0	0	×	×		
WDT2 clock (Ring-OSC)	×	0	0	0	0	0	0	0	0		
WDT2 clock (sub)	0	0	0	0	0	0	0	0	0		

Table 5-1. Operation Status of Each Clock

DataShe

et4U.com

Remark O: Operable

×: Stopped

5.4.2 Clock output function

The clock output function is used to output the internal system clock (fcLK) from the CLKOUT pin.

The internal system clock (fcLK) is selected by using the PCC.CK3 to PCC.CK0 bits.

The CLKOUT pin functions alternately as the PCM1 pin and functions as a clock output pin if so specified by the control register of port CM.

DataSheet4U.com

The status of the CLKOUT pin is the same as the internal system clock in Table 5-1 and the pin can output the clock when it is in the operable status. It outputs a low level in the stopped status. However, the port mode (PCM1: input mode) is selected until the CLKOUT pin output is set after reset. Consequently, the CLKOUT pin goes into a high-impedance state.

5.4.3 External clock input function

An external clock can be directly input to the oscillator. Input the clock to the X1 pin and its inverse signal to the X2 pin. Set the PCC.MFRC bit to 1 (on-chip feedback resistor not used). Note, however, that oscillation stabilization time is inserted even in the external clock mode.

5.5 PLL Function

5.5.1 Overview

The PLL function is used to output the operating clock of the CPU and peripheral macro at a frequency 4 times higher than the oscillation frequency, and select the clock-through mode.

When PLL function is used:Input clock = 2 to 5 MHz (fxx: 8 to 20 MHz)Clock-through mode:Input clock = 2 to 10 MHz (fxx: 2 to 10 MHz)

5.5.2 Register

(1) PLL control register (PLLCTL)

The PLLCTL register is an 8-bit register that controls the security function of PLL and RTO. This register can be read or written in 8-bit or 1-bit units. After reset, PLLCTL is set to 01H.

		7	6	5	4	3	<2>	<1>	<0>			
	PLLCTL	0	0	0	0	0	RTOST0 ^{Note}	SELPLL	PLLON			
			1									
om		PLLON			PLL ope	eration st	op register					
		0	PLL stopped									
		1	PLL opera	atingtaShe	et4U.co	m						
		SELPLL			PLL clo	ck selecti	on register					
		0	Clock-thro	ough opera	tion							
		1	PLL opera	ation								

5.5.3 Usage

(1) When PLL is used

- After reset has been released, the PLL operates (PLLCTL.PLLON bit = 1), but because the default mode is the clock-through mode (PLLCTL.SELPLL bit = 0), select the PLL mode (SELPLL bit = 1).
- To set the STOP mode in which the main clock is stopped, or to set the IDLE mode, first select the clockthrough mode and then stop the PLL. To return from the IDLE or STOP mode, first enable PLL operation (PLLON bit = 1), and then select the PLL mode (SELPLL bit = 1).
- To enable the PLL operation, first set the PLLON bit to 1, wait for 200 μs, and then set the SELPLL bit to 1.
 To stop the PLL, first select the clock-through mode (SELPLL bit = 0), wait for 8 clocks or more, and then stop the PLL (PLLON bit = 0).

(2) When PLL is not used

- The clock-through mode (SELPLL bit = 0) is selected after reset has been released, but the PLL is operating (PLLON bit = 1) and must therefore be stopped (PLLON bit = 0).
- **Remark** The PLL is operable in the IDLE mode. To realize low power consumption, stop the PLL. Be sure to stop the PLL when shifting to the STOP mode.

et4U.com

DataShe

DataSheet4U.com

CHAPTER 6 16-BIT TIMER/EVENT COUNTER P (TMP)

Timer P (TMP) is a 16-bit timer/event counter. The V850ES/KE1+ incorporates TMP0.

6.1 Overview

An outline of TMP0 is shown below.

- Clock selection: 8 ways
- Capture trigger input pins: 2
- External event count input pins: 1
- External trigger input pins: 1
- Timer/counters: 1
- Capture/compare registers: 2
- Capture/compare match interrupt request signals: 2
- Timer output pins: 2

6.2 Functions

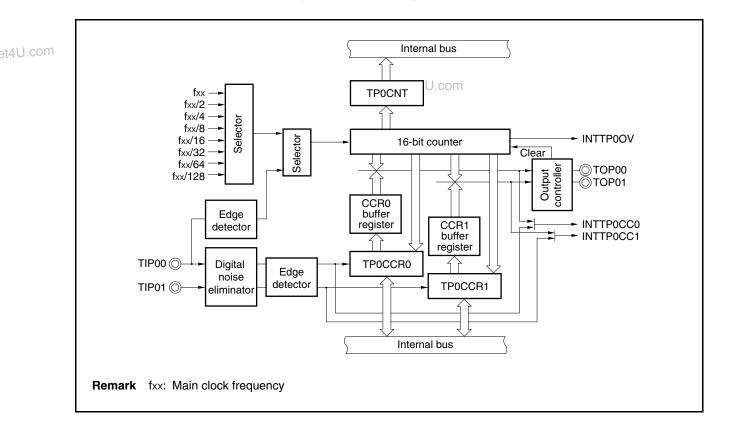
TMP0 has the following functions.

- Interval timer
- DataSheet4U.com
- External trigger pulse output
- One-shot pulse output

• External event counter

- PWM output
- Free-running timer
- Pulse width measurement

et4U.com


6.3 Configuration

TMP0 includes the following hardware.

Table 6-1. Configuration of TMP0

Item	Configuration
Timer register	16-bit counter
Registers	TMP0 capture/compare registers 0, 1 (TP0CCR0, TP0CCR1) TMP0 counter read buffer register (TP0CNT) CCR0, CCR1 buffer registers
Timer inputs	2 (TIP00 ^{Note} , TIP01 pins)
Timer outputs	2 (TOP00, TOP01 pins)
Control registers	TMP0 control registers 0, 1 (TP0CTL0, TP0CTL1) TMP0 I/O control registers 0 to 2 (TP0IOC0 to TP0IOC2) TMP0 option registers 0, 1 (TP0OPT0, TP0OPT1)

Note The TIP00 pin functions alternately as a capture trigger input signal, external event count input signal, and external trigger input signal.

Figure 6-1. Block Diagram of TMP0

DataSheet4U.com

(1) 16-bit counter

This 16-bit counter can count internal clocks or external events.

The count value of this counter can be read by using the TP0CNT register.

When the TP0CTL0.TP0CE bit = 0, the value of the 16-bit counter is FFFFH. If the TP0CNT register is read at this time, 0000H is read.

Reset input clears the TP0CE bit to 0. Therefore, the 16-bit counter is set to FFFFH.

(2) CCR0 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TP0CCR0 register is used as a compare register, the value written to the TP0CCR0 register is transferred to the CCR0 buffer register. When the count value of the 16-bit counter matches the value of the CCR0 buffer register, a compare match interrupt request signal (INTTP0CC0) is generated.

The CCR0 buffer register cannot be read or written directly.

The CCR0 buffer register is cleared to 0000H, as the TP0CCR0 register is cleared to 0000H after reset.

(3) CCR1 buffer register

This is a 16-bit compare register that compares the count value of the 16-bit counter.

When the TP0CCR1 register is used as a compare register, the value written to the TP0CCR1 register is transferred to the CCR1 buffer register. When the count value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTP0CC1) is generated.

The CCR1 buffer register cannot be read or written directly.

The CCR1 buffer register is cleared to 0000H, as the TP0CCR1 register is cleared to 0000H after reset.

DataShe

(4) Edge detector

This circuit detects the valid edges input to the TIP00 and TIP01 pins. No edge, rising edge, falling edge, or both the rising and falling edges can be selected as the valid edge by using the TP0IOC1 and TP0IOC2 registers.

(5) Output controller

This circuit controls the output of the TOP00 and TOP01 pins. The output controller is controlled by the TP0IOC0 register.

(6) Selector

This selector selects the count clock for the 16-bit counter. Eight types of internal clocks or an external event can be selected as the count clock.

(7) Digital noise eliminator

This circuit is valid only when the TIP00 and TIP01 pins are used as a capture trigger input pin. This circuit is controlled by the P0NFC and P1NFC registers.

et4U.com

6.4 Registers

(1) TMP0 control register 0 (TP0CTL0)

The TP0CTL0 register is an 8-bit register that controls the operation of TMP0.

This register can be read or written in 8-bit or 1-bit units.

Reset input clears this register to 00H.

The same value can always be written to the TP0CTL0 register by software.

		<7>	6	5	4	3	2	1	0					
TP0	СТL0	TP0CE	0	0	0	0	TP0CKS2	TP0CKS1	TP0CKS0					
		TP0CE			TMP0	operatior	n control							
		0	TMP0 operation disabled (TMP0 reset asynchronously ^{Note}).											
		1	TMP0 ope	IP0 operation enabled. TMP0 operation started.										
	1	P0CKS2	TP0CKS1	TP0CKS0		Interna	l count clock	selection						
		0	0	0	fxx									
		0	0	1	fxx/2									
		0	1	0	fxx/4									
om		0 1 1 fxx/8												
		1	0	0	fxx/16	Heam								
		1	0	1 Da	fxx/32	+0.com								
		1	1	0	fxx/64									
		1	1	1	fxx/128									

www.DataSheet4U.com

Г

(2) TMP0 control register 1 (TP0CTL1)

The TP0CTL1 register is an 8-bit register that controls the operation of TMP0. This register can be read or written in 8-bit or 1-bit units.

Reset input clears this register to 00H.

	After res	set: 00H	R/W	Address: F	FFFF5A1F	ł					
		7	<6>	<5>	4	3	2	1	0		
	TP0CTL1	0	TP0EST	TP0EEE	0	0	TP0MD2	TP0MD1	TP0MD0		
		TP0EST			Softwa	are trigge	er control				
		0				-					
		1	 In one-s 		utput mode	e: A one- 1 to th t mode:	er input. shot pulse is e TP0EST bi A PWM wav writing 1 to t trigger.	t as the trig eform is ou	ger. tput with		
		TPOEEE			Cour	t clock s	election				
		0	(Perform	peration wit counting wit L0.TP0CK2	h the cour	event co t clock s	unt input. elected by th	e TP0CTL0	D.TP0CK0		
et4U.com		1		peration with counting at			unt input. e external ev	vent count i	nput		DataShe
				ects whethe the external			med with the	internal co	unt clock		
		TP0MD2	TP0MD1	TP0MD0		Tir	ner mode se	lection			
		0	0	0	Interval t	imer mo	de				
		0	0	1	External	event co	unt mode				
		0	1	0	External	trigger p	ulse output r	node			
		0	1	1	One-sho	t pulse o	utput mode				
		1	0	0	PWM ou	tput mod	е				
		1	0	1	Free-run	ning time	er mode				
		1	1	0	Pulse wi	dth meas	surement mo	de			
		1	1	1	Setting p	orohibited	l				
		Cautions	mod to th 2. Exte mod 3. Set TP00 perfe perfe	le or one- nis bit is ig rnal even le regardie the TP CTL0.TP0 CE bit = 1 ormed wi	shot puls gnored. at count ess of the OEEE a CE bit = I.) The o th the T ear the TI	se outp input is value nd TP 0. (Th operation P0CE bio 20CE bio	of the TP0 0MD2 to e same va on is not g bit = 1. t to 0 and	In any ot in the ex EEE bit. TPOMD lue can b uarantee If rewriti	her mode xternal ev 0 bits v be written d when re ng was n	writing 1 ent count when the when the writing is nistakenly ain.	
DataSheet4U.com										www.Date	aS heet4U.com

٦

Г

(3) TMP0 I/O control register 0 (TP0IOC0)

The TP0IOC0 register is an 8-bit register that controls the timer output (TOP00, TOP01 pins). This register can be read or written in 8-bit or 1-bit units.

Reset input clears this register to 00H.

TP0IOC0	7	6	5	4	3	<2>	1	<0>				
	0	0	0	0	TP0OL1	TP0OE1	TP0OL0	TP0OE0				
	TP0OL1				oin output le	vel setting						
	0		pin output i									
	1	TOP01	pin output i	nversion e	nabled							
	TP0OE1			ТОРО	1 pin outpu	t setting						
	0	When T	tput disable FP0OL1 bit FP0OL1 bit	= 0: Low l	evel is outpu level is outp	ut from the ut from the	TOP01 pin TOP01 pir	1				
	1	Timer ou	Timer output enabled (a square wave is output from the TOP01 pin).									
		TP0OL0 TOP00 pin output level setting										
	0	TODOO				versetting						
n	1		pin output i									
		1 TOP00 pin output inversion enabled DataSheet4U.com										
	TP0OE0		D		0 pin outpu	t setting						
	0	When T		= 0: Low l	evel is outpu level is outp							
	1	Timer ou	Itput enable	ed (a squai	re wave is o	utput from	the TOP00	pin).				

www.DataSheet4U.com

٦

(4) TMP0 I/O control register 1 (TP0IOC1)

The TP0IOC1 register is an 8-bit register that controls the valid edge of the capture trigger input signals (TIP00, TIP01 pins).

This register can be read or written in 8-bit units.

Reset input clears this register to 00H.

	7	6	5	4	3	2	1	0	
TP0IOC1	0	0	0	0	TP0IS3	TP0IS2	TP0IS1	TP0IS0	
	TP0IS3	TP0IS2	Capture	e trigger in	put signal (TIP01 pin)	valid edge	setting	
	0	0	No edge	detection (capture ope	eration inva	ılid)		
	0	1	Detection	of rising e	edge				
	1	0	Detection	of falling	edge				
	1	1	Detection	of both ea	dges				
	TP0IS1	TP0IS0			put signal (-	setting	
	0	0	- Ŭ		capture ope	eration inva	ulid)		
	0	1 0		of rising e	0				
	1	1		of falling of both ed	•				
	<u> </u>		DataShe		0				
	Cautions	S 1. Rew	rite the	e TPOIS	63 to	TP0IS0		hen the	
								be written histakenly	
							-	et the bits	
		agai	-						
		-		to TP0I	S0 bits a	re valid	only in	the free-	
		runr	ning time	r mode	and the	pulse w	idth mea	surement	
		moc	le. In a	l other	modes, a	a capture	operation	on is not	
			sible.						

(5) TMP0 I/O control register 2 (TP0IOC2)

The TP0IOC2 register is an 8-bit register that controls the valid edge of the external event count input signal (TIP00 pin) and external trigger input signal (TIP00 pin).

This register can be read or written in 8-bit or 1-bit units.

Reset input clears this register to 00H.

After res	et: 00H	R/W	Address: F	FFFF5A4	Н						
	7	6	5	4	3	2	1	0			
TP0IOC2	0	0	0	0	TP0EES1	TP0EES0	TP0ETS1	TP0ETS0			
			1								
	TP0EES1	TP0EES0	External e	vent count	t input signa	al (TIP00 pi	n) valid edg	ge setting			
	0	0	No edge	detection (external ev	ent count ir	nvalid)				
	0	1	Detection	of rising e	edge						
	1	0	Detection	of falling e	edge						
	1	1	Detection	of both ec	lges						
	TP0ETS1	TP0ETS0	Externa	ıl trigger in	put signal (TIP00 pin)	valid edge :	setting			
	0	0	No edge	detection (external trig	gger invalid)				
	0	1	Detection	of rising e	edge						
	1	0	Detection of falling edge								
	1	1	Detection	Detection of both edges							
	Cautions	bits can mist set t 2. The TP0	when the be writte takenly p the bits a TP0EES CTL1.TP(e TP0CT n when erformed gain. 1 and TF DEEE bit	L0.TP0CE the TP0C I, clear th P0EES0 b = 1 or wh	E bit = 0. E bit = 1. ne TP0CE its are va en the ex	S1, and ⁻ (The sar) If rewri bit to 0 a lid only v ternal eve POMD0 bi	me value iting was and then when the ent count			
			been set					13 - 001)			

(6) TMP0 option register 0 (TP0OPT0)

The TP0OPT0 register is an 8-bit register used to set the capture/compare operation and detect an overflow. This register can be read or written in 8-bit or 1-bit units. Reset input clears this register to 00H.

TPOOPT0 0 0 TPOCCSI TPOCCS0 0 0 0 TPOOVF Image: the set of the set o		7												
0 Compare register selected 1 Capture register selected The TPOCCS1 bit setting is valid only in the free-running timer mode. TPOCCS0 0 Compare register selected 1 Capture register selected 1 Capture register selected 1 Capture register selected The TPOCCS0 bit setting is valid only in the free-running timer mode. TPOOVF The TPOCCS0 bit setting is valid only in the free-running timer mode. TPOOVF TMP0 overflow detection flag Set (1) Overflow cocurred Reset (0) TPOOVF bit 0 written or TPOCTL0.TPOCE bit = 0 • The TPOOVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTPOOV) is generated at the same time that the TPOOVF bit is set to 1. The INTTPOOV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TPOOVF bit is not cleared even when the TPOOVF bit or the TPOOPTO register is read when the TPOOVF bit can be both read and written, but the TPOOVF bit cannot be set	TPOOPTO	0	0	TP0CCS1	TP0CCS0	0	0	0	TP0OVF					
0 Compare register selected 1 Capture register selected The TPOCCS1 bit setting is valid only in the free-running timer mode. TPOCCS0 TPOCCR0 register capture/compare selection 0 Compare register selected 1 Capture register selected 1 Capture register selected 1 Capture register selected The TPOCCS0 bit setting is valid only in the free-running timer mode. The TPOCCS0 bit setting is valid only in the free-running timer mode. TPOOVF TMP0 overflow detection flag Set (1) Overflow occurred Reset (0) TPOOVE bit 0 written or TPOCTL0.TPOCE bit = 0 • The TPOOVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTPOOV) is generated at the same time that the TPOOVF bit is set to 1. The INTTPOOV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TPOOVF bit is not cleared even when the TPOOVF bit or the TPOOPTO register is read when the TPOOVF bit can be both read and written, but the TPOOVF bit cannot be set			1											
1 Capture register selected The TPOCCS1 bit setting is valid only in the free-running timer mode. 1 Capture register selected 0 Compare register selected 1 Capture register selected 1 Capture register selected 1 Capture register selected The TPOCCS0 bit setting is valid only in the free-running timer mode. TPOOVF TMP0 overflow detection flag Set (1) Overflow occurred Reset (0) TPOOVF bit 0 written or TPOCTL0.TPOCE bit = 0 • The TPOOVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTPOOV) is generated at the same time that the TPOOVF bit is set to 1. The INTTPOOV) is generated at the same time that the TPOOVF bit is not cleared even when the TPOOVF bit or the TPOOPTO register is read when the TPOOVF bit = 1. • The TPOOVF bit is not cleared even when the TPOOVF bit conter TPOOPTO register is read when the TPOOVF bit = 1.		TP0CCS1		TP0CC	R1 register	capture/o	compare se	election						
The TPOCCS1 bit setting is valid only in the free-running timer mode. TPOCCS0 TPOCCR0 register capture/compare selection 0 Compare register selected 1 Capture register selected The TPOCCS0 bit setting is valid only in the free-running timer mode. TPOOVF TPOOVF TMP0 overflow detection flag Set (1) Overflow occurred Reset (0) TPOOVF bit overflow written or TPOCTL0.TPOCE bit = 0 • The TPOOVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTPOOV) is generated at the same time that the TPOOVF bit is set to 1. The INTTPOOV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TPOOVF bit is not cleared even when the TPOOVF bit or the TPOOPT0 register is read when the TPOOVF bit = 1.		0	Compa	re register se	lected									
TPOCCS0 TPOCCR0 register capture/compare selection 0 Compare register selected 1 Capture register selected The TPOCCS0 bit setting is valid only in the free-running timer mode. TPOOVF TMP0 overflow detection flag Set (1) Overflow occurred Reset (0) TPOOVE bit 0 written or TPOCTL0.TPOCE bit = 0 • The TPOOVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTPOOV) is generated at the same time that the TPOOVF bit is set to 1. The INTTPOOV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TPOOVF bit is not cleared even when the TPOOVF bit or the TPOOPTO register is read when the TPOOVF bit = 1. • The TPOOVF bit cannot be both read and written, but the TPOOVF bit cannot be set														
0 Compare register selected 1 Capture register selected The TPOCCS0 bit setting is valid only in the free-running timer mode. Image: TPOOVF The TMP0 overflow detection flag Set (1) Overflow occurred Reset (0) TPOOVF bit 0 written or TPOCTL0.TPOCE bit = 0 • The TPOOVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTPOOV) is generated at the same time that the TPOOVF bit is set to 1. The INTTPOOV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TPOOVF bit is not cleared even when the TPOOVF bit or the TPOOPTO register is read when the TPOOVF bit = 1. • The TPOOVF bit can be both read and written, but the TPOOVF bit cannot be set		The TP0	CCS1 bi	t setting is val	id only in the	e free-run	ning timer	mode.						
0 Compare register selected 1 Capture register selected The TP0CCS0 bit setting is valid only in the free-running timer mode. Image: TP0CVF TMP0 overflow detection flag Set (1) Overflow occurred Reset (0) TP0OVF bit 0 written or TP0CTL0.TP0CE bit = 0 • The TP0OVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTP0OV) is generated at the same time that the TP0OVF bit is set to 1. The INTTP0OV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TP0OVF bit is not cleared even when the TP0OVF bit or the TP0OPTO register is read when the TP0OVF bit = 1. • The TP0OVF bit can be both read and written, but the TP0OVF bit cannot be set			1											
1 Capture register selected The TPOCCS0 bit setting is valid only in the free-running timer mode. Image: TPOOVF TMP0 overflow detection flag Set (1) Overflow occurred Reset (0) TPQOVE bit 0 written or TPOCTL0.TPOCE bit = 0 • The TPOOVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTPOOV) is generated at the same time that the TPOOVF bit is set to 1. The INTTPOOV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TPOOVF bit is not cleared even when the TPOOVF bit or the TPOOPT0 register is read when the TPOOVF bit = 1. • The TPOOVF bit can be both read and written, but the TPOOVF bit cannot be set		TP0CCS0		TP0CC	R0 register	capture/o	compare se	election						
The TPOCCS0 bit setting is valid only in the free-running timer mode. TPOOVF TMP0 overflow detection flag Set (1) Overflow occurred Reset (0) TPOOVF bit o written or TPOCTL0.TPOCE bit = 0 • The TPOOVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTPOOV) is generated at the same time that the TPOOVF bit is set to 1. The INTTPOOV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TPOOVF bit is not cleared even when the TPOOVF bit or the TPOOPTO register is read when the TPOOVF bit = 1. • The TPOOVF bit can be both read and written, but the TPOOVF bit cannot be set		0	Compa	re register se	lected									
TPOOVF TMP0 overflow detection flag Set (1) Overflow occurred Reset (0) TP0OVE bit 0 written or TP0CTL0.TP0CE bit = 0 • The TP0OVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTP0OV) is generated at the same time that the TP0OVF bit is set to 1. The INTTP0OV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TP0OVF bit is not cleared even when the TP0OVF bit or the TP0OPT0 register is read when the TP0OVF bit = 1. • The TP0OVF bit can be both read and written, but the TP0OVF bit cannot be set		1	Captur	e register sele	ected									
Set (1) Overflow occurred Reset (0) TP00VE bit 0 written or TP0CTL0.TP0CE bit = 0 • The TP00VF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTP00V) is generated at the same time that the TP00VF bit is set to 1. The INTTP00V signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TP00VF bit is not cleared even when the TP00VF bit or the TP00PT0 register is read when the TP00VF bit = 1. • The TP00VF bit can be both read and written, but the TP00VF bit cannot be set		The TP0	The TP0CCS0 bit setting is valid only in the free-running timer mode.											
Set (1) Overflow occurred Reset (0) TP0OVE bit 0 written or TP0CTL0.TP0CE bit = 0 • The TP0OVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTP0OV) is generated at the same time that the TP0OVF bit is set to 1. The INTTP0OV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TP0OVF bit is not cleared even when the TP0OVF bit or the TP0OPTO register is read when the TP0OVF bit = 1. • The TP0OVF bit can be both read and written, but the TP0OVF bit cannot be set														
Set (1) Overflow occurred Reset (0) TPOOVE bit 0 written or TPOCTL0.TPOCE bit = 0 • The TPOOVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. • An interrupt request signal (INTTPOOV) is generated at the same time that the TPOOVF bit is set to 1. The INTTPOOV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. • The TPOOVF bit is not cleared even when the TPOOVF bit or the TPOOPTO register is read when the TPOOVF bit = 1. • The TPOOVF bit can be both read and written, but the TPOOVF bit cannot be set		TPC	OVF		TMP0 over	flow dete	ection flag							
 The TPOOVF bit is set to 1 when the 16-bit counter count value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. An interrupt request signal (INTTPOOV) is generated at the same time that the TPOOVF bit is set to 1. The INTTPOOV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. The TPOOVF bit is not cleared even when the TPOOVF bit or the TPOOPTO register is read when the TPOOVF bit = 1. The TPOOVF bit can be both read and written, but the TPOOVF bit cannot be set 		Set (1)		Overflow	occurred									
 FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. An interrupt request signal (INTTP0OV) is generated at the same time that the TP0OVF bit is set to 1. The INTTP0OV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. The TP0OVF bit is not cleared even when the TP0OVF bit or the TP0OPT0 register is read when the TP0OVF bit = 1. The TP0OVF bit can be both read and written, but the TP0OVF bit cannot be set 		Reset (0)	DTPOOVE	bit 0 written	or TP0C	L0.TP0CE	bit = 0						
 An interrupt request signal (INTTP0OV) is generated at the same time that the TP0OVF bit is set to 1. The INTTP0OV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. The TP0OVF bit is not cleared even when the TP0OVF bit or the TP0OPT0 register is read when the TP0OVF bit = 1. The TP0OVF bit can be both read and written, but the TP0OVF bit cannot be set 		FFFFH												
 than the free-running timer mode and the pulse width measurement mode. The TP0OVF bit is not cleared even when the TP0OVF bit or the TP0OPT0 register is read when the TP0OVF bit = 1. The TP0OVF bit can be both read and written, but the TP0OVF bit cannot be set 		 An inte 												
 The TP0OVF bit is not cleared even when the TP0OVF bit or the TP0OPT0 register is read when the TP0OVF bit = 1. The TP0OVF bit can be both read and written, but the TP0OVF bit cannot be set 						0	0							
The TP0OVF bit can be both read and written, but the TP0OVF bit cannot be set							OVF bit or	the TP0C	PT0					
to 1 by software. Writing 1 has no influence on the operation of TMP0.		•					not be set							
		to 1 by	software	. Writing 1 ha	s no influen	ce on the	operation	of TMP0.						
			bit	= 0. (The	same valu	e can l	be writter	when	the TP0CE					
bit = 0. (The same value can be written when the TP0CE			bit	= 1.) If re	writing wa	s mista	akenly pe	rformed	l, clear the					
bit = 0. (The same value can be written when the TP0CE bit = 1.) If rewriting was mistakenly performed, clear the			TP	0CE bit to 0) and then	set the	bits agai	n.						
			2. Be	sure to cle	ar bits 1 to	36 ai	nd 7 to 0.							

(7) TMP0 capture/compare register 0 (TP0CCR0)

The TP0CCR0 register can be used as a capture register or a compare register depending on the mode. This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TP0OPT0.TP0CCS0 bit. In the pulse width measurement mode, the TP0CCR0 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TP0CCR0 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset input clears this register to 0000H.

Caution Accessing the TP0CCR0 register is disabled during subclock operation with the main clock stopped. For details, refer to 3.4.8 (2).

After re	set: C	0000H	F	R/W	Ad	dress	: FFF	FF5A	A6H							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TP0CCR0																

et4U.com

DataShe

DataSheet4U.com

(a) Function as compare register

The TP0CCR0 register can be rewritten even when the TP0CTL0.TP0CE bit = 1.

The set value of the TP0CCR0 register is transferred to the CCR0 buffer register. When the value of the 16-bit counter matches the value of the CCR0 buffer register, a compare match interrupt request signal (INTTP0CC0) is generated. If TOP00 pin output is enabled at this time, the output of the TOP00 pin is inverted.

When the TP0CCR0 register is used as a cycle register in the interval timer mode, external event count mode, external trigger pulse output mode, one-shot pulse output mode, or PWM output mode, the value of the 16-bit counter is cleared (0000H) if its count value matches the value of the CCR0 buffer register.

(b) Function as capture register

When the TP0CCR0 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TP0CCR0 register if the valid edge of the capture trigger input pin (TIP00 pin) is detected. In the pulse width measurement mode, the count value of the 16-bit counter is stored in the TP0CCR0 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIP00 pin) is detected.

Even if the capture operation and reading the TP0CCR0 register conflict, the correct value of the TP0CCR0 register can be read.

The following table shows the functions of the capture/compare register in each mode, and how to write data to the compare register.

et4U.com

Table 6-2. Function of Capture/Compare Register in Each Mode and How to Write Compare Register

Operation Mode	Capture/Compare Register	How to Write Compare Register
Interval timer	Compare register	Anytime write
External event counter	Compare register	Anytime write
External trigger pulse output	Compare register	Batch write
One-shot pulse output	Compare register	Anytime write
PWM output	Compare register	Batch write
Free-running timer	Capture/compare register	Anytime write
Pulse width measurement	Capture register	_

(8) TMP0 capture/compare register 1 (TP0CCR1)

The TP0CCR1 register can be used as a capture register or a compare register depending on the mode. This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TP0OPT0.TP0CCS1 bit. In the pulse width measurement mode, the TP0CCR1 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TP0CCR1 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset input clears this register to 0000H.

Caution Accessing the TP0CCR1 register is disabled during subclock operation with the main clock stopped. For details, refer to 3.4.8 (2).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TPOCCR1	After	reset:	0000H	I F	3/W	Ad	dress	: FFF	FF54	\8H							
TP0CCR1		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TP0CCR1																

et4U.com

DataShe

DataSheet4U.com

(a) Function as compare register

The TP0CCR1 register can be rewritten even when the TP0CTL0.TP0CE bit = 1.

The set value of the TP0CCR1 register is transferred to the CCR1 buffer register. When the value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTP0CC1) is generated. If TOP01 pin output is enabled at this time, the output of the TOP01 pin is inverted.

(b) Function as capture register

When the TP0CCR1 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TP0CCR1 register if the valid edge of the capture trigger input pin (TIP01 pin) is detected. In the pulse width measurement mode, the count value of the 16-bit counter is stored in the TP0CCR1 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIP01 pin) is detected.

Even if the capture operation and reading the TP0CCR1 register conflict, the correct value of the TP0CCR1 register can be read.

The following table shows the functions of the capture/compare register in each mode, and how to write data to the compare register.

Operation Mode	Capture/Compare Register	How to Write Compare Register
Interval timer	Compare register	Anytime write
External event counter	Compare register	Anytime write
External trigger pulse output	Compare register	Batch write
One-shot pulse output	Compare register	Anytime write
PWM output	Compare register	Batch write
Free-running timer	Capture/compare register	Anytime write
Pulse width measurement	Capture register	_

Table 6-3. Function of Capture/Compare Register in Each Mode and How to Write Compare Register

(9) TMP0 counter read buffer register (TP0CNT)

The TPOCNT register is a read buffer register that can read the count value of the 16-bit counter. If this register is read when the TPOCTL0.TPOCE bit = 1, the count value of the 16-bit counter can be read. This register is read-only, in 16-bit units.

The value of the TP0CNT register is cleared to 0000H when the TP0CE bit = 0. If the TP0CNT register is read at this time, the value of the 16-bit counter (FFFFH) is not read, but 0000H is read.

The value of the TP0CNT register is cleared to 0000H, as the TP0CE bit is cleared to 0 after reset.

Caution Accessing the TP0CNT register is disabled during subclock operation with the main clock stopped. For details, refer to 3.4.8 (2).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TPOCNT	After res	set: 0	000H	F	}	Addre	ss: F	FFFF	5AAI	4							
TPOCNT		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TP0CNT																

et4U.com

DataShe

DataSheet4U.com

6.5 Operation

TMP0 can perform the following operations.

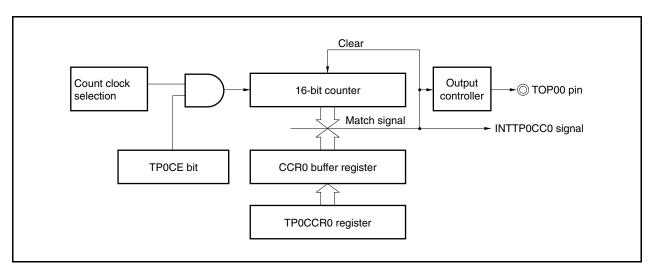
Operation	TP0CTL1.TP0EST Bit (Software Trigger Bit)	TIP00 Pin (External Trigger Input)	Capture/Compare Register Setting	Compare Register Write
Interval timer mode	Invalid	Invalid	Compare only	Anytime write
External event count mode ^{Note 1}	Invalid	Invalid	Compare only	Anytime write
External trigger pulse output mode ^{Note 2}	Valid	Valid	Compare only	Batch write
One-shot pulse output mode ^{Note 2}	Valid	Valid	Compare only	Anytime write
PWM output mode	Invalid	Invalid	Compare only	Batch write
Free-running timer mode	Invalid	Invalid	Switching enabled	Anytime write
Pulse width measurement mode ^{Note 2}	Invalid	Invalid	Capture only	Not applicable

Notes 1. To use the external event count mode, specify that the valid edge of the TIP00 pin capture trigger input is not detected (by clearing the TP0IOC1.TP0IS1 and TP0IOC1.TP0IS0 bits to "00").

2. When using the external trigger pulse output mode, one-shot pulse output mode, and pulse width measurement mode, select the internal clock as the count clock (by clearing the TP0CTL1.TP0EEE bit to 0).

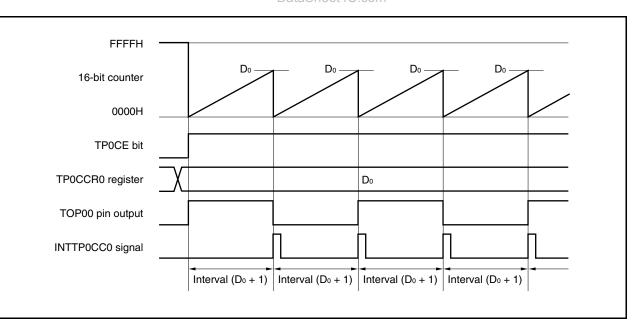
et4U.com

DataSheet4U.com


DataSheet4U.com

6.5.1 Interval timer mode (TP0MD2 to TP0MD0 bits = 000)

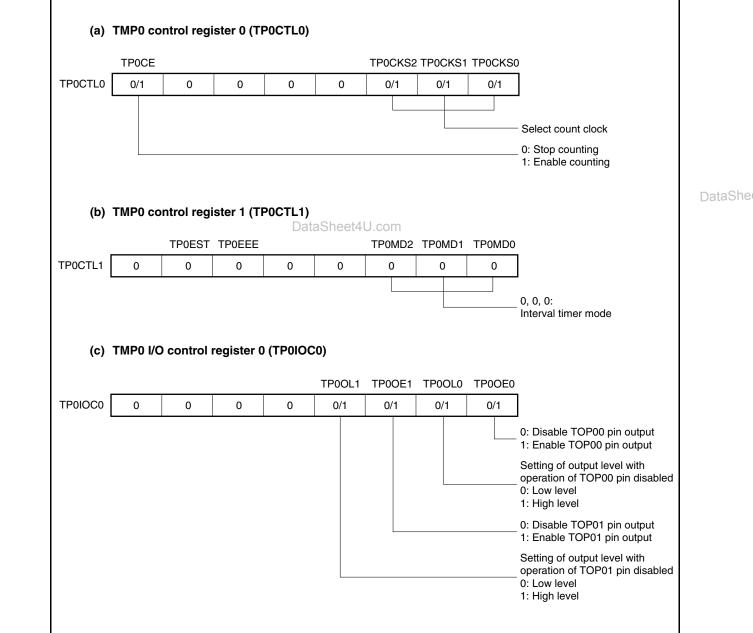
In the interval timer mode, an interrupt request signal (INTTPOCC0) is generated at the specified interval if the TP0CTL0.TP0CE bit is set to 1. A square wave whose half cycle is equal to the interval can be output from the TOP00 pin.


Usually, the TP0CCR1 register is not used in the interval timer mode.

et4U.com

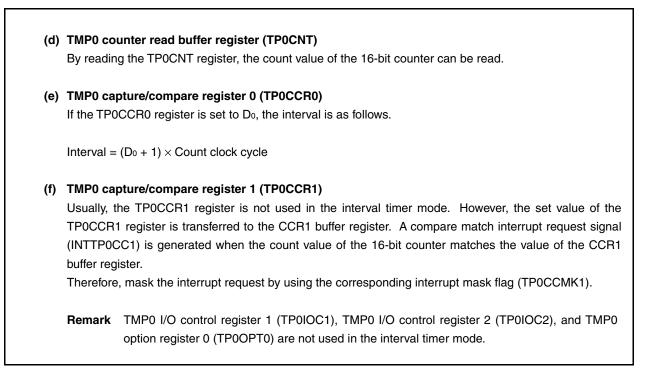
Figure 6-3. Basic Timing of Operation in Interval Timer Mode

www.DataSheet4U.com


When the TP0CE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H in synchronization with the count clock, and the counter starts counting. At this time, the output of the TOP00 pin is inverted. Additionally, the set value of the TP0CCR0 register is transferred to the CCR0 buffer register.

When the count value of the 16-bit counter matches the value of the CCR0 buffer register, the 16-bit counter is cleared to 0000H, the output of the TOP00 pin is inverted, and a compare match interrupt request signal (INTTP0CC0) is generated.

The interval can be calculated by the following expression.


Interval = (Set value of TP0CCR0 register + 1) × Count clock cycle

151

Figure 6-4. Register Setting for Interval Timer Mode Operation (2/2)

et4U.com

DataSheet4U.com

(1) Interval timer mode operation flow

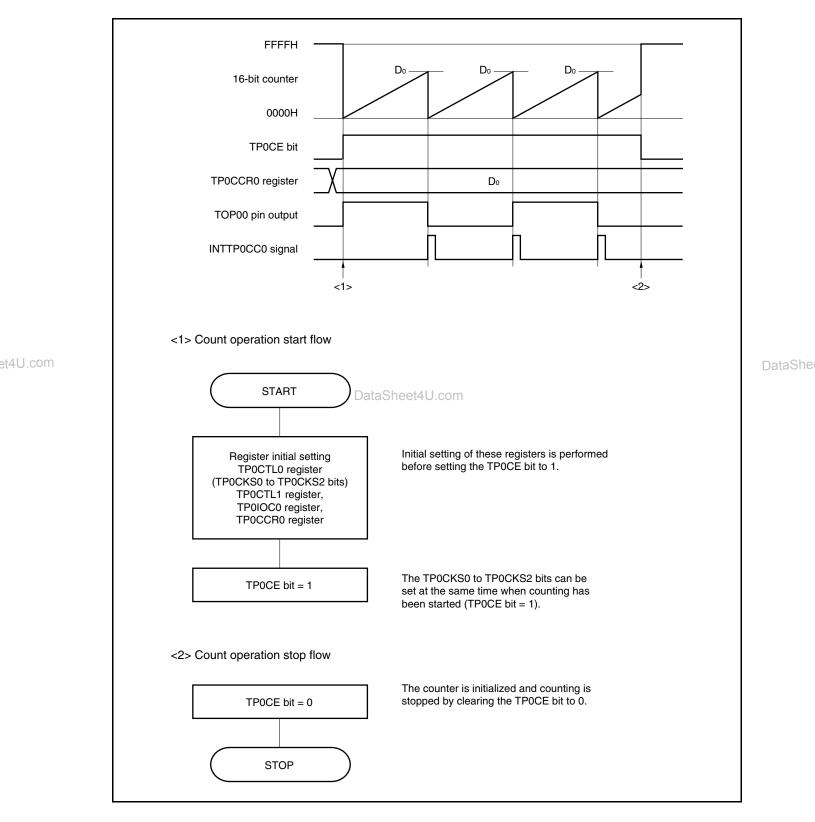
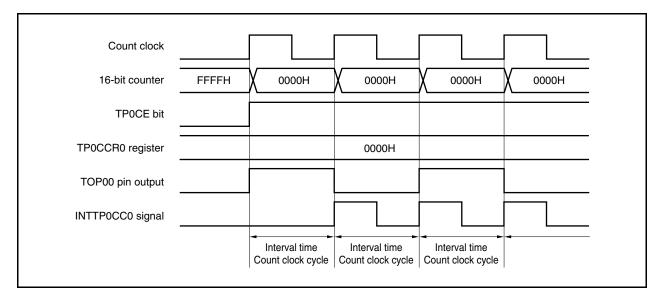


Figure 6-5. Software Processing Flow in Interval Timer Mode

DataSheet4U.com

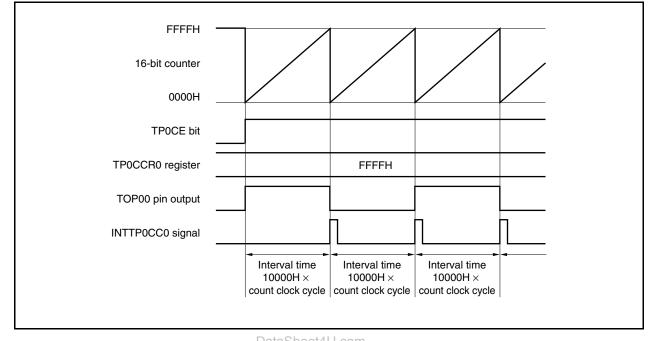

www.DataSheet4U.com

(2) Interval timer mode operation timing

(a) Operation if TP0CCR0 register is cleared to 0000H

If the TP0CCR0 register is cleared to 0000H, the INTTP0CC0 signal is generated at each count clock, and the output of the TOP00 pin is inverted.

The value of the 16-bit counter is always 0000H.

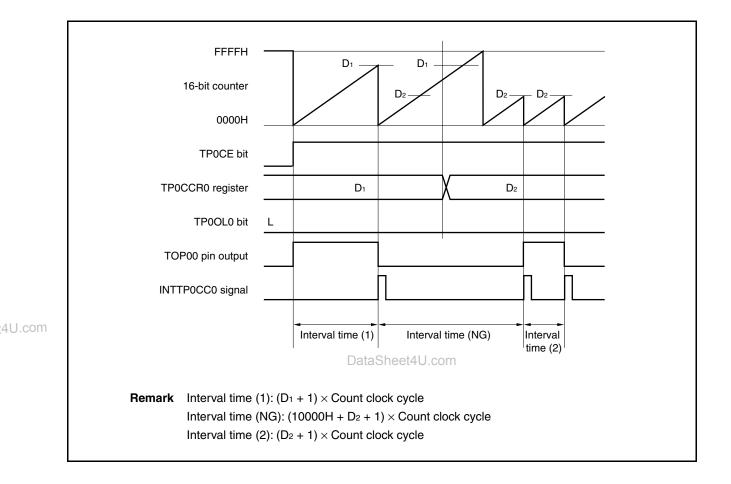

et4U.com

DataSheet4U.com

www.DataSheet4U.com

(b) Operation if TP0CCR0 register is set to FFFFH

If the TP0CCR0 register is set to FFFFH, the 16-bit counter counts up to FFFFH. The counter is cleared to 0000H in synchronization with the next count-up timing. The INTTPOCC0 signal is generated and the output of the TOP00 pin is inverted. At this time, an overflow interrupt request signal (INTTP0OV) is not generated, nor is the overflow flag (TP0OPT0.TP0OVF bit) set to 1.


et4U.com

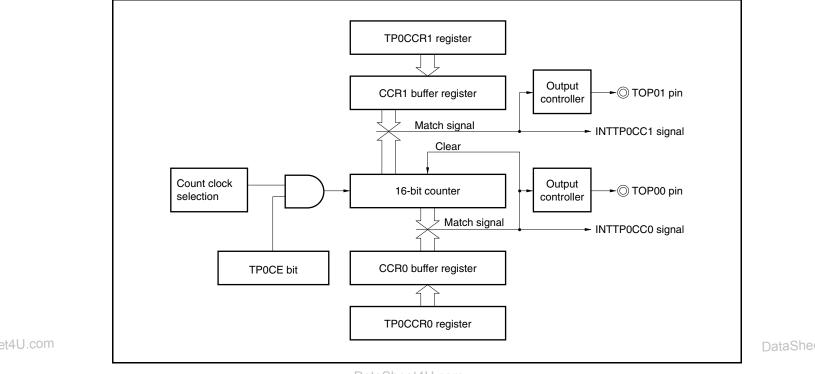
DataSheet4U.com

(c) Notes on rewriting TP0CCR0 register

To change the value of the TP0CCR0 register to a smaller value, stop counting once and then change the set value.

If the value of the TP0CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

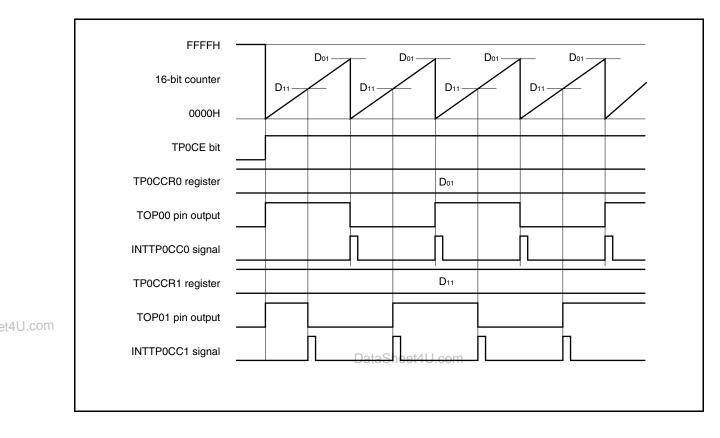
If the value of the TP0CCR0 register is changed from D_1 to D_2 while the count value is greater than D_2 but less than D_1 , the count value is transferred to the CCR0 buffer register as soon as the TP0CCR0 register has been rewritten. Consequently, the value of the 16-bit counter that is compared is D_2 .

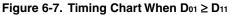

Because the count value has already exceeded D₂, however, the 16-bit counter counts up to FFFFH, overflows, and then counts up again from 0000H. When the count value matches D₂, the INTTPOCCO signal is generated and the output of the TOP00 pin is inverted.

Therefore, the INTTP0CC0 signal may not be generated at the interval time " $(D_1 + 1) \times Count clock cycle$ " or " $(D_2 + 1) \times Count clock cycle$ " originally expected, but may be generated at an interval of " $(10000H + D_2 + 1) \times Count clock cycle$ ".

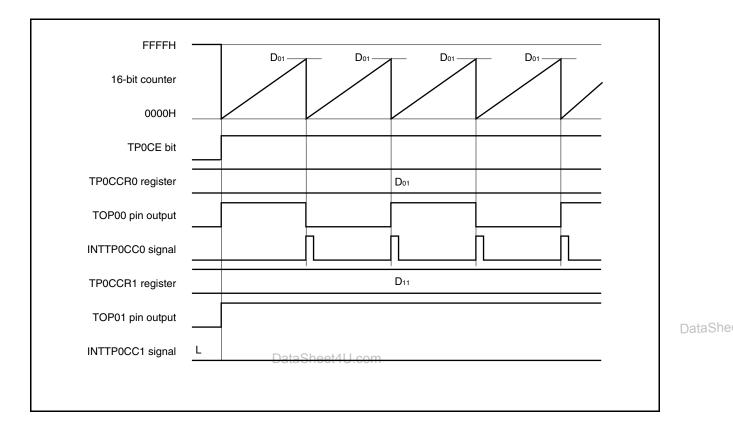
www.DataSheet4U.com

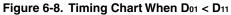
(d) Operation of TP0CCR1 register



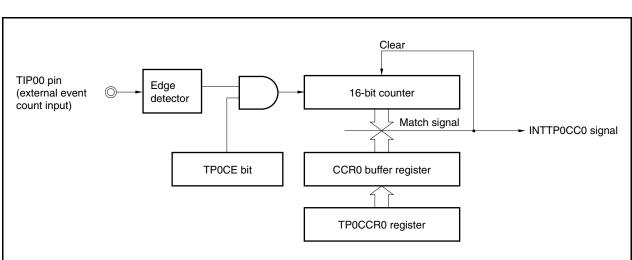

DataSheet4U.com

DataSheet4U.com


www.DataSheet4U.com


If the set value of the TP0CCR1 register is less than the set value of the TP0CCR0 register, the INTTP0CC1 signal is generated once per cycle. At the same time, the output of the TOP01 pin is inverted. The TOP01 pin outputs a square wave with the same cycle as that output by the TOP00 pin.

If the set value of the TP0CCR1 register is greater than the set value of the TP0CCR0 register, the count value of the 16-bit counter does not match the value of the TP0CCR1 register. Consequently, the INTTP0CC1 signal is not generated, nor is the output of the TOP01 pin changed.



et4U.com

6.5.2 External event count mode (TP0MD2 to TP0MD0 bits = 001)

In the external event count mode, the valid edge of the external event count input is counted when the TP0CTL0.TP0CE bit is set to 1, and an interrupt request signal (INTTP0CC0) is generated each time the specified number of edges have been counted. The TOP00 pin cannot be used.

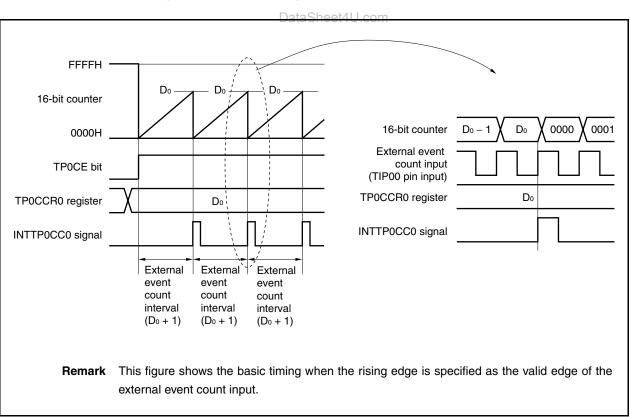

Usually, the TP0CCR1 register is not used in the external event count mode.

Figure 6-9. Configuration in External Event Count Mode

et4U.com

Figure 6-10. Basic Timing in External Event Count Mode

DataSheet4U.com

When the TP0CE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H. The counter counts each time the valid edge of external event count input is detected. Additionally, the set value of the TP0CCR0 register is transferred to the CCR0 buffer register.

When the count value of the 16-bit counter matches the value of the CCR0 buffer register, the 16-bit counter is cleared to 0000H, and a compare match interrupt request signal (INTTP0CC0) is generated.

The INTTP0CC0 signal is generated each time the valid edge of the external event count input has been detected (set value of TP0CCR0 register + 1) times.

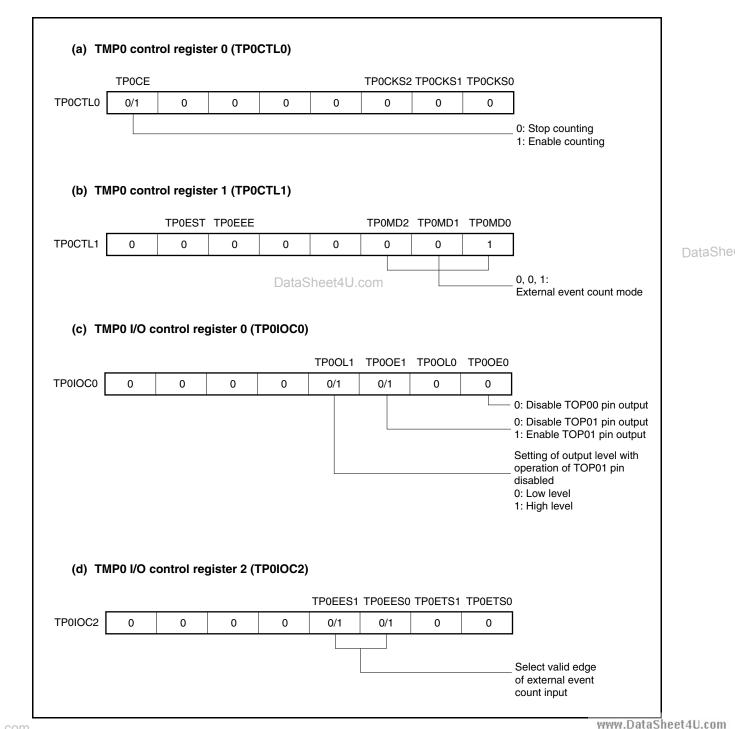
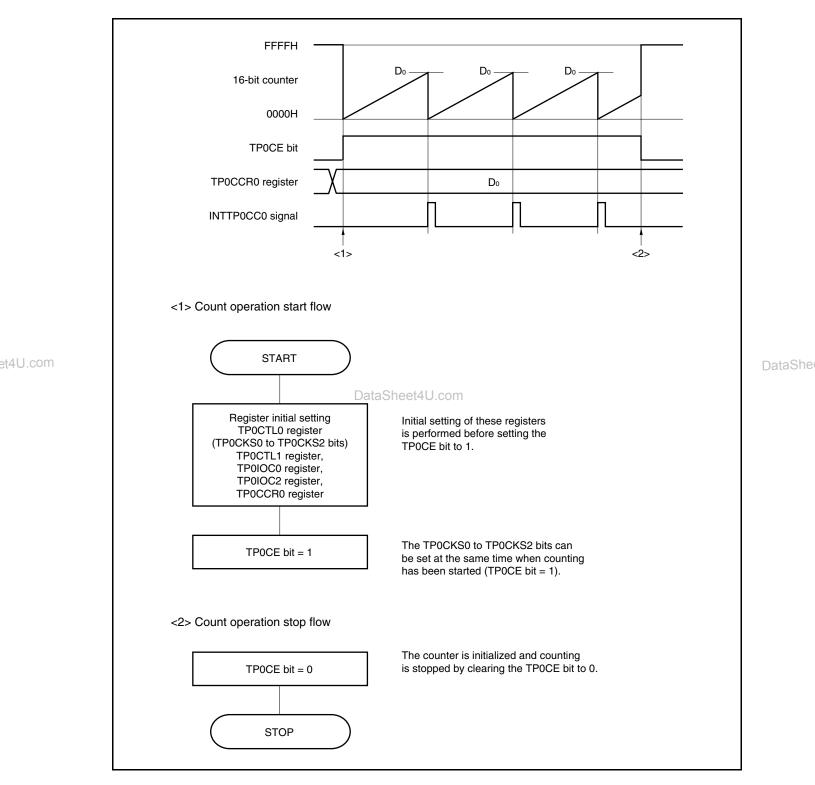


Figure 6-11. Register Setting for Operation in External Event Count Mode (1/2)

DataSheet4U.com

Figure 6-11. Register Setting for Operation in External Event Count Mode (2/2)


(e)	TMP0 counter read buffer register (TP0CNT) The count value of the 16-bit counter can be read by reading the TP0CNT register.
(f)	TMP0 capture/compare register 0 (TP0CCR0) If D ₀ is set to the TP0CCR0 register, the counter is cleared and a compare match interrupt request signal (INTTP0CC0) is generated when the number of external event counts reaches (D ₀ + 1).
(g)	TMP0 capture/compare register 1 (TP0CCR1) Usually, the TP0CCR1 register is not used in the external event count mode. However, the set value of the TP0CCR1 register is transferred to the CCR1 buffer register. When the count value of the 16-bit counter matches the value of the CCR1 buffer register, a compare match interrupt request signal (INTTP0CC1) is generated. Therefore, mask the interrupt signal by using the interrupt mask flag (TP0CCMK1).
	Remark TMP0 I/O control register 1 (TP0IOC1) and TMP0 option register 0 (TP0OPT0) are not used in the external event count mode.

et4U.com

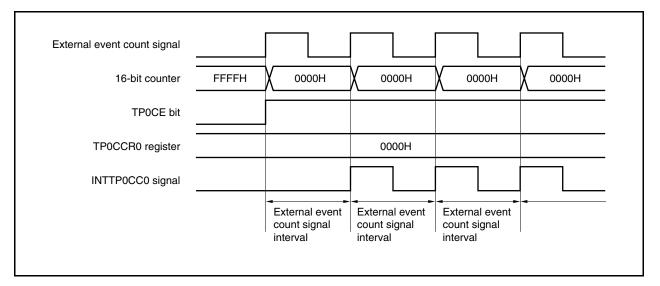
DataShe

DataSheet4U.com

(1) External event count mode operation flow

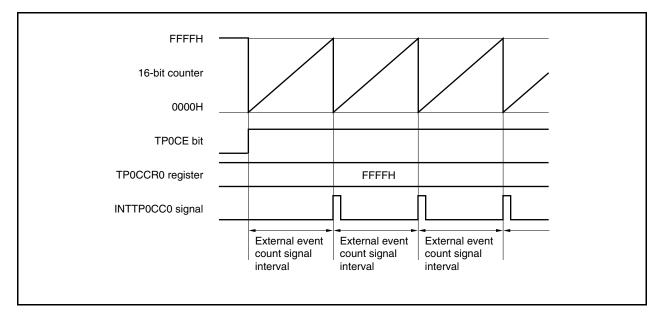
Figure 6-12. Flow of Software Processing in External Event Count Mode

DataSheet4U.com


www.DataSheet4U.com

(2) Operation timing in external event count mode

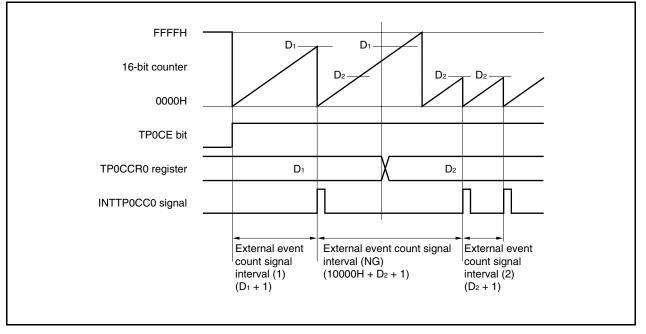
(a) Operation if TP0CCR0 register is cleared to 0000H


If the TP0CCR0 register is cleared to 0000H, the INTTP0CC0 signal is generated each time the valid edge of the external event count signal has been detected.

The 16-bit counter is always 0000H.

(b) Operation if TP0CCR0 register is set to FFFFH

If the TP0CCR0 register is set to FFFFH, the 16-bit counter counts to FFFFH each time the valid edge of the external event count signal has been detected. The 16-bit counter is cleared to 0000H in synchronization with the next count-up timing, and the INTTP0CC0 signal is generated. At this time, the TP0OPT0.TP0OVF bit is not set.



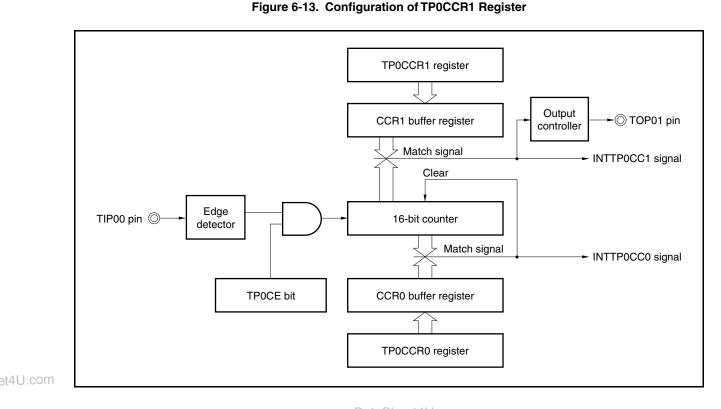
et4U.com

(c) Notes on rewriting the TP0CCR0 register

To change the value of the TP0CCR0 register to a smaller value, stop counting once and then change the set value.

If the value of the TP0CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

DataSheet4U.com


If the value of the TP0CCR0 register is changed from D_1 to D_2 while the count value is greater than D_2 but less than D_1 , the count value is transferred to the CCR0 buffer register as soon as the TP0CCR0 register has been rewritten. Consequently, the value that is compared with the 16-bit counter is D_2 .

Because the count value has already exceeded D₂, however, the 16-bit counter counts up to FFFFH, overflows, and then counts up again from 0000H. When the count value matches D₂, the INTTPOCCO signal is generated.

Therefore, the INTTP0CC0 signal may not be generated at the valid edge count of " $(D_1 + 1)$ times" or " $(D_2 + 1)$ times" originally expected, but may be generated at the valid edge count of " $(10000H + D_2 + 1)$ times".

www.DataSheet4U.com

(d) Operation of TP0CCR1 register

If the set value of the TP0CCR1 register is smaller than the set value of the TP0CCR0 register, the INTTP0CC1 signal is generated once per cycle. At the same time, the output signal of the TOP01 pin is inverted.

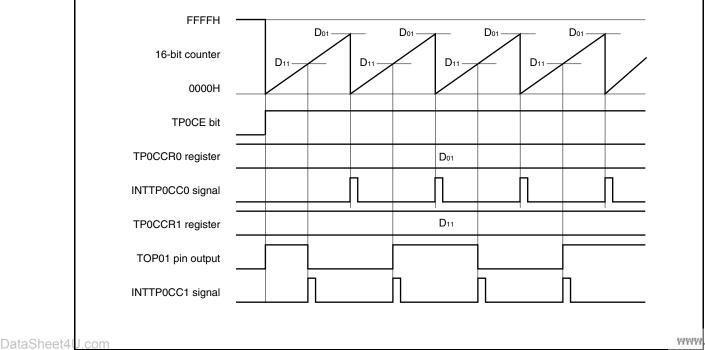
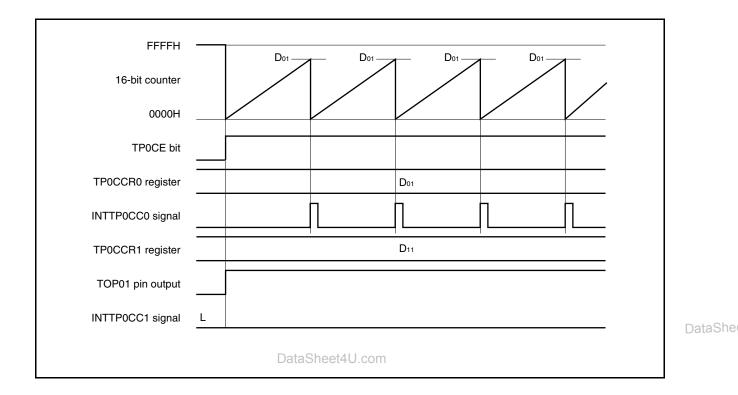
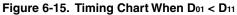
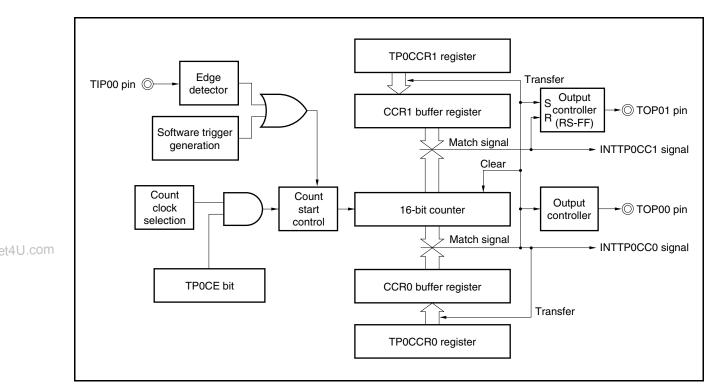




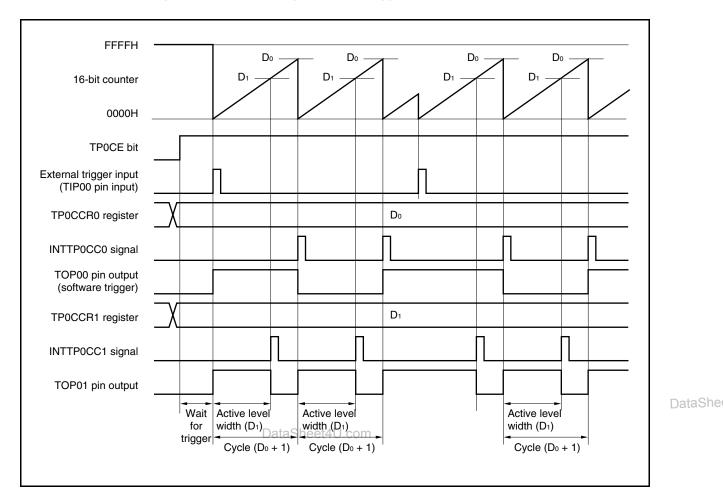
Figure 6-14. Timing Chart When $D_{01} \ge D_{11}$

www.DataSheet4U.com

If the set value of the TP0CCR1 register is greater than the set value of the TP0CCR0 register, the INTTP0CC1 signal is not generated because the count value of the 16-bit counter and the value of the TP0CCR1 register do not match. Nor is the output signal of the TOP01 pin changed.


et4U.com

www.DataSheet4U.com


6.5.3 External trigger pulse output mode (TP0MD2 to TP0MD0 bits = 010)

In the external trigger pulse output mode, 16-bit timer/event counter P waits for a trigger when the TP0CTL0.TP0CE bit is set to 1. When the valid edge of an external trigger input signal is detected, 16-bit timer/event counter P starts counting, and outputs a PWM waveform from the TOP01 pin.

Pulses can also be output by generating a software trigger instead of using the external trigger. When using a software trigger, a square wave that has one cycle of the PWM waveform as half its cycle can also be output from the TOP00 pin.

Figure 6-16. Configuration in External Trigger Pulse Output Mode

16-bit timer/event counter P waits for a trigger when the TP0CE bit is set to 1. When the trigger is generated, the 16-bit counter is cleared from FFFFH to 0000H, starts counting at the same time, and outputs a PWM waveform from the TOP01 pin.

If the trigger is generated again while the counter is operating, the counter is cleared to 0000H and restarted. The active level width, cycle, and duty factor of the PWM waveform can be calculated as follows.

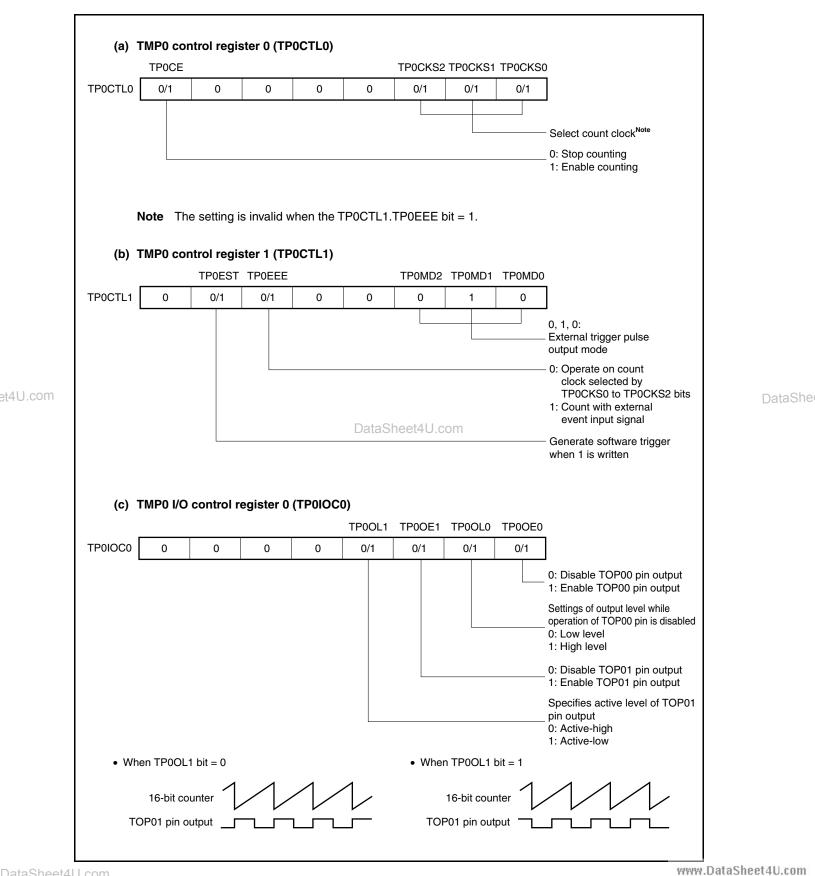
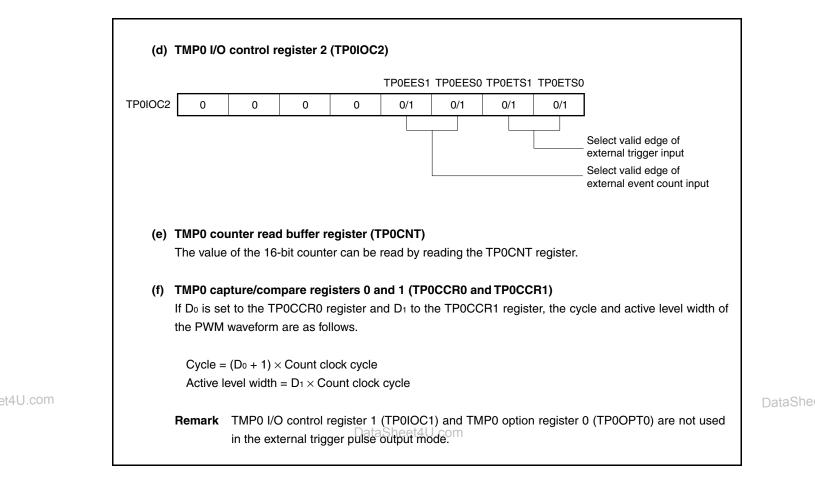
Active level width = (Set value of TP0CCR1 register) × Count clock cycle Cycle = (Set value of TP0CCR0 register + 1) × Count clock cycle Duty factor = (Set value of TP0CCR1 register)/(Set value of TP0CCR0 register + 1)

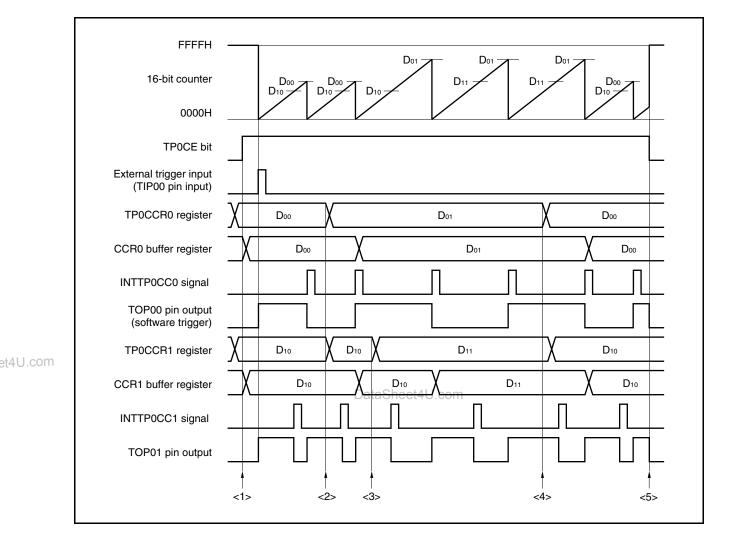
The compare match interrupt request signal INTTPOCC0 is generated when the 16-bit counter counts next time after its count value matches the value of the CCR0 buffer register, and the 16-bit counter is cleared to 0000H. The compare match interrupt request signal INTTPOCC1 is generated when the count value of the 16-bit counter matches the value of the CCR1 buffer register.

The value set to the TP0CCRa register is transferred to the CCRa buffer register when the count value of the 16-bit counter matches the value of the CCRa buffer register and the 16-bit counter is cleared to 0000H.

The valid edge of an external trigger input signal, or setting the software trigger (TP0CTL1.TP0EST bit) to 1 is used as the trigger.

				- 6
toe	heet	<i>A</i> I I	0000	
10.0		411		


Figure 6-18. Setting of Registers in External Trigger Pulse Output Mode (1/2)

DataSheet4U.com

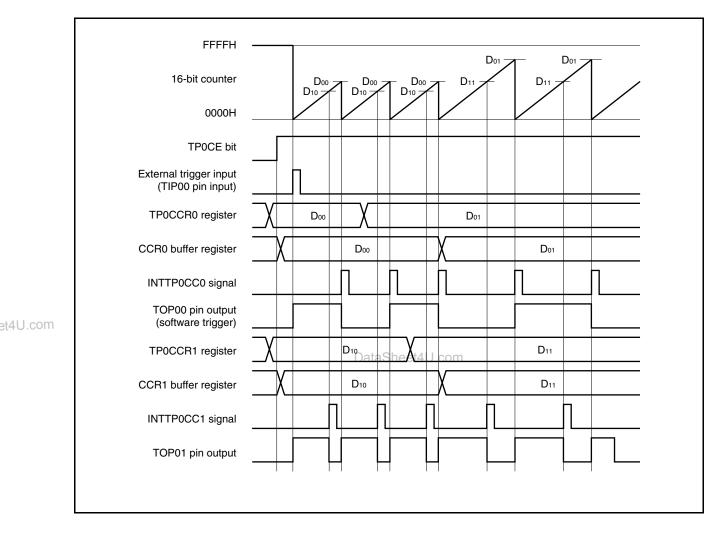
Figure 6-18. Setting of Registers in External Trigger Pulse Output Mode (2/2)

(1) Operation flow in external trigger pulse output mode

Figure 6-19. Software Processing Flow in External Trigger Pulse Output Mode (1/2)

DataShe

DataSheet4U.com


DataSheet4U.com

www.DataSheet4U.com

(2) External trigger pulse output mode operation timing

(a) Note on changing pulse width during operation

To change the PWM waveform while the counter is operating, write the TP0CCR1 register last. Rewrite the TP0CCRa register after writing the TP0CCR1 register after the INTTP0CC0 signal is detected.

In order to transfer data from the TP0CCRa register to the CCRa buffer register, the TP0CCR1 register must be written.

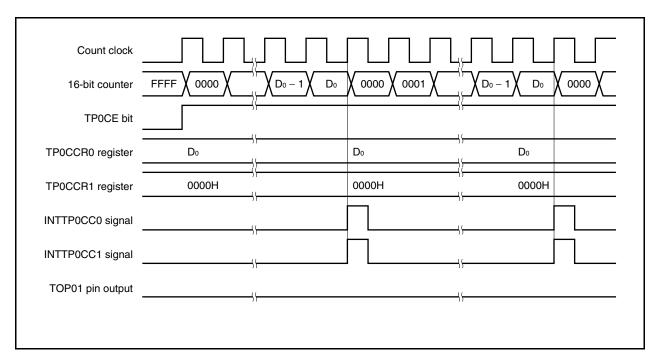
To change both the cycle and active level width of the PWM waveform at this time, first set the cycle to the TP0CCR0 register and then set the active level width to the TP0CCR1 register.

To change only the cycle of the PWM waveform, first set the cycle to the TP0CCR0 register, and then write the same value to the TP0CCR1 register.

To change only the active level width (duty factor) of the PWM waveform, only the TP0CCR1 register has to be set.

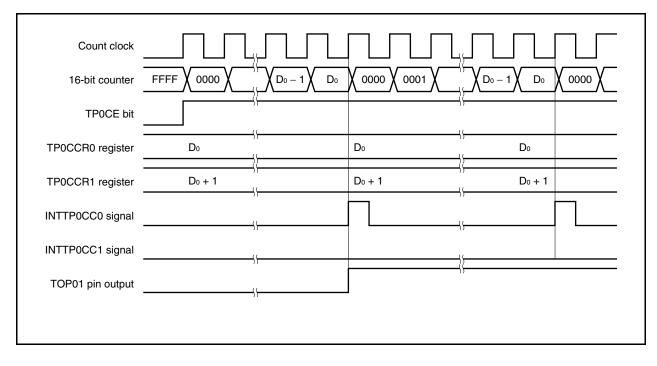
After data is written to the TP0CCR1 register, the value written to the TP0CCRa register is transferred to the CCRa buffer register in synchronization with clearing of the 16-bit counter, and is used as the value compared with the 16-bit counter.

To write the TP0CCR0 or TP0CCR1 register again after writing the TP0CCR1 register once, do so after the INTTP0CC0 signal is generated. Otherwise, the value of the CCRa buffer register may become undefined because the timing of transferring data from the TP0CCRa register to the CCRa buffer register conflicts with writing the TP0CCRa register.

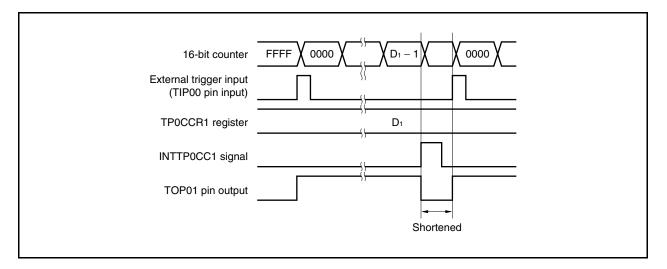

Remark a = 0, 1

et4U.com

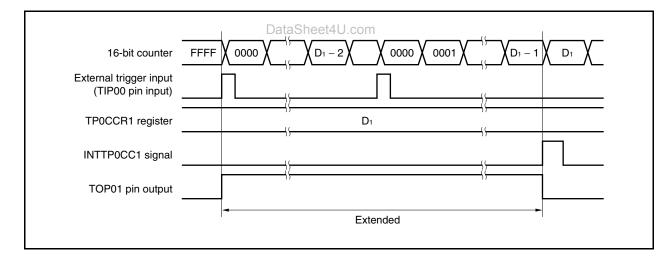
DataSheet4U.com


(b) 0%/100% output of PWM waveform

To output a 0% waveform, clear the TP0CCR1 register to 0000H. If the set value of the TP0CCR0 register is FFFFH, the INTTP0CC1 signal is generated periodically.


et4U.com

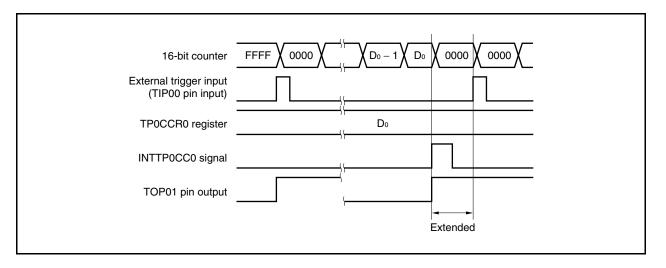
To output a 100% waveform, set a value of (set value of TP0CCR0 register + 1) to the TP0CCR1 register. If the set value of the TP0CCR0 register is FFFFH, 100% output cannot be produced.



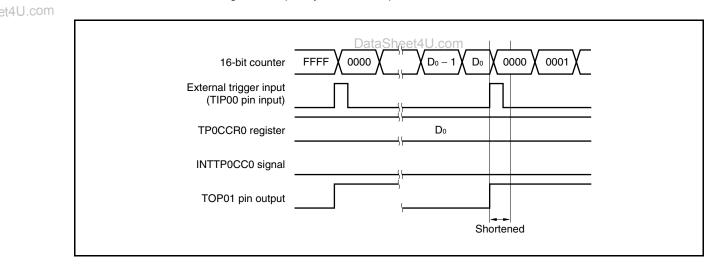
(c) Conflict between trigger detection and match with TP0CCR1 register

If the trigger is detected immediately after the INTTPOCC1 signal is generated, the 16-bit counter is immediately cleared to 0000H, the output signal of the TOP01 pin is asserted, and the counter continues counting. Consequently, the inactive period of the PWM waveform is shortened.

If the trigger is detected immediately before the INTTPOCC1 signal is generated, the INTTPOCC1 signal is not generated, and the 16-bit counter is cleared to 0000H and continues counting. The output signal of the TOP01 pin remains active. Consequently, the active period of the PWM waveform is extended.


DataShe

DataSheet4U.com


et4U.com

(d) Conflict between trigger detection and match with TP0CCR0 register

If the trigger is detected immediately after the INTTPOCC0 signal is generated, the 16-bit counter is cleared to 0000H and continues counting up. Therefore, the active period of the TOP01 pin is extended by time from generation of the INTTPOCC0 signal to trigger detection.

If the trigger is detected immediately before the INTTP0CC0 signal is generated, the INTTP0CC0 signal is not generated. The 16-bit counter is cleared to 0000H, the TOP01 pin is asserted, and the counter continues counting. Consequently, the inactive period of the PWM waveform is shortened.

(e) Generation timing of compare match interrupt request signal (INTTP0CC1)

The timing of generation of the INTTP0CC1 signal in the external trigger pulse output mode differs from the timing of other INTTP0CC1 signals; the INTTP0CC1 signal is generated when the count value of the 16-bit counter matches the value of the TP0CCR1 register.

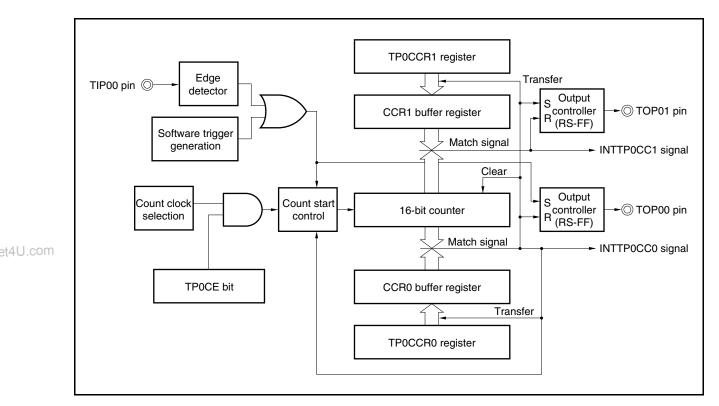
Count clock		
16-bit counter	D1 - 2 D1 - 1 D1 D1 D1 + 1 D1 + 2	
TP0CCR1 register	D1	
TOP01 pin output		
INTTP0CC1 signal		

Usually, the INTTP0CC1 signal is generated in synchronization with the next count up, after the count value of the 16-bit counter matches the value of the TP0CCR1 register.

In the external trigger pulse output mode, however, it is generated one clock earlier. This is because the timing is changed to match the timing of changing the output signal of the TOP01 pin.

et4U.com

DataSheet4U.com


DataSheet4U.com

www.DataSheet4U.com

6.5.4 One-shot pulse output mode (TP0MD2 to TP0MD0 bits = 011)

In the one-shot pulse output mode, 16-bit timer/event counter P waits for a trigger when the TP0CTL0.TP0CE bit is set to 1. When the valid edge of an external trigger input is detected, 16-bit timer/event counter P starts counting, and outputs a one-shot pulse from the TOP01 pin.

Instead of the external trigger, a software trigger can also be generated to output the pulse. When the software trigger is used, the TOP00 pin outputs the active level while the 16-bit counter is counting, and the inactive level when the counter is stopped (waiting for a trigger).

Figure 6-20. Configuration in One-Shot Pulse Output Mode

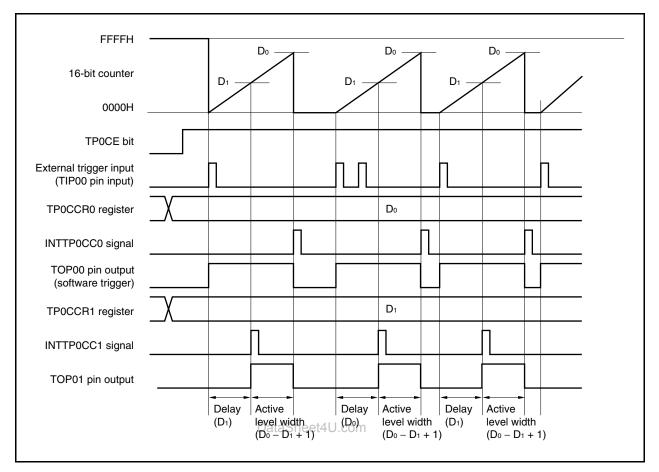
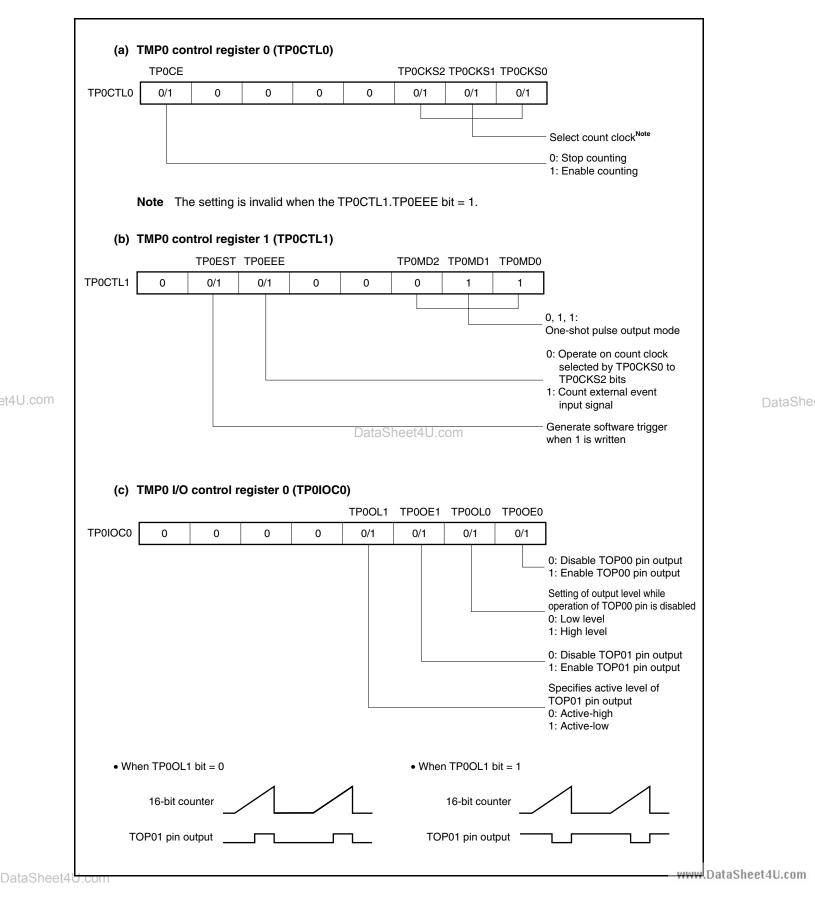


Figure 6-21. Basic Timing in One-Shot Pulse Output Mode

DataShe


When the TPOCE bit is set to 1, 16-bit timer/event counter P waits for a trigger. When the trigger is generated, the 16-bit counter is cleared from FFFFH to 0000H, starts counting, and outputs a one-shot pulse from the TOP01 pin. After the one-shot pulse is output, the 16-bit counter is set to FFFFH, stops counting, and waits for a trigger. If a trigger is generated again while the one-shot pulse is being output, it is ignored.

The output delay period and active level width of the one-shot pulse can be calculated as follows.

Output delay period = (Set value of TP0CCR1 register) \times Count clock cycle Active level width = (Set value of TP0CCR0 register – Set value of TP0CCR1 register + 1) \times Count clock cycle

The compare match interrupt request signal INTTPOCC0 is generated when the 16-bit counter counts after its count value matches the value of the CCR0 buffer register. The compare match interrupt request signal INTTPOCC1 is generated when the count value of the 16-bit counter matches the value of the CCR1 buffer register.

The valid edge of an external trigger input or setting the software trigger (TP0CTL1.TP0EST bit) to 1 is used as the trigger.

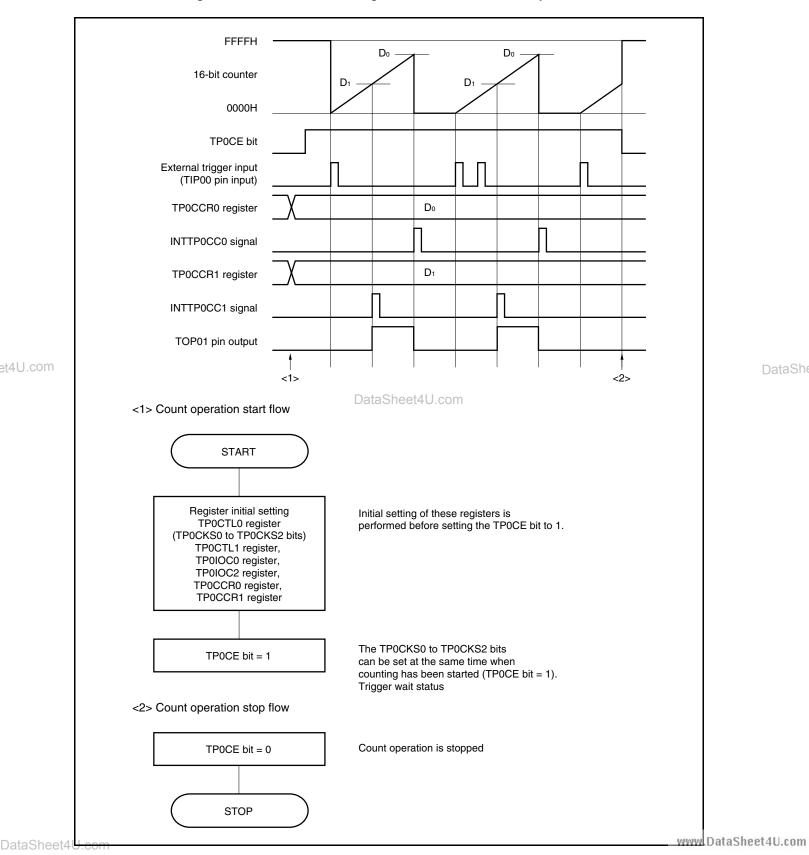

					TP0EES1	TPOEESC	TP0ETS1	TP0ETS	0
TP0IOC2	0	0	0	0	0/1	0/1	0/1	0/1	
									Select valid edge of external trigger input
									 Select valid edge of external event count input
(f)	The value					-		-	
(f)	TMP0 cap If D ₀ is se	oture/con t to the T	n pare reg P0CCR0	isters 0 a register a	and 1 (TP and D1 to	0CCR0 ar the TP0C	nd TP0CC	R1)	active level width and ou
(f)	TMP0 cap If D₀ is se delay peri	oture/con It to the T od of the	n pare reg P0CCR0 one-shot p	isters 0 a register a pulse are	and 1 (TP and D ₁ to as follows	0CCR0 ar the TP0C	nd TP0CC	R1)	active level width and or
(f)	TMP0 cap If D ₀ is se	oture/con It to the T od of the el width =	n pare reg P0CCR0 one-shot _l (D1 – D0 -	isters 0 a register a pulse are + 1) × Col	and 1 (TP and D1 to as follows unt clock o	0CCR0 ar the TP0C	nd TP0CC	R1)	active level width and o
(f)	TMP0 cap If D ₀ is se delay peri Active leve	oture/con It to the T od of the el width = lay perioc	pare reg POCCR0 one-shot p $(D_1 - D_0 - D_1 + C_1)$	isters 0 a register a pulse are + 1) × Col ount clocl	and 1 (TP and D1 to as follows unt clock o k cycle	0CCR0 ar the TP0C s. cycle	nd TP0CC CR1 regis	R1) ster, the a	active level width and o 0 (TP0OPT0) are not u

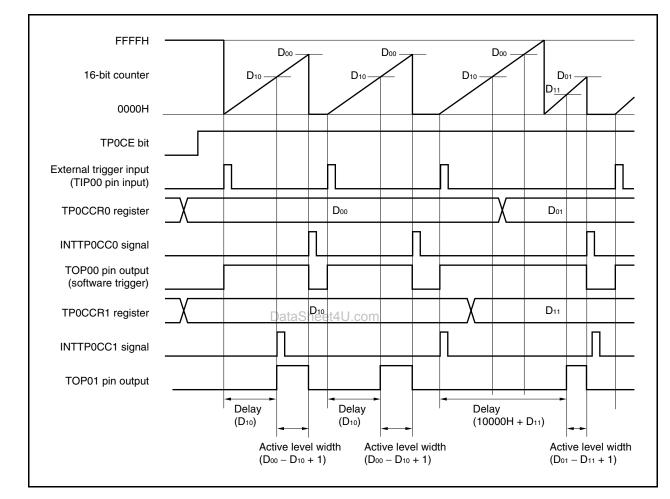
Figure 6-22. Setting of Registers in One-Shot Pulse Output Mode (2/2)

et4U.com

www.DataSheet4U.com

(1) Operation flow in one-shot pulse output mode

DataShe


184

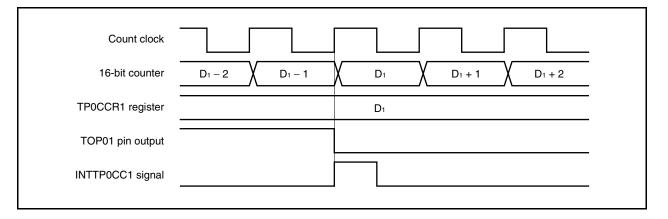
(2) Operation timing in one-shot pulse output mode

(a) Note on rewriting TP0CCRa register

To change the set value of the TP0CCRa register to a smaller value, stop counting once, and then change the set value.

If the value of the TP0CCRa register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

DataShe


When the TPOCCR0 register is rewritten from D_{00} to D_{01} and the TPOCCR1 register from D_{10} to D_{11} where $D_{00} > D_{01}$ and $D_{10} > D_{11}$, if the TPOCCR1 register is rewritten when the count value of the 16-bit counter is greater than D_{11} and less than D_{10} and if the TPOCCR0 register is rewritten when the count value is greater than D_{01} and less than D_{00} , each set value is reflected as soon as the register has been rewritten and compared with the count value. The counter counts up to FFFFH and then counts up again from 0000H. When the count value matches D_{11} , the counter generates the INTTPOCC1 signal and asserts the TOP01 pin. When the count value matches D_{01} , the counter generates the INTTPOCC0 signal, deasserts the TOP01 pin, and stops counting.

Therefore, the counter may output a pulse with a delay period or active period different from that of the one-shot pulse that is originally expected.

Remark
$$a = 0, 1$$

(b) Generation timing of compare match interrupt request signal (INTTP0CC1)

The generation timing of the INTTPOCC1 signal in the one-shot pulse output mode is different from other INTTPOCC1 signals; the INTTPOCC1 signal is generated when the count value of the 16-bit counter matches the value of the TPOCCR1 register.

Usually, the INTTP0CC1 signal is generated when the 16-bit counter counts up next time after its count value matches the value of the TP0CCR1 register.

In the one-shot pulse output mode, however, it is generated one clock earlier. This is because the timing is changed to match the change timing of the TOP01 pin.

et4U.com

DataSheet4U.com

DataSheet4U.com

6.5.5 PWM output mode (TP0MD2 to TP0MD0 bits = 100)

In the PWM output mode, a PWM waveform is output from the TOP01 pin when the TP0CTL0.TP0CE bit is set to 1. In addition, a pulse with one cycle of the PWM waveform as half its cycle is output from the TOP00 pin.

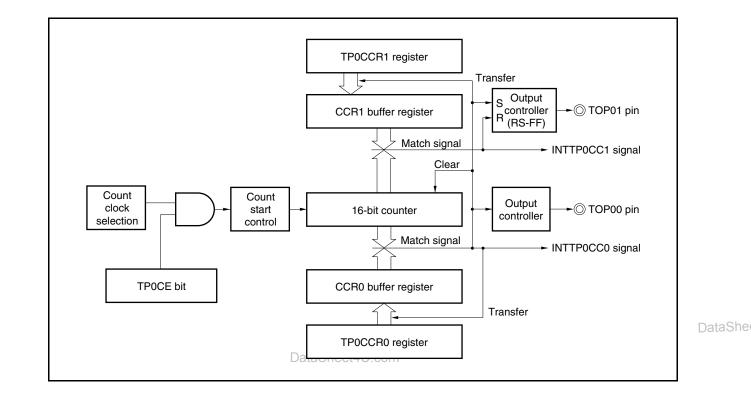


Figure 6-24. Configuration in PWM Output Mode

et4U.com

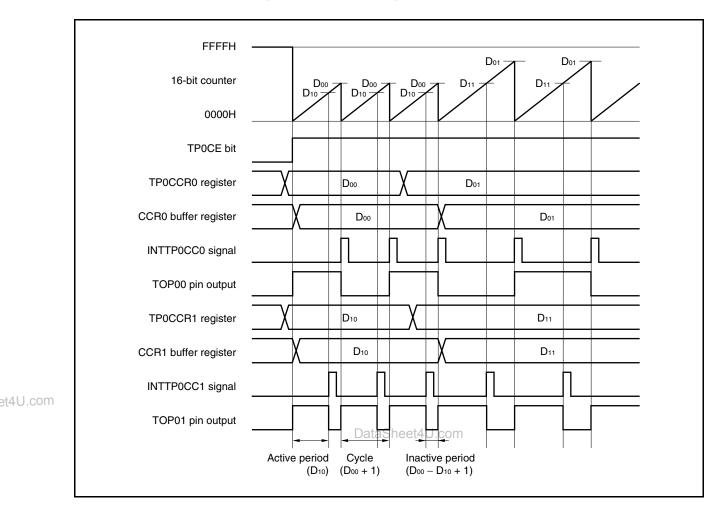
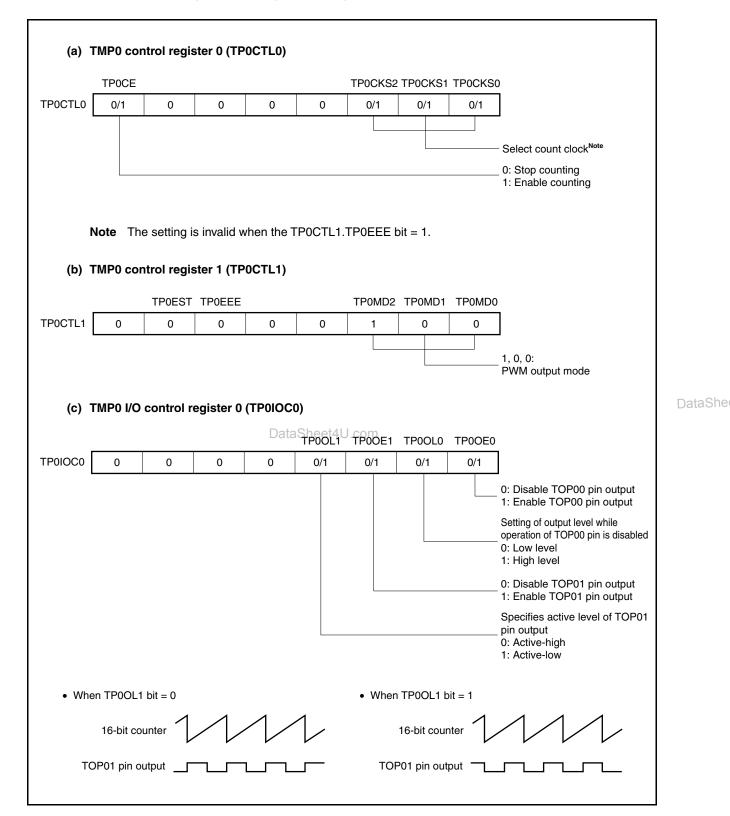


Figure 6-25. Basic Timing in PWM Output Mode

When the TP0CE bit is set to 1, the 16-bit counter is cleared from FFFFH to 0000H, starts counting, and outputs a PWM waveform from the TOP01 pin.

The active level width, cycle, and duty factor of the PWM waveform can be calculated as follows.


Active level width = (Set value of TP0CCR1 register) \times Count clock cycle Cycle = (Set value of TP0CCR0 register + 1) \times Count clock cycle Duty factor = (Set value of TP0CCR1 register)/(Set value of TP0CCR0 register + 1)

The PWM waveform can be changed by rewriting the TP0CCRa register while the counter is operating. The newly written value is reflected when the count value of the 16-bit counter matches the value of the CCR0 buffer register and the 16-bit counter is cleared to 0000H.

The compare match interrupt request signal INTTP0CC0 is generated when the 16-bit counter counts next time after its count value matches the value of the CCR0 buffer register, and the 16-bit counter is cleared to 0000H. The compare match interrupt request signal INTTP0CC1 is generated when the count value of the 16-bit counter matches the value of the CCR1 buffer register.

The value set to the TP0CCRa register is transferred to the CCRa buffer register when the count value of the 16-bit counter matches the value of the CCRa buffer register and the 16-bit counter is cleared to 0000H.

Remark a = 0, 1 DataSheet4U.com

Figure 6-26. Register Setting in PWM Output Mode (1/2)

et4U.com

Figure 6-26. Register Setting in PWM Output Mode (2/2)

	TP0EES1 TP0EES0 TP0ETS1 TP0ETS0								
TP0IOC2 0	0	0	0	0/1	0/1	0	0		
								 Select valid edge of external event count input. 	
(f) TMP0 c	apture/co	6-bit counte	er can be isters 0 a	ind 1 (TP	0CCR0 ar	nd TP0CC	R1)		
(f) TMP0 c If Do is	a pture/co set to the ⊺	mpare reg	er can be isters 0 a register ar	read by re	0CCR0 ar	nd TP0CC	R1)	vcle and active leve	
(f) TMP0 c If Do is the PW	a pture/co set to the ⊺ M waveforn	mpare reg רP0CCR0 ו	isters 0 a register ar llows.	read by read b	0CCR0 ar	nd TP0CC	R1)		
(f) TMP0 c If D₀ is the PW Cycle	eapture/co set to the T M waveform = = (D ₀ + 1)	mpare reg FP0CCR0 i m are as fo	er can be isters 0 a register an llows. ock cycle	read by read b	0CCR0 ar	nd TP0CC	R1)		
(f) TMP0 c If D₀ is the PW Cycle	eapture/co set to the T M waveforn = = (D ₀ + 1) e level widt	mpare reg POCCR0 = m are as fo \times Count cl h = D1 \times Co	isters 0 a register an llows. ock cycle punt clock	read by read by read by read by read by read and 1 (TP) and D1 to the second	0CCR0 ar he TP0CC	nd TP0CC	ER1) Ser, the cy		

(1) Operation flow in PWM output mode

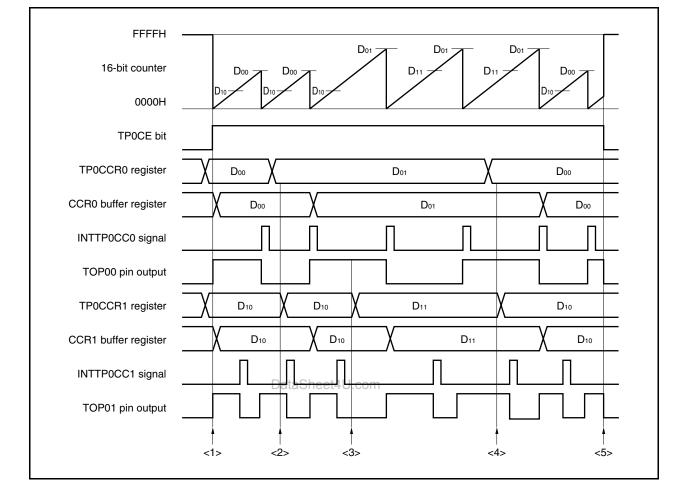
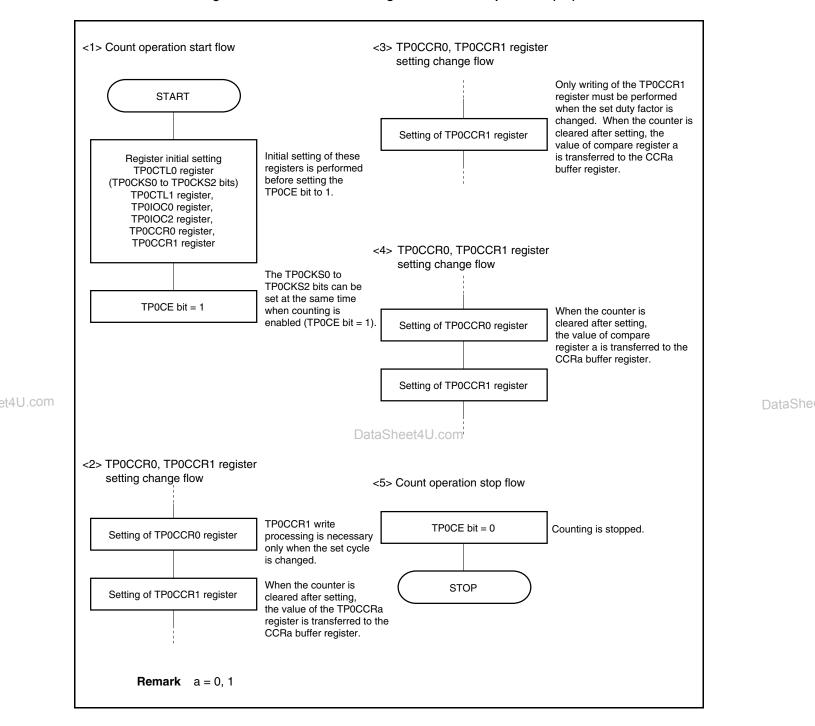
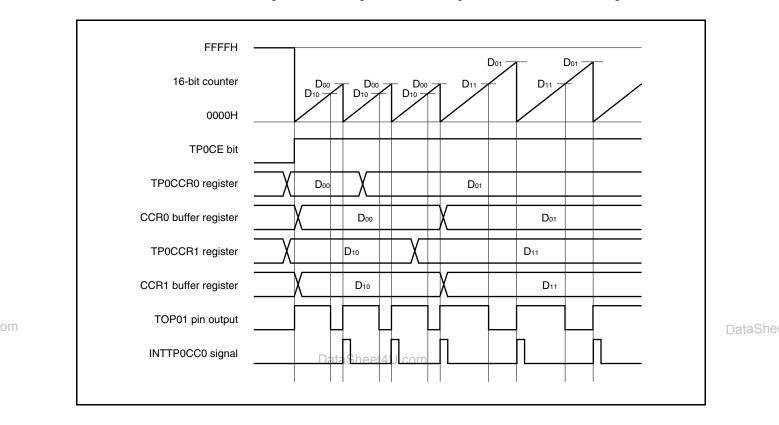



Figure 6-27. Software Processing Flow in PWM Output Mode (1/2)

DataShe

et4U.com



(2) PWM output mode operation timing

(a) Changing pulse width during operation

To change the PWM waveform while the counter is operating, write the TP0CCR1 register last. Rewrite the TP0CCRa register after writing the TP0CCR1 register after the INTTP0CC1 signal is detected.

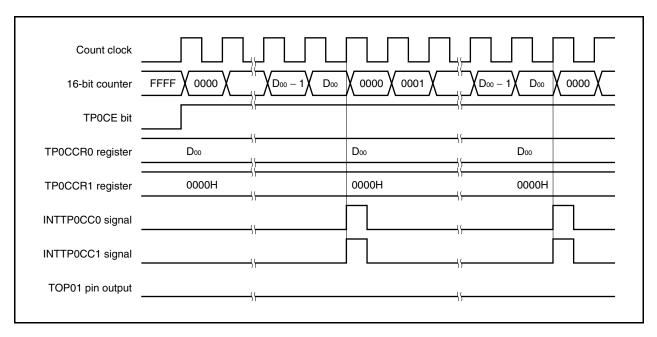
To transfer data from the TP0CCRa register to the CCRa buffer register, the TP0CCR1 register must be written.

To change both the cycle and active level width of the PWM waveform at this time, first set the cycle to the TP0CCR0 register and then set the active level width to the TP0CCR1 register.

To change only the cycle of the PWM waveform, first set the cycle to the TP0CCR0 register, and then write the same value to the TP0CCR1 register.

To change only the active level width (duty factor) of the PWM waveform, only the TP0CCR1 register has to be set.

After data is written to the TP0CCR1 register, the value written to the TP0CCRa register is transferred to the CCRa buffer register in synchronization with clearing of the 16-bit counter, and is used as the value compared with the 16-bit counter.


To write the TP0CCR0 or TP0CCR1 register again after writing the TP0CCR1 register once, do so after the INTTP0CC0 signal is generated. Otherwise, the value of the CCRa buffer register may become undefined because the timing of transferring data from the TP0CCRa register to the CCRa buffer register conflicts with writing the TP0CCRa register.

Remark a = 0, 1

193

(b) 0%/100% output of PWM waveform

To output a 0% waveform, set the TP0CCR1 register to 0000H. If the set value of the TP0CCR0 register is FFFFH, the INTTP0CC1 signal is generated periodically.

et4U.com

To output a 100% waveform, set a value of (set value of TP0CCR0 register + 1) to the TP0CCR1 register. If the set value of the TP0CCR0 register is FFFFH, 100% output cannot be produced.

Count clock 0001 16-bit counter FFFF 0000 Doo - 1 D00 0000 D00 -D00 0000 TP0CE bit D00 D00 **TP0CCR0** register D00 Doo + 1 D00 + 1 Doo + 1 TP0CCR1 register INTTP0CC0 signal INTTP0CC1 signal TOP01 pin output

DataShe

www.DataSheet4U.com

(c) Generation timing of compare match interrupt request signal (INTTP0CC1)

The timing of generation of the INTTPOCC1 signal in the PWM output mode differs from the timing of other INTTPOCC1 signals; the INTTPOCC1 signal is generated when the count value of the 16-bit counter matches the value of the TPOCCR1 register.

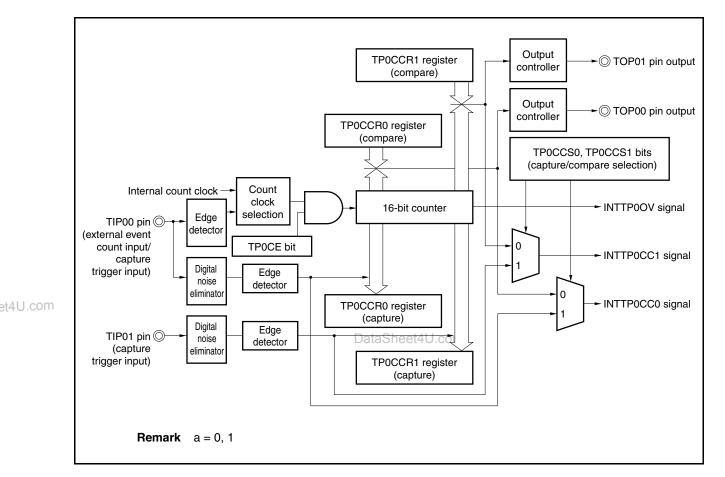
Count clock		
16-bit counter	D1 - 2 D1 - 1 D1 D1 D1 + 1 D1 + 2	
TP0CCR1 register	D1	
TOP01 pin output		
INTTP0CC1 signal		

Usually, the INTTP0CC1 signal is generated in synchronization with the next counting up after the count value of the 16-bit counter matches the value of the TP0CCR1 register.

In the PWM output mode, however, it is generated one clock earlier. This is because the timing is changed to match the change timing of the output signal of the TOP01 pin.

et4U.com

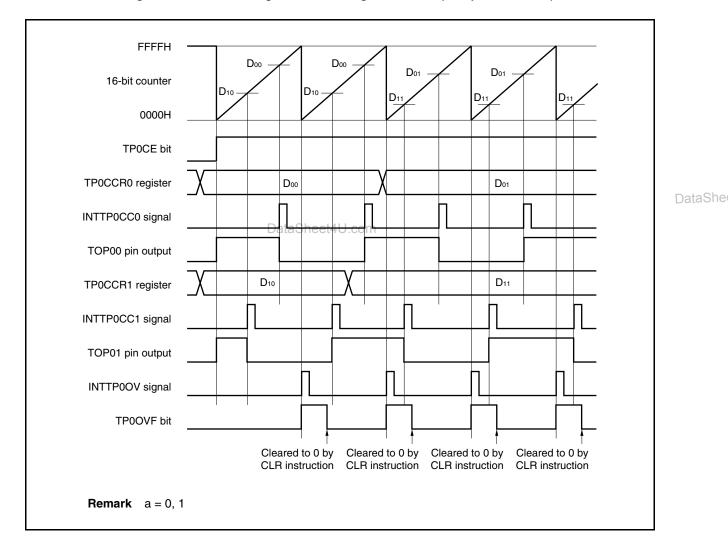
DataSheet4U.com

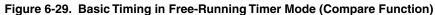

DataSheet4U.com

www.DataSheet4U.com

6.5.6 Free-running timer mode (TP0MD2 to TP0MD0 bits = 101)

In the free-running timer mode, 16-bit timer/event counter P starts counting when the TP0CTL0.TP0CE bit is set to 1. At this time, the TP0CCRa register can be used as a compare register or a capture register, depending on the setting of the TP0OPT0.TP0CCS0 and TP0OPT0.TP0CCS1 bits.




DataShe

When the TP0CE bit is set to 1, 16-bit timer/event counter P starts counting, and the output signals of the TOP00 and TOP01 pins are inverted. When the count value of the 16-bit counter later matches the set value of the TP0CCRa register, a compare match interrupt request signal (INTTP0CCa) is generated, and the output signal of the TOP0a pin is inverted.

The 16-bit counter continues counting in synchronization with the count clock. When it counts up to FFFFH, it generates an overflow interrupt request signal (INTTPOOV) at the next clock, is cleared to 0000H, and continues counting. At this time, the overflow flag (TP0OPT0.TP0OVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction by software.

The TP0CCRa register can be rewritten while the counter is operating. If it is rewritten, the new value is reflected at that time, and compared with the count value.

When the TPOCE bit is set to 1, the 16-bit counter starts counting. When the valid edge input to the TIPOa pin is detected, the count value of the 16-bit counter is stored in the TPOCCRa register, and a capture interrupt request signal (INTTPOCCa) is generated.

The 16-bit counter continues counting in synchronization with the count clock. When it counts up to FFFH, it generates an overflow interrupt request signal (INTTPOOV) at the next clock, is cleared to 0000H, and continues counting. At this time, the overflow flag (TP0OPT0.TP0OVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction by software.

