ANALOG DEVICES

Low Noise-Wideband Chopper Stabilized Amplifier

MODEL 234

PRELIMINARY TECHNICAL DATA

FEATURES

Low Drift: $0.1\mu V/^{\circ}C$, $1pA/^{\circ}C$ Offset Stability: $2\mu V$ per month Submicrovolt Noise: $0.7\mu V$ p-p (0.01 to 1Hz B.W.)

Fast Response: 2.5MHz B.W., 4μsec settling (0.01%) Low Cost Module: \$54 (1 to 9), 1½"

× 1½" × 0.4"

APPLICATIONS Precision Wideband Amplification Current and Voltage Summation High Speed Integration Reference Buffering Controlled Current Source Bridge Amplifier

GENERAL DESCRIPTION

Analog Devices' Model 234 is a high performance chopper stabilized op amp which significantly improves on the noise and bandwidth performance of previous designs. Available with drift of $0.1\mu V/^{\circ}C$, the Model 234 features $0.7\mu V$ p-p input noise and 2.5MHz unity gain bandwidth to satisfy many demanding requirements for a premium amplifier at less than premium prices.

Incorporating MOSFET choppers and discrete components (vs. IC op amps) for the main and stabilizing amplifier channels, this inverting design is virtually free of input chopper spikes and offers reduced modulation ripple for quieter wideband performance. These characteristics are especially desirable when operating from high source impedances (above $100k\Omega$) at wide bandwidths. To illustrate the improvements in noise and bandwidth performance, over previous Analog Devices' designs, comparative data is set forth in the following sections comparing models 232 and 233 with 234.

Other Model 234 specifications include: gains of 10^7 V/V , 4µsec settling time to 0.01% (20k Ω load, 10V) and three selections for voltage drift: 1µV/°C (234J), 0.3µV/°C (234K), and 0.1µV/°C (234L). Available in a compact plug-in module (1½" x 1½" x 0.4"), Model 234 is competitively priced for new OEM designs and is recommended as a pin compatible replacement for upgrading the performance of most existing designs. The use of premium discrete components throughout assures repeatable unit-to-unit performance for best results at lower costs.

APPLICATIONS

In general, the Model 234 inverting amplifier should be considered where long term stability of offset voltage must be

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

main ained with time and temperature for precision designs, or wherever carefree operation of instruments and remote circuits is essential. Typical applications include low drift amplification of wideband microvolt signals, integration of low dutycycle pulse trans and fast analog computing for general purpose designs. Low input noise and stable offset voltages also make Model 234 an ideal pleamp for precision low frequency applications such as DVMs, 12 to 16 bit A to D donverters, and for error amplifiers in servo and null detector systems.

IMPROVED NOISE AND BANDWIDTH PERFORMANCE The improved performance of Model 234 accrues from the use of discrete components throughout, coupled with low noise front-end circuits, all carefully packaged and shielded to minimize pickup and intermodulation effects. Chopper modulation ripple, as shown in Figure 1, is significantly reduced over an earlier design, Model 232, for most wideband applications.

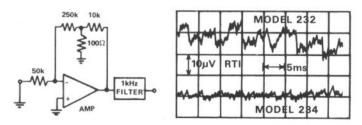


Figure 1. Comparative Input Noise (RTI) Performance in a DC to 1kHz Bandwidth.

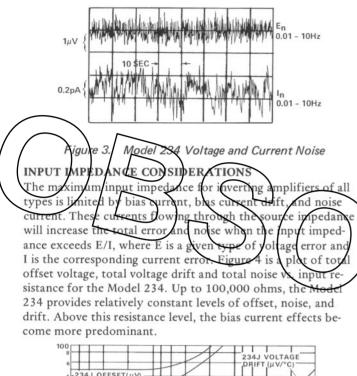
(continued on page 3)

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062 Tel: 617/329-4700 TWX: 710/394-6577