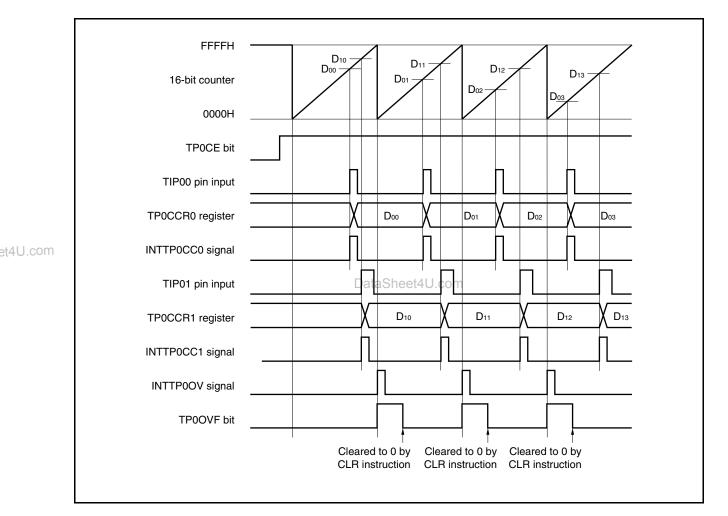
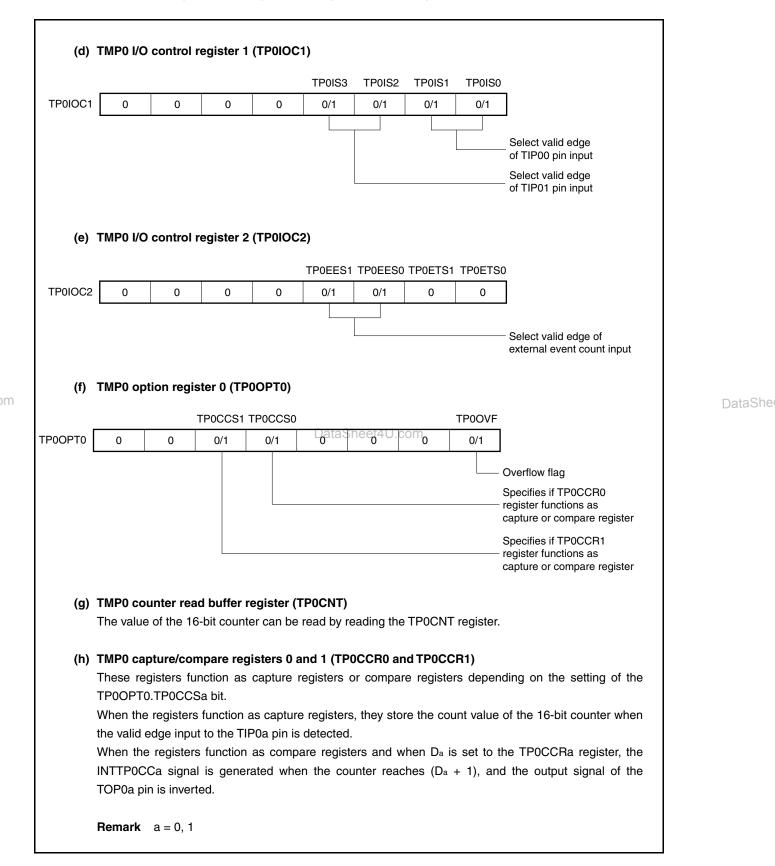
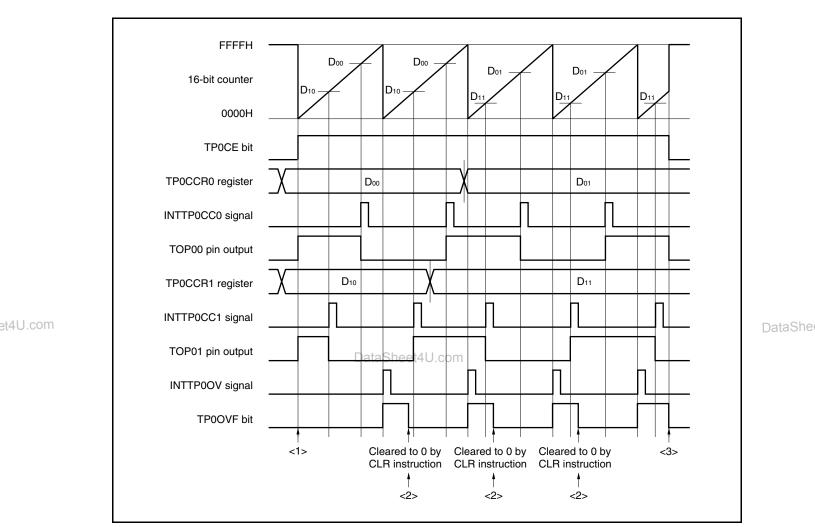
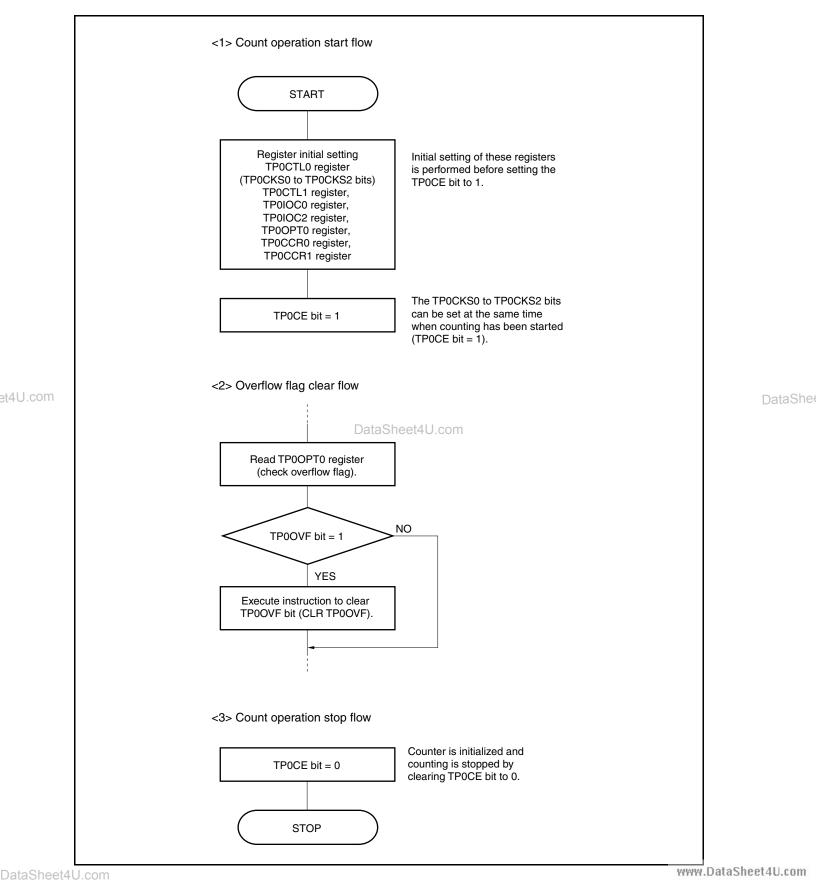
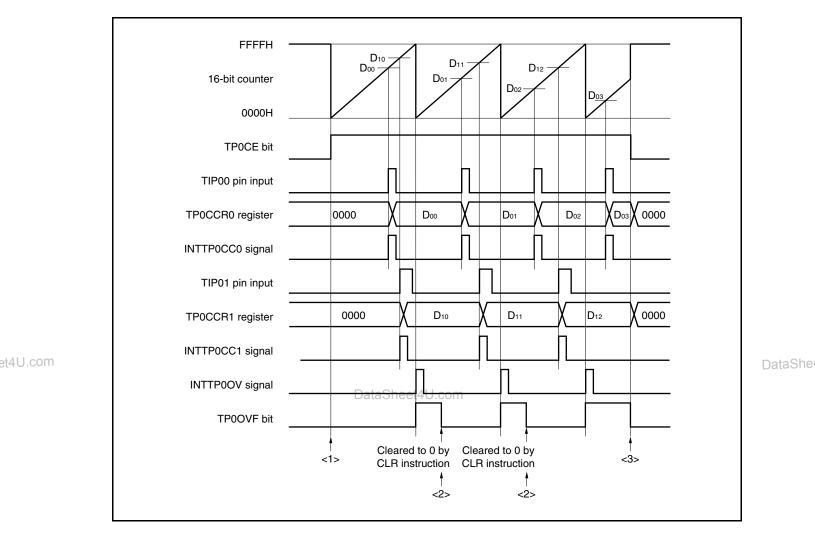



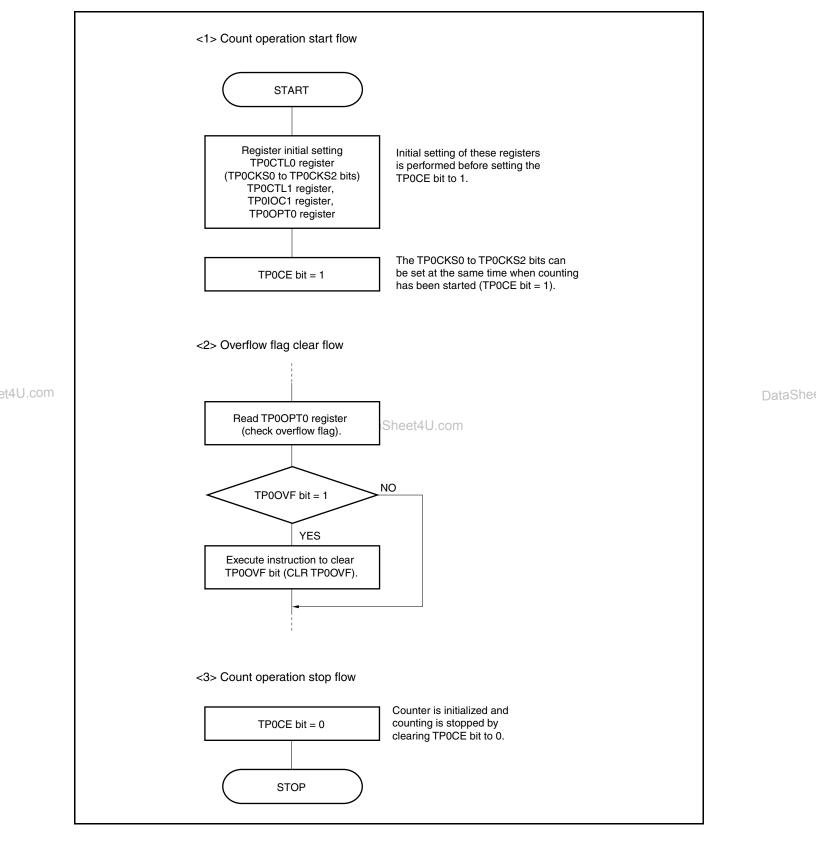
Figure 6-30. Basic Timing in Free-Running Timer Mode (Capture Function)

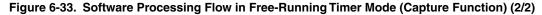
Figure 6-31. Register Setting in Free-Running Timer Mode (1/2)

- (1) Operation flow in free-running timer mode
 - (a) When using capture/compare register as compare register

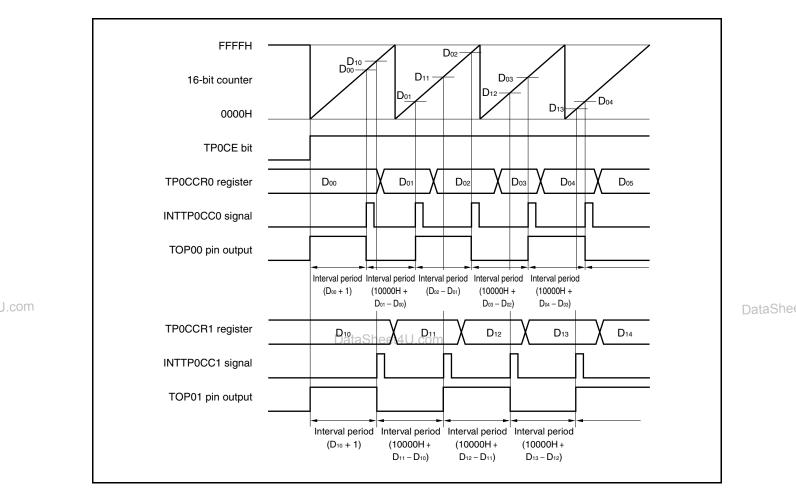

Figure 6-32. Software Processing Flow in Free-Running Timer Mode (Compare Function) (1/2)




202

(b) When using capture/compare register as capture register

Figure 6-33. Software Processing Flow in Free-Running Timer Mode (Capture Function) (1/2)



(2) Operation timing in free-running timer mode

(a) Interval operation with compare register

When 16-bit timer/event counter P is used as an interval timer with the TPOCCRa register used as a compare register, software processing is necessary for setting a comparison value to generate the next interrupt request signal each time the INTTPOCCa signal has been detected.

When performing an interval operation in the free-running timer mode, two intervals can be set with one channel.

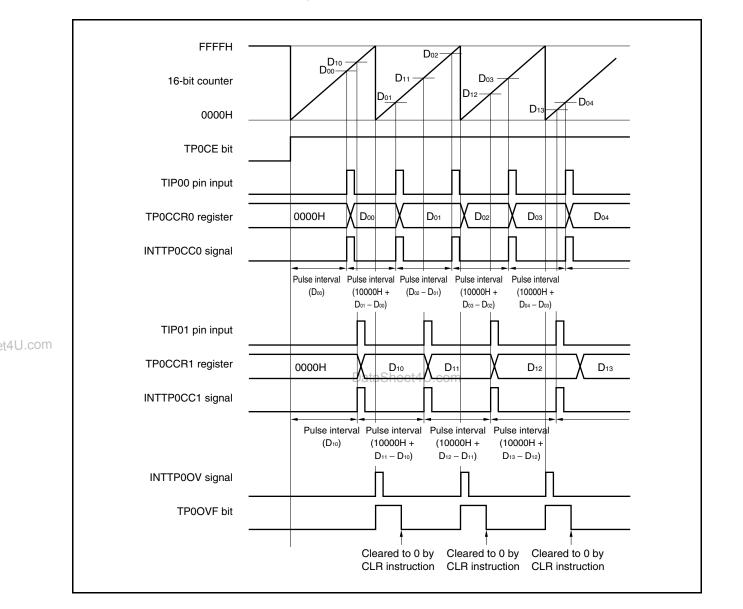
To perform the interval operation, the value of the corresponding TP0CCRa register must be re-set in the interrupt servicing that is executed when the INTTP0CCa signal is detected.

The set value for re-setting the TP0CCRa register can be calculated by the following expression, where "Da" is the interval period.

Compare register default value: $D_a - 1$

Value set to compare register second and subsequent time: Previous set value + Da

(If the calculation result is greater than FFFFH, subtract 10000H from the result and set this value to the register.)

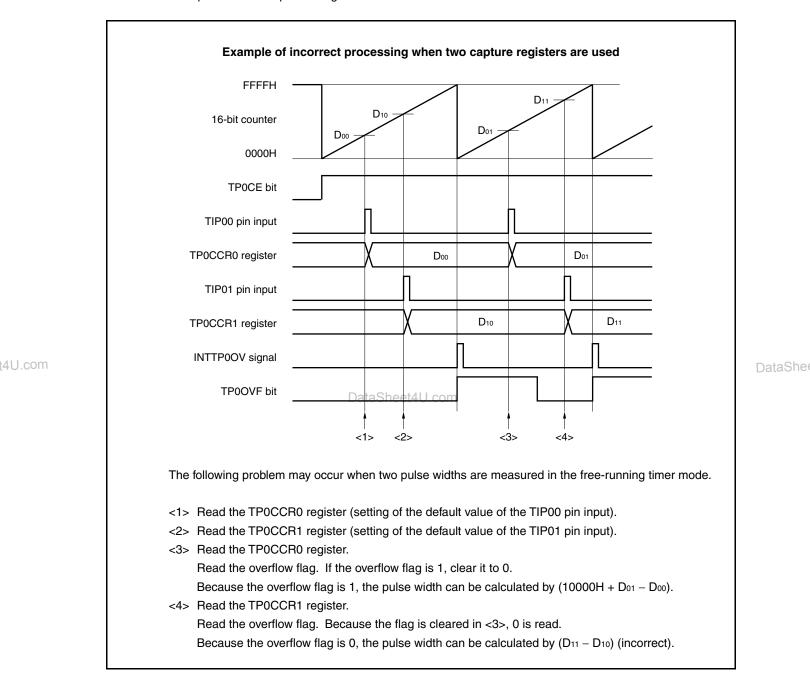

Remark
$$a = 0, 1$$

DataSheet4U.com

www.DataSheet4U.com

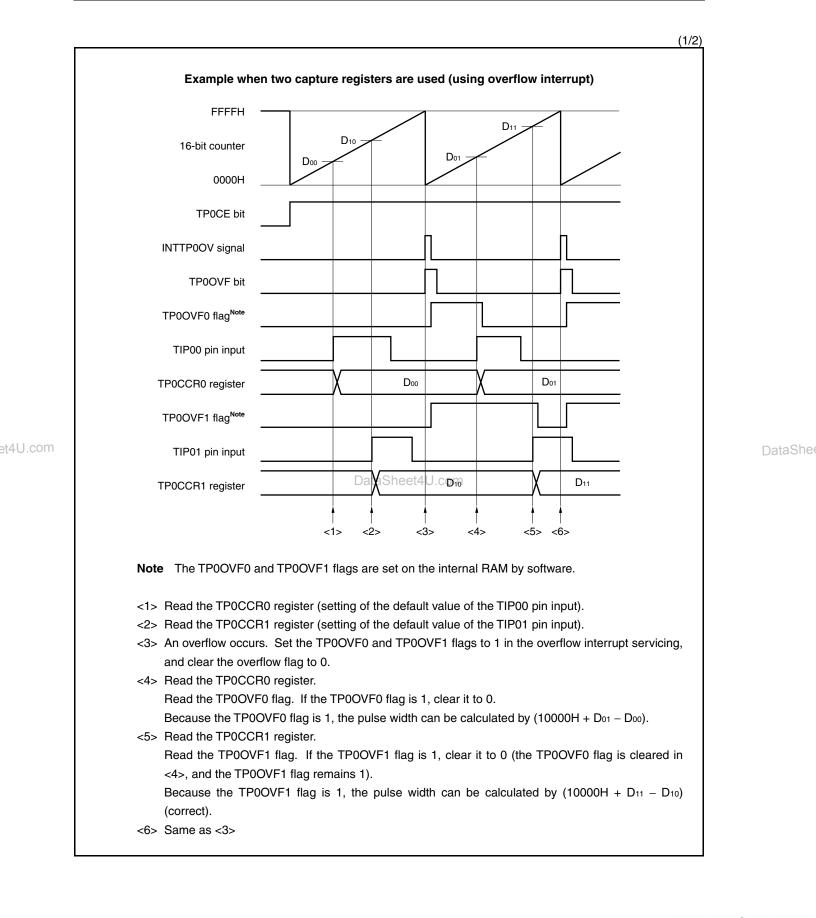
(b) Pulse width measurement with capture register

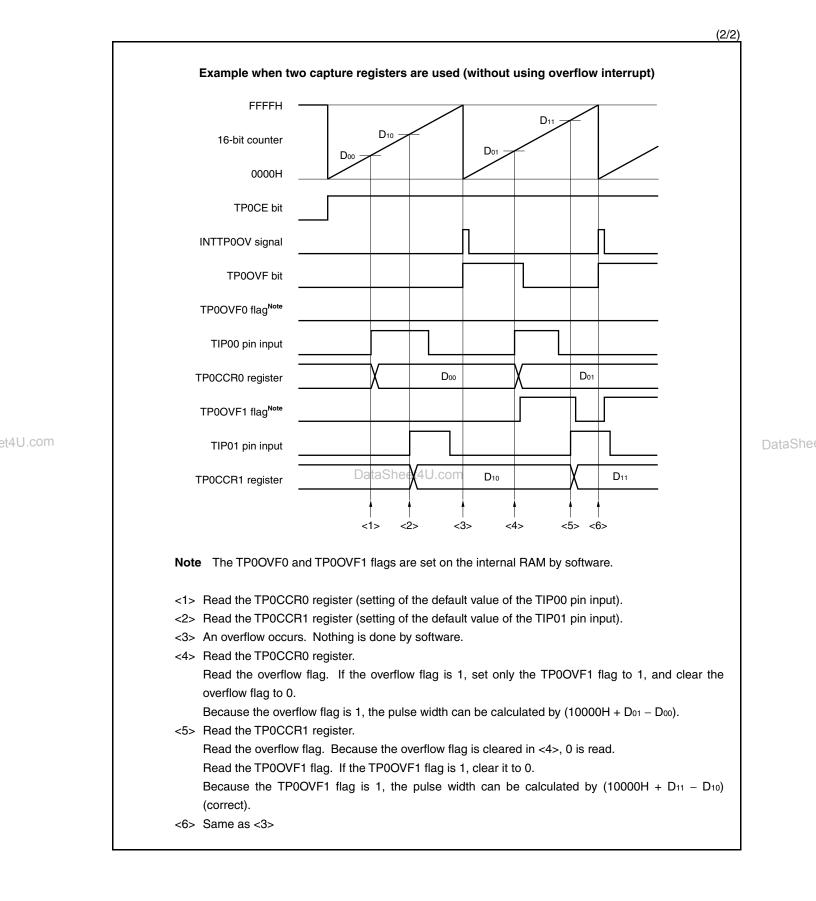
When pulse width measurement is performed with the TP0CCRa register used as a capture register, software processing is necessary for reading the capture register each time the INTTP0CCa signal has been detected and for calculating an interval.


When executing pulse width measurement in the free-running timer mode, two pulse widths can be measured with one channel.

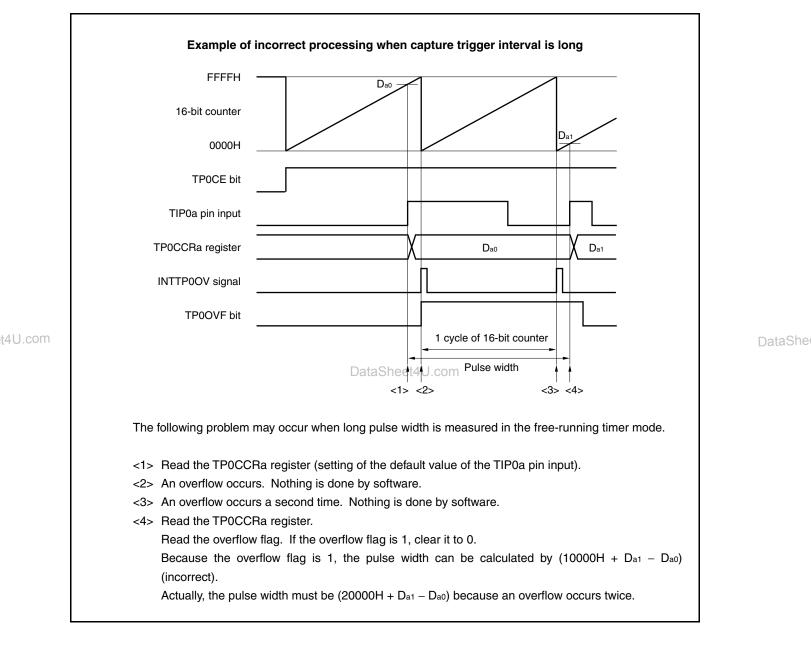
To measure a pulse width, the pulse width can be calculated by reading the value of the TP0CCRa register in synchronization with the INTTP0CCa signal, and calculating the difference between the read value and the previously read value.

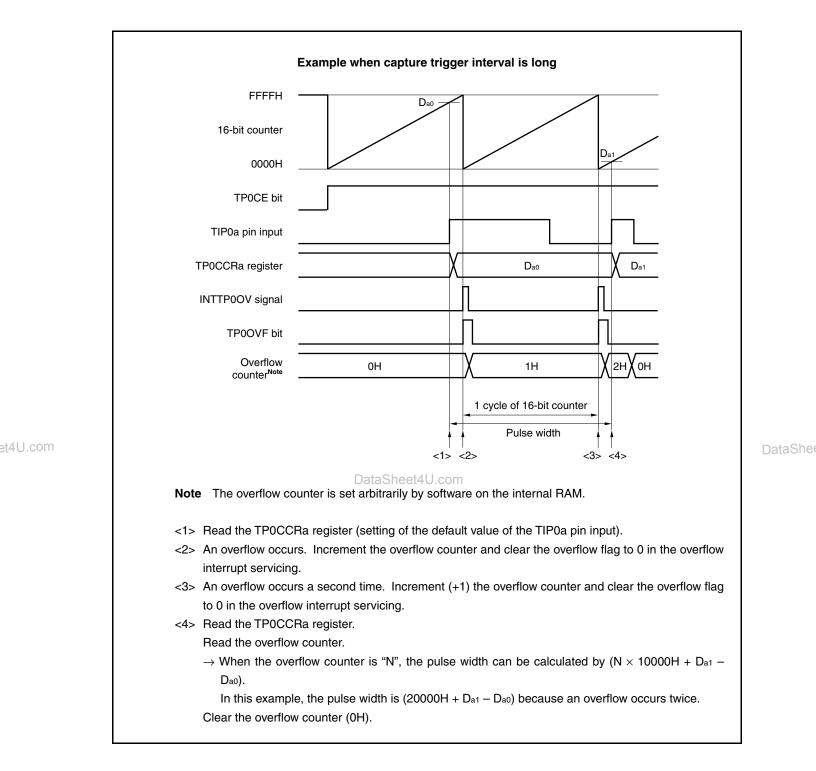
Remark a = 0, 1


(c) Processing of overflow when two capture registers are used


Care must be exercised in processing the overflow flag when two capture registers are used. First, an example of incorrect processing is shown below.

When two capture registers are used, and if the overflow flag is cleared to 0 by one capture register, the other capture register may not obtain the correct pulse width.


Use software when using two capture registers. An example of how to use software is shown below.


(d) Processing of overflow if capture trigger interval is long

If the pulse width is greater than one cycle of the 16-bit counter, care must be exercised because an overflow may occur more than once from the first capture trigger to the next. First, an example of incorrect processing is shown below.

If an overflow occurs twice or more when the capture trigger interval is long, the correct pulse width may not be obtained.

If the capture trigger interval is long, slow the count clock to lengthen one cycle of the 16-bit counter, or use software. An example of how to use software is shown below.

(e) Clearing overflow flag

The overflow flag can be cleared to 0 by clearing the TP0OVF bit to 0 with the CLR instruction and by writing 8-bit data (bit 0 is 0) to the TP0OPT0 register. To accurately detect an overflow, read the TP0OVF bit when it is 1, and then clear the overflow flag by using a bit manipulation instruction.

To clear the overflow flag to 0, read the overflow flag to check if it is set to 1, and clear it with the CLR instruction. If 0 is written to the overflow flag without checking if the flag is 1, the set information of overflow may be erased by writing 0 ((ii) in the above chart). Therefore, software may judge that no overflow has occurred even when an overflow actually has occurred.

If execution of the CLR instruction conflicts with occurrence of an overflow when the overflow flag is cleared to 0 with the CLR instruction, the overflow flag remains set even after execution of the clear instruction.

www.DataSheet4U.com

6.5.7 Pulse width measurement mode (TP0MD2 to TP0MD0 bits = 110)

In the pulse width measurement mode, 16-bit timer/event counter P starts counting when the TP0CTL0.TP0CE bit is set to 1. Each time the valid edge input to the TIP0a pin has been detected, the count value of the 16-bit counter is stored in the TP0CCRa register, and the 16-bit counter is cleared to 0000H.

The interval of the valid edge can be measured by reading the TP0CCRa register after a capture interrupt request signal (INTTP0CCa) occurs.

Select either the TIP00 or TIP01 pin as the capture trigger input pin. Specify "No edge detected" by using the TP0IOC1 register for the unused pins.

When an external clock is used as the count clock, measure the pulse width of the TIP01 pin because the external clock is fixed to the TIP00 pin. At this time, clear the TP0IOC1.TP0IS1 and TP0IOC1.TP0IS0 bits to 00 (capture trigger input (TIP00 pin): No edge detected).

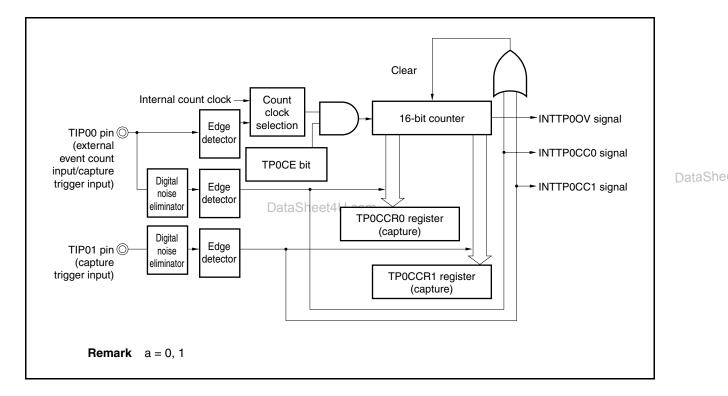
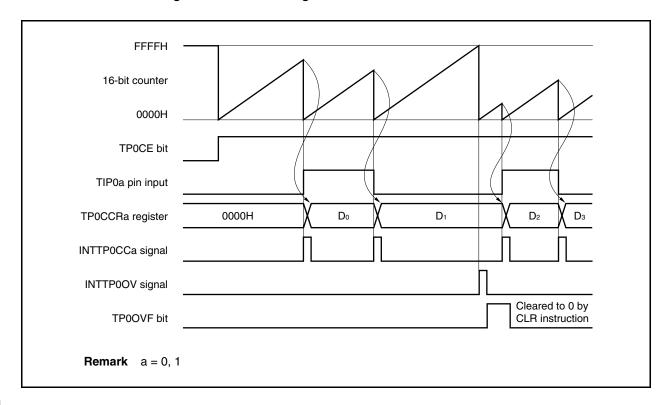



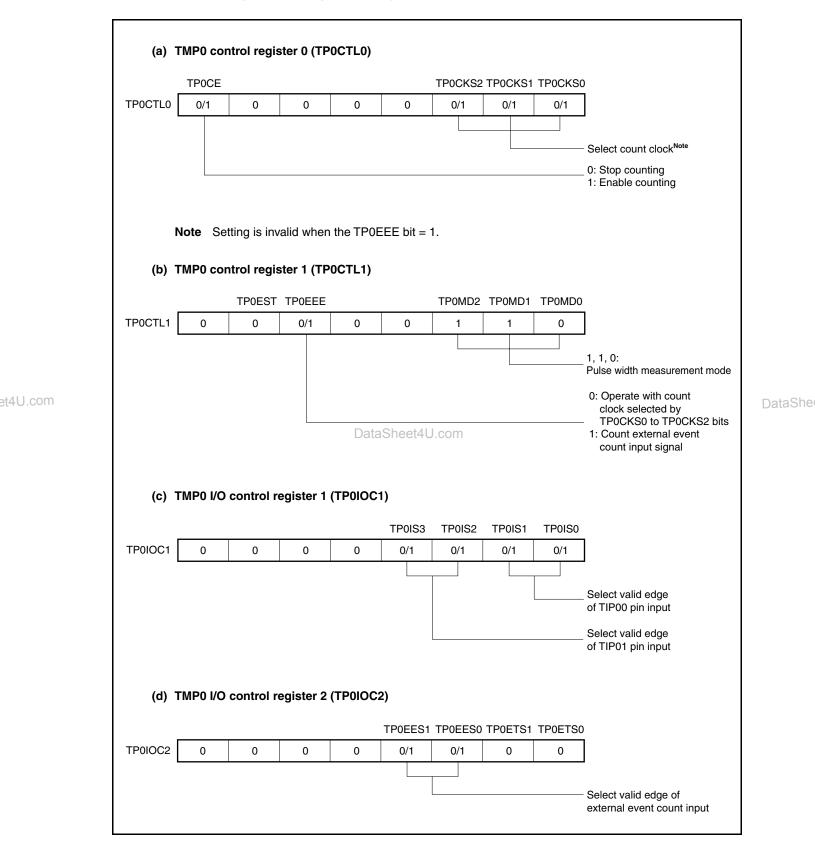
Figure 6-34. Configuration in Pulse Width Measurement Mode

Figure 6-35. Basic Timing in Pulse Width Measurement Mode

When the TP0CE bit is set to 1, the 16-bit counter starts counting. When the valid edge input to the TIP0a pin is later detected, the count value of the 16-bit counter is stored in the TPOCCRa register, the 16-bit counter is cleared to 0000H, and a capture interrupt request signal (INTTPOCCa) is generated.

The pulse width is calculated as follows.

First pulse width = $(D_0 + 1) \times Count clock cycle$ Second and subsequent pulse width = $(D_N - D_{N-1}) \times Count clock cycle$


If the valid edge is not input to the TIP0a pin even when the 16-bit counter counted up to FFFFH, an overflow interrupt request signal (INTTPOOV) is generated at the next count clock, and the counter is cleared to 0000H and continues counting. At this time, the overflow flag (TP0OPT0.TP0OVF bit) is also set to 1. Clear the overflow flag to 0 by executing the CLR instruction via software.

If the overflow flag is set to 1, the pulse width can be calculated as follows.

First pulse width = $(D_0 + 10001H) \times Count clock cycle$ Second and subsequent pulse width = $(10000H + D_N - D_{N-1}) \times Count clock cycle$

Remark a = 0, 1

DataSheet4U.com

Figure 6-36. Register Setting in Pulse Width Measurement Mode (1/2)

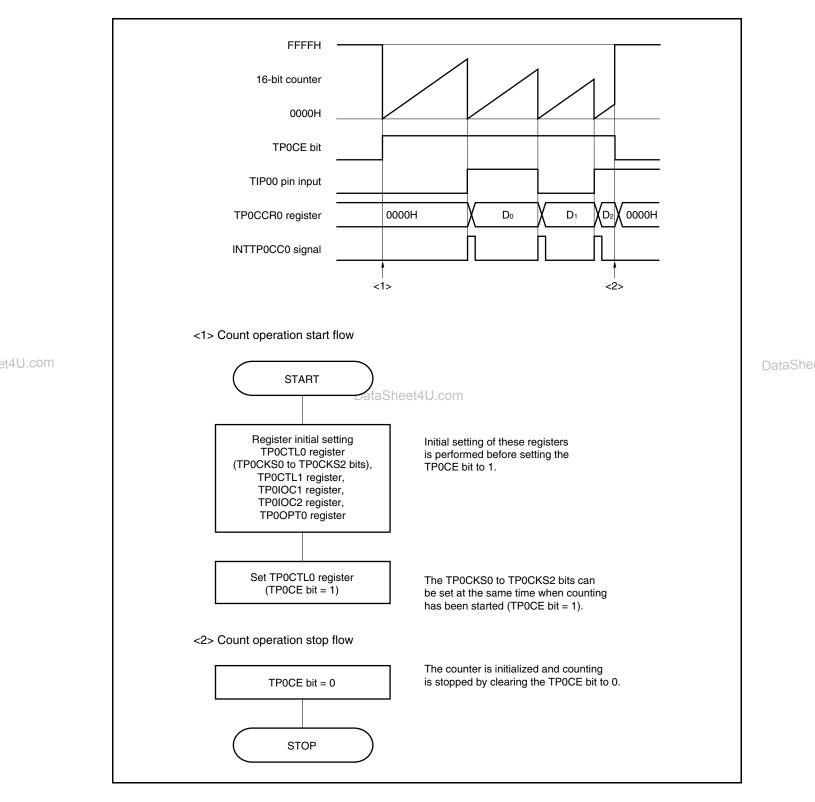

(e)	(e) TMP0 option register 0 (TP0OPT0)										
	TP0CCS1 TP0CCS0						TP0OVF				
TP0OPT0	0 0	0	0	0	0	0	0	0/1			
								Overflow flag			
(f)	TMP0 cou	inter read	l buffer re	egister (T	P0CNT)						
	The value	of the 16-	bit counte	r can be r	ead by re	ading the	TP0CNT	register.			
(g)	TMP0 cap These reg detected.				•			R1) valid edge input to the TIP0a pin is			
	Remarks	 TMPC a = 0, 		ol register	r 0 (TP0IC	DC0) is no	ot used in	the pulse width measurement mode.			

Figure 6-36. Register Setting in Pulse Width Measurement Mode (2/2)

et4U.com

DataShe

(1) Operation flow in pulse width measurement mode

Figure 6-37. Software Processing Flow in Pulse Width Measurement Mode

DataSheet4U.com

www.DataSheet4U.com

(2) Operation timing in pulse width measurement mode

(a) Clearing overflow flag

The overflow flag can be cleared to 0 by clearing the TP0OVF bit to 0 with the CLR instruction and by writing 8-bit data (bit 0 is 0) to the TP0OPT0 register. To accurately detect an overflow, read the TP0OVF bit when it is 1, and then clear the overflow flag by using a bit manipulation instruction.

(i) Operation to write 0 (without conflict with se	tting) (iii) Operation to clear to 0 (without conflict with set
Overflow set signal 0 write signal	Overflow set signal 0 write signal
Overflow flag (TP0OVF bit)	Register Read Write
	Overflow flag (TP0OVF bit)
(ii) Operation to write 0 (conflict with setting)	(iv) Operation to clear to 0 (conflict with setting)
(ii) Operation to write 0 (conflict with setting) Overflow set signal	(iv) Operation to clear to 0 (conflict with setting) Overflow DataSheet4Uset signal
Overflow	Overflow
Overflow	Overflow DataSheet4USet signal

To clear the overflow flag to 0, read the overflow flag to check if it is set to 1, and clear it with the CLR instruction. If 0 is written to the overflow flag without checking if the flag is 1, the set information of overflow may be erased by writing 0 ((ii) in the above chart). Therefore, software may judge that no overflow has occurred even when an overflow actually has occurred.

If execution of the CLR instruction conflicts with occurrence of an overflow when the overflow flag is cleared to 0 with the CLR instruction, the overflow flag remains set even after execution of the clear instruction.

DataSheet4U.com

DataShe

1

6.5.8 Timer output operations

The following table shows the operations and output levels of the TOP00 and TOP01 pins.

Operation Mode	TOP01 Pin	TOP00 Pin
Interval timer mode	Square wave output	
External event count mode	Square wave output	-
External trigger pulse output mode	External trigger pulse output	Square wave output
One-shot pulse output mode	One-shot pulse output	
PWM output mode	PWM output	
Free-running timer mode	Square wave output (only when con	npare function is used)
Pulse width measurement mode		_

Table 6-4.	Timer Outp	out Control in	Each Mode
------------	------------	----------------	-----------

Table 6-5. Truth Table of TOP00 and TOP01 Pins Under Control of Timer Output Control Bits

TP0IOC0.TP0OLa Bit	TP0IOC0.TP0OEa Bit	TP0CTL0.TP0CE Bit	Level of TOP0a Pin
0	0	×	Low-level output
	1	0	Low-level output
		1	Low level immediately before counting, high level after counting is started
1	0	×	High-level output
	1	0	High-level output
	Da	taSheet4U.com	High level immediately before counting, low level after counting is started

et4U.com

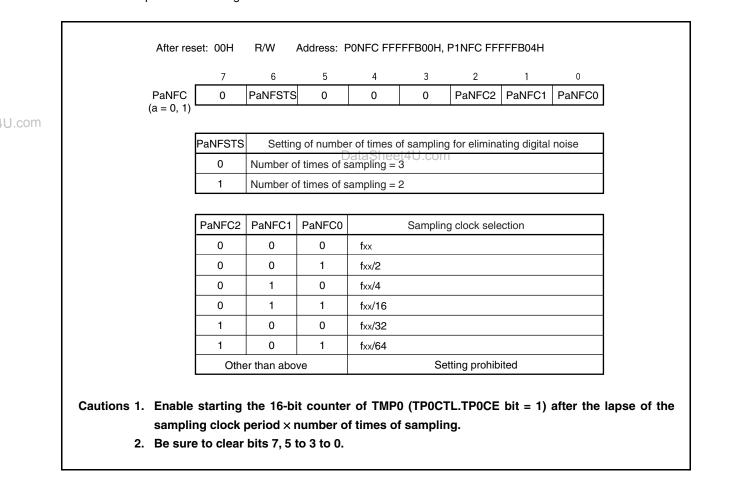
Remark a = 0, 1

DataSheet4U.com

6.6 Eliminating Noise on Capture Trigger Input Pin (TIP0a)

The TIP0a pin has a digital noise eliminator.

However, this circuit is valid only when the pin is used as a capture trigger input pin; it is invalid when the pin is used as an external event count input pin or external trigger input pin.


Digital noise can be eliminated by specifying the alternate function of the TIP0a pin using the PMC3, PFC3, and PFCE3 registers.

The number of times of sampling can be selected from three or two by using the PaNFC.PaNFSTS bit. The sampling clock can be selected from fxx, fxx/2, fxx/4, fxx/16, fxx/32, or fxx/64, by using the PaNFC.PaNFC2 to PaNFC.PaNFC0 bits.

(1) TIP0a noise elimination control register (PaNFC)

This register is used to select the sampling clock and the number of times of sampling for eliminating digital noise.

This register can be read or written in 8-bit or 1-bit units. Reset input clears this register to 00H.

www.DataSheet4U.com

<Setting procedure>

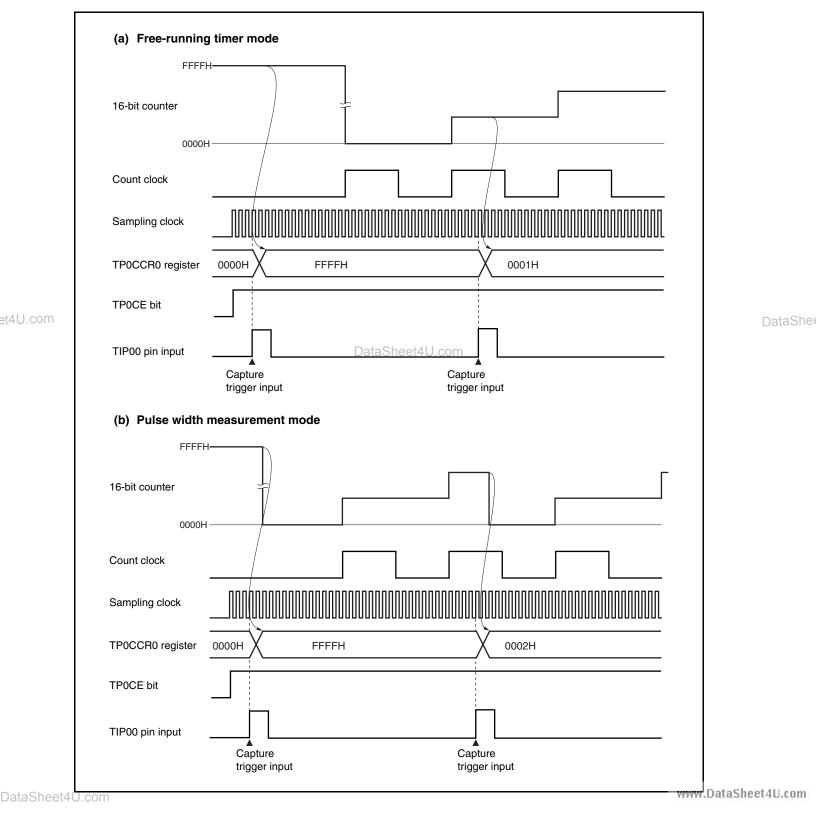
- <1> Select the number of times of sampling and the sampling clock by using the PaNFC register.
- <2> Select the alternate function (of the TIP0a pin) by using the PMC3, PFC3, and PFCE3 registers.
- <3> Set the operating mode of TMP0 (such as the capture mode or the valid edge of the capture trigger).
- <4> Enable the TMP0 count operation.

<Noise elimination width>

The digital noise elimination width (t_{WTIP0a}) is as follows, where T is the sampling clock period and M is the number of times of sampling.

- twTIPOa < (M 1)T: Accurately eliminated as noise
- $(M 1)T \le twTIPOa < MT$: Eliminated as noise or detected as valid edge
- twTIP0a ≥ MT: Accurately detected as valid edge

Therefore, a pulse width of MT or longer must be input so that the valid edge of the capture trigger input can be accurately detected.


et4U.com

DataShe

6.7 Cautions

(1) Capture operation

When the capture operation is used and a slow clock is selected as the count clock, FFFFH, not 0000H, may be captured in the TP0CCRn register if the capture trigger is input immediately after the TP0CE bit is set to 1.

CHAPTER 7 16-BIT TIMER/EVENT COUNTER 0

In the V850ES/KE1+, one channel of 16-bit timer/event counter 0 is provided.

7.1 Functions

16-bit timer/event counter 01 has the following functions.

- (1) Interval timer Generates an interrupt at predetermined time intervals.
- (2) PPG output Can output a rectangular wave with any frequency and any output pulse width.
- (3) Pulse width measurement Can measure the pulse width of a signal input from an external source.
- (4) External event counter

Can measure the number of pulses of a signal input from an external source.

(5) Square-wave output

Can output a square wave of any frequency.

(6) One-shot pulse output DataSheet4U.com

Can output a one-shot pulse with any output pulse width.

7.2 Configuration

16-bit timer/event counter 01 consists of the following hardware.

Table 7-1. Configuration of 16-Bit Timer/Event Counter 01

ltem	Configuration
Timer/counters	16-bit timer counter 01×1 (TM01)
Registers	16-bit timer capture/compare register: 16 bits $ imes$ 2 (CR010, CR011)
Timer inputs	2 (TI010, TI011 pins)
Timer outputs	1 (TO01 pin), output controller
Control registers ^{Note}	16-bit timer mode control register 01 (TMC01) Capture/compare control register 01 (CRC01) 16-bit timer output control register 01 (TOC01) Prescaler mode register 01 (PRM01) Selector operation control register 1 (SELCNT1)

Note To use the TI010, TI011, and TO01 pin functions, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.

DataSheet4U.com

et4U.com

The block diagram is shown below.

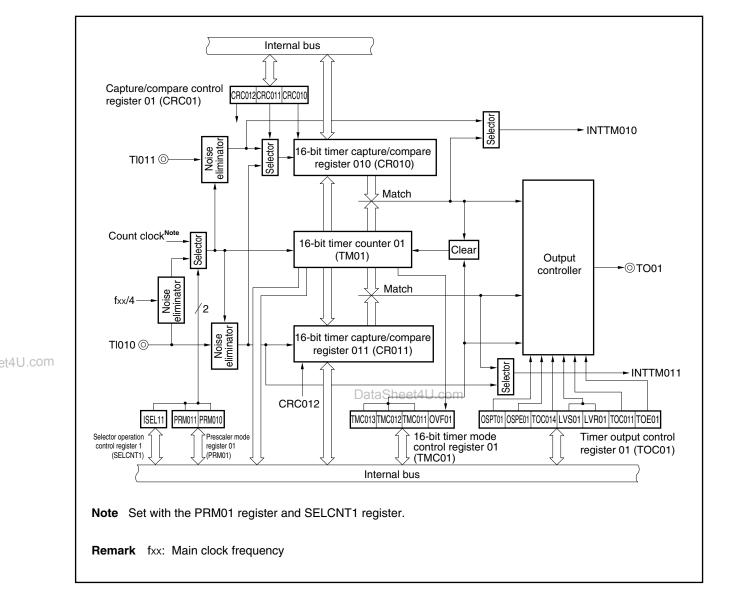
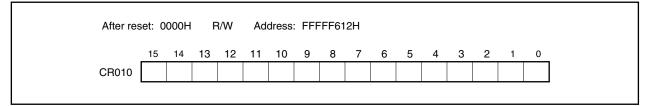


Figure 7-1. Block Diagram of 16-Bit Timer/Event Counter 01

(1) 16-bit timer counter 01 (TM01)

The TM01 register is a 16-bit read-only register that counts count pulses. The counter is incremented in synchronization with the rising edge of the input clock.

After res	et: 0	000H	F	8	Addre	ess: F	FFFF	-610⊢	ł							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TM01																


The count value is reset to 0000H in the following cases.

- <1> Reset
- <2> If the TMC01.TMC013 and TMC01.TMC012 bits are cleared (0).
- <3> If the valid edge of the TI010 pin is input in the mode in which clear & start occurs when inputting the valid edge of the TI010 pin
- <4> If the TM01 register and the CR010 register match each other in the mode in which clear & start occurs on a match between the TM01 register and the CR010 register
- <5> If the TOC01.OSPT01 bit is set (1) or if the valid edge of the TI010 pin is input in the one-shot pulse output mode

(2) 16-bit timer capture/compare register 010 (CR010)

The CR010 register is a 16-bit register that combines capture register and compare register functions. The CRC01.CRC010 bit is used to <u>set whether to use</u> the CR010 register as a capture register or as a compare register.

The CR010 register can be read or written in 16-bit units. After reset, this register is cleared to 0000H.

(a) When using the CR010 register as a compare register

The value set to the CR010 register and the count value set to the TM01 register are always compared and when these values match, an interrupt request signal (INTTM010) is generated. The values are retained until rewritten.

(b) When using the CR010 register as a capture register

The TM01 register count value is captured to the CR010 register by inputting a capture trigger.

The valid edge of the TI010 pin or TI011 pin can be selected as the capture trigger. The valid edge of the TI010 pin is set with the PRM01.ES101 and PRM01.ES100 bits. The valid edge of the TI011 pin is set with the PRM01.ES111 and PRM01.ES110 bits.

Table 7-2 shows the settings when the valid edge of the TI010 pin is specified as the capture trigger, and Table 7-3 shows the settings when the valid edge of the TI011 pin is specified as the capture trigger.

Table 7-2. Capture Trigger of CR010 Register and Valid Edge of TI010 Pin

Capture Trigger of CR010	Valid Edge of TI0	10 Pin	
		ES101	ES100
Falling edge	Rising edge	0	1
Rising edge	Falling edge	0	0
No capture operation	Both rising and falling edges	1	1

Remark Setting the ES101 and ES100 bits to 10 is prohibited.

Table 7-3. Capture Trigger of CR010 Register and Valid Edge of TI011 Pin

Capture Trigger of CR010	Valid Edge of ⁻	TI011 Pin	
		ES111	ES110
Falling edge	Falling edge	0	0
Rising edge	Rising edge	0	1
Both rising and falling edges	Both rising and falling edges	1	1

DataShe

Remark Setting the ES111 and ES110 bits to 10 is prohibited.

- Cautions 1. Set a value other than 0000H to the CR010 register in the mode in which clear & start occurs upon a match of the values of the TM01 register and CR010 register. However, if 0000H is set to the CR010 register in the free-running timer mode or the TI010 pin valid edge clear & start mode, an interrupt request signal (INTTM010) is generated when the value changes from 0000H to 0001H after an overflow (FFFFH).
 - 2. When the P35 pin is used as the valid edge of TI010, and the timer output function is used, set the P32 pin as the timer output pin (TO01).
 - 3. If, when the CR010 register is used as a capture register, the register read interval and capture trigger input conflict, the read data becomes undefined (but the capture data itself is normal). Moreover, when the count stop input and capture trigger input conflict, the capture data becomes undefined.
 - 4. The CR010 register cannot be rewritten during timer count operation.

(3) 16-bit timer capture/compare register 011 (CR011)

The CR011 register is a 16-bit register that combines capture register and compare register functions. The CRC01.CRC012 bit is used to set whether to use the CR011 register as a capture register or as a compare register.

The CR011 register can be read or written in 16-bit units.

After reset, this register is cleared to 0000H.

CR011	Af	fter res	et: 0	000H	F	₹/W	Ad	dress	FFF	FF61	4H							
CR011			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	С	R011																

(a) When using the CR011 register as a compare register

The value set to the CR011 register and the count value of the TM01 register are always compared and when these values match, an interrupt request signal (INTTM011) is generated.

(b) When using the CR011 register as a capture register

The TM01 register count value is captured to the CR011 register by inputting a capture trigger. The valid edge of the TI010 pin can be selected as the capture trigger. The valid edge of the TI010 pin is set with the PRM01.ES101 and PRM01.ES100 bits.

Table 7-4 shows the settings when the valid edge of the TI010 pin is specified as the capture trigger.

DataShe

Table 7-4. Capture Trigger of CR011 Register and Valid Edge of TI010 Pin

DataSheet4U.com

Capture Trigger of CR011	Valid Edge of TI0	10 Pin	
		ES101	ES100
Falling edge	Falling edge	0	0
Rising edge	Rising edge	0	1
Both rising and falling edges	Both rising and falling edges	1	1

Remark Setting the ES101 and ES100 bits to 10 is prohibited.

- Cautions 1. If 0000H is set to the CR011 register, an interrupt request signal (INTTM011) is generated after overflow of the TM01 register, after clear & start on a match between the TM01 register and CR010 register, after clear by the valid edge of the Tl010 pin, or after clear by a one-shot pulse output trigger.
 - 2. When the P35 pin is used as the valid edge of TI010, and the timer output function is used, set the P32 pin as the timer output pin (TO01).
 - 3. If, when the CR011 register is used as a capture register, the register read interval and capture trigger input conflict, the read data becomes undefined (but the capture data itself is normal). Moreover, when the count stop input and capture trigger input conflict, the capture data becomes undefined.
 - 4. The CR011 register can be rewritten during TM01 register operation only in the PPG output mode. Refer to 7.4.2 PPG output operation.

7.3 Registers

The registers that control 16-bit timer/event counter 01 are as follows.

- 16-bit timer mode control register 01 (TMC01)
- Capture/compare control register 01 (CRC01)
- 16-bit timer output control register 01 (TOC01)
- Prescaler mode register 01 (PRM01)
- Selector operation control register 1 (SELCNT1)

Remark To use the TI010, TI011, and TO01 pin functions, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.

(1) 16-bit timer mode control register 01 (TMC01)

The TMC01 register is used to set the operation mode of 16-bit timer/event counter 01, the clear mode of the TM01 register, the output timing, and to detect overflow.

The TMC01 register can be read or written in 8-bit or 1-bit units.

After reset, this register is cleared to 00H.

Cautions 1. 16-bit timer/event counter 01 starts operating when a value other than 00 (operation stop mode) is set to the TMC01.TMC013 and TMC01.TMC012 bits. To stop the operation, set 00 to the TMC013 and TMC012 bits.

et4U.com

 When the main clock is stopped and the CPU operates on the subclock, do not access the TMC01 register using an access method that causes a wait. For details, refer to 3.4.8 (2).

CHAPTER 7 16-BIT TIMER/EVENT COUNTER 0

$ \begin{array}{ c c c c } \hline TMC01 & \hline 0 & 0 & 0 & TMC013 & TMC012 & TMC011 & TMC111 & TMC011 & TMC111 & TMC011 & TMC111 & TMC011 & TMC111 & TMC111 & TMC011 & TMC111 & TMC1111 & TMC11111 & TMC11111 & TMC1111 & TMC11111 & TMC111111 & TMC111111 & TMC11111 & TMC11111 & TMC111111$					6	5	4	3	2	1	<0>	
IndexIndexoperation mode and clear modeoutput inverse timingInterrupt0001Operation stop (TM01 cleared to 0)UnchangedNot generated0010Free-running timer modeMatch of TM01 and CR010 or match of TM01 and CR011Generated upon match of TM01 and CR010 and match0111CR010 or match of TM01 and CR011Generated upon match of TM01 and CR010 and match0111CR010 or match of TM01 and CR011Generated upon match of TM01 and CR010 and match1011Clear & start with valid edge of Tl010Match of TM01 and CR010 or match of TM01 and CR0111011Clear & start with valid edge of Tl010Match of TM01 and CR010 or match of TM01 and CR0111101Clear & start upon match of TM01 and CR010Match of TM01 and CR010110Clear & start upon match of TM01 and CR010Match of TM01 and CR010 or match of TM01 and CR0111110Clear & start upon match of TM01 and CR010Match of TM01 and CR010 or match of TM01 and CR011111101111		TMC01	0		0	0	0	TMC013	TMC012	TMC011 ^{Note}	OVF01	
Image: constraint of the second se			TMC013	TMC012	2 TMC011 ^{Note}			Selection	n of TO01	Generat	tion of	
001(TM01 cleared to 0)Generated upon010Free-running timer modeMatch of TM01 and CR010 or match of TM01 and CR011Generated upon match of TM01 and CR010 and match0111Match of TM01 and CR011 TM01 and CR011, or valid edge of T1010CR010, match of TM01 and CR011, or valid edge of T1010100Clear & start with valid edge of T1010Match of TM01 and CR010 or match of TM01 and CR011, or valid edge of T10101010110Clear & start with valid edge of T1010Match of TM01 and CR010 or match of TM01 and CR011, or valid edge of T1010110Clear & start upon match of TM01 and CR010, match of TM01 and CR011, or valid edge of T10101110Clear & start upon match of TM01 and CR0101110Clear & start upon match of TM01 and CR0101110Clear & start upon match of TM01 and CR0101110Clear & start upon match of TM01 and CR0101111111						and clea	ar mode	-	-		·	
010Free-running timer modeMatch of TM01 and CR010 or match of TM01 and CR011Generated upon match of TM01 and CR010 and match0111Match of TM01 and CR011, or valid edge of T1010of TM01 and CR011, or valid edge of TM01 and CR011100Clear & start with valid edge of T1010Match of TM01 and CR010 or match of TM01 and CR011, or valid edge of T1010Match of TM01 and CR010 or match of TM01 and CR01110110110110111011011011<			0	0	0			Unchange	ed	Not genera	ted	
Image: state of the state of						-						
0 1 1 1 1 0 0 Clear & start with valid edge of TI010 Match of TM01 and CR011, or valid edge of TI010 1 0 0 Clear & start with valid edge of TI010 Match of TM01 and CR011 1 0 1 0 1 Match of TM01 and CR011 1 0 1 1 0 1 1 0 1 1 Match of TM01 and CR011 1 1 0 1 Match of TM01 and CR011, or valid edge of TM01 and CR011, or valid edge of TM01 and CR010, match of TM01 and CR011, or valid edge of TM01 and CR011, or valid edge of TM01 and CR010 1 1 0 Clear & start upon match of TM01 and CR011 1 1 0 Clear & start upon match of TM01 and CR010 1 1 1 0 Clear & start upon match of TM01 and CR010 1 1 1 1 1 Match of TM01 and CR011 1 1 1 1 1 Match of TM01 and CR011			0	1	0		ing timer	CR010 or	match of	match of T	M01 and	
100Clear & start with valid edge of Tl010Match of TM01 and CR010 or match of TM01 and CR011101Match of TM01 and CR010, match of TM01 and CR011, or valid edge of110Clear & start upon match of TM01 and DataSheet4U.c110Clear & start upon match of TM01 and CR0101110111111111			0	1	1	-		CR010, m TM01 and or valid ec	atch of I CR011,	of TM01 ar	nd CR011	
101Match of TM01 and CR010, match of TM01 and CR011, or valid edge of110Clear & start upon match of TM01 and CR010Match of TM01 and CR010 or match of TM01 and CR0111110111111			1	0	0			Match of TI CR010 or r	natch of	-		
match of TM01 and CR010CR010 or match of TM01 and CR011111			1	0	1	DataSh	neet4U.c	Match of T CR010, m TM01 and or valid ec	TM01 and hatch of I CR011,			
1 1 1 Match of TM01 and			1	1	0	match of ⁻		CR010 or	match of			
TM01 and CR011, or valid edge of			1	1	1	-		Match of T CR010, m TM01 and or valid ec	TM01 and natch of I CR011,			
TI010								TI010				
OVF01 Detection of overflow of 16-bit timer register 01			OVF	01		Detect	on of over	flow of 16-b	oit timer rea	gister 01		
0 No overflow					o overflo					-		
1 Overflow			1	0	verflow							
Note Be sure to clear the TMC011 bit to 0 when the TO01 pin and TI010 pin are used alternately.	Note Be	e sure to	clear	the TI	MC011	bit to 0 w	hen the T	O01 pin a	nd Tl010	pin are use	ed alternately.	.
abangos from EEEEU to 0000U the OVE01 flag is get to 1	Domostk		-					-	is set to	1.		
changes from FFFFH to 0000H, the OVF01 flag is set to 1.	nemark	TI010	Inpu	ut pin	of 16-b	it timer/ev						
Remark TO01: Output pin of 16-bit timer/event counter 01 TI010: Input pin of 16-bit timer/event counter 01 TM01: 16-bit timer counter 01		-	-			ure/compa	are registe	er 010				

(2) Capture/compare control register 01 (CRC01)

The CRC01 register controls the operation of the CR010 and CR011 registers. The CRC01 register can be read or written in 8-bit or 1-bit units. After reset, CRC01 is cleared to 00H.

	7	6	5	4	3	2	1	0		
CRC01	0	0	0	0	0	CRC012	CRC011	CRC010		
						·				
	CRC012		Select	ion of oper	ation mod	e of CR011	register			
	0	Operation	as compa	re register						
	1	Operation	as capture	e register						
	r	I								
	CRC011		Select	tion of capt	ure trigge	r of CR010 r	register			
	0		t valid edg		•					
	1	Capture a	t inverse p	hase of va	lid edge o	f TI010 pin				
			<u> </u>	. ,		(00040				
	CRC010	Operation		· · ·	ation mod	e of CR010	register			
	0	Operation as compare register Operation as capture register								
		Operation	as capture	register						
Cautions 1. B	efore sett	ina the C	BC01 reg	ister⊵be	sure to	stop the ti	mer oper	ation.		
		-	-	000010	0110100			n match of	the TM01	
							-	r, do not sp		
С	R010 regi	ster as th	e capture	e registe						
	hen both apture op		-	-	ges are	specified	for the '	Tl010 pin va	lid edge	
							than two			

DataShe

(3) 16-bit timer output control register 01 (TOC01)

The TOC01 register controls the operation of the 16-bit timer/event counter 01 output controller by setting or resetting the timer output F/F, enabling or disabling inverse output, enabling or disabling the timer of 16-bit timer/event counter 01, enabling or disabling the one-shot pulse output operation, and selecting an output trigger for a one-shot pulse by software.

The TOC01 register can be read or written in 8-bit or 1-bit units.

After reset, TOC01 is cleared to 00H.

	After res	et: 00H	R/W	Address	: FFFFF61	9H						
	TOC01	7	<6> OSPT01	<5> OSPE01	4 TOC014	<3> LVS01	<2>	1 TOC011	<0> TOE01	7		
	10001	0	03F101	USPEUI	100014	LVSUI	LVHUI	TOCOTT	IOEUI			
		OSPT01		Outp	ut trigger for	one-shot	pulse by s	oftware		7		
		0			33	_	1					
		1	One-shot	pulse outp	ut							
			1							_		
		OSPE01		Con	trol of one-s	shot pulse	output ope	eration				
		0		ve pulse ou						_		
		1	One-shot	pulse outp	ut ^{Note}							
		TOOMA								7		
om		TOC014 0			ut F/F upon	match of C	R011 regis	ster and TM	J1 register	-		
		1		Inversion operation disabled DataSheet4U.com Inversion operation enabled								
		I	Inversion	operation	enableu							
		LVS01	LVR01		Setting	of status	of timer ou	Itput F/F		7		
		0	0	Unchang	-							
		0	1	-	er output F	F (0)						
		1	0	Set timer	output F/F	(1)						
		1	1	Setting p	rohibited							
			1							-		
		TOC011	Control o	f timer outp	ut F/F upon	match of (CR010 regis	ster and TM	01 register			
		0		operation						_		
		1	Inversion	operation	enabled							
		TOE01			Contr	ol of timer	output			7		
		0	Output disabled (output is fixed to low level)									
		1	Output enabled						-			
	Note The one-s clear & sta match bet	art occurs	e output o s on the va	perates n alid edge	of the TIO	10 pin. I	n the mod	le in whicl	n clear &	start occ	urs on	
	because r					TO TEGISI			output is	not pen	onned	

231

		(2	2/2					
Cautions 1.	Be sure to stop the timer operation before setting other	than the TOC014 bit.						
2.	The LVS01 and LVR01 bits are 0 when read.							
3.	The OSPT01 bit is 0 when read because it is automatical set.	lly cleared after data has been						
4.	Do not set the OSPT01 bit (1) other than for one-shot pul	se output.						
5.	When performing successive writes to the OSPT01 bit, place an interval between							
	writes of two or more cycles of the count clock selected	, ,						
6.	Do not set the LVS01 bit (1) before setting the TOE01 bit.							
	Do not set the LVS01 bit and TOE01 bit (1) at the same ti	me.						
7.	Do not set <1> and <2> below at the same time. Set as f	follows.						
	<1> Set the TOC011, TOC014, TOE01, and OSPE01 bits:	Setting of timer output operation						
	<2> Set the LVS01 and LVR01 bits:	Setting of timer output F/F						

DataSheet4U.com

(4) Prescaler mode register 01 (PRM01)

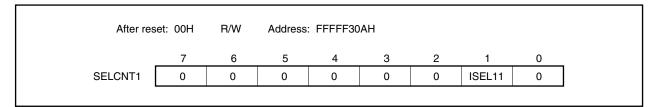
The PRM01 register sets the count clock of the TM01 register and the valid edge of the TI010 and TI011 pin inputs. The PRM101 and PRM100 bits are set in combination with the SELCNT1.ISEL11 bit. Refer to 7.3 (6) Count clock setting for 16-bit timer/event counter 01 for details.

The PRM01 register can be read or written in 8-bit or 1-bit units.

After reset, PRM01 is cleared to 00H.

- Cautions 1. When setting the count clock to the TI010 pin valid edge, do not set the mode in which clear & start occurs on TI010 pin valid edge and do not set the TI010 pin as a capture trigger.
 - 2. Before setting the PRM01 register, be sure to stop the timer operation.
 - 3. If 16-bit timer/event counter 01 operation is enabled by specifying the rising edge or both edges for the valid edge of the TI010 pin or TI011 pin while the TI010 pin or TI011 pin is high level immediately after system reset, the rising edge is detected immediately after the rising edge or both edges is specified. Be careful when pulling up the TI010 pin or TI011 pin. However, the rising edge is not detected when operation is enabled after it has been stopped.
 - 4. When the P35 pin is used as the valid edge of TI010, and the timer output function is used, set the P32 pin as the timer output pin (TO01).

After res	set: 00H	R/W	Address	FFFFF61	/H			
	7	6	5	4	3	2	1	0
PRM01	ES111	ES110	ES101	4ES100	0	0	PRM101	PRM100
	ES111	ES110		Selec	tion of vali	d edge o	f TI011	
	0	0	Falling ed	ge				
	0	1	Rising edg	je				
	1	0	Setting pro	ohibited				
	1	1	Both rising	g and falling	edges			
	ES101	ES100		Selec	tion of vali	d edge o	f TI010	
	0	0	Falling ed	ge				
	0	1	Rising edg	je				
	1	0	Setting pro	ohibited				
	1	1	Both rising	g and falling	edges			


(5) Selector operation control register 1 (SELCNT1)

The SELCNT1 register sets the count clock of 16-bit timer/event counter 01.

The SELCNT1 register can be read or written in 8-bit or 1-bit units.

After reset, SELCNT1 is cleared to 00H.

The SELCNT1 register is set in combination with the PRM01.PRM101 and PRM01.PRM100 bits. Refer to 7.3 (6) Count clock setting for 16-bit timer/event counter 01 for details.

(6) Count clock setting for 16-bit timer/event counter 01

The count clock for 16-bit timer/event counter 01 is set by using the PRM01.PRM101, PRM01.PRM100, and SELCNT1.ISEL11 bits in combination.

SELCNT1 Register PRM01 Register			Selection of Count Clock ^{Note 1}						
ISEL11 Bit	PRM011 Bit	PRM010 Bit	Count Clock	fxx = 20 MHz	fxx = 16 MHz	fxx = 10 MHz			
0	0	0	fxx	Setting prohibited	Setting prohibited	100 ns			
0	0	1	fxx/4	200 ns	250 ns	400 ns			
0	1	0	INTWT	-	-	_			
0	1	1	Valid edge of TI010 ^{Note 2}	-	-	-			
1	0	0	fxx/2	100 ns	125 ns	200 ns			
1	0	1	fxx/8	400 ns	500 ns	800 ns			
1	1	0	fxx/16	800 ns	1.0 <i>μ</i> s	1.6 <i>µ</i> s			
1	1	1	Setting prohibited						

DataShe

Notes 1. When the internal clock is selected, set so as to satisfy the following conditions:

 $V_{DD} = 4.0$ to 5.5 V: Count clock ≤ 10 MHz

 V_{DD} = 2.7 to 4.0 V: Count clock $\leq 5~\text{MHz}$

2. The external clock requires a pulse longer than two cycles of the internal clock (fxx/4).

DataSheet4U.com

et4U.com

7.4 Operation

7.4.1 Operation as interval timer

16-bit timer/event counter 01 can be made to operate as an interval timer by setting the TMC01 register and the CRC01 register as shown in Figure 7-2.

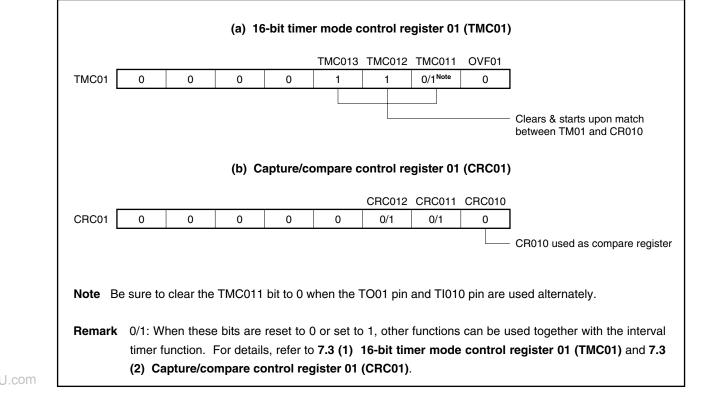
Setting procedure

The basic operation setting procedure is as follows.

- <1> Set the count clock using the PRM01 register and the SELCNT1 register.
- <2> Set the CRC01 register (refer to Figure 7-2 for the setting value).
- <3> Set any value to the CR010 register.

<4> Set the TMC01 register: Start operation (refer to Figure 7-2 for the setting value).

Caution The CR010 register cannot be rewritten during 16-bit timer/event counter 01 operation.

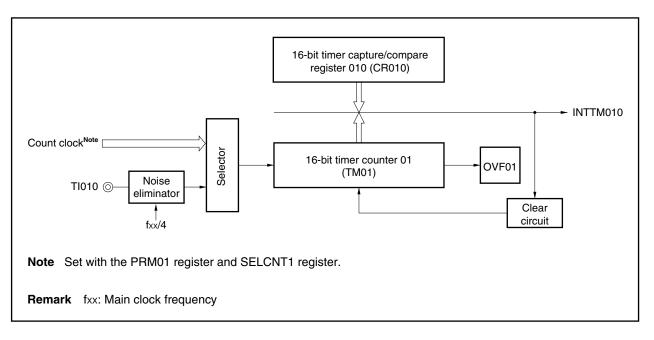

Remarks 1. For the alternate-function pin settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.

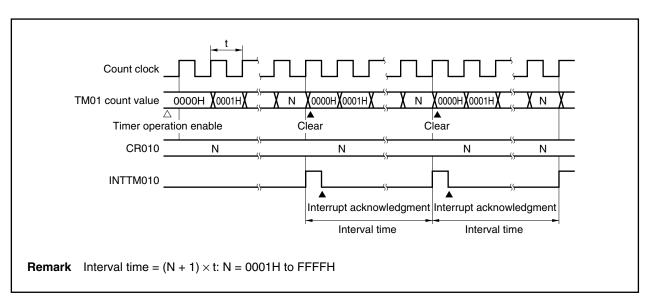
2. For INTTM010 interrupt enable, refer to CHAPTER 17 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

et4U.com

The interval timer repeatedly generates interrupts at the interval of the preset count value in the CR010 register. If the count value in the TM01 register matches the value set in the CR010 register, an interrupt request signal (INTTM010) is generated at the same time that the value of the TM01 register is cleared to 0000H and counting is continued.

The count clock of 16-bit timer/event counter 01 can be selected with the PRM01.PRM010, PRM01.PRM011, and SELCNT1.ISEL11 bits.


Figure 7-2. Control Register Settings in Interval Timer Operation


et4U.com

DataSheet4U.com Figure 7-3. Configuration of Interval Timer

DataShe

www.DataSheet4U.com

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

7.4.2 PPG output operation

16-bit timer/event counter 01 can be used for PPG (Programmable Pulse Generator) output by setting the TMC01 register and the CRC01 register as shown in Figure 7-5.

Setting procedure

The basic operation setting procedure is as follows.

<1> Set the CRC01 register (refer to Figure 7-5 for the setting value).

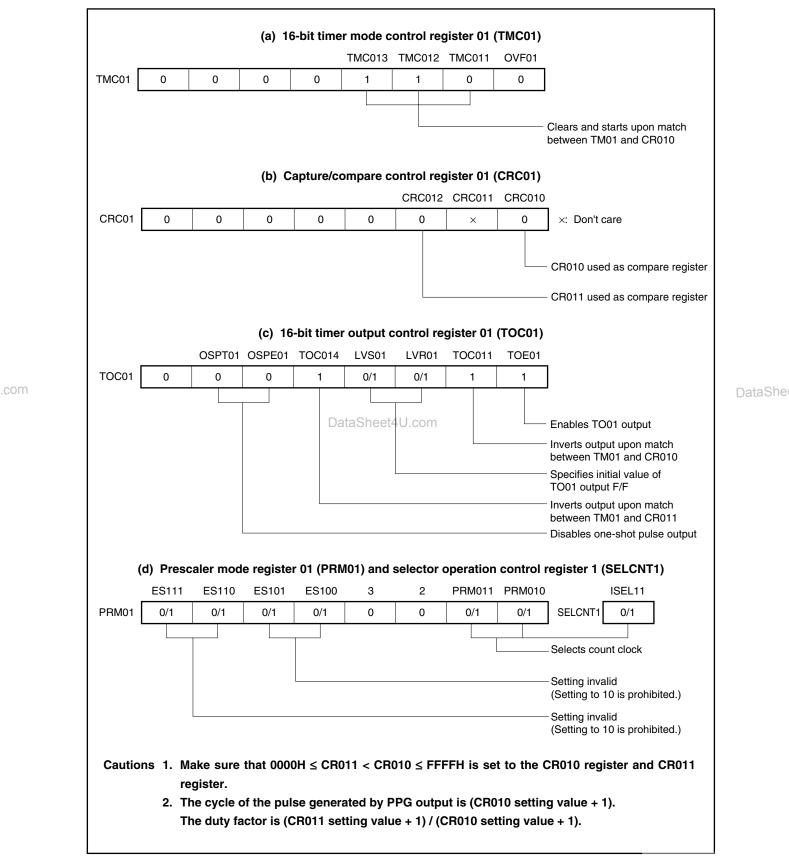
<2> Set any value as a cycle to the CR010 register.

<3> Set any value as a duty to the CR011 register.

<4> Set the TOC01 register (refer to Figure 7-5 for the setting value).

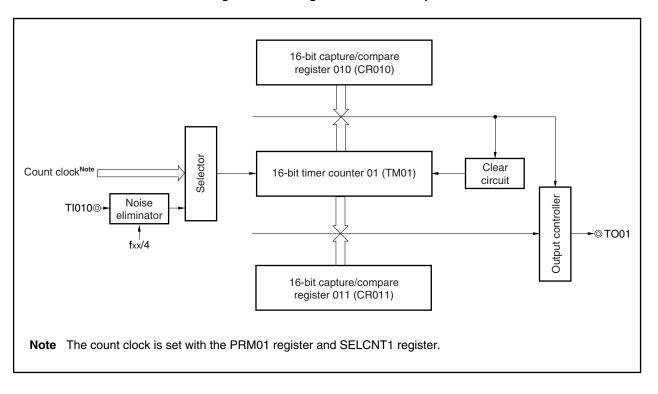
<5> Set the count clock using the PRM01 register and SELCNT1 register.

<6> Set the TMC01 register: Start operation (refer to Figure 7-5 for the setting value).


Caution To change the duty value (CR011 register) during operation, refer to Remark 2 in Figure 7-7 PPG Output Operation Timing.

Remarks 1. For the alternate-function pin (TO01) settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.

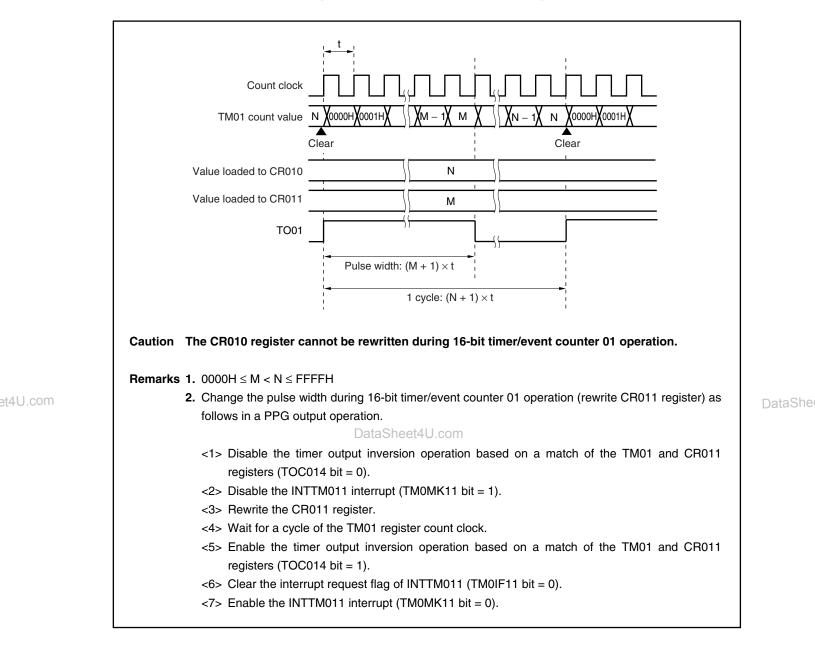
2. For INTTM010 interrupt enable, refer to CHAPTER 17 INTERRUPT/EXCEPTION PROCESSING FUNCTION.


et4U.com

The PPG output function outputs a rectangular wave from the TO01 pin with the cycle specified by the count value set in advance to the CR010 register and the pulse width specified by the count value set in advance to the CR011 register.

Figure 7-5. Control Register Settings in PPG Output Operation

Figure 7-6. Configuration of PPG Output



et4U.com

DataSheet4U.com

DataSheet4U.com

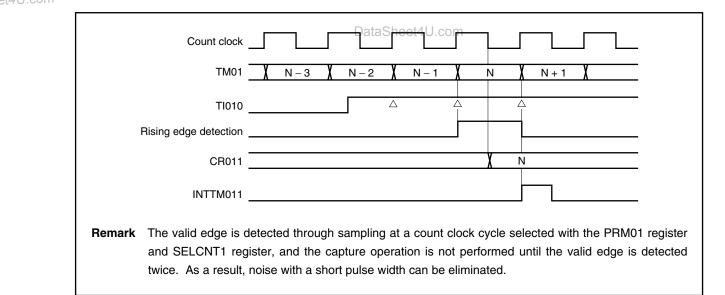
www.DataSheet4U.com

7.4.3 Pulse width measurement

The TM01 register can be used to measure the pulse widths of the signals input to the TI010 and TI011 pins. Measurement can be carried out with 16-bit timer/event counter 01 used in the free-running timer mode or by restarting the timer in synchronization with the edge of the signal input to the TI010 pin.

When an interrupt is generated, read the valid capture register value. After confirming the TMC01.OVF01 flag, clear it (0) by software and measure the pulse width.

Setting procedure


The basic operation setting procedure is as follows.

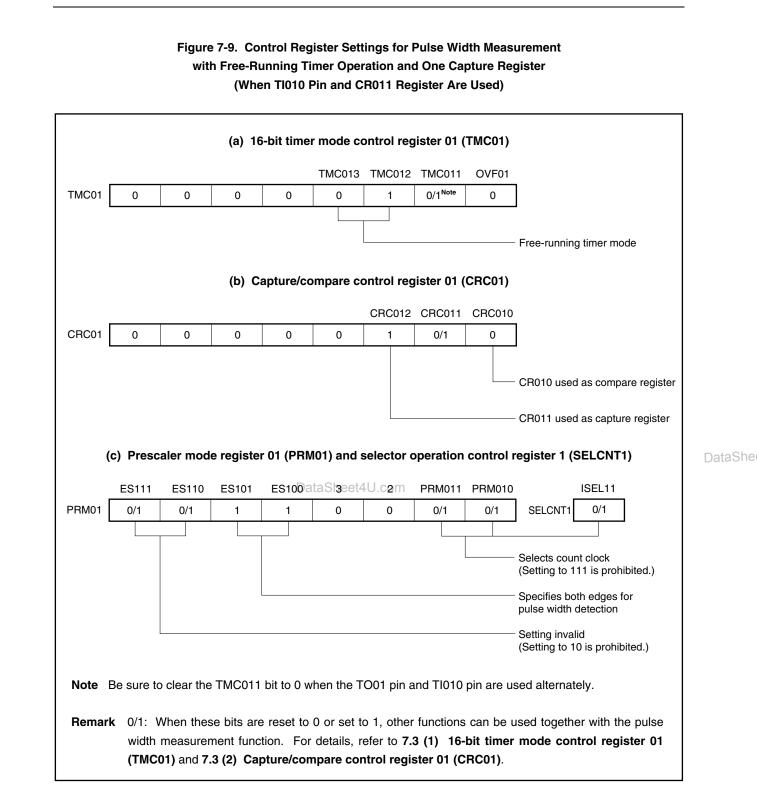
- <1> Set the CRC01 register (refer to Figures 7-9, 7-12, 7-14, and 7-16 for the setting value).
- <2> Set the count clock using the PRM01 register and SELCNT1 register.
- <3> Set the TMC01 register: Start operation (refer to Figures 7-9, 7-12, 7-14, and 7-16 for the setting value).

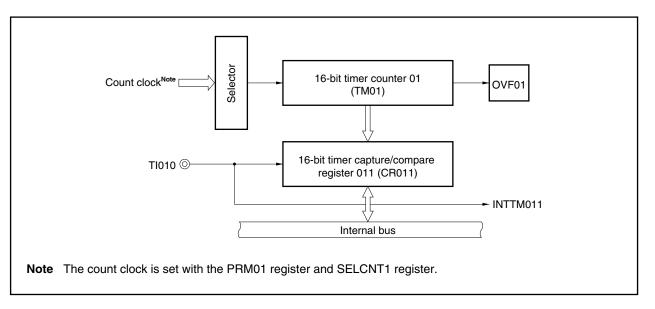
Caution When using two capture registers, set the TI010 and TI011 pins.

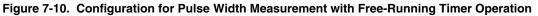
- Remarks 1. For the alternate-function pin (TI010, TI011) settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.
 - 2. For INTTM010 and INTTM011 interrupt enable, refer to CHAPTER 17 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

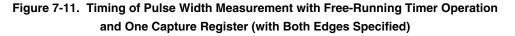
Figure 7-8. CR011 Capture Operation with Rising Edge Specified

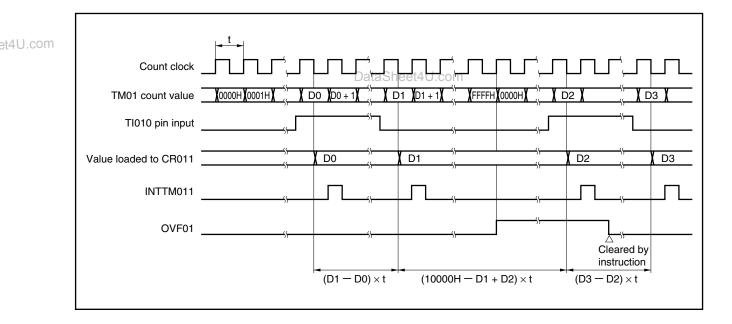
(1) Pulse width measurement with free-running timer operation and one capture register


If the edge specified by the PRM01 register is input to the TI010 pin when 16-bit timer/event counter 01 is operated in the free-running timer mode (refer to **Figure 7-9**), the value of the TM01 register is loaded to the CR011 register and an external interrupt request signal (INTTM011) is generated.


The valid edge is specified by the PRM01.ES100 and PRM01.ES101 bits. The rising edge, falling edge, or both the rising and falling edges can be selected.

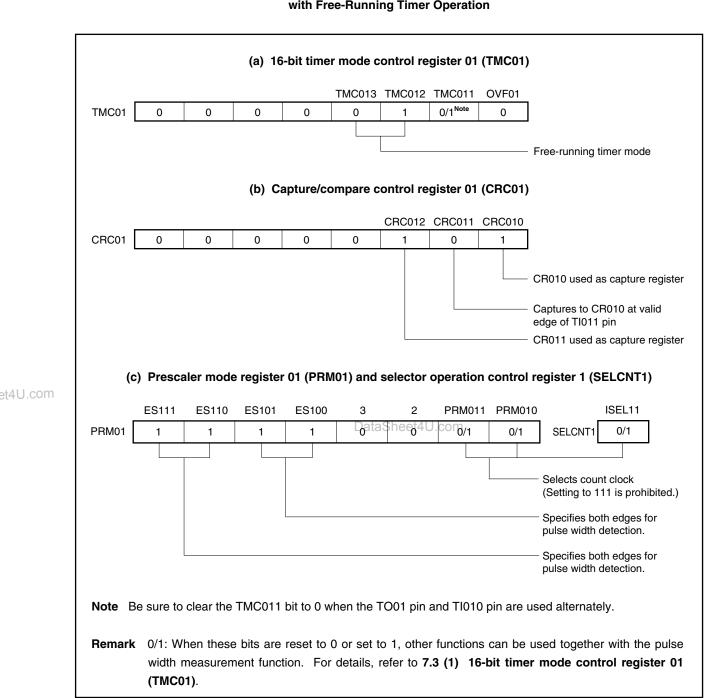

The valid edge is detected through sampling at a count clock cycle selected with the PRM01 register and SELCNT1 register, and the capture operation is not performed until the valid edge is detected twice. As a


DataSheet4U.com result, noise with a short pulse width can be eliminated.


www.DataSheet4U.com

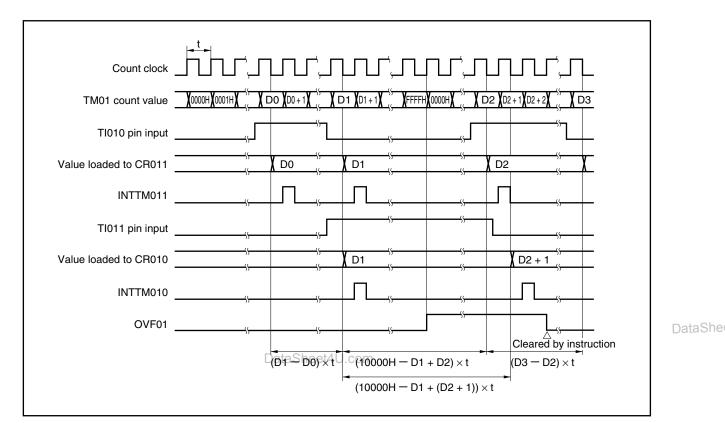
(2) Measurement of two pulse widths with free-running timer operation

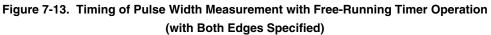
The pulse widths of two signals respectively input to the TI010 pin and the TI011 pin can be simultaneously measured when 16-bit timer/event counter 01 is used in the free-running timer mode (refer to **Figure 7-12**). When the edge specified by the PRM01.ES100 and PRM01.ES101 bits is input to the TI010 pin, the value of the TM01 register is loaded to the CR111 register and an external interrupt request signal (INTTM011) is generated.


When the edge specified by the PRM01.ES110 and PRM01.ES111 bits is input to the TI011 pin, the value of the TM01 register is loaded to the CR010 register and an external interrupt request signal (INTTM010) is generated.

The edges of the TI010 and TI011 pins are specified by the PRM01.ES100 and PRM01.ES101 bits and the PRM01.ES110 and PRM01.ES111 bits, respectively. Specify both rising and falling edges.

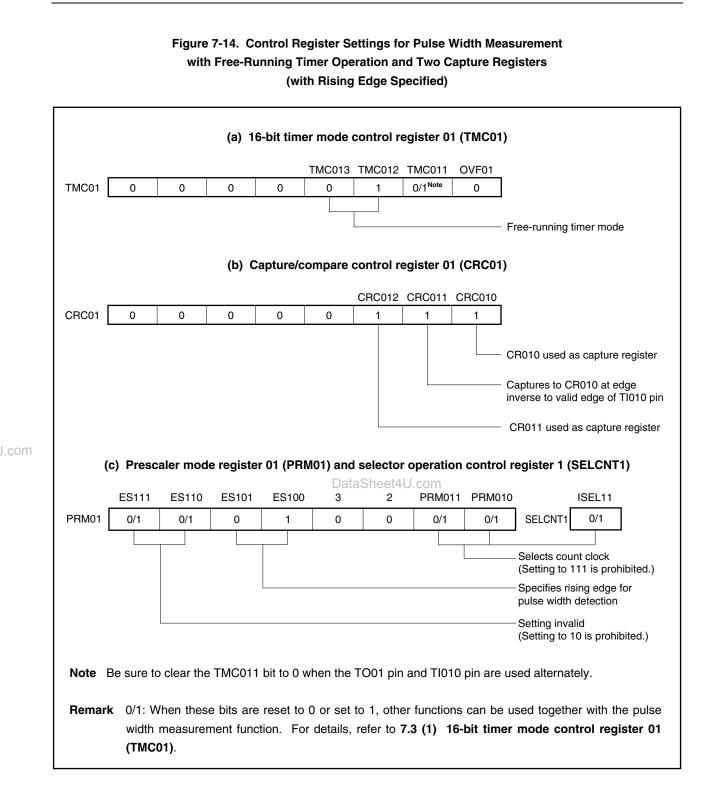
The valid edge of the TI010 pin is detected through sampling at the count clock cycle selected with the PRM01 register and SELCNT1 register, and the capture operation is not performed until the valid level is detected twice. As a result, noise with a short pulse width can be eliminated.


et4U.com


DataSheet4U.com

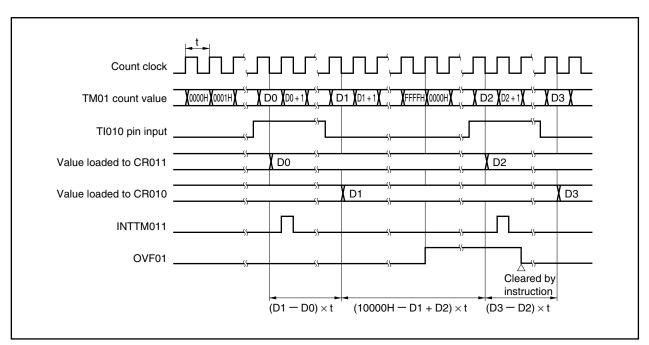
• Capture operation (free-running timer mode)

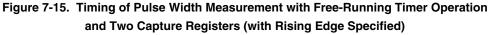
The following figure illustrates the operation of the capture register when the capture trigger is input.


(3) Pulse width measurement with free-running timer operation and two capture registers

When 16-bit timer/event counter 01 is used in the free-running timer mode (refer to **Figure 7-14**), the pulse width of the signal input to the TI010 pin can be measured.

When the edge specified by the PRM01.ES100 and PRM01.ES101 bits is input to the TI010 pin, the value of the TM01 register is loaded to the CR011 register and an external interrupt request signal (INTTM011) is generated.

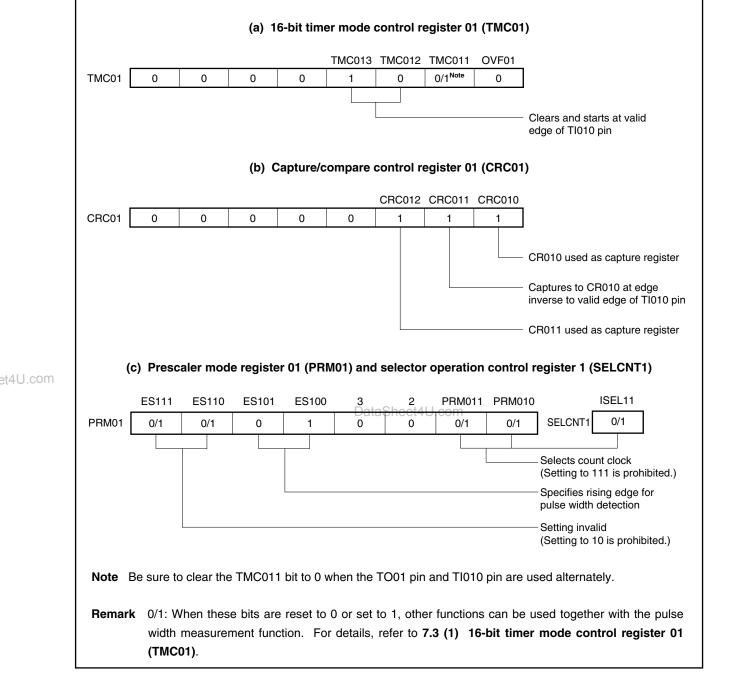

The value of the TM01 register is also loaded to the CR010 register when an edge inverse to the one that triggers capturing to the CR011 register is input.


The valid edge of the TI010 pin is detected through sampling at a count clock cycle selected with the PRM01 register and SELCNT1 register, and the capture operation is not performed until the valid edge is detected twice. As a result, noise with a short pulse width can be eliminated.

DataShe

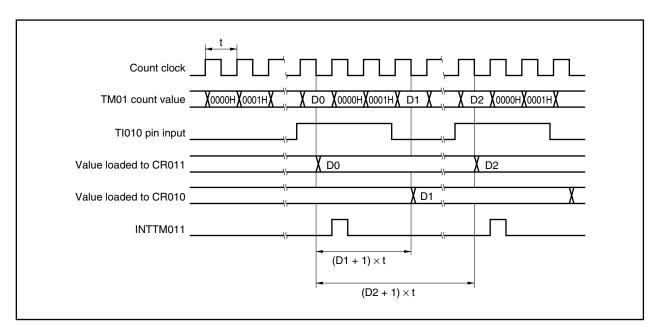
www.DataSheet4U.com

(4) Pulse width measurement by restarting


When the valid edge of the TI010 pin is detected, the pulse width of the signal input to the TI010 pin can be measured by clearing the TM01 register and then resuming counting after loading the count value of the TM01 register to the CR011 register (refer to **Figure 7-17**).

The edge is specified by the PRM01.ES100 and PRM01.ES101 bits. The rising or falling edge can be specified.

The valid edge is detected through sampling at a count clock cycle selected with the PRM01 register and SELCNT1 register, and the capture operation is not performed until the valid level is detected twice. As a result, noise with a short pulse width can be eliminated.


DataShee

et4U.com

Figure 7-16. Control Register Settings for Pulse Width Measurement by Restarting

www.DataSheet4U.com

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

www.DataSheet4U.com

7.4.4 Operation as external event counter

Setting procedure

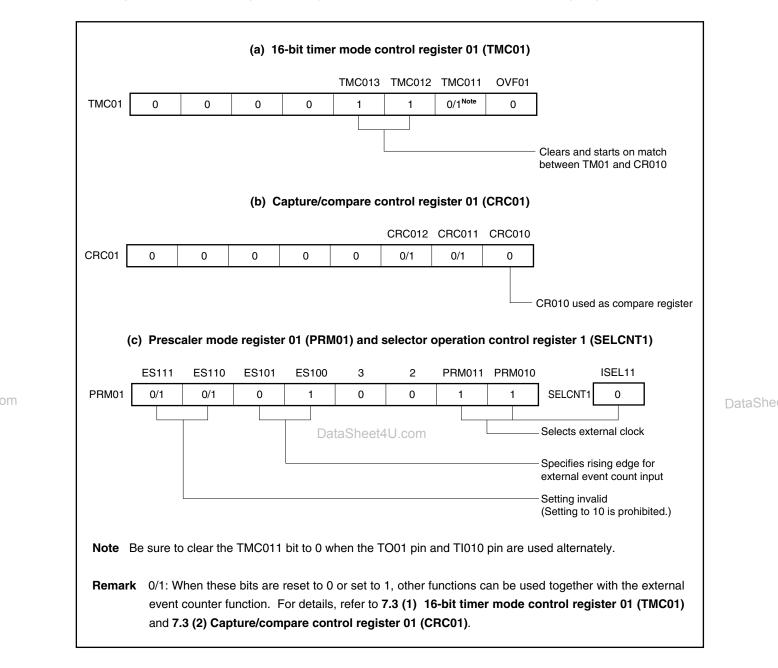
The basic operation setting procedure is as follows.

- <1> Set the CRC01 register (refer to **Figure 7-18** for the setting value).
- <2> Set the count clock using the PRM01 register and SELCNT1 register.
- <3> Set any value (except for 0000H) to the CR010 register.
- <4> Set the TMC01 register: Start operation (refer to Figure 7-18 for the setting value).
- Remarks 1. For the alternate-function pin (TI010) settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.
 - 2. For INTTM010 interrupt enable, refer to CHAPTER 17 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

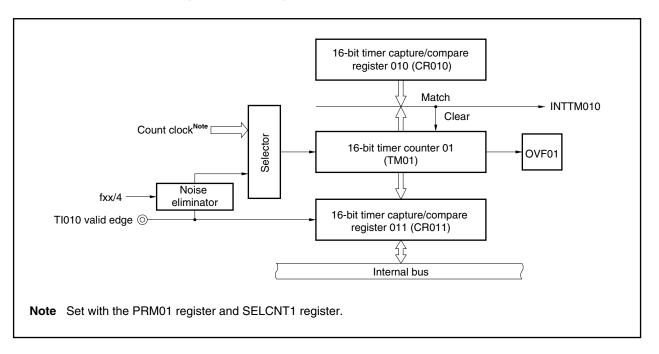
The external event counter counts the number of clock pulses input to the TI010 pin from an external source by using the TM01 register.

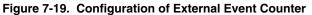
Each time the valid edge specified by the PRM01 register has been input, the TM01 register is incremented.

When the count value of the TM01 register matches the value of the CR010 register, the TM01 register is cleared to 0000H and an interrupt request signal (INTTM010) is generated.


Set the CR010 register to a value other than 0000H (one-pulse count operation is not possible).

The edge is specified by the PRM01.ES100 and PRM01.ES101 bits. The rising, falling, or both the rising and falling edges can be specified.


The valid edge is detected through sampling at a count clock cycle of fxx/4, and the capture operation is not performed until the valid level is detected twice. As a result, noise with a short pulse width can be eliminated.


Caution The value of the CR010 and CR011 registers cannot be changed during timer count operation.

Preliminary User's Manual U16896EJ1V0UD

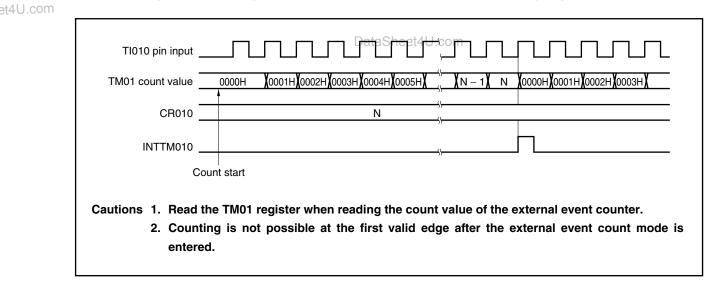


Figure 7-18. Control Register Settings in External Event Count Mode (with Rising Edge Specified)

Figure 7-20. Timing of External Event Counter Operation (with Rising Edge Specified)

DataShe

www.DataSheet4U.com

7.4.5 Square-wave output operation

Setting procedure

The basic operation setting procedure is as follows.

<1> Set the count clock using the PRM01 register and SELCNT1 register.

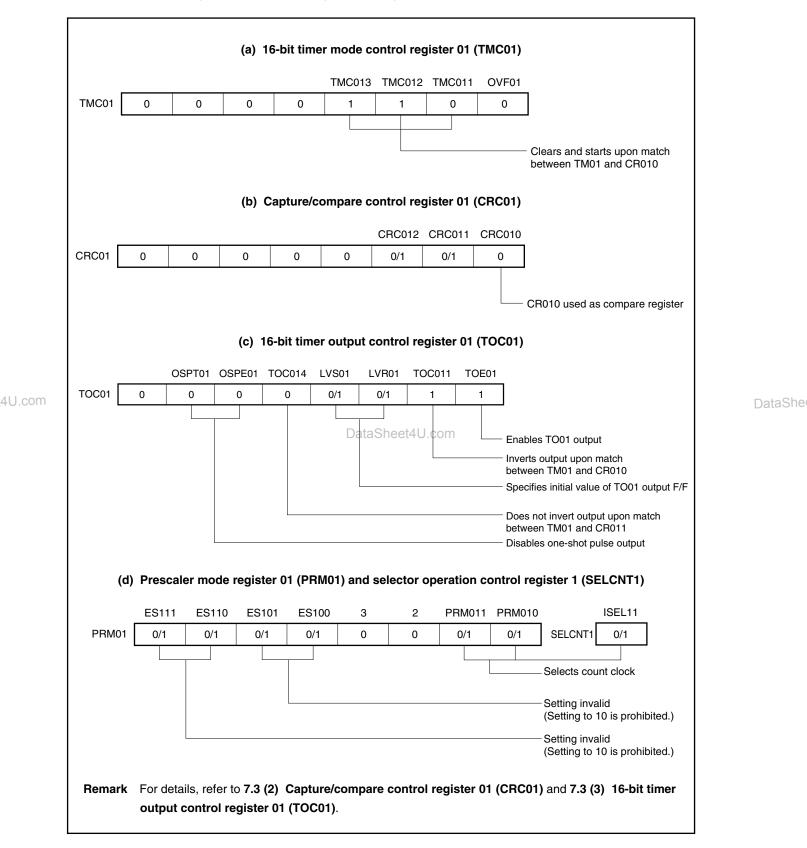
- <2> Set the CRC01 register (refer to Figure 7-21 for the setting value).
- <3> Set the TOC01 register (refer to **Figure 7-21** for the setting value).
- <4> Set any value (except for 0000H) to the CR010 register.
- <5> Set the TMC01 register: Start operation (refer to Figure 7-21 for the setting value).

Remarks 1. For the alternate-function pin (TO01) settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.

2. For INTTM010 interrupt enable, refer to CHAPTER 17 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

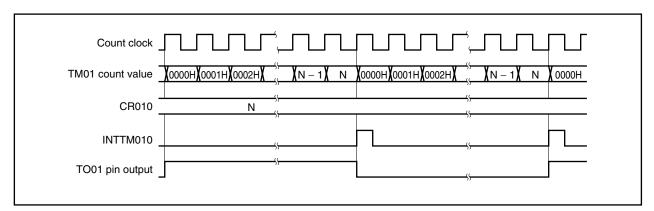
16-bit timer/event counter 01 can be used to output a square wave with any frequency at an interval specified by the count value set in advance to the CR010 register.

By setting the TOC01.TOE01 and TOC01.TOC011 bits to 11, the output status of the TO01 pin is inverted at an interval set in advance to the CR010 register. In this way, a square wave of any frequency can be output.


Caution The value of the CR010 and CR011 registers cannot be changed during timer count operation.

DataShee

DataSheet4U.com


DataSheet4U.com

www.DataSheet4U.com

256

Figure 7-22. Timing of Square-Wave Output Operation

et4U.com

DataSheet4U.com

DataSheet4U.com

7.4.6 One-shot pulse output operation

16-bit timer/event counter 01 can output a one-shot pulse in synchronization with a software trigger or an external trigger (TI010 pin input).

Setting procedure

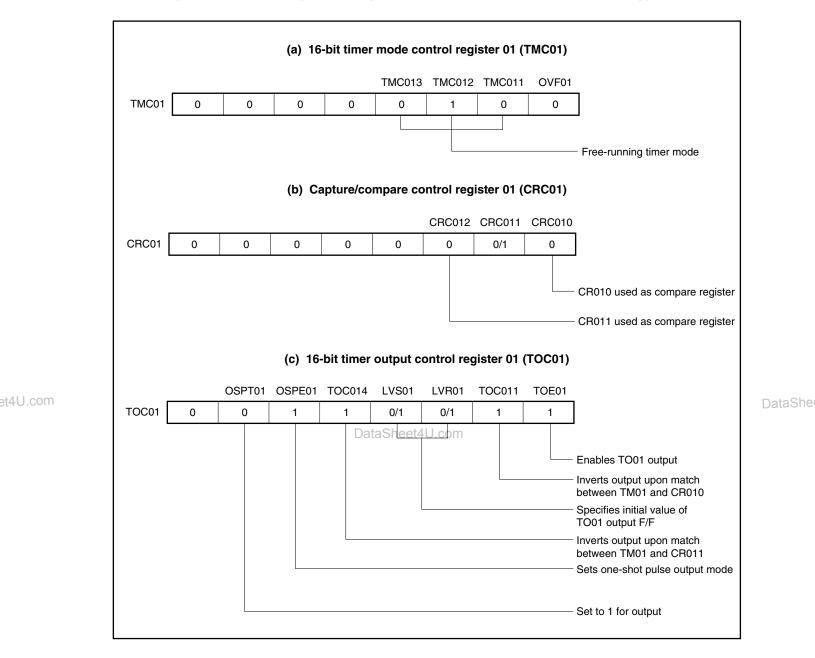
The basic operation setting procedure is as follows.

<1> Set the count clock using the PRM01 register and SELCNT1 register.

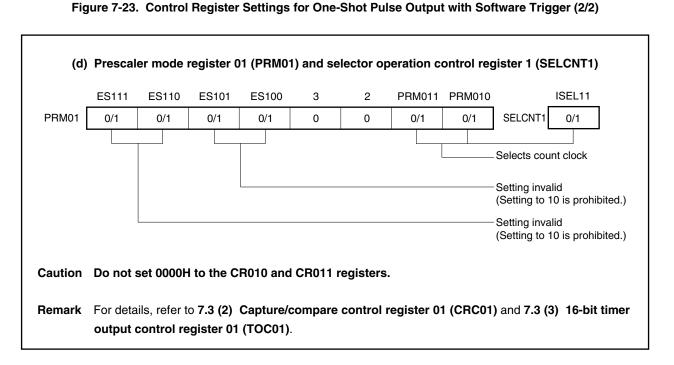
- <2> Set the CRC01 register (refer to Figures 7-23 and 7-25 for the setting value).
- <3> Set the TOC01 register (refer to Figures 7-23 and 7-25 for the setting value).
- <4> Set any value to the CR010 and CR011 registers.
- <5> Set the TMC01 register: Start operation (refer to Figures 7-23 and 7-25 for the setting value).
- Remarks 1. For the alternate-function pin (TO01) settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.
 - 2. For INTTM010 interrupt enable, refer to CHAPTER 17 INTERRUPT/EXCEPTION PROCESSING FUNCTION.

(1) One-shot pulse output with software trigger

A one-shot pulse can be output from the TO01 pin by setting the TMC01, CRC01, and TOC01 registers as shown in Figure 7-23, and by setting the TOC01.OSPT01 bit to 1 by software.


By setting the OSPT01 bit to 1, 16-bit timer/event counter 01 is cleared and started, and its output becomes active at the count value (N) set in advance to the CR011 register. After that, the output becomes inactive at the count value (M) set in advance to the CR010 register to the CR

Even after the one-shot pulse has been output, 16-bit timer/event counter 01 continues its operation. To stop 16-bit timer/event counter 01, the TMC01.TMC013 and TMC01.TMC012 bits must be cleared to 00.


Note The case where N < M is described here. When N > M, the output becomes active with the CR010 register and inactive with the CR011 register.

Cautions 1. Do not set the OSPT01 bit to 1 while the one-shot pulse is being output. To output the one-shot pulse again, wait until the current one-shot pulse output is completed.

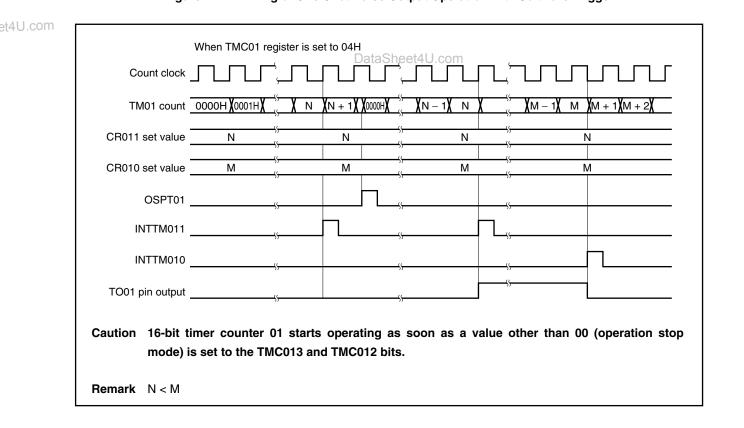

2. The value of the CR010 and CR011 registers cannot be changed during timer count operation.

Figure 7-23. Control Register Settings for One-Shot Pulse Output with Software Trigger (1/2)

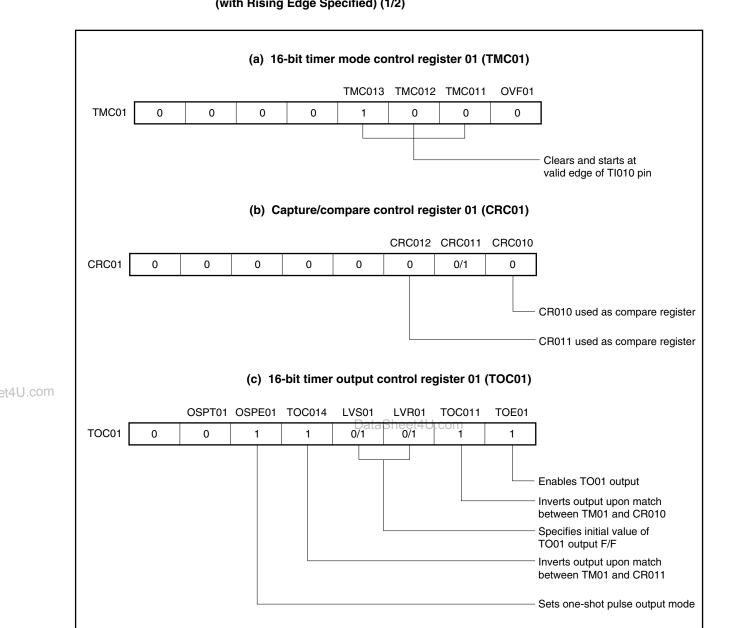
Figure 7-24. Timing of One-Shot Pulse Output Operation with Software Trigger

DataSheet4U.com

(2) One-shot pulse output with external trigger

A one-shot pulse can be output from the TO01 pin by setting the TMC01, CRC01, and TOC01 registers as shown in Figure 7-25, and by using the valid edge of the TI010 pin as an external trigger.

The valid edge of the TI010 pin is specified by the PRM01.ES100 and PRM01.ES101 bits. The rising, falling, or both the rising and falling edges can be specified.


When the valid edge of the TI010 pin is detected, 16-bit timer/event counter 01 is cleared and started, and the output becomes active at the count value set in advance to the CR011 register. After that, the output becomes inactive at the count value set in advance to the CR010 register^{Note}.

- **Note** The case where N < M is described here. When N > M, the output becomes active with the CR010 register and inactive with the CR011 register.
- Cautions 1. Even if the external trigger is generated again while the one-shot pulse is output, it is ignored.
 - 2. The value of the CR010 and CR011 registers cannot be changed during timer count operation.

et4U.com

DataShe

DataSheet4U.com

Figure 7-25. Control Register Settings for One-Shot Pulse Output with External Trigger (with Rising Edge Specified) (1/2)

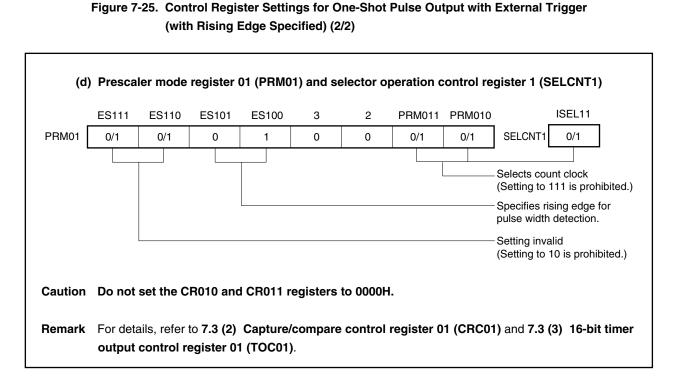


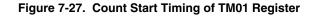
Figure 7-26. Timing of One-Shot Pulse Output Operation with External Trigger (with Rising Edge Specified)

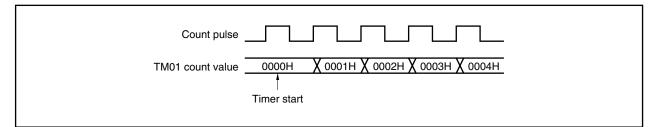
et4U.com

When TMC01 is set to 08H Count clock М TM01 count value 0000H 0001H Хоооон Ν (N + 1) N + 2 (M – 2) (M – 1 **X**M + 1**X**M + 2 CR011 set value Ν Ν Ν Ν CR010 set value Μ Μ Μ Μ TI010 pin input INTTM011 INTTM010 TO01 pin output Caution 16-bit timer/event counter 01 starts operating as soon as a value other than 00 (operation stop mode) is set to the TMC012 and TMC013 bits. Remark N < M

7.4.7 Cautions

Channel	Pin	Alternate Function	Remarks
TM01	TI010	P35/TO01	Shares the pin with TO01.
	TI011	P50/KR0/RTP00	
	TO01	P32/ASCK0/ADTRG	Assigned to two pins, P32 and P35.
		P35/TI010	

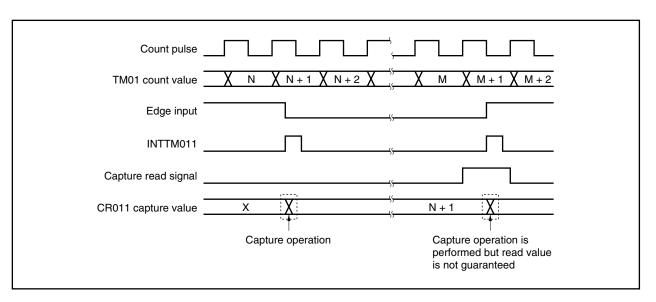

(1) Alternate functions of TI010/TO01 pins


- When using the output of TO01 that functions alternately as P35, only a software trigger (TOC01.OSPT01 bit) can be used as the trigger in the one-shot pulse output mode. A P35/TI010 pin input signal cannot be used as the trigger since TI010 and TO01 share a pin and are used alternately. A TI010 pin input signal can be used as the trigger, however, when using the output of TO01 that functions alternately as P32.
- When using the output of TO01 that functions alternately as P35, the timer output inversion operation using the valid edge of the TI010 pin input cannot be performed. The valid edge cannot be input to the P35/TI010 pin since TI010 and TO01 share a pin and are used alternately. Set the TMC01.TMC011 bit to 0 in this event.