SPECIFICATIONS	(typical @ +25°C a	and ±15V ur	less otherwise	noted)
MODEL	234J	234K	234L	OPEN LOOP GAIN
OPEN LOOP GAIN DC, 2k ohm load	10 ⁷ V/V min	*	*	AND PHASE SHIFT
RATED OUTPUT				160 -20
Voltage	±10V min	*	*	140 PHASE SHIFT -40
Current	±5mA min	*	*	
Load Capacitance Range	0-1000pF min	*	*	100 -80
FREQUENCY				40 40 40 40 40 40 40 40 40 40
Unity Gain, Small Signal	2.5MHz	*	*	
Full Power Response	500kHz min	*	*	40 -140
Slew Rate	30V/µsec	*	*	
SETTLING TIME to 0.01% 20ΓΩ load, 10V step (Figure 2)	4µsec	*	*	0 10 ⁻² 1 10 ² 10 ⁴ 10 ⁶ FREQUENCY (Hz)
INPUT OFFSET VOLTAGE				
Initial Offset, max	±50µV	±20µV	±20µV	IN 10kΩ 10kΩ
vs. Temp, D°C to +70°C, max	$\pm 1.0 \mu V/S$	$\pm 0.3 \mu V/^{\circ}$		
vx Supply Voltage	$\pm 0.2\mu V \%$	*	*	
vs. Time	±2µV/month	*	*	234 "A"
vs. Turn On, 10 sec to 10 min	±34V	$ \land \$	\square	
	7 $) / / /$		_/_/	
INPUT BIAS CURRENT	\bigcirc \square		/ /	
Initial, max	±100pA	* / /	/*/	
vs. Temp, 0° C to +70 $^{\circ}$ C, max	±4pA/°C	±2pA/°C	±1pA/°C	
vs. Supply Voltage	±0.5pA/%	*		Figure 2. Settling Time Test Cir-
			$\overline{}$	Cuit Using Scope Comparator
INPUT IMPEDANCE				Preamp at A'
Inverting Input to Signal Ground	300k ohms	*	*	
INPUT NOISE				OUTLINE DIMENSIONS
Voltage, 0.01 to 1Hz	0.7µV p-p	*	*	(In Inches)
0.1 to 10Hz	1.5µV p-p	*	*	(III MENES)
10Hz to 10kHz	2µV rms	*	*	
Current, 0.01 to 1Hz	2 pA p-p	*	*	→ 1.50 →
0.1 to 10Hz	4рА р-р	*	*	Ŧ []
				0.40
INPUT VOLTAGE RANGE				
(-) Input to Signal Ground	±15V max	*	*	-+ +-0.040 DIA.
, ,per co organi di ound				0.20 MIN 0.25 MAX.
POWER SUPPLY (VDC)				+Vs
Rated Performance	±15V @ 5mA	*	*	γ.
Operating	±(12 to 18)V	*	*	50kΩ
TEMPERATURE RANGE				
Rated Specifications ¹	0° C to $+70^{\circ}$ C	*	*	
Operating	-25° C to $+85^{\circ}$ C	*	*	
Storage	-25° C to $+85^{\circ}$ C	*	*	→ 0.35 ← 0.8 → ← 0.10 GRID
PRICE	* * *	+ <i>z</i> =	4.0.7	
(1-9)	\$54.	\$65.	\$89.	
(10-24)	\$49.	\$59.	\$82.	NOTES:
				*Optional Trim Pot Analog Devices Model 79PR50k [\$3.00 ea. (1–9)] Connect Trim Terminal to Common if Trim Pot is pay used

*Specifications same as Model 234J. Models 234A and 234B meet rated specifications of Models 234J and 234K over range of -25°C to +85°C. Contact Factory or Sales Office for price and delivery. Specifications subject to change without notice.

-2-


if Trim Pot is not used.

1. SG Tied to Common. 2. Mating Socket AC 1010 @ \$3.00. 3. Weight: 27 grams.

Applying the Chopper Stabilized Amplifier

(continued from page 1)

Shown below are plots of typical input voltage and input current noise over the frequency range of 0.01Hz to 10Hz. Particular care has been exercised in the design of this amplifier to reduce the noise level to that commensurate with the low drift performance obtained by chopper stabilization.

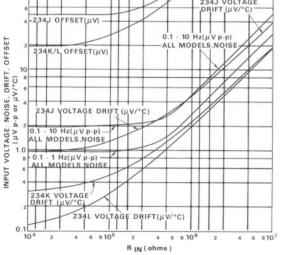


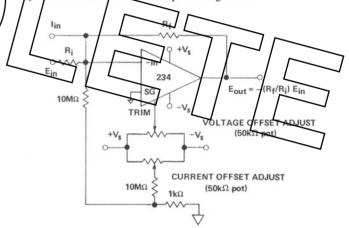
Figure 4. Uncompensated Offset, Drift and Noise vs. Rin