The timer output inversion operation using the valid edge of the TI010 pin input can be performed, however, when using the output of TO01 that functions alternately as P32.

(2) Error on starting timer

An error of up to 1 clock occurs before the match signal is generated after the timer has been started. This is because the count of the TM01 register is started asynchronously to the count pulse.


(3) Setting CR010 and CR011 registers (in the mode in which clear & start occurs upon match between TM01 register and CR010 register)

Set the CR010 and CR011 registers to a value other than 0000H (when using these registers as external event counters, one-pulse count operation is not possible).

DataSheet4U.com

(4) Data hold timing of capture register

<1> If the valid edge of the TI010 pin is input while the CR011 register is read, the CR011 register performs capture operation, but the read value at this time is not guaranteed. However, the interrupt request signal (INTTM011) is generated as a result of detection of the valid edge.

Figure 7-28. Data Hold Timing of Capture Register

et4U.com

<2> The values of the CR010 and CR011 registers are not guaranteed after 16-bit timer/event counter 01 has stopped.

(5) Setting valid edge

Before setting the valid edge of the TI010 pin, stop the timer operation by clearing the TMC01.TMC012 and TMC01.TMC013 bits to 00. Set the valid edge by using the PRM01.ES100 and PRM01.ES101 bits.

(6) Re-triggering one-shot pulse

(a) One-shot pulse output by software

When a one-shot pulse is output, do not set the TOC01.OSPT01 bit to 1. Do not output the one-shot pulse again until the INTTM010 signal, which occurs upon match with the CR010 register, or the INTTM011 signal, which occurs upon match with the CR011 register, occurs.

(b) One-shot pulse output with external trigger

If the external trigger occurs again while a one-shot pulse is output, it is ignored.

(7) Operation of OVF01 flag

(a) Setting of OVF01 flag

The TMC01.OVF01 flag is set to 1 in the following case in addition to when the TM01 register overflows.

Select the mode in which clear & start occurs upon match between the TM01 register and the CR010 register.

Set the CR010 register to FFFH

 \downarrow

J

When the TM01 register is cleared from FFFFH to 0000H upon match with the CR010 register

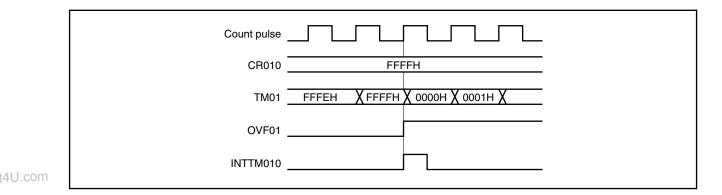


Figure 7-29. Operation Timing of OVF01 Flag

DataShee

(b) Clearing of OVF01 flag

DataSheet4U.com

After the TM01 register overflows, clearing OVF01 flag is invalid and set (1) again even if the OVF01 flag is cleared (0) before the next count clock is counted (before the TM01 register becomes 0001H).

(8) Timer operation

(a) CR011 register capture

Even if the TM01 register is read, the read data cannot be captured into the CR011 register.

(b) TI010, TI011 pin acknowledgment

Regardless of the CPU's operation mode, if the timer is stopped, signals input to the TI010 and TI011 pins are not acknowledged.

(c) One-shot pulse output

One-shot pulse output operates normally in either the free-running timer mode or the mode in which clear & start occurs on the valid edge of the TI010 pin. Because no overflow occurs in the mode in which clear & start occurs upon match between the TM01 register and the CR010 register, one-shot pulse output is not possible.

(9) Capture operation

(a) If valid edge of TI010 is specified for count clock

If the valid edge of TI010 is specified for the count clock, the capture register that specified TI010 as the trigger does not operate normally.

(b) If both rising and falling edges are selected for valid edge of TI010

If both the rising and falling edges are selected for the valid edge of TI010, capture operation is not performed.

(c) To ensure that signals from TI011 and TI010 are correctly captured

For the capture trigger to capture the signals from TI011 and TI010 correctly, a pulse longer than two of the count clocks selected by the PRM01 register and SELCNT1 register is required.

(d) Interrupt request input

Although a capture operation is performed at the falling edge of the count clock, an interrupt request signal (INTTM010, INTTM011) is generated at the rising edge of the next count clock.

(10) Compare operation

When set to the compare mode, the CR010 and CR011 registers do not perform capture operation even if a capture trigger is input.

Caution The value of the CR010 register cannot be changed during timer operation. The value of the CR011 register cannot be changed during timer operation other than in the PPG output mode. Data Sheet411 com To change the CR011 register in the PPG output mode, refer to 7.4.2 PPG output operation.

(11) Edge detection

(a) Sampling clock for noise elimination

The sampling clock for noise elimination differs depending on whether the valid edge of TI010 is used for the count clock or as a capture trigger. In the former case, sampling is performed using fxx/4, and in the latter case, sampling is performed using the count clock selected by the PRM01 register and SELCNT1 register. The first capture operation does not start until the valid edges are sampled and two valid levels are detected, thus eliminating noise with a short pulse width.

Remark fxx: Main clock frequency

CHAPTER 8 8-BIT TIMER/EVENT COUNTER 5

In the V850ES/KE1+, two channels of 8-bit timer/event counter 5 are provided.

8.1 Functions

8-bit timer/event counter 5n has the following two modes (n = 0, 1).

- Mode using 8-bit timer/event counter alone (individual mode)
- Mode using cascade connection (16-bit resolution: cascade connection mode)

These two modes are described below.

(1) Mode using 8-bit timer/event counter alone (individual mode)

8-bit timer/event counter 5n operates as an 8-bit timer/event counter. The following functions can be used.

- Interval timer
- External event counter
- Square-wave output
- PWM output

DataShe

(2) Mode using cascade connection (16-bit resolution: cascade connection mode)

8-bit timer/event counter 5n operates as a 16-bit timer/event counter by connecting the TM50 and TM51 registers in cascade. The following functions can be used.

- Interval timer with 16-bit resolution
- External event counter with 16-bit resolution
- Square-wave output with 16-bit resolution

et4U.com

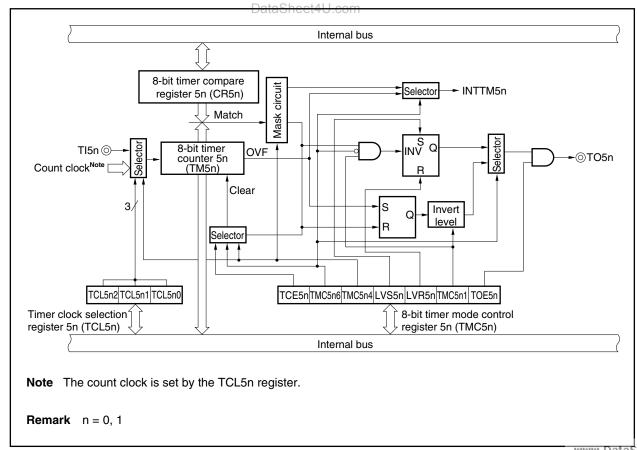
8.2 Configuration

8-bit timer/event counter 5n consists of the following hardware.

Table 8-1. Configuration of 8-Bit Timer/Event Counter 5n

Item	Configuration
Timer registers	8-bit timer counters 50, 51 (TM50, TM51) 16-bit timer counter 5 (TM5): Only when using cascade connection
Registers	8-bit timer compare registers 50, 51 (CR50, CR51) 16-bit timer compare register 5 (CR5): Only when using cascade connection
Timer output	TO50, TO51
Control registers ^{Note}	Timer clock selection registers 50, 51 (TCL50, TCL51) 8-bit timer mode control registers 50, 51 (TMC50, TMC51) 16-bit timer mode control register 5 (TMC5): Only when using cascade connection

Note When using the functions of the TI5n and TO5n pins, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.


Remark n = 0, 1

The block diagram of 8-bit timer/event counter 5n is shown below.

et4U.com

Figure 8-1. Block Diagram of 8-Bit Timer/Event Counter 5n

DataShe

DataSheet4U.com

www.DataSheet4U.com

(1) 8-bit timer counter 5n (TM5n)

The TM5n register is an 8-bit read-only register that counts the count pulses.

The counter is incremented in synchronization with the rising edge of the count clock.

Through cascade connection, the TM5n registers can be used as a 16-bit timer.

When using the TM50 register and the TM51 register in cascade as a 16-bit timer, these registers can be read only in 16-bit units. Therefore, read these registers twice and compare the values, taking into consideration that the reading occurs during a count change.

After rese	et: 00H	R Ad	dress: TM	50 FFFFF	5C0H, TM5	51 FFFF5	C1H	
	7	6	5	4	3	2	1	0
TM5n								
(n = 0, 1)								

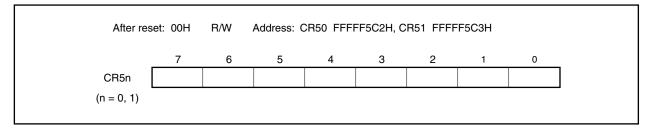
The count value is reset to 00H in the following cases.

<1> Reset

- <2> When the TMC5n.TCE5n bit is cleared (0)
- <3> The TM5n register and CR5n register match in the mode in which clear & start occurs on a match between the TM5n register and the CR5n register
- Caution When connected in cascade, these registers become 0000H even when the TCE50 bit in the lowest timer (TM50) is cleared. DataSheet4U.com

Remark n = 0, 1

(2) 8-bit timer compare register 5n (CR5n)


The CR5n register can be read and written in 8-bit units.

In a mode other than the PWM mode, the value set to the CR5n register is always compared to the count value of the TM5n register, and if the two values match, an interrupt request signal (INTTM5n) is generated. In the PWM mode, TM5n register overflow causes the TO5n pin output to change to the active level, and when

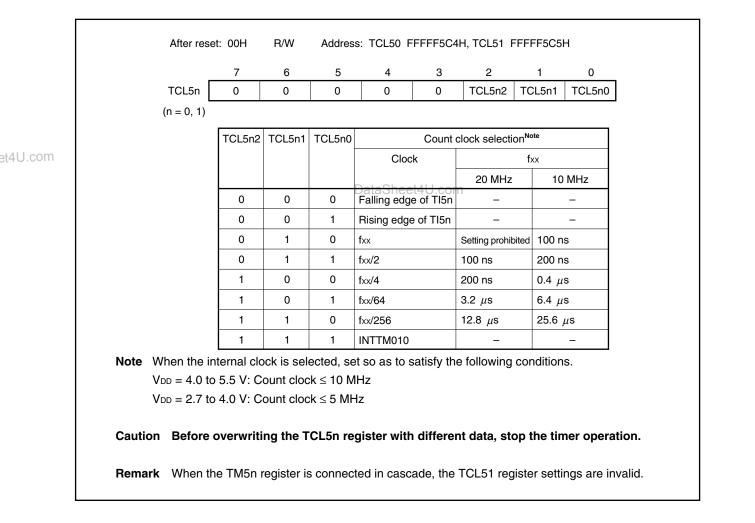
the values of the TM5n register and the CR5n register match, the TO5n pin output changes to the inactive level.

The value of the CR5n register can be set in the range of 00H to FFH.

When using the TM50 register and TM51 register in cascade as a 16-bit timer, the CR50 register and CR51 register operate as 16-bit timer compare register 5 (CR5). The counter value and register value are compared in 16-bit lengths, and if they match, an interrupt request signal (INTTM50) is generated.

- Cautions 1. In the mode in which clear & start occurs upon a match of the TM5n register and CR5n register (TMC5n.TMC5n6 bit = 0), do not write a different value to the CR5n register during the count operation.
 - 2. In the PWM mode, set the CR5n register rewrite interval to three or more count clocks (clock selected with the TCL5n register).
- Dataone
- 3. Before changing the value of the CR5n register when using a cascade connection, be sure to stop the timer operation.

Remark n = 0, 1


8.3 Registers

The following two registers are used to control 8-bit timer/event counter 5n.

- Timer clock selection register 5n (TCL5n)
- 8-bit timer mode control register 5n (TMC5n)
- Remark To use the functions of the TI5n and TO5n pins, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.

(1) Timer clock selection register 5n (TCL5n)

The TCL5n register sets the count clock of 8-bit timer/event counter 5n and the valid edge of the TI5n pin input. The TCL5n register can be read or written in 8-bit units. After reset, this register is cleared to 00H.

www.DataSheet4U.com

(2) 8-bit timer mode control register 5n (TMC5n)

The TMC5n register performs the following six settings.

- Controls counting by the TM5n register
- Selects the operation mode of the TM5n register
- Selects the individual mode or cascade connection mode
- Sets the status of the timer output flip-flop
- Controls the timer output flip-flop or selects the active level in the PWM (free-running timer) mode
- Controls timer output

The TMC5n register can be read or written in 8-bit or 1-bit units. After reset, this register is cleared to 00H.

DataShee

DataSheet4U.com

273

Image: state of the s	
TMCSn TCEsn TMCSn6 0 TMCStd ^{Mee} LVSs LVRsn TMCsn1 TOEsn (n = 0, 1) TCESn Control of count operation of 8-bit timer/event counter 5n 0 Counting is disabled after the counter is cleared to 0 (counter disabled) 1 Start count operation TMC5n6 Selection of operation mode of 8-bit timer/event counter 5n 0 0 Mode in which clear & start occurs on match between TM5n register and CR5n register 1 PWM (free-running timer) mode TMC514 Selection of individual mode or cascade connection mode for 8-bit timer/event counter 51 0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) 1 Cascade connection mode for 8-bit timer/event counter 50 1 Cascade connection mode (connected with 8-bit timer/event counter 50) 1 0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) 1 0 Individual mode 1 0 Setting of status of timer output F/F to 0 1 1 1 Setting prohibited DataSheetHU com TMC5nt Other than PWM (free-running tim	
(n = 0, 1) TCE5n Control of count operation of 8-bit timer/event counter 5n 0 Counting is disabled after the counter is cleared to 0 (counter disabled) 1 Start count operation TMC5n6 Selection of operation mode of 8-bit timer/event counter 5n 0 Mode in which clear & start occurs on match between TM5n register and CR5n register 1 PWM (tree-running timer) mode TMC514 Selection of individual mode or cascade connection mode for 8-bit timer/event counter 51 0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) LVS5n LVR5n Setting of status of timer output F/F 0 1 0 Setting orbitibiled 1 1 0 Settime routput F/F to 0 1 1 1 Setting prohibited Data SheetHU com TMC5n1 Other than PWM (free-running timer) 0 Disable inversion operation High active 1 Enable inversion operation High active 1 Enable inversion operation Low active	
0 Counting is disabled after the counter is cleared to 0 (counter disabled) 1 Start count operation TMC5n6 0 Mode in which clear & start occurs on match between TMSn register and CR5n register 1 PWM (free-running timer) mode 1 PWM (free-running timer) mode TMC514 Selection of individual mode or cascade connection mode for 8-bit timer/event counter 51 0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) LVS5n LVS5n LVR5n Setting of status of timer output F/F 0 0 1 Reset timer output F/F to 0 1 1 1 Setting prohibited DataSheet4U com TMC5n6 bit = 0) TMC5n6 Other than PWM (free-running timer) Med (TMC5n6 bit = 0) (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation Low active 1 Enable inversion operation Low active	
1 Start count operation 1 Start count operation 1 Start count operation 0 Mode in which clear & start occurs on match between TMSn register and CRSn register 1 PWM (free-running timer) mode TMC514 Selection of individual mode or cascade connection mode for 8-bit timer/event counter 51 0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) LVS5n LVR5n 0 Unchanged 0 1 0 Setting of status of timer output F/F 1 0 1 Setting prohibited Data SheetIU com TMC5n10 Other than PWM (free-running timer) mode (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation 1 Enable inversion operation <th></th>	
IMCSn6 Selection of operation mode of 8-bit timer/event counter 5n 0 Mode in which clear & start occurs on match between TM5n register and CR5n register 1 PWM (free-running timer) mode IMCS14 Selection of individual mode or cascade connection mode for 8-bit timer/event counter 51 0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) Image: Selection of Individual mode 1 0 Unchanged 0 1 0 Unchanged 0 1 1 0 1 Setting of status of timer output F/F 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0 Mode in which clear & start occurs on match between TM5n register and CR5n register 1 PWM (free-running timer) mode TMC514 Selection of individual mode or cascade connection mode for 8-bit timer/event counter 51 0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) LVS5n LVR5n Setting of status of timer output F/F 0 0 1 Reset timer output F/F to 0 1 1 1 Setting prohibited DataSheet4U com TMC5n1 Other than PWM (free-running timer) PWM (free-running timer) mode Ontrols timer F/F Selects active level 0 Disable inversion operation 1 Enable inversion operation High active 1 Enable inversion operation Low active	
0 Mode in which clear & start occurs on match between TM5n register and CR5n register 1 PWM (free-running timer) mode TMC514 Selection of individual mode or cascade connection mode for 8-bit timer/event counter 51 0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) LVS5n LVR5n 0 Unchanged 0 1 1 Nest timer output F/F to 0 1 1 1 Setting prohibited DataSheet4U.com TMC5n1 Other than PWM (free-running timer) PWM (free-running timer) PWM (free-running timer) mode TMC5n1 Other than PWM (free-running timer) Mode (TMC5n6 bit = 0) (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation High active 1 Enable inversion operation Low active	
1 PWM (free-running timer) mode TMC514 Selection of individual mode or cascade connection mode for 8-bit timer/event counter 51 0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) LVS5n LVR5n 0 0 Uccond 0 0 1 Reset timer output F/F to 0 1 1 1 Setting prohibited DataSheet4U com TMC5n1 Other than PWM (free-running timer) PWM (free-running timer) PWM (free-running timer) mode mode (TMC5n6 bit = 0) (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation High active 1 Enable inversion operation Low active	
TMC514 Selection of individual mode or cascade connection mode for 8-bit timer/event counter 51 0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) LVS5n LVR5n Setting of status of timer output F/F 0 0 1 Reset timer output F/F to 0 1 1 1 0 2 Set timer output F/F to 1 1 1 2 Set timer output F/F to 1 1 1 2 Set timer output F/F to 1 1 1 2 Set timer output F/F to 1 1 1 2 Set timer output F/F to 1 1 1 3 Set timer output F/F to 1 1 1 2 Set timer output F/F to 1 1 1 3 Set timer output f/F to 1 1 Set timer output f/F to 1 1 Controls timer F/F Selects active level Selects active level 0 Disable inversion operation High active	
0 Individual mode 1 Cascade connection mode (connected with 8-bit timer/event counter 50) LVS5n LVR5n Setting of status of timer output F/F 0 0 Unchanged 0 1 Reset timer output F/F to 0 1 0 Set timer output F/F to 1 1 1 Setting prohibited DataSheet4U com TMC5n1 Other than PWM (free-running timer) mode (TMC5n6 bit = 0) (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 0 Disable inversion operation High active 1 Enable inversion operation Low active	
1 Cascade connection mode (connected with 8-bit timer/event counter 50) LVS5n LVR5n Setting of status of timer output F/F 0 0 Unchanged 0 1 Reset timer output F/F to 0 1 0 Set timer output F/F to 1 1 1 Setting prohibited DataSheet4U.com TMC5n1 Other than PWM (free-running timer) Mode (TMC5n6 bit = 0) (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation High active 1 Enable inversion operation Low active	
t4U.com $ \frac{LVS5n}{0} \frac{LVR5n}{0} \frac{Setting of status of timer output F/F}{0} \frac{0}{0} \frac{1}{1} \frac{Reset timer output F/F to 0}{1} \frac{1}{1} \frac{1}{0} \frac{1}{0} \frac{Settimer output F/F to 1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{Setting prohibited} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{Setting prohibited} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{Setting prohibited} \frac{1}{1} \frac{1} \frac$	
0 0 Unchanged 0 1 Reset timer output F/F to 0 1 0 Set timer output F/F to 1 1 1 Setting prohibited DataSheet4U.com TMC5n1 Other than PWM (free-running timer) mode (TMC5n6 bit = 0) PWM (free-running timer) mode (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 0 Disable inversion operation High active 1 Enable inversion operation Low active	
0 0 Unchanged 0 1 Reset timer output F/F to 0 1 0 Set timer output F/F to 1 1 1 Setting prohibited DataSheet4U.com TMC5n1 Other than PWM (free-running timer) mode (TMC5n6 bit = 0) PWM (free-running timer) mode (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation High active 1 Enable inversion operation Low active	
0 1 Reset timer output F/F to 0 1 0 Set timer output F/F to 1 1 1 Setting prohibited DataSheet4U.com TMC5n1 Other than PWM (free-running timer) mode (TMC5n6 bit = 0) PWM (free-running timer) mode (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation High active 1 Enable inversion operation Low active	
1 1 Setting prohibited DataSheet4U.com TMC5n1 Other than PWM (free-running timer) PWM (free-running timer) mode mode (TMC5n6 bit = 0) (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation High active 1 Enable inversion operation Low active	
1 1 Setting prohibited DataSheet4U.com TMC5n1 Other than PWM (free-running timer) PWM (free-running timer) mode mode (TMC5n6 bit = 0) (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation High active 1 Enable inversion operation Low active	
TMC5n1 Other than PWM (free-running timer) PWM (free-running timer) mode mode (TMC5n6 bit = 0) (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation High active 1 Enable inversion operation Low active	DataShee
mode (TMC5n6 bit = 0) (TMC5n6 bit = 1) Controls timer F/F Selects active level 0 Disable inversion operation High active 1 Enable inversion operation Low active	
Controls timer F/F Selects active level 0 Disable inversion operation High active 1 Enable inversion operation Low active	
0 Disable inversion operation High active 1 Enable inversion operation Low active	
I Enable inversion operation Low active TOE5n Timer output control	
TOE5n Timer output control	
0 Disable output (TO5n pin is low level)	
1 Enable output	
Note Bit 4 of the TMC50 register is fixed to 0.	
 Cautions 1. Because the TO51 and TI51 pins are alternate functions of the same pin, only one can be used at one time. 2. The LVS5n and LVR5n bit settings are valid in modes other than the PWM mode. 3. Do not set <1> to <4> below at the same time. Set as follows. <1> Set the TMC5n1, TMC5n6, and TMC514^{Note} bits: Setting of operation mode <2> Set the TOE5n bit for timer output enable: Timer output enable <3> Set the LVS5n and LVR5n bits (Caution 2): Setting of timer output F/F <4> Set the TCE5n bit Remarks 1. In the PWM mode, the PWM output is set to the inactive level by the TCE5n bit = 0. 2. When the LVS5n and LVR5n bits are read, 0 is read.	
3. The values of the TMC5n6, LVS5n, LVR5n, TMC5n1, and TOE5n bits are reflected to the TO5n output regardless of the TCE5n bit value.	eet4U.com

8.4 Operation

8.4.1 Operation as interval timer

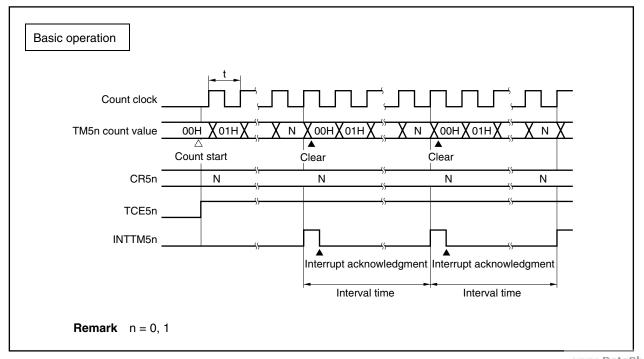
8-bit timer/event counter 5n operates as an interval timer that repeatedly generates interrupts at the interval of the count value preset in the CR5n register. If the count value in the TM5n register matches the value set in the CR5n register, the value of the TM5n register is cleared to 00H and counting is continued, and at the same time, an interrupt request signal (INTTM5n) is generated.

Setting method

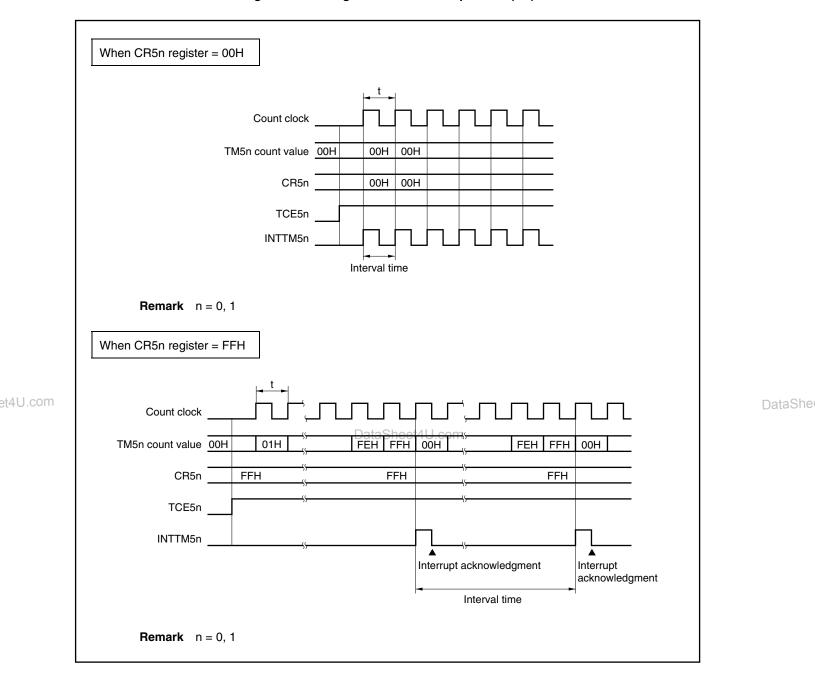
<1> Set each register.

- TCL5n register: Selects the count clock (t).
- CR5n register: Compare value (N)
- TMC5n register: Stops count operation and selects the mode in which clear & start occurs on a match between the TM5n register and CR5n register (TMC5n register = 0000xx00B, ×: don't care).
- <2> When the TMC5n.TCE5n bit is set to 1, the count operation starts.
- <3> When the values of the TM5n register and CR5n register match, the INTTM5n signal is generated (TM5n register is cleared to 00H).
- <4> Then, the INTTM5n signal is repeatedly generated at the same interval. To stop counting, set the TCE5n bit = 0.

et4U.com


Interval time = $(N + 1) \times t$: N = 00H to FFH

DataShe


Caution During interval timer operation, do not rewrite the value of the CR5n register.

Remark n = 0, 1

DataSheet4U.com

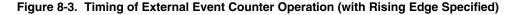
8.4.2 Operation as external event counter

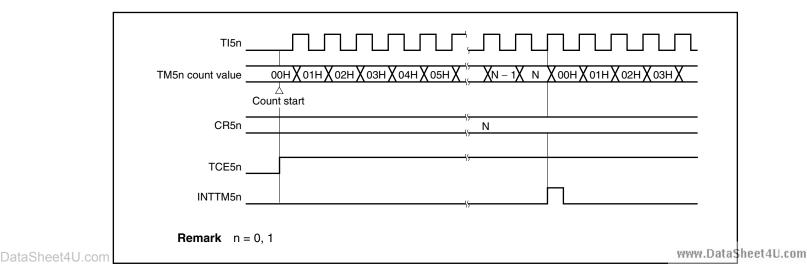
The external event counter counts the number of clock pulses input to the TI5n pin from an external source by using the TM5n register.

Each time the valid edge specified by the TCL5n register is input to the TI5n pin, the TM5n register is incremented. Either the rising edge or the falling edge can be specified as the valid edge.

When the count value of the TM5n register matches the value of the CR5n register, the TM5n register is cleared to 00H and an interrupt request signal (INTTM5n) is generated.

Setting method


<1> Set each register.


- TCL5n register: Selects the TI5n pin input edge.
 - Falling edge of TI5n pin \rightarrow TCL5n register = 00H
 - Rising edge of TI5n pin \rightarrow TCL5n register = 01H
- CR5n register: Compare value (N)
- TMC5n register: Stops count operation, selects the mode in which clear & start occurs on a match between the TM5n register and CR5n register, disables timer output F/F inversion operation, and disables timer output.
 - (TMC5n register = 0000xx00B, ×: don't care)
- For the alternate-function pin settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.
- <2> When the TMC5n.TCE5n bit is set to 1, the counter counts the number of pulses input from the TI5n pin.
- <3> When the values of the TM5n register and CR5n register match, the INTTM5n signal is generated (TM5n register is cleared to 00H).
- <4> Then, the INTTM5n signal is generated each time the values of the TM5n register and CR5n register match.

INTTM5n signal is generated when the valid edge is input to the TI5n pin N + 1 times: N = 00H to FFH

Caution During external event counter operation, do not rewrite the value of the CR5n register.

Remark n = 0, 1

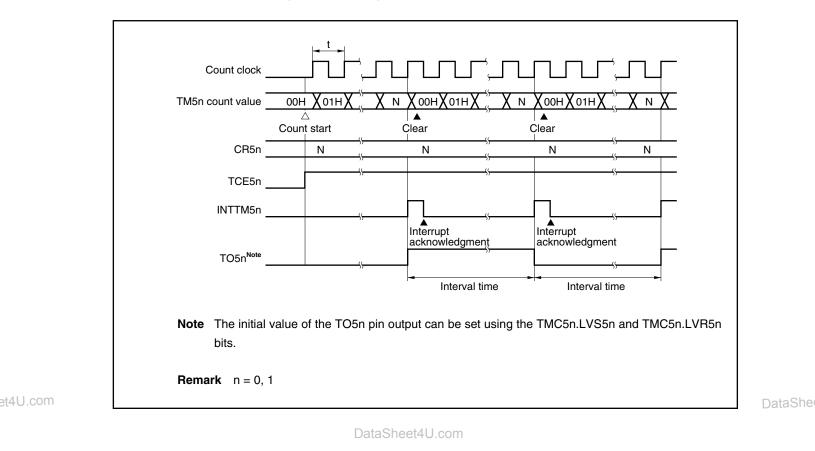
Preliminary User's Manual U16896EJ1V0UD

DataSheet4U.com

8.4.3 Square-wave output operation

A square wave with any frequency can be output at an interval determined by the value preset in the CR5n register. By setting the TMC5n.TOE5n bit to 1, the output status of the TO5n pin is inverted at an interval determined by the count value preset in the CR5n register. In this way, a square wave of any frequency can be output (duty = 50%) (n = 0, 1).

Setting method


<1> Set each register.

- TCL5n register: Selects the count clock (t).
- CR5n register: Compare value (N)
- TMC5n register: Stops count operation, selects the mode in which clear & start occurs on a match between the TM5n register and CR5n register, sets initial value of timer output, enables timer output F/F inversion operation, and enables timer output. (TMC5n register = 00001011B or 00000111B)
- For the alternate-function pin settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.
- <2> When the TMC5n.TCE5n bit is set to 1, counting starts.
- <3> When the values of the TM5n register and CR5n register match, the timer output F/F is inverted. Moreover, the INTTM5n signal is generated and the TM5n register is cleared to 00H.
- <4> Then, the timer output F/F is inverted during the same interval and a square wave is output from the TO5n pin.

et4U.com

Frequency = 1/2t(N + 1): N = 00H to FFH DataSheet4U.com DataShe

Caution Do not rewrite the value of the CR5n register during square-wave output.

Figure 8-4. Timing of Square-Wave Output Operation

DataSheet4U.com

www.DataSheet4U.com

8.4.4 8-bit PWM output operation

By setting the TMC5n.TMC5n6 bit to 1, 8-bit timer/event counter 5n performs PWM output.

Pulses with a duty factor determined by the value set in the CR5n register are output from the TO5n pin.

Set the width of the active level of the PWM pulse in the CR5n register. The active level can be selected using the TMC5n.TMC5n1 bit.

The count clock can be selected using the TCL5n register.

PWM output can be enabled/disabled by the TMC5n.TOE5n bit.

Caution The CR5n register rewrite interval must be three or more operation clocks (set by the TCL5n register).

Use method

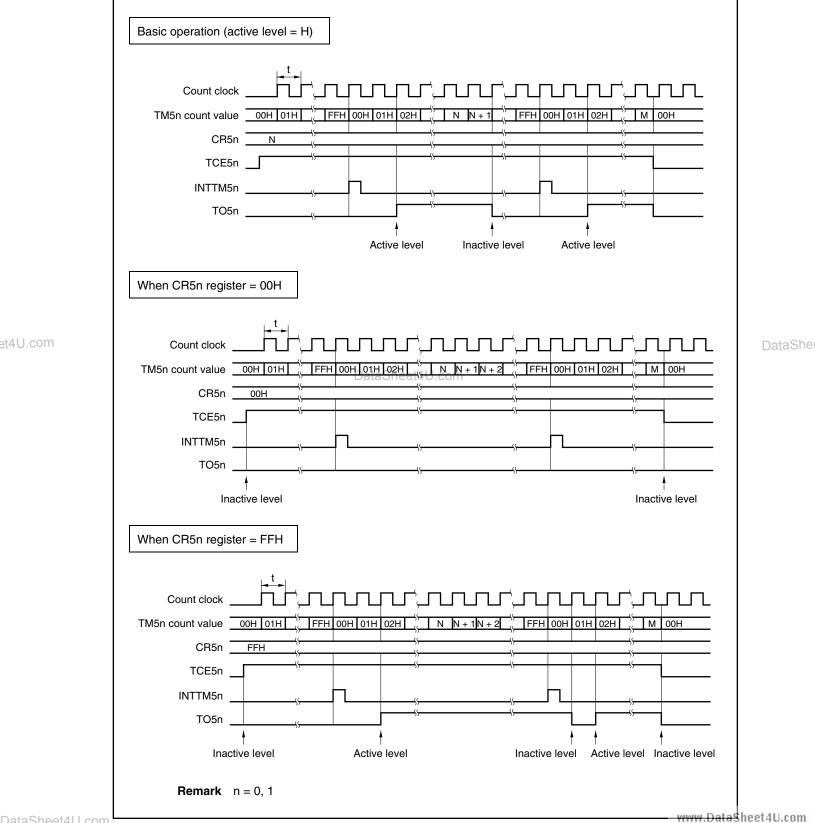
- <1> Set each register.
 - TCL5n register: Selects the count clock (t).
 - CR5n register: Compare value (N)
 - TMC5n register: Stops count operation, selects PWM mode, and leave timer output F/F unchanged, sets active level, and enables timer output. (TMC5n register = 01000001B or 01000011B)
 - For the alternate-function pin settings, refer to Table 4-12 Settings When Port Pins Are Used

for Alternate Functions.

<2> When the TMC5n.TCE5n bit is set to 1, counting starts.

PWM output operation

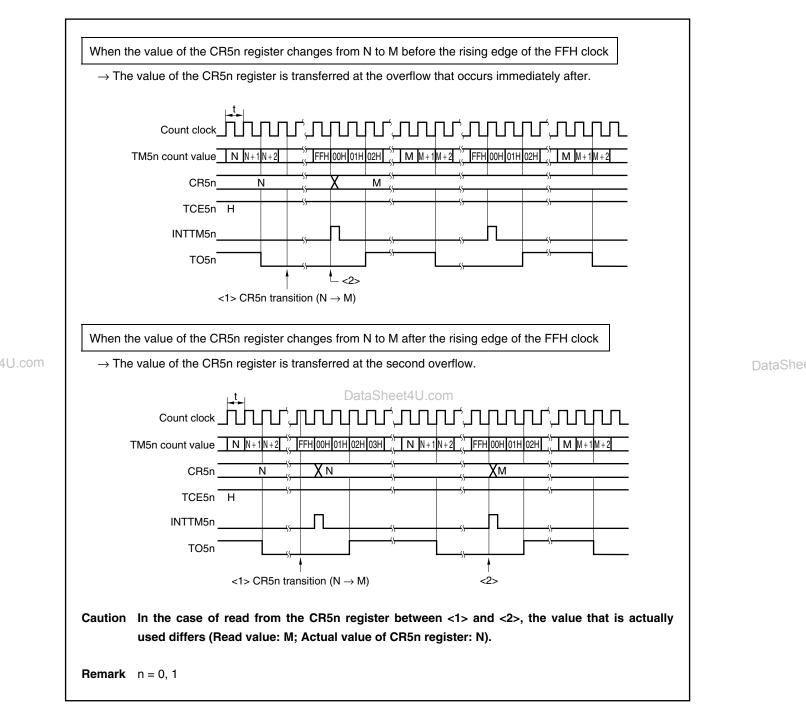
- <1> When counting starts, PWM output (output from the TO5n pin) outputs the inactive level until an overflow occurs.
- <2> When an overflow occurs, the active level set by setting method <1> is output. The active level is output until the value of the CR5n register and the count value of the TM5n register match. An interrupt request signal (INTTM5n) is generated.
- <3> When the value of the CR5n register and the count value of the TM5n register match, the inactive level is output and continues to be output until an overflow occurs again.
- <4> Then, steps <2> and <3> are repeated until counting is stopped.
- <5> When counting is stopped by clearing TCE5n bit to 0, PWM output becomes inactive.


Cycle = 256t, active level width = Nt, duty = N/256: N = 00H to FFH

Remarks 1. n = 0, 1

2. For the detailed timing, refer to Figure 8-5 Timing of PWM Output Operation and Figure 8-6 Timing of Operation Based on CR5n Register Transitions.

(a) Basic operation of PWM output



DataSheet4U.com

(b) Operation based on CR5n register transitions

8.4.5 Operation as interval timer (16 bits)

The 16-bit resolution timer/event counter mode is selected by setting the TMC51.TMC514 bit to 1.

8-bit timer/event counter 5n operates as an interval timer by repeatedly generating interrupts using the count value preset in 16-bit timer compare register 5 (CR5) as the interval.

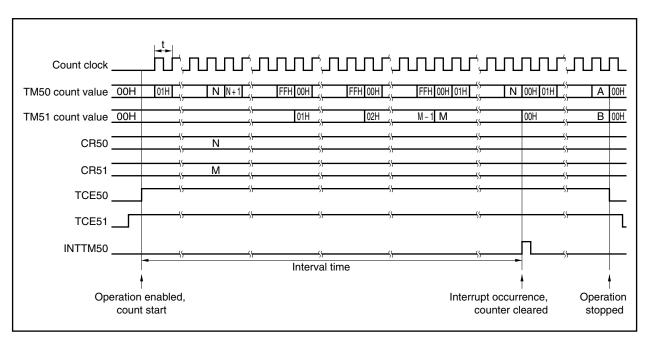
Setting method

<1> Set each register.

TCL50 register: Selects the count clock (t)

(The TCL51 register does not need to be set in cascade connection)

- CR50 register: Compare value (N) ... Lower 8 bits (settable from 00H to FFH)
- CR51 register: Compare value (N) ... Higher 8 bits (settable from 00H to FFH)
- TMC50, TMC51 registers: Selects the mode in which clear & start occurs on a match between TM5 register and CR5 register (x: don't care)
 - TMC50 register = 0000xx00B
 - TMC51 register = 0001xx00B
- <2> Set the TMC51.TCE51 bit to 1. Then set the TMC50.TCE50 bit to 1 to start the count operation.
- <3> When the values of the TM5 register and CR5 register connected in cascade match, the INTTM50 signal is generated (the TM5 register is cleared to 0000H).
- <4> The INTTM50 signal is then generated repeatedly at the same interval.


Interval time = $(N + 1) \times t$: N = 0000H to FFFH

et4U.com

Cautions 1. To write using 8-bit access during cascade connection, set the TCE51 bit to 1 at operation start and then set the TCE50 bit to 1. When operation is stopped, clear the TCE50 bit to 0 and then clear the TCE51 bit to 0.

- During cascade connection, TI50 pin input, TO50 pin output, and the INTTM50 signal are used. Do not use TI51 pin input, TO51 pin output, and the INTTM51 signal; mask them instead (for details, refer to CHAPTER 17 INTERRUPT/EXCEPTION PROCESSING FUNCTION). Clear the LVS51, LVR51, TMC511, and TOE51 bits to 0.
- 3. Do not change the value of the CR5 register during timer operation.

Figure 8-7 shows a timing example of the cascade connection mode with 16-bit resolution.

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

8.4.6 Operation as external event counter (16 bits)

The 16-bit resolution timer/event counter mode is selected by setting the TMC51.TMC514 bit to 1.

The external event counter counts the number of clock pulses input to the TI50 pin from an external source using 16-bit timer counter 5 (TM5).

Setting	method
oeung	methou

<1> Set each register.

• TCL50 register: Selects the TI50 pin input edge.

(The TCL51 register does not have to be set during cascade connection.)

- Falling edge of TI50 pin \rightarrow TCL50 register = 00H
- Rising edge of TI50 pin \rightarrow TCL50 register = 01H
- CR50 register: Compare value (N) ... Lower 8 bits (settable from 00H to FFH)
- CR51 register: Compare value (N) ... Higher 8 bits (settable from 00H to FFH)
- TMC50, TMC51 registers: Stops count operation, selects the clear & start mode entered on a match between the TM5 register and CR5 register, disables timer output F/F inversion, and disables timer output.

(x: don't care)

TMC50 register = 0000xx00B

TMC51 register = 0001xx00B

- For the alternate-function pin settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.
- <2> Set the TMC51.TCE51 bit to 1. Then set the TMC50.TCE50 bit to 1 and count the number of pulses input from the TI50 pin.

DataShe

- <3> When the values of the TM5 register and CR5 register connected in cascade match, the INTTM50 signal is generated (the TM5 register is cleared to 0000H).
- <4> The INTTM50 signal is then generated each time the values of the TM5 register and CR5 register match.

INTTM50 signal is generated when the valid edge is input to the TI50 pin N + 1 times: N = 0000H to FFFFH

- Cautions 1. During external event counter operation, do not rewrite the value of the CR5n register.
 - 2. To write using 8-bit access during cascade connection, set the TCE51 bit to 1 and then set the TCE50 bit to 1. When operation is stopped, clear the TCE50 bit to 0 and then clear the TCE51 bit to 0 (n = 0, 1).
 - During cascade connection, TI50 pin input and the INTTM50 signal are used. Do not use TI51 pin input, TO51 pin output, and the INTTM51 signal; mask them instead (for details, refer to CHAPTER 17 INTERRUPT/EXCEPTION PROCESSING FUNCTION). Clear the LVS51, LVR51, TMC511, and TOE51 bits to 0.
 - 4. Do not change the value of the CR5 register during external event counter operation.

DataSheet4U.com

8.4.7 Square-wave output operation (16-bit resolution)

The 16-bit resolution timer/event counter mode is selected by setting the TMC51.TMC514 bit to 1.

8-bit timer/event counter 5n outputs a square wave of any frequency using the interval preset in 16-bit timer compare register 5 (CR5).

Setting method

<1> Set each register.

TCL50 register: Selects the count clock (t)

(The TCL51 register does not have to be set in cascade connection)

- CR50 register: Compare value (N) ... Lower 8 bits (settable from 00H to FFH)
- CR51 register: Compare value (N) ... Higher 8 bits (settable from 00H to FFH)
- TMC50, TMC51 registers: Stops count operation, selects the mode in which clear & start occurs on a match between the TM5 register and CR5 register.

LVS50	LVR50	Timer Output F/F Status Settings
1	0	High-level output
0	1	Low-level output

Enables timer output F/F inversion, and enables timer output.

TMC50 register = 00001011B or 00000111B

• For the alternate-function pin settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.

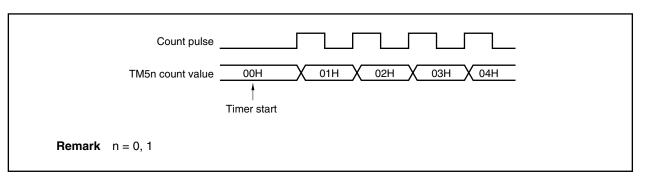
DataShe

- <2> Set the TMC51.TCE51 bit to 1. Then set the TMC50.TCE50 bit to 1 to start the count operation.
- <3> When the values of the TM5 register and the CR5 register connected in cascade match, the TO50 timer output F/F is inverted. Moreover, the INTTM50 signal is generated and the TM5 register is cleared to 0000H.
- <4> Then, the timer output F/F is inverted during the same interval and a square wave is output from the TO50 pin.

Frequency = 1/2t(N + 1): N = 0000H to FFFH

Caution Do not write a different value to the CR5 register during operation.

et4U.com


www.DataSheet4U.com

8.4.8 Cautions

(1) Error on starting timer

An error of up to 1 clock occurs before the match signal is generated after the timer has been started. This is because the TM5n register is started asynchronously to the count pulse.

Figure 8-8. Count Start Timing of TM5n Register

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

CHAPTER 9 8-BIT TIMER H

In the V850ES/KE1+, two channels of 8-bit timer H are provided.

9.1 Functions

8-bit timer Hn has the following functions.

- Interval timer
- PWM output
- Square wave output
- Carrier generator mode

Remark n = 0, 1

9.2 Configuration

8-bit timer Hn consists of the following hardware.

Table 9-1. Configuration of 8-Bit Timer Hn

et4U.com

Item	Configuration
Timer registers	8-bit timer counter Hn: 1 each
Registers	8-bit timer H compare register n0 (CMPn0): 1 each 8-bit timer H compare register n1 (CMPn1): 1 each
Timer outputs	1 each (TOHn pin)
Control registers ^{Note}	8-bit timer H mode register n (TMHMDn) 8-bit timer H carrier control register n (TMCYCn)

DataShe

www.DataSheet4U.com

Note To use the TOHn pin function, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.

Remark n = 0, 1

The block diagram of 8-bit timer Hn is shown below.

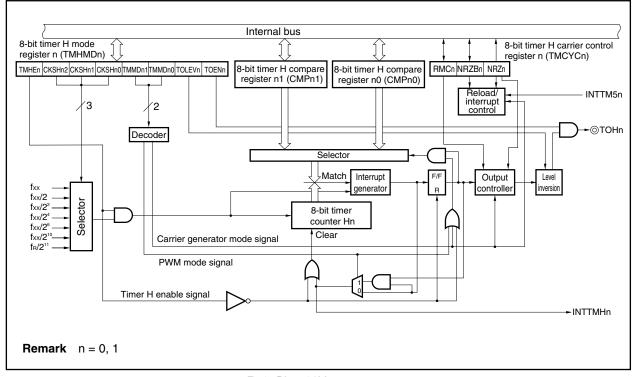


Figure 9-1. Block Diagram of 8-Bit Timer Hn

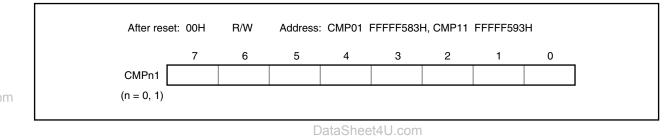
et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

(1) 8-bit timer H compare register n0 (CMPn0)


The CMPn0 register can be read or written in 8-bit units. After reset, CMPn0 is cleared to 00H.

After res	et: 00H	R/W	Address:	CMP00	FFFF582H	H, CMP10	FFFF592	Н
	7	6	5	4	3	2	1	0
CMPn0								
(n = 0, 1)								

Caution Rewriting the CMPn0 register during timer count operation is prohibited.

(2) 8-bit timer H compare register n1 (CMPn1)

The CMPn1 register can be read or written in 8-bit units. After reset, CMPn1 is cleared to 00H.

DataShe

www.DataSheet4U.com

The CMPn1 register can be rewritten during timer count operation.

In the carrier generator mode, after the CMPn1 register is set, if the count value of 8-bit timer counter Hn and the set value of the CMPn1 register match, an interrupt request signal (INTTMHn) is generated. At the same time, the value of 8-bit timer counter Hn is cleared to 00H.

If the set value of the CMPn1 register is rewritten during timer operation, the reload timing is when the count value of 8-bit timer counter Hn and the set value of the CMPn1 register match. If the transfer timing and write to the CMPn1 register by software conflict, transfer is not performed.

Caution In the PWM output mode and carrier generator mode, be sure to set the CMPn1 register when starting the timer count operation (TMHMDn.TMHEn bit = 1) after the timer count operation was stopped (TMHEn bit = 0) (be sure to set again even if setting the same value to the CMPn1 register).

9.3 Registers

The registers that control 8-bit timer Hn are as follows.

- 8-bit timer H mode register n (TMHMDn)
- 8-bit timer H carrier control register n (TMCYCn)

Remarks 1. To use the TOHn pin function, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.

2. n = 0, 1

(1) 8-bit timer H mode register n (TMHMDn)

The TMHMDn register controls the mode of 8-bit timer Hn. The TMHMDn register can be read or written in 8-bit or 1-bit units. After reset, TMHMDn is cleared to 00H.

Remark n = 0, 1

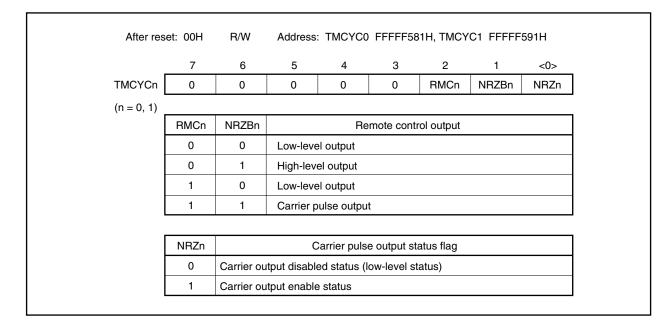
et4U.com

DataSheet4U.com

DataSheet4U.com

		<7>	6	5	4	3	2	<1>	<0>		
	TMHMD0	TMHE0	CKSH02	CKSH01	CKSH00	TMMD01	MMD00	TOLEV	D TOEN0		
										I	
		TMHE0				H0 operation					
		0				it timer count					
		1	Enable tin	ner count c	operation (C	Counting star	ts when c	IOCK IS IN	put)		
		CKSH02	CKSH01	CKSH00		Selection	of count c	lock			
					Count clock	Note fxx = 20 N	1Hz fxx = 1	6.0 MHz f	xx = 10.0 MHz		
		0	0	0	fxx	Setting prohi	bited Setting	prohibited	100 ns		
		0	0	1	fxx/2	100 ns	125 ו	ns	200 ns		
		0	1	0	fxx/4	200 ns	250 ו	ns	400 ns		
		0	1	1	fxx/16	800 ns	1 µs	;	1.6 <i>µ</i> s		
		1	0	0	fxx/64	1.6 μs	4 μs	;	6.4 μs		
		1	0	1	fxx/1024	51.2 μs	64 μ		102.4 μs		
		Othe	er than abo	ve		Setti	ng prohibi	ted			
com		TMMD01	TMMD00		8-bit	timer H0 ope	eration mo	ode			DataS
		0	0	Interval ti	mer mode	4U.com					
		0	1	Carrier ge	enerator mo						
		1	0	PWM out	put mode						
		1	1	Setting pr	rohibited						
		TOLEV0		Tir	ner output l	evel control	(default)				
		0	Low level								
		1	High level								
		TOEN0			Timer	output contro	ol				
		0	Disable ou	utput							
		1	Enable ou	ıtput							
	Note Octor				1141						
	Note Set so	= 4.0 to satis	-	-							
		= 4.0 to 3. = 2.7 to 4.0									
	Cautions 1.	When th prohibite) bit = 1,	setting b	its other tl	nan thos	se of th	e TMHMD0) register is	
	2.	-		ut mode	and carr	ier genera	tor mod	e, be s	ure to set	the CMP01	
			-			-				er the timer	
		-		-			(be sur	re to se	t again eve	en if setting	
					P01 regist		0 6 14 41	ar 110 .			
	3.									c frequency	w.DataSheet4U.co
Sheet4U.com		to six tin	nes 8-nit '	timer/eve	ent counte	er 50 coun		requen	cv or niane	YYYY	m. Data5066140.LL

(a) 8-bit timer H mode register 0 (TMHMD0)


										7
	After re:	eset: 00H	R/W	Address	s: FFFFF59	0H				
		<7>	6	5	4	3	2 <	:1> <0>	>	
	TMHMD1	TMHE1	CKSH12	CKSH11	CKSH10	TMMD11 TM	/MD10 TOL	EV1 TOEN	N1	
		TMHE1	<u> </u>			H1 operation e				
		0	-			t timer counter				
		1	Enable tin	ner count c	operation (C	Counting starts	when clock i	is input)		
		CKSH12	CKSH11	CKSH10	,	Selection of	f count clock			
					Count clock ^N	^{lote} fxx = 20.0 MH	Hz fxx = 16.0 M	IHz fxx = 10.0 N	ИНz	
		0	0	0	fxx	Setting prohibit	ted Setting prohibi	ited 100 ns		
		0	0	1	fxx/2	100 ns	125 ns	200 ns		
		0	1	0	fxx/4	200 ns	250 ns	400 ns		
		0	1	1	fxx/16	800 ns	1 µs	1.6 <i>μ</i> s		
		1	0	0	fxx/64	1.6 <i>µ</i> s	4 μs	6.4 μs		
		1	0	1			a/2048			
		Otr	ther than ab	ove		Setting	g prohibited			
et4U.com		TMMD11	TMMD10		8-bit	timer H1 opera	ation mode			DataShe
		0	0		imer mode				\neg	
		0	1	Carrier g [,]	enerator mo	de			-	
		1	0	PWM out	tput mode					
		1	1	Setting pr	rohibited					
				T;			· · · · · · · · · · · · · · · · · · ·		_	
		TOLEV1			mer output i	evel control (d	efault)		-	
		1	Low level High level						_	
				<u>.</u>]	
		TOEN1			Timer (output control			7	
		0	Disable or	utput					7	
		1	Enable ou	utput						
	Note Set so									
		= 4.0 to 5.4 = 2.7 to 4.0								
			0		0					
	Cautions 1.			/ bit = 1,	setting bi	ts other the	in those of	f the TMHM	MD1 register is	
	2	prohibite		out mode	and carri	ier generate	or mode h	e sure to (set the CMP11	
			-			-			after the timer	
		-		-		=	=	-	even if setting	
					P11 registe					
DataSheet4U.com	3.								lock frequency gher. \\\\Data	Sheet4U.com
			Prel [;]	minary User	r's Manual U1	16896EJ1V0UD			29	3

(b) 8-bit timer H mode register 1 (TMHMD1)

Preliminary User's Manual U16896EJ1V0UD

(2) 8-bit timer H carrier control register n (TMCYCn)

This register controls the 8-bit timer Hn remote control output and carrier pulse output status. The TMCYCn register can be read or written in 8-bit or 1-bit units. The NRZn bit is a read-only bit. After reset, TMCYCn is cleared to 00H.

et4U.com

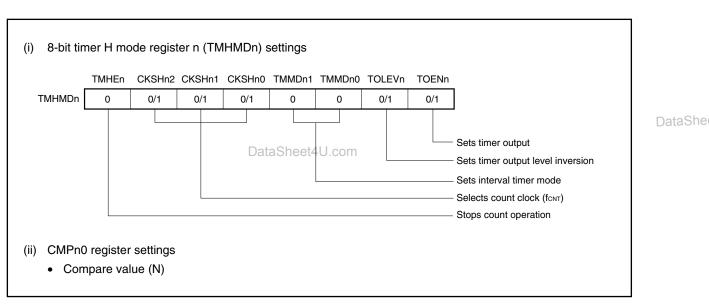
DataSheet4U.com

DataSheet4U.com

9.4 Operation

9.4.1 Operation as interval timer/square wave output

When the count value of 8-bit timer counter Hn and the set value of the CMPn0 register match, an interrupt request signal (INTTMHn) is generated and 8-bit timer counter Hn is cleared to 00H.


The CMPn1 register cannot be used in the interval timer mode. Even if the CMPn1 register is set, this has no effect on the timer output because matches between 8-bit timer counter Hn and the CMPn1 register are not detected.

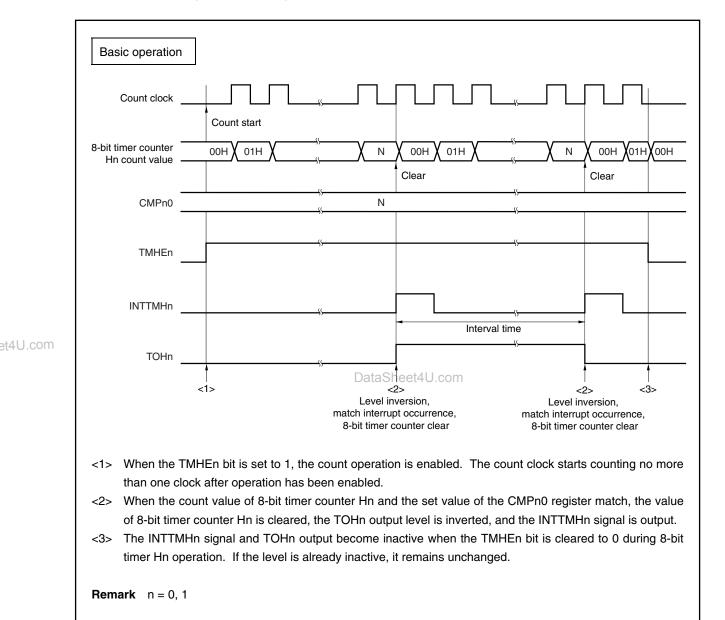
A square wave of the desired frequency (duty = 50%) is output from the TOHn pin, by setting the TMHMDn.TOENn bit to 1.

(1) Usage method

The INTTMHn signal is repeatedly generated in the same interval.

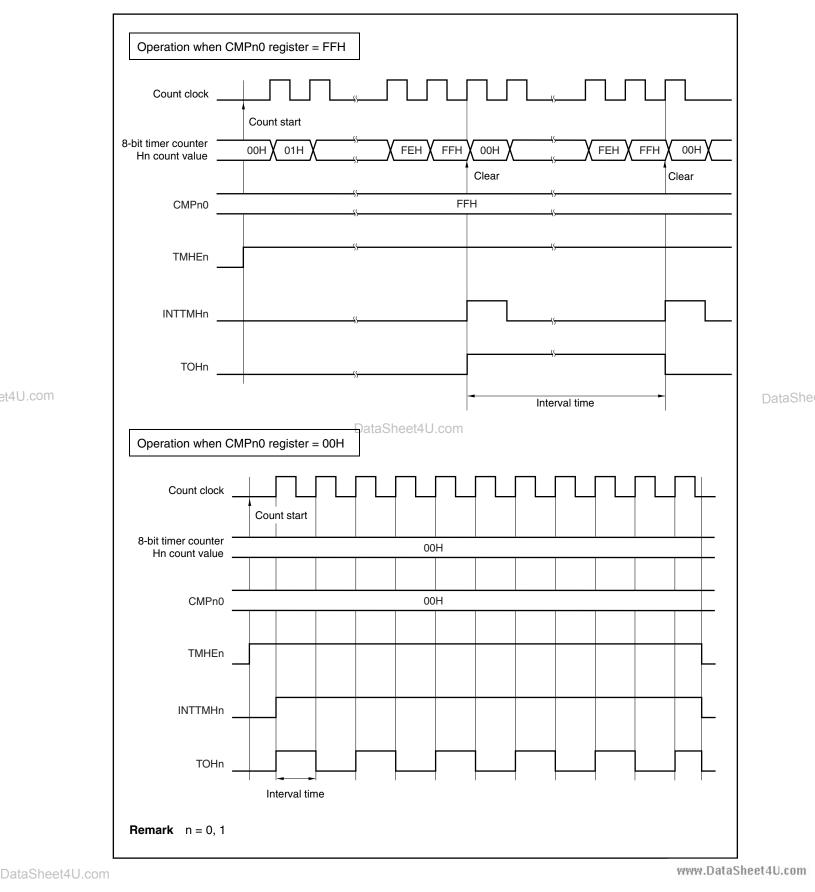
<1> Set each register.

Figure 9-2. Register Settings in Interval Timer Mode


<2> When the TMHEn bit is set to 1, counting starts.

<3> When the count value of 8-bit timer counter Hn and the set value of the CMPn0 register match, the INTTMHn signal is generated and 8-bit timer counter Hn is cleared to 00H.

<4> Then, the INTTMHn signal is generated in the same interval. To stop the count operation, clear the TMHEn bit to 0.


(2) Timing chart

The timing in the interval timer mode is as follows.

DataSheet4U.com

DataSheet4U.com

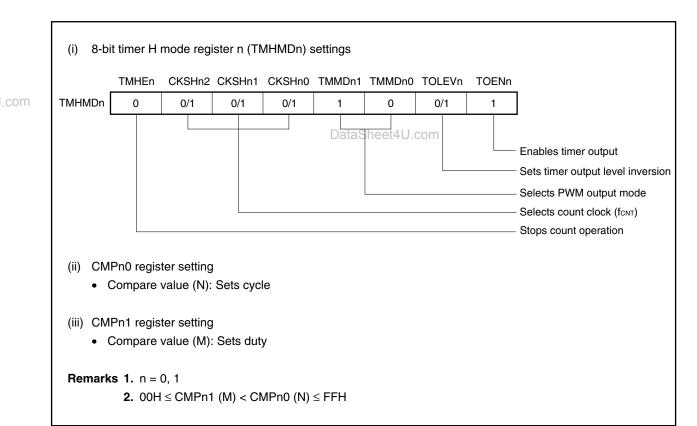
297

9.4.2 PWM output mode operation

In the PWM output mode, a pulse of any duty and cycle can be output.

The CMPn0 register controls the timer output (TOHn) cycle. Rewriting the CMPn0 register during timer operation is prohibited.

The CMPn1 register controls the timer output (TOHn) duty. The CMPn1 register can be rewritten during timer operation.


The operation in the PWM output mode is as follows.

After timer counting starts, when the count value of 8-bit timer counter Hn and the set value of the CMPn0 register match, the TOHn output becomes active and 8-bit timer counter Hn is cleared to 00H. When the count value of 8-bit timer counter Hn and the set value of the CMPn1 register match, TOHn output becomes inactive.

(1) Usage method

In the PWM output mode, a pulse of any duty and cycle can be output.

<1> Set each register.

Figure 9-4. Register Settings in PWM Output Mode

<2> When the TMHEn bit is set to 1, counting starts.

- <3> After the count operation is enabled, the first compare register to be compared is the CMPn0 register. When the count value of 8-bit timer counter Hn and the set value of the CMPn0 register match, 8-bit timer counter Hn is cleared, an interrupt request signal (INTTMHn) is generated, and the TOHn output becomes active. At the same time, the register that is compared with 8-bit timer counter Hn changes from the CMPn0 register to the CMPn1 register.
- <4> When the count value of 8-bit timer counter Hn and the set value of the CMPn1 register match, the TOHn output becomes inactive, and at the same time the register that is compared with 8-bit timer counter Hn changes from the CMPn1 register to the CMPn0 register. At this time, 8-bit timer counter Hn is not cleared and the INTTMHn signal is not generated.
- <5> A pulse of any duty can be obtained through the repetition of steps <3> and <4> above.
- <6> To stop the count operation, clear the TMHEn bit to 0.

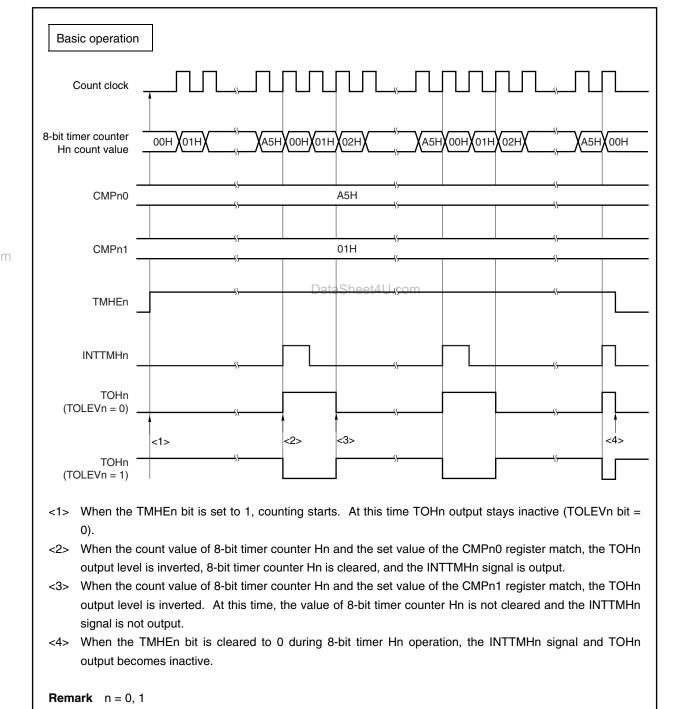
Designating the set value of the CMPn0 register as (N), the set value of the CMPn1 register as (M), and the count clock frequency as fCNT, the PWM pulse output cycle and duty are as follows.

PWM pulse output cycle = $(N + 1)/f_{CNT}$ Duty = Inactive width: Active width = (M + 1) : (N + 1)

- Cautions 1. In the PWM output mode, three operating clocks (signal selected by CKSHn0 to CKSHn2 bits) are required for actual transfer of the new value to the register after the CMPn1 register has been rewritten.
 - Be sure to set the CMPn1 register when starting the timer count operation (TMHEn bit =
 1) after the timer count operation was stopped (TMHEn bit = 0) (be sure to set again
 even if setting the same value to the CMPn1 register).

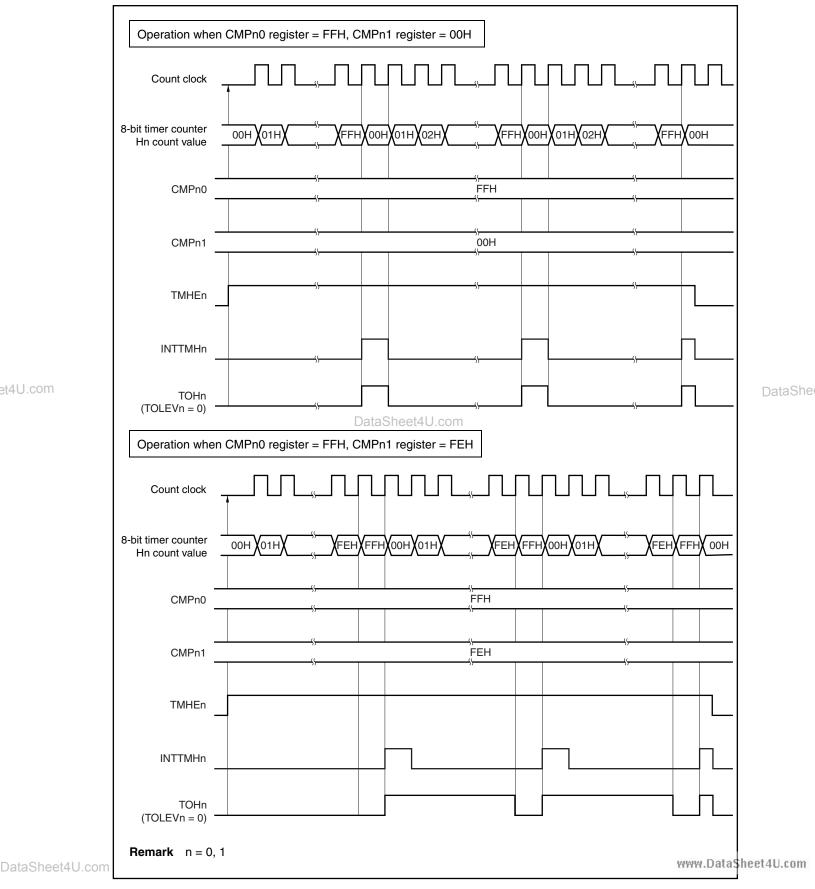
ataShe

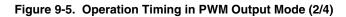
et4U.com


DataSheet4U.com

www.DataSheet4U.com

(2) Timing chart


The operation timing in the PWM output mode is as follows.


Caution The set value (M) of the CMPn1 register and the set value (N) of the CMPn0 register must always be set within the following range. $00H \le CMPn1$ (M) < CMPn0 (N) \le FFH

DataSheet4U.com

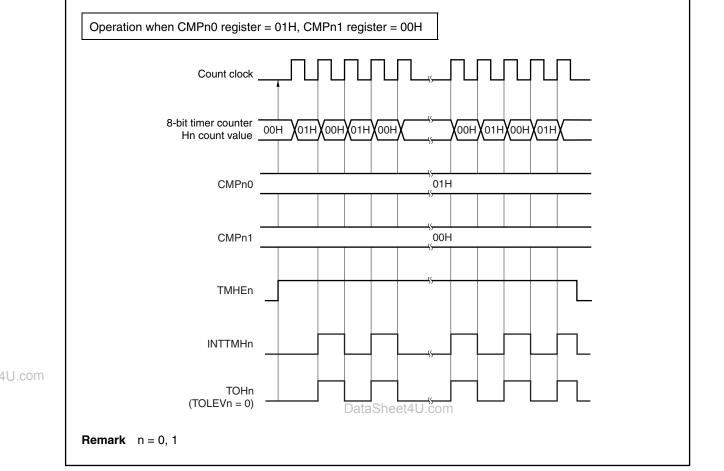
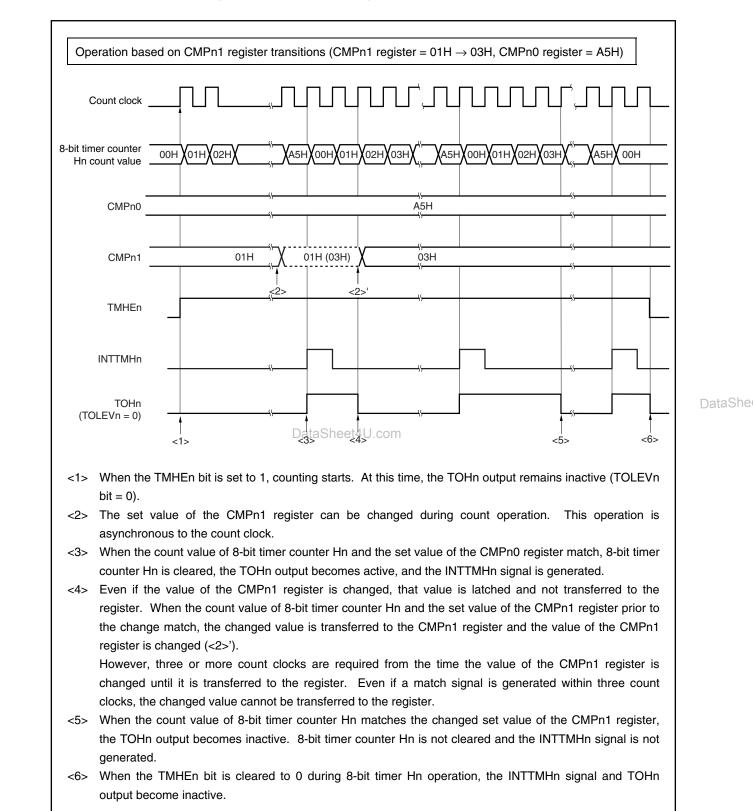
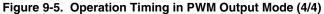




Figure 9-5. Operation Timing in PWM Output Mode (3/4)

et4U.com

9.4.3 Carrier generator mode operation

The carrier clock generated by 8-bit timer Hn is output using the cycle set with 8-bit timer/event counter 5n. In the carrier generator mode, 8-bit timer/event counter 5n is used to control the extent to which the carrier pulse of 8-bit timer Hn is output, and the carrier pulse is output from the TOHn output.

(1) Carrier generation

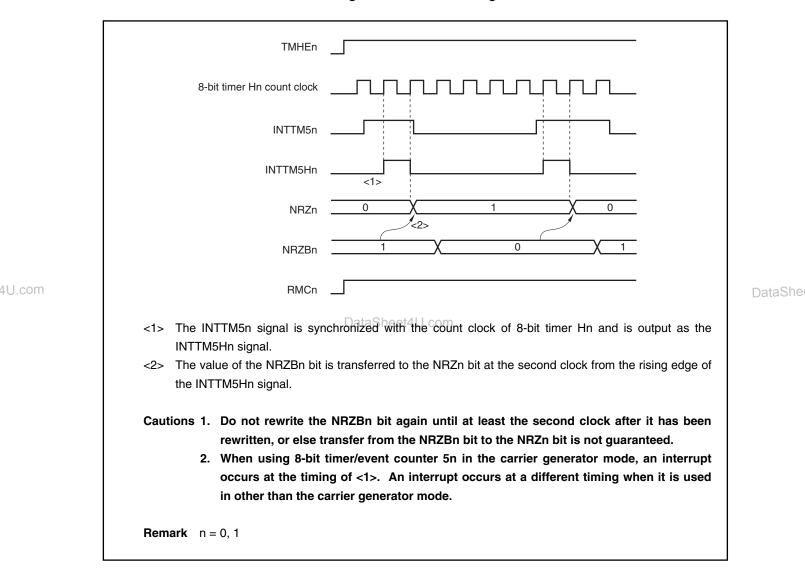
In the carrier generator mode, the CMPn0 register generates a waveform with the low-level width of the carrier pulse and the CMPn1 register generates a waveform with the high-level width of the carrier pulse. During 8-bit timer Hn operation, the CMPn1 register can be rewritten, but rewriting of the CMPn0 register is prohibited.

(2) Carrier output control

Carrier output control is performed with the interrupt request signal (INTTM5n) of 8-bit timer/event counter 5n and the TMCYCn.NRZBn and TMCYCn.RMCn bits. The output relationships are as follows.

RMCn Bit	NRZBn Bit	Output
0	0	Low-level output
0	1	High-level output
1	0	Low-level output
1	1	Carrier pulse output

Remark n = 0, 1

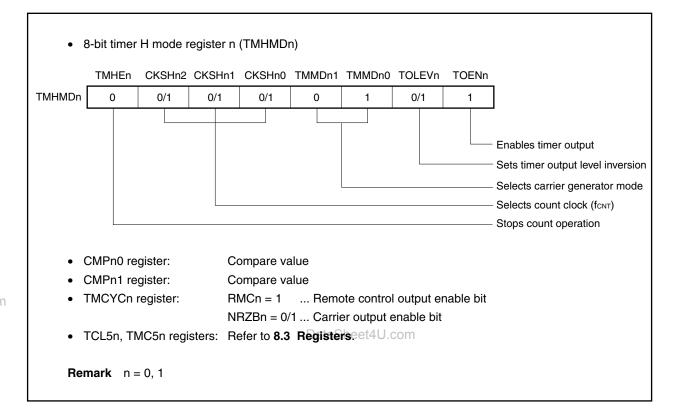

et4U.com

DataShe

www.DataSheet4U.com

DataSheet4U.com

To control carrier pulse output during count operation, the TMCYCn.NRZn and TMCYCn.NRZBn bits have a master and slave bit configuration. The NRZn bit is read-only while the NRZBn bit can be read and written. The INTTM5n signal is synchronized with the 8-bit timer Hn clock and output as the INTTM5Hn signal. The INTTM5Hn signal becomes the data transfer signal of the NRZn bit and the value of the NRZBn bit is transferred to the NRZn bit. The transfer timing from the NRZBn bit to the NRZn bit is as follows.



(3) Usage method

Any carrier clock can be output from the TOHn pin.

<1> Set each register.

- <2> When the TMHEn bit is set to 1, 8-bit timer Hn count operation starts.
- <3> When the TMC5n.TCE5n bit is set to 1, 8-bit timer/event counter 5n count operation starts.
- <4> After the count operation is enabled, the first compare register to be compared is the CMPn0 register. When the count value of 8-bit timer counter Hn and the set value of the CMPn0 register match, the INTTMHn signal is generated, 8-bit timer counter Hn is cleared, and at the same time, the register that is compared with 8-bit timer counter Hn changes from the CMPn0 register to the CMPn1 register.
- <5> When the count value of 8-bit timer counter Hn and the set value of the CMPn1 register match, the INTTMHn signal is generated, 8-bit timer counter Hn is cleared, and at the same time, the register that is compared with 8-bit timer counter Hn changes from the CMPn1 register to the CMPn0 register.
- <6> The carrier clock is obtained through the repetition of steps <4> and <5> above.
- <7> The INTTM5n signal is synchronized with 8-bit timer Hn and output as the INTTM5Hn signal. This signal becomes the data transfer signal of the NRZBn bit and the value of the NRZBn bit is transferred to the NRZn bit.
- <8> When the NRZn bit becomes high level, the carrier clock is output from the TOHn pin.
- <9> Any carrier clock can be obtained through the repetition of the above steps. To stop the count operation, clear the TMHEn bit to 0.

Designating the set value of the CMPn0 register as (N), the set value of the CMPn1 register as (M), and the count clock frequency as fcNT, the carrier clock output cycle and duty are as follows.

Carrier clock output cycle = $(N + M + 2)/f_{CNT}$ Duty = High level width: Carrier clock output width = (M + 1): (N + M + 2)

Caution Be sure to set the CMPn1 register when starting the timer count operation (TMHEn bit = 1) after the timer count operation was stopped (TMHEn bit = 0) (be sure to set again even if setting the same value to the CMPn1 register).

(4) Timing chart

The carrier output control timing is as follows.

- Cautions 1. Set the values of the CMPn0 and CMPn1 registers in the range of 01H to FFH.
 - 2. In the carrier generator mode, three operating clocks (signal selected by the TMHMDn.CKSHn0 to TMHMDn.CKSHn2 bits) are required for actual transfer of the new value to the register after the CMPn1 register has been rewritten.
 - 3. Be sure to perform the TMCYCn.RMCn bit setting before the start of the count operation.
 - 4. When using the carrier generator mode, set the 8-bit timer Hn count clock frequency to six times the 8-bit timer/event counter 5n count clock frequency or higher.

et4U.com

DataShe

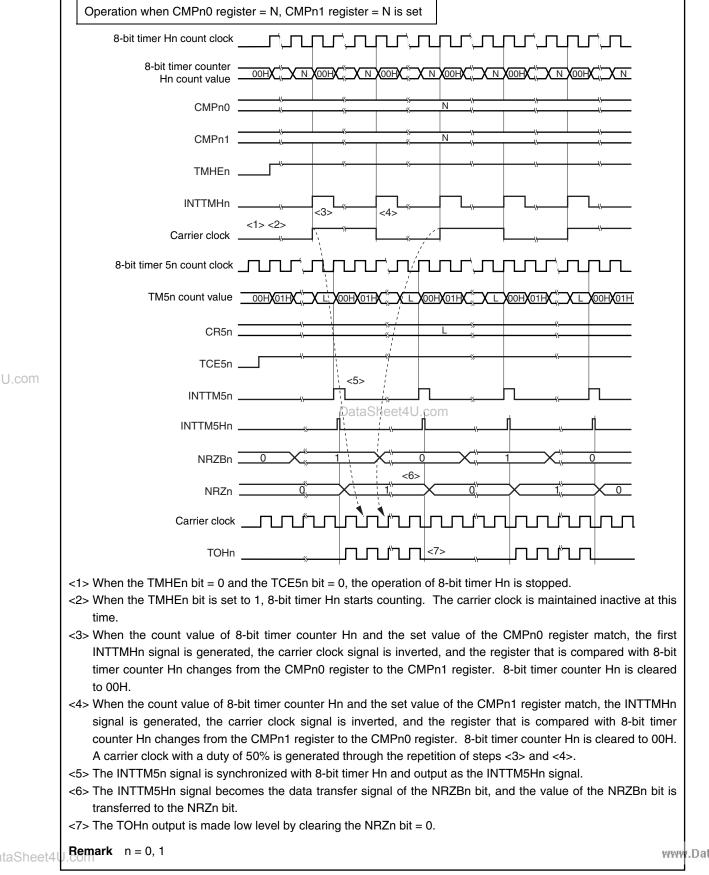


Figure 9-8. Carrier Generator Mode (1/3)

www.DataSheet4U.com

DataShe

308

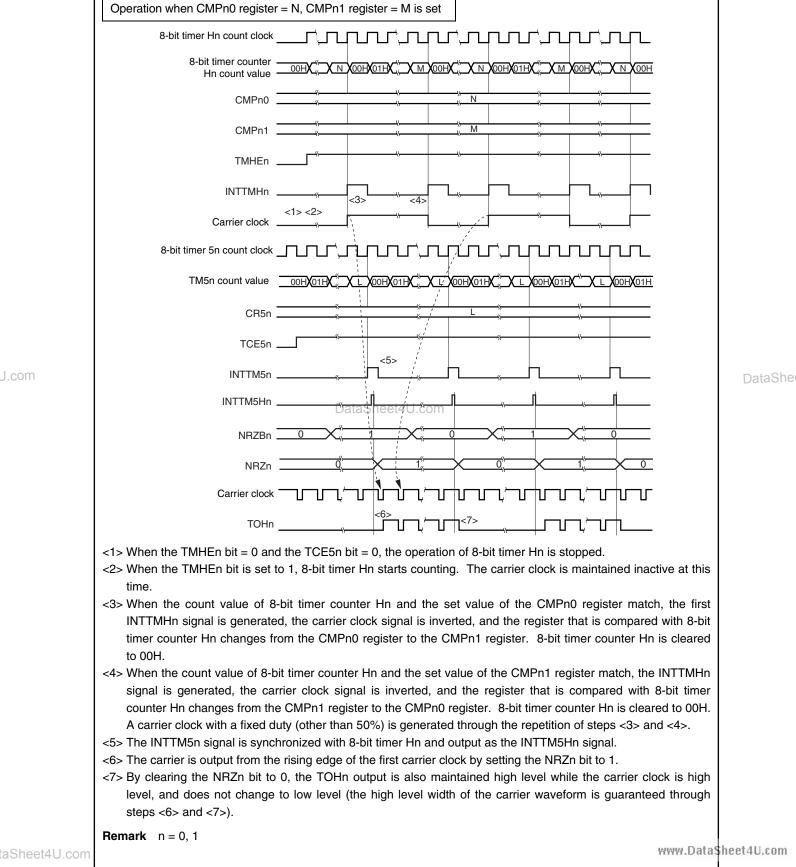


Figure 9-8. Carrier Generator Mode (2/3)

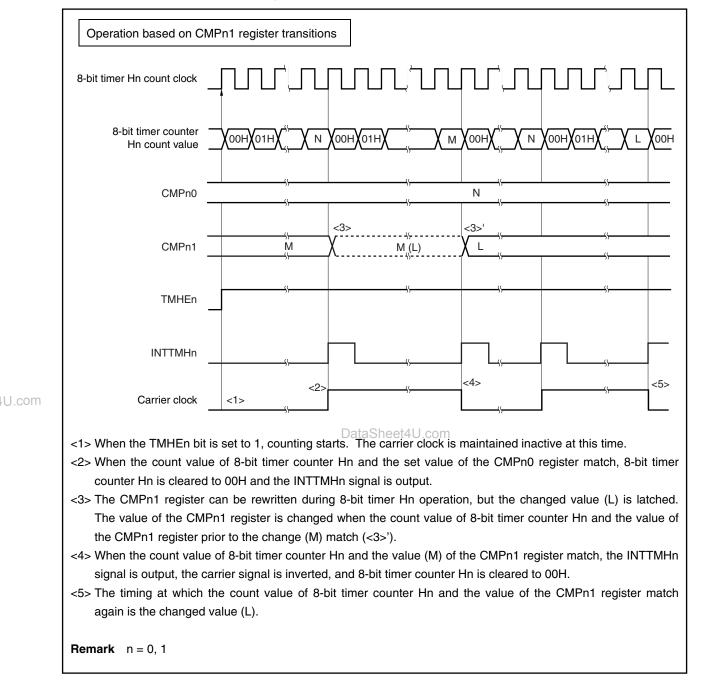


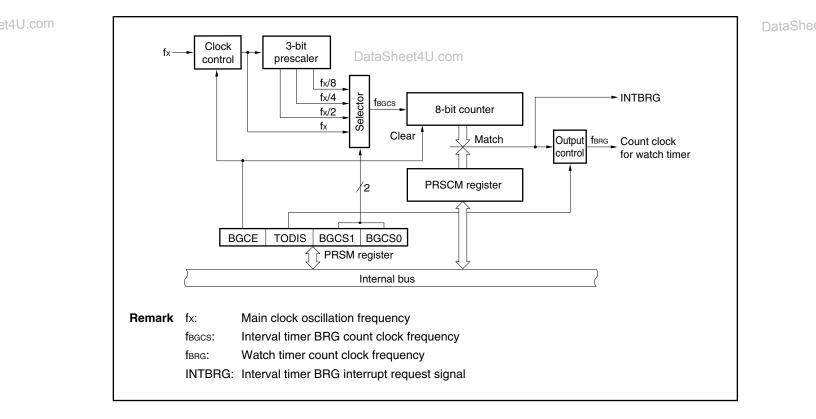
Figure 9-8. Carrier Generator Mode (3/3)

CHAPTER 10 INTERVAL TIMER, WATCH TIMER

The V850ES/KE1+ includes interval timer BRG and a watch timer. Interval timer BRG can also be used as the source clock of the watch timer. The watch timer can also be used as interval timer WT.

Two interval timer channels and one watch timer channel can be used at the same time.

10.1 Interval Timer BRG


10.1.1 Functions

Interval timer BRG has the following functions.

- Interval timer BRG: An interrupt request signal (INTBRG) is generated at a specified interval.
- Generation of count clock for watch timer: When the main clock is used as the count clock for the watch timer, a count clock (fBRG) is generated.

10.1.2 Configuration

The following shows the block diagram of interval timer BRG.

Figure 10-1. Block Diagram of Interval Timer BRG

(1) Clock control

The clock control controls supply/stop of the operation clock (fx) of interval timer BRG.

(2) 3-bit prescaler

The 3-bit prescaler divides fx to generate fx/2, fx/4, and fx/8.

(3) Selector

The selector selects the count clock (fbgcs) for interval timer BRG from fx, fx/2, fx/4, and fx/8.

(4) 8-bit counter

The 8-bit counter counts the count clock (fbgcs).

(5) Output control

The output control controls supply of the count clock (fBRG) for the watch timer.

(6) PRSCM register

The PRSCM register is an 8-bit compare register that sets the interval time.

(7) PRSM register

The PRSM register controls the operation of interval timer BRG, the selector, and clock supply to the watch timer.

et4U.com

DataSheet4U.com

DataSheet4U.com

10.1.3 Registers

Interval timer BRG includes the following registers.

(1) Interval timer BRG mode register (PRSM)

PRSM controls the operation of interval timer BRG, selection of count clock, and clock supply to the watch timer.

This register can be read or written in 8-bit or 1-bit units. After reset, PRSM is cleared to 00H.

	7	6	5	<4>	3	2	1	0			
PRSM	0	0	0	BGCE	0	TODIS	BGCS1	BGCS0			
	r	1									
	BGCE					ner operatio	n				
	0		n stopped,	, 8-bit counte	er cleared	to 01H					
	1	Operate									
	TODIS Control of clock supply for watch timer										
	0 Clock for watch timer supplied										
	1	Clock for	watch tim	er not suppl	ied						
	BGCS1	BGCS0		Selection of	of input clo	ock (fegcs) ^{Not}	e				
			DataSI	heet4U.co	0 MHz	5 MHz	<u>z</u> .	4 MHz			
	0	0	fx	1	00 ns	200 n	s i	250 ns			
	0	1	fx/2	2	00 ns	400 n	s i	500 ns			
	1	0	fx/4	4	00 ns	800 n	S S	1 µs			
	1	1	fx/8	8	00 ns	1.6 µ	s i	2 µs			
	1 Note Se	1 t these bi	fx/8 ts so that		00 ns ng condi	1.6 µ:	6	•			
				$GCS \leq 10 M$ $GCS \leq 5 MH$							
	VD	D = 2.7 10	4.0 V. IB	GCS ≤ O IVI⊓	Ζ						
	Cautions	BGC bit = setti	CS0 bits = 1). Se ing (1) th en the B	nge the while intention while intention of the transformed by the BGCE because of the BGCE bit is the BGCE bit is	rval tim IS, BGC it.	er BRG is S1, and I	s operatii 3GCS0 b	ng (BGCI its before			

(2) Interval timer BRG compare register (PRSCM)

PRSCM is an 8-bit compare register. This register can be read or written in 8-bit units. After reset, PRSCM is cleared to 00H.

After res	set: 00H	R/W	Address: F	FFFF8B1H	ł			
	7	6	5	4	3	2	1	0
PRSCM	PRSCM7	PRSCM6	PRSCM5	PRSCM4	PRSCM3	PRSCM2	PRSCM1	PRSCM0
	Caution	operatir	ng (PRSN		oit = 1).			er BRG is I register

et4U.com

DataShee

DataSheet4U.com

10.1.4 Operation

(1) Operation of interval timer BRG

Set the count clock by using the PRSM.BGCS1 and PRSM.BGCS0 bits and the 8-bit compare value by using the PRSCM register.

When the PRSM.BGCE bit is set (1), interval timer BRG starts operating.

Each time the count value of the 8-bit counter and the set value in the PRSCM register match, an interrupt request signal (INTBRG) is generated. At the same time, the 8-bit counter is cleared to 00H and counting is continued.

The interval time can be obtained from the following equation.

Interval time = $2^m \times N/fx$

Remark m: Divided value (set value in the BGCS1 and BGCS0 bits) = 0 to 3

- N: Set value in PRSCM register = 1 to 256 (when the set value in the PRSCM register is 00H, N = 256)
- fx: Main clock oscillation frequency

(2) Count clock supply for watch timer

Set the count clock by using the PRSM.BGCS1 and PRSM.BGCS0 bits and the 8-bit compare value by using the PRSCM register, so that the count clock frequency (fBRG) of the watch timer is 32.768 kHz. Clear (0) the PRSM.TODIS bit at the same time.

When the PRSM.BGCE bit is set (1), fBRG is supplied to the watch timer.

fbrig is obtained from the following equation. DataSheet4U.com

 $f_{BRG} = f_X/(2^{m+1} \times N)$

To set fBRG to 32.768 kHz, perform the following calculation to set the BGCS1 and BGCS0 bits and the PRSCM register.

- <1> Set N = $f_x/65,536$ (round off the decimal) to set m = 0.
- <2> If N is even, N = N/2 and m = m + 1
- <3> Repeat step <2> until N is odd or m = 3
- <4> Set N to the PRSCM register and m to the BGCS1 and BGCS0 bits.

Example: When fx = 4.00 MHz

- <1> N = 4,000,000/65,536 = 61 (round off the decimal), m = 0
- <2>, <3> Since N is odd, the values remain as N = 61, m = 0
- <4> The set value in the PRSCM register: 3DH (61), the set values in the BGCS1 and BGCS0 bits: 00

Remark m: Divided value (set value in the BGCS1 and BGCS0 bits) = 0 to 3

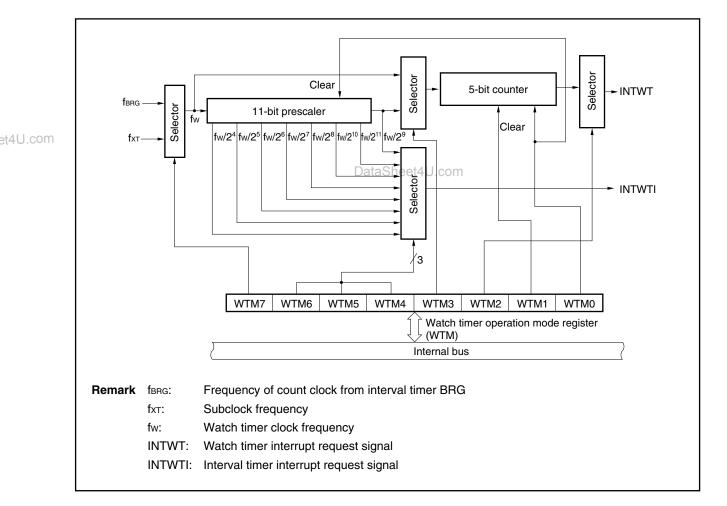
- N: Set value in PRSCM register = 1 to 256 (when the set value in the PRSCM register is 00H, N = 256)
- fx: Main clock oscillation frequency

DataSheet4U.com

www.DataSheet4U.com

10.2 Watch Timer

10.2.1 Functions


The watch timer has the following functions.

- Watch timer: An interrupt request signal (INTWT) is generated at time intervals of 0.5 or 0.25 seconds by using the main clock or subclock.
- Interval timer: An interrupt request signal (INTWTI) is generated at the preset time interval.

The watch timer and interval timer functions can be used at the same time.

10.2.2 Configuration

The following shows the block diagram of the watch timer.

www.DataSheet4U.com

(1) 11-bit prescaler

The 11-bit prescaler generates a clock of $fw/2^4$ to $fw/2^{11}$ by dividing fw.

(2) 5-bit counter

The 5-bit counter generates the watch timer interrupt request signal (INTWT) at intervals of 2^4 /fw, 2^5 /fw, 2^{13} /fw, or 2^{14} /fw by counting fw or fw/ 2^9 .

(3) Selectors

The watch timer has the following four selectors.

- Selector that selects the main clock (the clock from interval timer BRG (fBRG) or the subclock (fxT)) as the clock for the watch timer.
- Selector that selects fw or fw/2⁹ as the count clock frequency of the 5-bit counter
- Selector that selects 2⁴/fw or 2¹³/fw, or 2⁵/fw or 2¹⁴/fw as the INTWT signal generation time interval.
- Selector that selects the generation time interval of the interval timer WT interrupt request signal (INTWTI) from 2⁴/fw to 2¹¹/fw.

(4) 8-bit counter

The 8-bit counter counts the count clock (fbgcs).

(5) WTM register

The WTM register is an 8-bit register that controls the operation of the watch timer/interval timer WT and sets the interval of interrupt request signal generation.

DataShee

10.2.3 Register

DataSheet4U.com

The watch timer includes the following register.

(1) Watch timer operation mode register (WTM)

This register enables or disables the count clock and operation of the watch timer, sets the interval time of the 11-bit prescaler, controls the operation of the 5-bit counter, and sets the time of watch timer interrupt request signal (INTWT) generation.

The WTM register can be read or written in 8-bit or 1-bit units. After reset, WTM is cleared to 00H.

CHAPTER 10 INTERVAL TIMER, WATCH TIMER

		7	6	5	4	3	2	<1>	< 0>	-		
	WTM	WTM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0			
		WTM7	WTM6	WTM5	WTM4	Selection	of interval	ime of pres	caler	1		
		0	0	0	0	2 ⁴ /fw (488)		-		1		
		0	0	0	1	2⁵/fw (977)	us: fw = fx	r)				
		0	0	1	0	2 ⁶ /fw (1.95	ms: fw = f	хт)				
		0	0	1	1	2 ⁷ /fw (3.91	ms: fw = f	хт)				
		0	1	0	0	2 ⁸ /fw (7.81	ms: fw = f	хт)				
		0	1	0	1	2 ⁹ /fw (15.6	ms: fw = f	хт)				
		0	1	1	0	2 ¹⁰ /fw (31.3	3 ms: fw =	fхт)				
		0	1	1	1	2 ¹¹ /fw (62.5	5 ms: fw =	fx⊤)				
		1	0	0	0	24/fw (488)	us: fw = fв	ag)				
		1	0	0	1	2 ⁵ /fw (977)	$us: fw = f_B$	ag)				
		1	0	1	0	2 ⁶ /fw (1.95	ms: fw = f	BRG)				
		1	0	1	1	2 ⁷ /fw (3.91						
		1	1	0	0	2 ⁸ /fw (7.81		,		-		
		1	1	0	1	2º/fw (15.6				4		
com		1	1	1	0	2 ¹⁰ /fw (31.3				-		DataS
		1	1	1	1	2 ¹¹ /fw (62.5		fвrg)				
						eet4U.com				1		
		WTM7	WTM3 0	WTM2 0		Selection of 5 s: fw = fxt)		watch flag		-		
		0	0	1		25 s: fw = 1 xr				-		
		0	1	0		7μ s: fw = fx				-		
		0	1	1		μ s: fw = fx1				-		
		1	0	0		5 s: fw = fbro				-		
		1	0	1		$25 \text{ s: } \text{fw} = \text{f}_{\text{BH}}$						
		1	1	0		7 μs: fw = fвr				1		
		1	1	1		$\beta \mu s: fw = f_{BF}$						
		WTM1			Control of	5-bit counte	r operation			1		
		0	Clear aft	er operatio						1		
		1	Start	er operatie								
						·				- 1		
		WTM0 0	Stop opp	ration (ala		imer operatio		-)		-		
		1	Enable o		ar both pre	scaler and 5	-bit counte)		-		
				peration						J		
Cautior	n Rewrite th	ne WTM2	to WTM7	7 bits wh	ile both t	he WTM0 a	nd WTM	1 bits are	0.			
Damari	(s 1. fw: Wa	tob timor	alaak frac								1	

10.2.4 Operation

(1) Operation as watch timer

The watch timer generates an interrupt request at fixed time intervals.

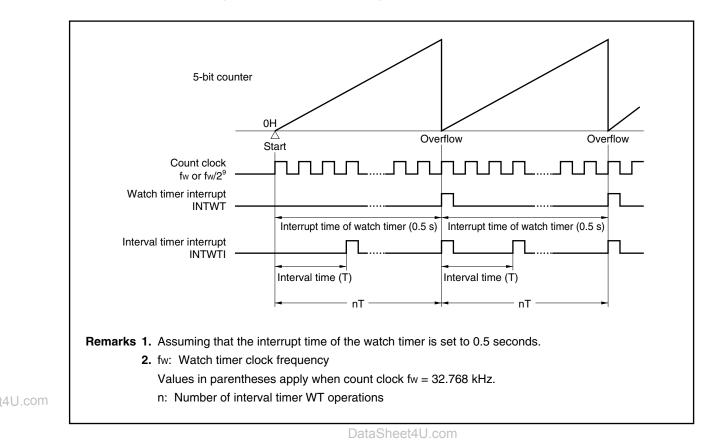
The watch timer operates using time intervals of 0.25 or 0.5 seconds with the subclock (32.768 kHz).

The count operation starts when the WTM.WTM0 and WTM.WTM1 bits are set to 11. When these bits are cleared to 00, the 11-bit prescaler and 5-bit counter are cleared and the count operation stops.

The 5-bit counter can be cleared to synchronize the time by clearing the WTM1 bit to 0 when the watch timer and interval timer WT operate simultaneously. At this time, an error of up to 15.6 ms may occur in the watch timer, but interval timer WT is not affected.

(2) Operation as interval timer

The watch timer can also be used as an interval timer that repeatedly generates an interrupt request signal (INTWTI) at intervals specified by a count value set in advance.


The interval time can be selected by the WTM.WTM4 to WTM.WTM7 bits.

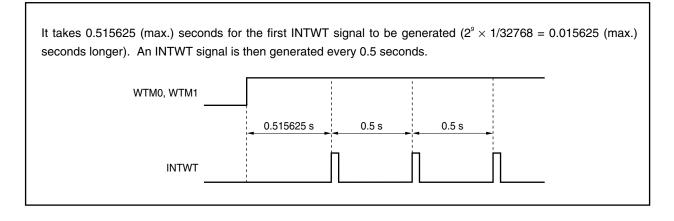
WTM7	WTM6	WTM5	WTM4		Interval Time
0	0	0	0	$2^4 \times 1/fw$	488 μ s (operating at fw = fxt = 32.768 kHz)
0	0	0	1	$2^5 \times 1/fw$	977 μ s (operating at fw = fxt = 32.768 kHz)
0	0	1	0	$2^6 \times 1/f_W$	1.95 ms (operating at $f_W = f_{XT} = 32.768 \text{ kHz}$)
0	0	1	1	$2^7 \times 1/fw$	3.91 ms (operating at $f_W = f_{XT} = 32.768 \text{ kHz}$)
0	1	0	o Da	: 2 Sknt/fwt4U.com	7.81 ms (operating at $f_W = f_{XT} = 32.768 \text{ kHz}$)
0	1	0	1	$2^9 \times 1/fw$	15.6 ms (operating at $f_W = f_{XT} = 32.768 \text{ kHz}$)
0	1	1	0	$2^{10} \times 1/fw$	31.3 ms (operating at $f_W = f_{XT} = 32.768 \text{ kHz}$)
0	1	1	1	$2^{11} \times 1/fw$	62.5 ms (operating at fw = fxt = 32.768 kHz)
1	0	0	0	$2^4 \times 1/fw$	488 μ s (operating at fw = f _{BRG} = 32.768 kHz)
1	0	0	1	$2^5 \times 1/fw$	977 μ s (operating at fw = f _{BRG} = 32.768 kHz)
1	0	1	0	$2^6 imes 1/fw$	1.95 ms (operating at $f_{W} = f_{BRG} = 32.768 \text{ kHz}$)
1	0	1	1	$2^7 \times 1/fw$	3.91 ms (operating at $f_{W} = f_{BRG} = 32.768 \text{ kHz}$)
1	1	0	0	$2^8 \times 1/f_W$	7.81 ms (operating at fw = fBRG = 32.768 kHz)
1	1	0	1	$2^9 \times 1/fw$	15.6 ms (operating at fw = fBRG = 32.768 kHz)
1	1	1	0	$2^{10} \times 1/fw$	31.3 ms (operating at fw = fBRG = 32.768 kHz)
1	1	1	1	$2^{11} \times 1/fw$	62.5 ms (operating at fw = fBRG = 32.768 kHz)

Table 10-1. Interval Time of Interval Timer

Remark fw: Watch timer clock frequency

et4U.com

Figure 10-3. Operation Timing of Watch Timer/Interval Timer


DataShe

10.3 Cautions

(1) Operation as watch timer

Some time is required before the first watch timer interrupt request signal (INTWT) is generated after operation is enabled (WTM.WTM1 and WTM.WTM0 bits = 11).

Figure 10-4. Example of Generation of Watch Timer Interrupt Request Signal (INTWT) (When Interrupt Period = 0.5 s)

DataSheet4U.com

320

(2) When watch timer and interval timer BRG operate simultaneously

When using the subclock as the count clock for the watch timer, the interval time of interval timer BRG can be set to any value. Changing the interval time does not affect the watch timer (before changing the interval time, stop operation).

When using the main clock as the count clock for the watch timer, set the interval time of interval timer BRG to approximately 65,536 Hz. Do not change this value.

(3) When interval timer BRG and interval timer WT operate simultaneously

When using the subclock as the count clock for interval timer WT, the interval times of interval timers BRG and WT can be set to any values. They can also be changed later (before changing the value, stop operation). When using the main clock as the count clock for interval timer WT, the interval time of interval timer BRG can be set to any value, but cannot be changed later (it can be changed only when interval timer WT stops operation). The interval time of interval timer WT can be set to $\times 2^5$ to $\times 2^{12}$ of the set value of interval timer BRG. It can also be changed later.

(4) When watch timer and interval timer WT operate simultaneously

The interval time of interval timer WT can be set to a value between 488 μ s and 62.5 ms. It cannot be changed later.

Do not stop interval timer WT (clear (0) the WTM.WTM0 bit) while the watch timer is operating. If the WTM0 bit is set (1) after it had been cleared (0), the watch timer will have a discrepancy of up to 0.5 or 0.25 seconds.

(5) When watch timer, interval timer BRG, and interval timer WT operate simultaneously

When using the subclock as the count clock for the watch timer, the interval times of interval timers BRG and WT can be set to any values. The interval time of interval timer BRG can be changed later (before changing DataSheet4U.com

When using the main clock as the count clock for the watch timer, set the interval time of interval timer BRG to approximately 65,536 kHz. It cannot be changed later. The interval time of interval timer WT can be set to a value between 488 μ s and 62.5 ms. It cannot be changed later.

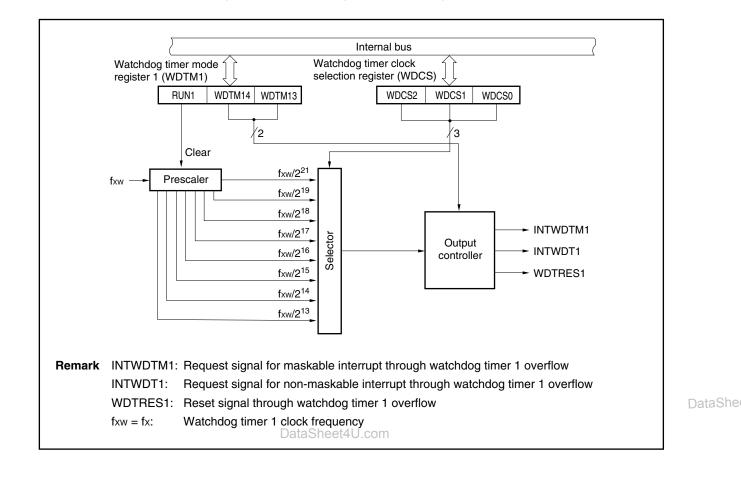
Do not stop interval timer BRG (clear (0) the PRSM.BGCE bit) or interval timer WT (clear (0) the WTM.WTM0 bit) while the watch timer is operating.

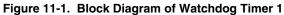
CHAPTER 11 WATCHDOG TIMER FUNCTIONS

11.1 Watchdog Timer 1

11.1.1 Functions

Watchdog timer 1 has the following operation modes.


- Watchdog timer
- Interval timer


The following functions are realized from the above-listed operation modes.

- Generation of non-maskable interrupt request signal (INTWDT1) upon overflow of watchdog timer 1^{Note}
- Generation of system reset signal (WDTRES1) upon overflow of watchdog timer 1
- Generation of maskable interrupt request signal (INTWDTM1) upon overflow of interval timer
- **Note** For non-maskable interrupt servicing due to non-maskable interrupt request signal (INTWDT1, INTWDT2), refer to **17.10 Cautions**.
- **Remark** Select whether to use watchdog timer 1 in the watchdog timer 1 mode or the interval timer mode with the WDTM1 register.

et4U.com

DataSheet4U.com

et4U.com

11.1.2 Configuration

Watchdog timer 1 consists of the following hardware.

Table 11-1. Configuration of Watchdog Timer 1

Item	Configuration
Control registers	Watchdog timer clock selection register (WDCS)
	Watchdog timer mode register 1 (WDTM1)

11.1.3 Registers

The registers that control watchdog timer 1 are as follows.

- Watchdog timer clock selection register (WDCS)
- Watchdog timer mode register 1 (WDTM1)

(1) Watchdog timer clock selection register (WDCS)

This register sets the overflow time of watchdog timer 1 and the interval timer. The WDCS register can be read or written in 8-bit or 1-bit units. After reset, WDCS is cleared to 00H.

	7	6	5	DataSheet	4U.tom	2 1	I 0
WDCS	0	0	0	0	0 W	DCS2 WD	CS1 WDCS0
	WDCS2	WDCS1	WDCS0	Overflow	time of watc	hdog timer 1	/interval timer
						fxw	
					4 MHz	5 MHz	10 MHz
	0	0	0	2 ¹³ /fxw	2.048 ms	1.638 ms	s 0.819 ms
	0	0	1	2 ¹⁴ /fxw	4.096 ms	3.277 ms	s 1.638 ms
	0	1	0	2 ¹⁵ /fxw	8.192 ms	6.554 ms	s 3.277 ms
	0	1	1	2 ¹⁶ /fxw	16.38 ms	13.11 ms	s 6.554 ms
	1	0	0	2 ¹⁷ /fxw	32.77 ms	26.21 ms	s 13.11 ms
	1	0	1	2 ¹⁸ /fxw	65.54 ms	52.43 ms	s 26.2 ms
	1	1	0	2 ¹⁹ /fxw	131.1 ms	104.9 ms	s 52.43 ms
	1	1	1	2 ²¹ /fxw	524.3 ms	419.4 ms	s 209.7 ms

www.DataSheet4U.com

(2) Watchdog timer mode register 1 (WDTM1)

This register sets the watchdog timer 1 operation mode and enables/disables count operations. This register is a special register that can be written only in a special sequence (refer to 3.4.7 Special registers).

The WDTM1 register can be read or written in 8-bit or 1-bit units. After reset, WDTM1 is cleared to 00H.

Caution When the main clock is stopped and the CPU is operating on the subclock, do not access the WDTM1 register using an access method that causes a wait. For details, refer to 3.4.8 (2).

		<7>	6	5	4	3	2	1	0	
	WDTM1	RUN1	0	0	WDTM14	WDTM13	0	0	0	
		RUN1		Selection	n of operatio	n mode of w	atchdog t	imer 1 ^{Note 1}	1	
		0	Stop cour	nting						
		1	Clear cou	nter and s	start counting	g				
		WDTM14	WDTM13	Sel	ection of ope	eration mode	of watch	dog timer	1 ^{Note 2}	
		0	0		timer mode					
		0	1	(Upon o	verflow, mas	kable interru	pt INTWE	DTM1 is ge	enerated.)	
		1	0		og timer moo verflow, non-	le 1 ^{Note 3} maskable int	errupt IN7	WDT1 is g	generated.)	
		1	1		og timer moo verflow, rese	le 2 et operation V	VDTRES	1 is started	d.)	
2. 3.	Therefore, Once the can be cle For non-n	, when cou WDTM13 a ared only l	nting is st and WDT oy reset. nterrupt s	arted, it M14 bits	cannot be s are set (to	stopped exc 1), they ca	cept by r annot be	eset. cleared	(to 0) by so est signal (

et4U.

11.1.4 Operation

(1) Operation as watchdog timer 1

Watchdog timer 1 operation to detect a program loop is selected by setting the WDTM1.WDTM14 bit to 1. The count clock (program loop detection time interval) of watchdog timer 1 can be selected using the WDCS.WDCS0 to WDCS.WDCS2 bits. The count operation is started by setting the WDTM1.RUN1 bit to 1. When, after the count operation is started, the RUN1 bit is again set to 1 within the set program loop detection time interval, watchdog timer 1 is cleared and the count operation starts again.

If the program loop detection time is exceeded without RUN1 bit being set to 1, reset signal (WDTRES1) through the value of the WDTM1.WDTM13 bit or a non-maskable interrupt request signal (INTWDT1) is generated.

The count operation of watchdog timer 1 stops in the STOP mode and IDLE mode. Set the RUN1 bit to 1 before the STOP mode or IDLE mode is entered in order to clear watchdog timer 1.

Because watchdog timer 1 operates in the HALT mode, make sure that an overflow will not occur during HALT.

Cautions 1. When the subclock is selected for the CPU clock, the count operation of watchdog timer 1 is stopped (the value of watchdog timer 1 is maintained).

2. For non-maskable interrupt servicing due to the INTWDT1 signal, refer to 17.10 Cautions.

Table 11-2. Program Loop Detection Time of Watchdog Timer 1

Clock	Prog	ram Loop Detection	Time
	fxw = 4 MHz	fxw = 5 MHz	fxw = 10 MHz
2 ¹³ /fxw	2.048 ms Datas	1.638 ms com	0.819 ms
2 ¹⁴ /fxw	4.096 ms	3.277 ms	1.683 ms
2 ¹⁵ /fxw	8.192 ms	6.554 ms	3.277 ms
2 ¹⁶ /fxw	16.38 ms	13.11 ms	6.554 ms
2 ¹⁷ /fxw	32.77 ms	26.21 ms	13.11 ms
2 ¹⁸ /fxw	65.54 ms	52.43 ms	26.21 ms
2 ¹⁹ /fxw	131.1 ms	104.9 ms	52.43 ms
2 ²¹ /fxw	524.3 ms	419.4 ms	209.7 ms

DataShe

www.DataSheet4U.com

Remark fxw = fx: Watchdog timer 1 clock frequency

DataSheet4U.com

(2) Operation as interval timer

Watchdog timer 1 can be made to operate as an interval timer that repeatedly generates interrupts using the count value set in advance as the interval, by clearing the WDTM1.WDTM14 bit to 0.

When watchdog timer 1 operates as an interval timer, the interrupt mask flag (WDTMK) and priority specification flags (WDTPR0 to WDTPR2) of the WDTIC register are valid and maskable interrupt request signals (INTWDTM1) can be generated. The default priority of the INTWDTM1 signal is set to the highest level among the maskable interrupt request signals.

The interval timer continues to operate in the HALT mode, but it stops operating in the STOP mode and the IDLE mode.

Cautions 1. Once the WDTM14 bit is set to 1 (thereby selecting the watchdog timer 1 mode), the interval timer mode is not entered as long as reset is not performed.

2. When the subclock is selected for the CPU clock, the count operation of the watchdog timer 1 stops (the value of the watchdog timer is maintained).

Clock		Interval Time	
	fxw = 4 MHz	fxw = 5 MHz	fxw = 10 MHz
2 ¹³ /fxw	2.048 ms	1.638 ms	0.819 ms
2 ¹⁴ /fxw	4.096 ms	3.277 ms	1.638 ms
2 ¹⁵ /fxw	8.192 ms	6.554 ms	3.277 ms
2 ¹⁶ /fxw	16.38 ms	13.11 ms	6.554 ms
2 ¹⁷ /fxw	32.77 ms Sheet4	26.21 ms	13.11 ms
2 ¹⁸ /fxw	65.54 ms	52.43 ms	26.21 ms
2 ¹⁹ /fxw	131.1 ms	104.9 ms	52.43 ms
2 ²¹ /fxw	524.3 ms	419.4 ms	209.7 ms

Remark fxw = fx: Watchdog timer 1 clock frequency

11.2 Watchdog Timer 2

11.2.1 Functions

Watchdog timer 2 has the following functions.

- Default start watchdog timer^{Note 1}
 - → Reset mode: Reset operation upon overflow of watchdog timer 2 (generation of WDTRES2 signal)
 - → Non-maskable interrupt request mode: NMI operation upon overflow of watchdog timer 2 (generation of INTWDT2 signal)^{Note 2}
- Input selectable from Ring-OSC clock and subclock as the source clock
 - Notes 1. Watchdog timer 2 automatically starts in the reset mode following reset release. When watchdog timer 2 is not used, either stop its operation before reset is executed through this function, or clear once watchdog timer 2 and stop it within the next interval time. Also, write to the WDTM2 register for verification purposes only once, even if the default settings (reset mode, interval time: fxx/2²⁵) need not be changed.
 - 2. For non-maskable interrupt servicing due to a non-maskable interrupt request signal (INTWDT2), refer to 17.10 Cautions.

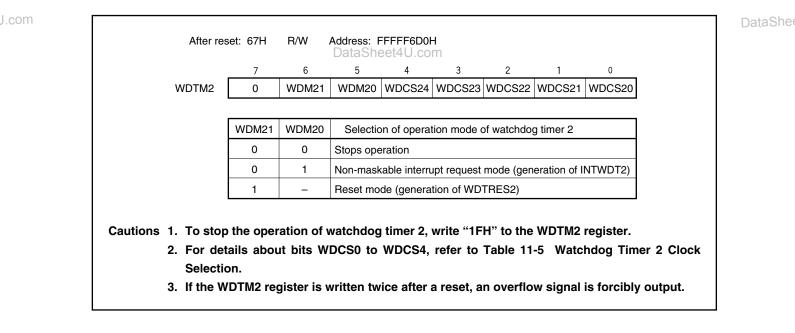
Figure 11-2. Block Diagram of Watchdog Timer 2

11.2.2 Configuration

Watchdog timer 2 consists of the following hardware.

Table 11-4. Configuration of Watchdog Timer 2

Item	Configuration
Control registers	Watchdog timer mode register 2 (WDTM2)
	Watchdog timer enable register (WDTE)


11.2.3 Registers

(1) Watchdog timer mode register 2 (WDTM2)

This register sets the overflow time and operation clock of watchdog timer 2.

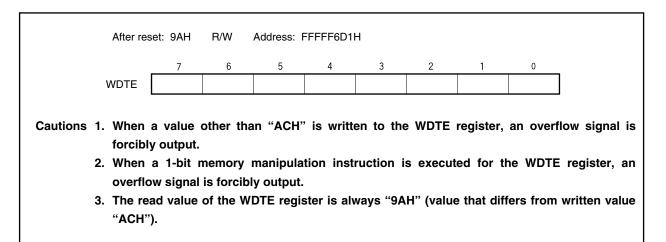
The WDTM2 register can be read or written in 8-bit units. This register can be read any number of times, but it can be written only once following reset release. After reset, WDTM2 is set to 67H.

Caution When the main clock is stopped and the CPU is operating on the subclock, do not access the WDTM2 register using an access method that causes a wait. For details, refer to 3.4.8 (2).

WDCS24	WDCS23	WDCS22	WDCS21	WDCS20	Selected Clock	Program Loop Detection Time
0	0	0	0	0	2 ¹² /f _R	17.1 ms (f _R = 240 kHz (TYP.))
0	0	0	0	1	2 ¹³ /f _R	34.1 ms (f _R = 240 kHz (TYP.))
0	0	0	1	0	2 ¹⁴ /f _R	68.2 ms (f _R = 240 kHz (TYP.))
0	0	0	1	1	2 ¹⁵ /f _R	136.5 ms (f _R = 240 kHz (TYP.))
0	0	1	0	0	2 ¹⁶ /f _R	273.1 ms (f _R = 240 kHz (TYP.))
0	0	1	0	1	2 ¹⁷ /f _R	546.1 ms (f _R = 240 kHz (TYP.))
0	0	1	1	0	2 ¹⁸ /f _R	1092.3 ms (f _R = 240 kHz (TYP.))
0	0	1	1	1	2 ¹⁹ /f _R	2184.5 ms (f _R = 240 kHz (TYP.))
0	1	0	0	0	2 ⁹ /fхт	15.625 ms (f _{XT} = 32.768 kHz)
0	1	0	0	1	2 ¹⁰ /fxT	31.25 ms (fxt = 32.768 kHz)
0	1	0	1	0	2 ¹¹ /fxT	62.5 ms (f _{XT} = 32.768 kHz)
0	1	0	1	1	2 ¹² /fxT	125 ms (fxt = 32.768 kHz)
0	1	1	0	0	2 ¹³ /fxT	250 ms (f _{xt} = 32.768 kHz)
0	1	1	0	1	2 ¹⁴ /fxT	500 ms (f _{xT} = 32.768 kHz)
0	1	1	1	0	2 ¹⁵ /fxT	1000 ms (f _{xT} = 32.768 kHz)
0	1	1	1	1	2 ¹⁶ /fxT	2000 ms (f _{xT} = 32.768 kHz)
1	×	×	×	×	Operation stoppe	d

Table 11-5. Watchdog Timer 2 Clock Selection

et4U.com


DataShee

www.DataSheet4U.com

(2) Watchdog timer enable register (WDTE)

DataSheet4U.com

The counter of watchdog timer 2 is cleared and counting restarted by writing "ACH" to the WDTE register. The WDTE register can be read or written in 8-bit units. After reset, WDTE is set to 9AH.

11.2.4 Operation

Watchdog timer 2 automatically starts in the reset mode following reset release.

The WDTM2 register can be written to only once following reset through byte access. To use watchdog timer 2, write the operation mode and the interval time to the WDTM2 register using 8-bit memory manipulation instructions. After this is done, the operation of watchdog timer 2 cannot be stopped.

The watchdog timer 2 program loop detection time interval can be selected by the WDTM2.WDCS24 to WDTM2.WDCS20 bits. Writing ACH to the WDTE register clears the counter of watchdog timer 2 and starts the count operation again. After the count operation starts, write ACH to the WDTE register within the set program loop detection time interval.

If the program loop detection time is exceeded without ACH being written to the WDTE register, a reset signal (WDTRES2) or non-maskable interrupt request signal (INTWDT2) is generated depending on the set value of the WDTM2.WDM21 and WDTM2.WDM20 bits.

To not use watchdog timer 2, write 1FH to the WDTM2 register.

For non-maskable interrupt servicing when the non-maskable interrupt request mode is set, refer to **17.10** Cautions.

Because watchdog timer 2 operates in the HALT/IDLE/STOP mode, exercise care that the timer does not overflow in the HALT/IDLE/STOP mode.

et4U.com

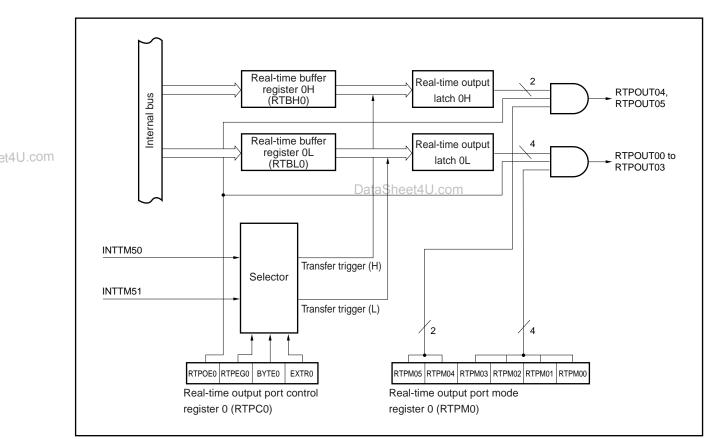
DataShe

DataSheet4U.com

331

CHAPTER 12 REAL-TIME OUTPUT FUNCTION (RTO)

12.1 Function


The real-time output function (RTO) transfers preset data to the RTBL0 and RTBH0 registers, and then transfers this data with hardware to an external device via the real-time output latches, upon occurrence of a timer interrupt. The pins through which the data is output to an external device constitute a port called a real-time output port.

Because RTO can output signal without jitter, it is suitable for controlling a stepping motor.

In the V850ES/KE1+, a 6-bit real-time output port channel is provided.

The real-time output port can be set in the port mode or real-time output port mode in 1-bit units.

The block diagram of RTO is shown below.

12.2 Configuration

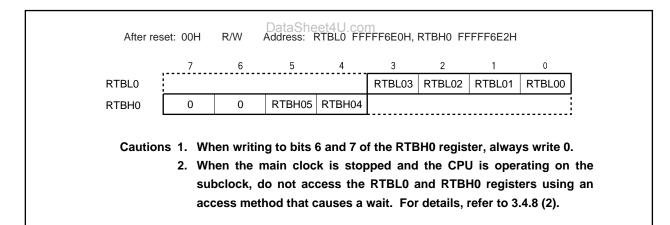
RTO consists of the following hardware.

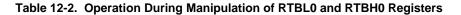
Table 12-1. Configuration of RTO

Item	Configuration
Registers	Real-time output buffer register 0 (RTBL0, RTBH0)
Control registers	Real-time output port mode register 0 (RTPM0) Real-time output port control register 0 (RTPC0)

(1) Real-time output buffer register 0 (RTBL0, RTBH0)

RTBL0 and RTBH0 are 4-bit registers that hold output data in advance.


These registers are mapped to independent addresses in the peripheral I/O register area.


They can be read or written in 8-bit or 1-bit units.

If an operation mode of 4 bits \times 1 channel or 2 bits \times 1 channel is specified (RTPC0.BYTE0 bit = 0), data can be individually set to the RTBL0 and RTBH0 registers. The data of both these registers can be read at once by specifying the address of either of these registers.

If an operation mode of 6 bits \times 1 channel is specified (BYTE0 bit = 1), 8-bit data can be set to both the RTBL0 and RTBH0 registers by writing the data to either of these registers. Moreover, the data of both these registers can be read at once by specifying the address of either of these registers.

Table 12-2 shows the operation when the RTBL0 and RTBH0 registers are manipulated.

Operation Mode	Register to Be	Re	ad	Writ	e ^{Note}
	Manipulated	Higher 4 Bits	Lower 4 Bits	Higher 4 Bits	Lower 4 Bits
4 bits \times 1 channel, 2 bits \times	RTBL0	RTBH0	RTBL0	Invalid	RTBL0
1 channel	RTBH0	RTBH0	RTBL0	RTBH0	Invalid
6 bits \times 1 channel	RTBL0	RTBH0	RTBL0	RTBH0	RTBL0
	RTBH0	RTBH0	RTBL0	RTBH0	RTBL0

Note After setting the real-time output port, set output data to the RTBL0 and RTBH0 registers by the time a real-time output trigger is generated.

DataSheet4U.com

12.3 Registers

RTO is controlled using the following two types of registers.

- Real-time output port mode register 0 (RTPM0)
- Real-time output port control register 0 (RTPC0)

(1) Real-time output port mode register 0 (RTPM0)

This register selects the real-time output port mode or port mode in 1-bit units. The RTPM0 register can be read or written in 8-bit or 1-bit units. After reset, RTPM0 is cleared to 00H.

	7	6	5	4	3	2	1	0
RTPM0	0	0	RTPM05	RTPM04	RTPM03	RTPM02	RTPM01	RTPM00
	RTPM0m		Conti	rol of real-ti	me output	port (m = 0	to 5)	
	0	Real-time	e output dis	abled				
	4							
Cautic	•	reflect r	RTP05), s	output si	b the rea			•
Cautic	(RT PF(2. By spe spe	reflect r PO0 to F C5 regist enabling ecified as ecified as	eal-time RTP05), se	output si et them to ataSheet e output e output c	o the rea 4U.com operatio enabled (lisabled o	I-time ou on (RTPC perform r output 0.	tput port 0.RTPOE real-time	with the 0 bit = 1 output, a

(2) Real-time output port control register 0 (RTPC0)

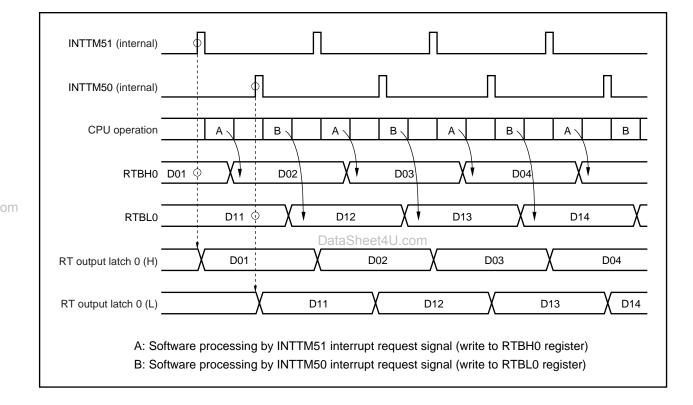
This register sets the operation mode and output trigger of the real-time output port.

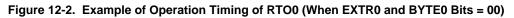
The relationship between the operation mode and output trigger of the real-time output port is as shown in Table 12-3.

The RTPC0 register can be read or written in 8-bit or 1-bit units.

After reset, RTPC0 is cleared to 00H.

		<7>	6	5	4	3	2	1	0		
	RTPC0	RTPOE0	RTPEG0 ^{Note 1}	BYTE0	EXTR0 ^{Note 2}	0	0	0	0]	
										-	
		RTPOE0		Co	ontrol of rea	I-time outp	out operati	ion			
		0	Disables	operation ^{Not}	e 3						
		1	Enables of	operation							
										_	
		BYTE0	5	Specificatior	of channel	configura	tion for rea	al-time outp	ut]	
		0	4 bits \times 1	channel, 2	oits × 1 char	nnel				1	
		1	6 bits × 1	channel							
com		 For the state When 	ne EXTR0 n real-time	e RTPEG(bit, refer t e output o UT00 to R	o Table 12	2 -3 . is disable	ed (RTP		= 0), real	I-time output	
	Cautio	n Perfor 0.	m the se	ttings for	the BYTE	0 and E	KTR0 bit	s only wh	en the R	TPOE0 bit =	


Table 12-3. Operation Modes and Output Triggers of Real-Time Output Port


BYTE0	EXTR0	Operation Mode	RTBH0 (RTP04, RTP05)	RTBL0 (RTP00 to RTP03)
0	0	4 bits \times 1 channel,	INTTM51	INTTM50
	1	2 bits \times 1 channel	INTTM50	No trigger
1	0	6 bits \times 1 channel	INTTM50	
	1		Setting prohibited	

12.4 Operation

If the real-time output operation is enabled by setting the RTPC0.RTPOE0 bit to 1, the data of the RTBH0 and RTBL0 registers is transferred to the real-time output latch in synchronization with the generation of the selected transfer trigger (set by the RTPC0.EXTR0 and RTPC0.BYTE0 bits). Of the transferred data, only the data of the bits specified as real-time output enabled by the RTPM0 register is output from bits RTPOUT00 to RTPOUT05. The bits specified as real-time output disabled by the RTPM0 register output 0.

If the real-time output operation is disabled by clearing the RTPOE0 bit to 0, the RTPOUT00 to RTPOUT05 signals output 0 regardless of the setting of the RTPM0 register.

Remark For the operation during standby, refer to **CHAPTER 19 STANDBY FUNCTION**.

12.5 Usage

- Disable real-time output.
 Clear the RTPC0.RTPOE0 bit to 0.
- (2) Perform initialization as follows.
 - Specify the real-time output port mode or port mode in 1-bit units. Set the RTPM0 register.
 - Channel configuration: Select the trigger and valid edge.
 Set the RTPC0.EXTR0, RTPC0.BYTE0, and RTPC0.RTPEG0 bits.
 - Set the initial values to the RTBH0 and RTBL0 registers^{Note 1}.
- (3) Enable real-time output. Set the RTPOE0 bit to 1.
- (4) Set the next output value to the RTBH0 and RTBL0 registers by the time the selected transfer trigger is generated^{Note 2}.
- (5) Set the next real-time output value to the RTBH0 and RTBL0 registers through interrupt servicing corresponding to the selected trigger.
- **Notes 1.** If write to the RTBH0 and RTBL0 registers is performed when the RTPOE0 bit = 0, that value is transferred to real-time output latches 0H and 0L, respectively.

2. Even if write is performed to the RTBH0 and RTBL0 registers when the RTPOE0 bit = 1, data transfer to real-time output latches 0H and 0L is not performed.

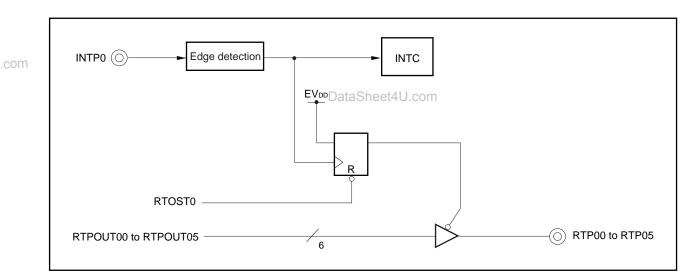
Caution To reflect the real-time output signals (RTPOUT00 to RTPOUT05) to the pins, set the real-time output ports (RTP00 to RTP05) with the PMC5 and PFC5 registers.

12.6 Cautions

- (1) Prevent the following conflicts by software.
 - Conflict between real-time output disable/enable switching (RTPOE0 bit) and selected real-time output trigger
 - Conflict between write to the RTBH0 and RTBL0 registers in the real-time output enabled status and the selected real-time output trigger.
- (2) Before performing initialization, disable real-time output (RTPOE0 bit = 0).
- (3) Once real-time output has been disabled (RTPOE0 bit = 0), be sure to initialize the RTBH0 and RTBL0 registers before enabling real-time output again (RTPOE0 bit = $0 \rightarrow 1$).

337

12.7 Security Function


A circuit that sets the pin outputs to high impedance as a security function for when malfunctions of a stepping motor controlled by RTO occur is provided on chip. It forcibly resets the pins allocated to RTP00 to RTP05 via external interrupt INTP0 pin edge detection, placing them in the high-impedance state.

The ports (P50 to P55 pins) placed in high impedance by INTPO^{Note 1} pin are initialized^{Note 2}, so settings for these ports must be performed again.

Notes 1. Regardless of the port settings, P50 to P55 pins are all placed in high impedance via the INTP0 pin.

- 2. The bits that are initialized are all the bits corresponding to P50 to P55 pins of the following registers.
 - P5 register
 - PM5 register
 - PMC5 register
 - PU5 register
 - PFC5 register

The block diagram of the security function is shown below.

Figure 12-3. Block Diagram of Security Function

This function is set with the PLLCTL.RTOST0 bit.

DataShe

DataSheet4U.com

(1) PLL control register (PLLCTL)

The PLLCTL register is an 8-bit register that controls the RTO security function and PLL. This register can be read or written in 8-bit or 1-bit units. After reset, PLLCTL is set to 01H.

	7	6	5	4	3	<2>	<1>	<0>	
PLLCTL	0	0	0	0	0	RTOST0	SELPLL ^{Note}	PLLON ^{Note}	
	RTOST0		Contr	ol of RTP00	to RTP0	5 security fu	Inction		
	0	INTP0 pir	n is not use	d as trigger	for secur	ity function			
	1	INTP0 pir	n is used as	trigger for	security for	unction			
	FUNCTIOI ns 1. Be sel 2. To	N. fore out lect the li set aga	putting a NTP0 pin iin the p	value to interrupt orts (P50	the rea edge de to P55	Il-time out tection an pins) as	tput port nd then so real-tim	s (RTP00 et the RT(le output	ports aft
	FUNCTIOI ns 1. Be sel 2. To pla fur [Pr	N. fore out lect the ll set aga acing the nction. rocedure	putting a NTP0 pin in the po m in higi to set po	value to interrupt orts (P50 h impedan rts again]	the rea edge de to P55 nce via	nt-time out tection and pins) as the INTPO	tput port nd then so real-tim) pin, firs	s (RTP00 et the RT0 e output t cancel) to RTP0 OST0 bit. ports aft the securi
	FUNCTIOI ns 1. Be sel 2. To pla fur [Pr <1:	N. fore out lect the II set aga acing the nction. rocedure > Cancel RTOST	putting a NTP0 pin in the p m in higi to set po the sec 0 bit to 0.	value to interrupt orts (P50 h impedan rts again] urity fund	the rea edge de to P55 nce via tion an	Il-time out tection an pins) as the INTPO d enable	tput port nd then so real-tim) pin, firs	s (RTP00 et the RT0 e output t cancel) to RTP0 OST0 bit. ports aft
	FUNCTIOI ns 1. Be sel 2. To pla fur [Pr <1: <2:	N. fore out lect the li set aga acing the nction. rocedure > Cancel RTOST > Set the	putting a NTP0 pin in the p m in high to set po the sec 0 bit to 0. RTOST0	value to interrupt orts (P50 n impedan rts again] urity fund	the rea edge de to P55 nce via tion an	Il-time out tection and pins) as the INTPO d enable equired).	tput port nd then so real-tim) pin, firs	s (RTP00 et the RT0 e output t cancel) to RTP0 OST0 bit. ports aft the securi

CHAPTER 13 A/D CONVERTER

13.1 Overview

The A/D converter converts analog input signals into digital values and has an 8-channel (ANI0 to ANI7) configuration.

The A/D converter has the following functions.

- Operating voltage (AVREF0): 2.7 to 5.5 V
- O Successive approximation method 10-bit A/D converter
- Analog input pin: 8
- Trigger mode:
 - Software trigger mode
 - Timer trigger mode (INTTM010)
 - External trigger mode (ADTRG pin)
- Operation mode
 - Select mode
 - Scan mode
- O A/D conversion time:

• Normal mode:

14 to 100 μ s @ 4.0 V \leq AV_{REF0} \leq 5.5 V

17 to 100 μ s @ 2.7 V \leq AV_{REF0} < 4.0 V

- High-speed mode:
 3 to 100 μs @ 4.5 V ≤ AV_{REF0} ≤ 5.5 V
 4.8 to 100 μs @ 4.0 V ≤ AV_{REF0} < 4.5 V
 6 to 100 μs @ 2.85 V ≤ AV_{REF0} < 4.0 V
 14 to 100 μs @ 2.7 V ≤ AV_{REF0} < 2.85 V
- Power fail detection function

13.2 Functions

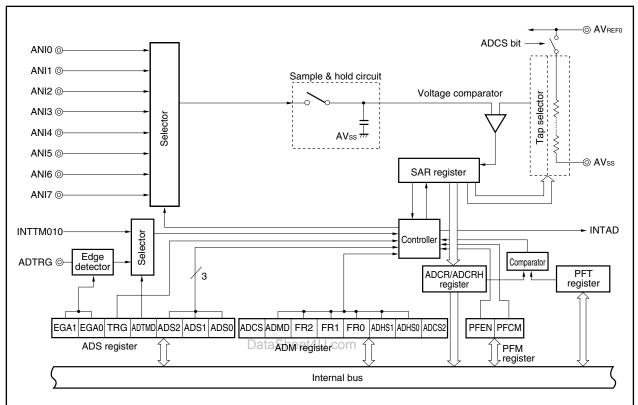
(1) 10-bit resolution A/D conversion

1 analog input channel is selected from the ANI0 to ANI7 pins, and an A/D conversion operation with resolution of 10 bits is repeatedly executed. Every time A/D conversion is completed, an interrupt request signal (INTAD) is generated.

DataSheet4U.com

(2) Power fail detection function

This is a function to detect low voltage in a battery. The results of A/D conversion (the value in the ADCRH register) and the PFT register are compared, and INTAD signal is generated only when the comparison conditions match.


DataSheet4U.com

DataShe

www.DataSheet4U.com

13.3 Configuration

The A/D converter consists of the following hardware.

Table 13-1. Registers of A/D Converter Used by Software

Item	Configuration
Registers	A/D conversion result register (ADCR)
	A/D conversion result register H (ADCRH): Only higher 8 bits can be read
	Power fail comparison threshold register (PFT)
	A/D converter mode register (ADM)
	Analog input channel specification register (ADS)
	Power fail comparison mode register (PFM)

et4U.com

(1) ANI0 to ANI7 pins

These are analog input pins for the 8 channels of the A/D converter. They are used to input analog signals to be converted into digital signals. Pins other than those selected as analog input by the ADS register can be used as input ports.

(2) Sample & hold circuit

The sample & hold circuit samples the analog input signals selected by the input circuit and sends the sampled data to the voltage comparator. This circuit holds the sampled analog input voltage during A/D conversion.

(3) Series resistor string

The series resistor string is connected between AVREF0 and AVss and generates a voltage for comparison with the analog input signal.

(4) Voltage comparator

The voltage comparator compares the value that is sampled and held with the output voltage of the series resistor string.

(5) Successive approximation register (SAR)

This register compares the sampled analog voltage value with the voltage value from the series resistor string, and converts the comparison result starting from the most significant bit (MSB).

When the least significant bit (LSB) has been converted to a digital value (end of A/D conversion), the contents of the SAR register are transferred to the ADCR register.

The SAR register cannot be read or written directly. DataSheet4U.com

(6) A/D conversion result register (ADCR), A/D conversion result register H (ADCRH)

Each time A/D conversion ends, the conversion results are loaded from the successive approximation register and the results of A/D conversion are held in the higher 10 bits of this register (the lower 6 bits are fixed to 0).

(7) Controller

The controller compares the A/D conversion results (the value of the ADCRH register) with the value of the PFT register when A/D conversion ends or the power fail detection function is used. It generates INTAD signal only when the comparison conditions match.

(8) AVREFO pin

This is the analog power supply pin/reference voltage input pin of the A/D converter. Always use the same potential as the VDD pin even when not using the A/D converter.

The signals input to the ANI0 to ANI7 pins are converted into digital signals based on the voltage applied across AVREFO and AVSS.

(9) AVss pin

This is the ground potential pin of the A/D converter. Always use the same potential as the Vss pin even when not using the A/D converter.

(10) A/D converter mode register (ADM)

This register sets the conversion time of the analog input to be converted to a digital signal and the conversion operation start/stop.

(11) Analog input channel specification register (ADS)

This register specifies the input port for the analog voltage to be converted to a digital signal.

(12) Power fail comparison mode register (PFM)

This register sets the power fail detection mode.

(13) Power fail comparison threshold register (PFT)

This register sets the threshold to be compared with the ADCR register.

13.4 Registers

The A/D converter is controlled by the following registers.

- A/D converter mode register (ADM)
- Analog input channel specification register (ADS)
- Power fail comparison mode register (PFM)
- Power fail comparison threshold register (PFT)
- A/D conversion result register, A/D conversion result register H (ADCR, ADCRH)

et4U.com

DataSheet4U.com

343

(1) A/D converter mode register (ADM)

This register sets the conversion time of the analog input signal to be converted into a digital signal as well as conversion start and stop.

The ADM register can be read or written in 8-bit or 1-bit units.

After reset, ADM is cleared to 00H.

		After re	set: 00H	R/W Address: FFFFF200H	
			<7>		
		ADM	ADCS	ADMD FR2 ^{Note 1} FR1 ^{Note 1} FR0 ^{Note 1} ADHS1 ^{Note 1} ADHS0 ^{Note 1} ADCS2	
			ADCS	Control of A/D conversion operation	
			0	Conversion operation stopped	
			1	Conversion operation enabled	
			ADMD	Control of operation mode	
			0	Select mode	
			1	Scan mode	
			ADHS1	Selection of 5 V A/D conversion time mode (AV_{REF0} \ge 4.5 V)	
			0	Normal mode	
om			1	High-speed mode (valid only when AV_{\text{REF0}} \geq 4.5 V)	Dat
			ADHS0	Selection of 3 V A/D conversion time mode (AVREF0 ≥ 2.7 or 2.85 V)	
			Normal mode		
			High-speed mode (valid only when AV _{REF0} ≥ 2.7 or 2.85 V)		
			ADCS2	Control of reference voltage generator for boosting ^{Note 2}	
			0	Reference voltage generator operation stopped	
			1	Reference voltage generator operation enabled	
	Notes	1. For det Time.	ails of the	FR2 to FR0 bits and the A/D conversion, refer to Table 13-2 A/D Conversion	
		-		ne reference voltage generator for boosting is controlled by the ADCS2 bit and it	
				fter operation is started until it is stabilized. Therefore, if the ADCS bit is set to 1	
		-		started) at least 1 or 14 μ s after the ADCS2 bit was set to 1 (reference voltage ting is on), the first conversion result is valid.	
		9			
	Cautio	acce		FR2 to FR0, ADHS1, and ADHS0 while the ADCS bit = 1 is prohibited (write ADM register is enabled and rewriting of bits FR2 to FR0, ADHS1, and ibited).	
		2. Sett	ing ADHS	and ADHS0 bits to 11 is prohibited.	
				n clock is stopped and the CPU is operating on the subclock, do not access	
			-	ter using an access method that causes a wait.	
		For	details, re	er to 3.4.8 (2).	

ADHS1	IS1 ADHS0 FR2 FR1 FR0		ADHS0 FR2 FR1 FR0 A/D Conversion Time (μs)							Conversion		
						20 MHz@	16 MHz@	8 MHz@	8 MHz@	Time Mode		
						$AV_{\text{REF0}} \geq 4.5 \text{ V}$	$AV_{\text{REF0}} \geq 4.0 \ V$	$AV_{\text{REF0}} \geq 2.85~V$	$AV_{\text{REF0}} \geq 2.7 \ V$			
0	0	0	0	0	288/fxx	14.4	18.0	36.0	36.0	Normal mode		
0	0	0	0	1	240/fxx	Setting prohibited	15.0	30.0	30.0	$AV_{\text{REF0}} \ge 2.7 \text{ V}$		
0	0	0	1	0	192/fxx	Setting prohibited	Setting prohibited	24.0	24.0			
0	0	0	1	1	Setting	prohibited						
0	0	1	0	0	144/fxx	Setting prohibited	Setting prohibited	18.0	18.0	Normal mode $AV_{REF0} \ge 2.7 V$		
0	0	1	0	1	120/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited			
0	0	1	1	0	96/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited			
0	0	1	1	1	Setting	etting prohibited						
0	1	0	0	0	96/fxx	4.8	6.0	12.0	Setting prohibited	High-speed mode		
0	1	0	0	1	72/fxx	Setting prohibited	Setting prohibited	9.0	Setting prohibited	$AV_{\text{REF0}} \ge 2.85 \text{ V}$		
0	1	0	1	0	48/fxx	Setting prohibited	Setting prohibited	6.0	Setting prohibited			
0	1	0	1	1	24/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited			
0	1	1	0	0	224/fxx	11.2	14.0	28.0	28.0	High-speed		
0	1	1	0	1	168/fxx	Setting prohibited	10.5	21.0	21.0	mode $AV_{REF0} \ge 2.7 V$		
0	1	1	1	0	112/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited			
0	1	1	1	1	56/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited			
1	0	0	0	0	72/fxx	3.6	Setting prohibited	Setting prohibited	Setting prohibited	High-speed mode		
1	0	0	0	1	54/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited	$AV_{REF0} \ge 4.5 V$		
1	0	0	1	0	36/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited			
1	0	0	1	1	18/fxx	Setting prohibited	Setting prohibited	Setting prohibited	Setting prohibited			
1	0	1	×	×	Setting	prohibited						
1	1	×	×	×	Setting	prohibited						

Table 13-2. A/D Conversion Time

et4U.com

DataSheet4U.com

www.DataSheet4U.com

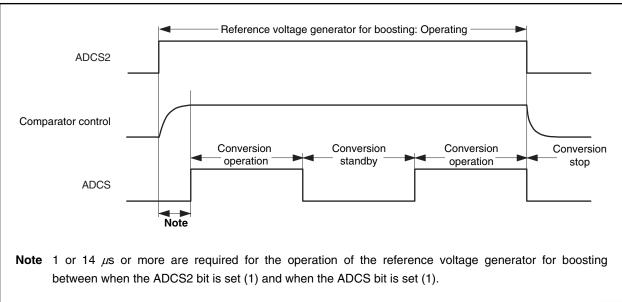
(a) Controlling reference voltage generator for boosting

When the ADCS2 bit = 0, power to the A/D converter drops. The converter requires a setup time of 14 μ s (normal mode: ADHS1 and ADHS0 bits = 00) or 1 μ s (high-speed mode: ADHS1 and ADHS0 bits = 11) or more after the ADCS2 bit has been set to 1.

Therefore, the result of A/D conversion becomes valid from the first result by setting the ADCS bit to 1 at least 14 or 1 μ s after the ADCS2 bit has been set to 1.

ADCS	ADCS2	A/D Conversion Operation
0	0	Stopped status (DC power consumption path does not exist)
0	1	Conversion standby mode (only the reference voltage generator for boosting consumes power)
1	0	Conversion mode (reference voltage generator stops operation ^{Note 1})
1	1	Conversion mode (reference voltage generator is operating ^{Note 2})

Table 13-3. Setting of ADCS Bit and ADCS2 Bit


Notes 1. If the ADCS and ADCS2 bits are changed from 00B to 10B, the reference voltage generator for boosting automatically turns on. If the ADCS bit is cleared to 0 while the ADCS2 bit is 0, the voltage generator automatically turns off. In the software trigger mode (ADS.TRG bit = 0), use of the first A/D conversion result is prohibited.

In the hardware trigger mode (TRG bit = 1), use the A/D conversion result only if A/D conversion is started after the lapse of the oscillation stabilization time of the reference voltage generator for boosting.

t4U.com

2. If the ADCS and ADCS2 bits are changed from 00B to 11B, the reference voltage generator for boosting automatically turns on. If the ADCS bit is cleared to 0 while the ADCS2 bit is 1, the voltage generator stays on. In the software trigger mode (TRG bit = 0), use of the first A/D conversion result is prohibited.

In the hardware trigger mode (TRG bit = 1), use the A/D conversion result only if A/D conversion is started after the lapse of the oscillation stabilization time of the reference voltage generator for boosting.

Figure 13-2. Operation Sequence

DataSheet4U.com

(2) Analog input channel specification register (ADS)

This register specifies the analog voltage input port for A/D conversion. The ADS register can be read or written in 8-bit or 1-bit units. After reset, ADS is cleared to 00H.

		7	6	5	4	3	2	1	0	
	ADS	EGA1 ^{Note 1}	EGA0 ^{Note 1}	TRG	ADTMD ^{Note 2}	0	ADS2	ADS1	ADS0	
		EGA1 ^{Note 1}	EGA0 ^{Note 1}	Spec	ification of ex	ternal trid	oger signal	(ADTRG) e	edae	
		0	0		detection		55- 5	(-) -		
		0	1	Falling e	edge					
		1	0	Rising e	dge					
		1	1	Both risi	ng and falling	edges				
		TRG			Trigger n	node sele	ection			
		0	Software	trigger mo	ode					
		1	Hardware	e trigger m	ode					
		ADTMD ^{Note 2}		Spe	ecification of I	nardware	e trigger mo	de		
		0	1		DTRG pin inpu					
n		1		Timer trigger (INTTM010 signal generated)						
					heet4U.co					
		ADS2	ADS1	ADS0	Spe	cificatior	n of analog	input chanı	nel	
					Selec	t mode		Scan mo	ode	
		0	0	0	ANI0		ANIO			
		0	0	1	ANI1		ANIO	, ANI1		
		0	1	0	ANI2		ANIO	to ANI2		
		0	1	1	ANI3		ANIO	to ANI3		
		1	0	0	ANI4		ANIO	to ANI4		
		1	0	1	ANI5		ANIO	to ANI5		
		1	1	0	ANI6		ANIO	to ANI6		
		1	1	1	ANI7		ANIO	to ANI7		

(3) A/D conversion result register, A/D conversion result register H (ADCR, ADCRH)

The ADCR and ADCRH registers store the A/D conversion results.

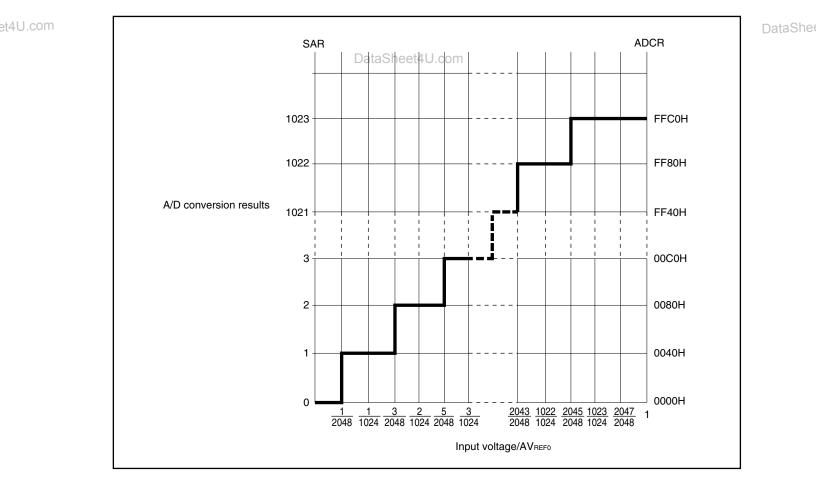
These registers are read-only in 16-bit or 8-bit units. However, specify the ADCR register for 16-bit access, and the ADCRH register for 8-bit access. In the ADCR register, the 10 bits of conversion results are read in the higher 10 bits and 0 is read in the lower 6 bits. In the ADCRH register, the higher 8 bits of the conversion results are read.

After reset, these registers are undefined.

AD9 AD8	AD7 AD6	AD5 AD4	AD3 AD2	AD1 AD0	0 0	0 0	0 0
				1 1			
7	6	5	4	3	2	1	0
AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2
Caution	When t	he main	clock is	stoppe	d and th	e CPU i	s operat
	subcloc	k, do ne	ot acces	s the AD	OCR and	ADCRH	register
	7 AD9	AD9 AD8 Caution When t	7 6 5 AD9 AD8 AD7 Caution When the main	7654AD9AD8AD7AD6Caution When the main clock is	76543AD9AD8AD7AD6AD5Caution When the main clock is stopped	7 6 5 4 3 2 AD9 AD8 AD7 AD6 AD5 AD4 Caution When the main clock is stopped and the	7 6 5 4 3 2 1 AD9 AD8 AD7 AD6 AD5 AD4 AD3

The following shows the relationship between the analog input voltage input to the analog input pins (ANI0 to ANI7) and A/D conversion results (ADCR register).

$$SAR = INT (\frac{V_{IN}}{AV_{REF0}} \times 1024 + 0.5)$$
$$ADCR^{Note} = SAR \times 64$$


Or,

$$(SAR - 0.5) \times \frac{AV_{REF0}}{1024} \le V_{IN} < (SAR + 0.5) \times \frac{AV_{REF0}}{1024}$$

INT ():	Function that returns the integer part of the value in parentheses
VIN:	Analog input voltage
AVREF0:	Voltage of AVREF0 pin
ADCR:	Value in the ADCR register

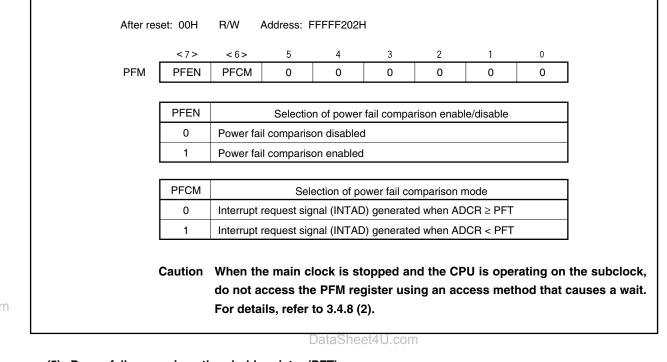
Note The lower 6 bits of the ADCR register are fixed to 0.

The following shows the relationship between the analog input voltage and A/D conversion results.

Figure 13-3. Relationship Between Analog Input Voltage and A/D Conversion Results

DataSheet4U.com

www.DataSheet4U.com

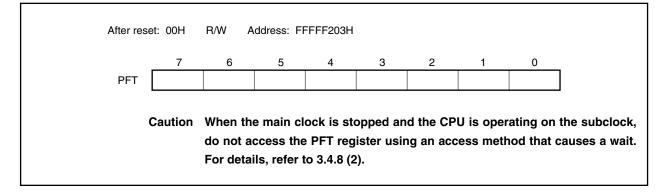

(4) Power fail comparison mode register (PFM)

This register sets the power fail detection mode.

The PFM register compares the value in the PFT register with the value of the ADCRH register.

The PFM register can be read or written in 8-bit or 1-bit units.

After reset, PFM is cleared to 00H.


(5) Power fail comparison threshold register (PFT)

The PFT register sets the comparison value in the power fail detection mode.

The 8-bit data set in the PFT register is compared with the value of the ADCRH register.

The PFT register can be read or written in 8-bit units.

After reset, PFT is cleared to 00H.

DataSheet4U.com

13.5 Operation

13.5.1 Basic operation

- <1> Select the channel whose analog signal is to be converted into a digital signal using the ADS register. Set the ADM.ADHS1 or ADM.ADHS0 bit.
- <2> Set the ADM.ADCS2 bit to 1 and wait 1 or 14 μ s or longer.
- <3> Set the ADM.ADCS bit to 1 to start A/D conversion. (Steps <4> to <10> are executed by hardware.)
- <4> The sample & hold circuit samples the voltage input to the selected analog input channel.
- <5> After sampling for a specific time, the sample & hold circuit enters the hold status and holds the input analog voltage until it has been converted into a digital signal.
- <6> Set bit 9 of the successive approximation register (SAR) to 1. The tap selector sets the voltage tap of the series resistor string to (1/2) × AV_{REF0}.
- <7> The voltage comparator compares the voltage difference between the voltage tap of the series resistor string and the analog input voltage. If the analog input voltage is greater than (1/2) × AV_{REF0}, the MSB of the SAR register remains set to 1. If the analog input voltage is less than (1/2) × AV_{REF0}, the MSB is cleared to 0.

- <8> Next, bit 8 of the SAR register is automatically set to 1 and the next comparison starts. Depending on the previously determined value of bit 9, the voltage tap of the series resistor string is selected as follows.
 - Bit 9 = 1: (3/4) × AVREF0
 - Bit 9 = 0: (1/4) × AVREF0

The analog input voltage is compared with one of these voltage taps and bit 8 of the SAR register is manipulated as follows depending on the result of the comparison.

Analog input voltage \geq voltage tap: Bit 8 = 1

Analog input voltage \leq voltage tap: Bit 8 = 0

<9> The above steps are repeated until bit 0 of the SAR register has been manipulated.

- <10> When comparison of all 10 bits of the SAR register has been completed, the valid digital value remains in the SAR register, and the value of the SAR register is transferred and latched to the ADCR register. At the same time, an A/D conversion end interrupt request signal (INTAD) is generated.
- <11> Repeat steps <4> to <10> until the ADCS bit is cleared to 0.

For another A/D conversion, start at <3>. However, when operating the A/D converter with the ADCS2 bit cleared to 0, start at <2>.

351

13.5.2 Trigger modes

The V850ES/KE1+ has the following three trigger modes that set the A/D conversion start timing. These trigger modes are set by the ADS register.

- Software trigger mode
- External trigger mode (hardware trigger mode)
- Timer trigger mode (hardware trigger mode)

(1) Software trigger mode

This mode is used to start A/D conversion by setting the ADM.ADCS bit to 1 while the ADS.TRG bit is 0. Conversion is repeatedly performed as long as the ADCS bit is not cleared to 0 after completion of A/D conversion.

If the ADM, ADS, PFM, or PFT register is written during conversion, A/D conversion is aborted and started again from the beginning.

(2) External trigger mode (hardware trigger mode)

This is the status in which the ADS.TRG bit is set to 1 and ADS.ADTMD bit is cleared to 0. This mode is used to start A/D conversion by detecting an external trigger (ADTRG) after the ADCS bit has been set to 1.

The A/D converter waits for the external trigger (ADTRG) after the ADCS bit is set to 1.

The valid edge of the signal input to the ADTRG pin is specified by using the ADS.EGA1 and ADS.EGA0 bits. When the specified valid edge is detected, A/D conversion is started.

When A/D conversion is completed, the A/D converter waits for the external trigger (ADTRG) again.

If a valid edge is input to the ADTRG pin during A/D conversion, A/D conversion is aborted and started again from the beginning.

If the ADM, ADS, PFM, or PFT register is written during conversion, A/D conversion is aborted and the A/D converter waits for an external trigger (ADTRG).

(3) Timer trigger mode (hardware trigger mode)

This mode is used to start A/D conversion by detecting a timer trigger (INTTM010) after the ADCS bit has been set to 1 with the TGR bit = 1 and ADTMD bit = 1.

The A/D converter waits for the timer trigger (INTTM010) after the ADCS bit is set to 1.

When the INTTM010 signal is generated, A/D conversion is started.

When A/D conversion is completed, the A/D converter waits for the timer trigger (INTTM010) again.

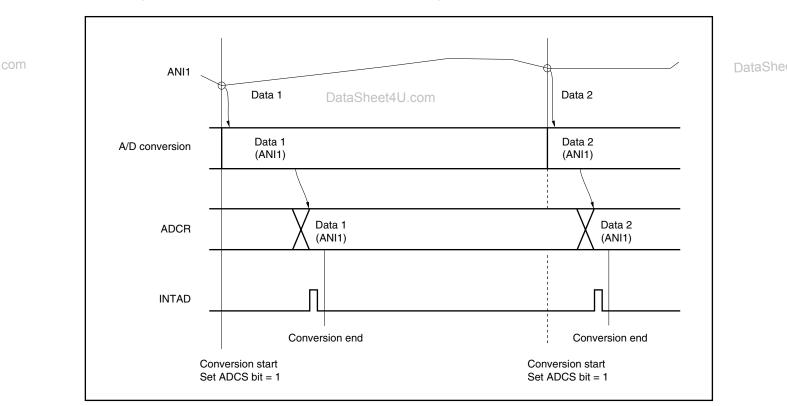
If the INTTM010 signal is generated during A/D conversion, A/D conversion is aborted and started again from the beginning.

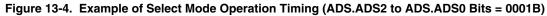
If the ADM, ADS, PFM, or PFT register is written during conversion, A/D conversion is aborted and the A/D converter waits for a timer trigger (INTTM010).

13.5.3 Operation modes

The following two operation modes are available. These operation modes are set by the ADM register.

- · Select mode
- Scan mode


(1) Select mode


One input analog signal specified by the ADS register while the ADM.ADMD bit = 0 is converted. When conversion is complete, the result of conversion is stored in the ADCR register.

At the same time, the A/D conversion end interrupt request signal (INTAD) is generated. However, the INTAD signal may or may not be generated depending on setting of the PFM and PFT registers. For details, refer to **13.5.4 Power fail detection function**.

If anything is written to the ADM, ADS, PFM, and PFT registers during conversion, A/D conversion is aborted. In the software trigger mode, A/D conversion is started from the beginning again. In the hardware trigger mode, the A/D converter waits for a trigger.

If the trigger is detected during conversion in hardware trigger mode, A/D conversion is aborted and started again from the beginning.

(2) Scan mode

In this mode, the analog signals specified by the ADS register and input from the ANI0 pin while the ADM.ADMD bit = 1 are sequentially selected and converted.

When conversion of one analog input signal is complete, the conversion result is stored in the ADCR register and, at the same time, the A/D conversion end interrupt request signal (INTAD) is generated.

The A/D conversion results of all the analog input signals are stored in the ADCR register. It is therefore recommended to save the contents of the ADCR register to RAM once A/D conversion of one analog input signal has been completed.

In the hardware trigger mode (ADS.TRG bit = 1), the A/D converter waits for a trigger after it has completed A/D conversion of the analog signals specified by the ADS register and input from the ANI0 pin.

If anything is written to the ADM, ADS, PFM, and PFT registers during conversion, A/D conversion is aborted. In the software trigger mode, A/D conversion is started from the beginning again. In the hardware trigger mode, the A/D converter waits for a trigger. Conversion starts again from the ANI0 pin.

If the trigger is detected during conversion in hardware trigger mode, A/D conversion is aborted and started again from the beginning (ANI0 pin).

et4U.com

DataSheet4U.com

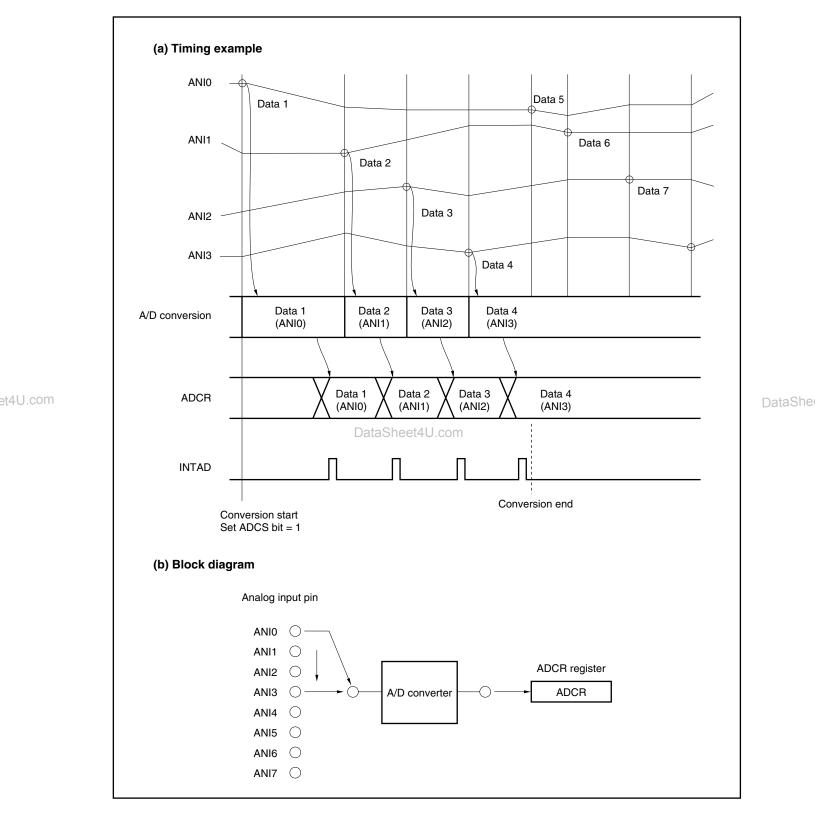
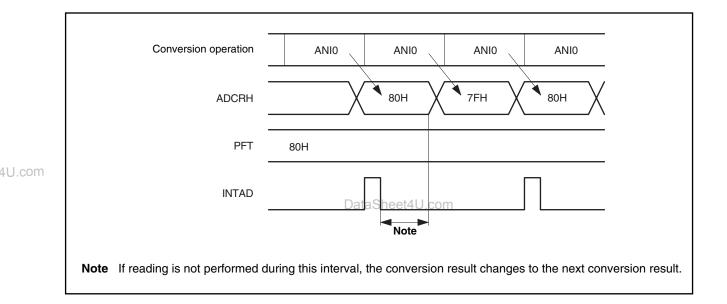


Figure 13-5. Example of Scan Mode Operation Timing (ADS.ADS2 to ADS.ADS0 Bits = 0011B)


DataSheet4U.com

www.DataSheet4U.com

13.5.4 Power fail detection function

The conversion end interrupt request signal (INTAD) can be controlled as follows using the PFM and PFT registers.

- If the PFM.PFEN bit = 0, the INTAD signal is generated each time conversion ends.
- If the PFEN bit = 1 and the PFM.PFCM bit = 0, the conversion result (ADCRH register) and the value of the PFT register are compared when conversion ends, and the INTAD signal is generated only if ADCRH ≥ PFT.
- If the PFEN and PFCM bits = 1, the conversion result and the value of the PFT register are compared when conversion ends, and the INTAD signal is generated only if ADCRH < PFT.
- Because, when the PFEN bit = 1, the conversion result is overwritten after the INTAD signal has been generated, unless the conversion result is read by the time the next conversion ends, in some cases it may appear as if the actual operation differs from the operation described above (refer to **Figure 13-6**).

Figure 13-6. Power Fail Detection Function (PFCM Bit = 0)

DataShe

DataSheet4U.com

13.5.5 Setting method

The following describes how to set registers.

(1) When using the A/D converter for A/D conversion

- <1> Set (1) the ADM.ADCS2 bit.
- <2> Select the channel and conversion time by setting the ADS.ADS2 to ADS.ADS0 bits and the ADM.ADHS1, ADM.ADHS0, and ADM.FR2 to ADM.FR0 bits.
- <3> Set (1) the ADM.ADCS bit.
- <4> Transfer the A/D conversion data to the ADCR register.
- <5> An interrupt request signal (INTAD) is generated.

<Changing the channel>

- <6> Change the channel by setting the ADS2 to ADS0 bits.
- <7> Transfer the A/D conversion data to the ADCR register.
- <8> The INTAD signal is generated.
- <Ending A/D conversion>
 - <9> Clear (0) the ADCS bit.
 - <10> Clear (0) the ADCS2 bit.

Cautions 1. The time taken from <1> to <3> must be 1 or 14 μ s or longer.

- 2. Steps <1> and <2> may be reversed.
- 3. Step <1> may be omitted. However, if omitted, do not use the first conversion result after <3>.
- The time taken from <4> to <7> is different from the conversion time set by the ADHS1, ADHS0, and FR2 to FR0 bits.

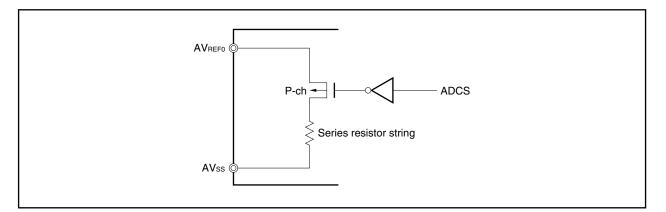
DataShe

The time taken for <6> and <7> is the conversion time set by the ADHS1, ADHS0, and FR2 to FR0 bits.

(2) When using the A/D converter for the power fail detection function

- <1> Set (1) the PFM.PFEN bit.
- <2> Set the power fail comparison conditions by using the PFM.PFCM bit.
- <3> Set (1) the ADM.ADCS2 bit.
- <4> Select the channel and conversion time by setting the ADS.ADS2 to ADS.ADS0 bits and the ADM.ADHS1, ADM.ADHS0, and ADM.FR2 to ADM.FR0 bits.
- <5> Set the threshold value in the PFT register.
- <6> Set (1) the ADM.ADCS bit.
- <7> Transfer the A/D conversion data to the ADCR register.
- <8> Compare the ADCRH register with the PFT register. An interrupt request signal (INTAD) is generated when the conditions match.
- <Changing the channel>
 - <9> Change the channel by setting the ADS2 to ADS0 bits.
 - <10> Transfer the A/D conversion data to the ADCR register.
 - <11> The ADCRH register is compared with the PFT register. When the conditions match, an INTAD signal is generated.
- <Ending A/D conversion>
 - <12> Clear (0) the ADCS bit.
 - <13> Clear (0) the ADCS2 bit.
- Remark If the operation of the power fail detection function is enabled, all the A/D conversion results are compared, regardless of whether the select mode or scan mode is set.

S1, DataS


13.6 Cautions

(1) Power consumption in standby mode

The operation of the A/D converter stops in the standby mode. At this time, the power consumption can be reduced by stopping the conversion operation (the ADM.ADCS bit = 0).

Figure 13-7 shows an example of how to reduce the power consumption in the standby mode.

Figure 13-7. Example of How to Reduce Power Consumption in Standby Mode

(2) Input range of ANI0 to ANI7 pins

Use the A/D converter with the ANI0 to ANI7 pin input voltages within the specified range. If a voltage of AV_{REF0} or higher or AV_{SS} or lower (even if within the absolute maximum ratings) is input to these pins, the conversion value of the channel is undefined. DAIso, this may affect the conversion value of other channels.

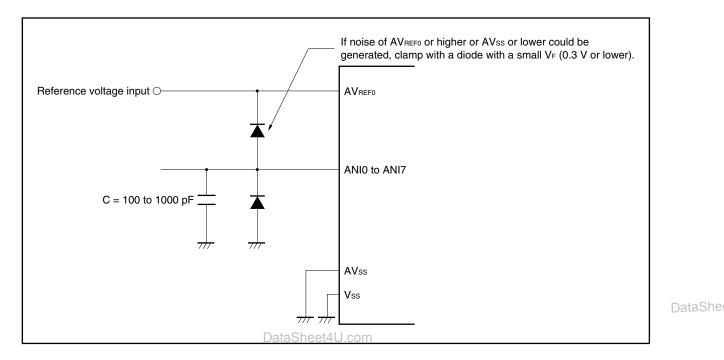
DataShe

www.DataSheet4U.com

(3) Conflicting operations

(a) Conflict between writing to the ADCR register and reading from ADCR register upon the end of conversion

Reading the ADCR register takes precedence. After the register has been read, a new conversion result is written to the ADCR register.


(b) Conflict between writing to the ADCR register and writing to the ADM register or writing to the ADS register upon the end of conversion

Writing to the ADM register or ADS register takes precedence. The ADCR register is not written, and neither is the conversion end interrupt request signal (INTAD) generated.

DataSheet4U.com

(4) Measures against noise

To keep a resolution of 10 bits, be aware of noise on the AVREF0 and ANI0 to ANI7 pins. The higher the output impedance of the analog input source, the greater the effect of noise. Therefore, it is recommended to connect external capacitors as shown in Figure 13-8 to reduce noise.

Figure 13-8. Handling of Analog Input Pins

et4U.com

(5) ANI0/P70 to ANI7/P77 pins

The analog input pins (ANI0 to ANI7) function alternately as input port pins (P70 to P77).

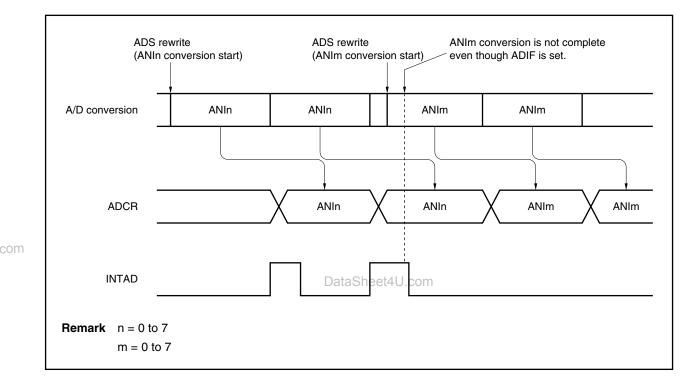
When performing A/D conversion by selecting any of the ANI0 to ANI7 pins, do not execute an input instruction to port 7 during conversion. This may decrease the conversion resolution.

If digital pulses are applied to the pin adjacent to the pin subject to A/D conversion, the value of the A/D conversion may differ from the expected value because of coupling noise. Therefore, do not apply pulses to the pin adjacent to the pin subject to A/D conversion.

(6) Input impedance of AVREFO pin

A series resistor string of tens of $k\Omega$ is connected between the AV_{REF0} pin and AV_{SS} pin.

Therefore, if the output impedance of the reference voltage source is high, this will result in a series connection to the series resistor string between the AV_{REF0} pin and AV_{SS} pin, resulting in a large reference voltage error.


(7) Interrupt request flag (ADIC.ADIF bit)

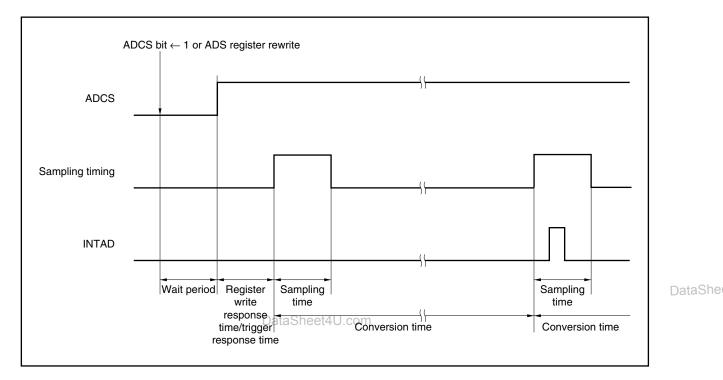
Even when the ADS register is changed, the ADIF bit is not cleared (0).

Therefore, if the analog input pin is changed during A/D conversion, the ADIF bit may be set (1) because A/D conversion of the previous analog input pin ends immediately before the ADS register is rewritten. In a such case, note that if the ADIF bit is read immediately after the ADS register has been rewritten, the ADIF bit is set (1) even though A/D conversion of the analog input pin after the change has not been completed.

When stopping A/D conversion once and resuming it, clear the ADIF bit (0) before resuming A/D conversion.

(8) Conversion results immediately after A/D conversion start

If the ADM.ADCS bit is set to 1 within 1 or 14 μ s after the ADM.ADCS2 bit has been set to 1, or if the ADCS bit is set to 1 with the ADCS2 bit cleared to 0, the converted value immediately after the A/D conversion operation has started may not satisfy the rating. Take appropriate measures such as polling the A/D conversion end interrupt request signal (INTAD) and discarding the first conversion result.


(9) Reading A/D conversion result register (ADCR)

When the ADM or ADS register has been written, the contents of the ADCR register may become undefined. When the conversion operation is complete, read the conversion results before writing to the ADM or ADS register. A correct conversion result may not be able to be read at a timing other than the above. When the CPU is operating on the subclock and main clock oscillation (fx) is stopped, do not read the ADCR register. For details, refer to **3.4.8 (2)**.

(10) A/D converter sampling time and A/D conversion start delay time

The A/D converter sampling time differs depending on the set value of the ADM register. A delay time exists until actual sampling is started after A/D converter operation is enabled.

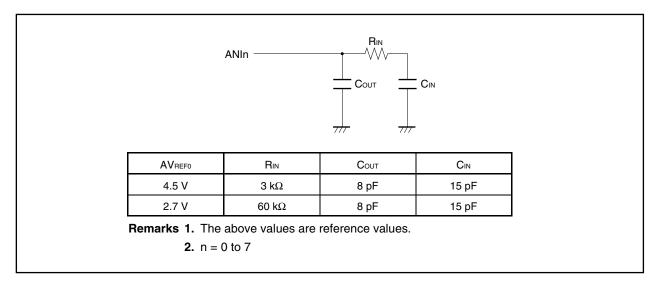
When using a set in which the A/D conversion time must be strictly observed, care is required for the contents shown in Figure 13-10 and Table 13-4.

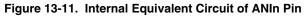
et4U.com

www.DataSheet4U.com

DataSheet4U.com

ADHS1	ADHS0	FR2	FR1	FR0	Conversion Time	Sampling Time		Register Write Response Time ^{Note}		lesponse e ^{∾∞}
							MIN.	MAX.	MIN.	MAX.
0	0	0	0	0	288/fxx	176/fxx	11/fxx	12/fxx	7/fxx	8/fxx
0	0	0	0	1	240/fxx	176/fxx	11/fxx	12/fxx	7/fxx	8/fxx
0	0	0	1	0	192/fxx	132/fxx	10/fxx	11/fxx	6/fxx	7/fxx
0	0	1	0	0	144/fxx	88/fxx	9/fxx	10/fxx	5/fxx	6/fxx
0	0	1	0	1	120/fxx	88/fxx	9/fxx	10/fxx	5/fxx	6/fxx
0	0	1	1	0	96/fxx	48/fxx	11/fxx	12/fxx	7/fxx	8/fxx
0	1	0	0	0	96/fxx	48/fxx	11/fxx	12/fxx	7/fxx	8/fxx
0	1	0	0	1	72/fxx	36/fxx	10/fxx	11/fxx	6/fxx	7/fxx
0	1	0	1	0	48/fxx	24/fxx	9/fxx	10/fxx	5/fxx	6/fxx
0	1	0	1	1	24/fxx	12/fxx	8/fxx	9/fxx	4/fxx	5/fxx
0	1	1	0	0	224/fxx	176/f×x	11/fxx	12/fxx	7/fxx	8/fxx
0	1	1	0	1	168/fxx	132/fxx	10/fxx	11/fxx	6/fxx	7/fxx
0	1	1	1	0	112/fxx	88/fxx	9/fxx	10/fxx	5/fxx	6/fxx
0	1	1	1	1	56/fxx	44/fxx	8/fxx	9/fxx	4/fxx	5/fxx
1	0	0	0	0	72/fxx	24/fxx	11/fxx	12/fxx	7/fxx	8/fxx
1	0	0	0	1	54/fxx	18/fxx	10/fxx	11/fxx	6/fxx	7/fxx
1	0	0	1	0	36/fxx	12/fxx	9/fxx	10/fxx	5/fxx	6/fxx
1	0	0	1	1	18/fxx Da	aSheet4U.cor 6/fxx	∩ 8/fxx	9/fxx	4/fxx	5/fxx
	Other	than ab	ove	•	Setting prohibited	-	_	-	-	-


Table 13-4. A/D Converter Conversion Time


Note Each response time is the time after the wait period. For the wait function, refer to 3.4.8 (2) Access to special on-chip peripheral I/O register.

Remark fxx: Main clock frequency

(11) Internal equivalent circuit

The following shows the equivalent circuit of the analog input block.

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

13.7 How to Read A/D Converter Characteristics Table

Here, special terms unique to the A/D converter are explained.

(1) Resolution

This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per bit of digital output is called 1 LSB (Least Significant Bit). The percentage of 1 LSB with respect to the full scale is expressed by %FSR (Full Scale Range). %FSR indicates the ratio of analog input voltage that can be converted as a percentage, and is always represented by the following formula regardless of the resolution.

- 1 %FSR = (Max. value of analog input voltage that can be converted Min. value of analog input voltage that can be converted)/100
 - $= (AV_{REF0} 0)/100$
 - = AVREF0/100

1 LSB is as follows when the resolution is 10 bits.

 $1 \text{ LSB} = 1/2^{10} = 1/1024$ = 0.098 %FSR


Accuracy has no relation to resolution, but is determined by overall error.

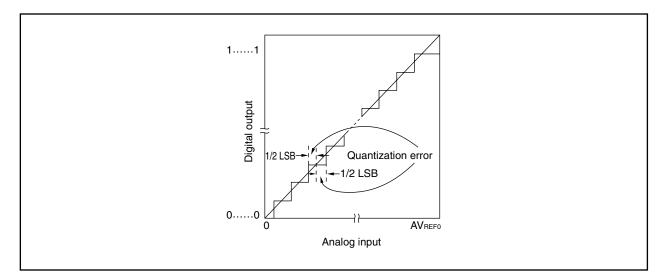
t4U.com

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value. Zero-scale error, full-scale error, linearity error and errors that are combinations of these express the overall error.

Note that the quantization error is not included in the overall error in the characteristics table.

Figure 13-12. Overall Error


DataSheet4U.com

(3) Quantization error

When analog values are converted to digital values, a $\pm 1/2$ LSB error naturally occurs. In an A/D converter, an analog input voltage in a range of $\pm 1/2$ LSB is converted to the same digital code, so a quantization error cannot be avoided.

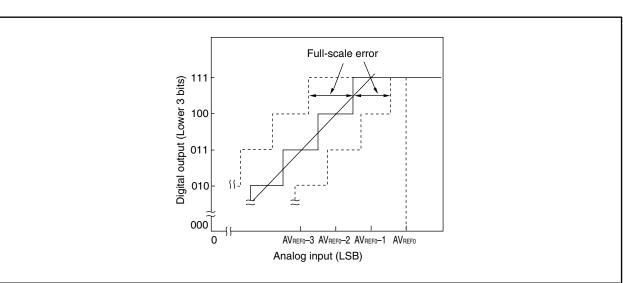
Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, and differential linearity error in the characteristics table.

Figure 13-13. Quantization Error


DataShee

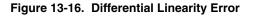
(4) Zero-scale error

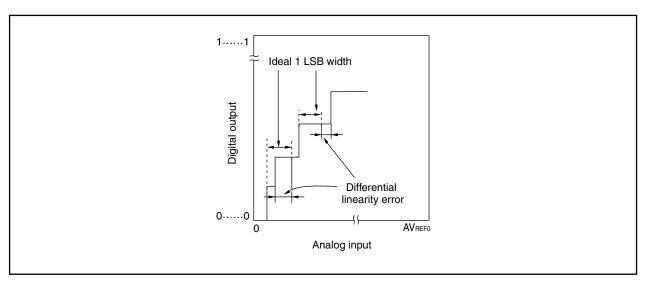
DataSheet4U.com


This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (1/2 LSB) when the digital output changes from 0.....000 to 0.....001.

(5) Full-scale error

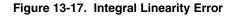
This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (full scale -3/2 LSB) when the digital output changes from 1.....110 to 1.....111.

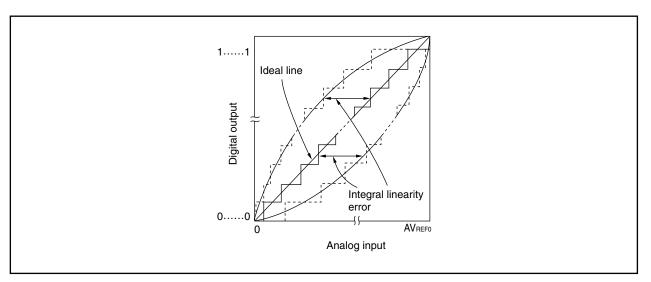

Figure 13-15. Full-Scale Error


(6) Differential linearity error

While the ideal width of code output is 1 LSB, this indicates the difference between the actual measurement value and the ideal value.

DataShe


DataSheet4U.com

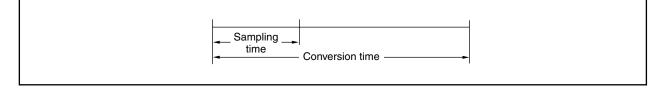


(7) Integral linearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zero-scale error and full-scale error are 0.

(8) Conversion time

This expresses the time from when the analog input voltage was applied to the time when the digital output was obtained. DataSheet4U.com


DataShe

The sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.

Figure 13-18. Sampling Time

CHAPTER 14 ASYNCHRONOUS SERIAL INTERFACE (UART)

In the V850ES/KE1+, two channels of asynchronous serial interface (UART) are provided. Of these channels, UART0 supports LIN-bus.

14.1 Features

- Maximum transfer speed: 312.5 kbps
- Full-duplex communications On-chip RXBn register On-chip TXBn register
- Two-pin configuration^{Note} TXDn: Transmit data output pin RXDn: Receive data input pin
- Reception error detection functions
 - Parity error
 - Framing error
 - Overrun error
- Interrupt sources: 3 types
 - Reception error interrupt request signal (INTSREn):

• Reception completion interrupt request signal (INTSRn):

• Transmission completion interrupt request signal (INTSTn):

OR of the three types of reception errors Interrupt is generated when receive data is transferred from the receive shift register to DataSheet4U.com the RXBn register after serial transfer is completed during a reception enabled state Interrupt is generated when the serial transmission of transmit data (8 or 7 bits) from

the transmit shift register is completed

Interrupt is generated according to the logical

- Character length: 7 or 8 bits
- · Parity functions: Odd, even, 0, or none
- Transmission stop bits: 1 or 2 bits
- MSB-first or LSB-first transfer of data selectable (UART0 only)
- Transmit data output level inversion function (UART0 only)
- 13 to 20 bits selectable for Sync Break Field transmission (UART0 only)
- 11 bits or more identifiable for Sync Break Field reception (SBF reception flag (UART0 only))
- On-chip dedicated baud rate generator

Note The ASCK0 pin (external clock input) is available only for UART0.

Remark n = 0, 1

14.2 Configuration

Table 14-1. Configuration of UARTn

Item	Configuration
Registers	Receive buffer register n (RXBn) Transmit buffer register n (TXBn) Receive shift register Transmit shift register Asynchronous serial interface mode register n (ASIMn) Asynchronous serial interface status register n (ASISn) Asynchronous serial interface transmit status register n (ASIFn) LIN operation control register 0 (ASICL0)
Other	Reception control parity check Addition of transmission control parity

Remark n = 0, 1

Figure 14-1 shows the configuration of UARTn.

(1) Asynchronous serial interface mode register n (ASIMn)

The ASIMn register is an 8-bit register for specifying the operation of UARTn.

(2) Asynchronous serial interface status register n (ASISn)

The ASISn register consists of a set of flags that indicate the error contents when a reception error occurs. The various reception error flags are set (1) when a reception error occurs and are cleared (0) when the ASISn register is read.

DataShee

(3) Asynchronous serial interface transmit status register n (ASIFn)

The ASIFn register is an 8-bit register that indicates the status when a transmit operation is performed. This register consists of a transmit buffer data flag, which indicates the hold status of the TXBn register data, and the transmit shift register data flag, which indicates whether transmission is in progress.

(4) LIN operation control register 0 (ASICL0)

The ASICL0 register is an 8-bit register that controls the output format for SBF transmission/reception and transmission.

The ASICL0 register can be used only with UART0.

(5) Reception control parity check

The receive operation is controlled according to the contents set in the ASIMn register. A check for parity errors is also performed during a receive operation, and if an error is detected, a value corresponding to the error contents is set in the ASISn register.

(6) Receive shift register

This is a shift register that converts the serial data that was input to the RXDn pin to parallel data. One byte of data is received, and if a stop bit is detected, the receive data is transferred to the RXBn register. This register cannot be directly manipulated.

(7) Receive buffer register n (RXBn)

The RXBn register is an 8-bit buffer register for holding receive data. When 7 characters are received, 0 is stored in the MSB.

During a reception enabled state, receive data is transferred from the receive shift register to the RXBn register, synchronized with the end of the shift-in processing of one frame.

Also, the reception completion interrupt request signal (INTSRn) is generated by the transfer of data to the RXBn register.

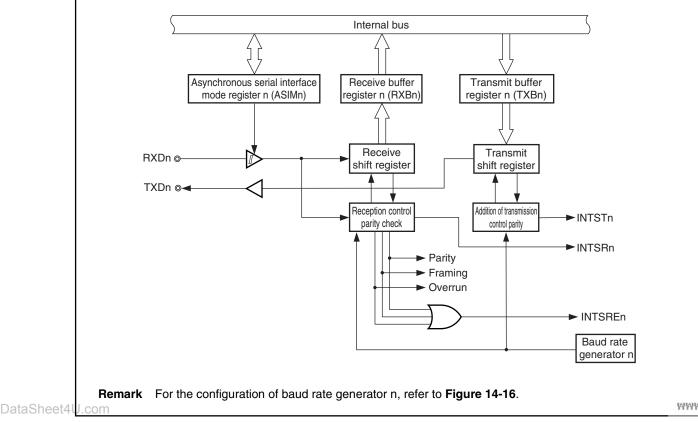
(8) Transmit shift register

This is a shift register that converts the parallel data that was transferred from the TXBn register to serial data. When one byte of data is transferred from the TXBn register, the shift register data is output from the TXDn pin.

The transmission completion interrupt request signal (INTSTn) is generated synchronized with the completion of transmission of one frame.

This register cannot be directly manipulated.

(9) Transmit buffer register n (TXBn)


The TXBn register is an 8-bit buffer for transmit data. A transmit operation is started by writing transmit data to the TXBn register.

(10) Addition of transmission control parity

et4U.com

A transmit operation is controlled by adding a start bit, parity bit, or stop bit to the data that is written to the TXBn register, according to the contents that were set in the ASIMn register.

DataShe

Figure 14-1. Block Diagram of UARTn

www.DataSheet4U.com

14.3 Registers

(1) Asynchronous serial interface mode register n (ASIMn)

The ASIMn register is an 8-bit register that controls the UARTn transfer operation. This register can be read or written in 8-bit or 1-bit units. After reset, ASIMn is set to 01H.

- Cautions 1. When using UARTn, be sure to set the external pins related to UARTn functions to the control mode before setting the CKSRn and BRGCn registers, and then set the UARTEn bit to 1. Then set the other bits.
 - 2. Set the UARTEn and RXEn bits to 1 while a high level is input to the RXDn pin. If these bits are set to 1 while a low level is input to the RXDn pin, reception will be started.

		<7>	<6>	<5>	4	3	2	1	0		ſ
	ASIMn	UARTEn	TXEn	RXEn	PSn1	PSn0	CLn	SLn	ISRMn	7	ĺ
	(n = 0, 1)	L1			1		1	1	1	-	
UARTEn	Control of operating clock]
0	Stop clock supply to UARTn.								-		
1	Supply cl	ock to UAR	Tn.								
 If the L 	JARTEn bit	is cleared t	o 0, UART	n is async	hronously r	eset ^{Note} .					1
e If the I	the UARTEn bit is cleared to 0, UARTn is asynchronously reset ^{™te} . the UARTEn bit = 0, UARTn is reset. To operate UARTn, first set the UARTEn bit to 1.									ſ	
 If the l 	UARTEn bi	t = 0, UART it is cleared re-set the re	from 1 to	0, all the					the UART	En bit to 1	
 If the lagain, 	UARTEn bi be sure to	t is cleared	from 1 to gisters of	0, all the UARTn.	registers of	UARTn a	re initialize	d. To set			
 If the lagain, 	UARTEn bi be sure to	it is cleared re-set the re	from 1 to gisters of	0, all the UARTn. en transmis	registers of	UARTn a	re initialize rdless of th	d. To set]
 If the lagain, The outp 	UARTEn bi be sure to ut of the T	it is cleared re-set the re	from 1 to egisters of s high whe	0, all the UARTn. en transmis	registers of	UARTn a	re initialize rdless of th	d. To set			
 If the lagain, The outp TXEn 	UARTEn bi be sure to ut of the T) Disable to	it is cleared re-set the re KDn pin goe	from 1 to egisters of s high whe	0, all the UARTn. en transmis	registers of	UARTn a	re initialize rdless of th	d. To set			

et4U.com

DataSheet4U.com

CHAPTER 14 ASYNCHRONOUS SERIAL INTERFACE (UART)

(2/2)

RXEn		Receptio	on enable/disable			
0	Disable r	reception ^{Note}				
1	Enable r	eception				
RXEn I • To initi set (1)	oit to 0 to s alize the r the RXEn	stop. eception unit status, clear (0) the RXEn	at startup. Clear the UARTEn bit to 0 after clearing the bit, and after letting 2 Clock cycles (base clock) elapse, in, initialization may not be successful. (For details about			
PSn1	PSn0	Transmit operation	Receive operation			
0	0	Don't output parity bit	Receive with no parity			
0	1	Output 0 parity	Receive as 0 parity			
1	0	Output odd parity	Judge as odd parity			
1	1	Output even parity	Judge as even parity			
-		PSn1 and PSn0 bits, first clear (0) the T	0 1 1			
becau	se the AS	ISn.PEn bit is not set.				
CLn		Specification of character len	gth of 1 frame of transmit/receive data			
0	7 bits					
1	8 bits					
 To over 	erwrite the	CLn bit, first clear (0) the TXEn and RX	En bitsU.com			
SLn		Specification of sto	p bit length of transmit data			
0	1 bit					
1	2 bits					
		SLn bit, first clear (0) the TXEn bit. is always done with a stop bit length of 1	, the SLn bit setting does not affect receive operations.			
ISRMn	Enab	le/disable of generation of reception con	npletion interrupt request signals when an error occurs			
0		e a reception error interrupt request signates, no reception completion interrupt rec	al (INTSREn) as an interrupt when an error occurs. quest signal (INTSRn) is generated.			
 Generate a reception completion interrupt request signal (INTSRn) as an interrupt when an error In this case, no reception error interrupt request signal (INTSREn) is generated. 						
 To over 	erwrite the	ISRMn bit, first clear (0) the RXEn bit.				
pro reg W	ocessing gister are hen rece	or transfer processing to the RXBn retained. ption is enabled, the receive shift op	t register does not detect a start bit. No shift-i register is performed, and the contents of the RXB eration starts, synchronized with the detection of th ne is completed, the contents of the receive shi			

et4U.com

DataShe

www.DataSheet4U.com

DataSheet4U.com

(2) Asynchronous serial interface status register n (ASISn)

The ASISn register, which consists of 3 error flag bits (PEn, FEn, and OVEn), indicates the error status when UARTn reception is complete.

The ASISn register is cleared to 00H by a read operation. When a reception error occurs, the RXBn register should be read and the error flag should be cleared after the ASISn register is read.

This register is read-only in 8-bit units.

After reset, ASISn is cleared to 00H.

Cautions 1. When the ASIMn.UARTEn bit or ASIMn.RXEn bit is cleared to 0, or when the ASISn register is read, the PEn, FEn, and OVEn bits are cleared (0).

- 2. Operation using a bit manipulation instruction is prohibited.
- When the main clock is stopped and the CPU is operating on the subclock, do not access the ASISn register using an access method that causes a wait. For details, refer to 3.4.8 (2).

		7	6	5	4	3	2	1	0	
	ASISn	0	0	0	0	0	PEn	FEn	OVEn	
	(n = 0, 1)									
PEn	Status flag indicating a parity error									
0	When the	UARTEn	or RXEn bi	t is cleared	to 0, or af	ter the ASI	Sn register	has been	read	
1	When rec	eption was	s completed	d, the receiv	ve data pa	rity did not	match the p	parity bit		
	peration of the	he PEn bit	differs acc	0	Ū			d ASIMn.I	PSn0 bits.	
		he PEn bit	differs acc	0	Ū			d ASIMn.I	PSn0 bits.	
• The op FEn 0	Deration of th			0	s flag indica	ating framir	ng error			
FEn	When the	UARTEn	or RXEn bi	Status	s flag indication of the flag indication of t	ating framir ter the ASIS	ng error			
FEn 0 1	When the	UARTEn o	or RXEn bi s completed	Status t is cleared d, no stop b	s flag indica to 0, or aff bit was dete	ating framir ter the ASIS ected	ng error Sn register	has been		
FEn 0 1	When rec	UARTEn o	or RXEn bi s completed	Status t is cleared d, no stop b	s flag indica to 0, or aff bit was dete	ating framir ter the ASIS ected	ng error Sn register	has been		
FEn 0 1	When rec	UARTEn o	or RXEn bi s completed	Status t is cleared d, no stop b bit is check	s flag indica to 0, or aff bit was dete ked regardl	ating framir ter the ASIS ected	ng error Sn register stop bit lenç	has been		
FEn 0 1 • For rec	When the When rec	UARTEn of the test of	or RXEn bi completed aly the first	Status t is cleared d, no stop b bit is check	s flag indica to 0, or aff bit was dete ked regardl	ating framir ter the ASIS ected ess of the s ing an over	ng error Sn register stop bit leng run error	has been gth.	read	

DataShe

(3) Asynchronous serial interface transmit status register n (ASIFn)

The ASIFn register, which consists of 2 status flag bits, indicates the status during transmission.

By writing the next data to the TXBn register after data is transferred from the TXBn register to the transmit shift register, transmit operations can be performed continuously without suspension even during an interrupt interval. When transmission is performed continuously, data should be written after referencing the TXBFn bit to prevent writing to the TXBn register by mistake.

This register is read-only in 8-bit or 1-bit units.

After reset, ASIFn is cleared to 00H.

	_	7	6	5	4	3	2	<1>	<0>	_
	ASIFn	0	0	0	0	0	0	TXBFn	TXSFn	
	(n = 0, 1)									-
TXBFn		Transmission buffer data flag								
0		Data to be transferred next to TXBn register does not exist (When the ASIMn.UARTEn or ASIMn.TXEn bit is cleared to 0, or when data has been transferred to the transmission shift register)								
1	Data to be transferred next exists in TXBn register (Data exists in TXBn register when the TXBn register has been written to) n transmission is performed continuously, data should be written to the TXBn register after confirming that this is 0. If writing to TXBn register is performed when this flag is 1, transmit data cannot be guaranteed.									
				-				-		-
		to TXBn r	egister is p	erformed w	hen this fla	ig is 1, tran	ismit data	-	uaranteed.	-
flag is	0. If writing	to TXBn ro Trans us or a wa	egister is p smit shift re aiting trans	erformed w egister data mission (W	hen this fla flag (indica hen the U	ig is 1, tran ates the tra ARTEn or	ismit data Insmission TXEn bit i	cannot be g	ARTn)	_

DataShe

www.DataSheet4U.com

(4) Receive buffer register n (RXBn)

The RXBn register is an 8-bit buffer register for storing parallel data that had been converted by the receive shift register.

When reception is enabled (ASIMn.RXEn bit = 1), receive data is transferred from the receive shift register to the RXBn register, synchronized with the completion of the shift-in processing of one frame. Also, a reception completion interrupt request signal (INTSRn) is generated by the transfer to the RXBn register. For information about the timing for generating this interrupt request, refer to **14.5.4 Receive operation**.

If reception is disabled (ASIMn.RXEn bit = 0), the contents of the RXBn register are retained, and no processing is performed for transferring data to the RXBn register even when the shift-in processing of one frame is completed. Also, the INTSRn signal is not generated.

When 7 bits is specified for the data length, bits 6 to 0 of the RXBn register are transferred for the receive data and the MSB (bit 7) is always 0. However, if an overrun error (ASISn.OVEn bit = 1) occurs, the receive data at that time is not transferred to the RXBn register.

The RXBn register becomes FFH when a reset is input or ASIMn.UARTEn bit = 0. This register is read-only in 8-bit units.

After res	set: FFH	R A	ddress: R	XB0 FFFF	FA02H, RX	(B1 FFFF	A12H	
	7	6	5	4	3	2	1	0
RXBn	RXBn7	RXBn6	RXBn5	RXBn4	RXBn3	RXBn2	RXBn1	RXBn0
(n = 0, 1)								

et4U.com

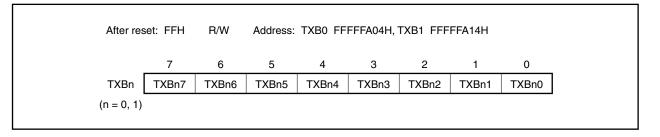
DataSheet4U.com

www.DataSheet4U.com

(5) Transmit buffer register n (TXBn)

The TXBn register is an 8-bit buffer register for setting transmit data.

When transmission is enabled (ASIMn.TXEn bit = 1), the transmit operation is started by writing data to TXBn register.


When transmission is disabled (TXEn bit = 0), even if data is written to the TXBn register, the value is ignored. The TXBn register data is transferred to the transmit shift register, and a transmission completion interrupt request signal (INTSTn) is generated, synchronized with the completion of the transmission of one frame from the transmit shift register. For information about the timing for generating this interrupt request, refer to the transmit shift register.

14.5.2 Transmit operation.

When the ASIFn.TXBFn bit = 1, writing must not be performed to the TXBn register.

This register can be read or written in 8-bit units.

After reset, TXBn is set to FFH.

et4U.com

DataShe

DataSheet4U.com

(6) LIN operation control register 0 (ASICL0)

The ASICL0 register is an 8-bit register that controls the output format for SBF transmission/reception and transmission.

This register can be read or written in 8-bit or 1-bit units.

After reset, ASICL0 is set to 16H.

	<7>	<6>	5	4	3	2	<1>	0
SICL0	SBRF0 ^{Note}	SBRT0	SBTT0	SBL02	SBL01	SBL00	UDIR0	TXDLV0
	SBRF0 ^{Note}			SBF ree	ception sta	tus flag		
	0		UARTE0 bi		SIM0.RXE	0 bit = 0 or	if SBF rec	eption has
	1		ption in pro	-				
	SBRT0			SBF re	ception trig	ger		
	0				_			
	1	Receptior	n trigger					
	SBTT0			SBF tran	smission tr	igger		
	0		DataSh	eet4U.co		.990.		
	1	Transmis	sion trigger					
	SBL02	SBL01	SBL00	SB	F transmiss	sion output	width cont	rol
	1	0	1	SBF is o	utput with	13-bit lengt	th (default)	
	1	1	0	SBF is o	utput with	14-bit lengt	th	
	1	1	1	SBF is o	utput with	15-bit lengt	th	
	0	0	0		utput with			
	0	0	1		utput with			
	0	1	0	SBF is o	utput with	18-bit lengt	th	
	0	1	1		utput with			
	1	0	0	SBF is o	utput with 2	20-bit lengt	th	
	UDIR0			First-bi	t specificat	ion		
	0	MSB						
	1	LSB						
	TXDLV0		Enable	es/disables	inverting T	XD0 pin o	utput	
	0	Normal or	utput of TX	D0 pin				
	1	Inverted o	output of TX	(D0 nin				

Caution The ASICL0 register is valid only for UART0. UART1 does not support this register.

Note The SBRF0 bit is read-only.

(7) Selector operation control register 0 (SELCNT0)

The SELCNT0 register is an 8-bit register that selects the TM01 capture trigger.

If SELCNT0.ISEL00 is set to 1 (RXD0 pin is selected) when LIN is used, the transfer rate for calculating the baud rate error can be checked using TM01.

This register can be read or written in 8-bit or 1-bit units.

After reset, SELCNT0 is cleared to 00H.

After res	set: 00H	R/W	Address:	FFFFF308	ЗH			
	7	6	5	4	3	2	1	0
SELCNT0	0	0	0	0	0	0	0	ISEL00
	ISEL00		Selecti	on of TM0 ⁻	1 capture tr	igger (TM0	10)	
	0	Select TI	010 (P35) p	oin				
	1	Select R	KD0 (P31) p	pin				
			010 (P35) p	bin	i capture tr	igger (1M0	10)	

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

14.4 Interrupt Request Signals

The following three types of interrupt request signals are generated from UARTn.

- Reception error interrupt request signal (INTSREn)
- Reception completion interrupt request signal (INTSRn)
- Transmission completion interrupt request signal (INTSTn)

The default priorities among these three types of interrupt request signals are, from high to low, reception error interrupt, reception completion interrupt, and transmission completion interrupt.

Table 14-2. Generated Interrupt Request Signals and Default Priorities

Interrupt Request Signal	Priority
Reception error interrupt request signal (INTSREn)	1
Reception completion interrupt request signal (INTSRn)	2
Transmission completion interrupt request signal (INTSTn)	3

(1) Reception error interrupt request signal (INTSREn)

When reception is enabled, the INTSREn signal is generated according to the logical OR of the three types of reception errors explained for the ASISn register. Whether the INTSREn signal or the INTSRn signal is generated when an error occurs can be specified according to the ASIMn.ISRMn bit.

DataShe

When reception is disabled, the INTSREn signal is not generated.

DataSheet4U.com

(2) Reception completion interrupt request signal (INTSRn)

When reception is enabled, the INTSRn signal is generated when data is shifted in to the receive shift register and transferred to the RXBn register.

The INTSRn signal can be generated in place of the INTSREn signal according to the ISRMn bit even when a reception error has occurred.

When reception is disabled, the INTSRn signal is not generated.

(3) Transmission completion interrupt request signal (INTSTn)

The INTSTn signal is generated when one frame of transmit data containing 7-bit or 8-bit characters is shifted out from the transmit shift register.

14.5 Operation

14.5.1 Data format

Full-duplex serial data transmission and reception can be performed.

The transmit/receive data format consists of one data frame containing a start bit, character bits, a parity bit, and stop bits as shown in Figure 14-2.

The character bit length within one data frame, the type of parity, and the stop bit length are specified according to the ASIMn register.

Also, data is transferred LSB first.

Figure 14-2. Format of UARTn Transmit/Receive Data

et4U.com

DataSheet4U.com

14.5.2 Transmit operation

When the ASIMn.UARTEn bit is set to 1, a high level is output from the TXDn pin.

Then, when the ASIMn.TXEn bit is set to 1, transmission is enabled, and the transmit operation is started by writing transmit data to the TXBn register.

(1) Transmission enabled state

This state is set by the TXEn bit.

- TXEn bit = 1: Transmission enabled state
- TXEn bit = 0: Transmission disabled state

Since UARTn does not have a CTS (transmission enabled signal) input pin, a port should be used to confirm whether the destination is in a reception enabled state.

(2) Starting a transmit operation

In the transmission enabled state, a transmit operation is started by writing transmit data to the TXBn register. When a transmit operation is started, the data in the TXBn register is transferred to the transmit shift register. Then, the transmit shift register outputs data to the TXDn pin (the transmit data is transferred sequentially starting with the start bit). The start bit, parity bit, and stop bits are added automatically.

(3) Transmission interrupt

When the transmit shift register becomes empty, a transmission completion interrupt request signal (INTSTn) is generated. The timing for generating the INTSTn signal differs according to the specification of the stop bit length. The INTSTn signal is generated at the same time that the last stop bit is output.

If the data to be transmitted next has not been written to the TXBn register, the transmit operation is suspended.

Caution Normally, when the transmit shift register becomes empty, the INTSTn signal is generated. However, the INTSTn signal is not generated if the transmit shift register becomes empty due to reset.

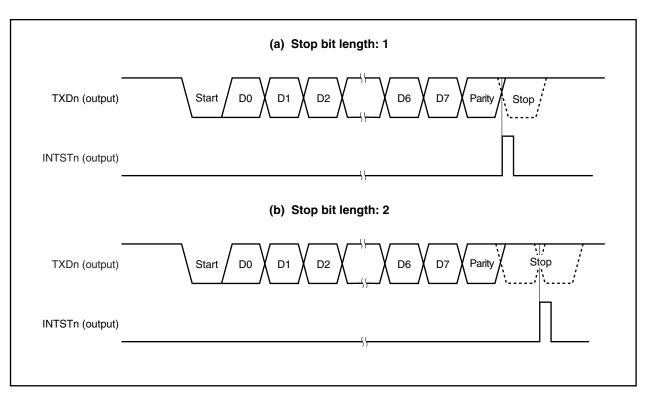


Figure 14-3. UARTn Transmission Completion Interrupt Timing

et4U.com

DataSheet4U.com

DataSheet4U.com

14.5.3 Continuous transmission operation

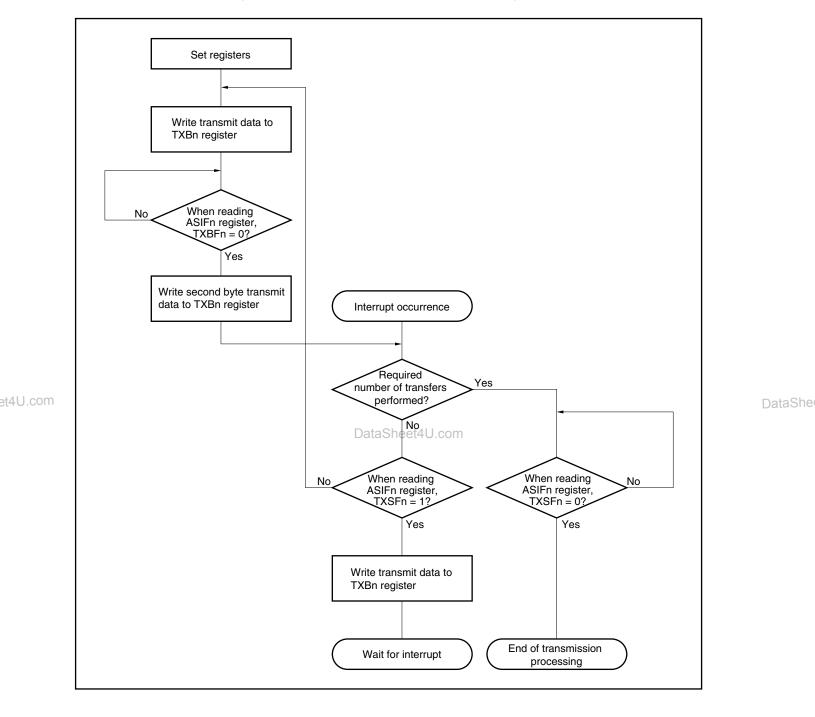
UARTn can write the next transmit data to the TXBn register at the timing that the transmit shift register starts the shift operation. This enables an efficient transmission rate to be realized by continuously transmitting data even during the transmission completion interrupt service after the transmission of one data frame. In addition, reading the ASIFn.TXSFn bit after the occurrence of a transmission completion interrupt request signal (INTSTn) enables the TXBn register to be efficiently written twice (2 bytes) without waiting for the transmission of 1 data frame.

When continuous transmission is performed, data should be written after referencing the ASIFn register to confirm the transmission status and whether or not data can be written to the TXBn register.

Caution The values of the ASIF.TXBFn and ASIF.TXSFn bits change $10 \rightarrow 11 \rightarrow 01$ in continuous transmission.

Therefore, do not confirm the status based on the combination of the TXBFn and TXSFn bits. Read only the TXBFn bit during continuous transmission.

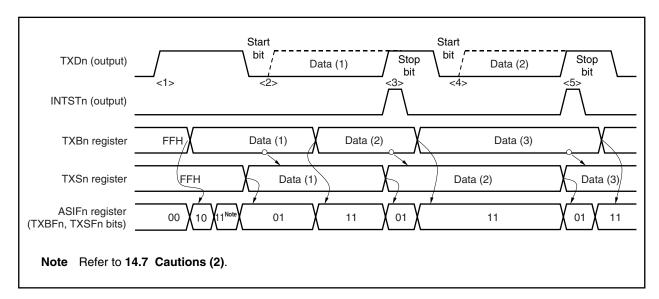
TXBFn	Whether or Not Writing to TXBn Register Is Enabled
0	Writing is enabled
1	Writing is not enabled


Caution When transmission is performed continuously, write the first transmit data (first byte) to the TXBn register and confirm that the TXBFn bit is 0, and then write the next transmit data (second byte) to the TXBn register. If writing to the TXBn register is performed when the TXBFn bit is 1, transmit data cannot be guaranteed.

DataShe

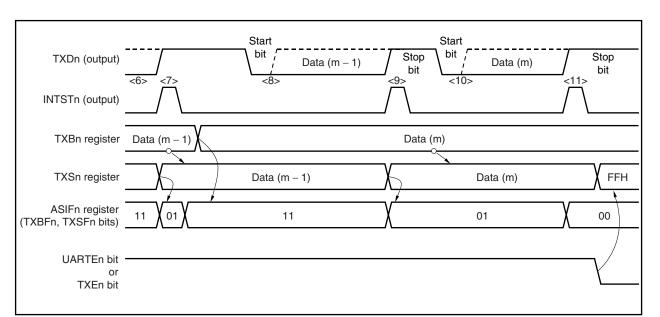
The communication status can be confirmed by referring to the TXSFn bit.

TXSFn	Transmission Status					
0	Transmission is completed.					
1	Under transmission.					


- Cautions 1. When initializing the transmission unit when continuous transmission is completed, confirm that the TXSFn bit is 0 after the occurrence of the transmission completion interrupt, and then execute initialization. If initialization is performed when the TXSFn bit is 1, transmit data cannot be guaranteed.
 - 2. While transmission is being performed continuously, an overrun error may occur if the next transmission is completed before the INTSTn interrupt servicing following the transmission of 1 data frame is executed. An overrun error can be detected by embedding a program that can count the number of transmit data and referencing the TXSFn bit.

(1) Starting procedure

The procedure to start continuous transmission is shown below.


et4U.com

Transmission Starting Procedure	Internal Operation	ASIFn Register	
		TXBFn	TXSFn
Set transmission mode DataS	<pre>cheet4U.com <1> Start transmission unit</pre>	0	0
• Write data (1)	▶	1	0
	<2> Generate start bit	1	1 ^{Note}
		0	1
	Start data (1) transmission	0	1
• Read ASIFn register (confirm that TXBFn bit = 0)		<u>0</u>	1
• Write data (2)	▶	1	1
	< <transmission in="" progress="">></transmission>		
	<3> INTSTn interrupt occurs	0	1
 Read ASIFn register (confirm that TXBFn bit = 0)		<u>0</u>	1
• Write data (3)	▶	1	1
	<4> Generate start bit		
	Start data (2) transmission		
	< <transmission in="" progress="">></transmission>		
	<5> INTSTn interrupt occurs	0	1
• Read ASIFn register (confirm that TXBFn bit = 0) ← -		<u>0</u>	1
• Write data (4)	▶	1	1

Note Refer to 14.7 Cautions (2).

(2) Ending procedure

The procedure for ending continuous transmission is shown below.

et4U.com

Transmission End Procedure	Internal Operation	ASIFn F	Register
Da	taSheet4U.com	TXBFn	TXSFn
	<6> Transmission of data (m – 2) is in progress	1	1
	<7> INTSTn interrupt occurs	0	1
• Read ASIFn register (confirm that TXBFn bit = 0) +		<u>0</u>	1
• Write data (m)		1	1
	<8> Generate start bit		
	Start data (m – 1) transmission		
	< <transmission in="" progress="">></transmission>		
	<9> INTSTn interrupt occurs	0	1
 Read ASIFn register (confirm that TXSFn bit = 1) 		0	<u>1</u>
There is no write data			
	<10> Generate start bit		
	Start data (m) transmission		
	< <transmission in="" progress="">></transmission>		
	<11> Generate INTSTn interrupt	0	0
 Read ASIFn register (confirm that TXSFn bit = 0) < 		0	<u>0</u>
Clear (0) the UARTEn bit or TXEn bit	Initialize internal circuits		

14.5.4 Receive operation

The awaiting reception state is set by setting the ASIMn.UARTEn bit to 1 and then setting the ASIMn.RXEn bit to 1. To start the receive operation, start sampling at the falling edge when the falling of the RXDn pin is detected. If the RXDn pin is low level at a start bit sampling point, the start bit is recognized. When the receive operation begins, serial data is stored sequentially in the receive shift register according to the baud rate that was set. A reception completion interrupt request signal (INTSRn) is generated each time the receiven of one frame of data is completed. Normally, the receive data is transferred from the RXBn register to memory by this interrupt servicing.

(1) Reception enabled state

The receive operation is set to the reception enabled state by setting the RXEn bit to 1.

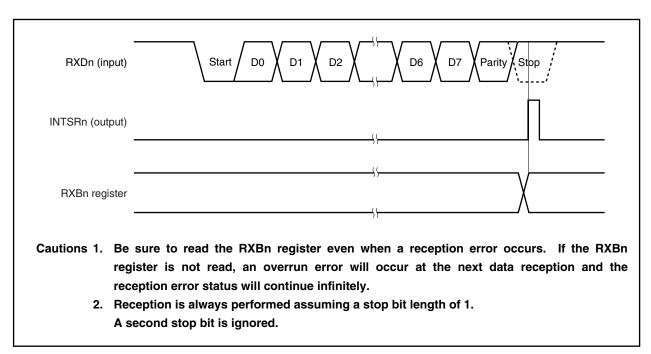
- RXEn bit = 1: Reception enabled state
- RXEn bit = 0: Reception disabled state

In receive disabled state, the reception hardware stands by in the initial state. At this time, the contents of the RXBn register are retained, and no reception completion interrupt or reception error interrupt is generated.

(2) Starting a receive operation

A receive operation is started by the detection of a start bit. The RXDn pin is sampled using the serial clock from baud rate generator n (BRGn).

(3) Reception completion interrupt


When the RXEn bit = 1 and the reception of one frame of data is completed (the stop bit is detected), the INTSRn signal is generated and the receive data within the receive shift register is transferred to the RXBn register at the same time.

Also, if an overrun error (ASISn.OVEn bit = 1) occurs, the receive data at that time is not transferred to the RXBn register, and either the INTSRn signal or a reception error interrupt request signal (INTSREn) is generated according to the ASIMn.ISRMn bit setting.

Even if a parity error (ASISn.PEn bit = 1) or framing error (ASISn.FEn bit = 1) occurs during a reception operation, the receive operation continues until stop bit is received, and after reception is completed, either the INTSRn signal or the INTSREn signal is generated according to the ISRMn bit setting (the receive data within the receive shift register is transferred to the RXBn register).

If the RXEn bit is cleared (0) during a receive operation, the receive operation is immediately stopped. The contents of the RXBn register and the ASISn register at this time do not change, and the INTSRn signal or the INTSREn signal is not generated.

The INTSRn signal or the INTSREn signal is not generated when the RXEn bit = 0 (reception is disabled).

Figure 14-7. UARTn Reception Completion Interrupt Timing

t4U.com

14.5.5 Reception error

The three types of errors that can occur during a receive operation are a parity error, framing error, and overrun error. As a result of data reception, the various flags of the ASISh register are set (1), and a reception error interrupt request signal (INTSREn) or a reception completion interrupt request signal (INTSREn) is generated at the same time. The ASIMn.ISRMn bit specifies whether the INTSREn signal or the INTSRn signal is generated.

The type of error that occurred during reception can be detected by reading the contents of the ASISn register during the INTSREn or INTSRn interrupt servicing.

The contents of the ASISn register are cleared (0) by reading the ASISn register.

Table 14-3. F	Reception Error	Causes
---------------	-----------------	--------

Error Flag	Reception Error	Cause
PEn	Parity error	The parity specification during transmission did not match the parity of the reception data
FEn	Framing error	No stop bit was detected
OVEn	Overrun error	The reception of the next data was completed before data was read from the RXBn register

www.DataSheet4U.com

(1) Separation of reception error interrupt request signal

A reception error interrupt request signal can be separated from the INTSRn signal and generated as the INTSREn signal by clearing the ISRMn bit to 0.

Figure 14-8. When Reception Error Interrupt Request Signal Is Separated from INTSRn Signal (ISRMn Bit = 0)

(a) No error occurs o	luring reception	(b) An error o	ccurs during reception
Rn signal option completion rupt)		INTSRn signal (Reception completion interrupt)	INTSRn does not occur
REn signal eption error upt)		INTSREn signal (Reception error interrupt)	

Figure 14-9. When Reception Error Interrupt Request Signal Is Included in INTSRn Signal (ISRMn Bit = 1)

(a) No error occurs during recept	ion (b) An error occurs during reception
INTSRn signal (Reception completion Data interrupt)	INTSRn signal (Reception completion
INTSREn signal (Reception error interrupt)	INTSREn signal (Reception error interrupt) INTSREn does not occi

DataShe

14.5.6 Parity types and corresponding operation

A parity bit is used to detect a bit error in communication data. Normally, the same type of parity bit is used on the transmission and reception sides.

(1) Even parity

(i) During transmission

The parity bit is controlled so that the number of bits with the value "1" within the transmit data including the parity bit is even. The parity bit value is as follows.

- If the number of bits with the value "1" within the transmit data is odd: 1
- If the number of bits with the value "1" within the transmit data is even: 0

(ii) During reception

The number of bits with the value "1" within the receive data including the parity bit is counted, and a parity error is generated if this number is odd.

(2) Odd parity

(i) During transmission

In contrast to even parity, the parity bit is controlled so that the number of bits with the value "1" within the transmit data including the parity bit is odd. The parity bit value is as follows.

et4U.com

DataShe

- If the number of bits with the value "1" within the transmit data is odd: 0
- If the number of bits with the value "1" within the transmit data is even: 1

(ii) During reception

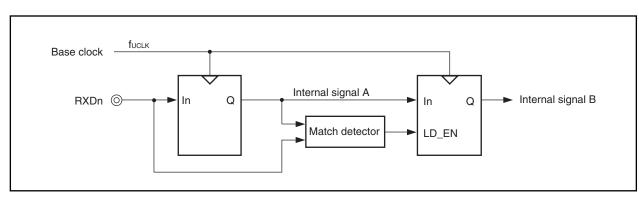
The number of bits with the value "1" within the receive data including the parity bit is counted, and a parity error is generated if this number is even.

(3) 0 parity

During transmission the parity bit is set to "0" regardless of the transmit data.

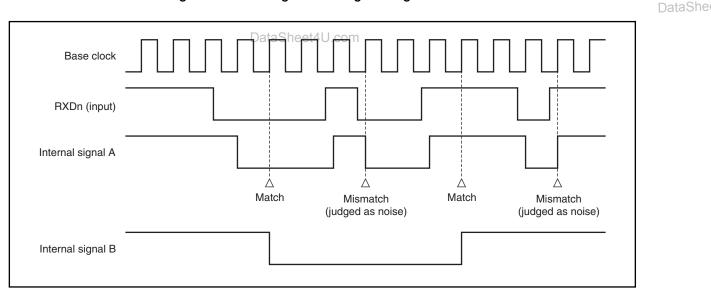
During reception, no parity bit check is performed. Therefore, no parity error is generated regardless of whether the parity bit is "0" or "1".

(4) No parity


No parity bit is added to the transmit data.

During reception, the receive operation is performed as if there were no parity bit. Since there is no parity bit, no parity error is generated.

14.5.7 Receive data noise filter


The RXDn signal is sampled at the rising edge of the prescaler output base clock (fuclk). If the same sampling value is obtained twice, the match detector output changes, and this output is sampled as input data. Therefore, data not exceeding one clock width is judged to be noise and is not delivered to the internal circuit (refer to **Figure 14-11**). Refer to **14.6.1 (1) Base clock** regarding the base clock.

Also, since the circuit is configured as shown in Figure 14-10, internal processing during a receive operation is delayed by up to 2 clocks according to the external signal status.

Figure 14-10. Noise Filter Circuit

Figure 14-11. Timing of RXDn Signal Judged as Noise

14.5.8 SBF transmission/reception (UART0 only)

The UART0 of the V850ES/KE1+ has an SBF (Sync Break Field) transmission/reception control function to enable use of the LIN function.

Remark LIN stands for Local Interconnect Network and is a low-speed (1 to 20 kbps) serial communication protocol intended to aid the cost reduction of an automotive network.

LIN communication is single-master communication, and up to 15 slaves can be connected to one master.

The LIN slaves are used to control the switches, actuators, and sensors, and these are connected to the LIN master via the LIN network.

Normally, the LIN master is connected to a network such as CAN (Controller Area Network).

In addition, the LIN bus uses a single-wire method and is connected to the nodes via a transceiver that complies with ISO9141.

In the LIN protocol, the master transmits a frame with baud rate information and the slave receives it and corrects the baud rate error. Therefore, communication is possible when the baud rate error in the slave is $\pm 15\%$ or less.

(1) SBF transmission/reception format

Figures 14-12 and 14-13 outline the transmission and reception manipulations of LIN.

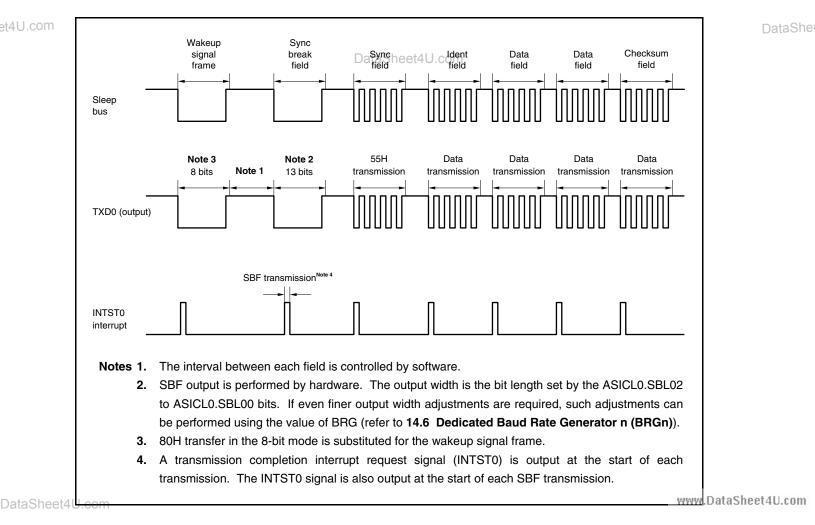
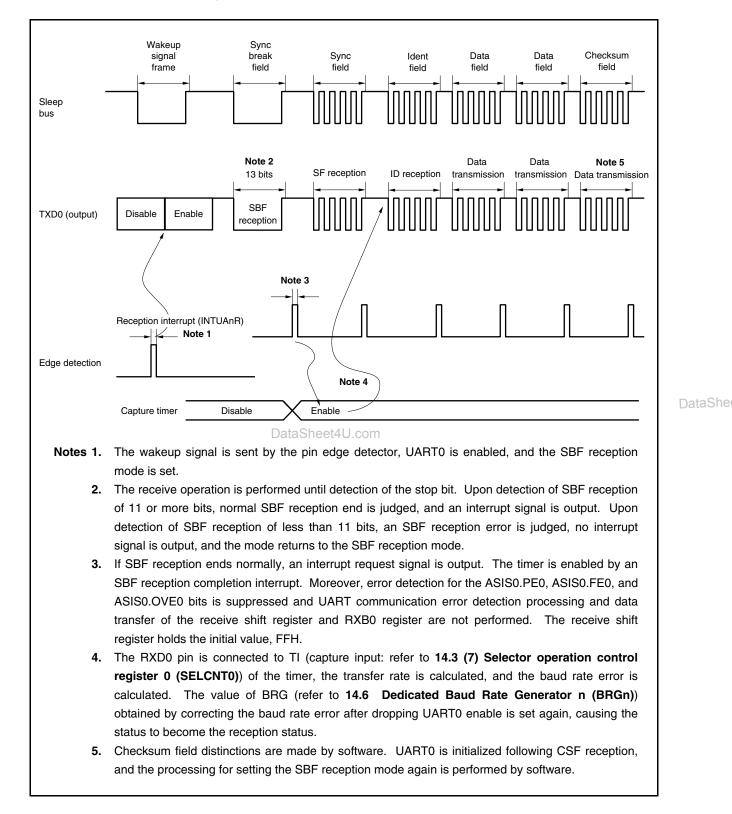
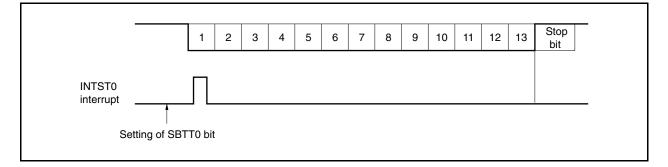



Figure 14-12. LIN Transmission Manipulation Outline

0.001

DataSheet4U.com


(2) SBF transmission

When the ASIMO.UARTE0 bit = ASIMO.TXE0 bit = 1, the transmission enabled status is entered, and SBF transmission is started by setting the SBF transmission trigger (ASICL0.SBRT0 bit) to 1.