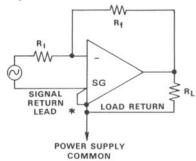
INITIAL OFFSET ADJUSTMENT

A valuable characteristic of the Model 234 is the low offset voltage without external trim. The specification is $50\mu V$ maximum for the Model 234J, and $20\mu V$ maximum for the Models 234K and 234L. In many applications there will be no need to zero the offset since it is so low. In such cases the trim terminal may either be left open, or grounded, whichever is more convenient for the user. If voltage offset adjustment is desired, it may be done with a potentiometer or selected fixed resistor network, as shown in the outline drawing on page 2. Input bias current flowing through the input resistor(s) creates additional voltage offset, particularly with input resistances exceeding 500,000 ohms. For circuits where the total input and source resistance remain relatively constant, the entire offset may be zeroed out with the voltage offset adjustment. No additional drift will occur with the Model 234 when voltage trimming is used to compensate for the offset effects of input bias current.

The circuit of Figure 5 should be used to compensate for bias current offsets when using the Model 234 as a current to voltage converter. The potentiometer-resistor network provides a compensating bias current to cancel the amplifier's own input bias current. The offset voltage trim may be used but is not necessary when using this technique.

When the amplifier is used with a widely varying input resistance and minimum offset is desired, the voltage and current trim potentiometers should be used. The voltage offset should be zeroed with a low value (e.g. 1k ohm) resistor connected from the inverting input to ground. The offset current adjustment should be made with the maximum expected value of It connected between the input and ground.




Figure 5. Offset Current Voltage Cancellation

INVERTING OPERATION

The Model 234 is designed for use in the inverting mode. It is important that the SG (equivalent to +in) terminal be kept at the same potential as the amplifier's "common" terminal. Any voltage difference between these points is similar to a common mode voltage, and performance cannot be guaranteed under such conditions. The Model 234 is also an excellent amplifier for measurement and conversion of low level current sources to proportionate voltages. With offset current externally zeroed, input currents of ten to twenty picoamperes can be amplified and converted to a voltage source for further processing.

SHIELDING, PICKUP AND GROUNDS

A special feature of the Model 234 is the internal electrostatic shield. This prevents not only pickup of extraneous signals by the module but also prevents radiation of chopper noise by the module. One precaution is to insure that noise sources are shielded from the inverting input. The user should also insure that ground loops do not occur which can add extraneous signals when amplifying from microvolt or millivolt sources. Figure 6 illustrates the proper connections to avoid ground loops.

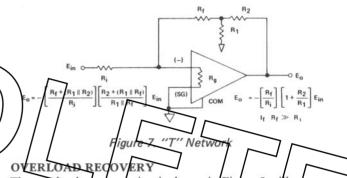
* SIGNAL RETURN AND LOAD RETURN SHOULD BE CONNECTED TO POWER COMMON AS CLOSE TO AMPLIFIER PINS AS POSSIBLE

Figure 6. Ground Connection

INTERMODULATION CONSIDERATIONS

If roise at medium frequencies (to 400Hz) finds its way into the input circuits of carrier amplifiers (chopper amplifiers and the chopper-stabilizing portions of chopper stabilized amplifiers), it tends to 'beat'' with the chopper frequency and produce sum and difference frequencies. The 'sum' frequencies are unimportant, because they are usually filtered out; the noise frequency is usually unimportant because it too, is filtered out. But the difference frequencies (which can include dc) usually interfere directly with the low-level low-frequency signal information.

There are precautions that can be taken by the manufacturer to minimize such interference occurring within the devices themselves; but the user must also be aware of the need for precautions, especially in performing low-level measurements in the presence of:


- input signals containing high-frequency normal-mode noise components (such as unfiltered carrier from a measuring device)
- 2. ripple coupled in from power supplies
- 3. stray electromagnetic radiation at line frequencies, especially if it is rich in harmonics.

This noise may be introduced to the amplifier at either improperly guarded input leads or at the power supply terminals. These effects may be minimized by using shielded supplies which have low ripple and low source impedances at the line harmonics. Properly shielding the input leads, as well as locating the amplifier as far from sources of 60Hz (or 50Hz) magnetic fields, is also recommended for best performance. Mechanical orientation of the amplifier package and layout of signal grounds may also be used to minimize EMI effects.

If a "beat" does occur, it usually manifests itself as a slowly varying offset signal at the output of the amplifier, usually below 20Hz. To examine the extent of this equivalent offset noise voltage in a system, an oscilloscope should be used to monitor the amplifier output with the input signal point shorted to ground. As another test, a low level signal may be applied at the input of the final circuit configuration to determine the intermodulation rejection capability of the design. In this test, the signal frequency should be swept through the modulation frequency point to observe output signal peaking. A low pass output filter, at approximately 40Hz, should be used when making these tests.

THE "T" NETWORK

High gains and high input impedance to an inverting amplifier normally require excessively large feedback resistors. For example, an input impedance of 1,000,000 ohms and a gain of 100 require a feedback resistor of 100 Megohms. Such a resistor is relatively expensive, particularly for low tolerance units. Furthermore, one picofarad of stray capacitance across this single resistor would reduce 3dB bandwidth to 1590Hz, and resistive leakage across PC boards may become a problem. The "T" network in Figure 7 is a means of minimizing these problems. If the ratio R_f/R_i is at least 5 to 1, there will be no measurable change in other performance characteristics. If the ratio is lower, for instance, 1 to 1, the effective drift and noise gain will be doubled, compared to the signal gain. A general rule is to make the ratio R_f/R_i approximately equal to the ratio R_2/R_1 . This normally results in reasonable values of resistance for Rf, and a minimal increase in noise and drift gains compared to the standard two resistor circuit. An additional advantage of the "T" network is variable gain without the necessity of connecting a switch or potentiometer directly to the highly sensitive inverting input terminal. This avoids serious noise pickup problems. In such a hookup, R1 is the variable element.

The overload recovery circuit shown in Figure 8 will prevent the input circuitry from becoming saturated. This circuit, connected externally, will allow the amplifier to recover from overload in less than 0.5μ sec. Without this circuit overload recovery will require up to 5 seconds.

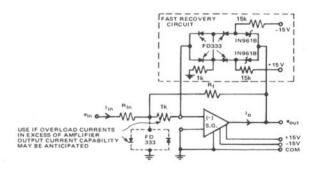
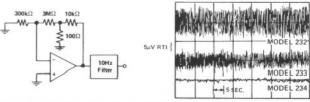



Figure 8. Overload Recovery Circuit

HIGH SOURCE IMPEDANCE CIRCUITS

When required to operate from source impedances above $100k\Omega$, the model 234, with inherently lower input current noise and spikes, offers dramatic improvements over previous designs. (See Figure 9)

PRINTED IN U.S.A.

Figure 9. Comparative Input Noise (RTI) Performance in a DC to 10Hz Bandwidth.

LOW VOLTAGE DRIFT-CHOPPER STABILIZED MODELS 234, 233, 260, 261, 231, 210

GENERAL DESCRIPTION

Chopper stabilized amplifiers employ modulation techniques for processing the "low frequency" components of a signal and an AC coupled amplifier for the higher frequencies. This chopping technique makes it possible to process wideband signals and yet achieve superior low drift and long term stability. Analog Devices, a pioneer in the development of encapsulated chopper stabilized amplifiers, offers designs with drifts between 0.1 to $1\mu V/°C$, low frequency voltage noise to $1/2\mu V$ p-p and bias currents from 50 to 300pA. Long term stability averages $1\mu V/month$. These amplifiers are widely accepted as the best choice when it is essential to maintain either low voltage offsets and bias currents versus time of against severe environmental changes, or whenever external offset adjustments are not possible or desirable.

MODEL 234 J.K/I.: LOWEST NOISE, WIDEBAND This latest inverting amplified design from Analog Devices is virtually free of chopper spikes and is singled out as the industry's quietest, wide band hopper stabilized amplifier in a low cost module. To illustrate the significant improvement in per formance, comparative noise signals are presented in the figure for model 234 and its predecessor model 232.

Available in three drift selections (1, 0.3 and 0.1 μ W)°C, model 234 specifications include voltage noise of 1¹2 μ W p-p, current noise of 2pA p-p, and 2.5MHz bandwidth. Slew rate is 30V/ μ sec. The wide bandwidth of 234 makes it especially useful for 16-bit D/A converters, high speed integrators as well as for low frequency applications including control systems, DVM input amplifier designs and other precision instrumentation. Attractively priced, its consistent unit-to-unit performance makes it an ideal choice for new OEM designs.

MODEL 233 J/K/L: LOWEST COST, 0.1µV/°C

The popular model 233 is a good choice for many low drift, high gain applications including precision integrators, instrument preamplifiers and null detectors as used to resolve microvolt error signals.

The combination of IC's and improved design techniques in this 0.4" high module results in good performance at low cost for OEM designs.

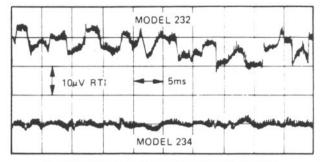
Typical specifications for this inverting amplifier include 500kHz bandwidth, $0.25V/\mu sec$ slew rate, 50pA bias current and $3\mu V$ p-p noise in a 10Hz bandwidth. It is available with three drift selections: 1; 0.3; and $0.1\mu V/^{\circ}C$.