Thereafter, a low-level width of bits 13 to 20 specified by the ASICL0.SBL02 to ASICL0.SBL00 bits is output. A transmission completion interrupt request signal (INTST0) is generated upon SBF transmission start. Following the end of SBF transmission, the ASICL0.SBTT0 bit is automatically cleared to 0. Thereafter, the UART transmission mode is restored.

Transmission is suspended until the data to be transmitted next is written to the TXB0 register, or until the SBF transmission trigger (SBTT0 bit) is set to 1.

Figure 14-14. SBF Transmission

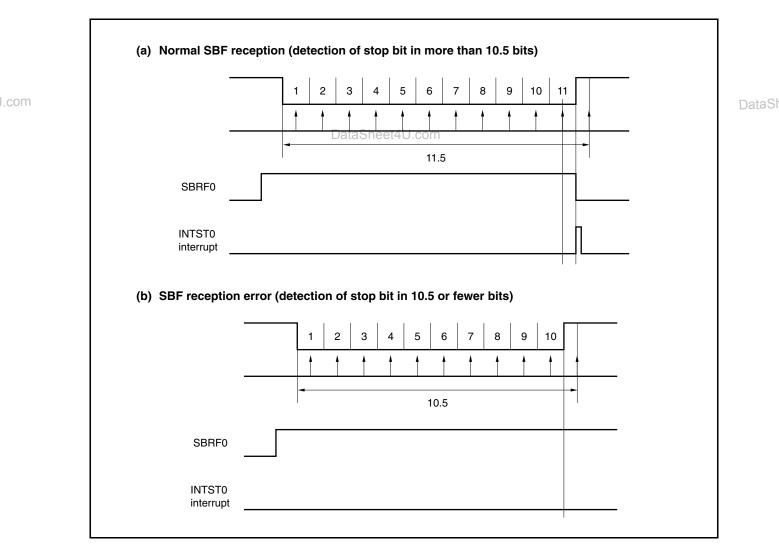
et4U.com

DataShe

DataSheet4U.com

DataSheet4U.com

(3) SBF reception


The reception enabled status is achieved by setting the ASIM0.UARTE0 bit to 1 and then setting the ASIM0.RXE0 bit to 1.

The SBF reception wait status is set by setting the SBF reception trigger (ASICL0.SBRT0 bit) to 1.

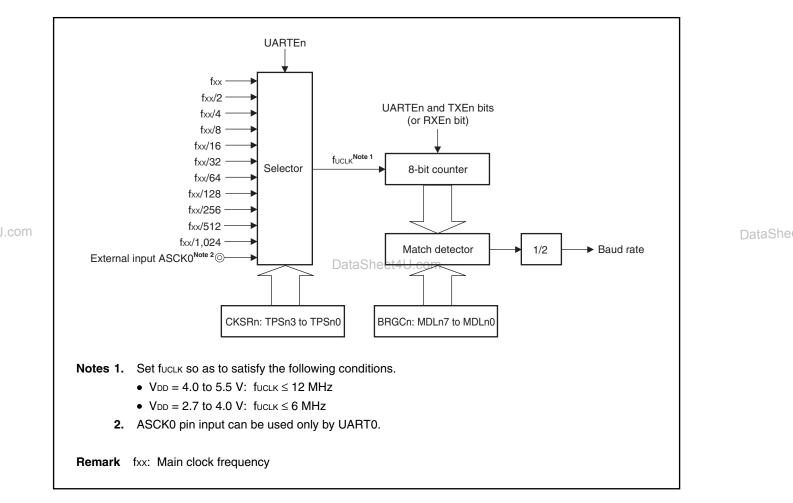
In the SBF reception wait status, similarly to the UART reception wait status, the RXD0 pin is monitored and start bit detection is performed.

Following detection of the start bit, reception is started and the internal counter counts up according to the set baud rate.

When a stop bit is received, if the SBF width is 11 or more bits, normal processing is judged and a reception completion interrupt request signal (INTSR0) is output. The ASICL0.SBRF0 bit is automatically cleared and SBF reception ends. Error detection for the ASIS0.PE0, ASIS0.FE0, and ASIS0.OVE0 bits is suppressed and UART communication error detection processing is not performed. Moreover, data transfer of the reception shift register and RXB0 register is not performed and FFH, the initial value, is held. If the SBF width is 10 or fewer bits, reception is terminated as error processing without outputting an interrupt, and the SBF reception mode is returned to. The ASICL0.SBRF0 bit is not cleared at this time.

Figure 14-15. SBF Reception

DataSheet4U.com


www.DataSheet4U.com

14.6 Dedicated Baud Rate Generator n (BRGn)

A dedicated baud rate generator, which consists of a source clock selector and an 8-bit programmable counter, generates serial clocks during transmission/reception by UARTn. The dedicated baud rate generator output can be selected as the serial clock for each channel.

Separate 8-bit counters exist for transmission and for reception.

14.6.1 Baud rate generator n (BRGn) configuration

Figure 14-16. Configuration of Baud Rate Generator n (BRGn)

(1) Base clock

When the ASIMn.UARTEn bit = 1, the clock selected according to the CKSRn.TPSn3 to CKSRn.TPSn0 bits is supplied to the transmission/reception unit. This clock is called the base clock (f_{UCLK}). When the UARTEn bit = 0, f_{UCLK} is fixed to low level.

14.6.2 Serial clock generation

A serial clock can be generated according to the settings of the CKSRn and BRGCn registers. The base clock to the 8-bit counter is selected by the CKSRn.TPSn3 to CKSRn.TPSn0 bits. The 8-bit counter divisor value can be set by the BRGCn.MDLn7 to BRGCn.MDLn0 bits.

(1) Clock select register n (CKSRn)

The CKSRn register is an 8-bit register for selecting the base clock using the TPSn3 to TPSn0 bits. The clock selected by the TPSn3 to TPSn0 bits becomes the base clock (f_{UCLK}) of the transmission/reception module.

This register can be read or written in 8-bit units.

After reset, CKSRn is cleared to 00H.

Caution Clear the ASIMn.UARTEn bit to 0 before rewriting the TPSn3 to TPSn0 bits.

		7	6	5	4	3	2	1	0		
	CKSRn	0	0	0	0	TPSn3	TPSn2	TPSn1	TPSn0	7	
	(n = 0, 1)		1							_	
TPSn3	TPSn2	TPSn1	TPSn0			Base	clock (fucl	K) ^{Note 1}			
0	0	0	0	fxx							
0	0	0	1	fxx/2							
0	0	1	0	fxx/4	eet4U.co	om					
0	0	1	1	fxx/8							
0	1	0	0	fxx/16							
0	1	0	1	fxx/32							
0	1	1	0	fxx/64							
0	1	1	1	fxx/128							
1	0	0	0	fxx/256							
1	0	0	1	fxx/512							
1	0	1	0	fxx/1,024							
1	0	1	1	External c	lock ^{Note 2} (A	SCK0 pin)					
	Other th	an above		Setting pro	ohibited						
Notes 1	. Set fuclk	so as to sa	atisfy the fo	llowing con	ditions.						
	• V _{DD} = 4	.0 to 5.5 V	: fuclк ≤ 12	2 MHz							
		.7 to 4.0 V									
2				used only b	y UART0.						
	Setting o	f UART1 is	s prohibited								

(2) Baud rate generator control register n (BRGCn)

The BRGCn register is an 8-bit register that controls the baud rate (serial transfer speed) of UARTn. This register can be read or written in 8-bit units. After reset, BRGCn is set to FFH.

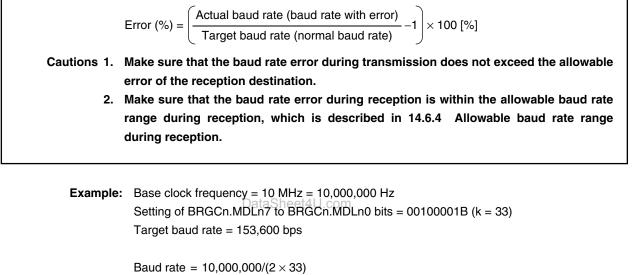
Caution If the MDLn7 to MDLn0 bits are to be overwritten, the ASIMn.TXEn and ASIMn.RXEn bits should be cleared to 0 first.

		7	6	5	4		3	2	1	0
BRGC	Cn 🛛	MDLn7	MDLn6	MDLn	5 MDL	.n4 M	DLn3	MDLn2	MDLn1	MDLn0
(n = 0,	, 1)									
MDLn7	MDLr	16 MDLn5	MDLn4	MDLn3	MDLn2	MDLn1	MDLn0	Set value (k)	Seria	al clock
0	0	0	0	0	×	×	×	-	Setting	prohibited
0	0	0	0	1	0	0	0	8	fuclk/8	
0	0	0	0	1	0	0	1	9	fuclк/9	
0	0	0	0	1	0	1	0	10	fuclk/10	
:	:	:	:	:	:	:	:	:		:
1	1	1	1	1	0	1	0	250	fuctk/250	D
1	1	1	1	1		1 hoot/1	1 L com	251	fuclк/25 ⁻	1
1	1	1	1	1	1	0	0	252	fuctk/252	2
1	1	1	1	1	1	0	1	253	fuctk/25	3
1	1	1	1	1	1	1	0	254	fuclk/254	4
1	1	1	1	1	1	1	1	255	fuclk/25	5

DataShe

www.DataSheet4U.com

(3) Baud rate


The baud rate is the value obtained by the following formula.

Baud rate [bps] =
$$\frac{f_{UCLK}}{2 \times k}$$

 f_{UCLK} = Frequency [Hz] of base clock selected by CKSRn.TPSn3 to CKSRn.TPSn0 bits. k = Value set by BRGCn.MDLn7 to BRGCn.MDLn0 bits (k = 8, 9, 10, ..., 255)

(4) Baud rate error

The baud rate error is obtained by the following formula.

= 151,515 [bps]

Error = $(151,515/153,600 - 1) \times 100$ = -1.357 [%]

et4U.com

14.6.3 Baud rate setting example

Baud Rate		fxx = 20 MHz	2	•	fxx = 16 MHz	2	·	fxx = 10 MHz	
(bps)	fuclk	k	ERR	fuclk	k	ERR	fuclk	k	ERR
300	fxx/512	41H (65)	0.16	fxx/1024	1AH (26)	0.16	fxx/256	41H (65)	0.16
600	fxx/256	41H (65)	0.16	fxx/1024	0DH (13)	0.16	fxx/128	41H (65)	0.16
1200	fxx/128	41H (65)	0.16	fxx/512	0DH (13)	0.16	fxx/64	41H (65)	0.16
2400	fxx/64	41H (65)	0.16	fxx/256	0DH (13)	0.16	fxx/32	41H (65)	0.16
4800	fxx/32	41H (65)	0.16	fxx/128	0DH (13)	0.16	fxx/16	41H (65)	0.16
9600	fxx/16	41H (65)	0.16	fxx/64	0DH (13)	0.16	fxx/8	41H (65)	0.16
10400	fxx/64	0FH (15)	0.16	fxx/64	0CH (12)	0.16	fxx/32	0FH (15)	0.16
19200	fxx/8	41H (65)	0.16	fxx/32	0DH (13)	0.16	fxx/4	41H (65)	0.16
24000	fxx/32	0DH (13)	0.16	fxx/2	A7H (167)	-0.20	fxx/16	0DH (13)	0.16
31250	fxx/32	0AH (10)	0.00	fxx/32	08H (8)	0.00	fxx/16	0AH (10)	0
33600	fxx/2	95H (149)	-0.13	fxx/2	77H (119)	0.04	fxx	95H (149)	-0.13
38400	fxx/4	41H (65)	0.16	fxx/16	0DH (13)	0.16	fxx/2	41H (65)	0.16
48000	fxx/16	0DH (13)	0.16	fxx/2	53H (83)	0.40	fxx/8	0DH (13)	0.16
56000	fxx/2	59H (89)	0.32	fxx/2	47H (71)	0.60	fxx	59H (89)	0.32
62500	fxx/16	0AH (10)	0.00	fxx/16	08H (8)	0.00	fxx/8	0AH (10)	0.00
76800	fxx/2	41H (65)	0.16	fxx/8	0DH (13)	0.16	fxx	41H (65)	0.16
115200	fxx/2	2BH (43)	0.94	fxx/2	23H (35)	-0.79	fxx	2BH (43)	0.94
153600	fxx/2	21H (33)	-1.36	fxx/4	0DH (13)	0.16	fxx	21H (33)	-1.36
312500	fxx/4	08H (8)	0	fxx/2	0DH (13)	-1.54	fxx/2	08H (8)	0.00

Table 14-4. Baud Rate Generator Setting Data

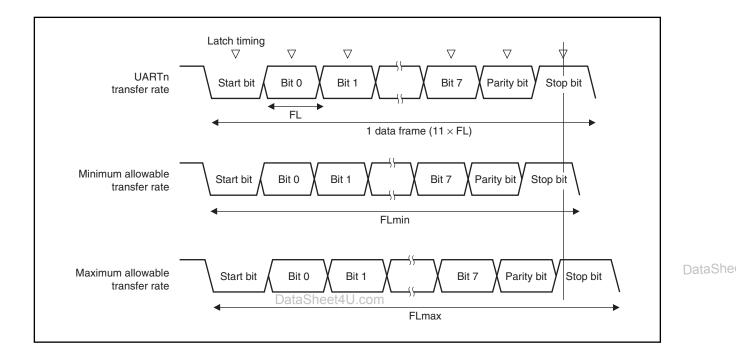
et4U.com

Caution The allowable frequency of the base clock (fuclk) is as follows.

• VDD = 4.0 to 5.5 V: fuclk \leq 12 MHz

• VDD = 2.7 to 4.0 V: fuclk \leq 6 MHz

- Remark fxx: Main clock frequency
 - fuclk: Base clock frequency
 - k: Set values of BRGCn.MDLn7 to BRGCn.MDLn0 bits
 - ERR: Baud rate error [%]


n = 0, 1

www.DataSheet4U.com

14.6.4 Allowable baud rate range during reception

The degree to which a discrepancy from the transmission destination's baud rate is allowed during reception is shown below.

Caution The equations described below should be used to set the baud rate error during reception so that it always is within the allowable error range.

As shown in Figure 14-17, after the start bit is detected, the receive data latch timing is determined according to the counter that was set by the BRGCn register. If all data up to the final data (stop bit) is in time for this latch timing, the data can be received normally.

If this is applied to 11-bit reception, the following is theoretically true.

 $FL = (Brate)^{-1}$

Brate: UARTn baud rate

- k: BRGCn register set value
- FL: 1-bit data length

When the latch timing margin is 2 base clocks, the minimum allowable transfer rate (FLmin) is as follows.

$$FLmin = 11 \times FL - \frac{k-2}{2k} \times FL = \frac{21k+2}{2k} FL$$

et4U.com

Therefore, the transfer destination's maximum receivable baud rate (BRmax) is as follows.

BRmax =
$$(FLmin/11)^{-1} = \frac{22k}{21k+2}$$
 Brate

Similarly, the maximum allowable transfer rate (FLmax) can be obtained as follows.

$$\frac{10}{11} \times FLmax = 11 \times FL - \frac{k+2}{2 \times k} \times FL = \frac{21k-2}{2 \times k} FL$$
$$FLmax = \frac{21k-2}{20k} FL \times 11$$

Therefore, the transfer destination's minimum receivable baud rate (BRmin) is as follows.

BRmin =
$$(FLmax/11)^{-1} = \frac{20k}{21k - 2}$$
 Brate

The allowable baud rate error of UARTn and the transfer destination can be obtained as follows from the expressions described above for computing the minimum and maximum baud rate values.

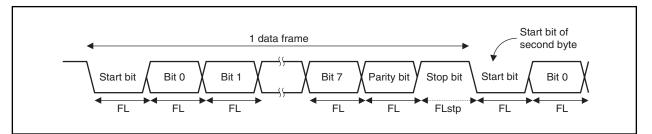
et4U.com

Table 14-5. Maximum and Minimum Allowable Baud Rate Error

Maximum Allowable OM Minimum Allowable Division Ratio (k) Baud Rate Error **Baud Rate Error** 8 +3.53% -3.61% 20 +4.26% -4.31% 50 +4.56% -4.58% 100 +4.66% -4.67% 255 +4.72% -4.73%

- Remarks 1. The reception precision depends on the number of bits in one frame, the base clock frequency, and the division ratio (k). The higher the base clock frequency and the larger the division ratio (k), the higher the precision.
 - 2. k: BRGCn register set value

DataShe


402

DataSheet4U.com

14.6.5 Transfer rate during continuous transmission

During continuous transmission, the transfer rate from a stop bit to the next start bit is extended two clocks of the base clock longer than normal. However, on the reception side, the transfer result is not affected since the timing is initialized by the detection of the start bit.

Representing the 1-bit data length by FL, the stop bit length by FLstp, and the base clock frequency by fuclk yields the following equation.

FLstp = FL + 2/fuclk

Therefore, the transfer rate during continuous transmission is as follows (when the stop bit length = 1).

t4U.com

Transfer rate = $11 \times FL + (2/f_{UCLK})$

DataShe

14.7 Cautions

DataSheet4U.com

Cautions to be observed when using UARTn are shown below.

- (1) When the supply of clocks to UARTn is stopped (for example, in IDLE or STOP mode), operation stops with each register retaining the value it had immediately before the supply of clocks was stopped. The TXDn pin output also holds and outputs the value it had immediately before the supply of clocks was stopped. However, operation is not guaranteed after the supply of clocks is restarted. Therefore, after the supply of clocks is restarted, the circuits should be initialized by clearing the ASIMn.UARTEn, ASIMn.RXEn, and ASIMn.TXEn bits to 000.
- (2) UARTn has a 2-stage buffer configuration consisting of the TXBn register and the transmission shift register, and has status flags (ASIFn.TXBFn and ASIFn.TXSFn bits) that indicate the status of each buffer. If the TXBFn and TXSFn bits are read in continuous transmission, the value changes 10 → 11 → 01. For the timing to write the next data to the TXBn register, read only the TXBFn bit during continuous transmission.

CHAPTER 15 CLOCKED SERIAL INTERFACE 0 (CSI0)

In the V850ES/KE1+, two channels of clocked serial interface 0 (CSI0) are provided.

15.1 Features

- Maximum transfer speed: 5 Mbps
- Master mode/slave mode selectable
- Transmission data length: 8 bits or 16 bits can be set
- MSB/LSB-first selectable for transfer data
- Eight clock signals can be selected (7 master clocks and 1 slave clock)
- 3-wire type SO0n: Serial transmit data output SI0n: Serial receive data input

SCK0n: Serial clock I/O

• Interrupt sources: 1 type

Remark n = 0, 1

- Transmission/reception completion interrupt request signal (INTCSI0n)
- Transmission/reception mode or reception-only mode selectable
- Two transmission buffer registers (SOTBFn/SOTBFLn, SOTBn/SOTBLn) and two reception buffer registers (SIRBn/SIRBLn, SIRBEn/SIRBELn) are provided on chip
- Single transfer mode/continuous transfer mode selectable

t4U.com

DataSheet4U.com

15.2 Configuration

CSI0n is controlled via the CSIM0n register.

(1) Clocked serial interface mode register 0n (CSIM0n)

The CSIM0n register is an 8-bit register that specifies the operation of CSI0n.

(2) Clocked serial interface clock selection register n (CSICn)

The CSICn register is an 8-bit register that controls the CSIOn serial transfer operation.

(3) Serial I/O shift register 0n (SIO0n)

The SIO0n register is a 16-bit shift register that converts parallel data into serial data. The SIO0n register is used for both transmission and reception. Data is shifted in (reception) and shifted out (transmission) from the MSB or LSB side. The actual transmission/reception operations are started up by accessing the buffer register.

(4) Serial I/O shift register 0nL (SIO0nL)

The SIO0nL register is an 8-bit shift register that converts parallel data into serial data. The SIO0nL register is used for both transmission and reception. Data is shifted in (reception) and shifted out (transmission) from the MSB or LSB side. The actual transmission/reception operations are started up by accessing the buffer register.

(5) Clocked serial interface receive buffer register n (SIRBn)

The SIRBn register is a 16-bit buffer register that stores receive data.

(6) Clocked serial interface receive buffer register nL (SIRBnL) The SIRBnL register is an 8-bit buffer register that stores receive data.

(7) Clocked serial interface read-only receive buffer register n (SIRBEn)

The SIRBEn register is a 16-bit buffer register that stores receive data. The SIRBEn register is the same as the SIRBn register. It is used to read the contents of the SIRBn register.

(8) Clocked serial interface read-only receive buffer register nL (SIRBEnL)

The SIRBEnL register is an 8-bit buffer register that stores receive data. The SIRBEnL register is the same as the SIRBnL register. It is used to read the contents of the SIRBnL register.

(9) Clocked serial interface transmit buffer register n (SOTBn)

The SOTBn register is a 16-bit buffer register that stores transmit data.

(10) Clocked serial interface transmit buffer register nL (SOTBnL)

The SOTBnL register is an 8-bit buffer register that stores transmit data.

(11) Clocked serial interface initial transmit buffer register n (SOTBFn)

The SOTBFn register is a 16-bit buffer register that stores the initial transmit data in the continuous transfer mode.

(12) Clocked serial interface initial transmit buffer register nL (SOTBFnL)

The SOTBFnL register is an 8-bit buffer register that stores initial transmit data in the continuous transfer mode.

(13) Selector

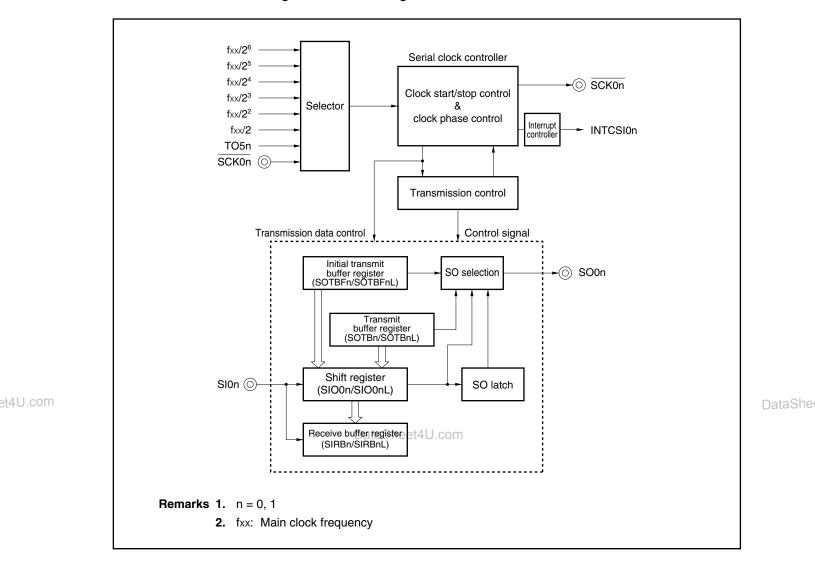
The selector selects the serial clock to be used.

(14) Serial clock controller

Controls the serial clock supply to the shift register. Also controls the clock output to the SCK0n pin when the internal clock is used.

(15) Serial clock counter

Counts the serial clock output or input during transmission/reception, and checks whether 8-bit or 16-bit data transmission/reception has been performed.


(16) Interrupt controller

Controls the interrupt request timing.

Remark n = 0, 1

et4U.com

DataSheet4U.com

15.3 Registers

(1) Clocked serial interface mode register 0n (CSIM0n)

The CSIM0n register controls the CSI0n operation. This register can be read or written in 8-bit or 1-bit units (however, CSOTn bit is read-only). After reset, CSIM0n is cleared to 00H.

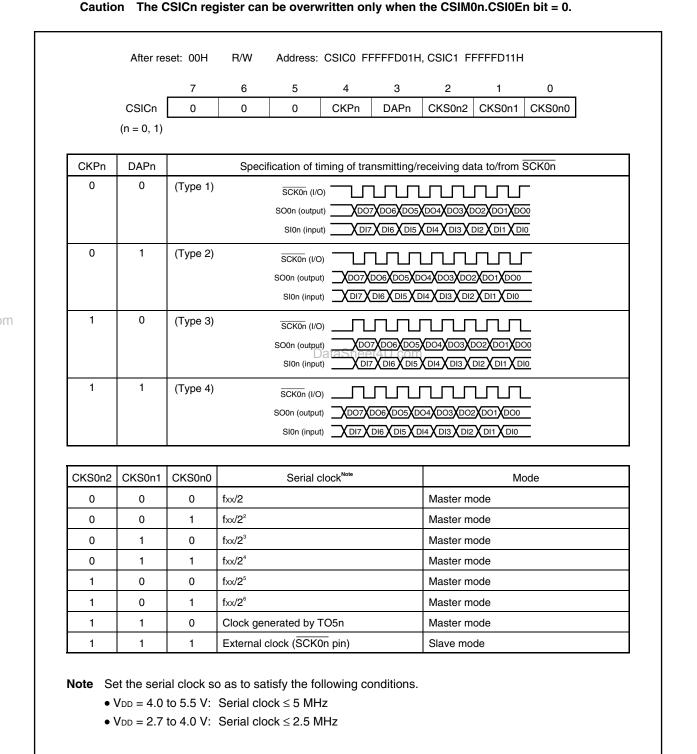
Caution Overwriting the TRMDn, CCLn, DIRn, CSITn, and AUTOn bits can be done only when the CSOTn bit = 0. If these bits are overwritten when the CSOTn bit = 1, the operation cannot be guaranteed.

et4U.com

DataSheet4U.com

DataSheet4U.com

CHAPTER 15 CLOCKED SERIAL INTERFACE 0 (CSI0)


		<7>	<6>	5	<4>	3	2	1	<0>		
	CSIM0n	CSI0En	TRMDn	CCLn	DIRn	CSITn	AUTOn	0	CSOTn	7	
	(n = 0, 1)	I	l				L			_	
CSI0En				CSI0n	operation	enable/disa	able				1
0	Disable CSI0	n operati	on.								1
1	Enable CSI0r	n operatic	on.								1
	al CSI0n circu status when t			-		-	SIOEn bit to	0. For th	e SCK0n a	nd SO0n	
TRMDn			Sp	ecification	of transmi	ission/recep	otion mode				1
0	Receive-only	mode									1
1	Transmission	ı/receptio	n mode								1
CCLn 0	8 bits			Spe	cification o	of data leng	th				$\left \right $
001 n					-ification (f data long	11-				л
0	8 bits										1
1	16 bits]
					et4U.cor						- -
DIRn	First hit of two	- efer det	•	fication or	transfer our	rection mod	de (MSB/LSI	3)			-
0	First bit of tra										$\left \right $
			115 LOD								┘│
			С	ontrol of d	lelay of inte	errupt reque	est signal]
CSITn	No delay]
CSITn 0	Delay mode (<u> </u>						
0 1			s valid onlv						0n0 bits are	e not]
0 1 The delay	mode (CSITn the slave mod		-	0n0 bits are							1
0 1 The delay		de (CKS0	n2 to CKS			de or conti	inuous trans	fer mode			
0 1 The delay 111B). In		de (CKS0 Sp	n2 to CKS			ode or conti	nuous trans	fer mode]
0 1 The delay 111B). In AUTOn	the slave mod	de (CKS0 Sp er mode	n2 to CKS			ode or conti	nuous trans	fer mode]
0 1 The delay 111B). In AUTOn 0	the slave mod	de (CKS0 Sp er mode	n2 to CKS	of single t	transfer mo	ode or conti		fer mode]]]
0 1 The delay 111B). In AUTOn 0 1	the slave mod	de (CKS0 Sp er mode ransfer mo	pecification	of single t	transfer mo			fer mode			
0 1 The delay 111B). In AUTOn 0 1 CSOTn	the slave mod Single transfe Continuous tr	de (CKS0 Sp er mode ransfer mo	ode	of single t	transfer mo			fer mode			

et4U.com

DataSheet4U.com

(2) Clocked serial interface clock selection register n (CSICn)

The CSICn register is an 8-bit register that controls the CSI0n transfer operation. This register can be read or written in 8-bit or 1-bit units. After reset, CSICn is cleared to 00H.

Remark fxx: Main clock frequency

DataSheet4U.com

(3) Clocked serial interface receive buffer registers n, nL (SIRBn, SIRBnL)

The SIRBn register is a 16-bit buffer register that stores receive data.

When the receive-only mode is set (CSIM0n.TRMDn bit = 0), the reception operation is started by reading data from the SIRBn register.

This register is read-only in 16-bit units. When the lower 8 bits are used as the SIRBnL register, this register is read-only in 8-bit units.

In addition to reset input, this register is also cleared to 0000H by clearing (0) the CSIM0n.CSI0En bit.

Cautions 1. Read the SIRBn register only when a 16-bit data length has been set (CSIM0n.CCLn bit = 1).

Read the SIRBnL register only when an 8-bit data length has been set (CCLn bit = 0).

2. When the single transfer mode has been set (CSIM0n.AUTOn bit = 0), perform a read operation only in the idle state (CSIM0n.CSOTn bit = 0). If the SIRBn or SIRBnL register is read during data transfer, the data cannot be guaranteed.

After re	eset: C	0000⊢	ł	R	Addre	ess: S	RB0 F	FFFFC	02H,	SIRE	31 FF	FFFC	D12H		
	15	14	13	12	11	10 9	98	7	6	5	4	3	2	1	0
SIRBn	SIRBn	SIRBn	SIRBn	SIRBn	SIRBn S	IRBn SIF	Bn SIRB	SIRBn							
			10	10	44	10		7	6	5	4	3	2	1	
(n = 0, 1)		14	13	12	11	-	9 8	com	0	5	4	0	2	1	0
(n = 0, 1) SIRBnL I After res	regist	er DH	R 6	Ac	Da	ataSh	eet4U 0L FFF 4		2H, S	-	L FFF	-	12H	0	

(4) Clocked serial interface read-only receive buffer registers n, nL (SIRBEn, SIRBEnL)

The SIRBEn register is a 16-bit buffer register that stores receive data.

The SIRBEn register is the same as the SIRBn register. Even if the SIRBEn register is read, the next operation will not start. The SIRBEn register is used to read the contents of the SIRBn register when the serial reception is not continued.

This register is read-only in 16-bit units. However, when the lower 8 bits are used as the SIRBEnL register, the register is read-only in 8-bit units.

In addition to reset input, this register is also cleared to 0000H by clearing (0) the CSIM0n.CSI0En bit.

Cautions 1. The receive operation is not started even if data is read from the SIRBEn and SIRBEnL registers.

2. The SIRBEn register can be read only if a 16-bit data length has been set (CSIM0n.CCLn bit = 1).

The SIRBEnL register can be read only if an 8-bit data length has been set (CCLn bit = 0).

	After re	set: 00	000H	R	A	ddress	: SIRE	BE0 F	FFFF	D06H,	SIRBE	1 FF	FFFD	16H			
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBEn	SIRBI
	(n = 0, 1)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(b)	SIDBEN	rogie	tor				Det						1	-		I	
(b)	SIRBEnL After re	•		R	Addr	ress: S			et4U		SIRBE1	IL FF	FFFD1	6H			
(b)		•		R 6	Addr	ress: 5	BIRBE			06H, S		IL FF	FFFD1	6Н С	<u> </u>		

DataShe

DataSheet4U.com

(5) Clocked serial interface transmit buffer registers n, nL (SOTBn, SOTBnL)

The SOTBn register is a 16-bit buffer register that stores transmit data.

When the transmission/reception mode is set (CSIM0n.TRMDn bit = 1), the transmission operation is started by writing data to the SOTBn register.

This register can be read or written in 16-bit units. However, when the lower 8 bits are used as the SOTBnL register, the register can be read or written in 8-bit units.

After reset, this register is cleared to 0000H.

Cautions 1. Access the SOTBn register only when a 16-bit data length has been set (CSIM0n.CCLn bit = 1).

Access the SOTBnL register only when an 8-bit data length has been set (CCLn bit = 0).

2. When the single transfer mode is set (CSIM0n.AUTOn bit = 0), perform access only in the idle state (CSIM0n.CSOTn bit = 0). If the SOTBn and SOTBnL registers are accessed during data transfer, the data cannot be guaranteed.

()	Bn reg	iste	r														
A	fter rese	ət: 00	000H	R/V	V J	Addres	s: SO	TB0 F	FFFF	D04H,	SOTB	1 FFF	FD14	H			
	_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	C
SOT	Bn S	OTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBn	SOTBr	so ⁻
(n = 0	0, 1)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
(b) SOT	BnL re	•		R/W			sheet4		om FFFFD	04H, S	SOTB1	L FFF	FFD14	1H			
		7	,	6		5	4		3		2	1		0			
SOT	BnL	SOT	Bn7	SOTBr	16 SC	DTBn5	SOT	Bn4	SOTBr	3 SC	TBn2	SOT	3n1 S	SOTBn	0		
001																	

(6) Clocked serial interface initial transmit buffer registers n, nL (SOTBFn, SOTBFnL)

The SOTBFn register is a 16-bit buffer register that stores initial transmission data in the continuous transfer mode.

The transmission operation is not started even if data is written to the SOTBFn register.

This register can be read or written in 16-bit units. However, when the lower 8 bits are used as the SOTBFnL register, the register can be read or written in 8-bit units.

After reset, this register is cleared to 0000H.

Caution Access the SOTBFn register and SOTBFnL register only when a 16-bit data length has been set (CSIM0n.CCLn bit = 1), and only when an 8-bit data length has been set (CCLn bit = 0), respectively, and only in the idle state (CSIM0n.CSOTn bit = 0). If the SOTBFn and SOTBFnL registers are accessed during data transfer, the data cannot be guaranteed.

After re	set: 0	000H	R/	W	Addre	ess: S	OTBF	0 FFF	FFD08	BH, SC	DTBF1	FFFF	FD18	Н		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTBFn	SOTB
(n = 0, 1)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I													
b) SOTBFnl After r	L regi s eset: 0		R/W	, А	ddres	s: SO	TBFOL	FFFI et4U	FFD08	H, SO	TBF1I	_ FFF	FFD18	3H		-
	•	00H	R/W 6	' A	ddres: 5	Dat	TBF0L aShe 4	FFF et4U 3	.com	H, SO 2	TBF1I	- FFF		зн 0		

DataShe

et4U.com

(7) Serial I/O shift registers n, nL (SIO0n, SIO0nL)

The SIO0n register is a 16-bit shift register that converts parallel data into serial data. The transfer operation is not started even if the SIO0n register is read. This register is read-only in 16-bit units. However, when the lower 8 bits are used as the SIO0nL register, the register is read-only in 8-bit units.

In addition to reset input, this register is also cleared to 0000H by clearing (0) the CSIMOn.CSI0En bit.

Caution Read the SIO0n register and SIO0nL register only when a 16-bit data length has been set (CSIM0n.CCLn bit = 1), and only when an 8-bit data length has been set (CCLn bit = 0), respectively, and only in the idle state (CSIM0n.CSOTn bit = 0). If the SIO0n and SIO0nL registers are read during data transfer, the data cannot be guaranteed.

Afte	r reset:	0000	н	R	Addres	ss: SIC	000 F	FFFF	DOAH,	SIO01	FFF	FFD1A	H			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SIO0n	SIOn15	SIOn14	SIOn13	SIOn12	SIOn11	SIOn10	SIOn9	SIOn8	SIOn7	SIOn6	SIOn5	SIOn4	SIOn3	SIOn2	SIOn1	SIOn0
(n = 0, 1)																
o) SIO0nL	registe reset: 00		R	Addre	ess: S	IO00L	FFFF	FD0A	H, SIC	001L F	FFFFI	D1AH				
o) SIO0nL	-	DН	R 6	Addre		IO00L Shee4			H, SIC	001L F 2	FFFFI	D1AH 1	0			

et4U.com

		F
	Register Name	SIRBn (SIRBnL)
שמומטוופפוי <i>ני</i> ט 416		
DataSheet4-U.com	m	

Preliminary User's Manual U16896EJ1V0UD

Table 15-1. Use of Each Buffer Register

et4U.com

Register	R/W		Single	Transfer	Continuous	Transfer ^{Note 1}
Name			Transmission/Reception Mode	Receive-Only Mode	Transmission/Reception Mode	Receive-Only Mode
SIRBn (SIRBnL)	Read	Function	Storing received data ^{Note 2}	Reading starts receptionStoring received data	Storing up to the $(N - 1)$ th received data (other than the last) ^{Note 2}	 Reading starts reception Storing up to the (N – 2)th data (other than the last two)
		Use method	When transmission and reception are complete, read the received data from this register.	 First, read dummy data and start transfer. To perform reception of the next data after reception is complete, read the received data from this register. 	When reception is complete, read the received data from this register. Repeat this operation until the $(N - 1)$ th data has been received.	When reception is complete, read the received data from this register. Repeat this operation until the $(N - 2)$ th data has been received. (Supplement) Do not read the $(N - 1)$ th data from this register. If read, a reception operation starts and continuous transfer cannot be completed.
SIRBEn	Read	Function	_	Storing the data received last ^{Note 2}	_	Storing the $(N - 1)$ th received data ^{Note 2}
(SIRBEnL)		Use method	Not used.	If reception of the next data will not be performed after reception is complete, read the received data from this register.	Not used	Read the $(N - 1)$ th received data from this register when the $(N - 1)$ th or Nth (last) data has been received.
SIO0n	Read	Function	_	<u>0</u>	Storing the Nth (last) received data ^{Note 2}	Storing the Nth (last) received data Note 2
(SIO0nL)		Use method	Not used.	Not used	When the Nth (last) transmission/reception is complete, read the Nth (last) data.	When the Nth (last) data has been received, read the Nth (last) data.
SOTBn (SOTBnL)	Write	Function	 Starting transmission/reception when written Storing the data to be transmitted 	4U.com	 Starting transmission/reception when written Storing the data to be transmitted second and subsequently 	_
		Use method	 First, write a dummy data (FFH) to start transmission/reception. When transmission/reception is complete, write the data to be transmitted next. 	Not used	When transmission/reception is complete, write the data to be transmitted next to this register to start the next transmission/reception.	Not used
SOTBFn	Write	Function	_	_	Storing the data to be transmitted first ^{Note 2}	_
(SOTBFnL)		Use method	Not used	Not used	Before starting transmission/reception (writing to SOTBn), write the data to be transmitted first.	Not used

Notes 1. It is assumed that the number of data to be transmitted is N.

2. Neither reading nor writing will start communication.

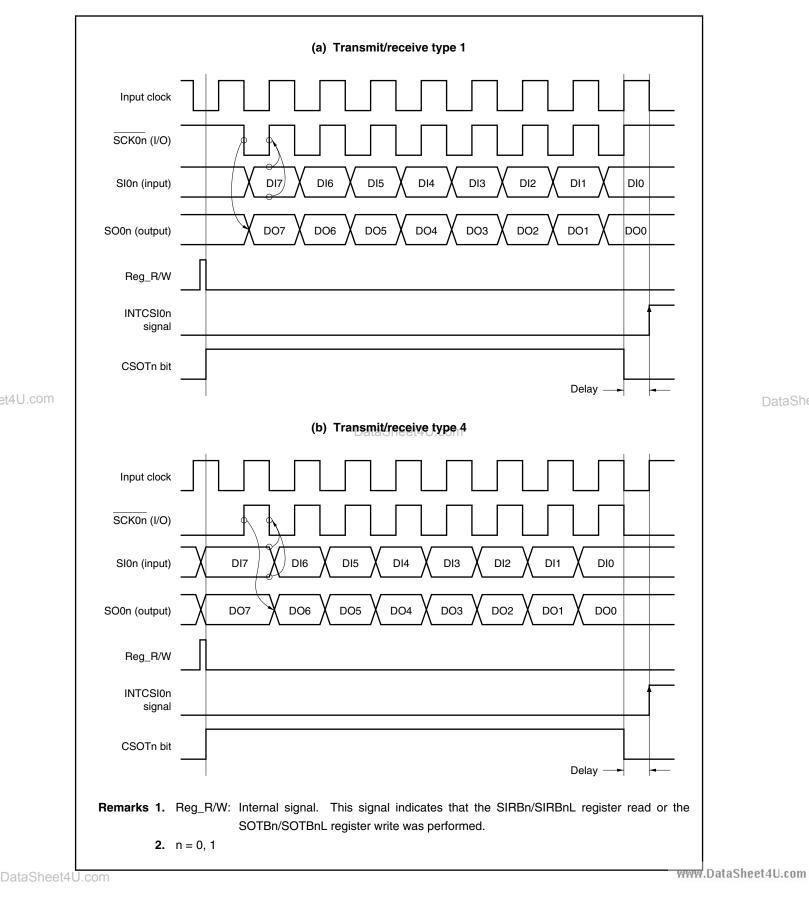
Remark In the 16-bit mode, the registers not enclosed in parentheses are used; in the 8-bit mode, the registers in parentheses are used.

15.4 Operation

15.4.1 Transmission/reception completion interrupt request signal (INTCSI0n)

The INTCSI0n signal is set (1) upon completion of data transmission/reception. Writing to the CSIM0n register clears (0) the INTCSI0n signal.

Caution The delay mode (CSIM0n.CSITn bit = 1) is valid only in the master mode (CSICn.CKS0n2 to CSICn.CKS0n0 bits are not 111B). The delay mode cannot be set when the slave mode is set (CKS0n2 to CKS0n0 bits = 111B).


et4U.com

DataSheet4U.com

DataSheet4U.com

DataShe

www.DataSheet4U.com

DataShe

418

15.4.2 Single transfer mode

(1) Usage

In the receive-only mode (CSIM0n.TRMDn bit = 0), communication is started by reading the SIRBn/SIRBnL register.

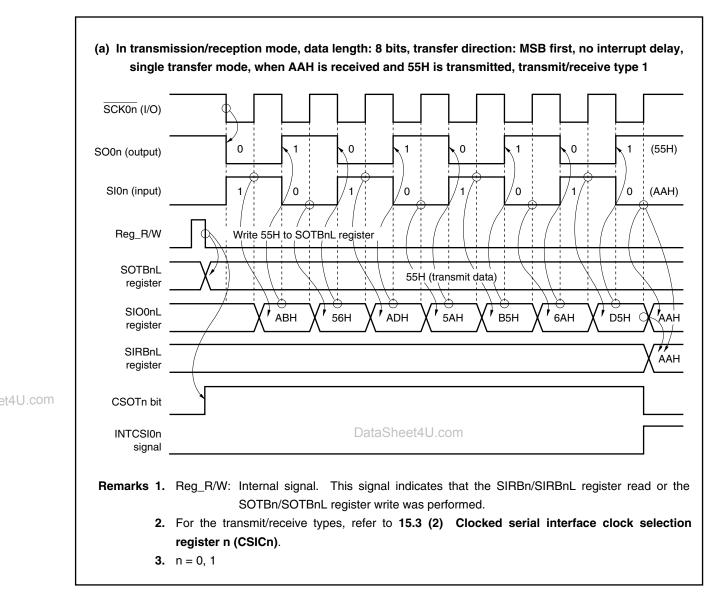
In the transmission/reception mode (TRMDn bit = 1), communication is started by writing to the SOTBn/SOTBnL register.

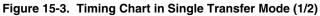
In the slave mode, the operation must be enabled beforehand (CSIM0n.CSI0En bit = 1).

When communication is started, the value of the CSIM0n.CSOTn bit becomes 1 (transmission execution status).

Upon communication completion, the transmission/reception completion interrupt request signal (INTCSI0n) is generated, and the CSOTn bit is cleared (0). The next data communication request is then waited for.

Caution When the CSOTn bit = 1, do not manipulate the CSI0n register.


Remark n = 0, 1


et4U.com

DataShe

DataSheet4U.com

419

DataShe

www.DataSheet4U.com

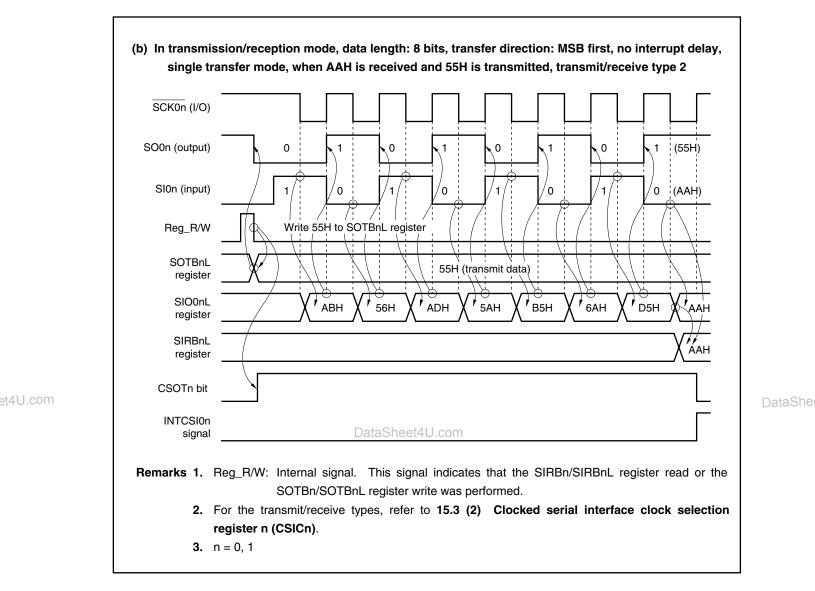
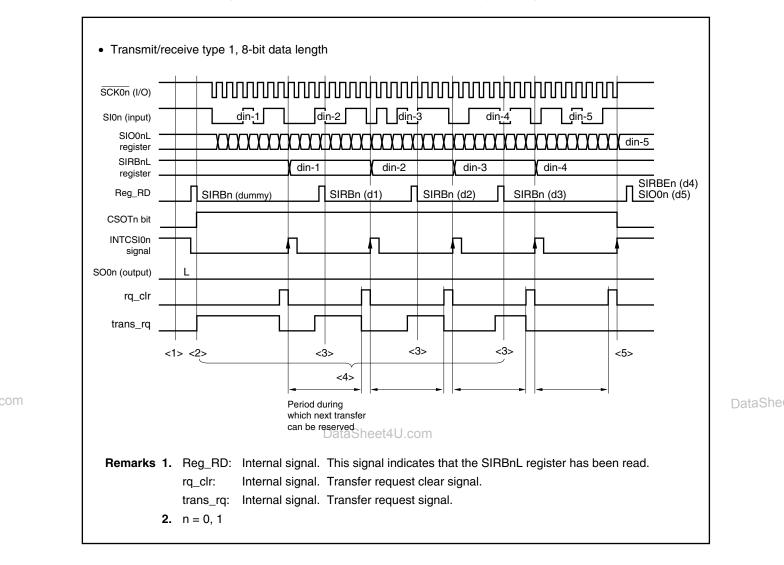


Figure 15-3. Timing Chart in Single Transfer Mode (2/2)

15.4.3 Continuous transfer mode


(1) Usage (receive-only: 8-bit data length)

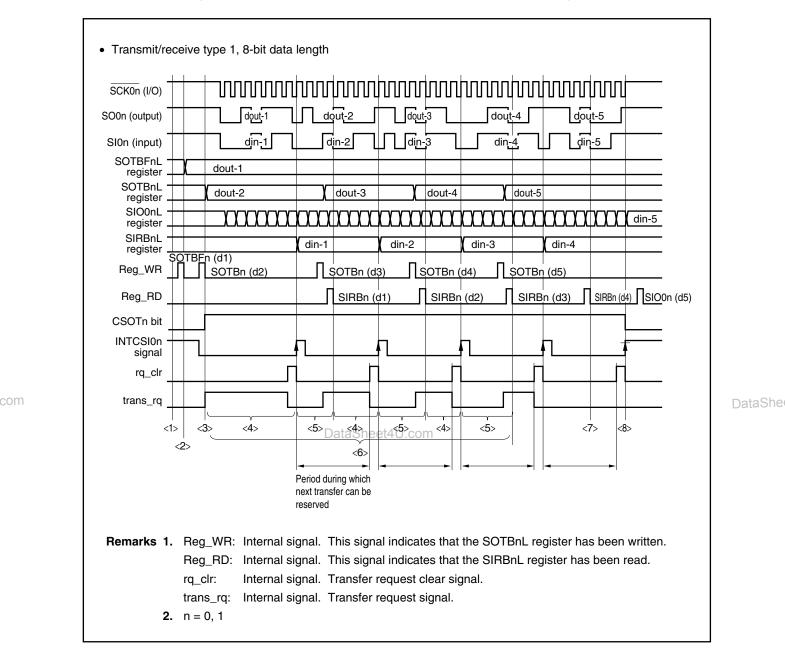
- <1> Set the continuous transfer mode (CSIM0n.AUTOn bit = 1) and the receive-only mode (CSIM0n.TRMDn bit = 0).
- <2> Read the SIRBnL register (start transfer with dummy read).
- <3> When the transmission/reception completion interrupt request signal (INTCSI0n) has been generated, read the SIRBnL register^{Note} (reserve next transfer).
- <4> Repeat step <3> (N 2) times. (N: Number of transfer data) Ignore the interrupt triggered by reception of the (N – 1)th data (at this time, the SIRBEnL register can be read).
- <5> Following generation of the last INTCSI0n signal, read the SIRBEnL register and the SIO0nL register^{Note}.
- Note When transferring N number of data, receive data is loaded by reading the SIRBnL register from the first data to the (N 2)th data. The (N 1)th data is loaded by reading the SIRBEnL register, and the Nth (last) data is loaded by reading the SIO0nL register (refer to **Table 15-1 Use of Each Buffer Register**).

et4U.com

DataShe

DataSheet4U.com

In the case of the continuous transfer mode, two transfer requests are set at the start of the first transfer. Following the INTCSIOn signal, transfer is continued if the SIRBnL register can be read within the next transfer reservation period. If the SIRBnL register cannot be read, transfer ends and the SIRBnL register does not receive the new value of the SIO0nL register.

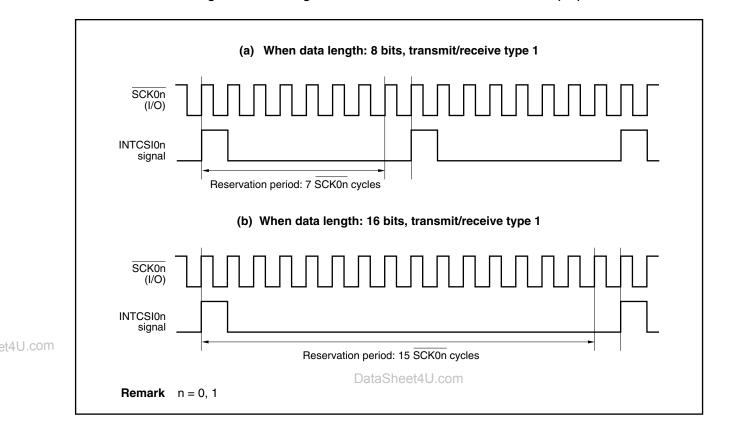

The last data can be obtained by reading the SIO0nL register following completion of the transfer.

(2) Usage (transmission/reception: 8-bit data length)

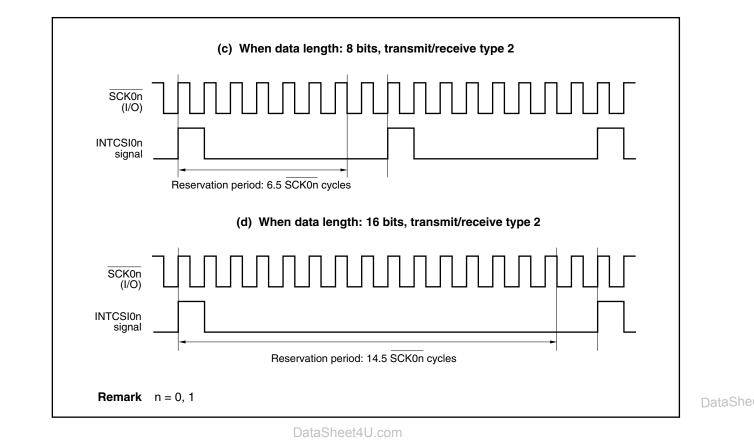
- <1> Set the continuous transfer mode (CSIM0n.AUTOn bit = 1) and the transmission/reception mode (CSIM0n.TRMDn bit = 1).
- <2> Write the first data to the SOTBFnL register.
- <3> Write the 2nd data to the SOTBnL register (start transfer).
- <4> When the transmission/reception completion interrupt request signal (INTCSI0n) has been generated, write the next data to the SOTBnL register (reserve next transfer). Read the SIRBnL register to load the receive data.
- <5> Repeat step <4> as long as data to be sent remains.
- <6> When the INTCSIOn signal is generated, read the SIRBnL register to load the (N 1)th receive data (N: Number of transfer data).
- <7> Following the last INTCSI0n signal, read the SIO0nL register to load the Nth (last) receive data.

et4U.com

DataSheet4U.com



In the case of the continuous transfer mode, two transfer requests are set at the start of the first transfer. Following the INTCSIOn signal, transfer is continued if the SOTBnL register can be written within the next transfer reservation period. If the SOTBnL register cannot be written, transfer ends and the SIRBnL register does not receive the new value of the SIO0nL register.


The last receive data can be obtained by reading the SIO0nL register following completion of the transfer.

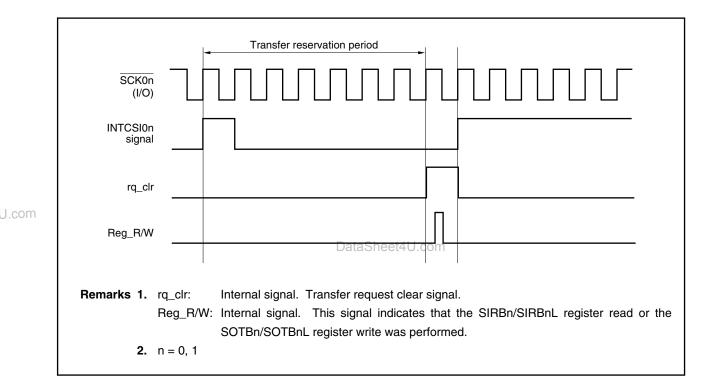
(3) Next transfer reservation period

In the continuous transfer mode, the next transfer must be prepared with the period shown in Figure 15-6.

DataSheet4U.com

et4U.com

www.DataSheet4U.com

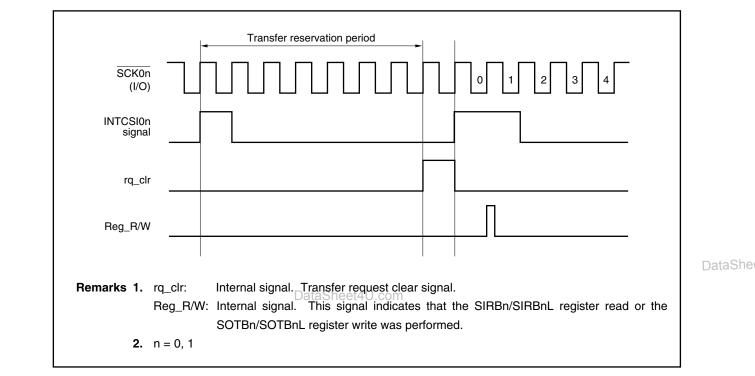

(4) Cautions

To continue continuous transfers, it is necessary to either read the SIRBn register or write to the SOTBn register during the transfer reservation period.

If access is performed to the SIRBn register or the SOTBn register when the transfer reservation period is over, the following occurs.

(i) In case of conflict between transfer request clear and register access

Since transfer request clear has higher priority, the next transfer request is ignored. Therefore, transfer is interrupted, and normal data transfer cannot be performed.


Figure 15-7. Transfer Request Clear and Register Access Conflict

(ii) In case of conflict between transmission/reception completion interrupt request signal (INTCSI0n) generation and register access

Since continuous transfer has stopped once, executed as a new continuous transfer.

In the slave mode, a bit phase error transfer error results (refer to Figure 15-8).

In the transmission/reception mode, the value of the SOTBFn register is retransmitted, and illegal data is sent.

DataSheet4U.com

15.5 Output Pins

The following describes the output pins. For the setting of each pin, refer to **Table 4-12 Settings When Port Pins Are Used for Alternate Functions**.

(1) SCK0n pin

When the CSI0n operation is disabled (CSIM0n.CSI0En bit = 0), the $\overline{SCK0n}$ pin output status is as follows.

CKPn	CKS0n2	CKS0n1	CKS0n0	SCK0n Pin Output
0	Don't care	Don't care	Don't care	Fixed to high level
1	1	1	1	High impedance
	Other than abo	ove		Fixed to low level

Table 15-2. SCK0n Pin Output Status

Remark n = 0, 1

(2) SO0n pin

When the CSI0n operation is disabled (CSI0En bit = 0), the SO0n pin output status is as follows.

et4U.com

Table 15-3. SOOn Pin Output Status

TRMDn	DAPn	AUTOn	CCLn	DIRn	SO0n Pin Output
0	Don't care	Don't care	DataShe Don't care	Don't care	Fixed to low level
1	0	Don't care	Don't care	Don't care	SO latch value (low level)
	1	0	0	0	SOTBn7 bit value
				1	SOTBn0 bit value
			1	0	SOTBn15 bit value
				1	SOTBn0 bit value
		1	0	0	SOTBFn7 bit value
				1	SOTBFn0 bit value
			1	0	SOTBFn15 bit value
				1	SOTBFn0 bit value

Remark n = 0, 1

DataShe

DataSheet4U.com

CHAPTER 16 I²C BUS

To use the l^2C bus function, set the P38/SDA0 and P39/SCL0 pins to N-ch open drain output as the alternate function.

In the V850ES/KE1+, one channel of I^2C bus is provided. The products with an on-chip I^2C bus are shown below.

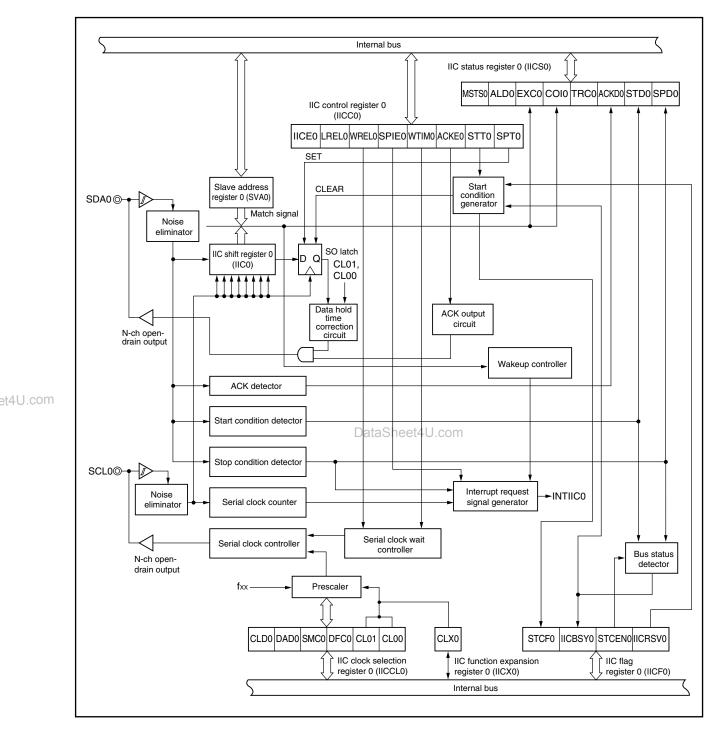
μPD703302Y, 70F3302Y

16.1 Features

The I²C0 has the following two modes.

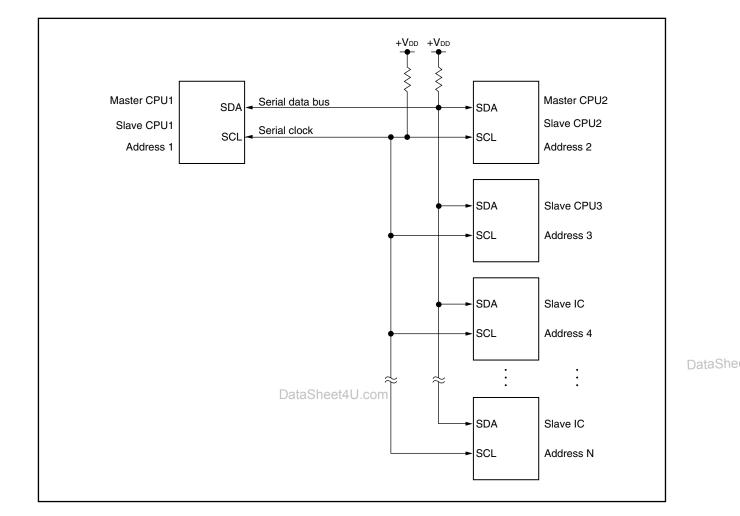
- Operation stop mode
- I²C (Inter IC) bus mode (multimaster supported)

(1) Operation stop mode


This mode is used when serial transfers are not performed. It can therefore be used to reduce power consumption.

(2) I²C bus mode (multimaster supported)

This mode is used for 8-bit data transfers with several devices via two lines: a serial clock (SCL0) line and a serial data bus (SDA0) line.


This mode complies with the I²C bus format and the master device can output "start condition", "data", and "stop condition" data to the slave device, via the serial data bus. The slave device automatically detects these received data by hardware. This function can simplify the part of application program that controls the I²C bus. Since the SCL0 and SDA0 pins are used for N-ch open drain outputs, I²C0 requires pull-up resistors for the serial clock line and the serial data bus line.

www.DataSheet4U.com

A serial bus configuration example is shown below.

DataSheet4U.com

et4U.com

www.DataSheet4U.com

16.2 Configuration

 I^2C0 includes the following hardware.

Table 16-1. Configuration of I²C0

Item	Configuration
Registers	IIC shift register 0 (IIC0) Slave address register 0 (SVA0)
Control registers	IIC control register 0 (IICC0) IIC status register 0 (IICS0) IIC flag register 0 (IICCF0) IIC clock selection register 0 (IICCL0) IIC function expansion register 0 (IICX0)

(1) IIC shift register 0 (IIC0)

The IIC0 register is used to convert 8-bit serial data to 8-bit parallel data and to convert 8-bit parallel data to 8-bit serial data. The IIC0 register can be used for both transmission and reception. Write and read operations to the IIC0 register are used to control the actual transmit and receive operations. The IIC0 register can be read or written in 8-bit units. After reset, IIC0 is cleared to 00H.

(2) Slave address register 0 (SVA0)

The SVA0 register sets local addresses when in slave mode. The SVA0 register can be read or written in 8-bit units. After reset, SVA0 is cleared to 00H.

(3) SO latch

The SO latch is used to retain the SDA0 pin's output level.

(4) Wakeup controller

This circuit generates an interrupt request signal (INTIIC0) when the address received by this register matches the address value set to the SVA0 register or when an extension code is received.

(5) Prescaler

This selects the sampling clock to be used.

(6) Serial clock counter

This counter counts the serial clocks that are output and the serial clocks that are input during transmit/receive operations and is used to verify that 8-bit data was sent or received.

(7) Interrupt request signal generator

This circuit controls the generation of interrupt request signals (INTIIC0). An I^2C interrupt is generated by the following two triggers.

- Falling edge of the eighth or ninth clock of the serial clock (set by IICC0.WTIM0 bit)
- Interrupt request generated when a stop condition is detected (set by IICC0.SPIE0 bit)

ataSheet4U.com

(8) Serial clock controller

In master mode, this circuit generates the clock output via the SCL0 pin from a sampling clock.

(9) Serial clock wait controller

This circuit controls the wait timing.

(10) ACK output circuit, stop condition detector, start condition detector, and ACK detector These circuits are used to output and detect various control signals.

(11) Data hold time correction circuit

This circuit generates the hold time for data corresponding to the falling edge of the serial clock.

(12) Start condition generator

This circuit generates a start condition when the IICC0.STT0 bit is set. However, in the communication reservation disabled status (IICF0.IICRSV0 bit = 1), when the bus is not released (IICF0.IICBSY0 bit = 1), start condition requests are ignored and the IICF0.STCF0 bit is set to 1.

(13) Bus status detector

This circuit detects whether or not the bus is released by detecting start conditions and stop conditions. However, as the bus status cannot be detected immediately following operation, the initial status is set by the IICF0.STCEN0 bit.

et4U.com

DataShe

DataSheet4U.com

16.3 Registers

l²C0 is controlled by the following registers.

- IIC control register 0 (IICC0)
- IIC status register 0 (IICS0)
- IIC flag register 0 (IICF0)
- IIC clock selection register 0 (IICCL0)
- IIC function expansion register 0 (IICX0)

The following registers are also used.

- IIC shift register 0 (IIC0)
- Slave address register 0 (SVA0)

Remark For the alternate-function pin settings, refer to Table 4-12 Settings When Port Pins Are Used for Alternate Functions.

(1) IIC control register 0 (IICC0)

The IICC0 register is used to enable/stop I²C0 operations, set wait timing, and set other I²C operations. The IICC0 register can be read or written in 8-bit or 1-bit units. After reset, IICC0 is cleared to 00H.

et4U.com

DataSheet4U.com

DataShe

CHAPTER 16 I²C BUS

CC0	IICE0 LRI				<3>	<2>	<1>	<0>	л I
		EL0	WREL0	SPIE0	WTIM0	ACKE0	STT0	SPT0]
IICE0				l ² C0 oper	ation enable	/disable spec	ification		
0	Stop operat	tion. R	eset the IICs	60 register ^{∾t}	^{•1} . Stop inte	rnal operatio	n.		
1	Enable ope	ration.							
ondition for	r clearing (IICE	0 bit = (0)		Cond	lition for setti	ng (IICE0 bi	t = 1)	
Cleared by Reset	instruction				• Set	by instructio	n		
REL0				Exit	from comm	unications			
0 No	ormal operation								
Th cle he standby re met.	ne SCL0 and SE ne STT0, SPT0, eared to 0. y mode following p condition is de	, IICS0. g exit f	MSTS0, IIC	S0.EXC0, IIC nications rer DataShee	mains in effe				STD0 bits are
An address	s match or exte	nsion c	ode receptic	on occurs aft	er the start c	ondition.			
ondition for	r clearing (LREI	L0 bit =	: 0) ^{Note 2}		Cond	tion for settin	ng (LREL0 bi	it = 1)	
Automatica Reset	ally cleared afte	er execu	ution		• Set	by instructior	1		
VREL0				W	ait cancellat	on control			
0	Do not cancel v	wait							
1	Cancel wait. Th	his sett	ing is autom	atically clear	red to 0 after	wait is cance	eled.		
ondition for	r clearing (WRE	EL0 bit =	= 0) ^{Note 2}		Cond	tion for settir	ng (WREL0 b	oit = 1)	
-		r execu	ution		• Set	by instructior	ı		

et4U.com

DataSheet4U.com

SPIE0	Enable/disable generation of inte	errupt request when stop condition is detected		
0	Disable			
1	Enable			
Condition f	or clearing (SPIE0 bit = 0) ^{Note}	Condition for setting (SPIE0 bit = 1)		
Cleared bReset	by instruction	Set by instruction		
WTIM0	Control of wait ar	nd interrupt request generation		
0	Interrupt request is generated at the eighth clock's falling edge. Master mode: After output of eight clocks, clock output is set to low level and wait is set. Slave mode: After input of eight clocks, the clock is set to low level and wait is set for master device.			
1	Interrupt request is generated at the ninth clock Master mode: After output of nine clocks, clock Slave mode: After input of nine clocks, the cloc	0 0		
bit. The se the falling is inserted	etting of this bit is valid when the address transfe edge of the ninth clock during address transfers.	k during address transfer independently of the setting of this r is completed. When in master mode, a wait is inserted at For a slave device that has received a local address, a wait nowledge signal (\overrightarrow{ACK}) is issued. However, when the slave the falling edge of the eighth clock.		
Condition f	or clearing (WTIM0 bit = 0) ^{Note}	Condition for setting (WTIM0 bit = 1)		
Cleared bReset	by instruction DataS	Set by instruction heet4U.com		
ACKE0	Ackno	owledgment control		
0	Disable acknowledgment.			
1	Enable acknowledgment. During the ninth cloc invalid during address transfers and other than	k period, the SDA0 line is set to low level. However, \overrightarrow{ACK} is in expansion mode.		
Condition f	or clearing (ACKE0 bit = 0) ^{Note}	Condition for setting (ACKE0 bit = 1)		
Cleared bReset	by instruction	Set by instruction		

Note This flag's signal is invalid when the IICE0 bit = 0.

www.DataSheet4U.com

et4U.com

(3/4)	

DataShe

0	Start condition trigger			
0	Do not generate a start condition.			
1	 When bus is released (in STOP mode): Generate a start condition (for starting as master). The SDA0 line is changed from high level to low level and then the start condition is generated. Next, after the rated amount of time has elapsed, the SCL0 line is changed to low level. When a third party is communicating: When communication reservation function is enabled (IICF0.IICRSV0 bit = 0) Functions as the start condition reservation flag. When set to 1, automatically generates a start condition after the bus is released. When communication reservation function is disabled (IICRSV0 bit = 1) The IICF0.STCF0 bit is set to 1. No start condition is generated. In the wait state (when master device): Generates a restart condition after releasing the wait. 			
	concerning set timing			
For maste	er reception: Cannot be set to 1 during transfer. Can be set to 1 only when the ACKE0 bit has been cleared to 0 and slave has been notified of final reception. er transmission: A start condition cannot be generated normally during the ACK0 period. Set to 1 during the wait period.			
For maste	cleared to 0 and slave has been notified of final reception. A start condition cannot be generated normally during the ACK0 period. Set to 1 during the			

et4U.com

(4/4)

SPT0	Stop condition tr	igger				
0	Stop condition is not generated.					
1	Stop condition is generated (termination of master device's transfer). After the SDA0 line goes to low level, either set the SCL0 line to high level or wait until the SCL0 pin goes to high level. Next, after the rated amount of time has elapsed, the SDA0 line is changed from low level to high level and a stop condition is generated.					
		n be set to 1 only when the ACKE0 bit has period after slave has been notified of final				
 Cannot I The SP1 When th of eight o When a 	er transmission: A stop condition cannot be generated nor during the wait period. be set to 1 at the same time as the STT0 bit. T0 bit can be set to 1 only when in master mode ^{Note 1} . ne WTIM0 bit has been cleared to 0, if the SPT0 bit is set t clocks, note that a stop condition will be generated during t ninth clock must be output, the WTIM0 bit should be set of eight clocks, and the SPT0 bit should be set to 1 during t	to 1 during the wait period that follows output he high-level period of the ninth clock. from 0 to 1 during the wait period following				
	for clearing (SPT0 bit = 0) ^{Note 2}	Condition for setting (SPT0 bit = 1)				
AutomatWhen th	by loss in arbitration tically cleared after stop condition is detected ne LREL0 bit = 1 (exit from communications) ne IICE0 bit = 0 (operation stop) DataSheet4U.c	Set by instruction				
	Set the SPT0 bit to 1 only in master mode. Howe stop condition generated before the first stop con operation enable status. For details, refer to 16.14 This flag's signal is invalid when the IICE0 bit = 0.	dition is detected following the switch to				
Caution	When the IICS0.TRC0 bit is set to 1, the WREL0 and wait is canceled, after which the TRC0 bit is to high impedance.	Ū				

et4U.com

DataShe

www.DataSheet4U.com

(2) IIC status register 0 (IICS0)

register.

The IICS0 register indicates the status of the I^2C0 bus. The IICS0 register is read-only, in 8-bit or 1-bit units. After reset, IICS0 is cleared to 00H.

Caution When the main clock is stopped and the CPU is operating on the subclock, do not access the IICS0 register using an access method that causes a wait. For details, refer to 3.4.8 (2).

	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>		
IICS0	MSTS0	ALD0	EXC0	COI0	TRC0	ACKD0	STD0	SPD0		
MSTS0	<u> </u>			Mas	ster device sta	atus				
0	Slave device status or communication standby status									
1	Master devi	ice communi	ication status	\$						
Condition	for clearing (N	/ISTS0 bit = 0	0)		Condition for	or setting (MS	TS0 bit = 1)			
commun	by the IICC0.L nications) ne IICC0.IICE0			aSheet4l operation	J.com					Da
commun • When th stop) • Reset	nications)									Du
commun • When th stop) • Reset ALD0	nications) ne IICC0.IICE0) bit changes	s from 1 to 0	Detection	on of arbitration		n result was	a "win"		
commun • When th stop) • Reset	This status) bit changes	s from 1 to 0 (Detectio was no arbit		the arbitration				
commun • When th stop) • Reset ALD0 0 1	This status) bit changes means eithe indicates the	er that there v	Detectio was no arbit	on of arbitration ration or that "loss". The N	the arbitration	cleared to 0			

et4U.com

DataSheet4U.com

(2	/3)
۰.			

r					
EXC0	Detection of a	extension code reception			
0	Extension code was not received.				
1	Extension code was received.				
Condition	for clearing (EXC0 bit = 0)	Condition for setting (EXC0 bit = 1)			
When aCleared	start condition is detected stop condition is detected by the LREL0 bit = 1 (exit from communications) le IICE0 bit changes from 1 to 0 (operation stop)	• When the higher four bits of the received address data is either "0000" or "1111" (set at the rising edge of the eighth clock).			

COI0	Detection	of matching addresses			
0	Addresses do not match.				
1	Addresses match.				
Condition	for clearing (COI0 bit = 0)	Condition for setting (COI0 bit = 1)			
When a Cleared	start condition is detected stop condition is detected by the LREL0 bit = 1 (exit from communications) e IICE0 bit changes from 1 to 0 (operation stop)	• When the received address matches the local address (SVA0 register) (set at the rising edge of the eighth clock).			

TRC0 Detection of transmit/receive status Receive status (other than transmit status). The SDA0 line is set for high impedance. 0 Transmit status. The value in the SO latch is enabled for output to the SDA0 line (valid starting at the rising 1 edge of the first byte's ninth clock). DataSheet4L Condition for clearing (TRC0 bit = 0) Condition for setting (TRC0 bit = 1) Master • When a stop condition is detected • Cleared by the LREL0 bit = 1 (exit from communications) • When a start condition is generated • When the IICE0 bit changes from 1 to 0 (operation stop) Slave • Cleared by the IICC0.WREL0 bit = 1^{Note} (wait release) • When "1" is input in the first byte's LSB (transfer • When the ALD0 bit changes from 0 to 1 (arbitration loss) direction specification bit) Reset Master • When "1" is output to the first byte's LSB (transfer direction specification bit) Slave • When a start condition is detected When not used for communication

Note The TRC0 bit is cleared to 0 and the SDA0 line becomes high impedance when the WREL0 bit is set to 1 and wait state is released at the ninth clock with the TRC0 bit = 1.

DataShe

www.DataSheet4U.com

DataSheet4U.com

et4U.com

ACKD0	Detection of a	acknowledge signal (ACK)
0	ACK signal was not detected.	
1	ACK signal was detected.	
Condition	for clearing (ACKD0 bit = 0)	Condition for setting (ACKD0 bit = 1)
At the risCleared	stop condition is detected sing edge of the next byte's first clock by the LREL0 bit = 1 (exit from communications) e IICE0 bit changes from 1 to 0 (operation stop)	 After the SDA0 pin is set to low level at the rising edge of the SCL0 pin's ninth clock
STD0	Detecti	ion of start condition
0	Start condition was not detected.	
1	Start condition was detected. This indicates that	at the address transfer period is in effect.
Condition	for clearing (STD0 bit = 0)	Condition for setting (STD0 bit = 1)
	stop condition is detected sing edge of the next byte's first clock following transfer	When a start condition is detected

et4U.com

DataShe

(3/3)

SPD0	DataSheet4 Detecti	on of stop condition		
0	Stop condition was not detected.			
1	Stop condition was detected. The master device's communication is terminated and the bus is released.			
Condition	for clearing (SPD0 bit = 0)	Condition for setting (SPD0 bit = 1)		
clock fol conditior	ising edge of the address transfer byte's first lowing setting of this bit and detection of a start n e IICE0 bit changes from 1 to 0 (operation stop)	When a stop condition is detected		

• When the IICE0 bit changes from 1 to 0 (operation stop)

Reset

(3) IIC flag register 0 (IICF0)

IICF0 is a register that sets the operation mode of I²C0 and indicates the status of the I²C bus. This register can be read or written in 8-bit or 1-bit units. However, the STCF0 and IICBSY0 bits are read-only. The IICRSV0 bit can be used to enable/disable the communication reservation function (refer to **16.13 Communication Reservation**).

The STCEN0 bit can be used to set the initial value of the IICBSY0 bit (refer to 16.14 Cautions).

The IICRSV0 and STCEN0 bits can be written only when the operation of I^2C0 is disabled (IICC0.IICE0 bit = 0). When operation is enabled, the IICF0 register can be read.

After reset, IICF0 is cleared to 00H.

et4U.com

DataSheet4U.com

DataSheet4U.com

DataShe

	<7>	<6>	5	4	3	2	<1>	<0>	
IICF0	STCF0	IICBSY0	0	0	0	0	STCEN0	IICRSV0	
	STCF0				lico	CO.STTO c	lear flag		
	0	Generate s	tart cond	lition					
	1	Start condi	tion gene	eration unsu	uccessful: d	clear STT) flag		
	Condition	for clearing	(STCF0	bit = 0)		Condit	ion for settin	g (STCF0 bit = 1)	
	ClearedReset	d by the STT	0 bit = 1			STT	0 bit cleared	condition unsuccessfu to 0 when communica abled (IICRSV0 bit =	ation
	IICBSY0				l ² C	0 bus stat	us flag		
	0	Bus release	e status				5		
	1	Bus comm	unication	status					
	Condition	for clearing	(IICBSY	0 bit = 0)		Condit	on for settin	g (IICBSY0 bit = 1)	
	Detecti Reset	on of stop co	ondition				ction of start ng of the IIC	condition E0 bit when the STCE	N0 bit =
	STCEN0				Initia	l start enal	ole trigger		
	0	After opera a stop cond		nabled (IIC Datas	E0 bit = 1), Sheet4U	enable ge com	eneration of a	a start condition upon	detectio
	1	After opera a stop cono		nabled (IIC	E0 bit = 1),	enable ge	eneration of a	a start condition withou	ut detect
	Condition	for clearing	(STCE0	bit = 0)		Condit	ion for settin	g (STCE0 bit = 1)	
	DetectionReset	on of start co	ndition			• Setti	ng by instruc	tion	
	IICRSV0			Comr	nunication	recenuatio	n function di	sable bit	
	0	Enable con	municat			10001 VallO			
	1	Disable con							
		for clearing				Conditi	on for settin	g (IICRSV0 bit = 1)	
		by instruction		,			ng by instruc		
		d 7 are rea	-						
Caut	2. A s	s the bus tatus whe	release n the ST	e status (FCEN0 bi	IICBSY0 t = 1, whe	bit = 0) i en gener	s recogniz ating the f	pped (IICE0 bit = 0 red regardless of t irst start condition tions are in progre	the actor (STT0

et4U.com

DataShe

(4) IIC clock selection register 0 (IICCL0)

The IICCL0 register is used to set the transfer clock for l^2C0 .

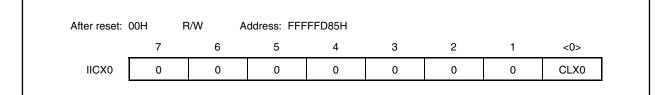
The IICCL0 register can be read or written in 8-bit or 1-bit units. However, the CLD0 and DAD0 bits are readonly. The SMC0, CL01, and CL00 bits are set in combination with the IICX0.CLX0 bit (refer to **16.3 (6)** l^2 **C0 transfer clock setting method**).

After reset, IICCL0 is cleared to 00H.

	7	6	<5>	<4>	3	2	1	0
IICCL0	0	0	CLD0	DAD0	SMC0	DFC0	CL01	CL00
CLD0		D	etection of S	CL0 pin lev	el (valid only v	vhen IICC0.II	CE0 bit = 1)	
0	The SCL0	pin was dete	ected at low le	evel.				
1	The SCL0	pin was dete	ected at high	level.				
Condition 1	for clearing (0	CLD0 bit = 0)		Condition fo	r setting (CLI	D0 bit = 1)	
	e SCL0 pin is e IICE0 bit =		stop)		When the	SCL0 pin is a	at high level	
DAD0			Detection of	of SDA0 pin	level (valid or	ly when IICE	0 bit = 1)	
0	The SDA0	pin was dete	ected at low I	Datas	hoot411.00	20		
1	The SDA0	pin was dete	ected at high	Datao	100140.001	11		
Condition 1	for clearing ([DAD0 bit = 0)		Condition fo	r setting (DA	D0 bit = 1)	
	e SDA0 pin is e IICE0 bit =				When the	SDA0 pin is a	at high level	
SMC0				Operat	ion mode swi	tching		
	Operates in	n standard m	node.					
0	Operates in	n high-speed	l mode.					
0 1								
				Digital fi	Iter operation	control		
1	Digital filter	r off.		Digital fi	Iter operation	control		
1 DFC0	Digital filter			Digital fi	lter operation	control		

DataShe

www.DataSheet4U.com


DataSheet4U.com

et4U.com

(5) IIC function expansion register 0 (IICX0)

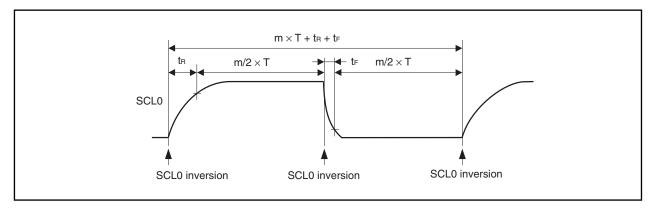
This register sets the function expansion of I²C0 (valid only in high-speed mode).

This register can be read or written in 8-bit or 1-bit units. The CLX0 bit is set in combination with the IICCL0.SMC0, IICCL0.CL01, and IICCL0.CL00 bits (refer to **16.3 (6) I**²**C0 transfer clock setting method**). After reset, IICX0 is cleared to 00H.

(6) I²C0 transfer clock setting method

The I²C0 transfer clock frequency (fscL) is calculated using the following expression.

 $f_{SCL} = 1/(m \times T + t_R + t_F)$


m = 12, 24, 48, 54, 86, 88, 172, 198 (refer to Table 16-2 Selection Clock Setting)

- T: 1/fxx
- tR: SCL0 rise time
- t⊧: SCL0 fall time

et4U.com

For example, the l^2C0 transfer clock frequency (fscL) when fxx = 16 MHz, m = 172, t_R = 200 ns, and t_F = 50 ns is calculated using following expression. DataSheet4U.com

fscL = 1/(172 × 62.5 ns + 200 ns + 50 ns) ≅ 90.9 kHz

The selection clock is set using a combination of the IICCL0.SMC0, IICCL0.CL01, and IICCL0.CL00 bits and the IICX0.CLX0 bit.

DataShe

IICX0		IICCL0		Selection Clock	Transfer Clock	Settable Internal System	Operation Mode
Bit 0	Bit 3	Bit 1	Bit 0		(fxx/m)	Clock Frequency (fxx)	
CLX0	SMC0	CL01	CL00			Range	
0	0	0	0	fxx/2	fxx/88	4.0 MHz to 8.38 MHz	Normal mode
0	0	0	1	fxx/2	fxx/172	8.38 MHz to 16.76 MHz	(SMC0 bit = 0)
0	0	1	0	fxx	fxx/86	4.19 MHz to 8.38 MHz	
0	0	1	1	fxx/3	fxx/198	16.0 MHz to 19.8 MHz	
0	1	0	x	fxx/2	fxx/48	8 MHz to 16.76 MHz	High-speed mode
0	1	1	0	fxx	fxx/24	4 MHz to 8.38 MHz	(SMC0 bit = 1)
0	1	1	1	fxx/3	fxx/54	16 MHz to 20 MHz	
1	0	x	x	Setting prohibited			
1	1	0	x	fxx/2	fxx/24	8.00 MHz to 8.38 MHz	High-speed mode
1	1	1	0	fxx	fxx/12	4.00 MHz to 4.19 MHz	(SMC0 bit = 1)
1	1	1	1	Setting prohibited			

Table 16-2. Selection Clock Setting

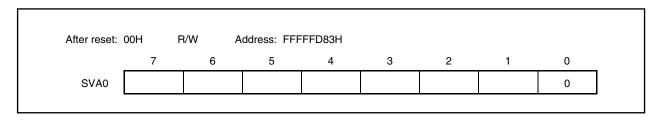
Remark x: don't care

et4U.com

(7) IIC shift register 0 (IIC0)

The IIC0 register is used for serial transmission/reception (shift operations) that is synchronized with the serial clock. DataSheet4U.com

The IIC0 register can be read or written in 8-bit units, but data should not be written to the IIC0 register during a data transfer.


When the IIC0 register is written during wait, the wait is cancelled and data transfer is started. After reset, IIC0 is cleared to 00H.

After reset:	00H	R/W	Address: FF	FFFD80H				
	7	6	5	4	3	2	1	0
IIC0								

(8) Slave address register 0 (SVA0)

The SVA0 register holds the I²C bus's slave addresses.

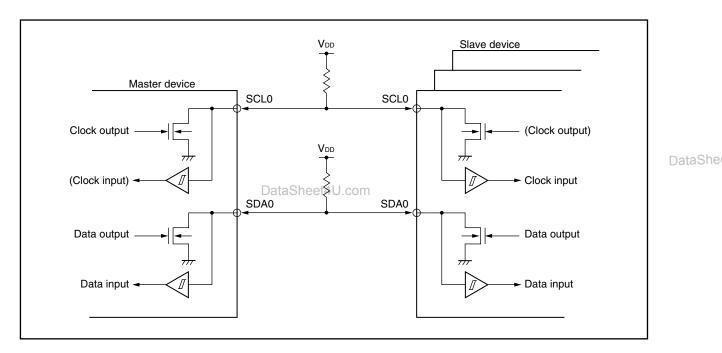
The SVA0 register can be read or written in 8-bit units, but bit 0 should be fixed as 0. After reset, SVA0 is cleared to 00H.

DataSheet4U.com

448

www.DataSheet4U.com

DataShe

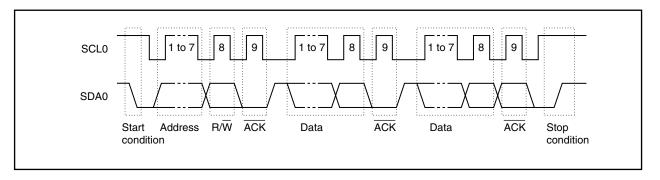

16.4 Functions

16.4.1 Pin configuration

The serial clock pin (SCL0) and serial data bus pin (SDA0) are configured as follows.

SCL0This pin is used for serial clock input and output. This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input. SDA0This pin is used for serial data input and output. This pin is an N-ch open-drain output for both master and slave devices. Input is Schmitt input.

Since outputs from the serial clock line and the serial data bus line are N-ch open-drain outputs, an external pull-up resistor is required.

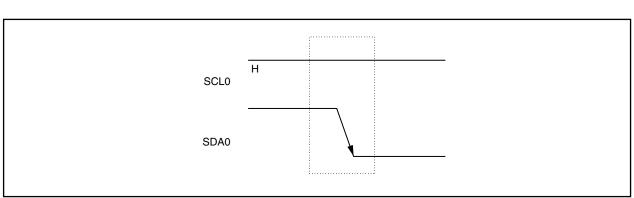


et4U.com

16.5 I²C Bus Definitions and Control Methods

The following section describes the I^2C bus's serial data communication format and the signals used by the I^2C bus. The transfer timing for the "start condition", "data", and "stop condition" output via the I^2C bus's serial data bus is shown below.

The master device outputs the start condition, slave address, and stop condition.


The acknowledge signal (\overline{ACK}) can be output by either the master or slave device (normally, it is output by the device that receives 8-bit data).

The serial clock (SCL0) is continuously output by the master device. However, in the slave device, the SCL0 pin's low-level period can be extended and a wait can be inserted.

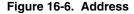
16.5.1 Start condition

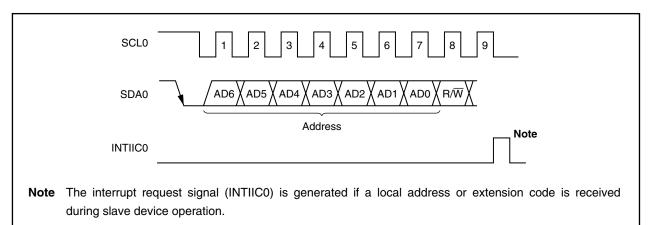
DataSheet4U.com

A start condition is met when the SCL0 pin is at high level and the SDA0 pin changes from high level to low level. The start conditions for the SCL0 pin and SDA0 pin are signals that the master device outputs to the slave device when starting a serial transfer. Start conditions can be detected when the device is used as a slave.

Figure 16-5. Start Conditions

A start condition is output when the IICC0.STT0 bit is set to 1 after a stop condition has been detected (IICS0.SPD0 bit = 1). When a start condition is detected, the IICS0.STD0 bit is set to 1.


DataShe

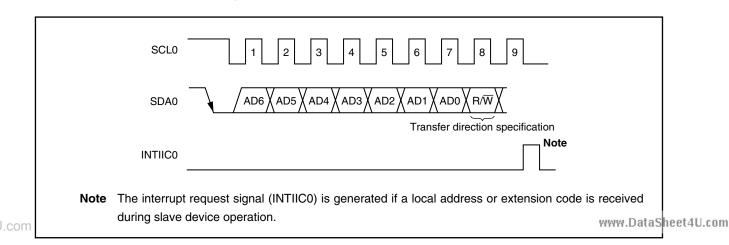

16.5.2 Addresses

The 7 bits of data that follow the start condition are defined as an address.

An address is a 7-bit data segment that is output in order to select one of the slave devices that are connected to the master device via bus lines. Therefore, each slave device connected via the bus lines must have a unique address.

The slave devices include hardware that detects the start condition and checks whether or not the 7-bit address data matches the data values stored in the SVA0 register. If the address data matches the SVA0 register values, the slave device is selected and communicates with the master device until the master device transmits a start condition or stop condition.

t4U.com


DataSheet4U.com

The slave address and the eighth bit, which specifies the transfer direction as described in **16.5.3** Transfer direction specification below, are together written to the IIC0 register and are then output. Received addresses are written to the IIC0 register.

The slave address is assigned to the higher 7 bits of the IIC0 register.

16.5.3 Transfer direction specification

In addition to the 7-bit address data, the master device sends 1 bit that specifies the transfer direction. When this transfer direction specification bit has a value of 0, it indicates that the master device is transmitting data to a slave device. When the transfer direction specification bit has a value of 1, it indicates that the master device is receiving data from a slave device.

16.5.4 Acknowledge signal (ACK)

The acknowledge signal (\overline{ACK}) is used by the transmitting and receiving devices to confirm serial data reception.

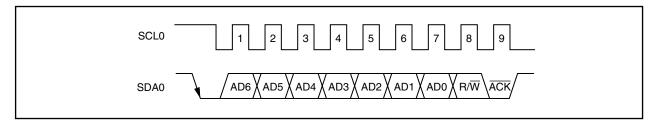
The receiving device returns one \overline{ACK} signal for each 8 bits of data it receives. The transmitting device normally receives an \overline{ACK} signal after transmitting 8 bits of data. However, when the master device is the receiving device, it does not output an \overline{ACK} signal after receiving the final data to be transmitted. The transmitting device detects whether or not an \overline{ACK} signal is returned after it transmits 8 bits of data. When an \overline{ACK} signal is returned, the reception is judged as normal and processing continues. If the slave device does not return an \overline{ACK} signal, the master device outputs either a stop condition or a restart condition and then stops the current transmission. Failure to return an \overline{ACK} signal may be caused by the following two factors.

<1> Reception was not performed normally.

<2> The final data was received.

When the receiving device sets the SDA0 line to low level during the ninth clock, the ACK signal becomes active (normal receive response).

When the IICC0.ACKE0 bit is set to 1, automatic ACK signal generation is enabled.

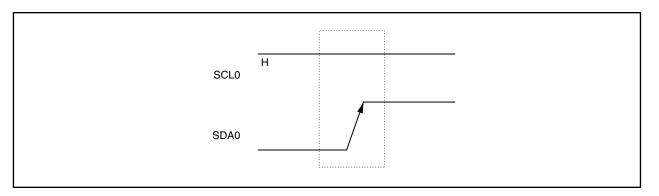

Transmission of the eighth bit following the 7 address data bits causes the IICS0.TRC0 bit to be set. When this TRC0 bit's value is 0, it indicates receive mode. Therefore, the ACKE0 bit should be set to 1.

When the slave device is receiving (when TRC0 bit = 0), if the slave device does not need to receive any more data after receiving several bytes, clearing the ACKE0 bit to 0 will prevent the master device from starting transmission of the subsequent data.

Similarly, when the master device is receiving (when TRC0 bit = 0) and the subsequent data is not needed and when either a restart condition or a stop condition should therefore be output, clearing the ACKE0 bit to 0 will prevent the \overline{ACK} signal from being returned. This prevents the MSB data from being output via the SDA0 line (i.e., stops transmission) during transmission from the slave device.

DataShe

When the local address is received, an ACK signal is automatically output in synchronization with the falling edge of the SCL0 pin's eighth clock regardless of the ACKE0 bit value. No ACK signal is output if the received address is not a local address.


The ACK signal output method during data reception is based on the wait timing setting, as described below.

- When 8-clock wait is selected: ACK signal is output at the falling edge of the SCL0 pin's eighth clock if the (IICC0.WTIM0 bit = 0) ACKE0 bit is set to 1 before wait cancellation.
- When 9-clock wait is selected: ACK signal is automatically output at the falling edge of the SCL0 pin's eighth (WTIM0 bit = 1)
 Clock if the ACKE0 bit has already been set to 1.

16.5.5 Stop condition

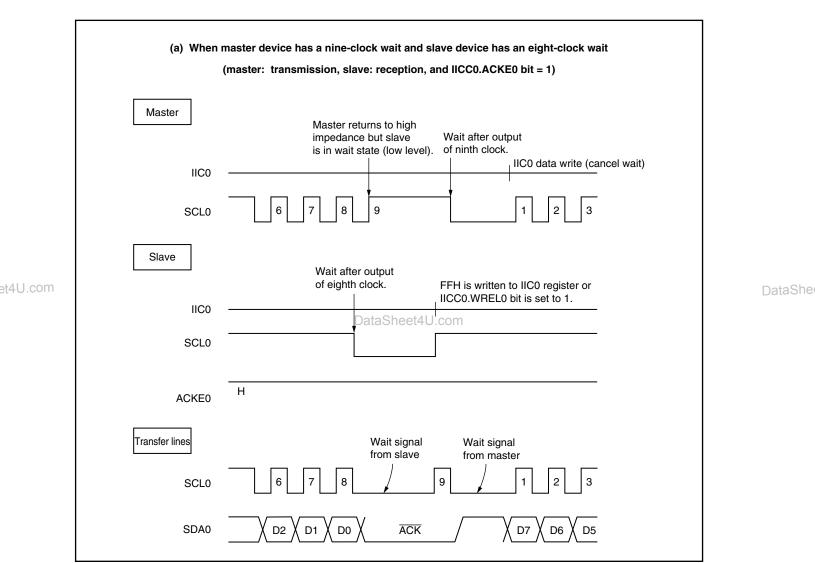
When the SCL0 pin is at high level, changing the SDA0 pin from low level to high level generates a stop condition. A stop condition is a signal that the master device outputs to the slave device when serial transfer has been completed. Stop conditions can be detected when the device is used as a slave.

A stop condition is generated when the IICC0.SPT0 bit is set to 1. When the stop condition is detected, the IICS0.SPD0 bit is set to 1 and the interrupt request signal (INTIIC0) is generated when the IICC0.SPIE0 bit is set to 1.

et4U.com

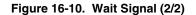
DataSheet4U.com

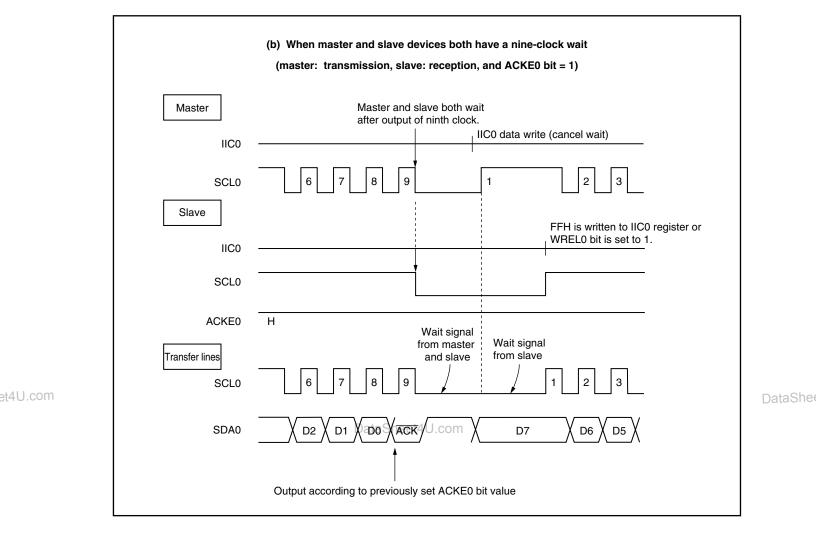
DataSheet4U.com


DataShe

453

16.5.6 Wait signal (WAIT)


The wait signal (WAIT) is used to notify the communication partner that a device (master or slave) is preparing to transmit or receive data (i.e., is in a wait state).

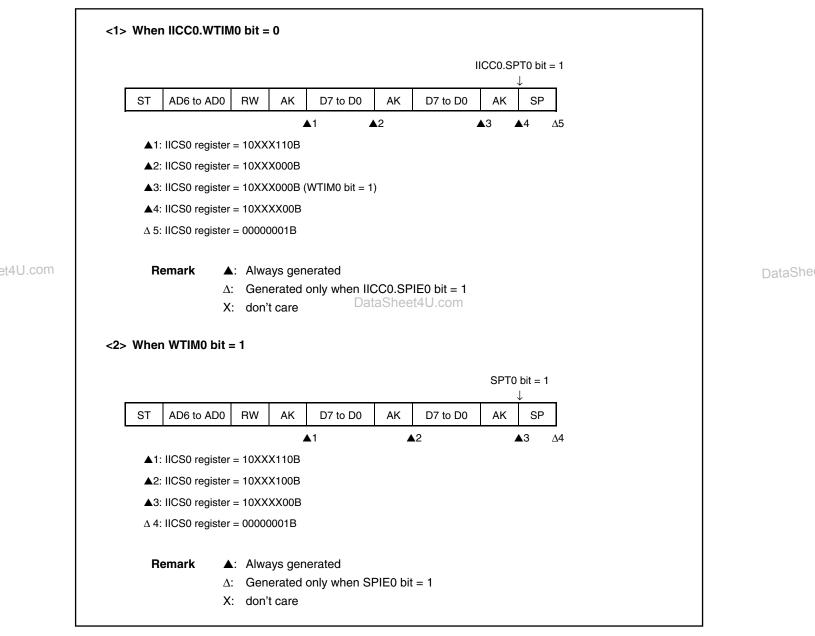

Setting the SCL0 pin to low level notifies the communication partner of the wait status. When wait status has been canceled for both the master and slave devices, the next data transfer can begin.

www.DataSheet4U.com

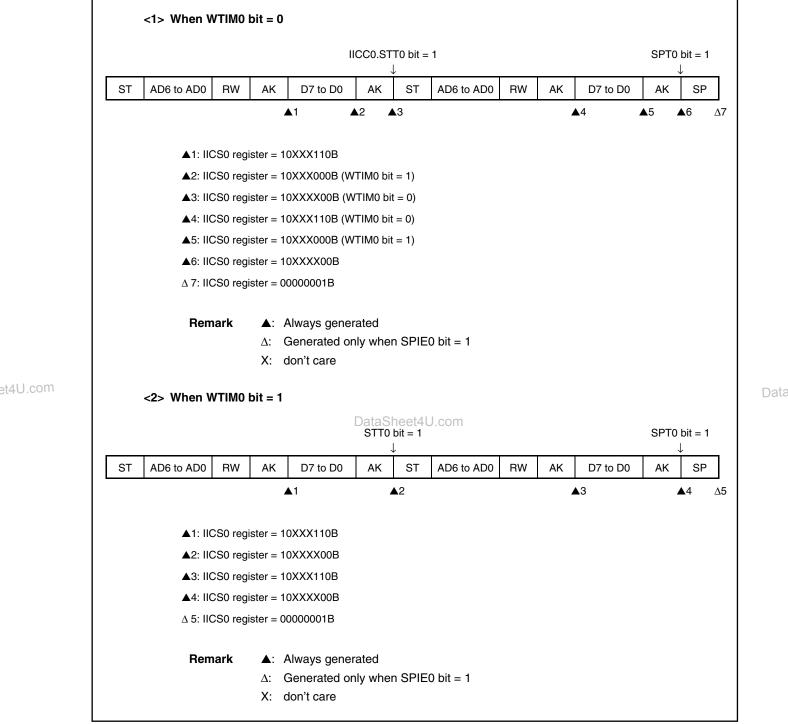
A wait may be automatically generated depending on the setting for the IICC0.WTIM0 bit.

Normally, when the WREL0 bit is set to 1 or when FFH is written to the IIC0 register, the wait status is canceled and the transmitting side writes data to the IIC0 register to cancel the wait status.

The master device can also cancel the wait status via either of the following methods.

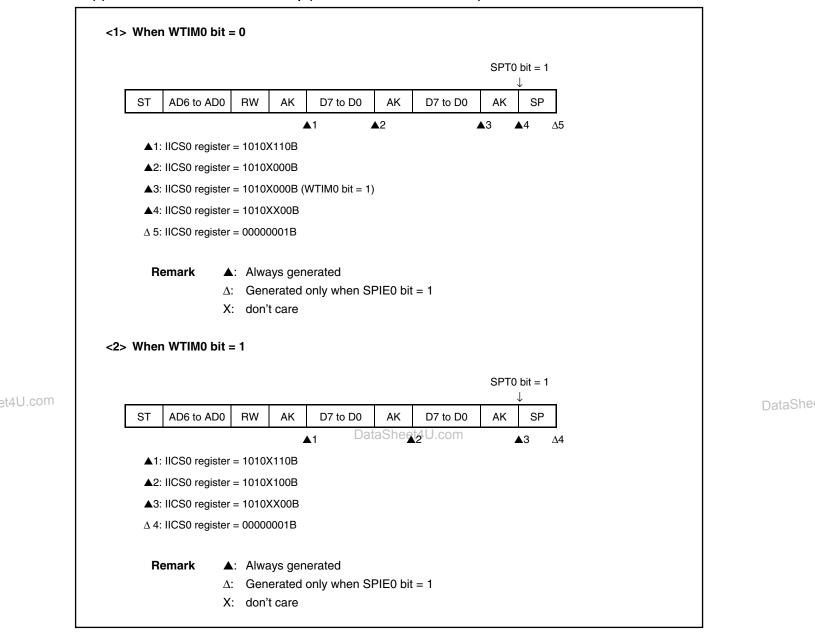

- By setting the IICC0.STT0 bit to 1
- By setting the IICC0.SPT0 bit to 1

16.6 I²C Interrupt Request Signals (INTIIC0)


The following shows the value of the IICS0 register at the INTIIC0 interrupt request signal generation timing and at the INTIIC0 signal timing.