MODEL 260 J/K: $10^9 \Omega$ NONINVERTING, $0.1\mu V/^\circ C$ Analog Devices pioneered in the development of new "chopper" amplifier designs to provide high input impedance without compromising the excellent low frequency characteristics of chopper type amplifiers. As embodied in the model 260, this design is useful as a noninverting buffer amplifier for processing microvolt signals with minimal source loading errors. Typical specifications for the model 260 are $10^9 \Omega$ input impedance, drift to $0.1\mu V/^\circ C$ and CMR of 110dB at ±1V.

MODEL 261: GUARANTEED NOISE OF LESS THAN $1\mu V$ The model 261 is a second generation design which typically provides a significant improvement in the noise and bandwidth characteristics of model 260 and other competitive models.

261J ANALOG DEVICES MODEL 2341 CHOPPER AMPLIFIER
--

Lowest Cost General Purpose 233 J K L 10 ⁷ ± 10V@mA 500kHz 4kHz 0.25V/µs		
J 233 J k J 10 ⁷ ± 10V@bmA 500kHz 4kHz		
±10V@smA 500kHz 4kHz		
± 10V@5mA 500kHz 4kHz		
± 10V@smA StockHz 4kHz		
4kHz		
4kHz		
0.25V/µs		
-		
±50μV ±20μV ±20μV		
± 1.0 ± 0.3 $\pm 0.1 \mu V/^{\circ} C$		
±0.2µV/%		
$\pm 2\mu V/mo.$		
±50pA		
±2 ±1 ±0.5pA/°C		
600k Ω		
NA		
$1 \mu V$		
3 µV		
3 µ V		
3pA		
6pA		
NA		
NA		
±15V		
±(12 to 18)V		
±15V@5mA		
0 to $+70^{\circ}$ C		
0 to $+70^{\circ}C$		
0 to $+70^{\circ}C$ F-3		
F-3		
F-3		


Operating at a higher carrier frequency, this noninverting design features extremely low noise, 0.4μ Vp-p in a 1Hz bandwidth; low drift, 0.1μ V/°C; and an output that is virtually free of chopper spikes.

Model 261 also offers a solution to beat frequency problems caused by a low frequency carrier mixing with harmonics of the AC line. The carrier frequency on this design is nearly a decade higher than that of models previously available, thereby eliminating the possibility of any interaction with the line frequency or its harmonics.

The new model should be considered for all new instruments and circuit applications, or wherever improved performance, at no increase in cost, is desirable for existing sockets. Models 260 and 261 are mechanically and electrically interchangeable for these applications.

Model 261 will be available in production quantities by June of 1973. Evaluation units are available from stock.

MODEL 231 J/K: 25mA OUTPUT, $0.1\mu V/^{\circ}C$ Model 231, available in two drift selections (231J, $0.25\mu V/^{\circ}C$ and 23 K, $0.1\mu V/^{\circ}C$) is an inverting chopper stabilized amplifier with increased sutput current capability (25mA). With stable 3kHz full power response and low drift, it offers higher output without use of an additional booster stage MODELS 210/211: 100V μ sec WIDEBAND, $1\mu V/^{\circ} C$ Models 210/211 with 20mA output, are inverting chopper stabilized amplifiers for that class of application requiring low drift performance with good high frequency performance. This design will provide slew rates of 100V/ μ sec and 90dB of loop gain at 10kHz for improved wideband accuracy. Incorporating internal limiting circuitry, these amplifiers have exceptionally fast overload recovery, (0.2 μ sec) and stable input characteristics for high speed integrator and comparator designs. They are available in two drift selections (model 210, $1\mu V/^{\circ}$ C, model 211, $2\mu V/^{\circ}$ C).

DC to 1kHz Noise, Referred to the Input; 234 vs 232.

for heavier load requirements				
High Performance Wideband 1µV p-p Lowest Noise 234	Low Cos Non-Inverting High Z _{IN} 260	General Purpose 25 nA Output 731	High Bandwidth 20mA Output 210/211	
Ј К L	J K	К	210 211	
107	5 x 10 ⁶	107	108	
±10V@5mA	±10V@5mA	±10V@25mA	±10V@20mA	
2.5MHz 500kHz 30V/μs	100Hz 2 to 50Hz 100V/s 30ms	500kHz 3kHz 0.2V/μs 3.0sec	20MHz 500kHz 100V/µs 0.2µs	
$\begin{array}{c c} \pm 50\mu V \\ \pm 1.0 \\ \pm 0.3 \\ \pm 0.2 \mu V/\% \\ \pm 2 \mu V/mo. \end{array} \begin{array}{c} \pm 25\mu V \\ \pm 0.1 \mu V/^{\circ} C \\ \pm 0.2 \mu V/mo. \end{array}$	±25μV ±0.3 ±0.1μV/°C ±0.1μV/% ±1.0μV/mo.	$\begin{array}{c c} \pm 15 \mu V & \pm 10 \mu V \\ \pm 0.25 & \pm 0.1 \mu V/^{\circ} C \\ \pm 0.1 \mu V/\% \\ \pm 1.0 \mu V/mo. \end{array}$	$ \begin{array}{r} \pm 100 \mu V \\ \pm 0.5 & \downarrow \pm 1 \mu V /^{\circ}C \\ \pm 10 \mu V / \% \\ \pm 1.0 \mu V / day \end{array} $	
±4 ±2 ±2pA/°C	±300pA ¹ ±10pA/°C	±100pA ±50pA ±1.0 ±0.5pA/°C	±100pA ±150pA ±1 ±3pA/°C	
300kΩ NA	80kΩ//0.01μF 10 ⁹ Ω//0.02μF	300kΩ NA	500kΩ NA	
0.7μV 1.5μV 2μV 2pA 4pA	0.4µV 1.0µV 4pA 10pA	1.5 μV 10μV 5 μV 10pA 35pA	5μV 10μV 10μV 10pA -	
NA NA ±15V	±1.0V 110dB ±20V	NA NA ±15V	NA NA ±15V	
±(12 to 18)V ±15V@5mA	±(10 to 18)V ±15V@6mA	±(12 to 18)V ±15V@+8, -10mA	±(12 to 18)V ±15V@+30, -4mA	
0 to $+70^{\circ}$ C	0 to +70°C	0 to $+70^{\circ}$ C	0 to +70°C	
F-3 1.5" x 1.5" x 0.4"	FA-6 1.5" x 1.5" x 0.62"	WA-1 3.6" x 1.6" x 0.4"	R-7 2.87" x 1.37" x 0.99"	
\$54 \$65 \$89 \$49 \$59 \$82	\$49 \$64 \$45 \$58	\$80 \$115 \$74 \$105	\$157 \$113 \$148 \$107	

AMPLIFIERS 49

LOW VOLTAGE DRIFT-CHOPPER STABILIZED MODELS 234, 233, 260, 261, 231, 210

GENERAL DESCRIPTION

Chopper stabilized amplifiers employ modulation techniques for processing the "low frequency" components of a signal and an AC coupled amplifier for the higher frequencies. This chopping technique makes it possible to process wideband signals and yet achieve superior low drift and long term stability. Analog Devices, a pioneer in the development of encapsulated chopper stabilized amplifiers, offers designs with drifts between 0.1 to $1\mu V/°C$, low frequency voltage noise to $1/2\mu V$ p-p and bias currents from 50 to 300pA. Long term stability averages $1\mu V/month$. These amplifiers are widely accepted as the best choice when it is essential to maintain either low voltage offsets and bias currents versus time or against severe environmental changes, or whenever external offset adjustments are not possible or desirable.

MODEL 284 J/K/L: LOWEST NOISE, WIDEBAND This latest inverting amplifuer design from Analog Devices is virtually free of chopper spikes and is singled out as the industry's quietest, wide band chopper subilited amplifier in a low cost module. To illustrate the significant improvement in pe formance, comparative moise signals are presented in the figure for model 234 and its predecessor model 232.

Available in three drift selections (10.3 and $0.1\mu V/^{\circ}C$), model 234 specifications include voltage noise of $16\mu V/p$ p, current noise of 2pA p-p, and 2.5MHz bandwidth. Slew rate is $30V/\mu$ sec. The wide bandwidth of 234 makes it especially useful for 16-bit D/A converters, high speed integrators as well as for low frequency applications including control systems, DVM input amplifier designs and other precision instrumentation. Attractively priced, its consistent unit-to-unit performance makes it an ideal choice for new OEM designs.

MODEL 233 J/K/L: LOWEST COST, 0.1µV/°C

The popular model 233 is a good choice for many low drift, high gain applications including precision integrators, instrument preamplifiers and null detectors as used to resolve microvolt error signals.