16.6.1 Master device operation

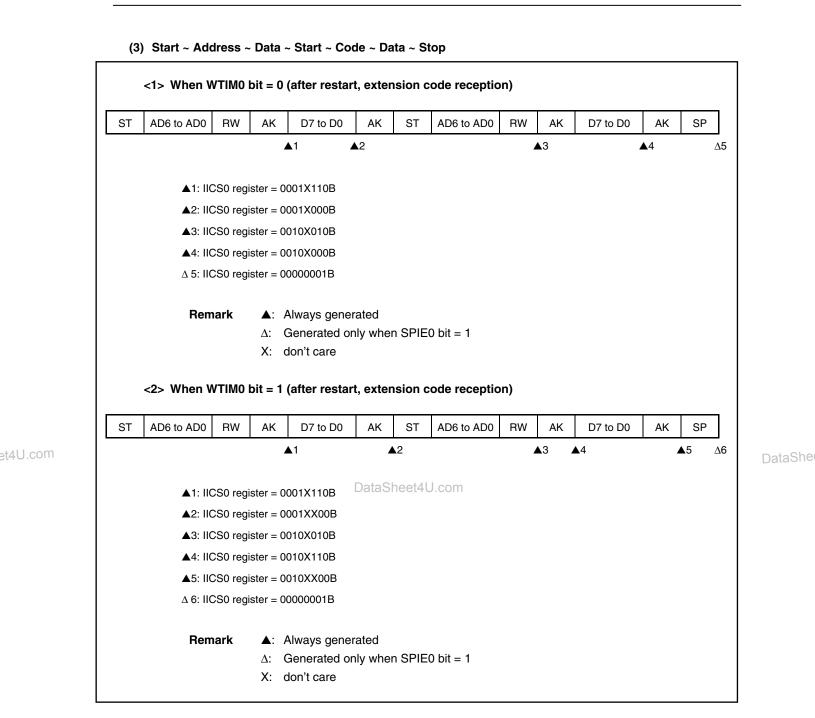
(1) Start ~ Address ~ Data ~ Data ~ Stop (normal transmission/reception)

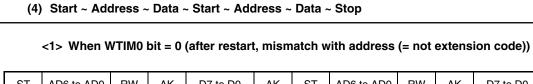


(2) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop (restart)


```
DataShe
```

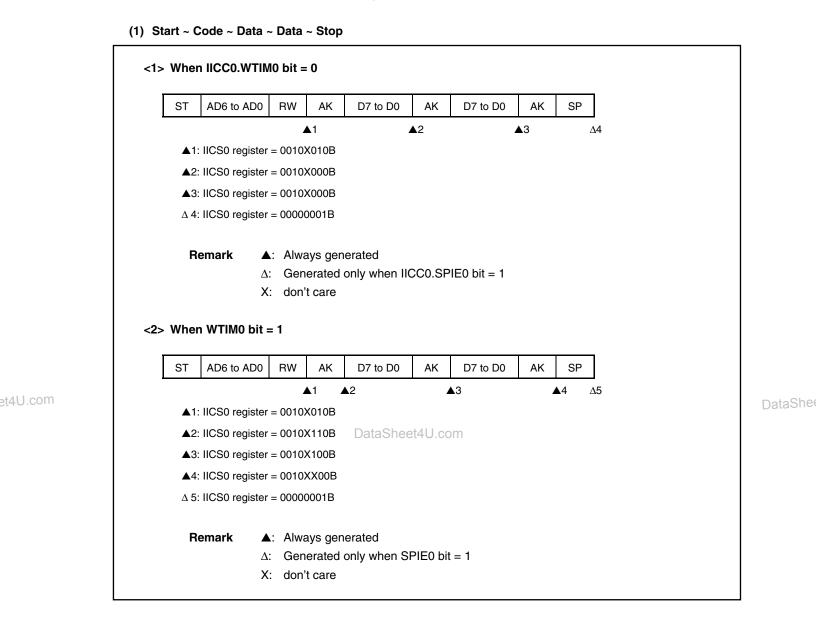
(3) Start ~ Code ~ Data ~ Data ~ Stop (extension code transmission)


DataSheet4U.com


16.6.2 Slave device operation (when receiving slave address data (match with address))

(2) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop
--

ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SF
			4	▲ 1	▲2				4	▲3	▲4	
	▲ 1: II0	CS0 regi	ster = 0	001X110B								
	▲ 2: II0	CS0 regi	ster = 0	001X000B								
	▲ 3: II0	CS0 regi	ster = 0	001X110B								
	▲ 4: II0	CS0 regi	ster = 0	001X000B								
	Δ 5: IIC	CS0 regi	ster = 0	0000001B								
	Rem	ark	▲ : /	Always genei	rated							
			Δ: 0	Generated or	nlv who		0 hit _ 1					
					ing which		0 DII = 1					
				don't care	ily when		0 Dit = 1					
ST	<2> When V AD6 to AD0	VTIMO E	X: (oit = 1	don't care (after restar	t, matc	h with	address)	BW	AK	D7 to D0	АК	SF
ST	<2> When V AD6 to AD0		X: 0 bit = 1 AK	don't care	t, matc			RW	AK	D7 to D0 ▲3	AK	SF ▲4
ST	AD6 to AD0	RW	X: 0 Dit = 1 AK	don't care (after restar D7 to D0	t, matc	h with ST	address)					
ST	AD6 to AD0	RW CS0 regis	X: of bit = 1 AK ster = 0	don't care (after restar D7 to D0 ▲1	t, matc	h with ST	address) AD6 to AD0					
ST	AD6 to AD0 ▲1: IIC ▲2: IIC	RW CS0 regis	X: of AK AK Ster = 0 Ster = 0	don't care (after restar D7 to D0 ▲1 001X110B	t, matc	h with ST	address) AD6 to AD0					
ST	AD6 to AD0 ▲1: II0 ▲2: II0 ▲3: II0	RW CS0 regis CS0 regis	X: o Dit = 1 AK AK Ster = 0 Ster = 0 Ster = 0	don't care (after restar D7 to D0 ▲1 001X110B 001XX00B	t, matc	h with ST	address) AD6 to AD0					
ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC	RW CS0 regis CS0 regis CS0 regis	X: o bit = 1 AK AK ster = 0 ster = 0 ster = 0 ster = 0	don't care (after restar D7 to D0 ▲1 001X110B 001X200B 001X110B	t, matc	h with ST	address) AD6 to AD0					
ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC	RW CS0 regis CS0 regis CS0 regis CS0 regis	X: of AK	don't care (after restar D7 to D0 ▲1 001X110B 001XX00B 001X110B 001XX00B	t, matc	h with S⊤ ▲2 DataS	address) AD6 to AD0 heet4U.com					

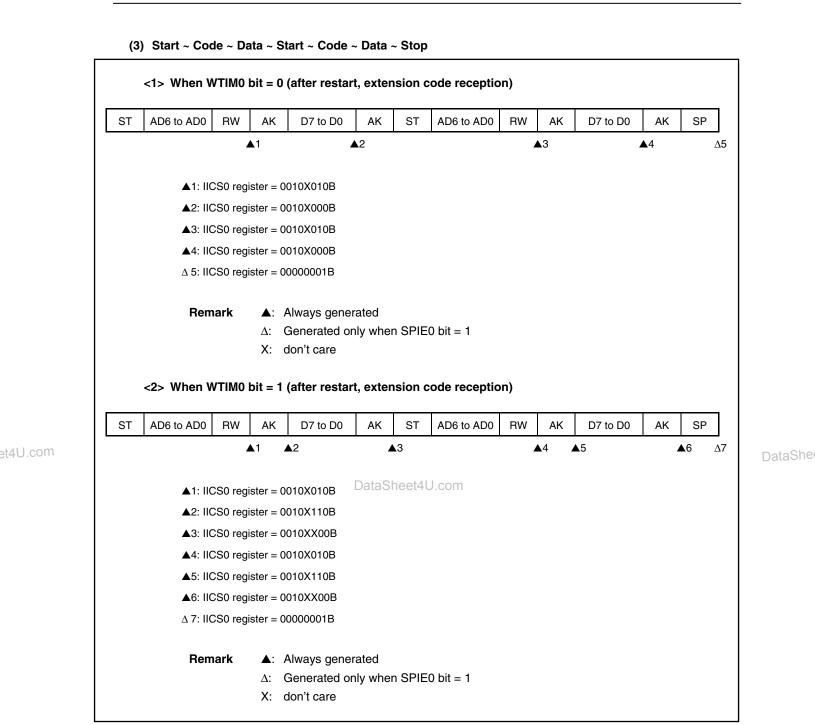


ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
			4	1	2					3		4
	▲2: 110 ▲3: 110 ∆ 4: 110 Rem	CS0 regi CS0 regi CS0 regi	ster = 0 ster = 0 ster = 0 ▲: // ∆: (X: (001X110B 001X000B 0000X10B 0000001B Always gener Generated or don't care	ily whei							
ST	<2> When W	RW	bit = 1	(after restart	t, mism	sT	AD6 to AD0	(= not	extens AK	D7 to D0	AK	SP
0.	1.20101.20			1		2				3	7	<u> </u>
	▲ 2: IIC	CS0 regi	ster = 0	001X110B 001XX00B 0000X10B		DataS	heet4U.com					
	∆ 4: IIC Rem	-	▲ : /	0000001B Always gener Generated or								

DataShe

www.DataSheet4U.com

16.6.3 Slave device operation (when receiving extension code)


www.DataSheet4U.com

(2) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop

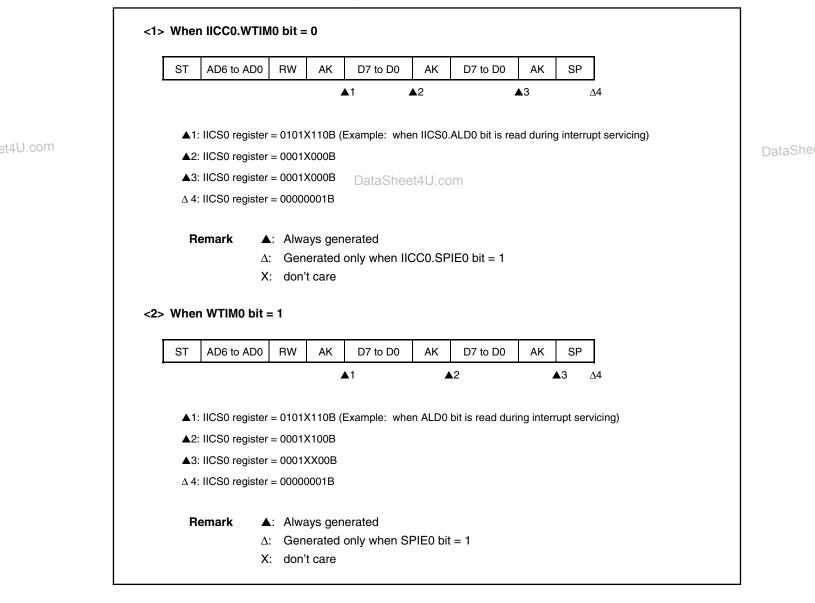
	ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP
-				1		2				4	▲3	▲4	
		▲ 1: IIC	CS0 regi	ster = 0	010X010B								
		▲ 2: II0	CS0 regi	ster = 0	010X000B								
		▲ 3: IIC	CS0 regi	ster = 0	001X110B								
		▲ 4: IIC	CS0 regi	ster = 0	001X000B								
		Δ 5: IIC	CS0 regi	ster = 0	0000001B								
		Rem	Idrk	Δ: 0	Always gener Generated or don't care		n SPIE	0 bit = 1					
		<2> When V	VTIMO E			t, matc	h with	address)					
	ST	<2> When V AD6 to AD0	VTIMO B			t, matc	h with ST	address)	RW	AK	D7 to D0	AK	SP
	ST	1	RW	bit = 1 AK	(after restar	AK	1	1	RW		D7 to D0		SP ▲5
	ST	AD6 to AD0	RW	bit = 1 AK	(after restar	AK	ST 3	1					
	ST	AD6 to AD0	RW A	bit = 1 AK 1	(after restar D7 to D0 ▲2	AK	ST 3	AD6 to AD0					
	ST	AD6 to AD0 ▲1: IIC ▲2: IIC	RW CS0 regis	bit = 1 <u>AK</u> 1 ster = 0 ster = 0	(after restar D7 to D0 ▲2 010X010B	AK	ST 3	AD6 to AD0					
	ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC	RW CS0 regis CS0 regis	bit = 1 <u>AK</u> 1 ster = 0 ster = 0 ster = 0	(after restar D7 to D0 ▲2 010X010B 010X110B	AK	ST 3	AD6 to AD0					
	ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC	RW CS0 regis CS0 regis CS0 regis CS0 regis	bit = 1 <u>AK</u> 1 ster = 0 ster = 0 ster = 0 ster = 0	(after restar D7 to D0 ▲2 010X010B 010X110B 010XX00B	AK	ST 3	AD6 to AD0					
	ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC ▲5: IIC	RW CS0 regis CS0 regis CS0 regis CS0 regis CS0 regis	bit = 1 AK A ster = 0 ster = 0 ster = 0 ster = 0 ster = 0 ster = 0	(after restar D7 to D0 ▲2 010X010B 010X110B 010XX00B 001X110B	AK	ST 3	AD6 to AD0					
	ST	AD6 to AD0 ▲1: IIC ▲2: IIC ▲3: IIC ▲4: IIC ▲5: IIC	RW CS0 regis CS0 regis CS0 regis CS0 regis CS0 regis CS0 regis	bit = 1 AK A ster = 0 ster = 0 ster = 0 ster = 0 ster = 0 ster = 0 ster = 0	(after restar D7 to D0 ▲2 010X010B 010X10B 010XX00B 001X10B 001XX00B	АК	ST 3	AD6 to AD0					

DataShe

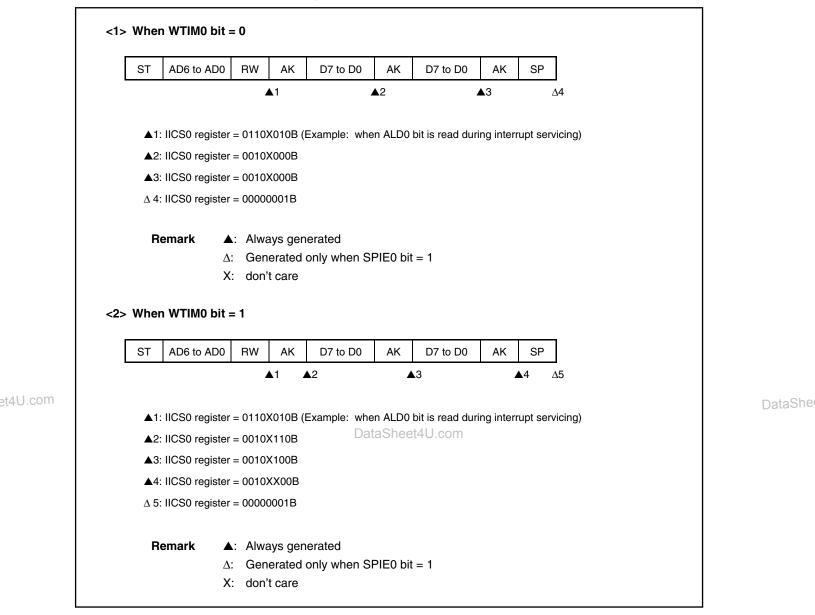
DataSheet4U.com

ST	AD6 to AD0	RW	AK	D7 to D0	AK	ST	AD6 to AD0	RW	AK	D7 to D0	AK
			1		2				4	3	
	▲ 1: II0	CS0 regi	ster = 0	010X010B							
	▲2: 10	CS0 regi	ster = 0	010X000B							
	▲ 3: II0	CS0 regi	ster = 0	0000X10B							
	Δ 4 : II0	CS0 regi	ster = 0	0000001B							
				Generated or don't care							
	<2> When V	VTIMO			t, mism	natch v	vith address	(= not	extens	ion code))	
ST	<2> When V AD6 to AD0	VTIMO RW			t, mism AK	natch w	AD6 to AD0	(= not RW	extens AK	ion code)) D7 to D0	AK
ST		RW	bit = 1 AK	(after restar	AK	1			AK		AK
ST	AD6 to AD0 ▲1: 110 ▲2: 110 ▲3: 110 ▲4: 110	RW CS0 regi CS0 regi CS0 regi CS0 regi	bit = 1 AK ster = 0 ster = 0 ster = 0 ster = 0	(after restar	AK	ST 3		RW	AK	D7 to D0	АК
ST	AD6 to AD0 ▲1: 110 ▲2: 110 ▲3: 110 ▲4: 110	RW CS0 regi CS0 regi CS0 regi CS0 regi CS0 regi	bit = 1 <u>AK</u> <u>ster = 0</u> <u>ster = 0</u> <u>ster = 0</u> <u>ster = 0</u> <u>ster = 0</u> <u>ster = 0</u>	(after restard D7 to D0 ▲2 010X010B 010X110B 010X10B 010XX00B 0000X10B	AK	st 3 DataS	AD6 to AD0	RW	AK	D7 to D0	АК

(4) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop

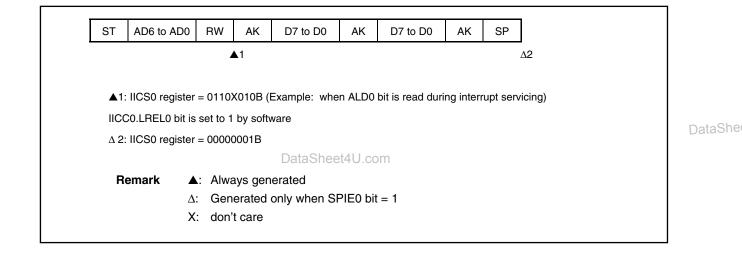

16.6.4 Operation without communication

(1) Start ~ Code ~ Data ~ Data ~ Stop


ST AD6 to	o AD0	RW	AK	D7 to D0	AK	D7 to D0	AK	SP
ST ADOL	5 ADU	RW	AN	D7 10 D0	An	D7 to D0	AK	35
								4
Δ 1: IICS0 r	register	= 00000	0001B					
Remark	Δ	Gen	erated	only when IIC	C0.SP	IE0 bit = 1		

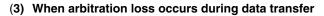
16.6.5 Arbitration loss operation (operation as slave after arbitration loss)

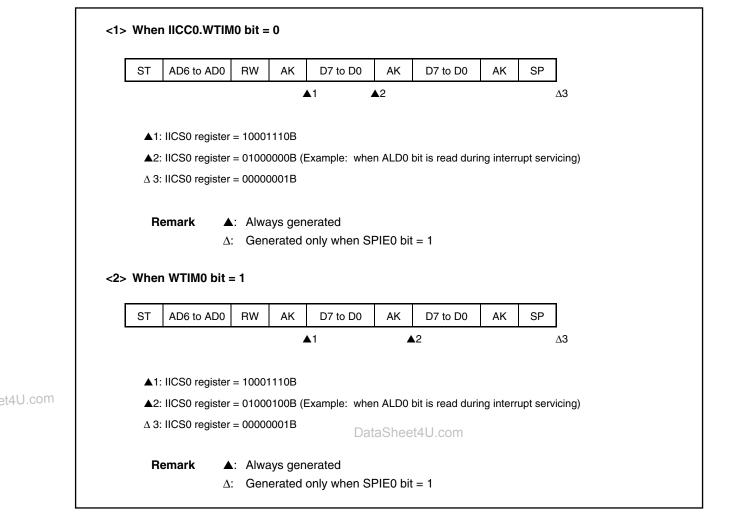
(1) When arbitration loss occurs during transmission of slave address data



16.6.6 Operation when arbitration loss occurs (no communication after arbitration loss)

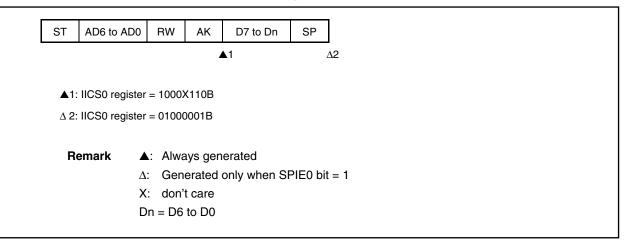
(1) When arbitration loss occurs during transmission of slave address data

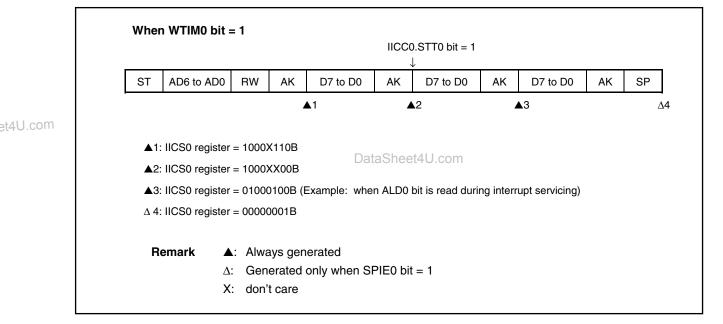

ST AD6 to A	D0 RW	AK	D7 to D0	AK	D7 to D0	AK	SP]
			1			1	1	Δ2
▲1: IICS0 reg ∆ 2: IICS0 reg		`	Example: whe	n IICS0./	ALD0 bit is rea	ıd during	g interru	pt servicing)
Remark	Δ - Δ Ιω	ays gen	erated					


(2) When arbitration loss occurs during transmission of extension code

DataSheet4U.com

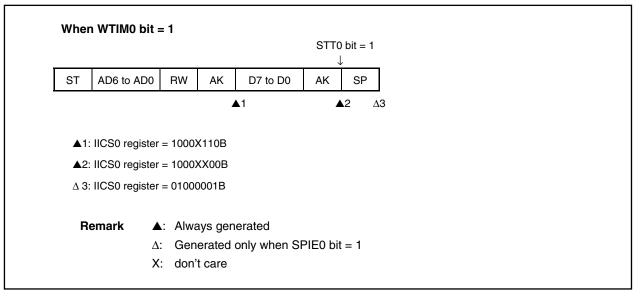
et4U.com



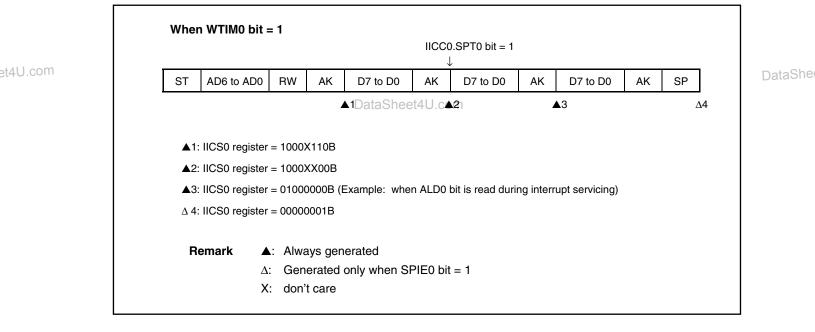

ST	AD6 to AD0	RW	AK	D7 to Dn	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP			
	<u> </u>			1					2			Δ3		
	▲ 1: IIC	CS0 regi	ster = 10	000X110B										
					ample:	when ALD0 bit	is read (during ir	nterrupt servici	ng)				
	∆ 3: IIC	CS0 regi	ster = 00	000001B										
	Rem	ıark		Always gener										
					ly whe	en SPIE0 bit =	1							
			X: d	lon't care									1	
			-											
	0 Extanci			D6 to D0										
ST	<2> Extension	ion cod		D6 to D0 D7 to Dn	ST	AD6 to AD0	RW	AK	D7 to D0	AK	SP	1		
ST			le AK		ST	AD6 to AD0		AK ▲2	D7 to D0	AK] ∆3		
ST			le AK	D7 to Dn	ST	AD6 to AD0			D7 to D0	AK] ∆3		Di
ST	AD6 to AD0	RW CS0 regis	le AK Ister = 10	D7 to Dn 1 000X110B				▲2		<u> </u>] ∆3		
ST	AD6 to AD0	RW CS0 regis	le AK Ister = 10	D7 to Dn 1 000X110B		AD6 to AD0		▲2		<u> </u>] ∆3		D
ST	AD6 to AD0 ▲1: IIC ▲2: IIC	RW CS0 regis	le AK ister = 10 ister = 01	D7 to Dn 1 000X110B				▲2		<u> </u>] Δ3		D
ST	AD6 to AD0 ▲1: IIC ▲2: IIC LREL0	RW CS0 regis CS0 regis D bit is se	AK AK ister = 10 ister = 01 et to 1 by	D7 to Dn 1 000X110B 110X010B (Ex				▲2		<u> </u>] ∆3		D
ST	AD6 to AD0 ▲1: IIC ▲2: IIC LREL0	RW CS0 regis CS0 regis D bit is se CS0 regis	AK AK ister = 10 ister = 01 et to 1 by ister = 00	D7 to Dn 1 D00X110B 110X010B (Ex 1 software	ample.			▲2		<u> </u>] Δ3		
ST	AD6 to AD0 ▲1: IIC ▲2: IIC LREL0 Δ 3: IIC	RW CS0 regis CS0 regis D bit is se CS0 regis	AK ister = 10 ister = 01 ister = 00 ister = 00 A: A	D7 to Dn 1 000X110B 110X010B (Ex / software 0000001B	ample:		is read	▲2		<u> </u>] Δ3		

et4U.com

(5) When loss occurs due to stop condition during data transfer



(6) When arbitration loss occurs due to low-level data when attempting to generate a restart condition



www.DataSheet4U.com

(7) When arbitration loss occurs due to a stop condition when attempting to generate a restart condition

(8) When arbitration loss occurs due to low-level data when attempting to generate a stop condition

16.7 Interrupt Request Signal (INTIIC0) Generation Timing and Wait Control

The setting of the IICC0.WTIM0 bit determines the timing by which the INTIIC0 signal is generated and the corresponding wait control, as shown below.

Table 16-3. INTIICO Signal Generation Timing and Wait Control

WTIM0 Bit	During	g Slave Device Ope	eration	During	Master Device Op	eration
	Address	Data Reception	Data Transmission	Address	Data Reception	Data Transmission
0	9 ^{Notes 1, 2}	8 ^{Note 2}	8 ^{Note 2}	9	8	8
1	9 ^{Notes 1, 2}	9 ^{Note 2}	9 ^{Note 2}	9	9	9

Notes 1. The slave device's INTIIC0 signal and wait period occurs at the falling edge of the ninth clock only when there is a match with the address set to the SVA0 register.

At this point, an ACK signal is output regardless of the value set to the IICC0.ACKE0 bit. For a slave device that has received an extension code, the INTIIC0 signal occurs at the falling edge of the eighth clock.

When the address does not match after restart, the INTIICO signal is generated at the falling edge of the ninth clock, but no wait occurs.

2. If the received address does not match the contents of the SVA0 register and extension codes have not been received, neither the INTIICO signal nor a wait occurs.

Remark The numbers in the table indicate the number of the serial clock's clock signals. Interrupt requests and wait control are both synchronized with the falling edge of these clock signals.

DataSheet4U.com

(1) During address transmission/reception

Slave device operation: Interrupt and wait timing are determined depending on the conditions in Notes 1 and 2 above regardless of the WTIM0 bit.

Master device operation: Interrupt and wait timing occur at the falling edge of the ninth clock regardless of the WTIM0 bit.

(2) During data reception

• Master/slave device operation: Interrupt and wait timing are determined according to the WTIM0 bit.

(3) During data transmission

• Master/slave device operation: Interrupt and wait timing are determined according to the WTIM0 bit.

(4) Wait cancellation method

The four wait cancellation methods are as follows.

- By setting the IICC0.WREL0 bit to 1
- By writing to the IIC0 register
- By start condition setting (IICC0.STT0 bit = 1)^{Note}
- By stop condition setting (IICC0.SPT0 bit = 1)^{Note}

Note Master only

When an 8-clock wait has been selected (WTIM0 bit = 0), the output level of the \overline{ACK} signal must be determined prior to wait cancellation.

(5) Stop condition detection

The INTIIC0 signal is generated when a stop condition is detected.

16.8 Address Match Detection Method

When in I²C bus mode, the master device can select a particular slave device by transmitting the corresponding slave address.

Address match detection is performed automatically by hardware. An INTIIC0 interrupt request signal occurs when a local address has been set to the SVA0 register and when the address set to the SVA0 register matches the slave address sent by the master device, or when an extension code has been received.

DataShe

16.9 Error Detection

DataSheet4U.com

In I²C bus mode, the status of the serial data bus (SDA0) during data transmission is captured by the IIC0 register of the transmitting device, so the IIC0 register data prior to transmission can be compared with the transmitted IIC0 register data to enable detection of transmission errors. A transmission error is judged as having occurred when the compared data values do not match.

et4U.com

16.10 Extension Code

- (1) When the higher 4 bits of the receive address are either 0000 or 1111, the extension code flag (EXC0) is set for extension code reception and an interrupt request signal (INTIIC0) is issued at the falling edge of the eighth clock. The local address stored in the SVA0 register is not affected.
- (2) If 11110xx0 is set to the SVA0 register by a 10-bit address transfer and 11110xx0 is transferred from the master device, the results are as follows. Note that the INTIIC0 signal occurs at the falling edge of the eighth clock.
 - Higher 4 bits of data match: IICS0.EXC0 bit = 1
 - 7 bits of data match: IICS0.COI0 bit = 1
- (3) Since the processing after the INTIIC0 signal occurs differs according to the data that follows the extension code, such processing is performed by software.

For example, when operation as a slave is not desired after the extension code is received, set the IICC0.LREL0 bit to 1 and the CPU will enter the next communication wait state.

Slave Address	R/W Bit	Description
0000 000	0	General call address
0000 000	1	Start byte
0000 001	Х	CBUS address
0000 010	Х	Address that is reserved for different bus format
1111 Oxx	Х	10-bit slave address specification

Table 16-4. Extension Code Bit Definitions

16.11 Arbitration

When several master devices simultaneously output a start condition (when the IICC0.STT0 bit is set to 1 before the IICS0.STD0 bit is set to 1), communication among the master devices is performed as the number of clocks is adjusted until the data differs. This kind of operation is called arbitration.

When one of the master devices loses in arbitration, an arbitration loss flag (IICS0.ALD0 bit) is set (1) via the timing by which the arbitration loss occurred, and the SCL0 and SDA0 lines are both set for high impedance, which releases the bus.

The arbitration loss is detected based on the timing of the next interrupt request signal (INTIIC0) (the eighth or ninth clock, when a stop condition is detected, etc.) and the ALD0 bit = 1 setting that has been made by software.

For details of interrupt request timing, refer to 16.6 I²C Interrupt Request Signals (INTIICO).

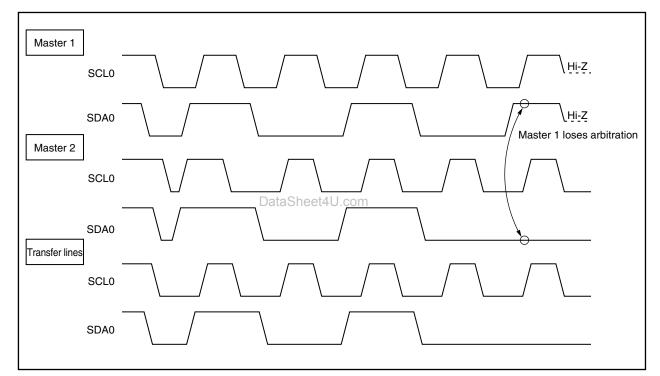


Figure 16-11. Arbitration Timing Example

DataShe

Status During Arbitration	Interrupt Request Generation Timing
During address transmission	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
Read/write data after address transmission	
During extension code transmission	
Read/write data after extension code transmission	
During data transmission	
During ACK signal transfer period after data reception	
When restart condition is detected during data transfer	
When stop condition is detected during data transfer	When stop condition is output (when IICC0.SPIE0 bit = 1) ^{Note 2}
When the SDA0 pin is at low level while attempting to output a restart condition	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
When stop condition is detected while attempting to output a restart condition	When stop condition is output (when SPIE0 bit = 1) ^{Note 2}
When the SDA0 pin is at low level while attempting to output a stop condition	At falling edge of eighth or ninth clock following byte transfer ^{Note 1}
When the SCL0 pin is at low level while attempting to output a restart condition	

Table 16-5. Status During Arbitration and Interrupt Request Generation Timing

et4U.com

Notes 1. When the IICC0.WTIM0 bit = 1, an INTIIC0 signal occurs at the falling edge of the ninth clock. When the WTIM0 bit = 0 and the extension code's slave address is received, an INTIIC0 signal occurs at the falling edge of the eighth clock.

DataShe

www.DataSheet4U.com

2. When there is a possibility that arbitration will occur, set the SPIE0 bit = 1 for master device operation.

16.12 Wakeup Function

The I²C bus slave function is a function that generates an interrupt request signal (INTIIC0) when a local address or extension code has been received. This function makes processing more efficient by preventing the unnecessary INTIIC0 signal from occurring when addresses do not match.

When a start condition is detected, wakeup standby mode is set. This wakeup standby mode is in effect while addresses are transmitted due to the possibility that an arbitration loss may change the master device (which has output a start condition) to a slave device.

However, when a stop condition is detected, the IICC0.SPIE0 bit is set regardless of the wakeup function, and this determines whether the INTIIC0 signal is enabled or disabled.

16.13 Communication Reservation

16.13.1 When communication reservation function is enabled (IICF0.IICRSV0 bit = 0)

To start master device communications when not currently using a bus, a communication reservation can be made to enable transmission of a start condition when the bus is released. There are two modes under which the bus is not used.

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled (ACK signal is not returned and the bus was released when the IICC0.LREL0 bit was set to 1).

If the IICC0.STT0 bit is set (1) while the bus is not used, a start condition is automatically generated and wait status is set after the bus is released (after a stop condition is detected).

When the bus release is detected (when a stop condition is detected), writing to the IIC0 register causes the master's address transfer to start. At this point, the IICC0.SPIE0 bit should be set (1).

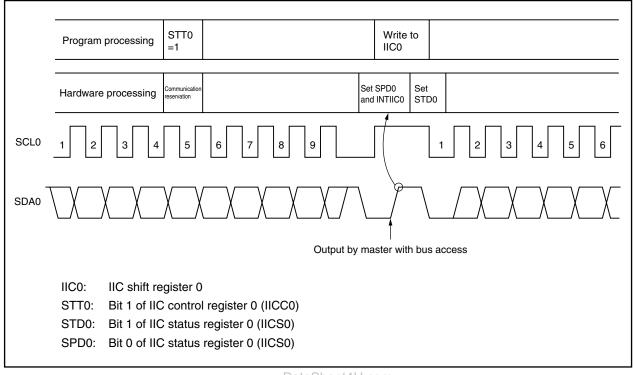
When the STT0 bit has been set (1), the operation mode (as start condition or as communication reservation) is determined according to the bus status.

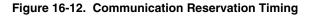
If the bus has been releaseda start condition is generated If the bus has not been released (standby mode)communication reservation

To detect which operation mode has been determined for the STT0 bit, set the STT0 bit (1), wait for the wait period, then check the IICS0.MSTS0 bit.

Wait periods, which should be set via software, are listed in Table 16-6. These wait periods can be set via the settings for the IICCL0.SMC0, IICCL0.CL01, and IICCL0.CL00 bits.

DataShe

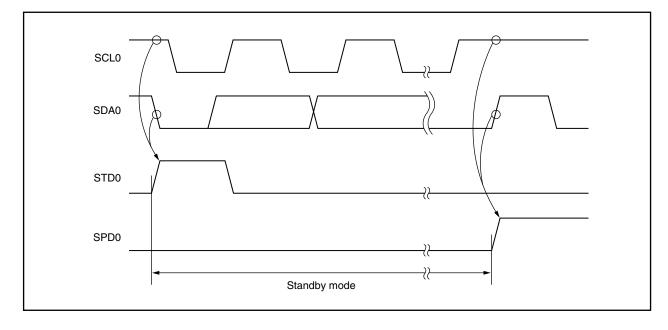

SMC0 CL01 **CL00** Wait Period 0 0 0 26 clocks 46 clocks 0 0 1 92 clocks 0 0 1 0 37 clocks 1 1 1 0 0 16 clocks 1 0 1 0 32 clocks 1 1 1 1 13 clocks 1


Table 16-6. Wait Periods

DataSheet4U.com

www.DataSheet4U.com

The communication reservation timing is shown below.



DataShe

DataSheet4U.com

Communication reservations are accepted via the following timing. After the IICS0.STD0 bit is set to 1, a communication reservation can be made by setting the IICC0.STT0 bit to 1 before a stop condition is detected.

DataSheet4U.com

et4U.com

480

The communication reservation flowchart is illustrated below.

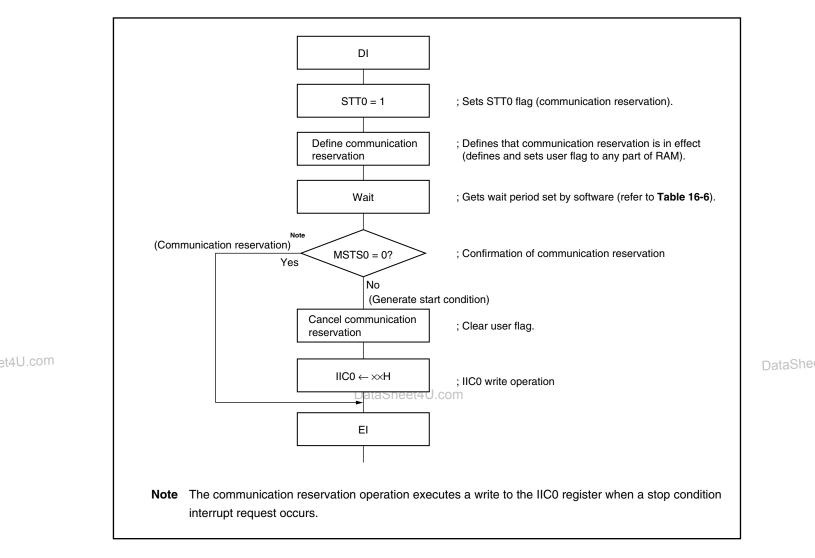


Figure 16-14. Communication Reservation Flowchart

16.13.2 When communication reservation function is disabled (IICF0.IICRSV0 bit = 1)

When the IICC0.STT0 bit is set when the bus is not used in a communication during bus communication, this request is rejected and a start condition is not generated. The following two statuses are included in the status where bus is not used.

- When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled (ACK signal is not returned and the bus was released when the IICC0.LREL0 bit was set to 1)

To confirm whether the start condition was generated or request was rejected, check the IICF0.STCF0 flag. The time shown in Table 16-7 is required until the STCF0 flag is set after setting the STT0 bit = 1. Therefore, secure the time by software.

CL01	CL00	Wait Period
0	0	6 clocks
0	1	6 clocks
1	0	3 clocks
1	1	9 clocks

Table 16-7. Wait Periods

et4U.com

DataShe

DataSheet4U.com

16.14 Cautions

(1) When IICF0.STCEN0 bit = 0

Immediately after l^2C0 operation is enabled, the bus communication status (IICF0.IICBSY0 bit = 1) is recognized regardless of the actual bus status. To execute master communication in the status where a stop condition has not been detected, generate a stop condition and then release the bus before starting the master communication.

Use the following sequence for generating a stop condition.

<1> Set the IICCL0 register.

<2> Set the IICC0.IICE0 bit.

<3> Set the IICC0.SPT0 bit.

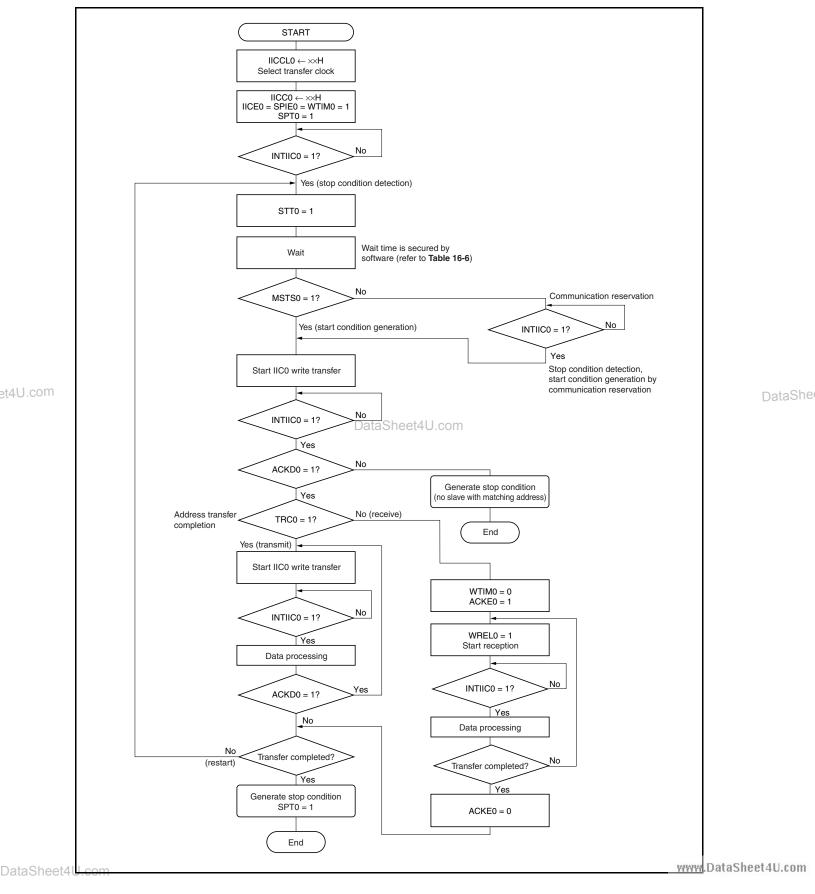
(2) When IICF0.STCEN0 bit = 1

Immediately after l^2C0 operation is enabled, the bus released status (IICBSY0 bit = 0) is recognized regardless of the actual bus status. To issue the first start condition (IICC0.STT0 bit = 1), it is necessary to confirm that the bus has been released, so as to not disturb other communications.

16.15 Communication Operations

16.15.1 Master operation 1

The following shows the flowchart for master communication when the communication reservation function is enabled (IICF0.IICRSV0 bit = 0) and the master operation is started after a stop condition is detected (IICF0.STCEN0 bit = 0).


DataSheet4U.com

et4U.com

DataSheet4U.com

www.DataSheet4U.com

DataShe

16.15.2 Master operation 2

The following shows the flowchart for master communication when the communication reservation function is disabled (IICRSV0 bit = 1) and the master operation is started without detecting a stop condition (STCEN0 bit = 1).

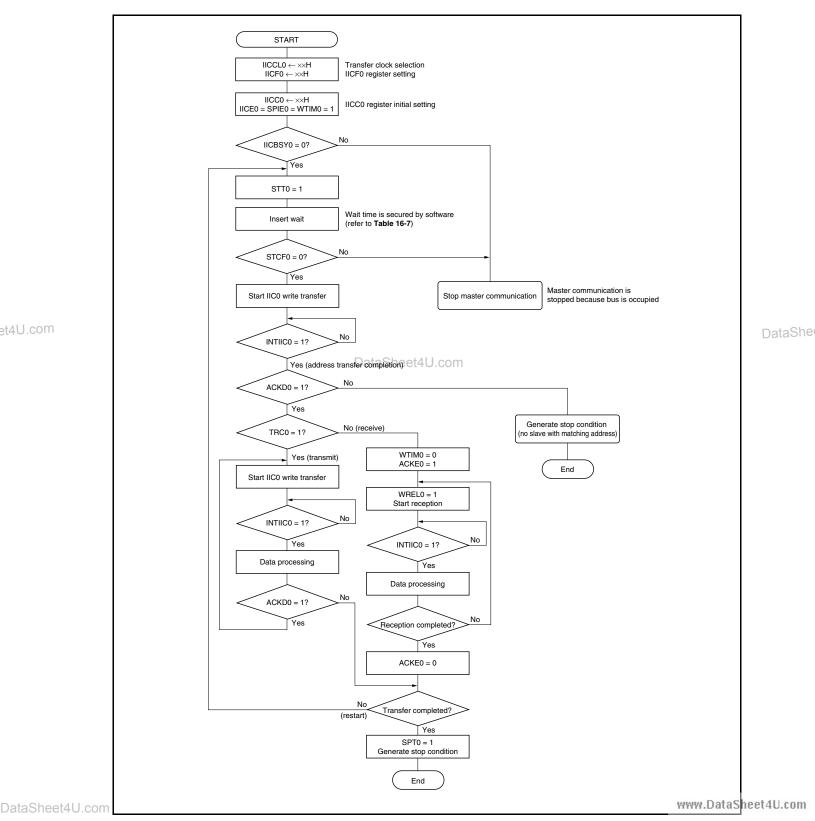
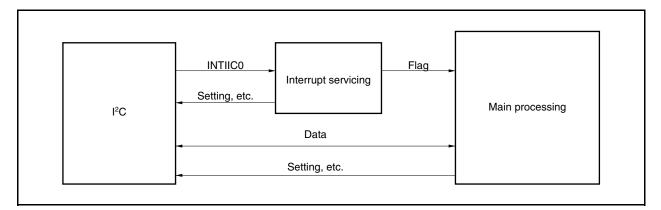


Figure 16-16. Master Operation Flowchart (2)


16.15.3 Slave operation

The following shows the processing procedure of the slave operation.

Basically, the operation of the slave device is event-driven. Therefore, processing by an INTIIC0 interrupt (processing requiring a significant change of the operation status, such as stop condition detection during communication) is necessary.

The following description assumes that data communication does not support extension codes. Also, it is assumed that the INTIIC0 interrupt servicing performs only status change processing and that the actual data communication is performed during the main processing.

Figure 16-17. Software Outline During Slave Operation

t4U.com

Therefore, the following three flags are prepared so that the data transfer processing can be performed by transmitting these flags to the main processing instead of the INTICO signal.

DataShe

(1) Communication mode flag

This flag indicates the following communication statuses. Clear mode: Data communication not in progress

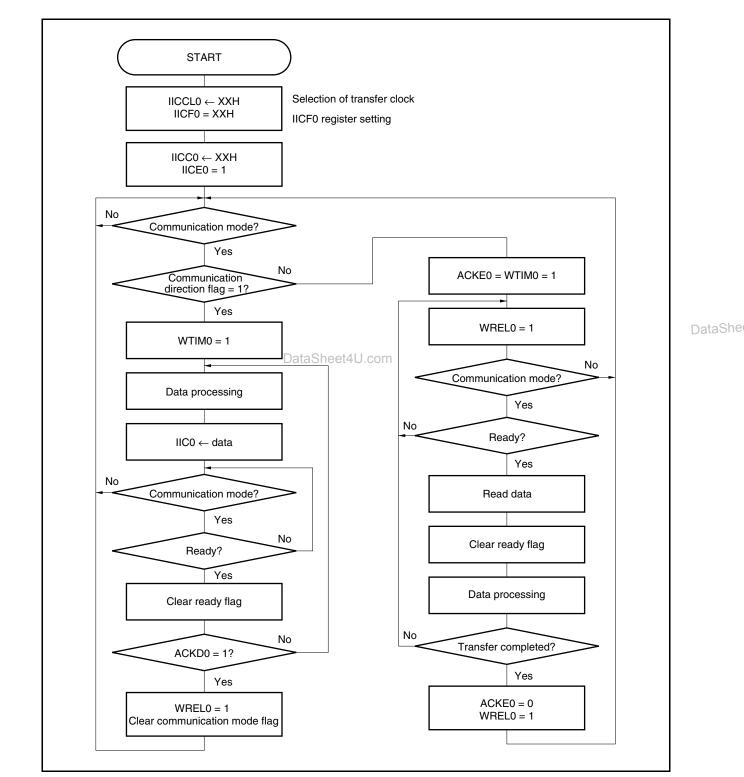
Communication mode: Data communication in progress (valid address detection stop condition detection, ACK signal from master not detected, address mismatch)

(2) Ready flag

This flag indicates that data communication is enabled. This is the same status as an INTIIC0 interrupt during normal data transfer. This flag is set in the interrupt servicing block and cleared in the main processing block. The ready flag for the first data for transmission is not set in the interrupt servicing block, so the first data is transmitted without clearance processing (the address match is regarded as a request for the next data).

(3) Communication direction flag

This flag indicates the direction of communication and is the same as the value of the IICS0.TRC0 bit.


The following shows the operation of the main processing block during slave operation.

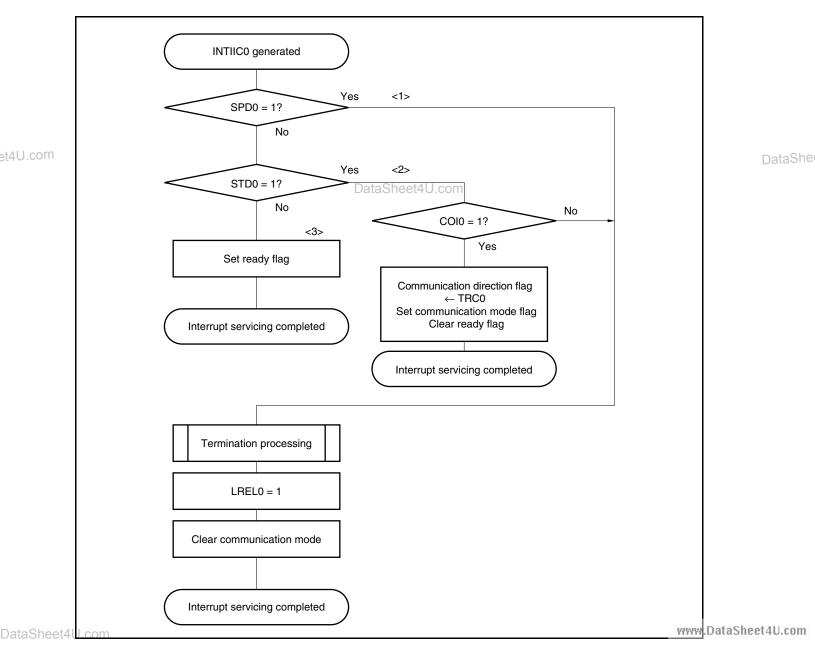
Start I²C0 and wait for the communication enabled status. When communication is enabled, perform transfer using the communication mode flag and ready flag (the processing of the stop condition and start condition is performed by interrupts, conditions are confirmed by flags).

For transmission, repeat the transmission operation until the master device stops returning \overline{ACK} signal. When the master device stops returning \overline{ACK} signal, transfer is complete.

ataSheet4U.com

For reception, receive the required number of data and do not return \overline{ACK} signal for the next data immediately after transfer is complete. After that, the master device generates the stop condition or restart condition. This causes exit from communications.

DataSheet4U.com


et4U.com

www.DataSheet4U.com

The following shows an example of the processing of the slave device by an INTIIC0 interrupt (it is assumed that no extension codes are used here). During an INTIIC0 interrupt, the status is confirmed and the following steps are executed.

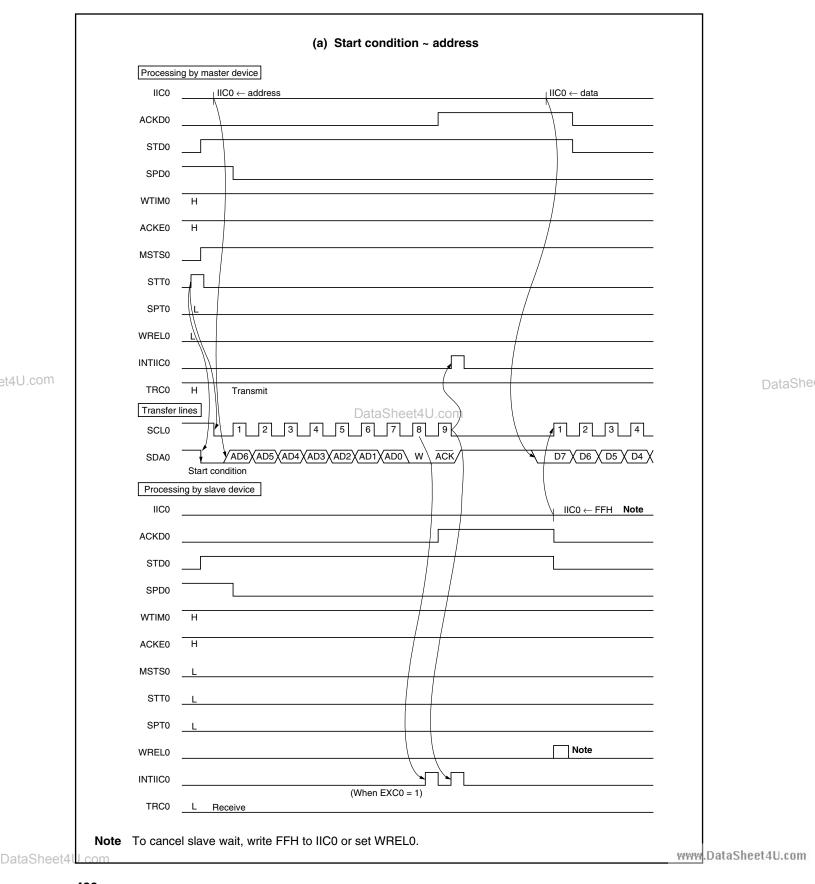
- <1> When a stop condition is detected, communication is terminated.
- <2> When a start condition is detected, the address is confirmed. If the address does not match, communication is terminated. If the address matches, the communication mode is set and wait is released, and operation returns from the interrupt (the ready flag is cleared).
- <3> For data transmission/reception, when the ready flag is set, operation returns from the interrupt while the I²C0 bus remains in the wait status.

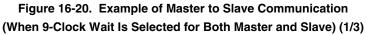
Remark <1> to <3> in the above correspond to <1> to <3> in Figure 16-19 Slave Operation Flowchart (2).

16.16 Timing of Data Communication

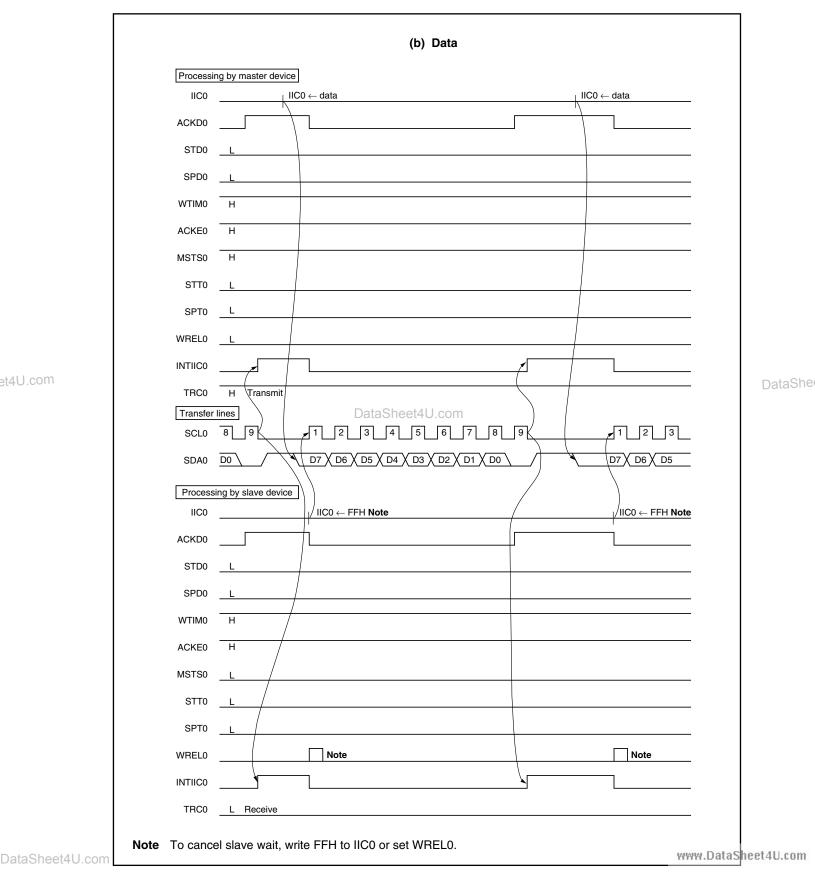
When using I²C bus mode, the master device outputs an address via the serial bus to select one of several slave devices as its communication partner.

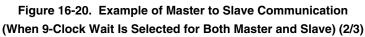
After outputting the slave address, the master device transmits the IICS0.TRC0 bit that specifies the data transfer direction and then starts serial communication with the slave device.


The IIC0 register's shift operation is synchronized with the falling edge of the serial clock (SCL0 pin). The transmit data is transferred to the SO latch and is output (MSB first) via the SDA0 pin.


Data input via the SDA0 pin is captured by the IIC0 register at the rising edge of the SCL0 pin.

The data communication timing is shown below.


DataShe


DataSheet4U.com

490

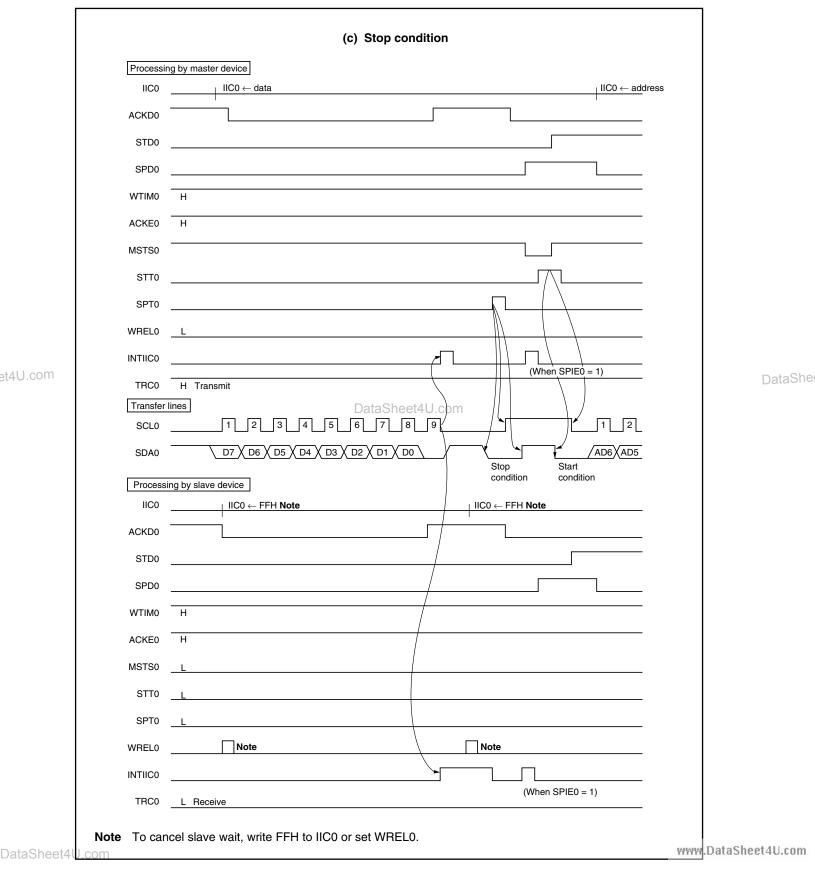
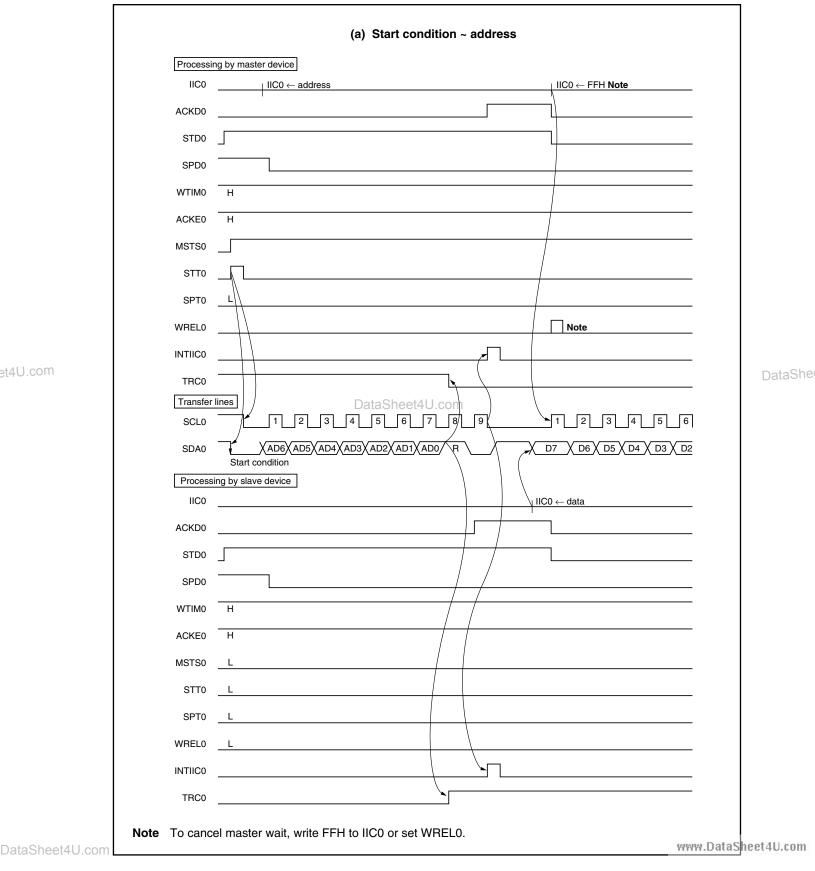
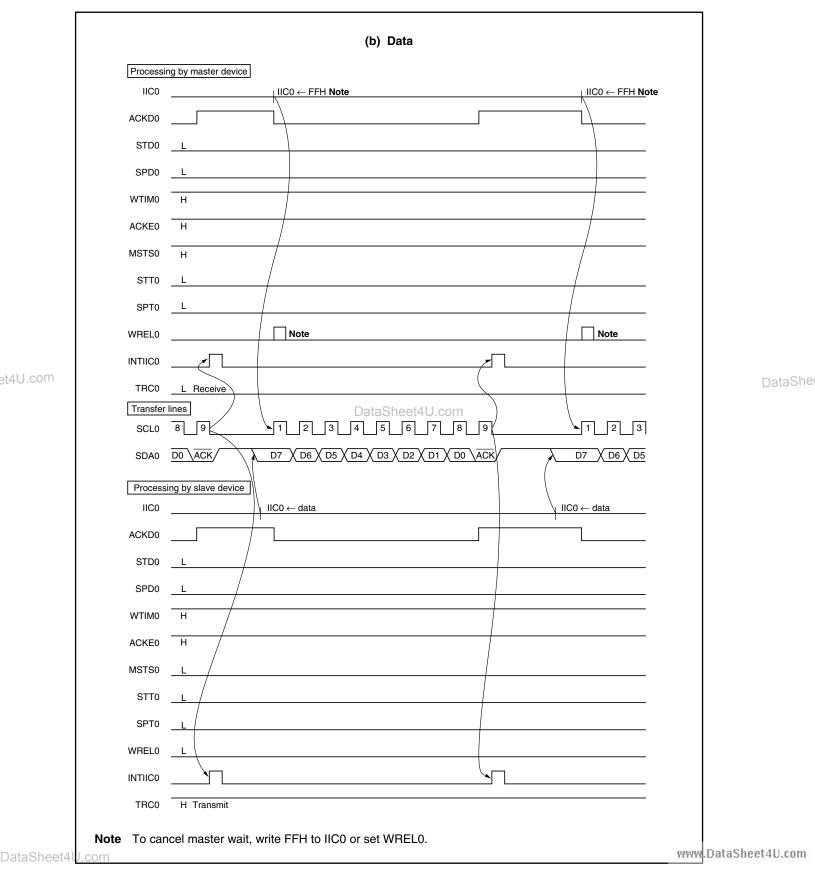
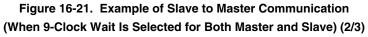





Figure 16-20. Example of Master to Slave Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (3/3)

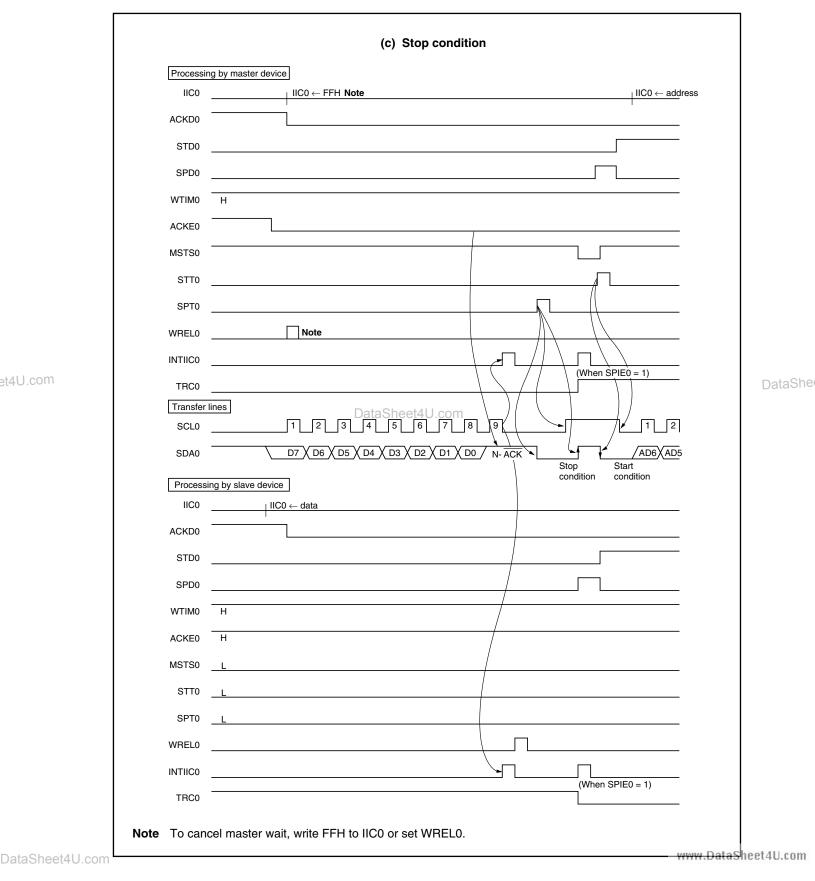


Figure 16-21. Example of Slave to Master Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (1/3)

494

Figure 16-21. Example of Slave to Master Communication (When 9-Clock Wait Is Selected for Both Master and Slave) (3/3)

CHAPTER 17 INTERRUPT/EXCEPTION PROCESSING FUNCTION

17.1 Overview

The V850ES/KE1+ is provided with a dedicated interrupt controller (INTC) for interrupt servicing and realize an interrupt function that can service interrupt requests from a total of 35 or 36 sources.

An interrupt is an event that occurs independently of program execution, and an exception is an event whose occurrence is dependent on program execution.

The V850ES/KE1+ can process interrupt requests from the on-chip peripheral hardware and external sources. Moreover, exception processing can be started by the TRAP instruction (software exception) or by generation of an exception event (fetching of an illegal opcode) (exception trap).

17.1.1 Features

et4U.com

	Interrupt Source			V850ES/KE1+
Interrupt	Non-maskable	External		1 channel (NMI pin)
function	interrupt	Internal		2 channels (WDT1, WDT2)
	Maskable interrupt	External		8 channels (all edge detection interrupts)
		Internal	WDT1	1 channel
			TMP	3 channels
			TM0	2 channels
			тмн	2 channels
			TM5 Da	2 channels
			WT	2 channels
			BRG	1 channel
			UART	6 channels
			CSI0	2 channels
			IIC	1 channel ^{Note}
			KR	1 channel
			AD	1 channel
			LVI	1 channel
			Total	25 channels
Exception	Software exception			16 channels (TRAP00H to TRAP0FH)
function				16 channels (TRAP10H to TRAP1FH)
	Exception trap			2 channels (ILGOP/DBG0)

Note Only in the μ PD703302Y, 70F3302Y

Table 17-1 lists the interrupt/exception sources.

www.DataSheet4U.com

Туре	Classification	Default Priority	Name	Trigger	Interrupt Source	Exception Code	Handler Address	Restored PC	Interrupt Control Register
Reset	Interrupt	-	RESET	RESET pin input	Pin	0000H	00000000H	Undefined	-
				Internal reset input from WDT1, WDT2	WDT1 WDT2				
Non-	Interrupt	-	NMI	NMI pin valid edge input	Pin	0010H	00000010H	nextPC	-
maskable		_	INTWDT1	WDT1 overflow (when non- maskable interrupt selected)	WDT1	0020H	00000020H	Note 1	-
		_	INTWDT2	WDT2 overflow (when non- maskable interrupt selected)	WDT2	0030H	00000020H	Note 1	-
Software	Exception	-	TRAP0n ^{Note 2}	TRAP instruction	-	004nH ^{Note 2}	00000040H	nextPC	-
exception		_	TRAP1n ^{№™ 2}	TRAP instruction	-	005nH ^{Note 2}	00000050H	nextPC	_
Exception trap	Exception	_	ILGOP/ DBG0	Illegal opcode/DBTRAP instruction	-	0060H	00000060H	nextPC	-
Maskable	Interrupt	0	INTWDTM1	WDT1 overflow (when interval timer selected)	WDT1	0080H	00000080H	nextPC	WDT1IC
		1	INTP0	INTP0 pin valid edge input	Pin	0090H	00000090H	nextPC	PIC0
		2	INTP1	INTP1 pin valid edge input	Pin	00A0H	000000A0H	nextPC	PIC1
		3	INTP2	INTP2 pin valid edge input	Pin	00B0H	000000B0H	nextPC	PIC2
		4	INTP3	INTP3 pin valid edge input	Pin	00C0H	000000C0H	nextPC	PIC3
		5	INTP4	INTP4 pin valid edge input	Pin	00D0H	000000D0H	nextPC	PIC4
		6	INTP5	INTP5 pin valid edge input	Pin	00E0H	000000E0H	nextPC	PIC5
		7	INTP6	INTP6 pin valid edge input	Pin	00F0H	000000F0H	nextPC	PIC6
		10	INTTM010	TM01 and CR010 match	TM01	0120H	00000120H	nextPC	TM0IC10
		11	INTTM011	TM01 and CR011 match	TM01	0130H	00000130H	nextPC	TM0IC11
		12	INTTM50	TM50 and CR50 match	TM50	0140H	00000140H	nextPC	TM5IC0
		13	INTTM51	TM51 and CR51 match	TM51	0150H	00000150H	nextPC	TM5IC1
		14	INTCSI00	CSI00 transfer completion	CSI00	0160H	00000160H	nextPC	CSI0IC0
		15	INTCSI01	CSI01 transfer completion	CSI01	0170H	00000170H	nextPC	CSI0IC1
		16	INTSRE0	UART0 reception error occurrence	UART0	0180H	00000180H	nextPC	SREIC0
		17	INTSR0	UART0 reception completion	UART0	0190H	00000190H	nextPC	SRIC0
		18	INTST0	UART0 transmission completion	UART0	01A0H	000001AH	nextPC	STIC0
		19	INTSRE1	UART1 reception error occurrence	UART1	01B0H	000001B0H	nextPC	SREIC1
		20	INTSR1	UART1 reception completion	UART1	01C0H	000001C0H	nextPC	SRIC1
		21	INTST1	UART1 transmission completion	UART1	01D0H	000001D0H	nextPC	STIC1

Table 17-1. Interrupt Source List (1/2)

Notes 1. For restoration in the case of INTWDT1 and INTWDT2, refer to 17.10 Cautions.

2. n = 0 to FH

et4U.com

DataShe

Туре	Classification	Default Priority	Name	Trigger	Interrupt Source	Exception Code	Handler Address	Restored PC	Interrupt Control Register
Maskable	Interrupt	22	INTTMH0	TMH0 and CMP00/CMP01 match	тмно	01E0H	000001E0H	nextPC	TMHIC0
		23	INTTMH1	TMH1 and CMP10/CMP11 match	TMH1	01F0H	000001F0H	nextPC	TMHIC1
		25	INTIIC0 ^{Note}	I ² C0 transfer completion	l²C0	0210H	00000210H	nextPC	IICIC0
		26	INTAD	A/D conversion completion	A/D	0220H	00000220H	nextPC	ADIC
		27	INTKR	Key return interrupt	KR	0230H	00000230H	nextPC	KRIC
		28	INTWTI	Watch timer interval	WТ	0240H	00000240H	nextPC	WTIIC
		29	INTWT	Watch timer reference time	WТ	0250H	00000250H	nextPC	WTIC
		30	INTBRG	8-bit counter of prescaler 3 and PRSCM match	Prescaler 3	0260H	00000260H	nextPC	BRGIC
		45	INTLVI	Low-voltage detection	LVI	0380H	00000380H	nextPC	LVIIC
		46	INTP7	INTP7 pin valid edge input	Pin	0390H	00000390H	nextPC	PIC7
		47	INTTP0OV	TMP0 overflow	TMP	03A0H	000003A0H	nextPC	TP00VIC
		48	INTTP0CC0	TMP0 capture 0/taSheet4U. compare 0 match	JMR	03B0H	000003B0H	nextPC	TP0CCIC0
		49	INTTP0CC1	TMP0 capture 1/ compare 1 match	TMP	03C0H	000003C0H	nextPC	TP0CCIC1

Note Only in the µPD703302Y, 70F3302Y

Remarks 1. Default priority: The priority order when two or more maskable interrupt requests with the same priority level are generated at the same time. The highest priority is 0.

The priority of non-maskable interrupt request is as follows.

INTWDT2 > INTWDT1 > NMI

- Restored PC: The value of the program counter (PC) saved to EIPC, FEPC, or DBPC when interrupt/exception processing is started. The restored PC when a non-maskable or maskable interrupt is acknowledged while either of the following instructions is being executed does not become nextPC (when an interrupt is acknowledged during the execution of an instruction, the execution of that instruction is stopped and is resumed following completion of interrupt servicing).
 - Load instructions (SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W)
 - Divide instructions (DIV, DIVH, DIVU, DIVHU)
 - PREPARE, DISPOSE instructions (only when an interrupt occurs before stack pointer update)

nextPC: The PC value at which processing is started following interrupt/exception processing.

2. The execution address of the illegal opcode when an illegal opcode exception occurs is calculated with (Restored PC – 4).

DataSheet4U.com

498

DataShe

17.2 Non-Maskable Interrupts

Non-maskable interrupt request signals are acknowledged unconditionally, even when interrupts are disabled (DI state). Non-maskable interrupts (NMI) are not subject to priority control and take precedence over all other interrupt request signals.

The following three types of non-maskable interrupt request signals are available in the V850ES/KE1+.

- NMI pin input (NMI)
- Non-maskable interrupt request signal (INTWDT1) due to overflow of watchdog timer 1
- Non-maskable interrupt request signal (INTWDT2) due to overflow of watchdog timer 2

There are four choices for the valid edge of an NMI pin, namely: rising edge, falling edge, both edges, and no edge detection.

The non-maskable interrupt request signal (INTWDT1) due to overflow of watchdog timer 1 functions by setting the WDTM1.WDTM14 and WDTM1.WDTM13 bits to 10.

The non-maskable interrupt request signal (INTWDT2) due to overflow of watchdog timer 2 functions by setting the WDTM2.WDM21 and WDTM2.WDM20 bits to 01.

When two or more non-maskable interrupts occur simultaneously, they are processed in a sequence determined by the following priority order (the interrupt request signals with low priority level are ignored).

INTWDT2 > INTWDT1 > NMI

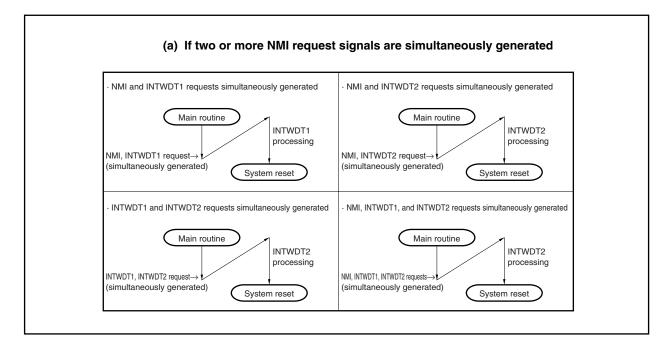
If during NMI processing, an NMI, INTWDT1, or INTWDT2 request signal newly occurs, processing is performed as follows.

DataSheet4U.com

(1) If an NMI request signal newly occurs during NMI processing

The new NMI request signal is held pending regardless of the value of the PSW.NP bit. The NMI request signal held pending is acknowledged upon completion of processing of the NMI currently being executed (following RETI instruction execution).

(2) If an INTWDT1 request signal newly occurs during NMI processing

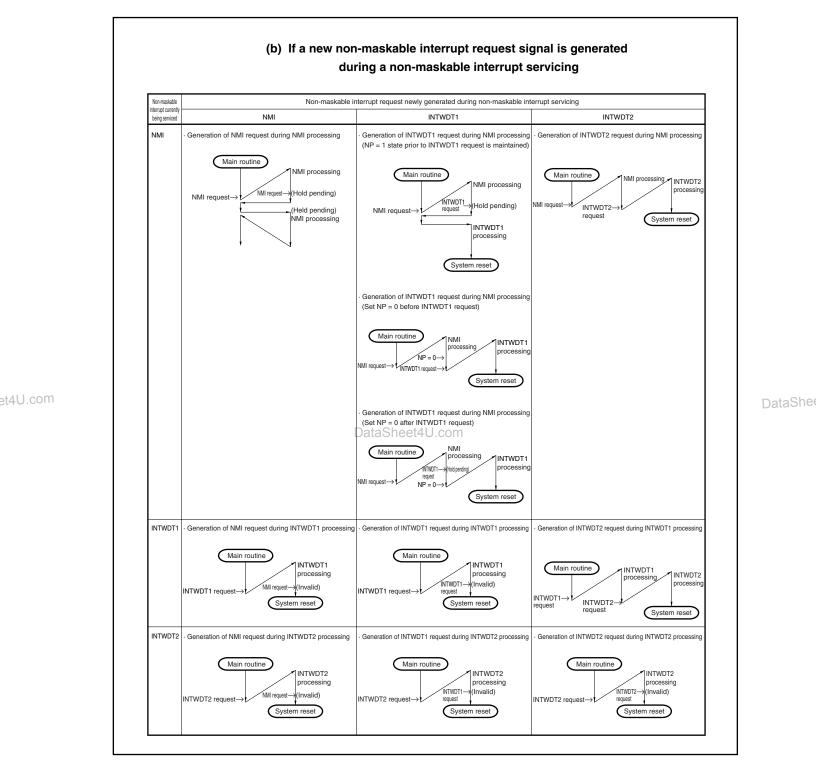

If the NP bit remains set (to 1) during NMI processing, the new INTWDT1 request signal is held pending. The INTWDT1 request signal held pending is acknowledged upon completion of processing of the NMI currently being executed (following RETI instruction execution).

If the NP bit is cleared (to 0) during NMI processing, a newly generated INTWDT1 request signal is executed (NMI processing is interrupted).

(3) If an INTWDT2 request signal newly occurs during NMI processing

A newly generated INTWDT2 request signal is executed regardless of the value of the NP bit (NMI processing is interrupted).

Caution For non-maskable interrupt servicing from non-maskable interrupt request signals (INTWDT1, INTWDT2), refer to 17.10 Cautions.


et4U.com

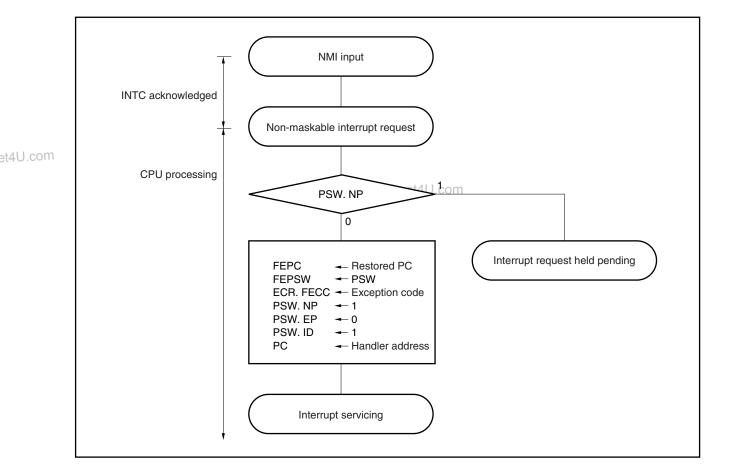
DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

DataShe

Figure 17-1. Acknowledging Non-Maskable Interrupt Request Signals (2/2)


501

17.2.1 Operation

Upon generation of a non-maskable interrupt request signal, the CPU performs the following processing and transfers control to a handler routine.

- <1> Saves the restored PC to FEPC.
- <2> Saves the current PSW to FEPSW.
- <3> Writes the exception code (0010H, 0020H, 0030H) to the higher halfword (FECC) of ECR.
- <4> Sets the PSW.NP and PSW.ID bits to 1 and clears the PSW.EP bit to 0.
- <5> Loads the handler address (00000010H, 00000020H, 00000030H) of the non-maskable interrupt to the PC and transfers control.

Figure 17-2 shows the servicing flow for non-maskable interrupts.

www.DataSheet4U.com

DataShe

17.2.2 Restore

Execution is restored from non-maskable interrupt servicing by the RETI instruction.

(1) In case of NMI

Restore from NMI processing is done with the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and transfers control to the address of the restored PC.

- (i) Loads the values of the restored PC and PSW from FEPC and FEPSW, respectively, because the PSW.EP bit and the PSW.NP bit are 0 and 1, respectively.
- (ii) Transfers control back to the loaded address of the restored PC and PSW.

Figure 17-3 shows the processing flow of the RETI instruction.

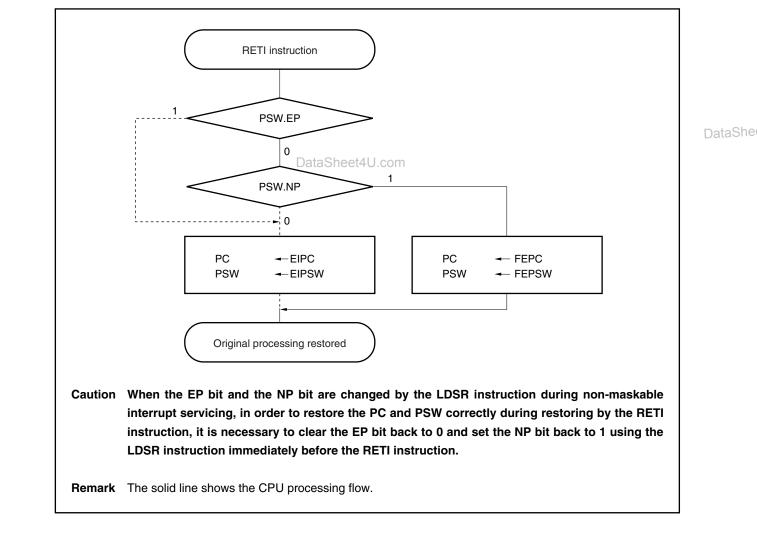


Figure 17-3. RETI Instruction Processing

(2) In case of INTWDT1, INTWDT2 signals

For non-maskable interrupt servicing by the non-maskable interrupt request signals (INTWDT1, INTWDT2), refer to **17.10 Cautions**.

DataSheet4U.com

et4U.com

17.2.3 NP flag

The NP flag is a status flag that indicates that non-maskable interrupt servicing is in progress. This flag is set when a non-maskable interrupt request has been acknowledged, and masks all non-maskable requests to prevent multiple interrupts.

	00000020	H								
31		8	7	6	5	4	3	2	1	0
PSW		0	NP	EP	ID	SAT	CY	OV	S	Z
	NP	NMI servicin	g stat	us						
	0	No non-maskable interrupt servicing								
		Non-maskable interrupt serving in progress								

et4U.com

DataShe

DataSheet4U.com

17.3 Maskable Interrupts

Maskable interrupt request signals can be masked by interrupt control registers. The V850ES/KE1+ has 33 maskable interrupt sources (refer to **17.1.1 Features**).

If two or more maskable interrupt request signals are generated at the same time, they are acknowledged according to the default priority. In addition to the default priority, eight levels of interrupt priorities can be specified by using the interrupt control registers, allowing programmable priority control.

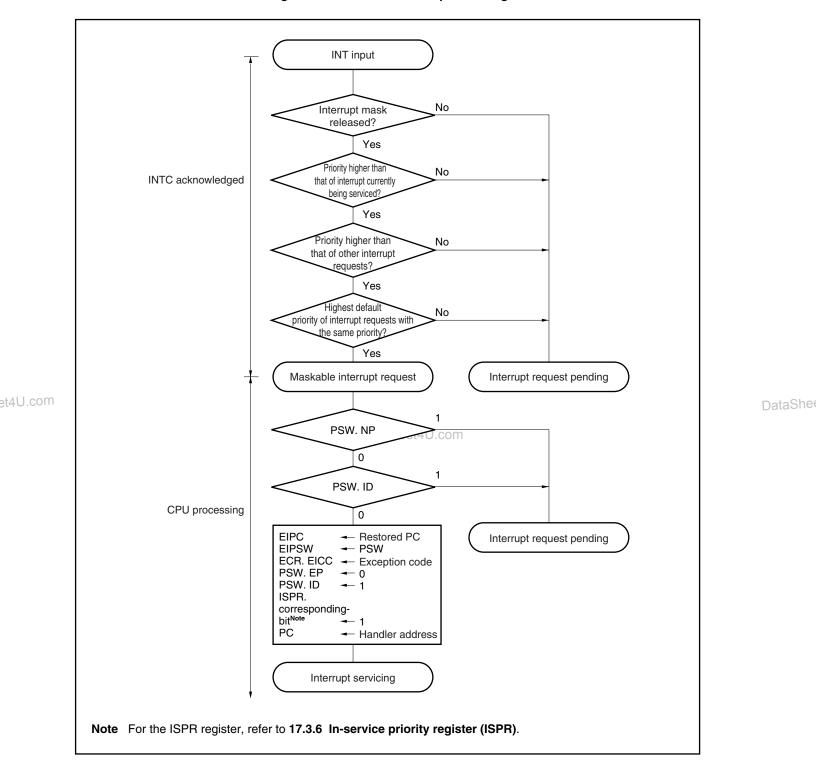
When an interrupt request signal has been acknowledged, the interrupt disabled (DI) status is set and the acknowledgment of other maskable interrupt request signals is disabled.

When the EI instruction is executed in an interrupt servicing routine, the interrupt enabled (EI) status is set, which enables acknowledgment of interrupt request signals having a priority higher than that of the interrupt request signal currently in progress. Note that only interrupt request signals with a higher priority have this capability; interrupt request signals with the same priority level cannot be nested.

To use multiple interrupts, it is necessary to save EIPC and EIPSW to memory or a register before executing the EI instruction, and restore EIPC and EIPSW to the original values by executing the DI instruction before the RETI instruction.

When the WDTM1.WDTM14 bit is cleared to 0, the watchdog timer 1 overflow interrupt functions as a maskable interrupt (INTWDTM1).

17.3.1 Operation

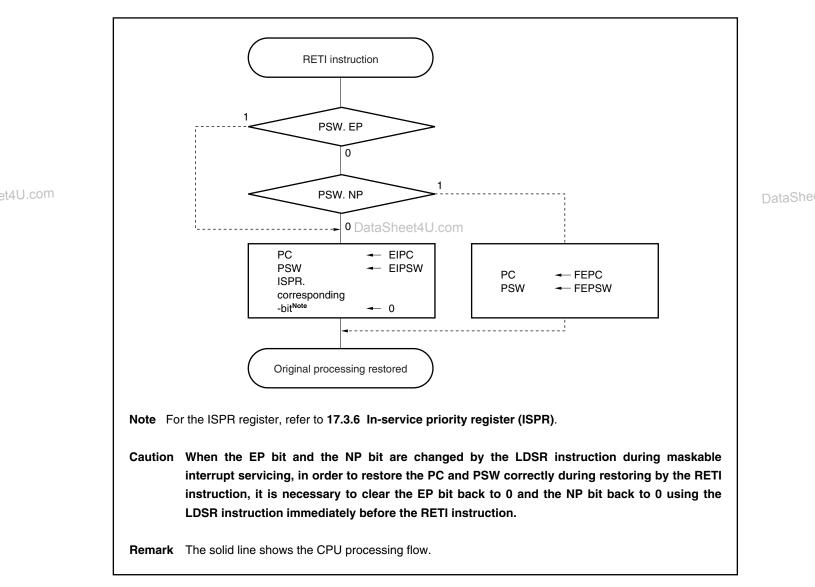

If a maskable interrupt request signal is generated, the CPU performs the following processing and transfers control to a handler routine.

t4U.com

DataShe

- <1> Saves the restored PC to EIPC.
- <2> Saves the current PSW to EIPSW.
 DataSheet4U.com
- <3> Writes an exception code to the lower halfword of ECR (EICC).
- <4> Sets the PSW.ID bit to 1 and clears the PSW.EP bit to 0.
- <5> Loads the corresponding handler address to the PC and transfers control.

The maskable interrupt request signal masked by INTC and the maskable interrupt request signal that occurs while another interrupt is being serviced (when PSW.NP bit = 1 or ID bit = 1) are held pending internally. When the interrupts are unmasked, or when the NP bit = 0 and the ID bit = 0 by using the RETI and LDSR instructions, a new maskable interrupt servicing is started in accordance with the priority of the pending maskable interrupt request signal. Figure 17-4 shows the servicing flow for maskable interrupts.


17.3.2 Restore

Execution is restored from maskable interrupt servicing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and transfers control to the address of the restored PC.

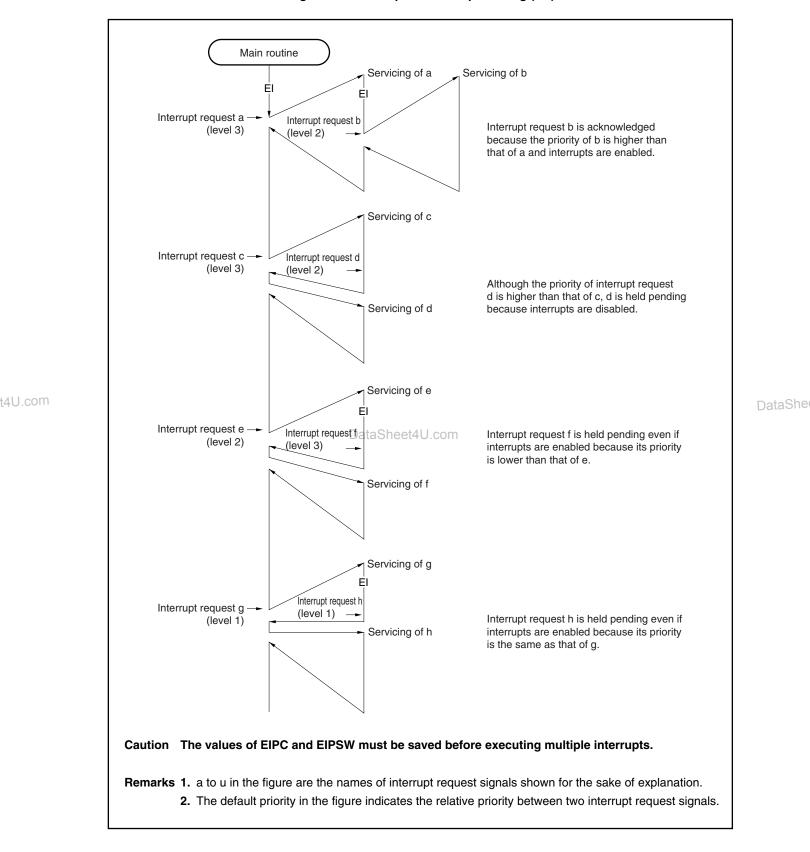
- (1) Loads the values of the restored PC and PSW from EIPC and EIPSW because the PSW.EP bit and the PSW.NP bit are both 0.
- (2) Transfers control to the loaded address of the restored PC and PSW.

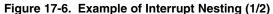
Figure 17-5 shows the processing flow of the RETI instruction.

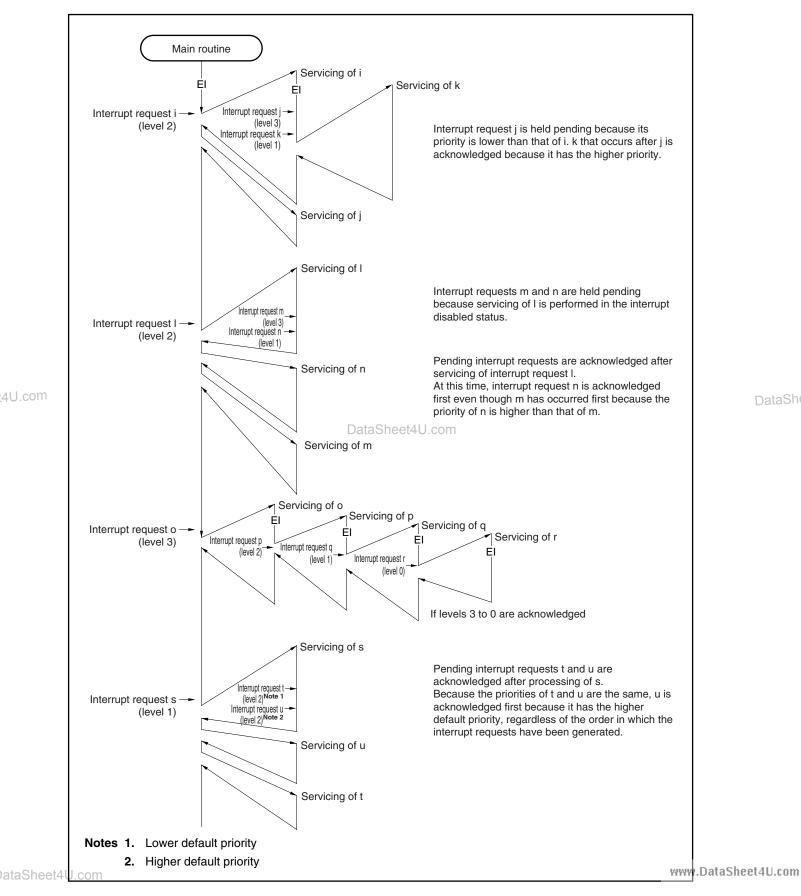
Figure 17-5. RETI Instruction Processing

17.3.3 Priorities of maskable interrupts

INTC provides a multiple interrupt servicing in which an interrupt can be acknowledged while another interrupt is being serviced. Multiple interrupts can be controlled by priority levels.

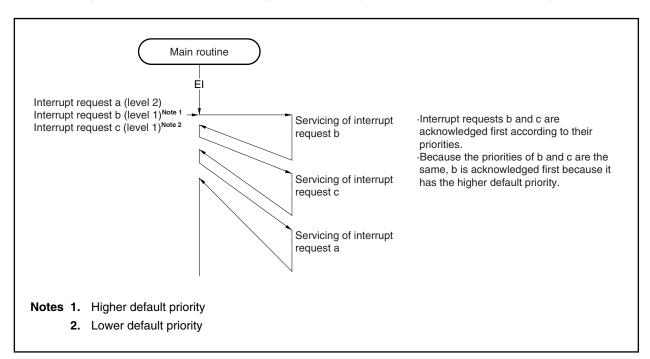

There are two types of priority level control: control based on the default priority levels, and control based on the programmable priority levels specified by the interrupt priority level specification bit (xxICn.xxPRn bit). When two or more interrupts having the same priority level specified by xxPRn are generated at the same time, interrupts are serviced in order depending on the priority level allocated to each interrupt request (default priority level) beforehand. For more information, refer to **Table 17-1 Interrupt Source List**. Programmable priority control divides interrupt requests into eight levels by setting the priority level specification flag.


Note that when an interrupt request signal is acknowledged, the PSW.ID flag is automatically set (1). Therefore, when multiple interrupts are to be used, clear (0) the ID flag beforehand (for example, by placing the EI instruction into the interrupt service program) to enable interrupts.


- Remark xx: Identifying name of each peripheral unit (refer to Table 17-2 Interrupt Control Registers (xxICn))
 - n: Peripheral unit number (refer to Table 17-2 Interrupt Control Registers (xxICn))

et4U.com

DataShe



et4U.com

DataSheet4U.com

DataSheet4U.com

DataShe

www.DataSheet4U.com

17.3.4 Interrupt control register (xxICn)

An interrupt control register is assigned to each maskable interrupt and sets the control conditions for each maskable interrupt request. The interrupt control registers can be read or written in 8-bit or 1-bit units. After reset, xxICn is set to 47H.

Caution Be sure to read the xxICn.xxIFn bit while interrupts are disabled (DI). If the xxIFn bit is read while interrupts are enabled (EI), an incorrect value may be read if there is a conflict between acknowledgment of the interrupt and reading of the bit.

	<7>	<6>	5	4	3	2	1	0
xxICn	xxlFn	xxMKn	0	0	0	xxPRn2	xxPRn1	xxPRn0
						. a. Nata		
	xxlFn				pt reque	st flag ^{Note}		
	0		request not	-				
	1	Interrupt	request ger	nerated				
	xxMKn			Inte	errupt mas	sk flag		
	0	Enables i	nterrupt se	rvicing				
	1	Disables	interrupt se	ervicing (pe	nding)			
	xxPRn2	xxPRn1	xxPRn0		Interrupt	priority spee	cification bi	t
	0	0	0	Specifies	level 0 (h	nighest)		
	0	0	1	Specifies	level 1			
	0	1	0	Specifies	level 2			
	0	1	1	Specifies	level 3			
	1	0	0	Specifies	level 4			
	1	0	1	Specifies	level 5			
	1	1	0	Specifies	level 6			
	1	1	1	Specifies	level 7 (l	owest)		

Following tables list the addresses and bits of the interrupt control registers.

www.DataSheet4U.com

Address	Register				Bi	its			
		<7>	<6>	5	4	3	2	1	0
FFFFF110H	WDT1IC	WDT1IF	WDT1MK	0	0	0	WDT1PR2	WDT1PR1	WDT1PR0
FFFFF112H	PIC0	PIF0	PMK0	0	0	0	PPR02	PPR01	PPR00
FFFFF114H	PIC1	PIF1	PMK1	0	0	0	PPR12	PPR11	PPR10
FFFFF116H	PIC2	PIF2	PMK2	0	0	0	PPR22	PPR21	PPR20
FFFFF118H	PIC3	PIF3	PMK3	0	0	0	PPR32	PPR31	PPR30
FFFFF11AH	PIC4	PIF4	PMK4	0	0	0	PPR42	PPR41	PPR40
FFFFF11CH	PIC5	PIF5	PMK5	0	0	0	PPR52	PPR51	PPR50
FFFFF11EH	PIC6	PIF6	PMK6	0	0	0	PPR62	PPR61	PPR60
FFFFF124H	TM0IC10	TM0IF10	TM0MK10	0	0	0	TM0PR102	TM0PR101	TM0PR100
FFFFF126H	TM0IC11	TM0IF11	TM0MK11	0	0	0	TM0PR112	TM0PR111	TM0PR110
FFFFF128H	TM5IC0	TM5IF0	TM5MK0	0	0	0	TM5PR02	TM5PR01	TM5PR00
FFFFF12AH	TM5IC1	TM5IF1	TM5MK1	0	0	0	TM5PR12	TM5PR11	TM5PR10
FFFFF12CH	CSI0IC0	CSI0IF0	CSI0MK0	0	0	0	CSI0PR02	CSI0PR01	CSI0PR00
FFFFF12EH	CSI0IC1	CSI0IF1	CSI0MK1	0	0	0	CSI0PR12	CSI0PR11	CSI0PR10
FFFFF130H	SREIC0	SREIF0	SREMK0	0	0	0	SREPR02	SREPR01	SREPR00
FFFFF132H	SRIC0	SRIF0	SRMK0	0	0	0	SRPR02	SRPR01	SRPR00
FFFFF134H	STIC0	STIF0	STMK0	0	0	0	STPR02	STPR01	STPR00
FFFFF136H	SREIC1	SREIF1	SREMK1	0	0	0	SREPR12	SREPR11	SREPR10
FFFFF138H	SRIC1	SRIF1	SRMK1	0	0	0	SRPR12	SRPR11	SRPR10
FFFFF13AH	STIC1	STIF1	STMK1	taSheet41	0 L com	0	STPR12	STPR11	STPR10
FFFFF13CH	TMHIC0	TMHIF0	ТМНМК0	0	0	0	TMHPR02	TMHPR01	TMHPR00
FFFFF13EH	TMHIC1	TMHIF1	TMHMK1	0	0	0	TMHPR12	TMHPR11	TMHPR10
FFFFF142H	IICIC0 ^{Note}	IICIF0	IICMK0	0	0	0	IICPR02	IICPR01	IICPR00
FFFFF144H	ADIC	ADIF	ADMK	0	0	0	ADPR2	ADPR1	ADPR0
FFFFF146H	KRIC	KRIF	KRMK	0	0	0	KRPR2	KRPR1	KRPR0
FFFFF148H	WTIIC	WTIIF	WTIMK	0	0	0	WTIPR2	WTIPR1	WTIPR0
FFFFF14AH	WTIC	WTIF	WTMK	0	0	0	WTPR2	WTPR1	WTPR0
FFFFF14CH	BRGIC	BRGIF	BRGMK	0	0	0	BRGPR2	BRGPR1	BRGPR0
FFFFF170H	LVIIC	LVIIF	LVIMK	0	0	0	LVIPR2	LVIPR1	LVIPR0
FFFFF172H	PIC7	PIF7	PMK7	0	0	0	PPR72	PPR71	PPR70
FFFFF174H	TP0OVIC	TP00VIF	TP0OVMK	0	0	0	TP00VPR2	TP0OVPR1	TP0OVPR0
FFFFF176H	TP0CCIC0	TP0CCIF0	TP0CCMK0	0	0	0	TP0CCPR02	TP0CCPR01	TP0CCPR00
FFFFF178H	TP0CCIC1	TP0CCIF1	TP0CCMK1	0	0	0	TP0CCPR12	TP0CCPR11	TP0CCPR10

Table 17-2. Interrupt Control Registers (xxICn)

Note Only in the μ PD703302Y, 70F3302Y

DataShee

et4U.com

17.3.5 Interrupt mask registers 0, 1, 3 (IMR0, IMR1, IMR3)

These registers set the interrupt mask status for maskable interrupts. The xxMKn bit of the IMR0, IMR1, and IMR3 registers and the xxMKn bit of the xxICn register are respectively linked.

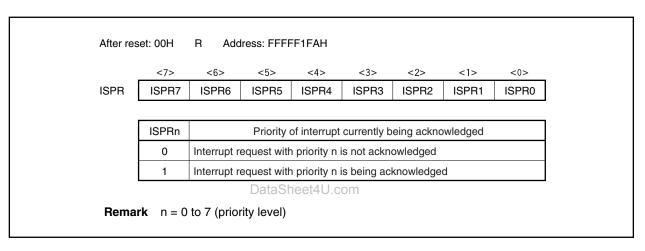
The IMRm register can be read or written in 16-bit units (m = 0, 1, 3).

When the higher 8 bits of the IMRk register are treated as the IMRkH register and the lower 8 bits of the IMRk register as the IMRkL register, they can be read or written in 8-bit or 1-bit units (k = 0, 1).

Caution In the device file, the xxMKn bit of the xxICn register is defined as a reserved word. Therefore, if bit manipulation is performed using the name xxMKn, the xxICn register, not the IMRm register, is rewritten (as a result, the IMRm register is also rewritten).

After re	eset: FFFFI	H R/W	Addres	s: IMR0 F	FFFF100H	l.				
			7100.00			H, IMR0H ∣	FFFFF10	1H		
	15	14	13	12	11	10	9	8	1	
IMR0 (IMR0H ^{Note})	CSI0MK1	CSI0MK0	TM5MK1	TM5MK0	TM0MK11	TM0MK10	1	1		
	7	6	5	4	3	2	1	0	1	
(IMR0L)	PMK6	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	WDT1MK	J	
After re	eset: FFFFI	H R/W	Addres	s: IMR1 F IMR1L		I, H, IMR1H ∣	FFFFF10	3H		
	15	14	13	12	11	10	9	8		
IMR1 (IMR1H ^{Note})	1	BRGMK	WTMK	WTIMK	KRMK	ADMK	IICMK0	1		
	7	6	5	4	3	2	1	0	-	
(IMR1L)	TMHMK1	ТМНМК0	STMK1	SRMK1	SREMK1	STMK0	SRMK0	SREMK0		
	eset: FFFFI 15	H R/W 14	Addres	is: IMR3, II 12		10	9	8	1	
IMR3	1	1	1	1	1	1	1	1		
	7	6	5	4	3	2	1	0	1	
(IMR3L)	1	1	1	TP0CCMK1	TP0CCMK0	TP00VMK	PMK7	LVIMK		
		1								
	xxMKn			Interrupt n	nask flag s	etting				
	0	Enables i	nterrupt se	ervicing						
	1	Disables	interrupt se	ervicing						
Caution S	nits, spec Set bits 9	and 8 of	the IMR	s 0 to 7 of) register	the IMR0	H and IMF and 8 of t	R1H regis he IMR1	sters.	and bits	
Remark >	x: Identify	ying name ters (xxIC	n))					-		

17.3.6 In-service priority register (ISPR)


This register holds the priority level of the maskable interrupt currently being acknowledged. When the interrupt request signal is acknowledged, the bit of this register corresponding to the priority level of that interrupt request signal is set (1) and remains set while the interrupt is being serviced.

When the RETI instruction is executed, the bit among those that are set (1) in the ISPR register that corresponds to the interrupt request signal having the highest priority is automatically cleared (0) by hardware. However, it is not cleared (0) when execution is returned from non-maskable interrupt servicing or exception processing.

This register is read-only in 8-bit or 1-bit units.

After reset, ISPR is cleared to 00H.

Caution If an interrupt is acknowledged while the ISPR register is being read in the interrupt enabled (EI) status, the value of the ISPR register after the bits of the register have been set to 1 by acknowledging the interrupt may be read. To accurately read the value of the ISPR register before an interrupt is acknowledged, read the register while interrupts are disabled (DI status).

17.3.7 ID flag

The interrupt disable flag (ID) is allocated to the PSW and controls the maskable interrupt's operating state, and stores control information regarding enabling/disabling reception of interrupt request signals.

After reset, this flag is set to 0000020H.

PSW			8	7	6	5	4	3	2	
		0		NP	EP	ID :	SAT	CY	OV	S
	ID	Maskable	nterrupt servio	ing s	pecific	cation	Note			
	0	Maskable interrupt request signa	l acknowledgr	nent e	enable	ed				
	1	Maskable interrupt request signa	l acknowledgr	nent c	lisable	ed				
	Nor	lified by the RETI instruction or -maskable interrupt request sig flag. When a maskable inte	nals and ex	cepti	ons a	are ad	ckno	wled	lged	rega

17.3.8 Watchdog timer mode register 1 (WDTM1)

This register is a special register that can be written to only in a special sequence. To generate a maskable interrupt (INTWDT1), clear the WDTM14 bit to 0.

This register can be read or written in 8-bit or 1-bit units (for details, refer to CHAPTER 11 WATCHDOG TIMER FUNCTIONS).

	<7>	6	5	4	3	2	1	0	_	
WDTM1	RUN1	0	0	WDTM14	WDTM13	0	0	0		
							. Nata d		7	
	RUN1				operation mo	de selec	tion ^{Note 1}		-	
	0	Stop coun							-	
	1	Clear cou	nter and st	tart count o	peration					
									-	
	WDTM14	WDTM13	Watch	ndog timer o	operation mo	de selec	tion ^{Note 2}			
	0	0		mer mode						
	0	1	(Generate	e maskable	interrupt INT\	VDIM1 w	hen overflo	ow occurs)		
	1	0		g timer moo e non-maska	de 1 ^{Note 3} ble interrupt I	NTWDT1	when over	low occurs)		
	1	1		g timer moo DTRES2 res	le 2 set operation	when ov	verflow occ	urs)		

17.4 External Interrupt Request Input Pins (NMI, INTP0 to INTP7)

17.4.1 Noise elimination

(1) Noise elimination for NMI pin

The NMI pin includes a noise eliminator that operates using analog delay. Therefore, a signal input to the NMI pin is not detected as an edge unless it maintains its input level for a certain period. The edge is detected only after a certain period has elapsed.

The NMI pin is used for releasing the STOP mode. In the STOP mode, noise elimination using the system clock is not performed because the internal system clock is stopped.

(2) Noise elimination for INTP0 to INTP2 and INTP4 to INTP7 pins

The INTP0 to INTP2 and INTP4 to INTP7 pins include a noise eliminator that operates using analog delay. Therefore, a signal input to each pin is not detected as an edge unless it maintains its input level for a certain period. The edge is detected only after a certain period has elapsed.

(3) Noise elimination for INTP3 pin

The INTP3 pin has a digital/analog noise eliminator that can be selected by the NFC.NFEN bit. The number of times the digital noise eliminator samples signals can be selected by the NFC.NFSTS bit from three or two. The sampling clock can be selected by the NFC.NFC2 to NFC.NFC0 bits from fxx/64, fxx/128, fxx/256, fxx/512, fxx/1024, and fxr. If the sampling clock is set to fxx/64, fxx/128, fxx/256, fxx/512, or fxx/1024, the sampling clock stops in the IDLE/STOP mode. It cannot therefore be used to release the standby mode. To release the standby mode, select fxr as the sampling clock or select the analog noise eliminator.

DataShe

DataSheet4U.com

DataSheet4U.com

et4U.com

(a) Digital noise elimination control register (NFC)

The NFC register controls elimination of noise on the INTP3 pin. If f_{xT} is used as the noise elimination clock, the external interrupt function of the INTP3 pin can be used even in the IDLE/STOP mode. This register can be read or written in 8-bit or 1-bit units. After reset, NFC is cleared to 00H.

R/W After reset: 00H Address: FFFFF318H 7 6 5 4 3 2 1 0 NFC NFEN NFSTS NFC2 NFC1 NFC0 0 0 0 NFEN Setting of INTP3 pin noise elimination 0 Analog noise elimination 1 Digital noise elimination NFSTS Setting of number of samplings of digital noise elimination 0 Number of samplings = 3 times 1 Number of samplings = 2 times NFC2 NFC1 NFC0 Selection of sampling clock 0 0 0 fxx/64 et4U.com 0 0 1 fxx/128 DataShe 0 1 0 fxx/256 0 1 1 fxx/512 1 0 0 fxx/1024 1 0 1 fхт Other than above Setting prohibited **Remark** fxx: Main clock frequency fxT: Subclock frequency

<Noise elimination width>

The digital noise elimination width (twit) is as follows, where T is the sampling clock period and M is the number of samplings.

- twitters < (M 1)T: Accurately eliminated as noise
- $(M 1)T \le twits < MT$: May be eliminated as noise or detected as valid edge
- $t_{WIT3} \ge MT$: Accurately detected as valid edge

To detect the valid edge input to the INTP3 pin accurately, therefore, a pulse wider than MT must be input.

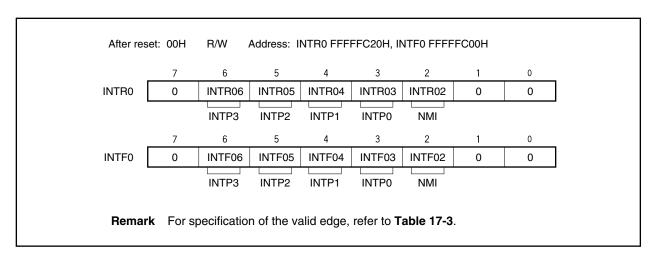
NFSTS	NFC2	NFC1	NFC0	Sampling Clock	Minim	um Elimination Noise	e Width
					fxx = 20 MHz	fxx = 10 MHz	fxx = 8 MHz
0	0	0	0	fxx/64	6.4 <i>µ</i> s	12.8 <i>µ</i> s	16 <i>µ</i> s
0	0	0	1	fxx/128	12.8 <i>μ</i> s	25.6 <i>μ</i> s	32 <i>µ</i> s
0	0	1	0	fxx/256	25.6 <i>μ</i> s	51.2 <i>μ</i> s	64 <i>µ</i> s
0	0	1	1	fxx/512	51.2 <i>μ</i> s	102.4 <i>μ</i> s	128 <i>μ</i> s
0	1	0	0	fxx/1024	102.4 <i>μ</i> s	204.8 <i>μ</i> s	256 <i>µ</i> s
0	1	0	1	fxт (32.768 kHz)	61.04 <i>µ</i> s		
1	0	0	0	fxx/64	3.2 <i>µ</i> s	6.4 <i>μ</i> s	8 μs
1	0	0	1	fxx/128	6.4 <i>μ</i> s	12.8 <i>μ</i> s	16 <i>μ</i> s
1	0	1	0	fxx/256	12.8 <i>μ</i> s	25.6 <i>μ</i> s	32 <i>µ</i> s
1	0	1	1	fxx/512	25.6 μs	51.2 <i>μ</i> s	64 <i>µ</i> s
1	1	0	0	fxx/1024	51.2 μs	102.4 <i>μ</i> s	128 <i>μ</i> s
1	1	0	1	fxт (32.768 kHz)	30.52 <i>µ</i> s		
	Other that	an above		Setting prohibited			

17.4.2 Edge detection

The valid edges of the NMI and INTP0 to INTP7 pins can be selected from the following four types for each pin.

- Rising edge
- Falling edge
- Both edges
- No edge detection

After reset, the edge detection for the NMI pin is set to "no edge detection". Therefore, interrupt requests cannot be acknowledged (the NMI pin functions as a normal port) unless a valid edge is specified by the INTR0 and INTF0 registers.


When using the P02 pin as an output port, set the NMI pin valid edge to "no edge detection".

(1) External interrupt rising and falling edge specification registers 0 (INTR0, INTF0)

These are 8-bit registers that specify detection of the rising and falling edges of the NMI and INTP0 to INTP3 pins.

These registers can be read or written in 8-bit or 1-bit units. After reset, these registers are cleared to 00H.

Caution When switching to the port function from the external interrupt function (alternate function), edge detection may be performed. Therefore, set the port mode after setting the INTF0n and INTR0n bits = 00.

et4U.com

Table 17-3. NMI and INTP0 to INTP3 Pins Valid Edge Specification

INTF0n	INTR0n	Valid edge specification (n = 2 to 6)
0	0	No edge detection
0	1	Rising edge
1	0	Falling edge
1	1	Both edges

Remark n = 2: Control of NMI pin

n = 3 to 6: Control of INTP0 to INTP3 pins

DataSheet4U.com

www.DataSheet4U.com

- (2) External interrupt rising and falling edge specification registers 3 (INTR3, INTF3) These are 8-bit registers that specify detection of the rising and falling edges of the INTP7 pin. These registers can be read or written in 8-bit or 1-bit units. After reset, these registers are cleared to 00H.
 - Caution When switching to the port function from the external interrupt function (alternate function), edge detection may be performed. Therefore, set the port mode after setting the INTF31 and INTR31 bits = 00.

After res	set: 00H	R/W	Address: II	NTR3 FFFI	FC26H, IN	TF3 FFF	FC06H	
	7	6	5	4	3	2	1	0
INTR3	0	0	0	0	0	0	INTR31	0
							INTP7	
	7	6	5	4	3	2	1	0
INTF3	0	0	0	0	0	0	INTF31	0
							INTP7	
Remar	'k Forsp	pecificatio	on of the va	alid edge,	refer to Ta	ble 17-4		

et4U.com

Table 17-4. INTP7 Pin Valid Edge Specification

DataShe

INTF31	INTR31	Valid edge specification
0	0	No edge detection
0	1	Rising edge
1	0	Falling edge
1	1	Both edges

(3) External interrupt rising and falling edge specification registers 9H (INTR9H, INTF9H) These are 8-bit registers that specify detection of the rising edge of the INTP4 to INTP6 pins. These registers can be read or written in 8-bit or 1-bit units. After reset, these registers are cleared to 00H.

Caution When switching to the port function from the external interrupt function (alternate function), edge detection may be performed. Therefore, set the port mode after setting the INTF9n and INTR9n bits = 00.

et4U.com

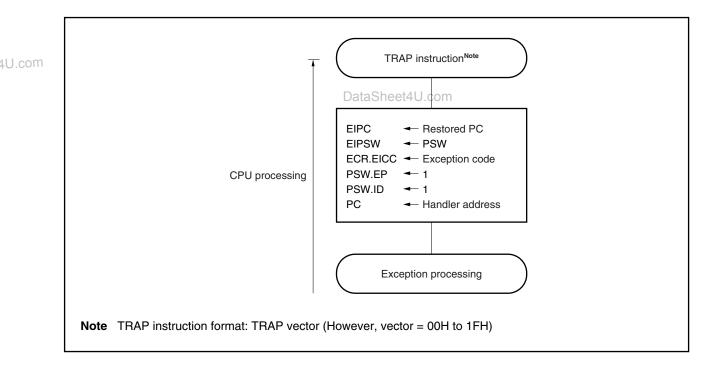
Table 17-5. INTP4 to INTP6 Pins Valid Edge Specification

DataShe

INTF9n	INTR9n	DataSheet4U.com Valid edge specification (n = 13 to 15)
0	0	No edge detection
0	1	Rising edge
1	0	Falling edge
1	1	Both edges

Remark n = 13 to 15: Control of INTP4 to INTP6 pins

17.5 Software Exceptions


A software exception is generated when the CPU executes the TRAP instruction. Software exceptions can always be acknowledged.

17.5.1 Operation

If a software exception occurs, the CPU performs the following processing and transfers control to a handler routine.

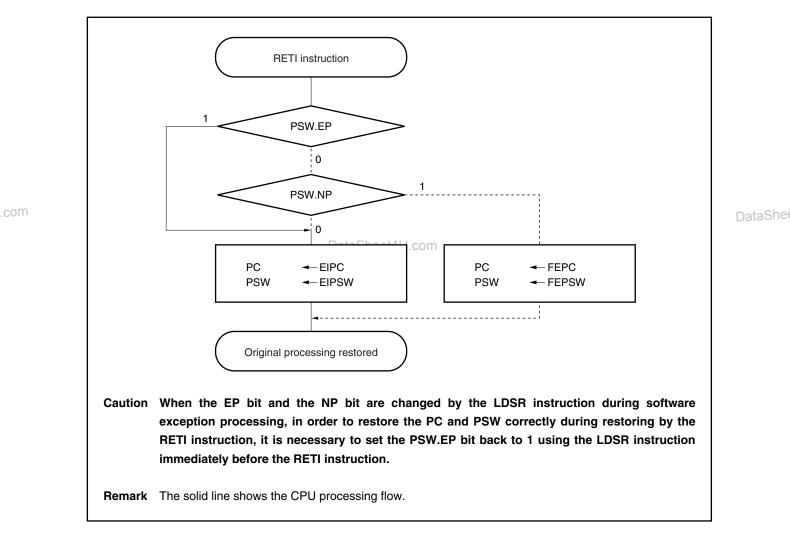
- <1> Saves the restored PC to EIPC.
- <2> Saves the current PSW to EIPSW.
- <3> Writes an exception code to the lower 16 bits (EICC) of ECR (interrupt source).
- <4> Sets the PSW.EP and PSW.ID bits to 1.
- <5> Loads the handler address (00000040H or 00000050H) for the software exception routine to the PC and transfers control.

Figure 17-8 shows the software exception processing flow.

Figure 17-8. Software Exception Processing

The handler address is determined by the operand (vector) of the TRAP instruction. If the vector is 00H to 1FH, the handler address is 00000040H, and if the vector is 10H to 1FH, the handler address is 00000050H.

17.5.2 Restore


Execution is restored from software exception processing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and transfers control to the address of the restored PC.

- <1> Loads the restored PC and PSW from EIPC and EIPSW because the PSW.EP bit is 1.
- <2> Transfers control to the address of the restored PC and PSW.

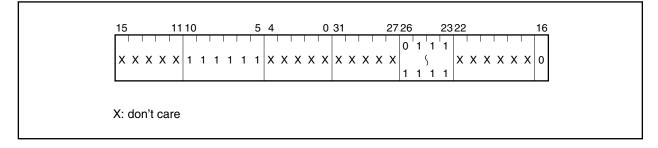
Figure 17-9 shows the processing flow of the RETI instruction.

17.5.3 EP flag

The EP flag, which is bit 6 of the PSW, is a status flag that indicates that exception processing is in progress. It is set when an exception occurs.

	t: 000000201	1								
3	1		8 7	6	5	4	3	2	1	0
PSW		0	N	P EP	ID	SAT	CY	OV	S	Z
	EP	Exception pro	cessir	g statu	s					
Γ	0	Exception processing not in progress								
		Exception processing in progress								

et4U.com


DataShe

17.6 Exception Trap

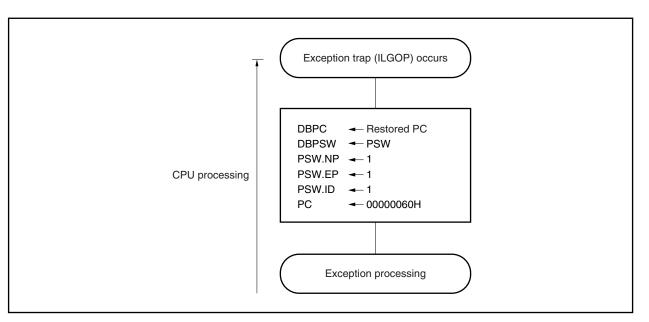
The exception trap is an interrupt that is requested when the illegal execution of an instruction takes place. In the V850ES/KE1+, an illegal opcode trap (ILGOP) is considered as an exception trap.

17.6.1 Illegal opcode

An illegal opcode is defined as an instruction with instruction opcode (bits 10 to 5) = 111111B, sub-opcode (bits 26 to 23) = 0111B to 1111B, and sub-opcode (bit 16) = 0B. When such an instruction is executed, an exception trap is generated.

Caution It is recommended not to use illegal opcode because instructions may newly be assigned in the future.

(1) Operation


Upon generation of an exception trap, the CPU performs the following processing and transfers control to a handler routine. DataSheet4U.com

<1> Saves the restored PC to DBPC.

- <2> Saves the current PSW to DBPSW.
- <3> Sets the PSW.NP, PSW.EP, and PSW.ID bits.
- <4> Loads the handler address (0000060H) for the exception trap routine to the PC and transfers control.

Figure 17-10 shows the exception trap processing flow.

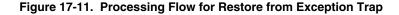
et4U.com

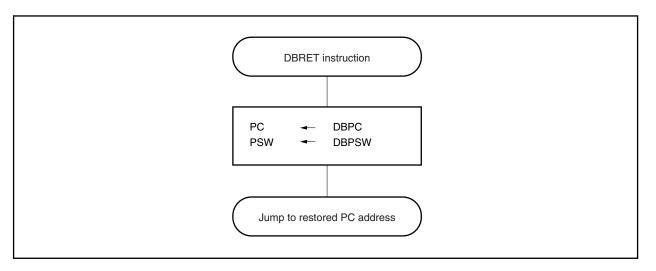
Figure 17-10. Exception Trap Processing

(2) Restore

et4U.com

Execution is restored from exception trap processing by the DBRET instruction. When the DBRET instruction is executed, the CPU performs the following processing and transfers control to the address of the restored PC.


DataShe

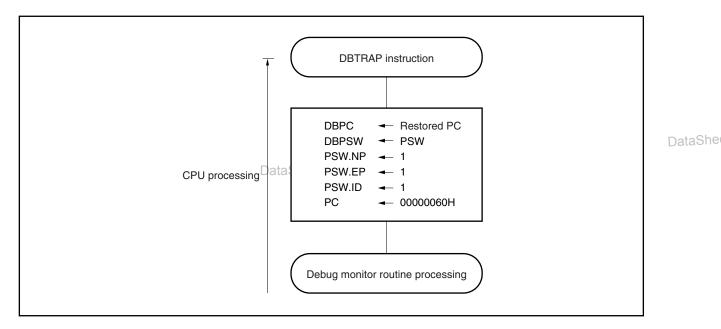

www.DataSheet4U.com

<1> Loads the restored PC and PSW from DBPC and DBPSW.