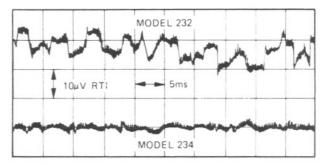
The combination of IC's and improved design techniques in this 0.4" high module results in good performance at low cost for OEM designs.

Typical specifications for this inverting amplifier include 500kHz bandwidth, $0.25V/\mu$ sec slew rate, 50pA bias current and $3\mu V$ p-p noise in a 10Hz bandwidth. It is available with three drift selections: 1; 0.3; and $0.1\mu V/^{\circ}C$.

MODEL 260 J/K: $10^9 \Omega$ NONINVERTING, $0.1 \mu V/^\circ C$ Analog Devices pioneered in the development of new "chopper" amplifier designs to provide high input impedance without compromising the excellent low frequency characteristics of chopper type amplifiers. As embodied in the model 260, this design is useful as a noninverting buffer amplifier for processing microvolt signals with minimal source loading errors. Typical specifications for the model 260 are $10^9 \Omega$ input impedance, drift to $0.1 \mu V/^\circ C$ and CMR of 110dB at ±1V.

MODEL 261: GUARANTEED NOISE OF LESS THAN $1\mu V$ The model 261 is a second generation design which typically provides a significant improvement in the noise and bandwidth characteristics of model 260 and other competitive models.

	1990EL	
	1341 CHOPPER STABILIZED AMPLIFIER	
	THER	
\square		
	Lowest Cost	
	General Purpose	
Mødel		
Open Loop Gain DC Rated Load, V/V min		
Rated Output, min	± 0V@5mA	
Frequency Response Unity Gain, Small Signal	500kHz	
Full Power Response, min Slewing Rate, min	4kHz 0.25V/µs	
Overload Recovery	0.25 V/µs	
Input Offset Voltage		
Initial, 25°C (Adj. to zero) max Avg. vs. Temp (0°C to 70°C) max	$\begin{array}{c ccccc} \pm 50\mu V & \pm 20\mu V & \pm 20\mu V \\ \pm 1.0 & \pm 0.3 & \pm 0.1\mu V/^{\circ}C \end{array}$	
vs. Supply Voltage vs. Time	±0.2 µV/%	
Input Bias Current	±2µV/mo.	
Initial, 25°C, max	±50pA	
Avg. vs. Temp (0°C to 70°C) max Input Impedance	±2 ±1 ±0.5pA/°C	
Differential	600k Ω	
Common Mode	NA	
Input Noise Voltage, 0.01 to 1Hz, p-p	$1 \mu V$	
0.1 to 10Hz, p-p	$3 \mu V$	
10Hz to 10kHz, rms Current, 0.01 to 1Hz, p-p	3 µV 3 pA	
0.1 to 10Hz, p-p	6pA	
Input Voltage Range		
Common Mode Voltage, min Common Mode Rejection	NA NA	
Max Safe Differential Voltage	±15V	
Power Supply Range (VDC)	±(12 to 18)V	
Rated Specification (VDC) Temperature Range	±15V@5mA	
Operating, Rated Specifications	0 to +70°C	
Package Outline Case Dimensions	F-3 1.5" x 1.5" x 0.4"	
Price	1.5 X 1.5 X 0.4	
1-9	\$45 \$54 \$75	
10-24	\$40 \$49 \$68	
(1)Model 260 inverting input bias curre	nt ±3nA, max.	

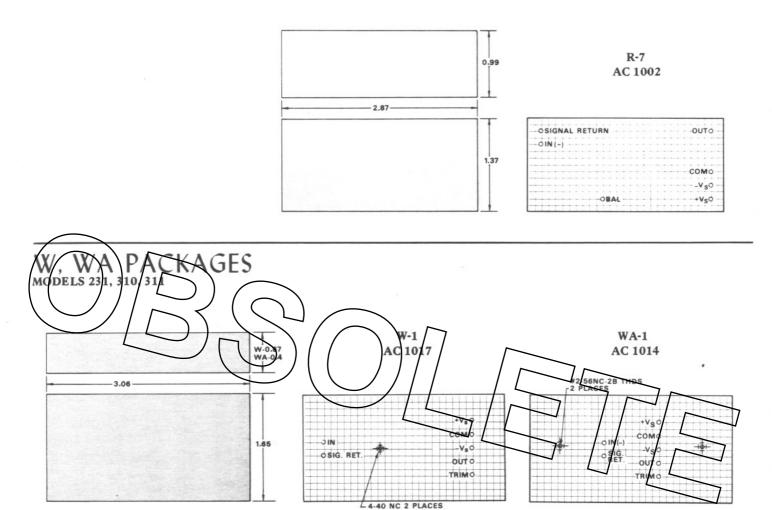

261J ANALOG 261J DEVICES MODEL 2341 CHOPPER STABILIZED AMPLIFIER Operating at a higher carrier frequency, this noninverting design features extremely low noise, 0.4μ Vp-p in a 1Hz bandwidth; low drift, 0.1μ V/°C; and an output that is virtually free of chopper spikes.