<2> Transfers control to the loaded address of the restored PC and PSW.

Figure 17-11 shows the processing flow for restore from exception trap processing.

17.6.2 Debug trap


A debug trap is an exception that occurs upon execution of the DBTRAP instruction and that can be acknowledged at all times.

When a debug trap occurs, the CPU performs the following processing.

(1) Operation

- <1> Saves the restored PC to DBPC.
- <2> Saves the current PSW to DBPSW.
- <3> Sets the PSW.NP, PSW.EP, and PSW.ID bits to 1.
- <4> Sets the handler address (00000060H) for the debug trap routine to the PC and transfers control.

Figure 17-12 shows the debug trap processing flow.

et4U.com

(2) Restore

Execution is restored from debug trap processing by the DBRET instruction. When the DBRET instruction is executed, the CPU performs the following processing and transfers control to the address of the restored PC.

<1> Loads the restored PC and PSW from DBPC and DBPSW.

<2> Transfers control to the loaded address of the restored PC and PSW.

Figure 17-13 shows the processing flow for restore from debug trap processing.

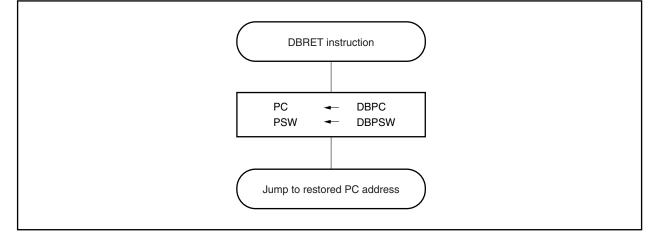


Figure 17-13. Processing Flow for Restore from Debug Trap

DataSheet4U.com

DataSheet4U.com

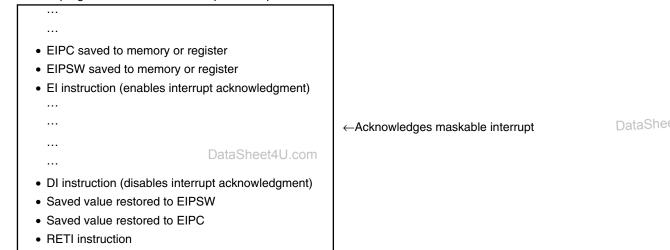
et4U.com

www.DataSheet4U.com

17.7 Multiple Interrupt Servicing Control

Multiple interrupt servicing control is a function that stops an interrupt service routine currently in progress if a higher priority interrupt request signal is generated, and processes the acknowledgment operation of the higher priority interrupt request signal.

If an interrupt request signal with a lower or equal priority is generated and a service routine is currently in progress, the later interrupt request signal will be held pending.


Multiple interrupt servicing control is performed when interrupts are enabled (PSW.ID bit = 0). Even in an interrupt servicing routine, multiple interrupt control must be performed while interrupts are enabled (ID bit = 0).

If a maskable interrupt or software exception is generated in a maskable interrupt or software exception service program, EIPC and EIPSW must be saved.

The following example illustrates the procedure.

(1) To acknowledge maskable interrupt request signals in service program


Service program for maskable interrupt or exception

et4U.com

(2) To generate exception in service program

Service program for maskable interrupt or exception

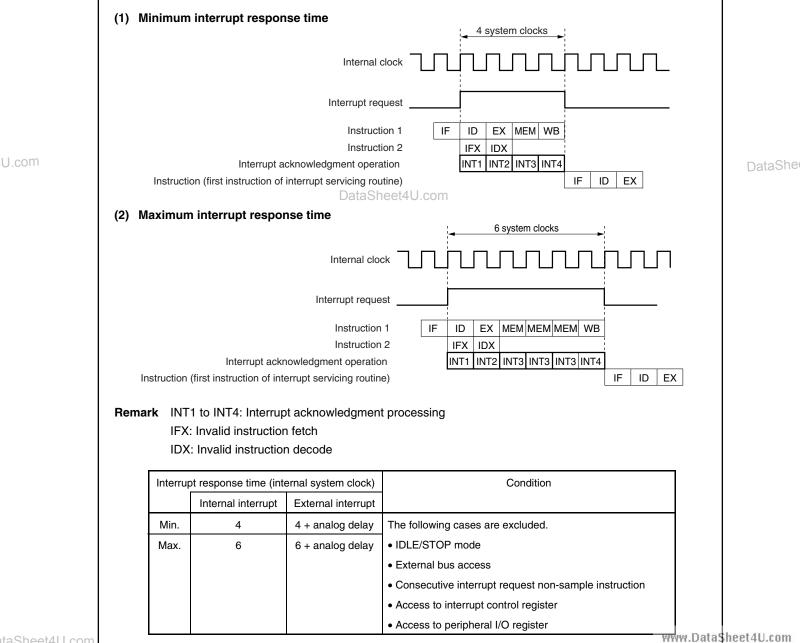
Priorities 0 to 7 (0 is the highest) can be set for each maskable interrupt request in multiple interrupt servicing control by software. To set a priority level, write values to the xxICn.xxPRn0 to xxICn.xxPRn2 bits corresponding to each maskable interrupt request. After reset, interrupt requests are masked by the xxICn.xxMKn bit, and the priority is set to level 7 by the xxPRn0 to xxPRn2 bits.

Priorities of maskable interrupts are as follows.

(High) Level 0 > Level 1 > Level 2 > Level 3 > Level 4 > Level 5 > Level 6 > Level 7 (Low)

et4U.com

Interrupt servicing that has been suspended as a result of multiple interrupt servicing control is resumed after the interrupt servicing of the higher priority has been completed and the RETI instruction has been executed. A pending interrupt request signal is acknowledged after the current interrupt servicing has been completed and the RETI instruction has been executed.


Caution In a non-maskable interrupt servicing routine (in the time until the RETI instruction is executed), maskable interrupts are not acknowledged and held pending.

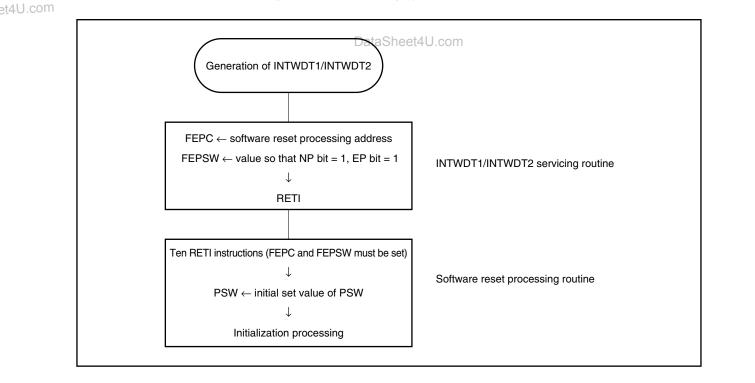
17.8 Interrupt Response Time

Except in the following cases, the CPU interrupt response time is a minimum of 4 clocks. If inputting consecutive interrupt request signals, at least 4 clocks must be placed between each interrupt request signal.

- IDLE/STOP mode
- · External bus access
- Consecutive interrupt request non-sample instruction (refer to 17.9 Periods in Which Interrupts Are Not Acknowledged by CPU)
- · Access to interrupt control register
- Access to peripheral I/O register

Figure 17-14. Pipeline Operation During Interrupt Request Signal Acknowledgment (Outline)

17.9 Periods in Which Interrupts Are Not Acknowledged by CPU


Interrupts are acknowledged by the CPU while an instruction is being executed. However, no interrupt is acknowledged between an interrupt request non-sample instruction and the next instruction (interrupts are held pending).

The following instructions are interrupt request non-sample instructions.

- El instruction
- DI instruction
- LDSR reg2, 0x5 instructions (vs. PSW)
- Store instruction for the PRCMD register
- · Store instruction and SET1, NOT1, and CLR1 instructions for the following registers
 - Interrupt-related registers:
 - Interrupt control register (xxICn), interrupt mask registers 0, 1, 3 (IMR0, IMR1, IMR3)
 - Power save control register (PSC)

17.10 Cautions

Design the system so that restoring by the RETI instruction is as follows after a non-maskable interrupt triggered by a non-maskable interrupt request signal (INTWDT1/INTWDT2) is serviced.

Figure 17-15. Restoring by RETI Instruction

CHAPTER 18 KEY INTERRUPT FUNCTION

18.1 Function

A key interrupt request signal (INTKR) can be generated by inputting a falling edge to the eight key input pins (KR0 to KR7) by setting the KRM register.

Caution If any of the KR0 to KR7 pins is at low level, the INTKR signal is not generated even if a falling edge is input to another pin.

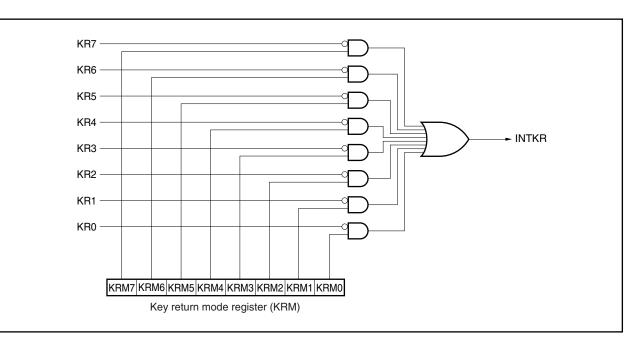

Flag	Pin Description
KRM0	Controls KR0 signal in 1-bit units
KRM1	Controls KR1 signal in 1-bit units
KRM2	Controls KR2 signal in 1-bit units
KRM3	Controls KR3 signal in 1-bit units
KRM4	Controls KR4 signal in 1-bit units
KRM5	Controls KR5 signal in 1-bit units
KRM6	Controls KR6 signal in 1-bit units
KRM7	Controls KR7 signal in 1-bit units

Table 18-1. Assignment of Key Return Detection Pins

et4U.com

DataSheet4U.com

DataShe

18.2 Register

(1) Key return mode register (KRM)

The KRM register controls the KRM0 to KRM7 bits using the KR0 to KR7 signals. This register can be read or written in 8-bit or 1-bit units. After reset, KRM is cleared to 00H.

KRM	KRM7				-	2		0	
		KRM6	KRM5	KRM4	KRM3	KRM2	KRM1	KRM0	
	KRMn			Key re	turn mode	control			
	0	Does not	detect key	return sign	al				
	1	Detects key return signal							
generated. To prevent this, change the KRM register after disabli									
	Remark For the alternate-function pin settings, refer to Table 4-12 Settings W								
Rema	ark For				J ² ,			5	
Caution If the KRM register is changed, an interrupt request signal (INTKI generated. To prevent this, change the KRM register after disabling (DI), and then enable interrupts (EI) after clearing the interrupt re (KRIC.KRIF bit) to 0.									

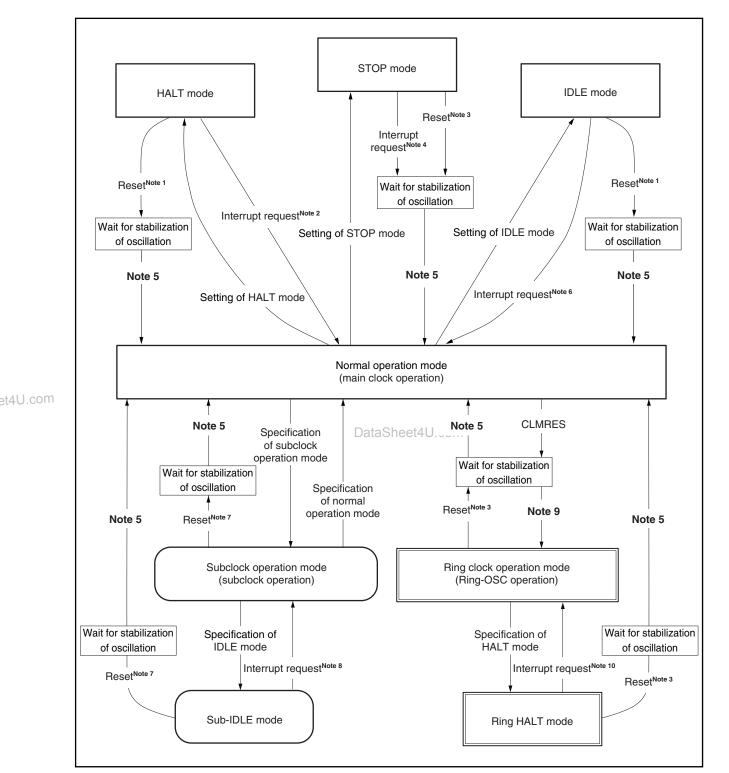
CHAPTER 19 STANDBY FUNCTION

19.1 Overview

The power consumption of the system can be effectively reduced by using the standby modes in combination and selecting the appropriate mode for the application.

The available standby modes are listed in Table 19-1.

Mode	Functional Outline							
HALT mode	Mode to stop only the operating clock of the CPU							
IDLE mode	Mode to stop all the operations of the internal circuits except the oscillator ^{Note 1}							
STOP mode	Mode to stop all the operations of the internal circuits except the subclock oscillatorNote 2							
Subclock operation mode	Mode to use the subclock as the internal system clock							
Sub-IDLE mode	Mode to stop all the operations of the internal circuits, except the oscillator, in the subclock operation mode							
Ring clock operation mode ^{Note 3}	Mode in which the internal system clock (fcLK) operates on the ring clock by using the clock monitor function							
Ring HALT mode ^{№te 3}	Mode in which only the operating clock of the CPU (f_{CPU}) is stopped in the ring clock operation mode							


Table 19-1. Standby Modes

et4U.com

Notes 1. The PLL does not stop. To realize low power consumption, stop the PLL and then shift to the IDLE mode.

- 2. Change to the clock-through mode, stop the PLL, then shift to the STOP mode. For details, refer to CHAPTER 5 CLOCK GENERATION FUNCTION.
- 3. For details of the ring clock operation mode and ring HALT mode, refer to CHAPTER 21 CLOCK MONITOR.

www.DataSheet4U.com

ſ

Figure 19-1. Status Transition (2/2)

Notes	1.	RESET pin input, WDTRES2, POCRES, LVIRES, or CLMRES signal.
		In the case of the WDTRES1 signal, the oscillation stabilization time is not secured.
	2.	Non-maskable interrupt request signal or unmasked maskable interrupt request signal.
	3.	RESET pin input, WDTRES2, POCRES, or LVIRES signal.
	4.	Non-maskable interrupt request signal (NMI pin input, INTWDT2 signal) or unmasked internal
		interrupt request signal from peripheral functions operable in STOP mode.
	5.	The main clock (fx) starts oscillating. After the oscillation stabilization time, the normal operation
		mode is set.
		If watchdog timer 2 overflows while the oscillation stabilization time is being secured because of an
		abnormality (stoppage) of the main clock oscillation (fx), the ring clock operation mode is set.
	6.	Non-maskable interrupt request signal (NMI pin input, INTWDT2 signal) or unmasked internal
		interrupt request signal from peripheral functions operable in IDLE mode.
	7.	RESET pin input, WDTRES2, POCRES, or LVIRES signal.
		While the main clock (fx) is oscillating, the standby mode can be released by the CLMRES signal
		(refer to Note 9).
	8.	Non-maskable interrupt request signal (NMI pin input, INTWDT2 signal) or unmasked internal
		interrupt request signal from peripheral functions operable in sub-IDLE mode.
	9.	If the main clock oscillation (fx) is abnormal (stops), watchdog timer 1 does not count the oscillation
		stabilization time. When watchdog timer 2 counts the ring clock and overflows, the ring clock
		operation mode is set.
	10	Non-maskable interrupt request signal (NMI pin input, INTWDT2 signal) or unmasked internal
		interrupt request signal from peripheral functions operable in ring HALT mode.
Remar	ks	1. WDTRES1 signal: Reset signal by watchdog timer 1 overflow
		WDTRES2 signal: Reset signal by watchdog timer 2 overflow
		3. POCRES signal: Reset signal by power-on-clear circuit
		4. LVIRES signal: Reset signal by low-voltage detector
		5. CLMRES signal: Reset signal by clock monitor

DataShe

٦

et4U.com

19.2 Registers

(1) Power save control register (PSC)

This is an 8-bit register that controls the standby function. The STP bit of this register is used to specify the standby mode. The PSC register is a special register that can be written to only in a special sequence (refer to **3.4.7 Special registers**).

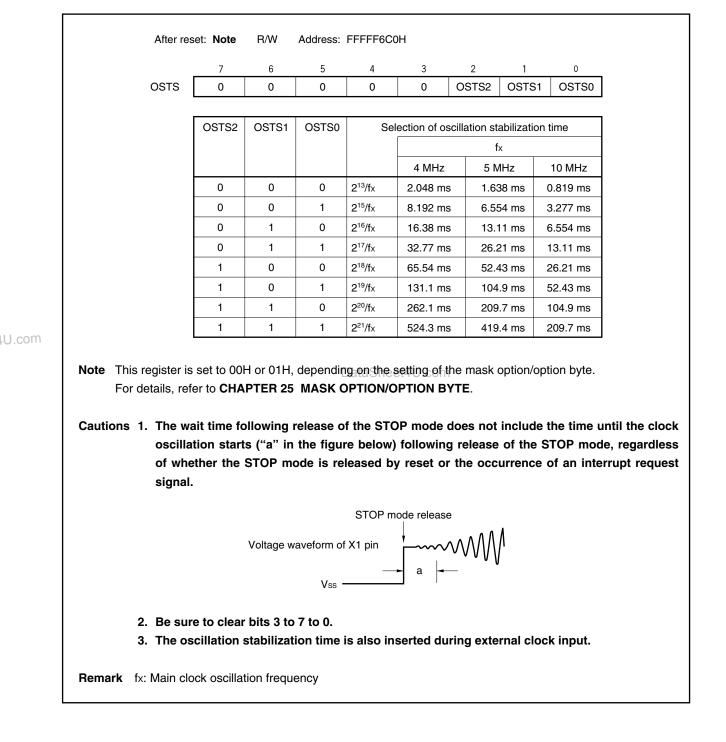
This register can be read or written in 8-bit or 1-bit units.

After reset, PSC is cleared to 00H.

	<7>	6	<5>	<4>	3	2	<1>	0		
PSC	NMI2M	0	NMIOM	INTM	0	0	STP	0		
		1								
	NMI2M		Control of rel	-			-	al		
	0	Releasing standby mode ^{Note} by INTWDT2 signal enabled								
	1	Releasing standby mode ^{Note} by INTWDT2 signal disabled								
	NMIOM		Control of releasing standby mode ^{Note} by NMI pin input							
	0	Releasing standby mode ^{Note} by NMI pin input enabled								
	1	Releasing standby mode ^{Note} by NMI pin input disabled								
	INTM	Control of releasing standby mode ^{Note} by maskable interrupt request signals								
	0	Releasing standby mode ^{Note} by maskable interrupt request signals enabled								
	1	Releasin	Releasing standby mode ^{Note} by maskable interrupt request signals disabled							
	STP		Standby mode ^{Note} setting							
	0		Normal mode							
	1	Standby mode ^{Note}								
Note In this case, s Cautions 1. If the	NMI2M, I	NMIOM, a	and INTM	bits, and	the STI	P bit are	set to 1	at the sam		
inter	upt reque	est signa	l being he	eld pendir	ng when	the IDLI	E/STOP m	nere is an ode is set TM) to 1, a		

(2) Power save mode register (PSMR)

This is an 8-bit register that controls the operation status in the power save mode and the clock operation. This register can be read or written in 8-bit or 1-bit units. After reset, PSMR is cleared to 00H.


	7	6	5	4	3	2	1	<0>
PSMR	XTSTP	0	0	0	0	0	0	PSM
	XTSTP		Sp	ecification	of subclock	coscillator	use	
	0	Subclock	oscillator u	sed				
	1	Subclock	oscillator n	ot used				
	PSM		Spec	ification of	operation i	in standby	mode	
	0	IDLE mod	LE mode					
	1	STOP mo	de					

et4U.com

DataSheet4U.com

(3) Oscillation stabilization time selection register (OSTS)

The wait time until the oscillation stabilizes after the STOP mode is released is controlled by the OSTS register. The OSTS register can be read or written in 8-bit units. After reset, OSTS is set to 01H.

19.3 HALT Mode

19.3.1 Setting and operation status

The HALT mode is set when a dedicated instruction (HALT) is executed in the normal operation mode.

In the HALT mode, the clock oscillator continues operating. Only clock supply to the CPU is stopped; clock supply to the other on-chip peripheral functions continues.

As a result, program execution is stopped, and the internal RAM retains the contents before the HALT mode was set. The on-chip peripheral functions that are independent of instruction processing by the CPU continue operating. Table 19-3 shows the operation status in the HALT mode.

The average power consumption of the system can be reduced by using the HALT mode in combination with the normal operation mode for intermittent operation.

Cautions 1. Insert five or more NOP instructions after the HALT instruction.

2. If the HALT instruction is executed with an unmasked interrupt request signal held pending, the system shifts to the HALT mode, but the HALT mode is immediately released by the pending interrupt request signal.

19.3.2 Releasing HALT mode

The HALT mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT1, INTWDT2 signal), an unmasked maskable interrupt request signal, and reset signal (RESET pin input, WDTRES1, WDTRES2, POCRES, LVIRES, CLMRES signal).

After the HALT mode has been released, the normal operation mode is restored.

(1) Releasing HALT mode by non-maskable interrupt request signal or unmasked maskable interrupt DataSheet4U.com

The HALT mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request. If the HALT mode is set in an interrupt servicing routine, however, an interrupt request that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, only the HALT mode is released, and that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the HALT mode is released and that interrupt request signal is acknowledged.

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status		
on-maskable interrupt request signal	Execution branches to the handler address			

Execution branches to the handler address or the next instruction is

Table 19-2. Operation After Releasing HALT Mode by Interrupt Request Signal

(2) Releasing HALT mode by reset

Maskable interrupt request signal

The same operation as the normal reset operation is performed.

executed

DataSheet4U.com

Nor

The next instruction is executed

Table 19-3. Operation Status in HALT Mode

Setting of HALT Mode		When CPU Is Opera	ating with Main Clock			
Item		When Subclock Is Not Used When Subclock Is Us				
CPU		Stops operation	·			
ROM correction		Stops operation				
Main clock oscillat	or	Oscillation enabled				
Subclock oscillato	r	_	Oscillation enabled			
Ring-OSC (f _R)		Operable				
Interrupt controller		Operable				
16-bit timer (TMP))	Operable				
16-bit timer (TM01)	Operable				
8-bit timers (TM50	, TM51)	Operable				
Timer H (TMH0, T	MH1)	Operable				
Watch timer		Operable when main clock is selected as count clock	Operable			
Watchdog timer 1		Operable				
Watchdog timer 2		Operable when Ring-OSC (f _R) is selected as count clock	Operable			
Serial interface	CSI00, CSI01	Operable				
	I ² C0 ^{Note}	Operable				
	UART0, UART1	Operable				
Key interrupt funct	ion	Operable DataSheet411.com				
A/D converter		Operable				
Real-time output		Operable				
Clock monitor (CLM)		Operable				
Power-on-clear (POC)		Operable				
Low-voltage detect	tion (LVI)	Operable				
Port function		Retains status before HALT mode was set.				
Internal data		The CPU registers, statuses, data, and all of internal RAM are retained as they were befor	her internal data such as the contents of the re the HALT mode was set.			

Note Only in the μ PD703302Y, 70F3302Y

DataSheet4U.com

et4U.com

19.4 IDLE Mode

19.4.1 Setting and operation status

The IDLE mode is set by clearing the PSMR.PSM bit to 0 and setting the PSC.STP bit to 1 in the normal operation mode.

In the IDLE mode, the clock oscillator continues operation but clock supply to the CPU and other on-chip peripheral functions stops.

As a result, program execution stops and the contents of the internal RAM before the IDLE mode was set are retained. The CPU and other on-chip peripheral functions stop operating. However, the on-chip peripheral functions that can operate with the subclock, Ring-OSC clock, or an external clock continue operating.

Table 19-5 shows the operation status in the IDLE mode.

The IDLE mode can reduce the power consumption more than the HALT mode because it stops the operation of the on-chip peripheral functions. The main clock oscillator does not stop, so the normal operation mode can be restored without waiting for the oscillation stabilization time after the IDLE mode has been released, in the same manner as when the HALT mode is released.

Caution Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the IDLE mode.

19.4.2 Releasing IDLE mode

The IDLE mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from the peripheral functions operable in the IDLE mode, or reset (except WDTRES1 signal).

After the IDLE mode has been released, the normal operation mode is restored.

DataShe

DataSheet4U.com

(1) Releasing IDLE mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The IDLE mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request. If the IDLE mode is set in an interrupt servicing routine, however, an interrupt request that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, only the IDLE mode is released, and that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the IDLE mode is released and that interrupt request signal is acknowledged.

Table 19-4. Operation After Releasing IDLE Mode by Interrupt Request Signal

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status		
Non-maskable interrupt request signal	Execution branches to the handler address			
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed	The next instruction is executed		

Caution The interrupt request signal that is disabled by setting the PSC.NMI2M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and IDLE mode is not released.

Item CPU

(2) Releasing IDLE mode by reset

The same operation as the normal reset operation is performed.

Setting of IDLE Mode	When CPU Is Operating with Main Clock				
	When Subclock Is Not Used	When Subclock Is Used			
	Stops operation				
1	Stops operation				
llator	Oscillation enabled				
ator	- Oscillation enabled				

Table 19-5. Operation Status in IDLE Mode

	. Л	1.1	~	\sim	r	Y	٦.
-1	4	U	G	U	L	L	L.
~ ~		~	_				

ROM correction Stops operation					
Main clock oscillat	lain clock oscillator Oscillation enabled				
Subclock oscillato	r	_	Oscillation enabled		
Ring-OSC (fR)		Operable			
Interrupt controller		Stops operation			
16-bit timer (TMP))	Stops operation			
16-bit timer (TM01)	Operable when INTWT is selected as count clock and $f_{\rm BRG}$ is selected as count clock of WT	Operable when INTWT is selected as count clock		
8-bit timers (TM50), TM51)	Operable when TI5m is selected as count Operable when INTTM010 is selected as co	clock ount clock and TM01 is enabled in IDLE mode		
Timer H (TMH0)		Stops operation			
Timer H (TMH1)		Operable when f _R /2048 is selected as count c	lock		
Watch timer		Operable when main clock is selected as count clock	Operable		
Watchdog timer 1		Stops operation DataSheet4U.com	Stops operation DataSheet411.com		
Watchdog timer 2		Operable when fR is selected as count clock Operable			
Serial interface	CSI00, CSI01	Operable when SCK0m input clock is selected as operation clock			
	I ² C0 ^{Note}	Stops operation			
	UART0	Operable when ASCK0 is selected as count clock			
	UART1	Stops operation			
Key interrupt funct	lion	Operable			
A/D converter		Stops operation			
Real-time output		Operable when INTTM5m is selected as real-time output trigger and TM5m is enabled in IDLE mode			
Clock monitor (CLM)		Operable			
Power-on-clear (POC)		Operable			
Low-voltage detect	tion (LVI)	Operable			
Port function		Retains status before IDLE mode was set.			
Internal data		The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the IDLE mode was set.			
Note Only in the					

Note Only in the *µ*PD703302Y, 70F3302Y

 $\textbf{Remark} \quad m=0,\ 1$

DataShe

546

19.5 STOP Mode

19.5.1 Setting and operation status

The STOP mode is set when the PSMR.PSM bit is set to 1 and the PSC.STP bit is set to 1 in the normal operation mode.

In the STOP mode, the subclock oscillator continues operating but the main clock oscillator stops. Clock supply to the CPU and the on-chip peripheral functions is stopped.

As a result, program execution is stopped, and the contents of the internal RAM before the STOP mode was set are retained. The CPU and other on-chip peripheral functions stop operating. However, the on-chip peripheral functions that can operate with the subclock oscillator, Ring-OSC clock, or an external clock continue operating.

Table 19-7 shows the operation status in the STOP mode.

Because the STOP mode stops operation of the main clock oscillator, it reduces the power consumption to a level lower than the IDLE mode. If the subclock oscillator, Ring-OSC clock, and external clock are not used, the power consumption can be minimized with only leakage current flowing.

Caution Insert five or more NOP instructions after the instruction that stores data in the PSC register to set the STOP mode.

19.5.2 Releasing STOP mode

The STOP mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from the peripheral functions operable in the STOP mode, or reset (except WDTRES1 signal).

After the STOP mode has been released, the normal operation mode is restored after the oscillation stabilization time has been secured.

DataShe

DataSheet4U.com

(1) Releasing STOP mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The STOP mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request. If the STOP mode is set in an interrupt servicing routine, however, an interrupt request that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, only the STOP mode is released, and that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the STOP mode is released and that interrupt request signal is acknowledged.

Table 19-6. 0	Operation After	Releasing STOP	Mode by Inte	errupt Request Signal
---------------	-----------------	----------------	--------------	-----------------------

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status		
Non-maskable interrupt request signal	Execution branches to the handler address			
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed	The next instruction is executed		

Caution The interrupt request signal that is disabled by setting the PSC.NMI2M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and STOP mode is not released.

et4U.com

(2) Releasing STOP mode by reset

The same operation as the normal reset operation is performed.

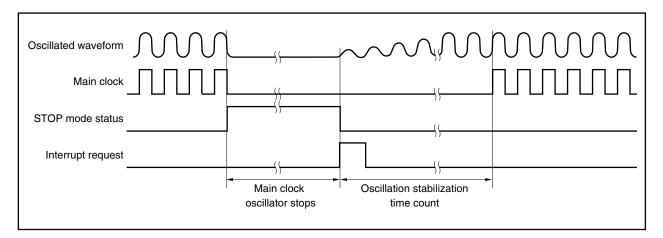
Se	etting of STOP Mode	When CPU Is Operating with Main Clock				
Item		When Subclock Is Not Used	When Subclock Is Used			
CPU		Stops operation	·			
ROM correction		Stops operation				
Main clock oscillat	tor	Oscillation stops				
Subclock oscillato	r	_	Oscillation enabled			
Ring-OSC (f _R)		Operable	•			
Interrupt controller	r	Stops operation				
16-bit timer (TMP))	Stops operation				
16-bit timer (TM01) Stops operation Operable when INTWT is se		Operable when INTWT is selected as count clock and fxT is selected as count clock of WT				
8-bit timers (TM50, TM51)		Operable when TI5m is selected as count clock	Operable when TI5m is selected as count clock or when INTTM010 is selected as count clock and TM01 is enabled in STOP mode			
Timer H (TMH0)		Stops operation				
Timer H (TMH1)		Operable when fr/2048 is selected as count clock				
Watch timer		Stops operation	Operable when f_{XT} is selected as count clock			
Watchdog timer 1		Stops operation DataSheet4U.com				
Watchdog timer 2		Operable when $f_{\mbox{\scriptsize R}}$ is selected as count clock	Operable			
Serial interface	CSI00, CSI01	Operable when SCK0m input clock is selected	ed as operation clock			
	I ² C0 ^{Note}	Stops operation				
	UART0	Operable when ASCK0 is selected as count clock				
	UART1	Stops operation				
Key interrupt funct	tion	Operable				
A/D converter		Stops operation				
Real-time output		Operable when INTTM5m is selected as real-time output trigger and TM5m is enabled in STOP mode				
Clock monitor (CLM)		Stops operation				
Power-on-clear (P	'OC)	Operable				
Low-voltage detec	ction (LVI)	Operable				
Port function		Retains status before STOP mode was set.				
Internal data		The CPU registers, statuses, data, and all other internal data such as the contents of the internal RAM are retained as they were before the STOP mode was set.				

Table 19-7. Operation Status in STOP Mode

Note Only in the *µ*PD703302Y, 70F3302Y

Remark m = 0, 1

DataShe


548

19.5.3 Securing oscillation stabilization time when STOP mode is released

When the STOP mode is released, only the oscillation stabilization time set by the OSTS register elapses. If the STOP mode has been released by reset, however, the reset value of the OSTS register^{Note} elapses.

The operation performed when the STOP mode is released by an interrupt request signal is shown below.

Note The reset value of the OSTS register differs depending on the setting of the mask option/option byte. For details, refer to **CHAPTER 25 MASK OPTION/OPTION BYTE**.

et4U.com

Caution For details of the OSTS register, refer to 19.2 (3) Oscillation stabilization time selection register (OSTS). DataSheet4U.com

19.6 Subclock Operation Mode

19.6.1 Setting and operation status

The subclock operation mode is set when the PCC.CK3 bit is set to 1 in the normal operation mode.

When the subclock operation mode is set, the internal system clock is changed from the main clock to the subclock. When the PCC.MCK bit is set to 1, the operation of the main clock oscillator is stopped. As a result, the system operates only with the subclock.

Table 19-8 shows the operation status in subclock operation mode.

In the subclock operation mode, the power consumption can be reduced to a level lower than in the normal operation mode because the subclock is used as the internal system clock. In addition, the power consumption can be further reduced to the level of the STOP mode by stopping the operation of the main clock oscillator.

- Cautions 1. When manipulating the CK3 bit, do not change the set values of the PCC.CK2 to PCC.CK0 bits (using a bit manipulation instruction to manipulate the bit is recommended). For details, refer to 5.3 (1) Processor clock control register (PCC).
 - If the following conditions are not satisfied, change the CK2 to CK0 bits so that the conditions are satisfied and set the subclock operation mode. Main clock (fxx) > Subclock (fxr: 32.768 kHz) × 4

19.6.2 Releasing subclock operation mode

The subclock operation mode is released when the CK3 bit is cleared to 0 or by reset. If the main clock is stopped (MCK bit = 1), set the MCK bit to 1, secure the oscillation stabilization time of the main clock by software, and clear the CK3 bit to 0.

The normal operation mode is restored when the subclock operation mode is released.

Caution When manipulating the CK3 bit, do not change the set values of the CK2 to CK0 bits (using a bit manipulation instruction to manipulate the bit is recommended). For details, refer to 5.3 (1) Processor clock control register (PCC).

Setting of Subclock		Opera	tion Status			
Operation Mode		When Main Clock Is Oscillating	When Main Clock Is Stopped			
Item						
CPU		Operable				
ROM correction		Operable				
Subclock oscillato	or	Oscillation enabled				
Ring-OSC (f _R)		Operable				
Interrupt controlle	r	Operable				
16-bit timer (TMP	0)	Operable	Stops operation			
16-bit timer (TM0	1)	Operable	Operable when INTWT is selected as count clock and f_{XT} is selected as count clock of WT			
8-bit timers (TM50, TM51)		Operable	 Operable when TI5m is selected as count clock Operable when INTTM010 is selected as count clock and when TM01 is enabled in subclock operation mode 			
Timer H (TMH0)		Operable	Stops operation			
Timer H (TMH1)		Operable	Operable when f _R /2048 is selected as count clock			
Watch timer		Operable	Operable when f_{XT} is selected as count clock			
Watchdog timer 1		Operable Stops operation				
Watchdog timer 2	2	Operable DataSheet4U.com				
Serial interface	CSI00, CSI01	Operable	Operable when SCK0m input clock is selected as operation clock			
	I ² C0 ^{Note}	Operable	Stops operation			
	UART0	Operable	Operable when ASCK0 is selected as count clock			
	UART1	Operable	Stops operation			
Key interrupt function		Operable				
A/D converter		Operable	Stops operation			
Real-time output		Operable Operable when INTTM5m is sele real-time output trigger and TM5r enabled in subclock operation me				
Clock monitor (CLM)		Operable	Stops operation			
Power-on-clear (F		Operable				
Low-voltage dete	ction (LVI)	Operable				
Port function		Settable				
Internal data		Settable				

Table 19-8. Operation Status in Subclock Operation Mode

Note Only in the μ PD703302Y, 70F3302Y

Remark m = 0, 1

19.7 Sub-IDLE Mode

19.7.1 Setting and operation status

The sub-IDLE mode is set when the PSMR.PSM bit is cleared to 0 and the PSC.STP bit is set to 1 in the subclock operation mode.

In this mode, the clock oscillator continues operation but clock supply to the CPU and the other on-chip peripheral functions is stopped.

As a result, program execution is stopped and the contents of the internal RAM before the sub-IDLE mode was set are retained. The CPU and the other on-chip peripheral functions are stopped. However, the on-chip peripheral functions that can operate with the subclock, Ring-OSC clock, or an external clock continue operating.

Table 19-10 shows the operation status in the sub-IDLE mode.

Because the sub-IDLE mode stops operation of the CPU and other on-chip peripheral functions, it can reduce the power consumption more than the subclock operation mode. If the sub-IDLE mode is set after the main clock has been stopped, the power consumption can be reduced to a level as low as that in the STOP mode.

19.7.2 Releasing sub-IDLE mode

The sub-IDLE mode is released by a non-maskable interrupt request signal (NMI pin input, INTWDT2 signal), unmasked external interrupt request signal (INTP0 to INTP7 pin input), unmasked internal interrupt request signal from the peripheral functions operable in the sub-IDLE mode, or reset (except WDTRES1 signal).

When the sub-IDLE mode is released by an interrupt request signal, the subclock operation mode is set. If it is released by reset, the normal operation mode is restored.

(1) Releasing sub-IDLE mode by non-maskable interrupt request signal or unmasked maskable interrupt request signal

The sub-IDLE mode is released by a non-maskable tinterrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request. If the sub-IDLE mode is set in an interrupt servicing routine, however, an interrupt request signal that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, only the sub-IDLE mode is released, and that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the sub-IDLE mode is released and that interrupt request signal is acknowledged.

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status				
Non-maskable interrupt request signal	Execution branches to the handler address					
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed	The next instruction is executed				

Table 19-9. Operation After Releasing Sub-IDLE Mode by Interrupt Request Signal

Caution The interrupt request signal that is disabled by setting the PSC.NMI2M, PSC.NMI0M, and PSC.INTM bits to 1 becomes invalid and sub-IDLE mode is not released.

(2) Releasing sub-IDLE mode by reset

The same operation as the normal reset operation is performed.

	Setting of Sub-IDLE	Operatio	on Status				
	Mode	When Main Clock Is Oscillating	When Main Clock Is Stopped				
Item							
CPU		Stops operation					
ROM correction		Stops operation					
Subclock oscillato	r	Oscillation enabled					
Ring-OSC (f _R)		Operable					
Interrupt controlle	r	Stops operation					
16-bit timer (TMP	0)	Stops operation					
16-bit timer (TM0	1)	Operable when INTWT is selected as count clock	Operable when INTWT is selected as count clock and fxT is selected as count clock of WT				
8-bit timers (TM50, TM51)		 Operable when TI5m is selected as count clock Operable when INTTM010 is selected as count clock and INTWT is selected as count clock of TM01 Operable when INTTM010 is selected as count clock and when TM01 is e in sub-IDLE mode 					
Timer H (TMH0)		Stops operation	Stops operation				
Timer H (TMH1)		Operable when fR/2048 is selected as count clock					
Watch timer		Operable Operable when fxr is selected as cour					
Watchdog timer 1		Stops operation					
Watchdog timer 2		Operable					
Serial interface	CSI00, CSI01	DataSheet4U.com Stops operation	Operable when SCK0m input clock is selected as operation clock				
	I ² C0 ^{Note}	Stops operation					
	UART0	Operable when ASCK0 is selected as count clock					
	UART1	Stops operation					
Key interrupt func	tion	Operable					
A/D converter		Stops operation					
Real-time output		Operable when INTTM5m is selected as real-time output trigger and TM5m is enabled in sub-IDLE mode					
Clock monitor (CL	.M)	Operable	Stops operation				
Power-on-clear (F	90C)	Operable	•				
Low-voltage detect	ction (LVI)	Operable					
Port function		Retains status before sub-IDLE mode was se	et.				
Internal data		The CPU registers, statuses, data, and all ot internal RAM are retained as they were before					

Table 19-10. Operation Status in Sub-IDLE Mode

Note Only in the μ PD703302Y, 70F3302Y

Remark m = 0, 1

DataSheet4U.com

CHAPTER 20 RESET FUNCTION

20.1 Overview

The following reset functions are available.

- Reset by RESET pin input
- Reset by watchdog timer 1 overflow (WDTRES1)
- Reset by watchdog timer 2 overflow (WDTRES2)
- System reset by low-voltage detector (LVI) (LVIRES)
- System reset by clock monitor (CLM) (CLMRES)
- System reset by power-on-clear (POC) (POCRES)
- Analog/digital + analog noise eliminator of RESET pin selectable
- Reset output function (P00/TOH0 pin)

20.2 Configuration

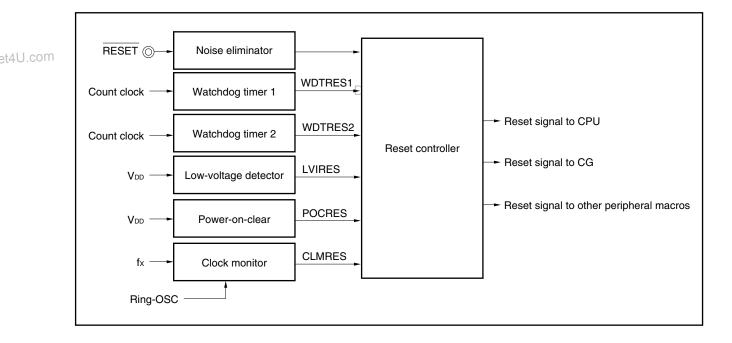


Figure 20-1. Reset Block Diagram

20.3 Register to Check Reset Source

(1) Reset source flag register (RESF)

The RESF register is a special register that can be written only by a combination of specific sequences (refer to **3.4.7 Special registers**).

The RESF register indicates the source from which a reset signal is generated.

This register can be read or written in 8-bit or 1-bit units (however, only "0" can be written to this register).

RESET pin input or reset by the POC circuit (POCRES) clears this register to 00H. The default value differs if reset is effected from a source other than the RESET pin.

R	ESF WDT1RF	0	0	WDT2RF	0	0	CLMRF	LVIRF
					-	U	CLIVINI	LVIRF
	I 1							
	WDT1RF			signal from wa	tchdog ti	mer 1 (WI	DTRES1)	
	0	Not gen						
	1	Generat	ed					
	WDT2RF		Reset	signal from wa	atchdog ti	mer 2 (W	DTRES2)	
	0	Not gen	erated					
	1	Generat	ed					
			Detro					
	CLMRF	•••		et signal from	clock mo	onitor (CLI	/RES)	
	0	Not gen						
	1	Generat	ea					
	LVIRF		Reset	signal from lov	v-voltage	detector	(LVIRES)	
	0	Not gen	erated					
	1	Generat	ed					
When a clock m		ed by the reset fla	e WDTF ags of th	RES1 signal,	WDTR	ES2 sigr	nal, Iow-vol	C circuit. Itage detector (LVI F, and LVIRF bits)

20.4 Reset Sources

The following six reset sources are available.

- Reset by RESET pin input
- Reset by watchdog timer 1 overflow (WDTRES1)
- Reset by watchdog timer 2 overflow (WDTRES2)
- System reset by low-voltage detector (LVI) (LVIRES)
- System reset by clock monitor (CLM) (CLMRES)
- System reset by power-on-clear (POC) (POCRES)

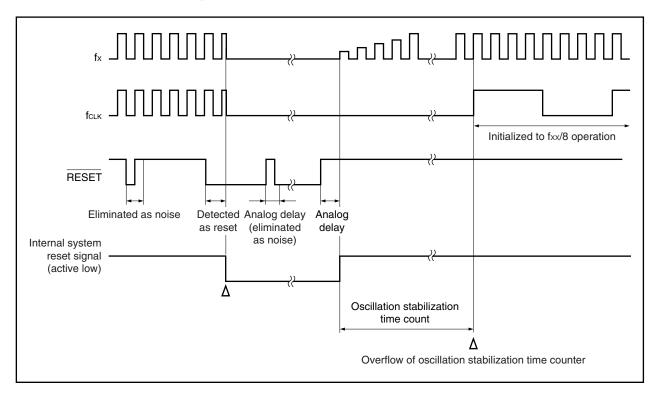
20.4.1 Reset operation via RESET pin

When a low level is input to the RESET pin, the system is reset, and each hardware unit is initialized.

The $\overrightarrow{\text{RESET}}$ pin has a noise eliminator that can eliminate analog noise or digital + analog noise, depending on the setting of the RNZC register.

While a low level is being input to the RESET pin, the main clock oscillator stops. Therefore, the overall power consumption of the system can be reduced.

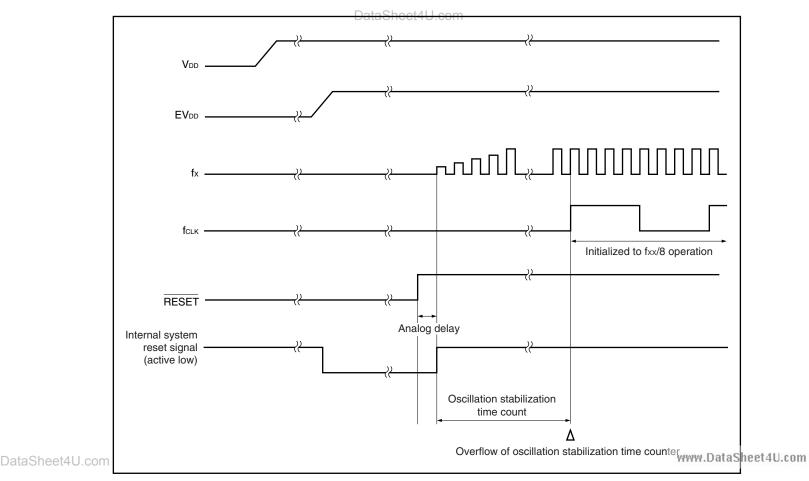
When the level of the RESET pin is changed from low to high, the reset status is released.


If the reset status is released by RESET pin input, the oscillation stabilization time elapses and then the CPU starts program execution (for the oscillation stabilization time, refer to 19.2 (3) Oscillation stabilization time selection register (OSTS) and CHAPTER 25 MASK OPTION/OPTION BYTE).

t4U.com

Table 20-1. Hardware Status on RESET Pin Input

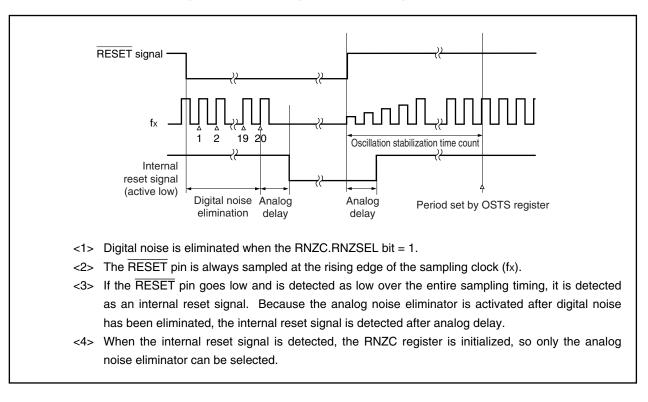
DataShe


Item	DataSheet4U.com During Reset	After Reset				
Main clock oscillator (fx)	Oscillation stops	Oscillation starts				
Subclock oscillator (fxT)	Oscillation continues					
Ring-OSC (f _R)	Oscillation stops	Oscillation starts				
Peripheral clock (fxx to fxx/1024)	Operation stops	Operation starts after securing oscillation stabilization time				
Internal system clock (fc∟κ)	Operation stops	Operation starts after securing oscillation stabilization time (initialized to fxx/8)				
CPU clock (fcpu)	Operation stops	Operation starts after securing oscillatio stabilization time (initialized to fxx/8)				
Watchdog timer 1 clock (fxw)	Operation stops	Operation starts				
CPU	Initialized	Program execution starts after securing oscillation stabilization time				
Internal RAM	Undefined if power-on reset or writing data to RAM (by CPU) and reset input conflict (data is damaged). Otherwise value immediately before reset input is retained.					
I/O lines (P00)	Low-level output					
I/O lines (ports other than P00)	High impedance					
On-chip peripheral I/O registers	Initialized to specified status					
Watchdog timer 2	Operation stops	Operation starts (fR)				
Other on-chip peripheral functions	Operation stops	Operation can be started after securing oscillation stabilization time				

et4U.com

Figure 20-3. Operation on Power Application

(1) Elimination of digital noise on RESET pin


For the $\overrightarrow{\text{RESET}}$ pin of the V850ES/KE1+, an analog/digital + analog noise eliminator can be selected. The digital noise eliminator is selected when the RNZC.RNZSEL bit = 1. The digital noise is sampled using the main clock (fx), and the number of samplings can be selected from 10 or 20 by the RNZC.SMPSEL bit.

(a) Reset noise elimination control register (RNZC)

The RNZC register can be read or written in 8-bit units. After reset, RNZC is cleared to 00H.

	7	6	5	4	3	2	1	0	
RNZC	0	0	0	0	0	0	SMPSEL	RNZSEL ^{Note}	
	SMPSEL		Soloo	tion of num	bor of car	nlings			
	O O	20 times				ipiniys			
	1	10 times							
	RNZSEL ^{Note}		Selection	of noise eli	minator of	RESET p	in		
	0	Analog r	Analog noise elimination only						
	1	Digital +	Digital + analog noise elimination						
Note If the samplir setting of the Caution The RNZ	RNZSEL b	it.		DataShee	et4U.com	1		cally, regarc released.	

www.DataSheet4U.com

Figure 20-4. Sampling Operation Timing (20 Times)

et4U.com

(b) Operation when sampling clock is stopped

DataShe

If the sampling clock (fx) stops when the digital + analog noise eliminator is selected, input to the RESET signal is not received. Therefore, only the analog noise eliminator is automatically selected. Only the analog noise eliminator is automatically selected during the following periods.

• In STOP mode:

Setting of STOP mode \rightarrow Period to time set by the OSTS register that elapses after the STOP mode is released (by a source other than reset)

In subclock operation mode:
 Setting of subclock operation mode (PCC.CLS bit = 0 → 1) → Period until the main clock operation mode (CLS bit = 1 → 0) is restored

(c) Digital noise elimination width

The digital noise elimination width (twRSL) is as follows where T is the sampling clock period and N is the number of samplings.

Digita	al Noise Elimination Width (Operation	
	T = 10 MHz, N = 20		
$t_{WRSL} < (N-1)T$	twrsL < 1.9 μs	twrsι < 1.8 μs	Eliminated as noise
$(N-1)T < t_{WRSL} < NT$	1.9 μ s \leq twrsl $<$ 2.0 μ s	1.8 μ s \leq twrsl $<$ 2.0 μ s	May be eliminated as noise or detected as reset
NT ≤ twrsL	2.0 μ s \leq twrsl	2.0 μs ≤ twrs∟	Detected as reset

Table 20-2. Digital Noise Elimination Width of RESET Pin

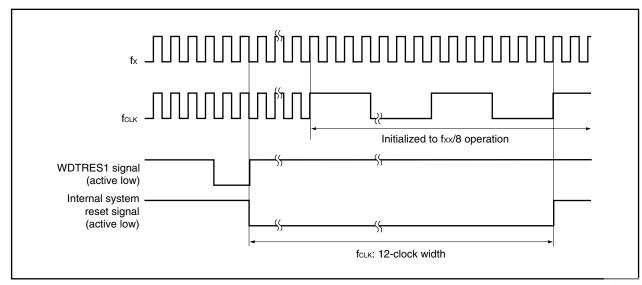
 Remark
 The noise on the RESET pin is eliminated by a value that takes the value shown in this table and the analog delay value into consideration.

 www.DataSheet4U.com

20.4.2 Reset operation by WDTRES1 signal

If a reset operation mode in which reset is effected when watchdog timer 1 overflows is set, the system is reset when watchdog timer 1 overflows (when the WDTRES1 signal is generated), and each hardware unit is initialized to a specific status.

After watchdog timer 1 has overflowed, the system is reset for a specific duration of time (fcLK: 12 clocks) and then automatically released from the reset status. After release of the reset status, the CPU starts program execution.


Note that, because the main clock oscillator continues operating even during the reset period, the oscillation stabilization time is not secured.

The following table shows the status of each hardware unit during the period of reset that is effected by the WDTRES1 signal and after release of the reset status.

ltem	During Reset	After Reset						
Main clock oscillator (fx)	Oscillation continues							
Subclock oscillator (fxT)	Oscillation continues	Oscillation continues						
Ring-OSC (f _R)	Oscillation continues							
Peripheral clock (fxx to fxx/1024)	Operation stops	Operation starts						
Internal system clock (fcLK)	Oscillation continues (initialized to fxx/8)	Oscillation continues (initialized to fxx/8)						
CPU clock (fcpu)	Oscillation continues (initialized to fxx/8)							
Watchdog timer 1 clock (fxw)	Operation continues							
Internal RAM	Undefined if writing data to RAM (by CPU Otherwise value immediately before reset) and reset input conflict (data is damaged). input is retained.						
I/O lines (P00)	Low-level output							
I/O lines (ports other than P00)	High impedance	High impedance						
On-chip peripheral I/O registers	Initialized to specified status							
Watchdog timer 2	Operation stops	Operation starts (f _R)						
Other on-chip peripheral functions	Operation stops	Operation can be started						

Table 20-3. Hardware Status on Occurrence of WDTRES1 Signal

Figure 20-5. Timing of Reset Operation by Watchdog Timer 1

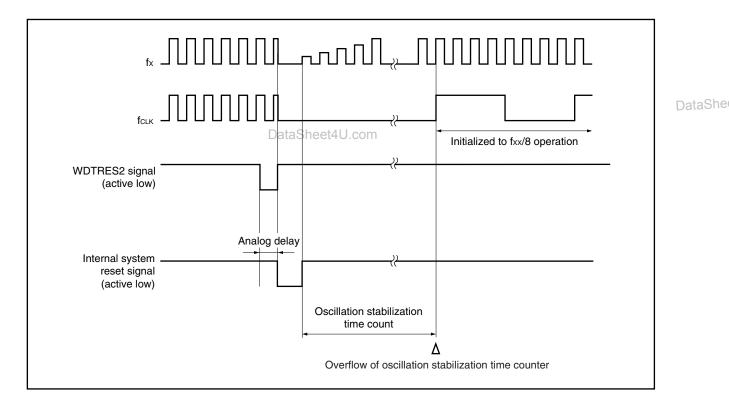
DataSheet4U.com

et4U.com

www.DataSheet4U.com

20.4.3 Reset operation by WDTRES2 signal

If a reset operation mode in which reset is effected when watchdog timer 2 overflows is set, the system is reset when watchdog timer 2 overflows (when the WDTRES2 signal is generated), and each hardware unit is initialized to a specific status.


After watchdog timer 2 has overflowed, the system is reset for a specific duration of time (equivalent to analog delay) and then automatically released from the reset status. After release of the reset status, the oscillation stabilization time of the main clock oscillator is secured, and then the CPU starts program execution.

Note that, because the main clock oscillator stops during the reset period, the oscillation stabilization time must be secured. The oscillation stabilization time is determined by the default value of the OSTS register (for the oscillation stabilization time, refer to **19.2 (3)** Oscillation stabilization time selection register (OSTS) and CHAPTER **25** MASK OPTION/OPTION BYTE).

The status of each hardware unit during the period of reset effected by the WDTRES2 signal and after release of the reset status is the same as when reset is effected by the $\overline{\text{RESET}}$ pin input.

For details, refer to Table 20-1 Hardware Status on RESET Pin Input.

The following figure shows the timing of the reset operation by the WDTRES2 signal.

Figure 20-6. Timing of Reset Operation by Watchdog Timer 2

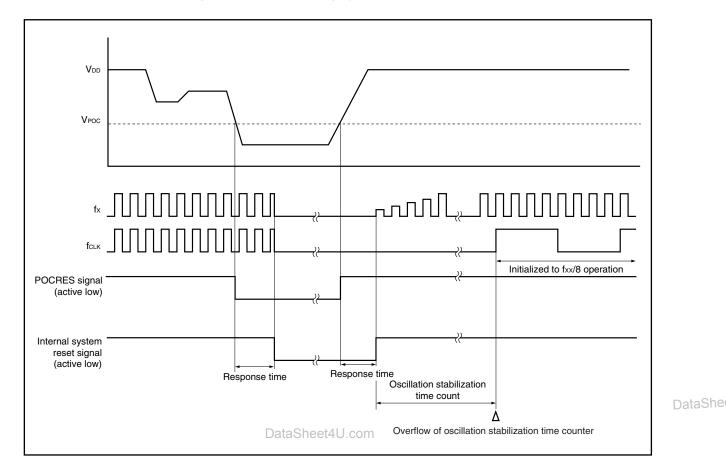
20.4.4 Power-on-clear reset operation

The supply voltage (V_{DD}) and detection voltage (V_{POC}) are compared. When $V_{DD} < V_{POC}$, the system is reset and each hardware unit is initialized to a specific status.

The detection voltage (V_{POC}) is 2.6 V \pm 0.1 V.

While $V_{DD} < V_{POC}$, the system is reset. Reset is released when $V_{DD} \ge V_{POC}$. After release of the reset status, the oscillation stabilization time of the main clock oscillator is secured, and then the CPU starts program execution.

Note that, because the main clock oscillator stops during the reset period, the oscillation stabilization time must be secured. The oscillation stabilization time is determined by the default value of the OSTS register (for the oscillation stabilization time, refer to 19.2 (3) Oscillation stabilization time selection register (OSTS) and CHAPTER 25 MASK OPTION/OPTION BYTE).


The following table shows the status of each hardware unit during the period of reset effected by the POCRES signal and after release of reset.

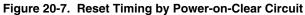
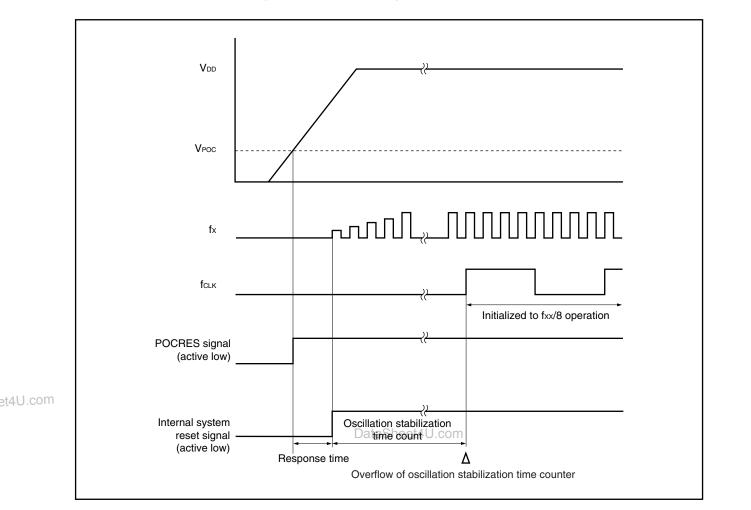

ltem	During Reset	After Reset			
Main clock oscillator (fx)	Oscillation stops	Oscillation starts			
Subclock oscillator (fxT)	Oscillation continues				
Ring-OSC (f _R)	Oscillation stops	Oscillation starts			
Peripheral clock (fxx to fxx/1024)	Operation stops	Operation starts after securing oscillation stabilization time			
Internal system clock (fclk)	Operation stops	Operation starts after securing oscillation stabilization time (initialized to fxx/8)			
CPU clock (fcpu)	Operation stops at a Sheet 4U.com	Operation starts after securing oscillation stabilization time (initialized to fxx/8)			
Watchdog timer 1 clock (fxw)	Operation stops	Operation starts			
CPU	Initialized	Program execution starts after securing oscillation stabilization time			
Internal RAM	Undefined if power-on reset or writing data to RAM (by CPU) and reset input conflict (data is damaged). Otherwise value immediately before reset input is retained.				
I/O lines (P00)	Low-level output				
I/O lines (ports other than P00)	High impedance				
On-chip peripheral I/O registers	Initialized to specified status				
Watchdog timer 2	Operation stops	Operation starts (f _R)			
Other on-chip peripheral functions	Operation stops	Operation can be started after securing oscillation stabilization time			

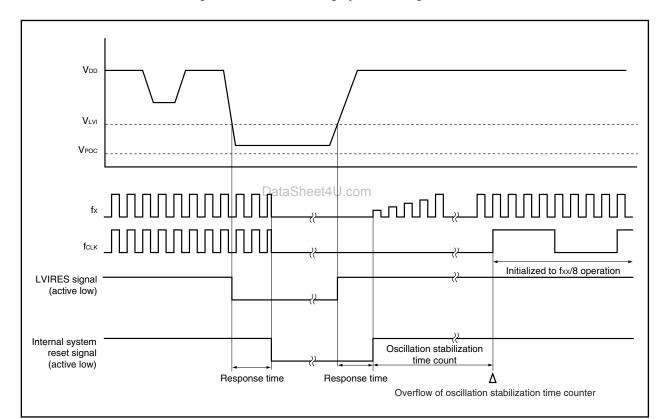
Table 20-4. Hardware Status During Reset Operation by Power-on-Clear

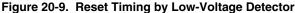

DataShe

et4U.com

et4U.com

DataShe


20.4.5 Reset operation by low-voltage detector


If a mode in which the internal reset signal (LVIRES) is to be generated by the low-voltage detector is set, the supply voltage (V_{DD}) and detection voltage (V_{LVI}) are compared. When $V_{DD} < V_{LVI}$, the system is reset and each hardware unit is initialized to a specific status.

While $V_{DD} < V_{LVI}$, the system is reset. Reset is released when $V_{DD} \ge V_{LVI}$. After release of the reset status, the oscillation stabilization time of the main clock oscillator is secured, and then the CPU starts program execution.

Note that, because the main clock oscillator stops during the reset period, the oscillation stabilization time must be secured. The oscillation stabilization time is determined by the default value of the OSTS register (for the oscillation stabilization time, refer to 19.2 (3) Oscillation stabilization time selection register (OSTS) and CHAPTER 25 MASK OPTION/OPTION BYTE).

The status of each hardware unit during the period of reset effected by the LVIRES signal and after release of reset is the same as when reset is effected by the POCRES signal.

20.4.6 Reset operation by clock monitor

If the main clock is monitored using the sampling clock (Ring-OSC: f_R) and if it is detected that the main clock has stopped when the clock monitor operation is enabled, the system is reset and each hardware unit is initialized to a specific status.

After it is detected that the main clock stops, the system is reset for the duration of a specific time (equivalent to analog delay), and then the reset status is automatically released. After release of the reset status, the timer for oscillation stabilization does not perform its counting operation because the main clock is stopped. If watchdog timer 2, which starts by default, overflows, the CPU starts program execution with Ring-OSC (fra).

The status of each hardware unit during the period of reset effected by the CLMRES signal and after release of the reset status is shown below.

For the timing of reset by the clock monitor, refer to Figure 21-4.

ltem	During Reset	After Reset			
Main clock oscillator (fx)	Oscillation stops	Oscillation remains stopped			
Subclock oscillator (fxT)	Oscillation continues				
Ring-OSC (f _R)	Oscillation stops	Oscillation starts			
Peripheral clock (fxx to fxx/1024)	Operation stops	Operation remains stopped because fx is stopped			
Internal system clock (fc∟к)	Operation stops	Operation starts (f _R) after overflow of watchdog timer 2			
CPU clock (fcpu)	Operation stops DataSheet4U.com	Operation starts (f _R) after overflow of watchdog timer 2			
Watchdog timer 1 clock (fxw)	Operation stops	Operation remains stopped because fx is stopped			
CPU	Initialized	Program execution starts after overflow of watchdog timer 2			
Internal RAM	Undefined if writing data to RAM (by CPU) and reset input conflict (data is damaged) Otherwise value immediately before reset input is retained.				
I/O lines (P00)	Low-level output				
I/O lines (ports other than P00)	High impedance				
On-chip peripheral I/O registers	Initialized to specified status				
Watchdog timer 2	Operation stops	Operation starts (fR only). However, WDTRES2 is not generated if watchdog timer 2 overflows before CPU execution.			
Other on-chip peripheral functions	Operation stops	Operation cannot be started because f_x is stopped. However, the peripheral functions that operate on f_{xT} , f_{B} , or external clock can operate (for details, refer to Table 21-2).			

Table 20-5. Hardware Status During Reset Operation by Clock Monitor

DataSheet4U.com

20.5 Reset Output Function

The P00/TOH0 pin of the V850ES/KE1+ can be used as a dummy reset output pin.

The P00 pin is set in the output port mode (PM0.PM00 bit = 0) and outputs a low level (P0.P00 bit = 0) when the reset signal is generated. To release the reset output (low-level output \rightarrow high-level output), set the P00 bit to 1 by software.

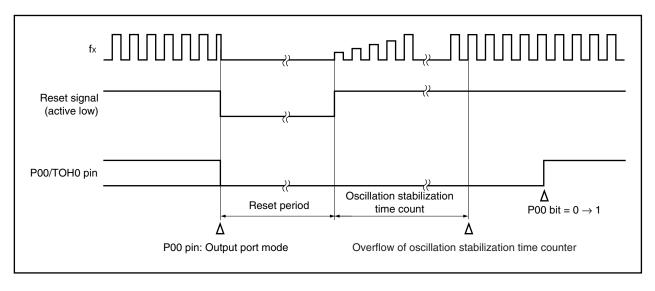


Figure 20-10. Reset Output Function

DataSheet4U.com

et4U.com

DataSheet4U.com

www.DataSheet4U.com

CHAPTER 21 CLOCK MONITOR

21.1 Function

The clock monitor samples the main clock by using the on-chip Ring-OSC clock and generates a reset signal (CLMRES) when oscillation of the main clock is stopped.

After reset is released, the CPU operates on Ring-OSC.

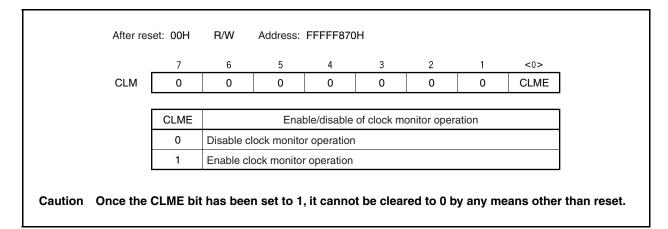
Once the operation of the clock monitor has been enabled by the CLM.CLME bit, it can be stopped only by reset. The clock monitor automatically stops under the following conditions.

- When the oscillation stabilization time is counted after the STOP mode has been released
- When the main clock is stopped (PCC.MCK bit = 1 when subclock operates and PCC.CLS bit = 0 when main clock operates)
- When the sampling clock (Ring-OSC) is stopped
- When the CPU operates on Ring-OSC

21.2 Registers

(1) Clock monitor mode register (CLM)

The CLM register is a special register that can be written only by a combination of specific sequences (refer to **3.4.7 Special registers**).


The CLM register is used to select the operation mode of the clock monitor.

DataShe

www.DataSheet4U.com

This register can be read or written in 8-bit or 1-bit units.

After reset, CLM is cleared to 00H. DataSheet4U.com

(2) Ring-OSC mode register (RCM)

The RCM register is an 8-bit register that sets the operation mode of Ring-OSC. This register can be read or written in 8-bit or 1-bit units. After reset RCM is cleared to 00H

After reset,	RCM	is c	leared	to	00H.

	7	6	5	4	3	2	1	<0>	
RCM	0	0	0	0	0	0	0	RSTOP	
	RSTOP		Oscillation/stop of Ring-OSC						
	0	Ring-OSC	Ring-OSC oscillating						
	1	Ring-OSC	Ring-OSC stopped						
The settin	-	-				-		ng-OSC b R 25 MA	

et4U.com

DataShe

21.3 Operation

The clock monitor start and stop conditions are as follows.

<Monitor start condition>

Set the CLM.CLME bit to 1

<Monitor stop conditions>

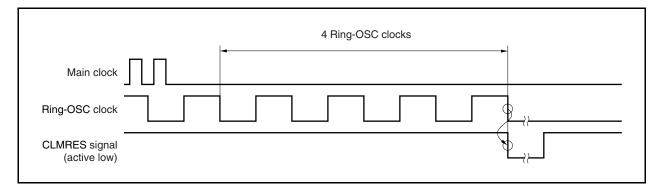
- When the oscillation stabilization time is counted after the STOP mode has been released
- When the main clock is stopped (PCC.MCK bit = 1 when subclock operates and PCC.CLS bit = 0 when main clock operates)
- When the sampling clock (Ring-OSC) is stopped
- When the CPU operates on Ring-OSC

Table 21-1. Operation Status of Clock Monitor (When CLME Bit = 1, During Ring-OSC Operation)								
Onevetien Mede	Otative of Main Clash	Chatus of Bing OCC Clash	Chatting of Clash Marite					

Operation Mode		Status of Main Clock	Status of Ring-OSC Clock	Status of Clock Monitor
Normal operation mode		Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
HALT mode		Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
IDLE mode		Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
STOP mode		Stops	Oscillates ^{Note 1}	Stops
Subclock operation mode	MCK bit = 0	Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
Sub-IDLE mode		Oscillates	Oscillates ^{Note 1}	Operates ^{Note 2}
Subclock operation mode	MCK bit = 1	Stops DataSheet4	Oscillates ^{Note 1}	Stops
Sub-IDLE mode		Stops	Oscillates ^{Note 1}	Stops
Ring clock operation mode		Stops	Oscillates ^{Note 1}	Stops
During reset		Stops	Stops	Stops

DataShe

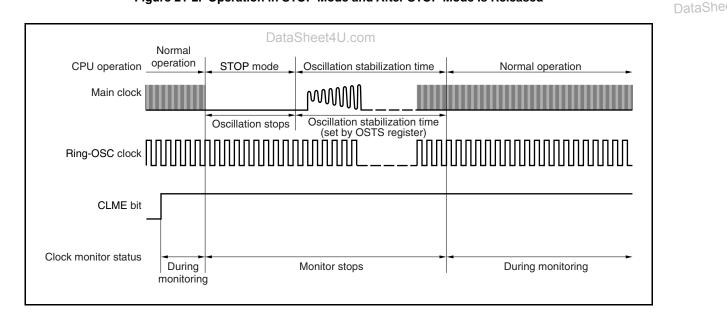
www.DataSheet4U.com


- Notes 1. Ring-OSC can be stopped by setting the RCM.RSTOP bit to 1. (Valid only when specified by mask option/option byte. For details, refer to CHAPTER 25 MASK **OPTION/OPTION BYTE).**
 - 2. The clock monitor is stopped while Ring-OSC is stopped.

et4U.com

(a) Operation when main clock oscillation is stopped

If oscillation of the main clock is stopped when the CLME bit = 1, the CLMRES signal is generated as shown in Figure 21-1.


Figure 21-1. When Oscillation of Main Clock Is Stopped

(b) Operation in STOP mode and after STOP mode is released

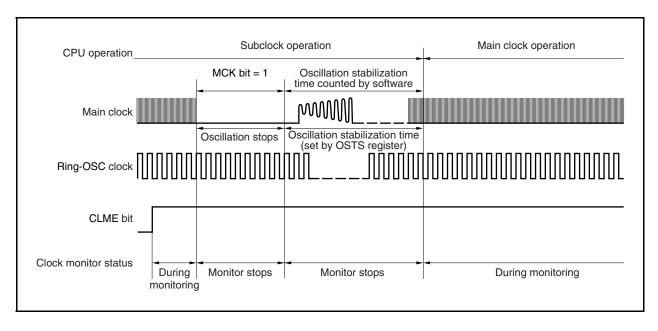

If the STOP mode is set when the CLME bit = 1, the monitor operation is stopped in the STOP mode and while the oscillation stabilization time is being counted. The monitor operation is automatically started after the oscillation stabilization time has elapsed.

Figure 21-2. Operation in STOP Mode and After STOP Mode Is Released

(c) Operation when main clock is stopped (arbitrary)

If the main clock is stopped by setting the PCC.MCK bit to 1 while the subclock is operating (PCC.CLS bit = 1), the monitor operation is stopped until the main clock operates (CLS bit = 0). The monitor operation is automatically started when the main clock starts operating.

Figure 21-3. Operation When Main Clock Is Stopped (Arbitrary)

(d) Operation when CPU operates on Ring-OSC clock (CCLS.CCLSF bit = 1)

The monitor operation is not started even if the CLME bit is set to 1 when the CCLSF bit is 1.

21.4 Ring Clock Operation Mode

21.4.1 Setting and operation status

The ring clock operation mode is set by the clock monitor function when the main clock oscillation frequency (fx) is abnormal (stopped).

In the ring clock operation mode, Ring-OSC (fR) is supplied as the internal system clock (fcLk) and CPU clock (fcPu).

Because the operating clock is Ring-OSC (fR), it is recommended to reset the system once to set it in the normal operation mode.

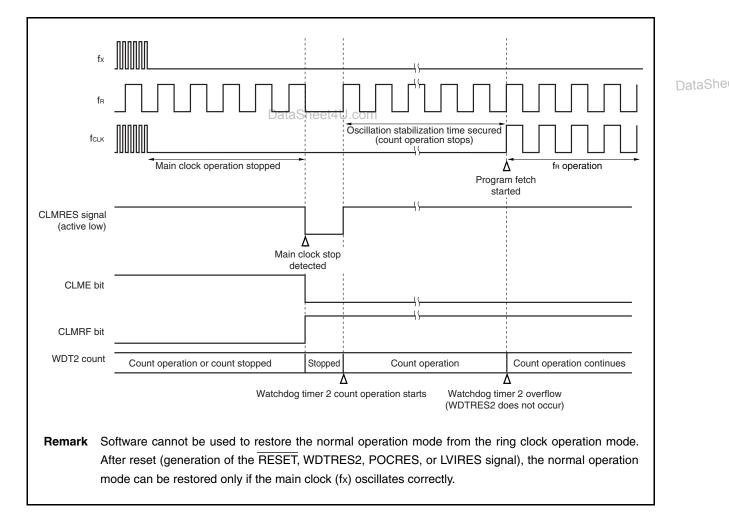

Because the main clock oscillator (fx) is stopped, only the internal peripheral functions that can operate on the subclock, ring clock, or external clock can continue operating.

Table 21-2 shows the operation status in the ring clock operation mode.

21.4.2 Releasing ring clock operation mode

The ring clock operation mode is replaced by the normal operation mode in which the main clock (fx) oscillates when the system is reset.

The ring clock operation mode cannot be released by software.

Figure 21-4. Reset Timing of Clock Monitor

DataSheet4U.com

et4U.com

Setting of Ring Clock		Operation Status		
	Operation Mode	When Subclock Is Not Used	When Subclock Is Used	
Item				
ROM correction		Operable		
Interrupt controlle	r	Operable		
16-bit timer (TMP0)		Stops operation		
16-bit timer (TM01)		Stops operation	Operable when INTWT is selected as count clock and fxT is selected as count clock of WT	
8-bit timers (TM50, TM51)		Operable when TI5m is selected as count clock	Operable when TI5m is selected as count clock or when INTTM010 is selected as count clock and TM01 is enabled in ring clock operation mode	
Timer H (TMH0)		Stops operation		
Timer H (TMH1)		Operable when fn/2048 is selected as count clock		
Watch timer		Stops operation	Operable when $f_{\boldsymbol{X}\boldsymbol{T}}$ is selected as count clock	
Watchdog timer 1		Stops operation		
Watchdog timer 2		Operable when $f_{\mbox{\scriptsize R}}$ is selected as count clock	Operable	
Serial interface	CSI00, CSI01	Operable when SCK0m input clock is selected as operation clock		
	I ² C0 ^{Note}	Stops operation		
	UART0	Operable when ASCK0 is selected as count clock		
	UART1	Stops operation DataSheet4U.com		
Key interrupt function		Operable		
A/D converter		Stops operation		
Real-time output		Operable when INTTM5m is selected as real-time output trigger and TM5m is enabled in ring clock operation mode		
Clock monitor		Stops operation		
Power-on-clear		Operable		
Low-voltage detector		Operable		
Port function		Operable		

Note Only in the μ PD703302Y, 70F3302Y

Remark m = 0, 1

et4U.com

21.5 Ring HALT Mode

21.5.1 Setting and operation status

The ring HALT mode is set when a dedicated instruction (HALT instruction) is executed in the ring clock operation mode.

In the ring HALT mode, the Ring-OSC oscillator continues operating. Only clock supply to the CPU is stopped; clock supply to the other on-chip peripheral functions continues.

As a result, program execution is stopped, and the internal RAM retains the contents before the ring HALT mode was set. The on-chip peripheral functions that are independent of instruction processing by the CPU continue operating. The main clock oscillator (fx) stops but the on-chip peripheral functions that can operate on the subclock (fx), Ring-OSC clock (fn), or external clock continue operating.

Table 21-4 shows the operation status in the ring HALT mode.

Cautions 1. Insert five or more NOP instructions after the HALT instruction.

 If the HALT instruction is executed with an unmasked interrupt request signal held pending, the system shifts to the ring HALT mode, but the ring HALT mode is immediately released by the pending interrupt request signal.

21.5.2 Releasing ring HALT mode

When the ring HALT mode is released by an interrupt request signal, the ring clock operation mode is set. When the ring HALT mode is released by reset, the normal operation mode is restored if the main clock (fx) oscillates correctly.

(1) Releasing ring HALT mode by non-maskable interrupt request signal or unmasked maskable interrupt DataSheet4U.com

The ring HALT mode is released by a non-maskable interrupt request signal or an unmasked maskable interrupt request signal, regardless of the priority of the interrupt request. If the ring HALT mode is set in an interrupt servicing routine, however, an interrupt request that is issued later is serviced as follows.

- (a) If an interrupt request signal with a priority lower than that of the interrupt request currently being serviced is issued, the ring HALT mode is released, but that interrupt request signal is not acknowledged. The interrupt request signal itself is retained.
- (b) If an interrupt request signal with a priority higher than that of the interrupt request currently being serviced is issued (including a non-maskable interrupt request signal), the ring HALT mode is released and that interrupt request signal is acknowledged.

Release Source	Interrupt Enabled (EI) Status	Interrupt Disabled (DI) Status
Non-maskable interrupt request signal Execution branches to the handler address		
Maskable interrupt request signal	Execution branches to the handler address or the next instruction is executed	The next instruction is executed

Table 21-3. Operation After Releasing Ring HALT Mode by Interrupt Request Signal

(2) Releasing ring HALT mode by reset

The same operation as the normal reset operation is performed.

Setting of Ring HALT Mode		Operation Status		
		When Subclock Is Not Used	When Subclock Is Used	
Item				
CPU		Stops operation		
ROM correction		Stops operation		
Main clock oscillator		Stops operation		
Subclock oscillator		-	Continues operation	
Interrupt controlle	r	Operable		
16-bit timer (TMP0)		Stops operation		
16-bit timer (TM01)		Stops operation	Operable when INTWT is selected as count clock and fxT is selected as count clock of WT	
8-bit timers (TM50, TM51)		Operable when TI5m is selected as count clock	Operable when TI5m is selected as count clock or when INTTM010 is selected as count clock and TM01 is enabled in ring HALT mode	
Timer H (TMH0)		Stops operation		
Timer H (TMH1)		Operable when fr/2048 is selected as count clock		
Watch timer		Stops operation	Operable when fxT is selected as count clock	
Watchdog timer 1		Stops operation DataSheet4U.com		
Watchdog timer 2		Operable when f _R is selected as count clock	Operable	
Serial interface	CSI00, CSI01	Operable when SCK0m input clock is selected as operation clock		
	I ² C0 ^{Note}	Stops operation		
	UART0	Operable when ASCK0 is selected as count clock		
	UART1	Stops operation		
Key interrupt function		Operable		
A/D converter		Stops operation		
Real-time output		Operable when INTTM5m is selected as real-time output trigger and TM5m is enabled in ring HALT mode		
Clock monitor		Stops operation		
Power-on-clear		Operable		
Low-voltage detector		Operable		
Port function		Retains status before ring HALT mode was set.		

DataShe

www.DataSheet4U.com

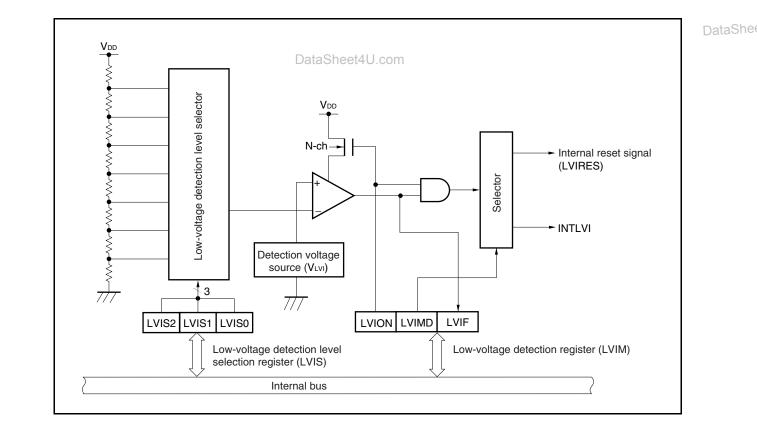
Note Only in the μ PD703302Y, 70F3302Y

Remark m = 0, 1

et4U.com

CHAPTER 22 LOW-VOLTAGE DETECTOR

22.1 Function


The low-voltage detector (LVI) has the following functions.

- Compares the supply voltage (V_{DD}) and detection voltage (V_{LVI}), and generates an interrupt request signal (INTLVI) or reset signal (LVIRES) when V_{DD} < V_{LVI}.
- Detection levels (seven levels) of supply voltage can be changed by software.
- Interrupt or reset function can be selected by software.
- Operable in STOP mode.

When the low-voltage detector is used to reset, the RESF.LVIRF bit is set to 1 if the LVIRES signal is generated. For details of the RESF register, refer to **20.3 (1) Reset source flag register (RESF)**.

22.2 Configuration

A block diagram of the low-voltage detector is shown below.

Figure 22-1. Block Diagram of Low-Voltage Detector

www.DataSheet4U.com

22.3 Registers

The low-voltage detector is controlled by the following two registers.

- Low-voltage detection register (LVIM)
- Low-voltage detection level selection register (LVIS)

(1) Low-voltage detection register (LVIM)

The LVIM register is an 8-bit register that sets the operation mode of the low-voltage detector.

The LVIM register is a special register that can be written only by a combination of specific sequences (refer to **3.4.7 Special registers**).

This register can be read or written in 8-bit or 1-bit units. If the LVION and LVIMD bits = 11, however, the LVIM register cannot be rewritten until the reset signal (LVIRES) is generated.

The LVIM register is reset to 00H by a reset source other than the low-voltage detector. The LVIM register holds its value when reset is effected by the low-voltage detector.

		<7>	6	5	4	3	2	<1>	<0>
	LVIM	LVION	0	0	0	0	0	LVIMD	LVIF ^{Note 2}
		LVION			ole low-volt	age detect	ion opera	lion	
		0	Enable o	operation	DataShe	et4U.con	1		
		I		peration					
		LVIMD	Lo	w-voltage	detection o	peration m	ode selec	tion	
		0	Generate detectior		request sig	nal (INTLV	I) when s	upply voltag	je (V _{DD}) <
		1	Generate detectior		eset signal	(LVIRES)	when sup	ply voltage	(Vdd) <
		LVIF ^{Note 2}		Lc	w-voltage	detection fl	ag		
		0	Supply v disabled		o) > detecti	on voltage	(VLVI), or	when opera	tion is
		1	Supply v	oltage (Vo	o) < detecti	on voltage	(Vlvi)		
		register ho bit is read-o		lue when	reset is ef	fected by	the low-	voltage de	tector.
Caution	Be sure t	o clear bit	s 6 to 2 to	6 to 2 to 0.					
								VTLVI) whe	

www.DataSheet4U.com

(2) Low-voltage detection level selection register (LVIS)

The LVIS register is an 8-bit register that selects the low-voltage detection level.

The LVIS register can be read or written in 8-bit units. If the LVIM.LVION and LVIM.LVIMD bits = 11, however, the LVIS register cannot be rewritten until the reset signal (LVIRES) is generated.

The LVIS register is reset to 00H by a reset source other than the low-voltage detector. The LVIS register holds its value when reset is effected by the low-voltage detector.

After re	set: 00H ^{Not}	e R/W	Addres	s: FFFFF	891H			
	7	6	5	4	3	2	1	0
LVIS	0	0	0	0	0	LVIS2	LVIS1	LVIS0
	LVIS2	LVIS1	LVIS0			Detection le	evel	
	0	0	0	4.3 V ±0	.2 V			
	0	0	1	4.1 V ±0	.2 V			
	0	1	0	3.9 V ±0	.2 V			
	0	1	1	3.7 V ±0	.2 V			
	1	0	0	3.5 V ±0	.2 V			
	1	0	1	3.3 V ±0	.15 V			
	1	1	0	3.1 V ±0	.15 V			
	Oth	her than ab	ove	Setting p	rohibited			

et4U.com

Note The LVIS register holds its value when reset is effected by the low-voltage detector.

Caution Be sure to clear bits 7 to 3 to 0.

DataSheet4U.com

DataShe

www.DataSheet4U.com

22.4 Operation

The low-voltage detector can be used in the following two modes.

- Reset operation (LVIRES): Compares the supply voltage (VDD) and detection voltage (VLVI), and generates a reset signal (LVIRES) when VDD < VLVI.
- Interrupt operation (INTLVI): Compares the supply voltage (V_{DD}) and detection voltage (V_{LVI}), and generates an interrupt request signal (INTLVI) when V_{DD} < V_{LVI}.

(1) Reset operation (LVIRES)

<When starting operation>

- <1> Mask the INTLVI interrupt (LVIMK bit = 1).
- <2> Set the detection voltage (VLVI) using the LVIS.LVIS2 to LVIS.LVIS0 bits.
- <3> Set the LVIM.LVION bit to 1 (enables low-voltage detector operation).
- <4> Use software to instigate a wait of at least 0.2 ms.
- <5> Confirm that the LVIM.LVIF bit is cleared to 0 (supply voltage (VDD) > detection voltage (VLVI)). When the LVIF bit is set to 1, use software to instigate a wait until the LVIF bit is cleared to 0.
- <6> Set the LVIM.LVIMD bit to 1 (generates internal reset signal (LVIRES) when supply voltage (VDD) < detection voltage (VLVI)).

Caution <1> must always be executed. When the LVIMK bit = 0, an interrupt (INTLVI) may occur immediately after the processing in <3>.

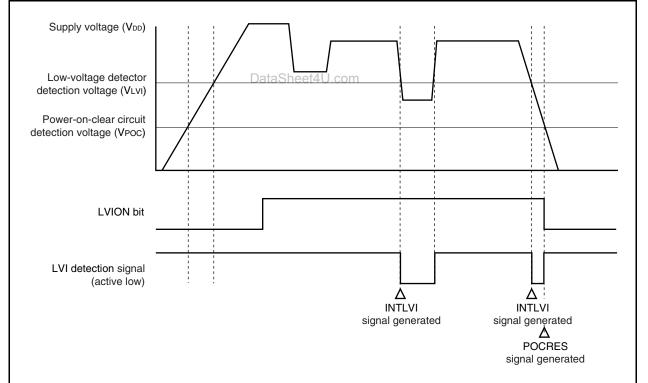
DataShe

<When stopping operation>

DataSheet4U.com

The low-voltage detection operation cannot be stopped until a reset signal other than LVIRES is generated.

(2) Interrupt operation (INTLVI)


<When starting operation>

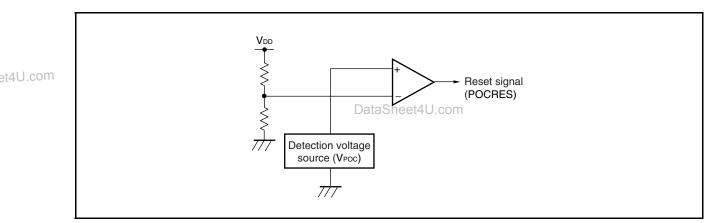
- <1> Mask the INTLVI interrupt (LVIMK bit = 1).
- <2> Set the detection voltage (VLVI) using the LVIS.LVIS2 to LVIS.LVIS0 bits.
- <3> Set the LVIM.LVION bit to 1 (enables low-voltage detector operation).
- <4> Use software to instigate a wait of at least 0.2 ms.
- <5> Confirm that the LVIM.LVIF bit is cleared to 0 (supply voltage (VDD) > detection voltage (VLVI)). When the LVIF bit is set to 1, use software to instigate a wait until the LVIF bit is cleared to 0.
- <6> Clear the INTLVI interrupt request flag (LVIIF bit) to 0.
- <7> Release the INTLVI interrupt mask status (LVIMK bit = 0).
 - Caution <1> must always be executed. When the LVIMK bit = 0, an interrupt (INTLVI) may occur immediately after the processing in <3>.

<When stopping operation>

Clear the LVION bit to 0.

CHAPTER 23 POWER-ON-CLEAR CIRCUIT

23.1 Function

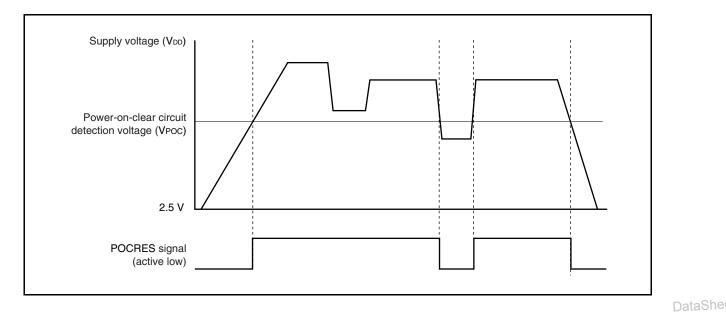

The power-on-clear (POC) circuit has the following functions.

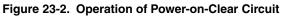
- Generates a reset signal (POCRES) upon power application.
- Compares the supply voltage (V_{DD}) and detection voltage (V_{POC}), and generates a reset signal (POCRES) when V_{DD} < V_{POC} (detection voltage: V_{POC} = 2.6 V ±0.1 V).

Caution If the POCRES signal is generated by the POC circuit, the RESF register is cleared (to 00H).

23.2 Configuration

A block diagram of the power-on-clear circuit is shown below.


Figure 23-1. Block Diagram of Power-on-Clear Circuit


DataShe

DataSheet4U.com

23.3 Operation

The power-on-clear circuit compares the supply voltage (V_{DD}) and detection voltage (V_{POC}), and generates a reset signal (POCRES) when $V_{DD} < V_{POC}$.

et4U.com

DataSheet4U.com

DataSheet4U.com

www.DataSheet4U.com

CHAPTER 24 ROM CORRECTION FUNCTION

24.1 Overview

The ROM correction function is used to replace part of the program in the internal ROM with the program of an external memory or the internal RAM.

By using this function, program bugs found in the internal ROM can be corrected.

Up to four addresses can be specified for correction.

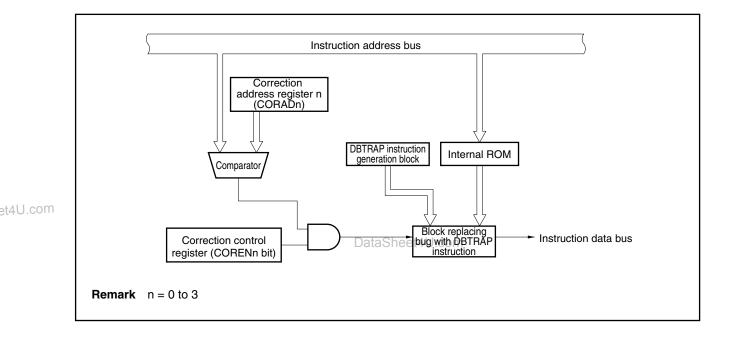


Figure 24-1. Block Diagram of ROM Correction

DataShe

DataSheet4U.com

24.2 Control Registers

24.2.1 Correction address registers 0 to 3 (CORAD0 to CORAD3)

These registers are used to set the first address of the program to be corrected.

The program can be corrected at up to four places because four CORADn registers are provided.

The CORADn register can be read or written in 32-bit units. If the higher 16 bits of the CORADn register are used as the CORADnH register, and the lower 16 bits as the CORADnL register, these registers can be read or written in 16-bit units.

After reset, CORADn is cleared to 0000000H.

Set correction addresses in the range of 0000000H to 001FFFEH in the V850ES/KE1+.

After re	set: 00000000H R/W	Address: Refer to Table 24-1	
(a) 128 KB			
	31	20 19 17 16	1 0
CORADn (n = 0 to 3)	Fixed to 0	Note Correction address	0
Note Be sure to clear the	hese bits to 0.		

et4U.com

Table 24-1. CORADn Address

	Address	DataShee Register Name	t4U.c	Address	Register Name
FF	FFF840H	CORAD0	FF	FFF848H	CORAD2
	FFFFF840H	CORADOL		FFFFF848H	CORAD2L
	FFFFF842H	CORAD0H		FFFF84AH	CORAD2H
FF	FFF844H	CORAD1	FF	FFF84CH	CORAD3
	FFFFF844H	CORAD1L		FFFFF84CH	CORAD3L
	FFFF846H	CORAD1H		FFFFF84EH	CORAD3H

24.2.2 Correction control register (CORCN)

This register disables or enables the correction operation at the address specified by the CORADn register.

Each channel can be enabled or disabled by this register.

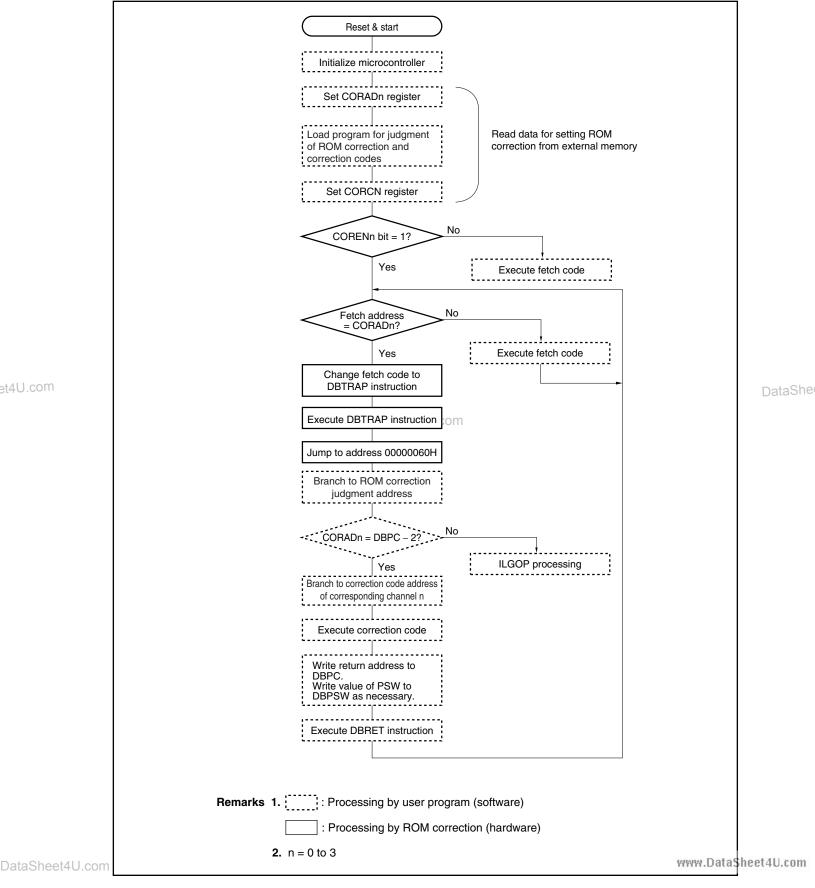
This register can be read or written in 8-bit or 1-bit units.

After reset, CORCN is cleared to 00H.

After res	set: 00H	R/W	Address:	FFFF88	ЭН			
	7	6	5	4	<3>	<2>	<1>	<0>
CORCN	0	0	0	0	COREN3	COREN2	COREN1	COREN0
	CORENn		(Correction	operation en	nable/disab	le	
	0	Disabled						
	1	Enabled						
	Remark	n = 0 to 3	3					

Table 24-2. Correspondence Between CORCN Register Bits and CORADn Registers

et4U.com


CORCN Register Bit	Corresponding CORADn Register
COREN3	CORAD3
COREN2	CORAD2
COREN1	CORAD1
COREN0	CORAD0

24.3 ROM Correction Operation and Program Flow

- <1> If the address to be corrected and the fetch address of the internal ROM match, the fetch code is replaced by the DBTRAP instruction.
- <2> When the DBTRAP instruction is executed, execution branches to address 0000060H.
- <3> Software processing after branching causes the result of ROM correction to be judged (the fetch address and ROM correction operation are confirmed) and execution to branch to the correction software.
- <4> After the correction software has been executed, the return address is set, and return processing is started by the DBRET instruction.

Cautions 1. The software that performs <3> and <4> must be executed in the internal RAM.

- 2. When setting an address to be corrected to the CORADn register, clear the higher bits to 0 in accordance with the capacity of the internal ROM.
- 3. The ROM correction function cannot be used to correct the data of the internal ROM. It can only be used to correct instruction codes. If ROM correction is used to correct data, that data is replaced with the DBTRAP instruction code.

Preliminary User's Manual U16896EJ1V0UD

CHAPTER 25 MASK OPTION/OPTION BYTE

25.1 Mask Option (Mask ROM Versions)

The mask ROM versions (μ PD703302 and 703302Y) have the following mask options.

- Connection of pull-up resistor to P38 and P39 pins
- Enabling/disabling stopping Ring-OSC by software
- Shortening oscillation stabilization time of main clock oscillation after release of reset

(1) Connection of pull-up resistor to P38 and P39 pins

PUmn	Connection of Pull-up Resistor to Port mn
0	Not connected
1	Connected

Remark mn = 38, 39

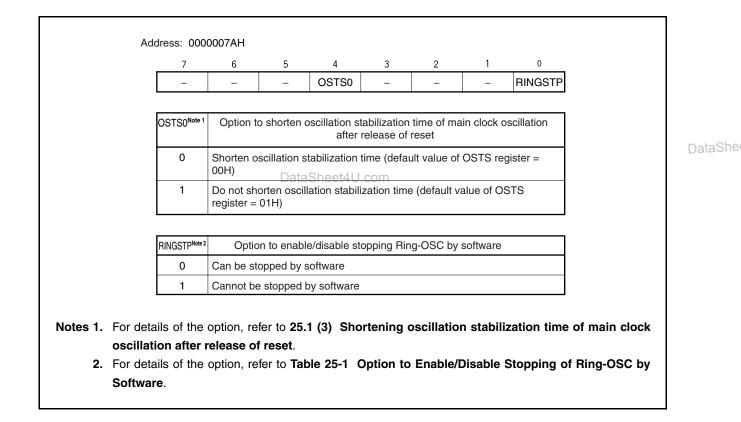
(2) Enabling/disabling stopping Ring-OSC by software

RINGSTP	Control of Stopping Ring-OSC by Software	
0	Can be stopped by software	
1	Setting invalid by software	

Depending on whether the option to enable/disable stopping of Ring-OSC by software is set or not, the operation differs as follows.

Table 25-1.	Option to Enable/Disable Stopping of Ring-OSC by Software
-------------	---

		RINGSTP = 0 (Can Be Stopped)	RINGSTP = 1 (Setting Invalid)
	Ring-OSC	Ring-OSC: Can be stopped. RCM.RSTOP bit can be set.	Ring-OSC: Cannot be stopped. Setting of RSTOP bit is invalid.
WDT2	Count operation	Operation can be stopped by WDTM2.WDCS24 bit.	Operation cannot be stopped.
	Input clock	The following clock can be selected by the WDTM2 register. • Ring-OSC: f _R /8 • Subclock: f _{XT}	Fixed to Ring-OSC (fn/8)
	Operation mode	The following mode can be selected by the WDTM2 register. • NMI interrupt mode (INTWDT2) • Reset mode (WDTRES2)	Fixed to reset mode (WDTRES2)


OSTS0	Option to Shorten Oscillation Stabilization Time of Main Clock Oscillation After Release of Reset					
		(Default Value of OSTS Register)	Oscillation Stabilization Time			
0	Shorten oscillation stabilization time.	00Н	2 ¹³ /fx			
1	Do not shorten oscillation stabilization time.	01H	2 ¹⁵ /fx			

(3) Shortening oscillation stabilization time of main clock oscillation after release of reset

25.2 Option Byte (Flash Memory Versions)

The flash memory versions (μ PD70F3302 and 70F3302Y) can realize the mask options of the mask ROM version by using an option byte (except the pull-up resistor option).

The option byte is stored in address 000007AH of the internal flash memory (internal ROM area) as 8-bit data.

et4U.com

CHAPTER 26 FLASH MEMORY

The following products are the flash memory versions of the V850ES/KE1+.

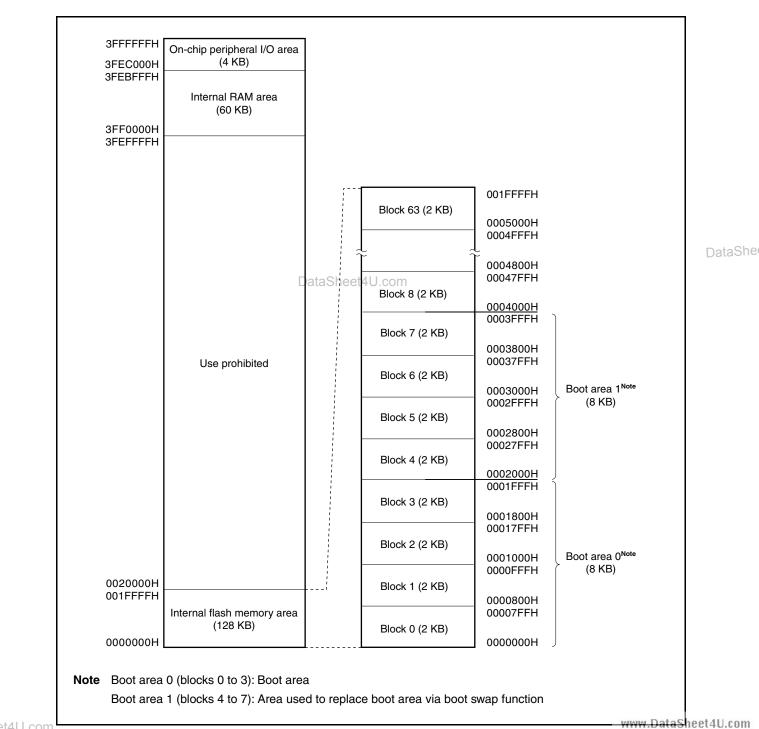
- Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing and application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluation for the commercial samples (not engineering samples) of the mask ROM version. For the electrical specifications related to the flash memory rewriting, refer to CHAPTER 27 ELECTRICAL SPECIFICATIONS (TARGET).
- μPD70F3302, 70F3302Y: On-chip 128 KB flash memory

Flash memory versions are commonly used in the following development environments and mass production applications.

- O For altering software after the V850ES/KE1+ is soldered onto the target system.
- O For data adjustment when starting mass production.
- O For differentiating software according to the specification in small scale production of various models.
- O For facilitating inventory management.
- O For updating software after shipment.

4U.com

26.1 Features


DataSheet4U.com

- O 4-byte/1-clock access (when instruction is fetched)
- O Capacity: 128 KB
- O Write voltage: Erase/write with a single power supply
- O Rewriting method
 - Rewriting by communication with dedicated flash programmer via serial interface (on-board/off-board programming)
 - Rewriting flash memory by user program (self programming)
- O Flash memory write prohibit function supported (security function)
- O Safe rewriting of entire flash memory area by self programming using boot swap function
- O Interrupts can be acknowledged during self programming.

26.2 Memory Configuration

The 128 KB internal flash memory area is divided into 64 blocks and can be programmed/erased in block units. All the blocks can also be erased at once.

When the boot swap function is used, the physical memory (blocks 0 to 3) located at the addresses of boot area 0 is replaced by the physical memory (blocks 4 to 7) located at the addresses of boot area 1. For details of the boot swap function, refer to **26.5 Rewriting by Self Programming**.

Figure 26-1. Flash Memory Mapping

DataSheet4U.com

26.3 Functional Outline

The internal flash memory of the V850ES/KE1+ can be rewritten by using the rewrite function of the dedicated flash programmer, regardless of whether the V850ES/KE1+ has already been mounted on the target system or not (on-board/off-board programming).

In addition, a security function that prohibits rewriting the user program written to the internal flash memory is also supported, so that the program cannot be changed by an unauthorized person.

The rewrite function using the user program (self programming) is ideal for an application where it is assumed that the program is changed after production/shipment of the target system. A boot swap function that rewrites the entire flash memory area safely is also supported. In addition, interrupt servicing is supported during self programming, so that the flash memory can be rewritten under various conditions, such as while communicating with an external device.

Rewrite Method	Functional Outline	Operation Mode
On-board programming	Flash memory can be rewritten after the device is mounted on the target system, by using a dedicated flash programmer.	Flash memory programming mode
Off-board programming	Flash memory can be rewritten before the device is mounted on the target system, by using a dedicated flash programmer and a dedicated program adapter board (FA series).	
Self programming	Flash memory can be rewritten by executing a user program that has been written to the flash memory in advance by means of on-board/off- board programming. (During self-programming, instructions cannot be fetched from or data access cannot be made to the internal flash memory area. Therefore, the rewrite program must be transferred to the internal RAM or external memory in advance).	Normal operation mode

Table 26-1. Rewrite Method

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

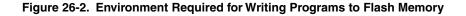
Function	Functional Outline	Support (O: Supported, ×: Not supported)		
		On-Board/Off-Board Programming	Self Programming	
Block erasure	The contents of specified memory blocks are erased.	0	0	
Chip erasure	The contents of the entire memory area are erased all at once.	0	×	
Write	Writing to specified addresses, and a verify check to see if write level is secured are performed.	0	0	
Verify/checksum	Data read from the flash memory is compared with data transferred from the flash programmer.	0	× (Can be read by user program)	
Blank check	The erasure status of the entire memory is checked.	0	0	
Security setting	Use of the block erase command, chip erase command, and program command can be prohibited.	0	× (Only values set by on- board/off-board programming can be retained)	

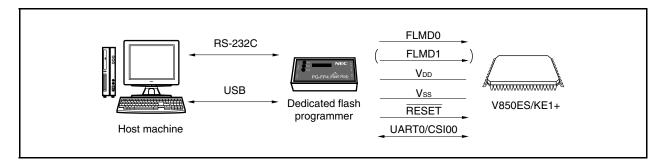
Table 26-2. Basic Functions

et4U.com

The following table lists the security functions. The block erase command prohibit, chip erase command prohibit, and program command prohibit functions are enabled by default after shipment, and security can be set by rewriting via on-board/off-board programming. Each security function can be used in combination with the others at the same time.

Table 26-3.	Security	Functions
-------------	----------	-----------


Function	Functional Outline	Rewriting Operation When Prohibited (O: Executable, ×: Not Executable)	
		On-Board/Off-Board Programming	Self Programming
Block erase command prohibit	Execution of a block erase command on all blocks is prohibited. Setting of prohibition can be initialized by execution of a chip erase command.	Block erase command: × Chip erase command: O Program command: O	Can always be rewritten regardless of setting of prohibition
Chip erase command prohibit	Execution of block erase and chip erase commands on all the blocks is prohibited. Once prohibition is set, setting of prohibition cannot be initialized because the chip erase command cannot be executed.	Block erase command: × Chip erase command: × Program command: O	
Program command prohibit	Write and block erase commands on all the blocks are prohibited. Setting of prohibition can be initialized by execution of the chip erase command.	Block erase command: × Chip erase command: O Program command: ×	


26.4 Rewriting by Dedicated Flash Programmer

The flash memory can be rewritten by using a dedicated flash programmer after the V850ES/KE1+ is mounted on the target system (on-board programming). The flash memory can also be rewritten before the device is mounted on the target system (off-board programming) by using a dedicated program adapter (FA series).

26.4.1 Programming environment

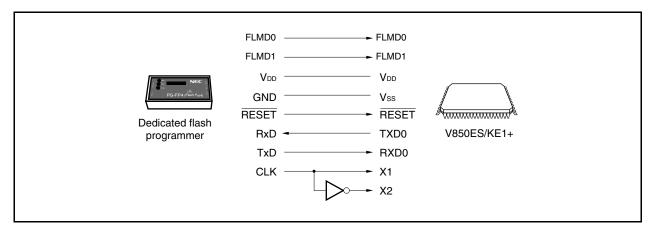
The following shows the environment required for writing programs to the flash memory of the V850ES/KE1+.

A host machine is required for controlling the dedicated flash programmer.

UART0 or CSI00 is used for the interface between the dedicated flash programmer and the V850ES/KE1+ to perform writing, erasing, etc. A dedicated program adapter (FA series) is required for off-board writing.

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

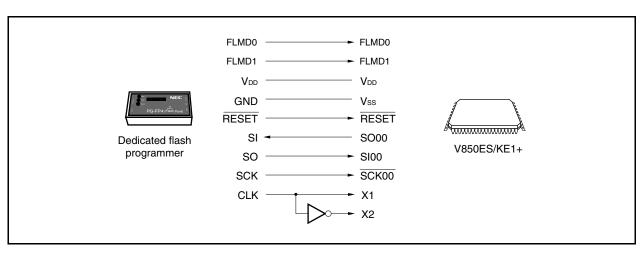
et4U.com


26.4.2 Communication mode

Communication between the dedicated flash programmer and the V850ES/KE1+ is performed by serial communication using the UART0 or CSI00 interfaces of the V850ES/KE1+.

(1) UART0

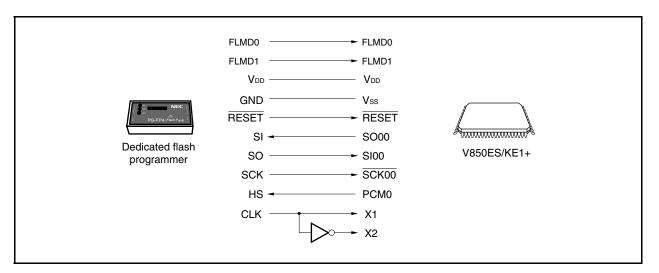
Transfer rate: 9,600 to 153,600 bps



(2) CSI00

Serial clock: 2.4 kHz to 2.5 MHz (MSB first)

DataShe



et4U.com

595

(3) CSI00 + HS

Serial clock: 2.4 kHz to 2.5 MHz (MSB first)

Figure 26-5. Communication with Dedicated Flash Programmer (CSI00 + HS)

The dedicated flash programmer outputs the transfer clock, and the V850ES/KE1+ operates as a slave.

When the PG-FP4 is used as the dedicated flash programmer, it generates the following signals to the V850ES/KE1+. For details, refer to the **PG-FP4 User's Manual (U15260E)**.

at4U com

Table 26-4	. Signal Connection	ons of Dedicated Flas	h Programmer (PG-FP4)
------------	---------------------	-----------------------	-----------------------

PG-FP4			V850ES/KE1+	Proces	ssing for Conr	nection
Signal Name	I/O	Pin Function	Pin Name	UART0	CS100	CSI00 + HS
FLMD0	Output	Write enable/disable	FLMD0	O	0	0
FLMD1	Output	Write enable/disable	FLMD1	ONote 1	ONote 1	ONote 1
VDD	-	VDD voltage generation/voltage monitor	Vdd	0	0	0
GND	-	Ground	Vss	0	0	0
CLK	Output	Clock output to V850ES/KE1+	X1, X2	× ^{Note 2}	× ^{Note 2}	× ^{Note 2}
RESET	Output	Reset signal	RESET	0	0	0
SI/RxD	Input	Receive signal	SO00, TXD0	0	0	0
SO/TxD	Output	Transmit signal	SI00, RXD0	O	0	0
SCK	Output	Transfer clock	SCK00	×	0	0
HS	Input	Handshake signal for CSI00 + HS communication	PCM0	×	×	0

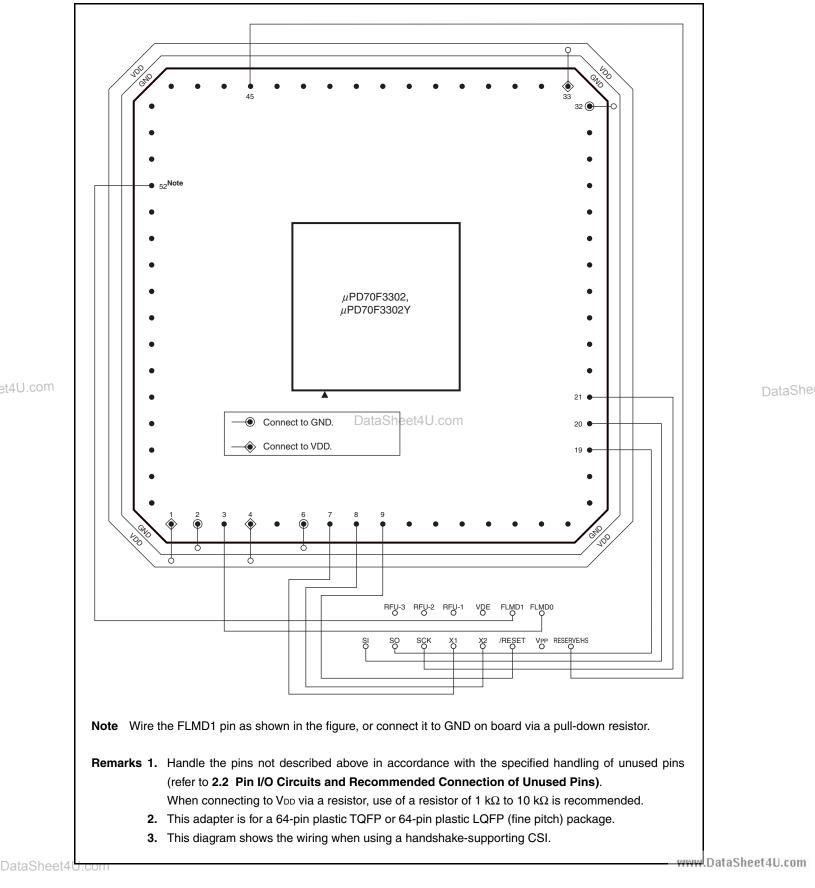
Notes 1. Wire the pin as shown in Figure 26-6, or connect it to GND on board via a pull-down resistor.

2. Connect these pins to supply a clock from the PG-FP4 (wire as shown in Figure 26-6, or create an oscillator on board and supply the clock).

Remark O: Must be connected.

 $\times:$ Does not have to be connected.

DataSheet4U.com

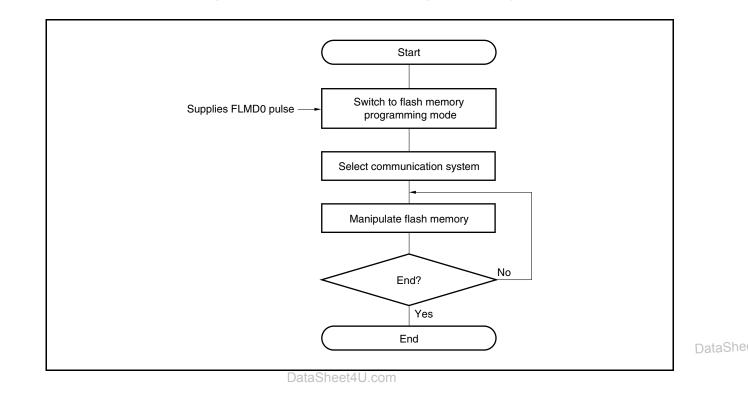

596

Pin Configu	ration of Fla	sh Programmer (PG-FP4)	Pin Name on	With CS	SI00-HS	With	CSI00	With L	JART0
Signal Name	I/O	Pin Function	FA Board	Pin Name	Pin No.	Pin Name	Pin No.	Pin Name	Pin No.
SI/RxD	Input	Receive signal	SI	P41/SO00	20	P41/SO00	20	P30/TXD0	22
SO/TxD	Output	Transmit signal	SO	P40/SI00	19	P40/SI00	19	P31/RXD0/ INTP7	23
SCK	Output	Transfer clock	SCK	P42/SCK00	21	P42/SCK00	21	Not needed	Not needed
CLK	Output	Clock to V850ES/KE1+	X1	X1	7	X1	7	X1	7
			X2	X2 ^{Note}	8	X2 ^{Note}	8	X2 ^{Note}	8
/RESET	Output	Reset signal	/RESET	RESET	9	RESET	9	RESET	9
FLMD0	Input	Write voltage	FLMD0	FLMD0	3	FLMD0	3	FLMD0	3
FLMD1	Input	Write voltage	FLMD1	PDL5/ FLMD1	52	PDL5/ FLMD1	52	PDL5/ FLMD1	52
HS	Input	Handshake signal for CSI00 + HS communication	RESERVE /HS	PCM0	45	Not needed	Not needed	Not needed	Not needed
VDD	-	VDD voltage	VDD	VDD	4	VDD	4	VDD	4
		generation/voltage		EVDD	33	EVDD	33	EVDD	33
		monitor		AV _{REF0}	1	AV _{REF0}	1	AVREFO	1
GND	-	Ground	GND	Vss	6	Vss	6	Vss	6
				AVss	2	AVss	2	AVss	2
				EVss	32	EVss	32	EVss	32

Table 26-5.	Wiring Between	µPD70F3302.	70F3302Y	and PG-FP4
	mining between	μ bro $000 L$,	

et4U.com

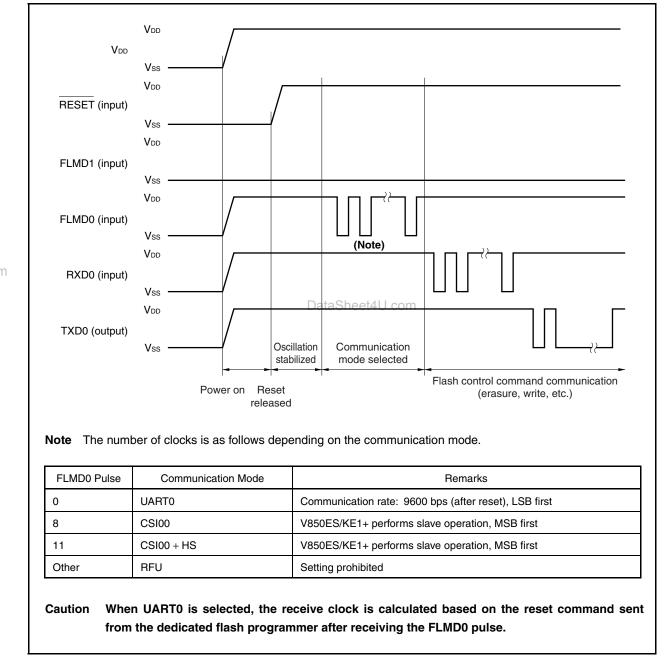
Note When using the clock out of the flash programmer, connect CLK of the programmer to X1, and connect its inverse signal to X2.

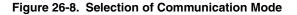


DataSheet4U.com

26.4.3 Flash memory control

The following shows the procedure for manipulating the flash memory.

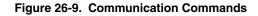



et4U.com

26.4.4 Selection of communication mode

In the V850ES/KE1+, the communication mode is selected by inputting pulses (12 pulses max.) to the FLMD0 pin after switching to the flash memory programming mode. The FLMD0 pulse is generated by the dedicated flash programmer.

The following shows the relationship between the number of pulses and the communication mode.



et4U.com

DataSheet4U.com

26.4.5 Communication commands

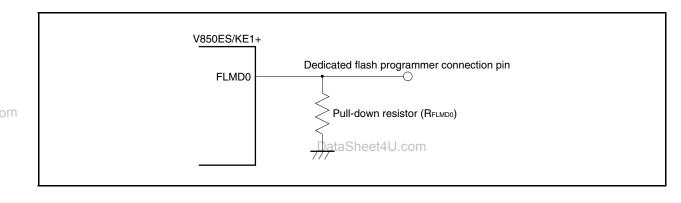
The V850ES/KE1+ communicates with the dedicated flash programmer by means of commands. The signals sent from the dedicated flash programmer to the V850ES/KE1+ are called "commands". The response signals sent from the V850ES/KE1+ to the dedicated flash programmer are called "response commands".

The following shows the commands for flash memory control in the V850ES/KE1+. All of these commands are issued from the dedicated flash programmer, and the V850ES/KE1+ performs the processing corresponding to the commands.

Classification	Command Name	mmand Name Support		Function	
		CS100	CSI00 + HS	UART0	
Blank check	Block blank check command	0	0	0	Checks if the contents of the memory in the specified block have been correctly erased.
Erase	Chip erase command	0	0	0	Erases the contents of the entire memory.
	Block erase command	©ata\$	heet o U.co	n O	Erases the contents of the memory of the specified block.
Write	Write command	0	0	0	Writes the specified address range, and executes a contents verify check.
Verify	Verify command	0	0	0	Compares the contents of memory in the specified address range with data transferred from the flash programmer.
	Checksum command	0	0	0	Reads the checksum in the specified address range.
System setting, control	Silicon signature command	0	0	0	Reads silicon signature information.
	Security setting command	0	0	0	Disables the chip erase command, enables the block erase command, and disables the write command.

et4U.com

26.4.6 Pin connection


When performing on-board writing, mount a connector on the target system to connect to the dedicated flash programmer. Also, incorporate a function on-board to switch from the normal operation mode to the flash memory programming mode.

In the flash memory programming mode, all the pins not used for flash memory programming become the same status as that immediately after reset. Therefore, pin handling is required when the external device does not acknowledge the status immediately after a reset.

(1) FLMD0 pin

In the normal operation mode, input a voltage of Vss level to the FLMD0 pin. In the flash memory programming mode, supply a write voltage of V_{DD} level to the FLMD0 pin.

Because the FLMD0 pin serves as a write protection pin in the self programming mode, a voltage of V_{DD} level must be supplied to the FLMD0 pin via port control, etc., before writing to the flash memory. For details, refer to **26.5.5 (1)** FLMD0 pin.

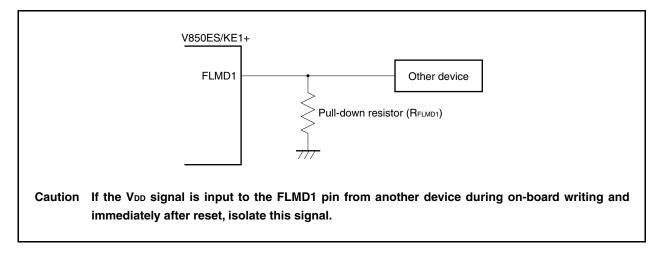


Figure 26-10. FLMD0 Pin Connection Example

(2) FLMD1 pin

When 0 V is input to the FLMD0 pin, the FLMD1 pin does not function. When V_{DD} is supplied to the FLMD0 pin, the flash memory programming mode is entered, so 0 V must be input to the FLMD1 pin. The following shows an example of the connection of the FLMD1 pin.

Table 26-7. Relationship Between FLMD0 and FLMD1 Pins and Operation Mode When Reset Is Released

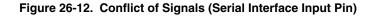
FLMD0	FLMD1	Operation Mode
0	don't care	Normal operation mode
Vdd	0	Flash memory programming mode
Vdd	Vdd	Setting prohibited

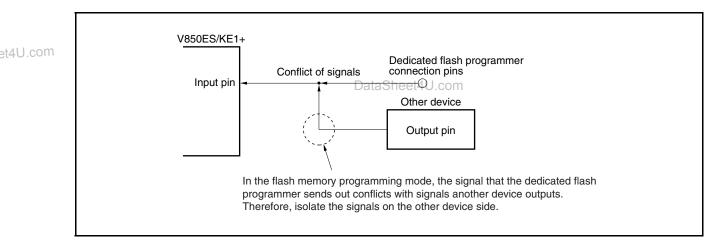
DataShe

et4U.com

(3) Serial interface pin

The following shows the pins used by each serial interface.

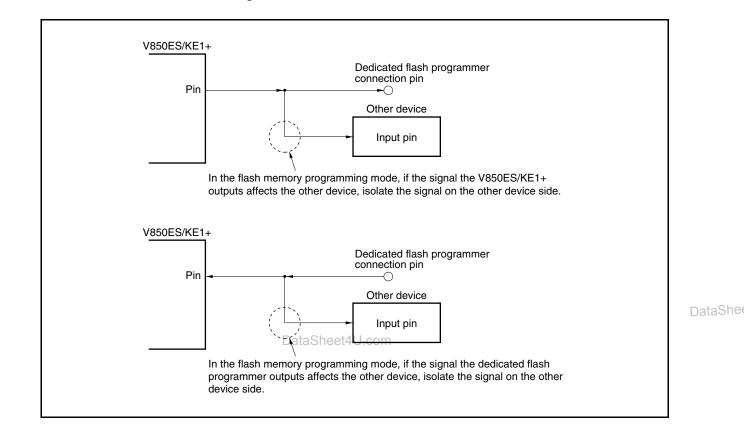

Serial Interface	Pins Used
UART0	TXD0, RXD0
CSI00	SO00, SI00, SCK00
CSI00 + HS	SO00, SI00, SCK00, PCM0


Table 26-8. Pins Used by Serial Interfaces

When connecting a dedicated flash programmer to a serial interface pin that is connected to another device on-board, care should be taken to avoid conflict of signals and malfunction of the other device.

(a) Conflict of signals

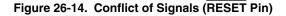
When the dedicated flash programmer (output) is connected to a serial interface pin (input) that is connected to another device (output), a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the other device or set the other device to the output high-impedance status.

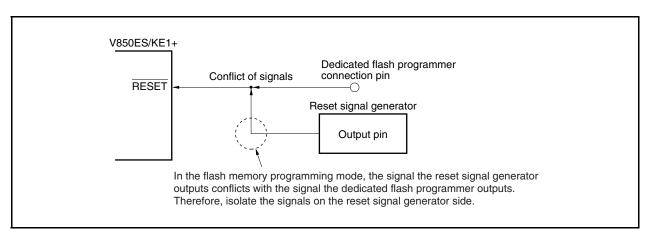


www.DataSheet4U.com

(b) Malfunction of other device

When the dedicated flash programmer (output or input) is connected to a serial interface pin (input or output) that is connected to another device (input), the signal is output to the other device, causing the device to malfunction. To avoid this, isolate the connection to the other device.




et4U.com

(4) RESET pin

When the reset signals of the dedicated flash programmer are connected to the RESET pin that is connected to the reset signal generator on-board, a conflict of signals occurs. To avoid the conflict of signals, isolate the connection to the reset signal generator.

When a reset signal is input from the user system in the flash memory programming mode, the programming operation will not be performed correctly. Therefore, do not input signals other than the reset signals from the dedicated flash programmer.

et4U.com

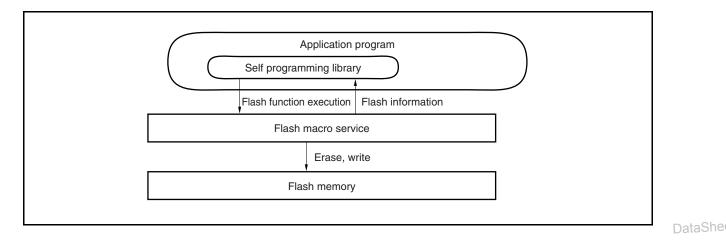
(5) Port pins (including NMI)

When the system shifts to the flash memory programming mode, all the pins that are not used for flash memory programming are in the same status as that immediately after reset. If the external device connected to each port does not recognize the status of the port immediately after reset, pins require appropriate processing, such as connecting to V_{DD} via a resistor or connecting to V_{SS} via a resistor.

(6) Other signal pins

Connect X1, X2, XT1, and XT2 in the same status as that in the normal operation mode.

(7) Power supply

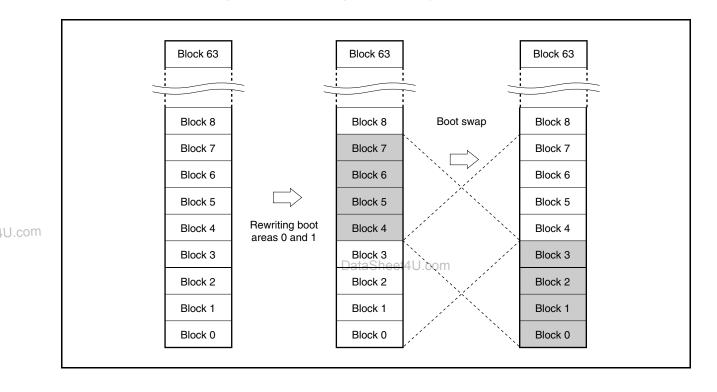

Supply the same power (VDD, VSS, EVDD, EVSS, AVSS, AVREF0) as in normal operation mode.

26.5 Rewriting by Self Programming

26.5.1 Overview

The V850ES/KE1+ supports a flash macro service that allows the user program to rewrite the internal flash memory by itself. By using this interface and a self programming library that is used to rewrite the flash memory with a user application program, the flash memory can be rewritten by a user application transferred in advance to the internal RAM or external memory. Consequently, the user program can be upgraded and constant data can be rewritten in the field.

et4U.com

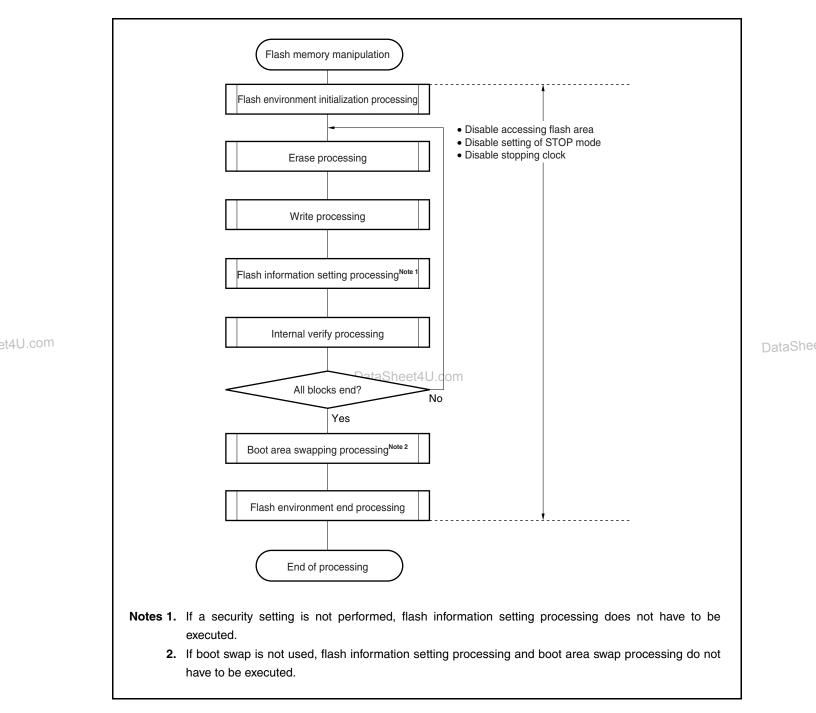

DataSheet4U.com

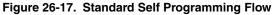
607

26.5.2 Features

(1) Secure self programming (boot swap function)

The V850ES/KE1+ supports a boot swap function that can exchange the physical memory (blocks 0 to 3) of boot area 0 with the physical memory (blocks 4 to 7) of boot area 1. By writing the start program to be rewritten to boot area 1 in advance and then swapping the physical memory, the entire area can be safely rewritten even if a power failure occurs during rewriting because the correct user program always exists in boot area 0.


(2) Interrupt support


Instructions cannot be fetched from the flash memory during self programming. Conventionally, therefore, a user handler written to the flash memory could not be used even if an interrupt occurred. With the V850ES/KE1+, a user handler can be registered to an entry RAM area by using a library function, so that interrupt servicing can be performed by internal RAM or external memory execution.

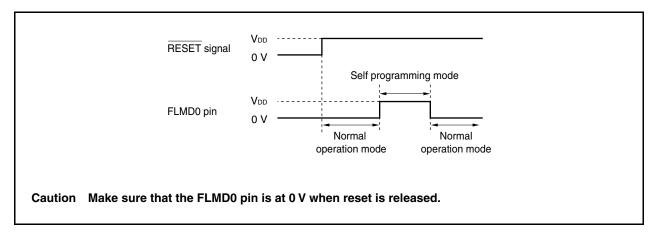
www.DataSheet4U.com

26.5.3 Standard self programming flow

The entire processing to rewrite the flash memory by flash self programming is illustrated below.

26.5.4 Flash functions

Function Name	Outline	Support
FlashEnv	Initialization of flash control macro	\checkmark
FlashBlockErase	Erasure of only specified one block	\checkmark
FlashWordRead	Reading data from specified address	\checkmark
FlashWordWrite	Writing from specified address	\checkmark
FlashBlockIVerify	Internal verification of specified block	
FlashBlockBlankCheck	Blank check of specified block	
FlashFLMDCheck	Check of FLMD pin	\checkmark
FlashGetInfo	Reading of flash information	\checkmark
FlashSetInfo	Setting of flash information	
FlashBootSwap	Swapping of boot area	


Table 26-9. Flash Function List

26.5.5 Pin processing

(1) FLMD0 pin

The FLMD0 pin is used to set the operation mode when reset is released and to protect the flash memory from being written during self rewriting. It is therefore necessary to keep the voltage applied to the FLMD0 pin at 0 V when reset is released and a normal operation is executed. It is also necessary to apply a voltage of V_{DD} level to the FLMD0 pin during the self programming mode period via port control before the memory is rewritten.

When self programming has been completed, the voltage on the FLMD0 pin must be returned to 0 V.

Figure 26-18. Mode Change Timing

26.5.6 Internal resources used

The following table lists the internal resources used for self programming. These internal resources can also be used freely for purposes other than self programming.

Resource Name	Description
Entry RAM area (internal RAM/external RAM size ^{vete})	Routines and parameters used for the flash macro service are located in this area. The entry program and default parameters are copied by calling a library initialization function.
Stack area (stack size ^{Note})	An extension of the stack used by the user is used by the library (can be used in both the internal RAM and external RAM).
Library code (code size ^{Note})	Program entity of library (can be used anywhere other than the flash memory block to be manipulated).
Application program	Executed as user application. Calls flash functions.
Maskable interrupt	Can be used in user application execution status or self programming status. To use this interrupt in the self programming status, the interrupt servicing start address must be registered in advance by a registration function.
NMI interrupt	Can be used in user application execution status or self programming status. To use this interrupt in the self programming status, the interrupt servicing start address must be registered in advance by a registration function.
TM50, TM51	Because TM50 and TM51 are used in the flash macro service, do not use them in the self programming status. When using TM50 and TM51 after self programming, set them again.

Table 20-10. Internal Resources Used	Table 26-10.	Internal Resources U	sed
--------------------------------------	--------------	----------------------	-----

Note For the capacity to be used, refer to the V850 Series Flash Memory Self Programming (Single Power Supply Flash Memory) User's Manual (under preparation).

et4U.com

DataSheet4U.com

www.DataSheet4U.com

CHAPTER 27 ELECTRICAL SPECIFICATIONS (TARGET)

Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	Vdd	VDD = EVDD = AVREF0		–0.3 to +6.5	V
	AV _{REF0}	VDD = EVDD = AVREF0		–0.3 to +6.5	V
	EVDD	VDD = EVDD = AVREF0		–0.3 to +6.5	V
	Vss	Vss = EVss = AVss		–0.3 to +0.3	V
	AVss	Vss = EVss = AVss		–0.3 to +0.3	V
	EVss	Vss = EVss = AVss		–0.3 to +0.3	V
Input voltage	VI1	P00 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0, PCM1, PDL0 to PDL7, RESET, FLMD0		-0.3 to EV _{DD} + 0.3^{Note}	V
	Vı2	X1, X2, XT1, XT2		-0.3 to V _{DD} + 0.3 ^{Note}	V
Analog input voltage	VIAN	P70 to P77		-0.3 to AVREF0 + 0.3 ^{Note}	V
Output current, low	lol	P00 to P06, P30 to P35, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0, PCM1, PDL0 to PDL7	Per pin	20	mA
		P38, P39		30	mA
		P00 to P06, P30 to P35, P38, P39, P40 to P42	Total of all pins:	35	mA
		P50 to P55, P90, P91, P96 to P99, C P913 to P915, PCM0, PCM1, PDL0 to PDL7	70 mA	35	mA
Output current, high	Іон	Per pin		-10	mA
		P00 to P06, P30 to P35, P40 to P42	Total of all	-30	mA
		P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0, PCM1, PDL0 to PDL7	pins: –60 mA	-30	mA
Operating ambient	TA	Normal operation mode		-40 to +85	°C
temperature		Flash memory programming mode		T.B.D.	°C
Storage temperature	Tstg	μPD703302, 703302Y		-65 to +150	°C
		μPD70F3302, 70F3302Y		-40 to +125	°C

Absolute Maximum Ratings (T_A = 25°C)

Note Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

- Cautions 1. Do not directly connect the output (or I/O) pins of IC products to each other, or to VDD, VCC, and GND. Open-drain pins or open-collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

DataShe

et4U.com

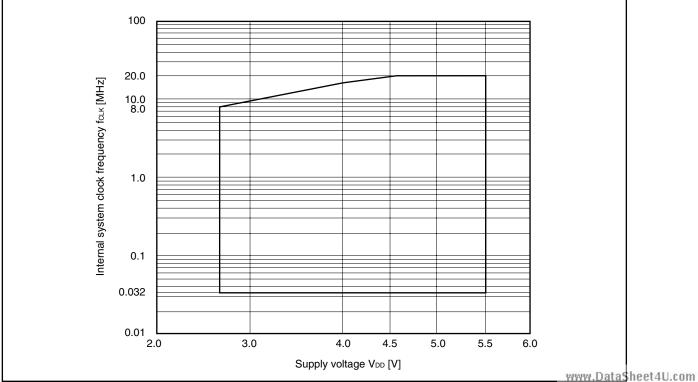
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Input capacitance	Cı	fx = 1 MHz	P70 to P77			15	pF
I/O capacitance	Сю	Unmeasured pins	Note			15	pF
		returned to 0 V	P38, P39			20	pF

Capacitance (T_A = 25°C, V_{DD} = EV_{DD} = AV_{REF0} = V_{SS} = EV_{SS} = AV_{SS} = 0 V)

Note P00 to P06, P30 to P35, P40 to P42, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0, PCM1, PDL0 to PDL7

Remark fx: Main clock oscillation frequency

Operating Conditions


$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = AV_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Internal system clock	fclк	In PLL mode	V _{DD} = 4.5 to 5.5 V	0.25		20	MHz
frequency			V _{DD} = 4.0 to 5.5 V	0.25		16	MHz
			V _{DD} = 2.7 to 5.5 V	0.25		8 ^{Note}	MHz
		In clock-through	V _{DD} = 4.0 to 5.5 V	0.0625		10	MHz
		mode	V _{DD} = 2.7 to 5.5 V	0.0625		8 ^{Note}	MHz
		Operating with subclock	V _{DD} = 2.7 to 5.5 V		32.768		kHz
		Operating with on-chip ring clock	V _{DD} = 2.7 to 5.5 V	120	240	480	kHz

DataShee

Note These values may change after evaluation.

Internal System Clock Frequency vs. Supply Voltage

DataSheet4U.com

et4U.com

Main Clock Oscillator Characteristics

Recommended Circuit	Parameter	Conditions		MIN.	TYP.	MAX.	Unit
	Oscillation	PLL mode	V _{DD} = 4.5 to 5.5 V	2		5	MHz
x1 x2	frequency (fx) ^{Note 1}		V _{DD} = 4.0 to 5.5 V	2		4	MHz
			V _{DD} = 2.7 to 5.5 V	2		2.5	MHz
		Clock-through mode	V _{DD} = 2.7 to 5.5 V	2		10	MHz
1i 777	Oscillation	After reset is	When OSTS0 ^{Note 3} = 0		2 ¹³ /fx		s
	stabilization	released	When OSTS0 ^{Note 3} = 1		2 ¹⁵ /fx		s
	time ^{Note 2}	After STOP mode is released			Note 4		S

(1) Crystal resonator, ceramic resonator ($T_A = -40$ to $+85^{\circ}$ C, $V_{DD} = 2.7$ to 5.5 V, $V_{SS} = 0$ V)

Notes 1. Indicates only oscillator characteristics.

- 2. Time required to stabilize the resonator after reset or STOP mode is released.
- 3. Set by mask option/option byte (refer to CHAPTER 25).
- 4. The value differs depending on the OSTS register settings.

(2) External clock (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V, V_{SS} = 0 V)

Recommended Circuit	Parameter	C	MIN.	TYP.	MAX.	Unit	
	Input frequency	PLL mode ^{Note}	V _{DD} = 4.5 to 5.5 V	2		5	MHz
	(fx)		$V_{DD} = 4.0$ to 5.5 V	2		4	MHz
			V _{DD} = 2.7 to 5.5 V	2		2.5	MHz
External clock		Clock-through mode ^{∾ote} DataS	V₀₀ = 2.7 to 5.5 V heet4U.com	2		10	MHz

DataShe

www.DataSheet4U.com

Note Make sure that the duty ratio of the input waveform is within $50\% \pm 5\%$.

Cautions 1. When using the main clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. When the main clock is stopped and the device is operating on the subclock, wait until the oscillation stabilization time has been secured by the program before switching back to the main clock.

Subclock Oscillator Characteristics

(1) Crystal resonator ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 2.7$ to 5.5 V, $V_{SS} = 0$ V)

Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
XT1 XT2	Oscillation frequency (fxt) ^{Note 1}		32	32.768	35	kHz
	Oscillation stabilization time ^{Note 2}			10		S

Notes 1. Indicates only oscillator characteristics.

2. Time required from when V_{DD} reaches oscillation voltage range (2.7 V (MIN.)) to when the crystal resonator stabilizes.

(2) External clock (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.7 to 5.5 V, V_{SS} = 0 V)

Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
XT1 XT2	Input frequency (fxt)		32		35	kHz

Cautions 1. When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figure to avoid an adverse effect from wiring capacitance.

DataSheet4U.com

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. The subclock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main clock oscillator. Particular care is therefore required with the wiring method when the subclock is used.
- 3. Make sure that the duty ratio of the input waveform is within $50\% \pm 5\%$.

Ring-OSC Characteristics ($T_A = -40$ to $+85^{\circ}$ C, $V_{DD} = 2.7$ to 5.5 V, $V_{SS} = 0$ V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Ring-OSC frequency	fR		120	240	480	kHz

PLL Characteristics (TA = -40 to +85°C, VDD = 2.7 to 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input frequency	fx		2		5	MHz
Output frequency	fxx		8		20	MHz
Lock time	t PLL	After VDD reaches 2.7 V (MIN.)			200	μs

DataSheet4U.com

et4U.com

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = AV_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V})$ (1/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high	Іон1	Per pin for P00 to P06, P30 to P to P55, P90, P91, P96 to P99, P PCM1, PDL0 to PDL7	, , ,			-5.0	mA
		Total of P00 to P06, P30 to	$EV_{\text{DD}} = 4.0$ to 5.5 V			-30	mA
		P35, P40 to P42	$EV_{DD} = 2.7$ to 5.5 V			-15	mA
		Total of P50 to P55, P90, P91,	$EV_{DD} = 4.0$ to 5.5 V			-30	mA
		P96 to P99, P913 to P915, PCM0, PCM1, PDL0 to PDL7	EV _{DD} = 2.7 to 5.5 V			-15	mA
Output current, low	Iol1	Per pin for P00 to P06, P30 to P to P55, P90, P91, P96 to P99, P PCM1, PDL0 to PDL7	, , ,			10	mA
		Per pin for P38, P39	$EV_{DD} = 4.0$ to 5.5 V			15	mA
			$EV_{DD} = 2.7 \text{ to } 5.5 \text{ V}$			8	mA
		Total of P00 to P06, P30 to P35			30	mA	
		Total of P38, P39, P50 to P55, F P913 to P915, PCM0, PCM1, PI			30	mA	
Input voltage, high	VIH1	Note 1		0.7EV _{DD}		EVDD	V
	VIH2	Note 2		0.8EVDD		EVDD	V
	VIH3	P70 to P77		0.7AVREF0		AV _{REF0}	V
	VIH4	X1, X2, XT1, XT2		$V_{\text{DD}}-0.5$		V _{DD}	V
Input voltage, low	VIL1	Note 1 DataS	Sheet4U.com	EVss		0.3EV _{DD}	V
	VIL2	Note 2		EVss		0.2EV _{DD}	V
	VIL3	P70 to P77		AVss		0.3AVREFO	V
	VIL4	X1, X2, XT1, XT2		Vss		0.4	V

DataShe

Notes 1. P00, P01, P30, P41, P98, PCM0, PCM1, PDL0 to PDL7 and their alternate-function pins.

 RESET, P02 to P06, P31 to P35, P38, P39, P40, P42, P50 to P55, P90, P91, P96, P97, P99, P913 to P915 and their alternate-function pins.

et4U.com

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	Note 1	Іон = -2.0 mA, EV _{DD} = 4.0 to 5.5 V	EV _{DD} - 1.0		EVDD	V
		Note 2	Іон = -0.1 mA, EV _{DD} = 2.7 to 5.5 V	EV _{DD} - 0.5		EVDD	V
Output voltage, low	Vol1	Note 3	IOL = 2.0 mA ^{Note 4}	0		0.8	V
	Vol2	P38, P39	Io∟ = 15 mA, EV _{DD} = 4.0 to 5.5 V	0		2.0	V
			lo∟ = 8 mA, EV _{DD} = 3.0 to 5.5 V	0		1.0	V
			Io∟ = 5 mA, EVɒɒ = 2.7 to 5.5 V	0		1.0	V
Input leakage current, high	Іцн	$V_{\text{IN}} = V_{\text{DD}}$				3.0	μA
Input leakage current, low	Ilil	Vin = 0 V				-3.0	μA
Output leakage current, high	Ігон	Vo = Vdd				3.0	μA
Output leakage current, low	Ilol	Vo = 0 V				-3.0	μA
Pull-up resistor	R∟	$V_{IN} = 0 \ V$		10	30	100	kΩ

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = AV_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}) (2/4)$

Notes 1. Total of P00 to P06, P30 to P35, P40 to P42 and their alternate-function pins: $I_{OH} = -30$ mA, total of P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0, PCM1, PDL0 to PDL7 and their alternate-function pins: $I_{OH} = -30$ mA.

- **2.** Total of P00 to P06, P30 to P35, P40 to P42 and their alternate-function pins: $I_{OH} = -15 \text{ mA}$, total of P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0, PCM1, PDL0 to PDL7 and their alternate-function pins: $I_{OH} = -15 \text{ mA}$.
- **3.** Total of P00 to P06, P30 to P35, P40 to P42 and their alternate-function pins: Io_L = 30 mA, total of P38, P39, P50 to P55, P90, P91, P96 to P99, P913 to P915, PCM0, PCM1, PDL0 to PDL7 and their alternate-function pins: Io_L = 30 mA.
- 4. Refer to IOL1 for IOL of P38 and P39.

DataShe

et4U.com

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = AV_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}) (3/4)$

Paran	,		Conditions	MIN.	TYP.	MAX.	Unit
Supply current (µPD70F3302)		Normal operation mode	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) V _{DD} = 5 V ±10%		51	70	mA
		All peripheral functions operating	fxx = T.B.D. (in clock-through mode) V _{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
	IDD2	HALT mode All peripheral functions	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) V _{DD} = 5 V ±10%		25	38	mA
		operating	fxx = T.B.D. (in clock-through mode) V _{DD} = 3 V ±10%		T.B.D.	T.B.D.	mA
	Гооз	IDLE mode Watch timer operating, ring	fxx = 5 MHz (when PLL mode off) $V_{DD} = 5 V \pm 10\%$		1.8	2.9	mA
com		oscillation stopped	$f_{XX} = T.B.D.$ (in clock-through mode) $V_{DD} = 3 V \pm 10\%$		T.B.D.	T.B.D.	mA
	IDD4	Subclock operation mode (fxr = 32.768 kHz) Main oscillation stopped, ring oscillation stopped			240	400	μA
	IDD5	Sub-IDLE mode Main oscillation ring oscillation s			20	75	μA
	IDD6	STOP mode	Sub-oscillation operating, ring oscillation operating		34	103	μA
			Sub-oscillation stopped (XT1 = Vss), ring oscillation operating		17.5	63.5	μA
			Sub-oscillation stopped (XT1 = Vss), ring oscillation stopped		3.5	35.5	μA
	IDD7 ^{Note}	Main oscillation sub-oscillation s			3.5	10.5	mA
		² Ring HALT mod Main oscillation sub-oscillation s			T.B.D.	T.B.D.	mA
	едаІ	Flash memory erase/write	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) V _{DD} = 5 V ±10%		61	85	mA
			$f_{XX} = T.B.D.$ (in clock-through mode) $V_{DD} = 3 V \pm 10\%$		T.B.D.	T.B.D.	mA

DataShe

Notes 1. Total current of VDD and EVDD (all ports stopped). AVREFO is not included.

2. The supply current of the main clock oscillator is not included since the main clock oscillator is stopped because of an abnormality.

- Remark fxx: Main clock frequency
 - fx: Main clock oscillation frequency
 - fxT: Subclock frequency

DataSheet4U.com

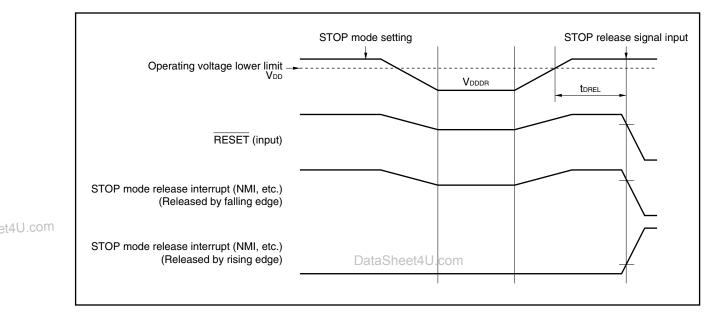
	Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
	Supply current ^{Note 1} (μPD703302, 703302Y)	ldd1	Normal operation mode	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) V _{DD} = 5 V ±10%		38	55	mA
			All peripheral functions operating	$f_{XX} = T.B.D.$ (in clock-through mode) $V_{DD} = 3 V \pm 10\%$		T.B.D.	T.B.D.	mA
		Idd2	HALT mode All peripheral functions	fxx = 20 MHz (fx = 5 MHz) (in PLL mode) V _{DD} = 5 V ±10%		25	35	mA
			operating	$f_{XX} = T.B.D.$ (in clock-through mode) $V_{DD} = 3 V \pm 10\%$		T.B.D.	T.B.D.	mA
			IDLE mode Watch timer operating, ring	$\label{eq:response} \begin{array}{l} fx = 5 \mbox{ MHz} \\ (\mbox{when PLL mode off}) \\ V_{\mbox{DD}} = 5 \mbox{ V } \pm 10\%^{\mbox{Note 2}} \end{array}$		1.4	2.3	mA
			oscillation stopped	fx = T.B.D. (in clock-through mode) $V_{DD} = 3 V \pm 10\%$		T.B.D.	T.B.D.	mA
et4U.com		Idd4	Subclock operation mode (fxr = 32.768 kHz) Main oscillation stopped, ring oscillation stopped			90	200	μA
		Idd5	Sub-IDLE mode (fxr = 32.768 kHz) Main oscillation stopped, ring oscillation stopped			20	75	μA
		Idd6	STOP mode	Sub-oscillation operating, ring oscillation operating		34	103	μA
				Sub-oscillation stopped (XT1 = Vss), ring oscillation operating		17.5	63.5	μA
				Sub-oscillation stopped (XT1 = Vss), ring oscillation stopped		3.5	35.5	μA
		IDD7 ^{Note 2}	Main oscillation sub-oscillation s			2.5	9	mA
		DD8 ^{Note 2}	Ring HALT mod Main oscillation sub-oscillation s			T.B.D.	T.B.D.	μA

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = AV_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}) (4/4)$

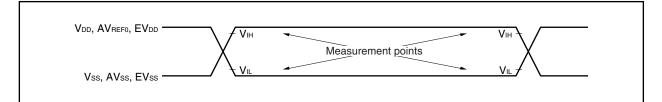
Notes 1. Total current of VDD and EVDD (all ports stopped). AVREFO is not included.

2. The supply current of the main clock oscillator is not included since the main clock oscillator is stopped because of an abnormality.

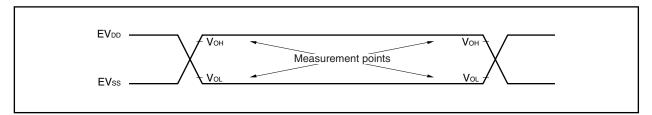
Remark fxx: Main clock frequency

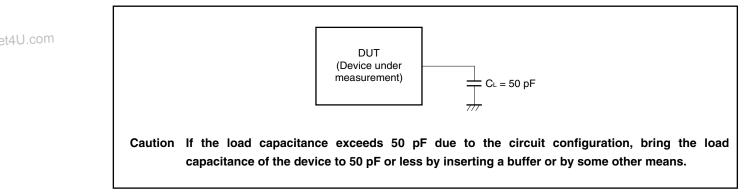

- fx: Main clock oscillation frequency
- fxT: Subclock frequency

Data Retention Characteristics


STOP Mode ($T_A = -40$ to $+85^{\circ}C$)

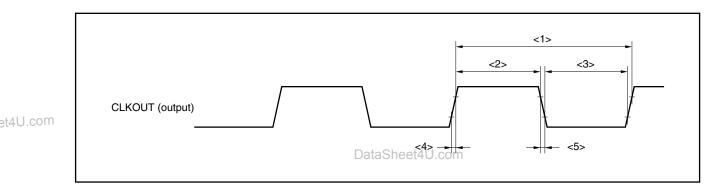
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR	STOP mode	2.0		5.5	V
STOP release signal input time	t DREL		0			μs


Caution Shifting to STOP mode and restoring from STOP mode must be performed within the rated operating range.


AC Test Input Measurement Points

AC Test Output Measurement Points

Load Conditions



CLKOUT Output Timing

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = 2.7 to 5.5 V, Vss = EVss = AVss = 0 V, CL = 50 pF)

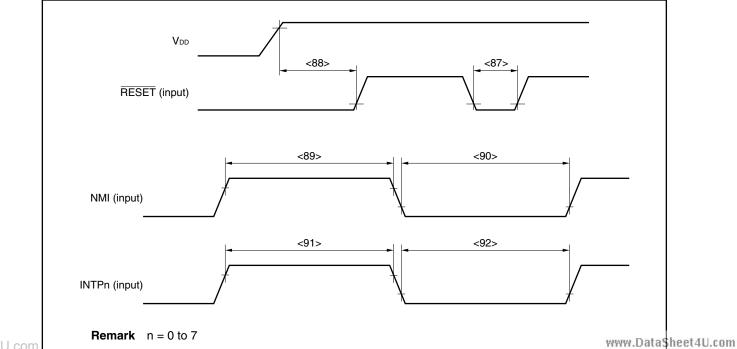
Parameter	Symbol		Conditions	MIN.	MAX.	Unit
Output cycle	tсүк	<1>		50 ns	30.6 <i>µ</i> s	
High-level width	twкн	<2>	V _{DD} = 4.0 to 5.5 V	tсүк/2 – 17		ns
			VDD = 2.7 to 5.5 V	tсүк/2 – 26		ns
Low-level width	twĸ∟	<3>	V _{DD} = 4.0 to 5.5 V	tсүк/2 – 17		ns
			V _{DD} = 2.7 to 5.5 V	tсүк/2 – 26		ns
Rise time	tкв	<4>	V _{DD} = 4.0 to 5.5 V		17	ns
			V _{DD} = 2.7 to 5.5 V		26	ns
Fall time	tкғ	<5>	V _{DD} = 4.0 to 5.5 V		17	ns
			V _{DD} = 2.7 to 5.5 V		26	ns

Clock Timing

Basic Operation

(1) Reset/external interrupt timing

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = 2.7 to 5.5 V, Vss = EVss = AVss = 0 V, CL = 50 pF)


Parameter	Sym	bol		Conditions	MIN.	MAX.	Unit
RESET low-level width ^{Note}	twrsL1	<87>	Reset in power-on	When digital noise elimination not selected	2		μs
			status	When digital noise elimination selected	$Nr imes t_{RSMP} + 2$		μs
	twrsl2	<88>	Power-on reset		3		ms
NMI high-level width	twniн	<89>	Analog noise el	imination	1		μs
NMI low-level width	twnil	<90>	Analog noise el	imination	1		μs
INTPn high-level width	twiтн	<91>	n = 0 to 7 (anal	og noise elimination)	600		ns
			n = 3 (when dig	ital noise elimination selected)	$Ni imes t_{ISMP} + 200$		ns
INTPn low-level width	twi⊤∟	<92>	n = 0 to 7 (analog	og noise elimination)	600		ns
			n = 3 (when dig	ital noise elimination selected)	Ni imes tISMP + 200		ns

Note The RESET low-level width is when the RESET pin input is valid (when POCRES is invalid).

Remarks 1. Nr: Number of samplings

- tresmp: Digital noise elimination sampling clock cycle of $\overline{\text{RESET}}$ pin
- Ni: Number of samplings
- tISMP: Digital noise elimination sampling clock cycle of INTP3 pin
- 2. The above specification shows the pulse width that is accurately detected as a valid edge. If a pulse narrower than the above specification is input, therefore, it may also be detected as a valid edge.

Reset/Interrupt

DataSheet4U.com

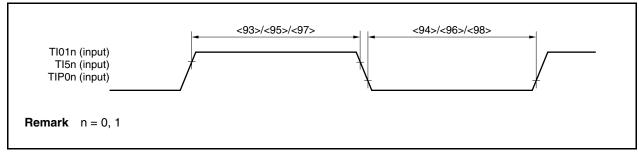
et4U.com

Parameter	Syr	nbol	Conditions	MIN.	MAX.	Unit
TI01n high-level width	tтюн	<93>	V _{DD} = 4.0 to 5.5 V	2T _{smp0} + 100 ^{Note 1}		ns
			V _{DD} = 2.7 to 5.5 V	2T _{smp0} + 200 ^{Note 1}		ns
TI01n low-level width	t⊤ıo∟	<94>	V _{DD} = 4.0 to 5.5 V	2T _{smp0} + 100 ^{Note 1}		ns
			V _{DD} = 2.7 to 5.5 V	2T _{smp0} + 200 ^{Note 1}		ns
TI5n high-level width	tti5H	<95>	$V_{DD} = 4.0$ to 5.5 V	50		ns
			V _{DD} = 2.7 to 5.5 V	100		ns
TI5n low-level width	t⊤ıs∟	<96>	$V_{DD} = 4.0$ to 5.5 V	50		ns
			V _{DD} = 2.7 to 5.5 V	100		ns
TIP0n high-level width	tтірн	<97>	$V_{DD} = 4.0$ to 5.5 V	$np \times T_{\text{smpp}} + 100^{\text{Note 2}}$		ns
			V _{DD} = 2.7 to 5.5 V	$np \times T_{\text{smpp}} + 200^{\text{Note 2}}$		ns
TIP0n low-level width	t TIPL	<98>	V _{DD} = 4.0 to 5.5 V	$np \times T_{\text{smpp}} + 100^{\text{Note 2}}$		ns
			V _{DD} = 2.7 to 5.5 V	$np \times T_{\text{smpp}} + 200^{\text{Note 2}}$		ns

Timer Timing (T_A = -40 to +85°C, V_{DD} = EV_{DD} = AV_{REF0} = 2.7 to 5.5 V, V_{SS} = EV_{SS} = AV_{SS} = 0 V, C_L = 50 pF)

Notes 1. Tsmp0: Timer 0 count clock cycle

However, $T_{smp0} = 4/f_{XX}$ when TI010 is used as an external clock.


 T_{smpp}: Digital noise elimination sampling clock cycle of TIP0n pin If TIP00 is used as an external event count input or an external trigger input, however, T_{smpp} = 0 (digital noise is not eliminated).

t4U.com

Remarks 1. n = 0, 1

2. The above specification shows the pulse width that is accurately detected as a valid edge. If a pulse narrower than the above specification is input, therefore, it may also be detected as a valid edge.

Timer Input Timing

UART Timing

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = 2.7 to 5.5 V, Vss = EVss = AVss = 0 V, CL = 50 pF)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transmit rate				312.5	kbps
ASCK0 frequency		$V_{DD} = 4.0$ to 5.5 V		12	MHz
		V _{DD} = 2.7 to 5.5 V		6	MHz

DataSheet4U.com

CSI0 Timing

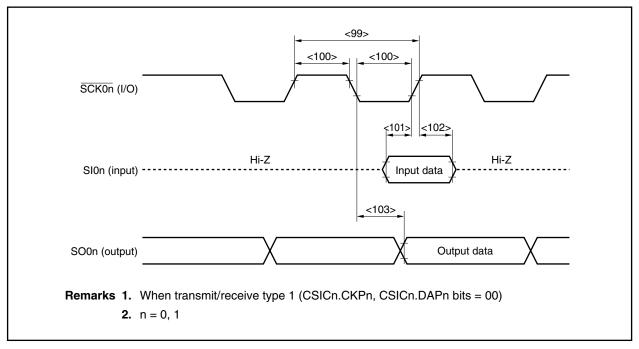
(1) Master mode

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = 2.7 to 5.5 V, VSS = EVSS = AVSS = 0 V, CL = 50 pF)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
SCK0n cycle time	tkcy1	<99>	V _{DD} = 4.0 to 5.5 V	200		ns
			V _{DD} = 2.7 to 5.5 V	400		ns
SCK0n high-/low-level width	tĸнı, tĸ∟ı	<100>		tkcy1/2-30		ns
SI0n setup time (to SCK0n)	tsik1	<101>	V _{DD} = 4.0 to 5.5 V	30		ns
			V _{DD} = 2.7 to 5.5 V	50		ns
SI0n hold time (from SCK0n)	tksi1	<102>	$V_{DD} = 5 V \pm 10\%$	30		ns
			V _{DD} = 2.7 to 5.5 V	50		ns
Delay time from SCK0n to SO0n	tkso1	<103>	V _{DD} = 4.0 to 5.5 V		30	ns
output			V _{DD} = 2.7 to 5.5 V		60	ns

Remark n = 0, 1

(2) Slave mode


$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = AV_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}, C_L = 50 \text{ pF})$

Parameter	Sym	bol	Conditions	MIN.	MAX.	Unit
SCK0n cycle time	t ксу2	<99>	V _{DD} = 4.0 to 5.5 V	200		ns
			V _{DD} = 2.7 to 5.5 V	400		ns
SCK0n high-/low-level width	tĸн₂, tĸ∟₂	<100>	Vpp = 4.0 to 5.5 V	45		ns
		Data	V _{DD} = 2.7 to 5.5 V	90		ns
SI0n setup time (to SCK0n)	tsik2	<101>	V _{DD} = 4.0 to 5.5 V	30		ns
			V _{DD} = 2.7 to 5.5 V	60		ns
SI0n hold time (from SCK0n)	tksi2	<102>	V _{DD} = 4.0 to 5.5 V	30		ns
			V _{DD} = 2.7 to 5.5 V	60		ns
Delay time from SCK0n to SO0n	tkso2	<103>	V _{DD} = 4.0 to 5.5 V		50	ns
output			V _{DD} = 2.7 to 5.5 V		100	ns

Remark n = 0, 1

et4U.com

CSI0 Timing

et4U.com

DataSheet4U.com

DataSheet4U.com

I ² C Bus Mode (µPD703302Y	, 70F3302Y Only)
---------------------------------------	------------------


$(T_{A} = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = AV_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, V_{SS} = EV_{SS} = AV_{SS} = 0 \text{ V}, C_{L} = 50 \text{ pF})$

Pa	Irameter	Sym	nbol	Norma	I Mode	High-Spe	ed Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCL0 clock free	quency	fclĸ		0	100	0	400	kHz
Bus free time		t BUF	<109>	4.7	-	1.3	-	μs
(Between start	and stop conditions)							
Hold time ^{Note 1}		thd:sta	<110>	4.0	-	0.6	-	μs
SCL0 clock low	-level width	t∟ow	<111>	4.7	-	1.3	-	μs
SCL0 clock high-level width		tніgн	<112>	4.0	-	0.6	-	μs
Setup time for s conditions	start/restart	tsu:sta	<113>	4.7	-	0.6	_	μs
Data hold time	CBUS compatible master	thd:dat	<114>	5.0	_	-	_	μs
	I ² C mode			0 ^{Note 2}	_	0 ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time	9	tsu:dat	<115>	250	-	100 ^{Note 4}	-	ns
SDA0 and SCL	0 signal rise time	tR	<116>	-	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL	.0 signal fall time	t⊧	<117>	-	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition	setup time	tsu:sto	<118>	4.0	-	0.6	-	μs
Pulse width of s input filter	spike suppressed by	tsp	<119>	_	-	0	50	ns
Capacitance lo	ad of each bus line	Cb		_	400	-	400	pF

Notes 1. At the start condition, the first clock pulse is generated after the hold time.

- 2. The system requires a minimum of 300 ns hold time internally for the SDA0 signal (at VIHmin. of SCL0 signal) in order to occupy the undefined area at the falling edge of SCL0.
- **3.** If the system does not extend the SCL0 signal low hold time (tLow), only the maximum data hold time (tHD:DAT) needs to be satisfied.
- **4.** The high-speed mode l²C bus can be used in the normal-mode l²C bus system. In this case, set the high-speed mode l²C bus so that it meets the following conditions.
 - If the system does not extend the SCL0 signal's low state hold time: tsu:DAT ≥ 250 ns
 - If the system extends the SCL0 signal's low state hold time: Transmit the following data bit to the SDA0 line prior to the SCL0 line release (t_{Rmax.} + t_{SU:DAT} = 1000 + 250 = 1250 ns: Normal mode l²C bus specification).
- 5. Cb: Total capacitance of one bus line (unit: pF)

I²C Bus Mode (µPD703302Y, 70F3302Y Only)

et4U.com

DataSheet4U.com

DataSheet4U.com

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Resolution				10	10	10	bit
Overall error ^{Note 1}	AINL	$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$			±0.2	±0.4	%FSR
		$2.7 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$		±0.3	±0.6	%FSR	
Conversion time	t CONV	$4.5 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$	High-speed mode	3.0		100	μs
			Normal mode	14.0		100	μs
		$4.0 \leq AV_{\text{REF0}} \leq 4.5 \text{ V}$	High-speed mode	4.8		100	μs
			Normal mode	14.0		100	μs
		$2.85 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$	High-speed mode	6.0		100	μs
			Normal mode	17.0		100	μs
		$2.7 \leq AV_{\text{REF0}} \leq 2.85 \text{ V}$	High-speed mode	14.0		100	μs
			Normal mode	17.0		100	μs
Zero-scale error ^{Note 1}	Ezs	$4.0 \le AV_{\text{REF0}} \le 5.5 \text{ V}$				±0.4	%FSR
		$2.7 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$			±0.6	%FSR	
Full-scale error ^{Note 1}	Efs	$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$				±0.4	%FSR
		$2.7 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$				±0.6	%FSR
Non-linearity error ^{Note 2}	ILE	$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$				±2.5	LSB
		$2.7 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$				±4.5	LSB
Differential linearity error ^{Note 2}	DLE	$4.0 \leq AV_{\text{REF0}} \leq 5.5 \text{ V}$				±1.5	LSB
		$2.7 \leq AV_{\text{REF0}} \leq 4.0 \text{ V}$	J.com			±2.0	LSB
Analog input voltage	VIAN			0		AV _{REF0}	V
AVREF0 current	IA REF0	When using A/D conve		1.3	2.5	mA	
		When not using A/D co	onverter		1.0	T.B.D.	μA

A/D Converter

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

et4U.com

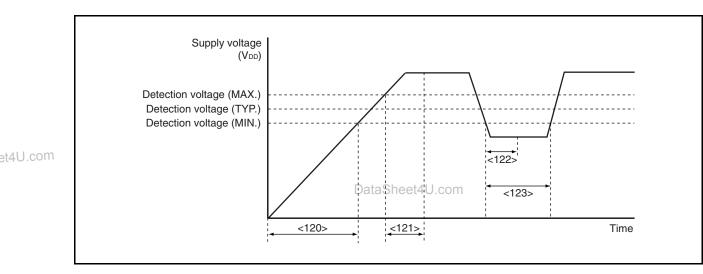
Notes 1. Excluding quantization error (±0.05 %FSR).

2. Excluding quantization error (±0.5 LSB).

Remark LSB: Least Significant Bit

FSR: Full Scale Range

Power-on-Clear Circuit Characteristics


(T_A = -40 to +85°C)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC			2.5	2.6	2.7	V
Power supply rise time	tртн	<120>	$V_{\text{DD}} = 0 \rightarrow 2.5 \text{ V}$	3			μs
Response time 1 ^{Note 1}	tртнd	<121>	After voltage reaches detection voltage (MAX.) on power application			3.0	ms
Response time 2 ^{Note 2}	t PD	<122>	When power supply drops			1.0	ms
Minimum pulse width	tew	<123>		0.2			ms

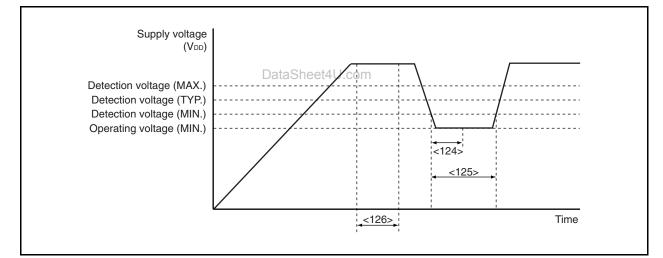
Notes 1. Time from when the detection voltage (VPOC) is detected until the reset signal (POCRES) is released

2. Time from when the detection voltage (VPOC) is detected until the reset signal (POCRES) is generated

Power-on-Clear Circuit Timing

Low-Voltage Detector Characteristics

(T_A = -40 to +85°C)


Parameter	Sy	mbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVI			4.1	4.3	4.5	V
				3.9	4.1	4.3	V
				3.7	3.9	4.1	V
				3.5	3.7	3.9	V
				3.3	3.5	3.7	V
				3.15	3.3	3.45	V
				2.95	3.1	3.25	V
Response time ^{Note 1}	tld	<124>			0.2	2.0	ms
Minimum pulse width	t∟w	<125>		0.2			ms
Operation stabilization wait time ^{Note 2}	twait1	<126>			0.1	0.2	ms

Notes 1. Time from when the detection voltage (VLVI) is detected until an interrupt request signal (INTLVI) or reset signal (LVIRES) is generated

2. Time from when the LVIM.LVION bit = 1 until operation is stabilized

Low-Voltage Detector Timing

Flash Memory Programming Characteristics

$(T_A = -10 \text{ to } +65^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = 2.7 \text{ to } 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(1) Basic characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Programming operation	fсри	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	2		20	MHz
frequency		V _{DD} = 4.0 to 5.5 V	2		16	MHz
		V _{DD} = 2.7 to 5.5 V	2		8 ^{Note 1}	MHz
Supply voltage	Vdd		2.7		5.5	V
Overall erase time	tera			T.B.D.		s
Write time	twнв			T.B.D.		s
Number of rewrites	Cerwr	Note 2		100		Times

Notes 1. These values may change after evaluation.

2. When writing initially to shipped products, it is also counted as one rewrite for "write only".

Example (P: Write, E: Erase)

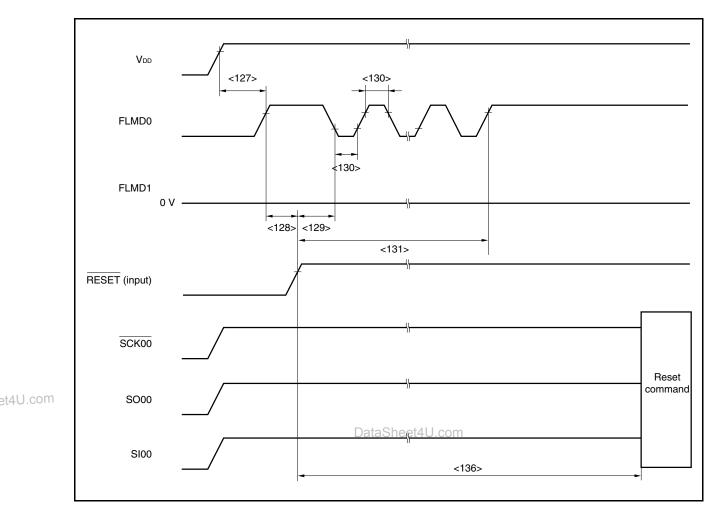

Shipped product $\longrightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites Shipped product $\rightarrow E \rightarrow P \rightarrow E \rightarrow P \rightarrow E \rightarrow P$: 3 rewrites

(2) Serial write operation characteristics

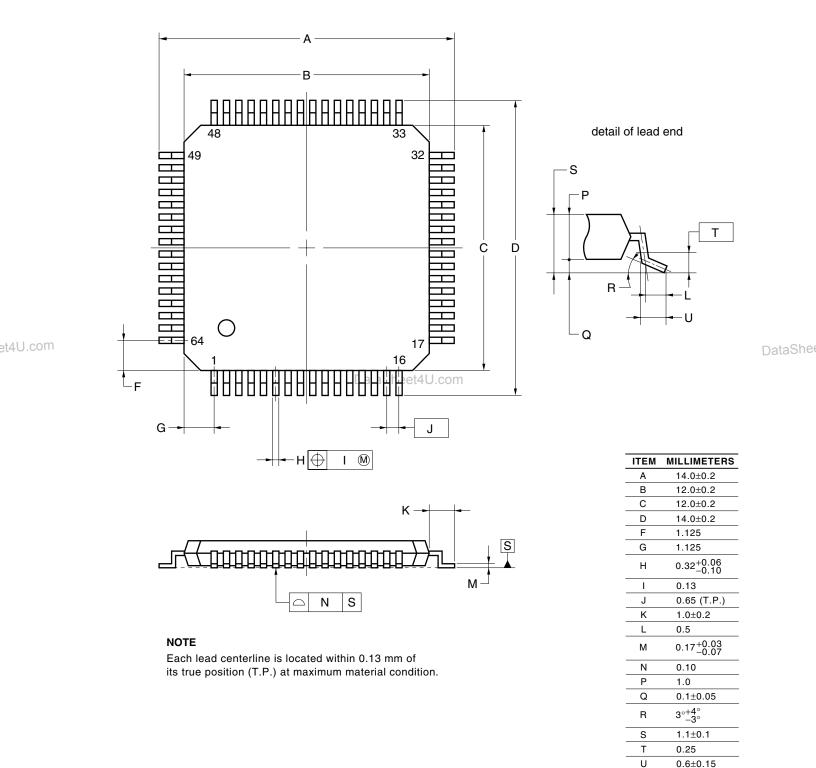
Parameter Symbol Conditions MIN. TYP. MAX. Unit Setup time from V_{DD}↑ to FLMD0↑ t_{DP} <127> T.B.D. μs DataSheet4U.com Release time from FLMD0↑ to RESET↑ <128> T.B.D. t₽R ms FLMD0 pulse input start time from t_{RP} <129> T.B.D. ms RESET↑ (after securing oscillation stabilization time) <130> T.B.D. T.B.D. FLMD0 pulse high-/low-level width t₽w μs FLMD0 pulse input end time from <131> T.B.D. trpe ms RESET↑ (after securing oscillation stabilization time) 1st low data input time from RESET↑ When UART t_{R1} <132> T.B.D. s (after securing oscillation stabilization communication is selected time) <133> When UART T.B.D. Time from 1st low data input to 2nd low **t**12 s communication is selected data input Time from 2nd low data input to reset t₂c <134> When UART T.B.D. s communication is selected command input Low data input width tL1/tL2 <135> When UART 9600 bps communication is selected Time from RESET↑ (after securing When CSI or CSI-HS **t**RC <136> T.B.D. s oscillation stabilization time) to reset communication is selected command input

et4U.com

Serial Write Operation Timing (UART)



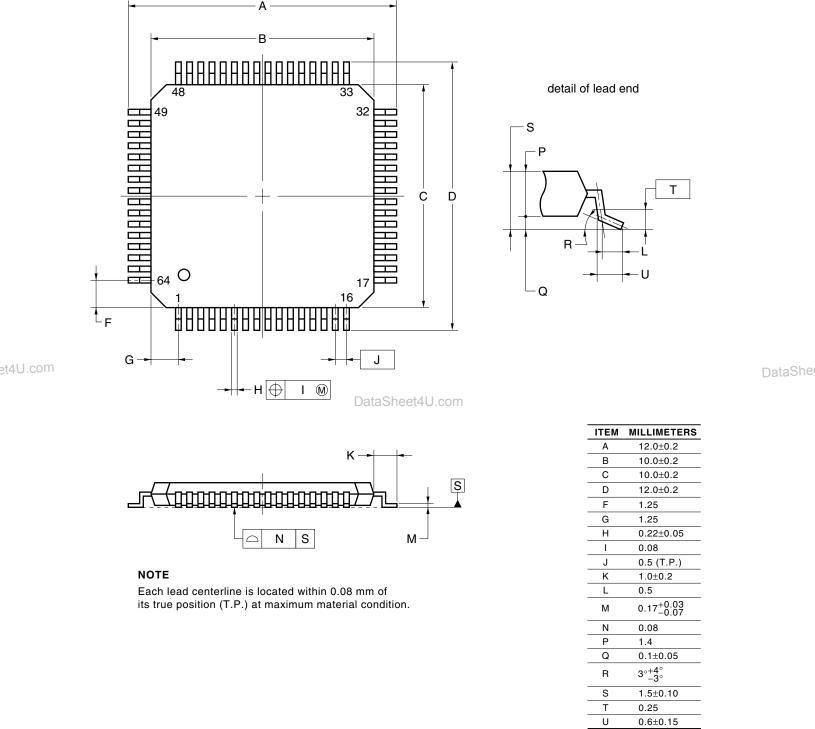
et4U.com


www.DataSheet4U.com

DataSheet4U.com

Serial Write Operation Timing (CSI or CSI-HS)

64-PIN PLASTIC TQFP (12x12)



Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

P64GK-65-9ET-3

DataSheet4U.com

64-PIN PLASTIC LQFP (10x10)

S64GB-50-8EU-2

Remark The external dimensions and materials of the ES version are the same as those of the mass-produced version.

DataSheet4U.com

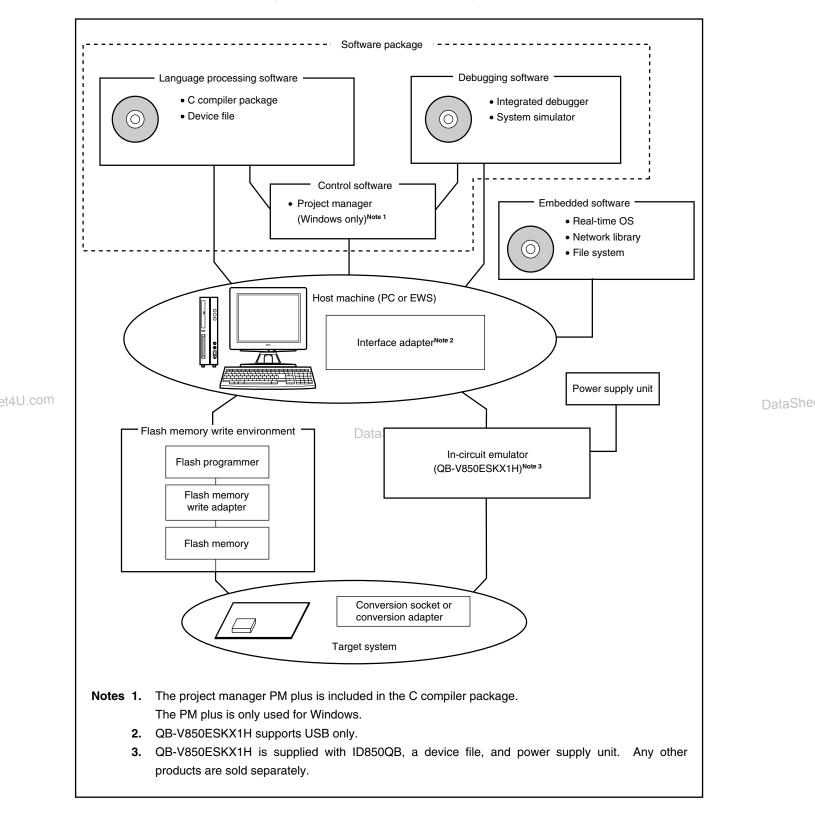
636

APPENDIX A DEVELOPMENT TOOLS

The following development tools are available for the development of systems that employ the V850ES/KE1+. Figure A-1 shows the development tool configuration.

• Support for PC98-NX series

Unless otherwise specified, products supported by IBM PC/AT[™] compatibles are compatible with PC98-NX series computers. When using PC98-NX series computers, refer to the explanation for IBM PC/AT compatibles.


Windows[™]

Unless otherwise specified, "Windows" means the following OSs.

- Windows 98, 2000
- Windows Me
- Windows XP
- Windows NT[™] Ver. 4.0

et4U.com

DataSheet4U.com

DataSheet4U.com

A.1 Software Package

SP850	Development tools (software) common to the V850 Series are combined in this package.	
V850 Series software package	Part number: µSxxxxSP850	

Remark ×××× in the part number differs depending on the host machine and OS used.

μS<u>××××</u>SP850

xxxx	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	

A.2 Language Processing Software

CA850 C compiler package	This compiler converts programs written in C language into object codes executable with a microcontroller. This compiler is started from project manager PM plus.
	Part number: µSxxxxCA703000
DF703302	This file contains information peculiar to the device.
Device file	This device file should be used in combination with a tool (CA850, SM plus, and ID850QB).
	The corresponding OS and host machine differ depending on the tool to be used.

et4U.com

Remark ×××× in the part number differs depending on the host machine and OS used.

DataShe

μS<u>××××</u>CA703000

DataSheet4U.com

 ××××	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	
3K17	SPARCstation [™]	SunOS [™] (Rel. 4.1.4), Solaris [™] (Rel. 2.5.1)	

A.3 Control Software

PM plus	This is control software designed to enable efficient user program development in the	
Project manager	Windows environment. All operations used in development of a user program, such as	
	starting the editor, building, and starting the debugger, can be performed from the PM	
	plus.	
	<caution></caution>	
	The PM plus is included in the C compiler package CA850.	
	It can only be used in Windows.	

A.4 Debugging Tools (Hardware)

A.4.1 When using in-circuit emulator QB-V850ESKX1H

QB-V850ESKX1H ^{Notes 1, 2} In-circuit emulator	The in-circuit emulator serves to debug hardware and software when developing application systems using a V850ES/KE1+ product. It corresponds to the integrated debugger ID850QB. This emulator should be used in combination with a power supply unit and emulation probe. Use USB to connect this emulator to the host machine.
Emulation probe for GK package ^{Note 2} (part number pending)	This probe is used to connect the in-circuit emulator and target system, and is designed for a 64-pin plastic TQFP (GK-9ET type).
Emulation probe for GB package ^{Note 2} (part number pending)	This probe is used to connect the in-circuit emulator and target system, and is designed for a 64-pin plastic LQFP (fine pitch) (GB-8EU type).

Notes 1. QB-V850ESKX1H is supplied with a power supply unit. It is also supplied with integrated debugger ID850QB and a device file as control software.

2. Under development

et4U.com

DataSheet4U.com

A.5 Debugging Tools (Software)

SM plus ^{Note}	This is a system simulator for the V850 Series. The SM plus is Windows-based		
System simulator	software.		
	It is used to perform debugging at the C source level or assembler level while simulating		
	the operation of the target system on a host machine.		
	Use of the SM plus allows the execution of application logical testing and performan		
	testing on an independent basis from hardware development, thereby providing higher		
	development efficiency and software quality.		
	It should be used in combination with the device file (sold separately).		
	Part number: µSxxxxSM703100		
ID850QB	This debugger supports the in-circuit emulators for the V850 Series. The ID850QB is		
Integrated debugger	Windows-based software.		
(supporting in-circuit emulator	It has improved C-compatible debugging functions and can display the results of tracing		
QB-V850ESKX1H)	with the source program using an integrating window function that associates the source		
	program, disassemble display, and memory display with the trace result.		
	It should be used in combination with the device file (sold separately).		

Note Under development

Remark ×××× in the part number differs depending on the host machine and OS used.

μS<u>××××</u>SM703100

et4U.com

××××	Host Machine	OS	Supply Medium	DataShee
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM	
BB17	IBM PC/AT compatibleseet4U	Windows (English version)		

A.6 Embedded Software

RX850, RX850 Pro Real-time OS	The RX850 and RX850 Pro are real-time OSs conforming to μ ITRON 3.0 specifications. A tool (configurator) for generating multiple information tables is supplied. RX850 Pro has more functions than RX850.	
	Part number: μS××××RX703000-ΔΔΔΔ (RX850) μS××××RX703100-ΔΔΔΔ (RX850 Pro)	
V850mini-NET ^{Note} (provisional name) (Network library)	This is a network library conforming to RFC. It is a lightweight TCP/IP of compact design, requiring only a small memory. In addition to the TCP/IP standard set, an HTTP server, SMTP client, and POP client are also supported.	
RX-FS850 (File system)	This is a FAT file system function. It is a file system that supports the CD-ROM file system function. This file system is used with the real-time OS RX850 Pro.	

Note Under development

Caution To purchase the RX850 or RX850 Pro, first fill in the purchase application form and sign the user agreement.

Remark xxxx and $\Delta\Delta\Delta\Delta$ in the part number differ depending on the host machine and OS used.

μ S××××RX703000- $\Delta\Delta\Delta\Delta$

μS<u>××××</u>RX703100-<u>ΔΔΔΔ</u>

et4U.com

ΔΔΔΔ	Product Qutline et4U.cor	$_{ m M}$ Maximum Number for Use in Mass Production	
001 Evaluation object Do not use for mass-pro		Do not use for mass-produced product.	
100K	Mass-production object	0.1 million units	
001M		1 million units	
010M 10 millio		10 million units	
S01	Source program	Object source program for mass production	

××××	Host Machine	OS	Supply Medium
AB17	PC-9800 series,	Windows (Japanese version)	CD-ROM
BB17	IBM PC/AT compatibles	Windows (English version)	
3K17	SPARCstation	Solaris (Rel. 2.5.1)	

A.7 Flash Memory Writing Tools

Flashpro IV (part number: PG-FP4) Flash programmer	Flash programmer dedicated to microcontrollers with on-chip flash memory.
FA-64GK-9ET-A Flash memory writing adapter	Flash memory writing adapter used connected to the Flashpro IV. • FA-64GK-9ET-A: For 64-pin plastic TQFP (GK-9ET type)
FA-64GB-8EU-A Flash memory writing adapter	Flash memory writing adapter used connected to the Flashpro IV.FA-64GB-8EU-A: For 64-pin plastic LQFP (fine pitch) (GB-8EU type)

Remark FA-64GK-9ET-A and FA-64GB-8EU-A are products of Naito Densei Machida Mfg. Co., Ltd.

TEL: +81-45-475-4191 Naito Densei Machida Mfg. Co., Ltd.

DataSheet4U.com

642

www.DataSheet4U.com

B.1 Conventions

(1) Register symbols used to describe operands

Register Symbol	Explanation
reg1	General-purpose registers: Used as source registers.
reg2	General-purpose registers: Used mainly as destination registers. Also used as source register in some instructions.
reg3	General-purpose registers: Used mainly to store the remainders of division results and the higher 32 bits of multiplication results.
bit#3	3-bit data for specifying the bit number
immX	X bit immediate data
dispX	X bit displacement data
regID	System register number
vector	5-bit data that specifies the trap vector (00H to 1FH)
сссс	4-bit data that shows the condition codes
sp	Stack pointer (r3)
ер	Element pointer (r30)
listX	X item register list

et4U.com

(2) Register symbols used to describe opcodes t4U.com

Register Symbol	Explanation
R	1-bit data of a code that specifies reg1 or regID
r	1-bit data of the code that specifies reg2
w	1-bit data of the code that specifies reg3
d	1-bit displacement data
I	1-bit immediate data (indicates the higher bits of immediate data)
i	1-bit immediate data
сссс	4-bit data that shows the condition codes
CCCC	4-bit data that shows the condition codes of Bcond instruction
bbb	3-bit data for specifying the bit number
L	1-bit data that specifies a program register in the register list

(3) Register symbols used in operations

Register Symbol	Explanation
\leftarrow	Input for
GR []	General-purpose register
SR[]	System register
zero-extend (n)	Expand n with zeros until word length.
sign-extend (n)	Expand n with signs until word length.
load-memory (a, b)	Read size b data from address a.
store-memory (a, b, c)	Write data b into address a in size c.
load-memory-bit (a, b)	Read bit b of address a.
store-memory-bit (a, b, c)	Write c to bit b of address a.
saturated (n)	Execute saturated processing of n (n is a 2's complement). If, as a result of calculations, $n \ge 7FFFFFFH$, let it be 7FFFFFH. $n \le 80000000H$, let it be 80000000H.
result	Reflects the results in a flag.
Byte	Byte (8 bits)
Halfword	Halfword (16 bits)
Word	Word (32 bits)
+	Addition
_	Subtraction
	Bit concatenation DataSheet4U.com
×	Multiplication
÷	Division
%	Remainder from division results
AND	Logical product
OR	Logical sum
XOR	Exclusive OR
NOT	Logical negation
logically shift left by	Logical shift left
logically shift right by	Logical shift right
arithmetically shift right by	Arithmetic shift right

(4) Register symbols used in execution clock

Register Symbol	Explanation
i	If executing another instruction immediately after executing the first instruction (issue).
r	If repeating execution of the same instruction immediately after executing the first instruction (repeat).
1	If using the results of instruction execution in the instruction immediately after the execution (latency).

DataShe

et4U.com

(5) Register symbols used in flag operations

Identifier	Explanation
(Blank)	No change
0	Clear to 0
х	Set or cleared in accordance with the results.
R	Previously saved values are restored.

(6) Condition codes

Condition Name (cond)	Condition Code (cccc)	Condition Formula	Explanation	
V	0 0 0 0	OV = 1	Overflow	
NV	1000	OV = 0	No overflow	
C/L	0001	CY = 1	Carry Lower (Less than)	
NC/NL	1001	CY = 0	No carry Not lower (Greater than or equal)	
Z	0010	Z = 1	Zero	
NZ	1010	Z = 0	Not zero	
NH	0011	(CY or Z) = 1	Not higher (Less than or equal)	
Н	1011	(CY or Z) = 0	Higher (Greater than)	DataShe
S/N	0100	S=1 DataSheet4LL.com	Negative	
NS/P	1 1 0 0	S = 0	Positive	
Т	0101	_	Always (Unconditional)	
SA	1 1 0 1	SAT = 1	Saturated	
LT	0110	(S xor OV) = 1	Less than signed	
GE	1110	(S xor OV) = 0	Greater than or equal signed	
LE	0111	((S xor OV) or Z) = 1	Less than or equal signed	
GT	1111	((S xor OV) or Z) = 0	Greater than signed	

et4U.com

B.2 Instruction Set (in Alphabetical Order)

		[(1/6)
Mnemonic	Operand	Opcode	Operation			cecut Cloci			1	Flage	6	
						r	Ι	CY	ov	S	Ζ	SAT
ADD	reg1,reg2	rrrrr001110RRRRR	GR[reg2]←GR[reg2]+GR[reg1]		1	1	1	×	×	×	×	
	imm5,reg2	rrrrr010010iiiii	GR[reg2]←GR[reg2]+sign-extend(imm5)			1	1	×	×	×	×	
ADDI	imm16,reg1,reg2	rrrr110000RRRRR	GR[reg2]←GR[reg1]+sign-extend(ir	nm16)	1	1	1	×	×	×	×	
AND	reg1,reg2	rrrrr001010RRRRR	GR[reg2]←GR[reg2]AND GR[reg1]		1	1	1		0	×	×	
ANDI	imm16,reg1,reg2	rrrrr110110RRRRR	GR[reg2]←GR[reg1]AND zero-exte	nd(imm16)	1	1	1		0	×	×	
Bcond	disp9	ddddd1011dddcccc Note 1	if conditions are satisfied then PC←PC+sign-extend(disp9)	When conditions are satisfied	2 Note 2	2 Note 2	2 Note 2					
				When conditions are not satisfied	1	1	1					
BSH	reg2,reg3	rrrr11111100000 wwwww01101000010	GR[reg3]←GR[reg2] (23 : 16)	[reg2] (31:24) II	1	1	1	×	0	×	×	
BSW	reg2,reg3	rrrr11111100000 wwwww01101000000	GR[reg3]←GR[reg2] (7:0) II GR[re [reg2] (23:16) II GR[reg2] (31:24)	g2] (15 : 8) II GR	1	1	1	×	0	×	×	
CALLT	imm6	0000001000iiiiii	CTPC←PC+2(return PC) CTPSW←PSW adr←CTBP+zero-extend(imm6 logic PC←CTBP+zero-extend(Load-mem		4	4	4					
CLR1	bit#3,disp16[reg1]	10bbb111110RRRRR ddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) Z flag←Not(Load-memory-bit(adr,bi Store-memory-bit(adr,bit#3,0)		3 Note 3	3 Note 3	3 Note 3				×	
	reg2,[reg1]	rrrrr111111RRRRR 0000000011100100	adr←GR[reg1] Z flag←Not(Load-memory-bit(adr,re Store-memory-bit(adr,reg2,0)	eg2))	3 Note 3	3 Note 3	3 Note 3				×	
CMOV	cccc,imm5,reg2,reg3	rrrrr111111iiii wwwww011000cccc0	if conditions are satisfied then GR[reg3]←sign-extended(imm else GR[reg3]←GR[reg2]	5)	1	1	1					
	cccc,reg1,reg2,reg3	rrrrr111111RRRR wwwww011001cccc0	if conditions are satisfied then GR[reg3]←GR[reg1] else GR[reg3]←GR[reg2]		1	1	1					
CMP	reg1,reg2	rrrrr001111RRRRR	result←GR[reg2]–GR[reg1]		1	1	1	×	×	×	×	
	imm5,reg2	rrrrr010011iiiii	result←GR[reg2]–sign-extend(imm	5)	1	1	1	×	×	×	×	
CTRET		0000011111100000 0000000101000100	PC←CTPC PSW←CTPSW			3	3	R	R	R	R	R
DBRET		0000011111100000 0000000101000110	PC←DBPC PSW←DBPSW		3	3	3	R	R	R	R	R

DataShe

et4U.com

www.DataSheet4U.com

Mnemonic	Operand	Opcode	Operation		ecut			I	Flage	;	
				i	Clocl r	к I	CY	ov	s	Z	SA
DBTRAP		1111100001000000	DBPC←PC+2 (restored PC) DBPSW←PSW PSW.NP←1 PSW.EP←1 PSW.ID←1 PC←00000060H	3	3	3					
DI		0000011111100000 0000000101100000	PSW.ID←1	1	1	1					
DISPOSE	imm5,list12	0000011001iiiiiL LLLLLLLLL00000	sp←sp+zero-extend(imm5 logically shift left by 2) GR[reg in list12]←Load-memory(sp,Word) sp←sp+4 repeat 2 steps above until all regs in list12 is loaded		n+1 Note4						
	imm5,list12,[reg1]	0000011001iiiiiL LLLLLLLLRRRRR Note 5	sp←sp+zero-extend(imm5 logically shift left by 2) GR[reg in list12]←Load-memory(sp,Word) sp←sp+4 repeat 2 steps above until all regs in list12 is loaded PC←GR[reg1]		n+3 Note 4	n+3 Note4					
DIV	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01011000000	GR[reg2]←GR[reg2]÷GR[reg1] GR[reg3]←GR[reg2]%GR[reg1]	35	35	35		×	×	×	
DIVH	reg1,reg2	rrrr000010RRRRR	GR[reg2]←GR[reg2]÷GR[reg1] ^{№te 6}	35	35	35		×	×	×	
	reg1,reg2,reg3	rrrr111111RRRRR wwww01010000000	GR[reg2]←GR[reg2]÷GR[reg1] ^{№ee6} GR[reg3]←GR[reg2]%GR[reg1]	35	35	35		×	×	×	
DIVHU	reg1,reg2,reg3	rrrrr111111RRRRR ^L wwww01010000010	GR[reg2]←GR[reg2]÷GR[reg1] ^{№te 6} GR[reg3]←GR[reg2]%GR[reg1]	34	34	34		×	×	×	
DIVU	reg1,reg2,reg3	rrrr111111RRRRR wwwww01011000010	GR[reg2]←GR[reg2]÷GR[reg1] GR[reg3]←GR[reg2]%GR[reg1]	34	34	34		×	×	×	
EI		1000011111100000 0000000101100000	PSW.ID←0	1	1	1					
HALT		0000011111100000 0000000100100000	Stop	1	1	1					
HSW	reg2,reg3	rrrr11111100000 wwwww01101000100	GR[reg3]←GR[reg2](15 : 0) II GR[reg2] (31 : 16)	1	1	1	×	0	×	×	
JARL	disp22,reg2	rrrrr11110dddddd ddddddddddddddd Note 7	GR[reg2]←PC+4 PC←PC+sign-extend(disp22)	2	2	2					
JMP	[reg1]	00000000011RRRRR	PC←GR[reg1]	3	3	3					
JR	disp22	0000011110ddddd dddddddddddddd Note 7	PC←PC+sign-extend(disp22)	2	2	2					
LD.B	disp16[reg1],reg2	rrrrr111000RRRRR	adr←GR[reg1]+sign-extend(disp16)	1	1	Note					\vdash
		ddddddddddddd	GR[reg2]—sign-extend(Load-memory(adr,Byte))	Ľ	Ľ	11					
LD.BU	disp16[reg1],reg2	rrrrr11110bRRRRR dddddddddddd	adr←GR[reg1]+sign-extend(disp16) GR[reg2]←zero-extend(Load-memory(adr,Byte))	1	1	Note 11					
		Notes 8, 10									

et4U.com

DataSheet4U.com

www.DataSheet4U.com

	1	T									(3/6)
Mnemonic	Operand	Opcode	Ope	ration		ecuti Clocł	-		F	lags		
					i	r	I	CY	٥v	s	Z	SAT
LD.H	disp16[reg1],reg2	rrrrr111001RRRRR dddddddddddddddd Note 8	GR[reg2] - sign-extend(Load-memory(adr,Halfword))									
LDSR	reg2,regID	rrrrr111111RRRRR	SR[regID]←GR[reg2]	Other than regID = PSW	1	1	1					
		0000000000100000 Note 12		regID = PSW	1	1	1	×	×	×	×	×
LD.HU	disp16[reg1],reg2	rrrr111111RRRRR dddddddddddddd Note 8	adr←GR[reg1]+sign-exend GR[reg2]←zero-extend(Lo	1	1	Note 11						
LD.W	dian16[rog1] rog0		odr. CP[rog1] oign over	(dian16)	1	1	Note					
LD.W	disp16[reg1],reg2	rrrrr111001RRRRR ddddddddddddddd Note 8		adr←GR[reg1]+sign-exend(disp16) GR[reg2]←Load-memory(adr,Word)								
MOV	rog1 rog2	rrrrr000000RRRRR	GR[reg2]←GR[reg1]		1	1	1					
	reg1,reg2			mE)	1	1						<u> </u>
	imm5,reg2	rrrr010000iiiii	GR[reg2]←sign-extend(im	1115)	2	1	1					<u> </u>
	imm32,reg1		GR[reg1]←imm32		2	2	2					
MOVEA	imm16,reg1,reg2	rrrr110001RRRRR	GR[reg2]←GR[reg1]+sign-extend(imm16)			1	1					
MOVHI	imm16,reg1,reg2	rrrr110010RRRRR	GR[reg2]←GR[reg1]+(imm16 ll 0 [™]) DataSheet4U.com			1	1					
MUL	reg1,reg2,reg3	rrrrr111111RRRRR wwww01000100000	GR[reg3] II GR[reg2]←GR Note 14	[reg2]xGR[reg1]	1	4	5					
	imm9,reg2,reg3	rrrrr111111iiii wwww01001IIII00 Note 13	GR[reg3] II GR[reg2]←GR	[reg2]xsign-extend(imm9)	1	4	5					
MULH	reg1,reg2	rrrr000111RRRRR	GR[reg2]←GR[reg2] ^{№te 6} xG	R[reg1] ^{Note 6}	1	1	2					
	imm5,reg2	rrrrr010111iiiii	GR[reg2]←GR[reg2] ^{№ote 6} xs	ign-extend(imm5)	1	1	2					
MULHI	imm16,reg1,reg2	rrrrr110111RRRRR	GR[reg2]←GR[reg1] ^{№te 6} xir	nm16	1	1	2					
MULU	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01000100010	GR[reg3] II GR[reg2]←GR Note 14	[reg2]xGR[reg1]	1	4	5					
	imm9,reg2,reg3	rrrrr1111111iiii wwww01001IIII10 Note 13	GR[reg3] II GR[reg2]←GR	[reg2]xzero-extend(imm9)	1	4	5					
NOP		000000000000000000000000000000000000000	Pass at least one clock cy	cle doing nothing.	1	1	1					
NOT	reg1,reg2	rrrr000001RRRRR	GR[reg2]←NOT(GR[reg1])	1	1	1		0	×	×	
NOT1	bit#3,disp16[reg1]	01bbb111110RRRRR ddddddddddddddd	adr←GR[reg1]+sign-exten Z flag←Not(Load-memory Store-memory-bit(adr,bit#3	-bit(adr,bit#3))	3 Note 3	3 Note 3	3 Note 3				×	
	reg2,[reg1]	rrrrr111111RRRRR	adr←GR[reg1]	,	3	3	3				×	
		0000000011100010	Z flag—Not(Load-memory Store-memory-bit(adr,reg2				Note 3					

et4U.com

DataShe

DataSheet4U.com

648

www.DataSheet4U.com

Mnemonic	Operand	Opcode	Operation	Execution			Flags					
				i	Cloc	k I	CY	ov	S	Z	SAT	
OR	reg1,reg2	rrrr001000RRRRR	GR[reg2]←GR[reg2]OR GR[reg1]	1	r 1	1		0	s ×	×	5AT	
ORI	imm16,reg1,reg2	rrrrr110100RRRR	GR[reg2]←GR[reg1]OR zero-extend(imm16)	1	1	1		0	×	×		
PREPARE	list12,imm5	0000011110iiiiiL LLLLLLLLL00001	Store-memory(sp–4,GR[reg in list12],Word) sp←sp–4 repeat 1 step above until all regs in list12 is stored sp←sp-zero-extend(imm5)		n+1 Note4	n+1 Note4						
	list12,imm5, sp/imm ^{Note 15}	0000011110iiiiiL LLLLLLLLLff011 imm16/imm32 Note 16	Store-memory(sp-4,GR[reg in list12],Word) sp \leftarrow sp+4 repeat 1 step above until all regs in list12 is stored sp \leftarrow sp-zero-extend (imm5) ep \leftarrow sp/imm	Note 4	Note 4	n+2 Note4 Note17						
RETI		0000011111100000	if PSW.EP=1 then PC \leftarrow EIPC PSW \leftarrow EIPSW else if PSW.NP=1 then PC \leftarrow FEPC PSW \leftarrow FEPSW else PC \leftarrow EIPC PSW \leftarrow EIPSW	3	3	3	R	R	R	R	R	
SAR	reg1,reg2	rrrr111111RRRRR 0000000010100000	GR[reg2]←GR[reg2]arithmetically shift right by GR[reg1]	1	1	1	×	0	×	×		
	imm5,reg2	rrrr010101iiiii	GR[reg2]←GR[reg2]arithmetically shift right by zero-extend (imm5)	1	1	1	×	0	×	×		
SASF	cccc,reg2	rrrr1111110cccc 0000001000000000	if conditions are satisfied then GR[reg2]←(GR[reg2]Logically shift left by 1) OR 00000001H else GR[reg2]←(GR[reg2]Logically shift left by 1) OR 00000000H	1	1	1						
SATADD	reg1,reg2	rrrrr000110RRRRR	GR[reg2]←saturated(GR[reg2]+GR[reg1])	1	1	1	×	×	×	×	×	
	imm5,reg2	rrrrr010001iiiii	GR[reg2]←saturated(GR[reg2]+sign-extend(imm5))	1	1	1	×	×	×	×	×	
SATSUB	reg1,reg2	rrrr000101RRRRR	GR[reg2]←saturated(GR[reg2]–GR[reg1])	1	1	1	×	×	×	×	×	
SATSUBI	imm16,reg1,reg2	rrrr110011RRRRR	GR[reg2]←saturated(GR[reg1]–sign-extend(imm16))	1	1	1	×	×	×	×	×	
SATSUBR	reg1,reg2	rrrr000100RRRRR	GR[reg2]←saturated(GR[reg1]–GR[reg2])	1	1	1	×	×	×	×	×	
SETF	cccc,reg2	rrrr1111110cccc 00000000000000000000	If conditions are satisfied then GR[reg2]←00000001H else GR[reg2]←00000000H	1	1	1						

										(5/6)		
Mnemonic	Operand	Opcode	Operation		Execution Clock			Flags					
				i	r	Ι	CY	ov	S	Z	SAT		
SET1	bit#3,disp16[reg1]	00bbb111110RRRR dddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) Z flag←Not (Load-memory-bit(adr,bit#3)) Store-memory-bit(adr,bit#3,1)	3 Note 3	3 Note 3	3 Note 3				×			
	reg2,[reg1]	rrrrr111111RRRRR 0000000011100000	adr←GR[reg1] Z flag←Not(Load-memory-bit(adr,reg2)) Store-memory-bit(adr,reg2,1)	3 Note 3	3 Note 3	3 Note 3				×			
SHL	reg1,reg2	rrrrr111111RRRRR 0000000011000000	$GR[reg2] \leftarrow GR[reg2]$ logically shift left by $GR[reg1]$	1	1	1	×	0	×	×			
	imm5,reg2	rrrr010110iiiii	GR[reg2]←GR[reg2] logically shift left by zero-extend(imm5)	1	1	1	×	0	×	×			
SHR	reg1,reg2	rrrr111111RRRRR 0000000010000000	$GR[reg2] \leftarrow GR[reg2]$ logically shift right by $GR[reg1]$	1	1	1	×	0	×	×			
	imm5,reg2	rrrr010100iiiii	GR[reg2]←GR[reg2] logically shift right by zero-extend(imm5)	1	1	1	×	0	×	×			
SLD.B	disp7[ep],reg2	rrrr0110dddddd	adr←ep+zero-extend(disp7) GR[reg2]←sign-extend(Load-memory(adr,Byte))	1	1	Note 9							
SLD.BU	disp4[ep],reg2	rrrr0000110dddd Note 18	adr←ep+zero-extend(disp4) GR[reg2]←zero-extend(Load-memory(adr,Byte))	1	1	Note 9							
SLD.H	disp8[ep],reg2	rrrrr1000dddddd Note 19	adr←ep+zero-extend(disp8) GR[reg2]←sign-extend(Load-memory(adr,Halfword))	1	1	Note 9							
SLD.HU	disp5[ep],reg2	rrrrr0000111dddd Notes 18, 20	adr←ep+zero-extend(disp5) GR[reg2]←zero-extend(Load-memory(adr,Halfword))	1	1	Note 9							
SLD.W	disp8[ep],reg2	rrrrr1010ddddd0 Note 21	adr←ep+zero-extend(disp8) GR[reg2]←Load-memory(adr,Word)	1	1	Note 9							
SST.B	reg2,disp7[ep]	rrrrr0111dddddd	adr←ep+zero-extend(disp7) Store-memory(adr,GR[reg2],Byte)	1	1	1							
SST.H	reg2,disp8[ep]	rrrrr1001dddddd Note 19	adr←ep+zero-extend(disp8) Store-memory(adr,GR[reg2],Halfword)	1	1	1							
SST.W	reg2,disp8[ep]	rrrrr1010ddddd1 Note 21	adr←ep+zero-extend(disp8) Store-memory(adr,GR[reg2],Word)	1	1	1							
ST.B	reg2,disp16[reg1]	rrrrr111010RRRRR ddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) Store-memory(adr,GR[reg2],Byte)	1	1	1							
ST.H	reg2,disp16[reg1]	rrrrr111011RRRRR ddddddddddddddd Note 8	adr←GR[reg1]+sign-extend(disp16) Store-memory (adr,GR[reg2], Halfword)	1	1	1							
ST.W	reg2,disp16[reg1]	rrrr111011RRRRR dddddddddddddd Note 8	adr—GR[reg1]+sign-extend(disp16) Store-memory (adr,GR[reg2], Word)	1	1	1							
STSR	regID,reg2	rrrrr111111RRRRR 0000000001000000	GR[reg2]←SR[regID]	1	1	1							

DataShe

DataSheet4U.com

et4U.com

										(6/6)
Mnemonic	Operand	Opcode	Operation	Execution Clock			Flags				
				i	r	Ι	CY	٥V	s	Z	SAT
SUB	reg1,reg2	rrrrr001101RRRRR	GR[reg2]←GR[reg2]–GR[reg1]	1	1	1	×	×	×	×	
SUBR	reg1,reg2	rrrrr001100RRRRR	GR[reg2]←GR[reg1]–GR[reg2]	1	1	1	×	×	×	×	
SWITCH	reg1	00000000010RRRR	adr←(PC+2) + (GR [reg1] logically shift left by 1) PC←(PC+2) + (sign-extend (Load-memory (adr,Halfword)) logically shift left by 1	5	5	5					
SXB	reg1	00000000101RRRRR	GR[reg1]—sign-extend (GR[reg1] (7 : 0))	1	1	1					
SXH	reg1	00000000111RRRRR	GR[reg1]—sign-extend (GR[reg1] (15 : 0))	1	1	1					
TRAP	vector	00000111111iiii	EIPC ←PC+4 (Restored PC) EIPSW ←PSW ECR.EICC ←Interrupt code PSW.EP ←1 PSW.ID ←1 PC ←00000040H (when vector is 00H to 0FH) 00000050H (when vector is 10H to 1FH)	3	3	3					
TST	reg1,reg2	rrrrr001011RRRRR	result←GR[reg2] AND GR[reg1]	1	1	1		0	×	×	
TST1	bit#3,disp16[reg1]	11bbb111110RRRRR dddddddddddddd	adr-GR[reg1]+sign-extend(disp16) Z flag-Not (Load-memory-bit (adr,bit#3))	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrrr111111RRRRR 0000000011100110	adr←GR[reg1] Z flag←Not (Load-memory-bit (adr,reg2))	3 Note 3	3 Note 3	3 Note 3				×	
XOR	reg1,reg2	rrrr001001RRRRR	GR[reg2]←GR[reg2] XOR GR[reg1]	1	1	1		0	×	×	
XORI	imm16,reg1,reg2	rrrrr110101RRRRR	GR[reg2]←GR[reg1] XOR zero-extend (imm16)	1	1	1		0	×	×	
ZXB	reg1	00000000100RRRR	GR[reg1]←zero-extend (GR[reg1] (7 : 0))	1	1	1					
ZXH	reg1	00000000110RRRR	GR[reg1]←zero-extend (GR[reg1] (15 : 0))	1	1	1					

et4U.com

Notes 1. dddddddd: Higher 8 bits of disp9.

- 2. 3 if there is an instruction that rewrites the contents of the PSW immediately before.
- **3.** If there is no wait state (3 + the number of read access wait states).
- **4.** n is the total number of list12 load registers. (According to the number of wait states. Also, if there are no wait states, n is the total number of list12 registers. If n = 0, same operation as when n = 1)
- 5. RRRRR: other than 00000.
- 6. The lower halfword data only are valid.
- 7. ddddddddddddddddd: The higher 21 bits of disp22.
- 8. dddddddddddd: The higher 15 bits of disp16.
- 9. According to the number of wait states (1 if there are no wait states).
- **10.** b: bit 0 of disp16.
- 11. According to the number of wait states (2 if there are no wait states).

- **Notes 12.** In this instruction, for convenience of mnemonic description, the source register is made reg2, but the reg1 field is used in the opcode. Therefore, the meaning of register specification in the mnemonic description and in the opcode differs from other instructions.
 - rrrrr = regID specification
 - RRRRR = reg2 specification
 - 13. iiiii: Lower 5 bits of imm9.
 - IIII: Higher 4 bits of imm9.
 - 14. Do not specify the same register for general-purpose registers reg1 and reg3.
 - 15. sp/imm: specified by bits 19 and 20 of the sub-opcode.
 - **16.** ff = 00: Load sp in ep.
 - 01: Load sign expanded 16-bit immediate data (bits 47 to 32) in ep.
 - 10: Load 16-bit logically left shifted 16-bit immediate data (bits 47 to 32) in ep.
 - 11: Load 32-bit immediate data (bits 63 to 32) in ep.
 - **17.** If imm = imm32, n + 3 clocks.
 - 18. rrrrr: Other than 00000.
 - **19.** ddddddd: Higher 7 bits of disp8.
 - 20. dddd: Higher 4 bits of disp5.
 - 21. dddddd: Higher 6 bits of disp8.

et4U.com

DataShe

DataSheet4U.com

APPENDIX	С	REGISTER	INDEX

	Symbol	Name	Unit	Page	
	ADCR	A/D conversion result register	ADC	348	
	ADCRH	A/D conversion result register H	ADC	348	
	ADIC	Interrupt control register	INTC	512	
	ADM	A/D converter mode register	ADC	344	
	ADS	Analog input channel specification register	ADC	347	
	ASICL0	LIN operation control register 0	UART	377	
	ASIF0	Asynchronous serial interface transmit status register 0	UART	374	
	ASIF1	Asynchronous serial interface transmit status register 1	UART	374	
	ASIM0	Asynchronous serial interface mode register 0	UART	371	
	ASIM1	Asynchronous serial interface mode register 1	UART	371	
	ASIS0	Asynchronous serial interface status register 0	UART	373	
	ASIS1	Asynchronous serial interface status register 1	UART	373	
	BRGC0	Baud rate generator control register 0	UART	398	
	BRGC1	Baud rate generator control register 1	UART	398	
	BRGIC	Interrupt control register	INTC	512	
	CCLS	CPU operation clock status register	CG	131	
	CKSR0	Clock select register 0	UART	397	
m	CKSR1	Clock select register 1	UART	397	DataSh
	CLM	Clock monitor mode register DataSheet4U.com	CLM	568	
	CMP00	8-bit timer H compare register 00	тмн	290	
	CMP01	8-bit timer H compare register 01	тмн	290	
	CMP10	8-bit timer H compare register 10	тмн	290	
	CMP11	8-bit timer H compare register 11	тмн	290	
	CORAD0	Correction address register 0	ROMC	585	
	CORAD0H	Correction address register 0H	ROMC	585	
	CORADOL	Correction address register 0L	ROMC	585	
	CORAD1	Correction address register 1	ROMC	585	
	CORAD1H	Correction address register 1H	ROMC	585	
	CORAD1L	Correction address register 1L	ROMC	585	
	CORAD2	Correction address register 2	ROMC	585	
	CORAD2H	Correction address register 2H	ROMC	585	
	CORAD2L	Correction address register 2L	ROMC	585	
	CORAD3	Correction address register 3	ROMC	585	
	CORAD3H	Correction address register 3H	ROMC	585	
	CORAD3L	Correction address register 3L	ROMC	585	
	CORCN	Correction control register	ROMC	586	
	CR010	16-bit timer capture/compare register 010	ТМО	225	
	CR011	16-bit timer capture/compare register 011	ТМО	227	
	CR5	16-bit timer compare register 5	TM5	271	
	CR50	8-bit timer compare register 50	TM5	271	
	CR51	8-bit timer compare register 51	TM5	271	
neet4U.com	CRC01	Capture/compare control register 01	ТМО		heet4U.com

Symbol	Name	Unit	Page
CSI0IC0	Interrupt control register	INTC	512
CSI0IC1	Interrupt control register	INTC	512
CSIC0	Clocked serial interface clock selection register 0	CSI0	410
CSIC1	Clocked serial interface clock selection register 1	CSI0	410
CSIM00	Clocked serial interface mode register 00	CSI0	408
CSIM01	Clocked serial interface mode register 01	CSI0	408
СТВР	CALLT base pointer	CPU	47
CTPC	CALLT execution status saving register	CPU	46
CTPSW	CALLT execution status saving register	CPU	46
DBPC	Exception/debug trap status saving register	CPU	47
DBPSW	Exception/debug trap status saving register	CPU	47
ECR	Interrupt source register	CPU	44
EIPC	Interrupt status saving register	CPU	43
EIPSW	Interrupt status saving register	CPU	43
FEPC	NMI status saving register	CPU	44
FEPSW	NMI status saving register	CPU	44
IIC0	IIC shift register 0	I ² C	448
IICC0	IIC control register 0	I ² C	436
IICCL0	IIC clock selection register 0	I ² C	446
IICF0	IIC flag register 0	I ² C	444
IICIC0	Interrupt control register	INTC	512
IICS0	IIC status register 0 DataSheet4U.com	I ² C	441
IICX0	IIC function expansion register 0	I ² C	447
IMR0	Interrupt mask register 0	INTC	514
IMR0H	Interrupt mask register 0H	INTC	514
IMR0L	Interrupt mask register 0L	INTC	514
IMR1	Interrupt mask register 1	INTC	514
IMR1H	Interrupt mask register 1H	INTC	514
IMR1L	Interrupt mask register 1L	INTC	514
IMR3	Interrupt mask register 3	INTC	514
IMR3L	Interrupt mask register 3L	INTC	514
INTF0	External interrupt falling edge specification register 0	INTC	521
INTF3	External interrupt falling edge specification register 3	INTC	522
INTF9H	External interrupt falling edge specification register 9H	INTC	523
INTR0	External interrupt rising edge specification register 0	INTC	521
INTR3	External interrupt rising edge specification register 3	INTC	522
INTR9H	External interrupt rising edge specification register 9H	INTC	523
ISPR	In-service priority register	INTC	515
KRIC	Interrupt control register	INTC	512
KRM	Key return mode register	KR	536
LVIIC	Interrupt control register	INTC	512
LVIM	Low-voltage detection register	LVI	578
LVIS	Low-voltage detection level selection register	LVI	579
NFC	Digital noise elimination control register	INTC	519

DataSheet4U.com

et4U.com

www.DataSheet4U.com

a · ·		· · · · · · · · · · · · · · · · · · ·	(;
Symbol	Name	Unit	Page
OSTS	Oscillation stabilization time selection register	Standby	542
P0	Port 0 register	Port	76
P0NFC	TIP00 noise elimination control register	TMP	220
P1NFC	TIP01 noise elimination control register	TMP	220
P3	Port 3 register	Port	79
P3H	Port 3 register H	Port	79
P3L	Port 3 register L	Port	79
P4	Port 4 register	Port	84
P5	Port 5 register	Port	86
P7	Port 7 register	Port	89
P9	Port 9 register	Port	91
P9H	Port 9 register H	Port	91
P9L	Port 9 register L	Port	91
PC	Program counter	CPU	41
PCC	Processor clock control register	CG	127
РСМ	Port CM register	Port	96
PDL	Port DL register	Port	99
PF3H	Port 3 function register H	Port	81
PF4	Port 4 function register	Port	85
PF9H	Port 9 function register H	Port	93
PFC3	Port 3 function control register	Port	81
PFC5	Port 5 function control register DataSheet4U.com	Port	88
PFC9	Port 9 function control register	Port	94
PFC9H	Port 9 function control register H	Port	94
PFC9L	Port 9 function control register L	Port	94
PFCE3	Port 3 function control expansion register	Port	81
PFM	Power fail comparison mode register	ADC	350
PFT	Power fail comparison threshold register	ADC	350
PIC0	Interrupt control register	INTC	512
PIC1	Interrupt control register	INTC	512
PIC2	Interrupt control register	INTC	512
PIC3	Interrupt control register	INTC	512
PIC4	Interrupt control register	INTC	512
PIC5	Interrupt control register	INTC	512
PIC6	Interrupt control register	INTC	512
PIC7	Interrupt control register	INTC	512
PLLCTL	PLL control register	CG	133, 339
PM0	Port 0 mode register	Port	76
PM3	Port 3 mode register	Port	79
РМЗН	Port 3 mode register H	Port	79
PM3L	Port 3 mode register L	Port	79
PM4	Port 4 mode register	Port	84
PM5	Port 5 mode register	Port	86
PM9	Port 9 mode register	Port	91

DataSheet4U.com

655

Symbol	Name	Unit	Page
PM9H	Port 9 mode register H	Port	91
PM9L	Port 9 mode register L	Port	91
PMC0	Port 0 mode control register	Port	77
PMC3	Port 3 mode control register	Port	80
РМСЗН	Port 3 mode control register H	Port	80
PMC3L	Port 3 mode control register L	Port	80
PMC4	Port 4 mode control register	Port	85
PMC5	Port 5 mode control register	Port	87
PMC9	Port 9 mode control register	Port	92
PMC9H	Port 9 mode control register H	Port	92
PMC9L	Port 9 mode control register L	Port	92
PMCCM	Port CM mode control register	Port	96
PMCM	Port CM mode register	Port	96
PMDL	Port DL mode register	Port	99
PRCMD	Command register	CPU	65
PRM01	Prescaler mode register 01	TM0	233
PRSCM	Interval timer BRG compare register	CG	314
PRSM	Interval timer BRG mode register	CG	313
PSC	Power save control register	Standby	540
PSMR	Power save mode register	Standby	541
PSW	Program status word	CPU	45
PU0	Pull-up resistor option register 0 DataSheet4U.com	Port	77
PU3	Pull-up resistor option register 3	Port	83
PU4	Pull-up resistor option register 4	Port	85
PU5	Pull-up resistor option register 5	Port	88
PU9	Pull-up resistor option register 9	Port	95
PU9H	Pull-up resistor option register 9H	Port	95
PU9L	Pull-up resistor option register 9L	Port	95
PUCM	Pull-up resistor option register CM	Port	97
PUDL	Pull-up resistor option register DL	Port	99
RCM	Ring-OSC mode register	CG	131, 569
r0 to r31	General-purpose registers	CPU	41
RESF	Reset source flag register	Reset	555
RNZC	Reset noise elimination control register	Reset	558
RTBH0	Real-time output buffer register H0	RTP	333
RTBL0	Real-time output buffer register L0	RTP	333
RTPC0	Real-time output port control register 0	RTP	335
RTPM0	Real-time output port mode register 0	RTP	334
RXB0	Receive buffer register 0	UART	375
RXB1	Receive buffer register 1	UART	375
SELCNT0	Selector operation control register 0	UART	378
SELCNT1	Selector operation control register 1	TMO	234
SIO00	Serial I/O shift register 0	CSI0	415
SIO00L	Serial I/O shift register 0L	CSI0	415

et4U.com

DataShe

DataSheet4U.com

www.DataSheet4U.com

Symbol	Name	Unit	Page	
SIO01	Serial I/O shift register 1	CSI0	415	
SIO01L	Serial I/O shift register 1L	CSI0	415	
SIRB0	Clocked serial interface receive buffer register 0	CSI0	411	
SIRB0L	Clocked serial interface receive buffer register 0L	CSI0	411	
SIRB1	Clocked serial interface receive buffer register 1	CSIO	411	
SIRB1L	Clocked serial interface receive buffer register 1L	CSIO	411	
SIRBE0	Clocked serial interface read-only receive buffer register 0	CSI0	412	
SIRBE0L	Clocked serial interface read-only receive buffer register 0L	CSI0	412	
SIRBE1	Clocked serial interface read-only receive buffer register 1	CSIO	412	
SIRBE1L	Clocked serial interface read-only receive buffer register 1L	CSIO	412	
SOTB0	Clocked serial interface transmit buffer register 0	CSIO	413	
SOTB0L	Clocked serial interface transmit buffer register 0L	CSIO	413	
SOTB1	Clocked serial interface transmit buffer register 1	CSIO	413	
SOTB1L	Clocked serial interface transmit buffer register 1L	CSIO	413	
SOTBF0	Clocked serial interface initial transmit buffer register 0	CSI0	414	
SOTBF0L	Clocked serial interface initial transmit buffer register 0L	CSI0	414	
SOTBF1	Clocked serial interface initial transmit buffer register 1	CSI0	414	
SOTBF1L	Clocked serial interface initial transmit buffer register 1L	CSIO	414	
SREIC0	Interrupt control register	INTC	512	
SREIC1	Interrupt control register	INTC	512	Data
SRIC0	Interrupt control register	INTC	512	Dala
SRIC1	Interrupt control register DataSheet4U.com	INTC	512	
STIC0	Interrupt control register	INTC	512	
STIC1	Interrupt control register	INTC	512	
SVA0	Slave address register 0	I ² C	448	
SYS	System status register	CPU	66	
TCL50	Timer clock selection register 50	TM5	272	
TCL51	Timer clock selection register 51	TM5	272	
TM01	16-bit timer counter 01	ТМО	225	
TM0IC10	Interrupt control register	INTC	512	
TM0IC10	Interrupt control register	INTC	512	
TM5	16-bit timer counter 5	TM5	285	
TM50	8-bit timer counter 50	TM5	285	
TM50 TM51	8-bit timer counter 50	TM5	270	
TM5IC0	Interrupt control register	INTC	512	
TM5IC0	Interrupt control register	INTC	512	
TMC01	16-bit timer mode control register 01	ТМО	228	
TMC50	8-bit timer mode control register 50	TM5	273	
	5			
TMC51	8-bit timer mode control register 51	TM5	273	
TMCYC0	8-bit timer H carrier control register 0	ТМН	294	
TMCYC1	8-bit timer H carrier control register 1	TMH	294	
TMHIC0	Interrupt control register	INTC	512	
TMHIC1	Interrupt control register	INTC	512	1

DataSheet4U.com

			(6/6)
Symbol	Name	Unit	Page
TMHMD1	8-bit timer H mode register 1	ТМН	291
TOC01	16-bit timer output control register 01	ТМО	231
TP0CCIC0	Interrupt control register	INTC	512
TP0CCIC1	Interrupt control register	INTC	512
TP0CCR0	TMP0 capture/compare register 0	ТМР	144
TP0CCR1	TMP0 capture/compare register 1	TMP	146
TP0CNT	TMP0 counter read buffer register	TMP	148
TP0CTL0	TMP0 control register 0	ТМР	138
TP0CTL1	TMP0 control register 1	TMP	139
TP0IOC0	TMP0 I/O control register 0	TMP	140
TP0IOC1	TMP0 I/O control register 1	ТМР	141
TP0IOC2	TMP0 I/O control register 2	TMP	142
TP0OPT0	TMP0 option register 0	TMP	143
TP0OVIC	Interrupt control register	INTC	512
TXB0	Transmit buffer register 0	UART	376
TXB1	Transmit buffer register 1	UART	376
VSWC	System wait control register	CPU	67
WDCS	Watchdog timer clock selection register	WDT	324
WDT1IC	Interrupt control register	INTC	512
WDTE	Watchdog timer enable register	WDT	330
WDTM1	Watchdog timer mode register 1	WDT	325, 517
WDTM2	Watchdog timer mode register 2 DataSheet4U.com	WDT	329
WTIC	Interrupt control register	INTC	512
WTIIC	Interrupt control register	INTC	512
WTM	Watch timer operation mode register	WT	317

et4U.com

658

DataSheet4U.com