Model 261 also offers a solution to beat frequency problems caused by a low frequency carrier mixing with harmonics of the AC line. The carrier frequency on this design is nearly a decade higher than that of models previously available, thereby eliminating the possibility of any interaction with the line frequency or its harmonics.

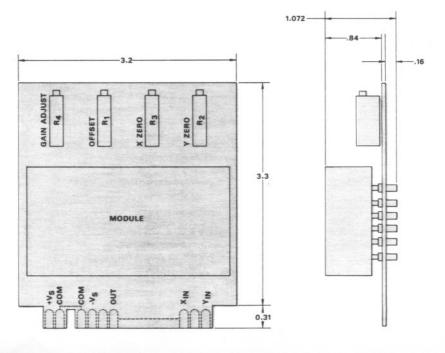
The new model should be considered for all new instruments and circuit applications, or wherever improved performance, at no increase in cost, is desirable for existing sockets. Models 260 and 261 are mechanically and electrically interchangeable for these applications.

Model 261 will be available in production quantities by June of 1973. Evaluation units are available from stock.

MODEL 231 J/K: 25mA OUTPUT, $0.1\mu V/^{\circ}C$ Model 231, available in two drift selections (231J, $0.25\mu V/^{\circ}C$ and 231K, $0.1\mu V/^{\circ}C$) is an inverting chopper stabilized amplifier with increased output current capability (25mA). With stable 3kHz full power response and low drift, it offers higher output without use of an additional booster stage for heavier load requirements. MODELS 210/211: 100V μ sec WIDEBAND, $1\mu V/^{\circ}C$ Models 210/211 with 20mA output, are inverting chopper stabilized amplifiers for that class of application requiring low drift performance with good high frequency performance. This design will provide slew rates of 100V/ μ sec and 90dB of loop gain at 10kHz for improved wideband accuracy. Incorporating internal limiting circuitry, these amplifiers have exceptionally fast overload recovery, (0.2 μ sec) and stable input characteristics for high speed integrator and comparator designs. They are available in two drift selections (model 210, $1\mu V/^{\circ}$ C, model 211, $2\mu V/^{\circ}$ C).



DC to 1kHz Noise, Referred to the Input; 234 vs 232.


for hervier load requirement	s C			
High Performance Wideband 1µV p-p Lowest Noise 234	Lyw Cost Nog-Inverting High Z _{IN} 260	General Furpose 25 pA Output 25 1	figh Bandwidth 20thA Output 210/211	
J K L	J K	К	211	
10 ⁷ ±10V@5mA	5 x 10 ⁶ ±10V@5mA	10 ⁷ ±10V@25mA	108 ±104/020mA	
2.5MHz 500kHz 30V/µs	100Hz 2 to 50Hz 100V/s 30ms	500kHz 3kHz 0.2V/µs 3.0sec	20MHz 500kHz 100V/µs 0.2µs	
$\begin{array}{c c} \pm 50\mu V \\ \pm 1.0 \end{array} \begin{vmatrix} \pm 25\mu V \\ \pm 0.3 \\ \pm 0.2\mu V/\% \\ \pm 2\mu V/mo. \end{vmatrix} \pm 25\mu V \\ \pm 0.1\mu V/^{\circ}C \\ \end{array}$	±25μV ±0.3 ±0.1μV/°C ±0.1μV/% ±1.0μV/mo.	$\begin{array}{c c} \pm 15 \mu V & \pm 10 \mu V \\ \pm 0.25 & \pm 0.1 \mu V/^{\circ} C \\ \pm 0.1 \mu V/\% \\ \pm 1.0 \mu V/mo. \end{array}$	$ \begin{array}{c} \pm 100 \mu V \\ \pm 0.5 & \ \pm 1 \mu V/^{\circ} C \\ \pm 10 \mu V/\% \\ \pm 1.0 \mu V/day \end{array} $	
±4 ±2 ±2pA/°C	±300pA ¹ ±10pA/°C	±100pA ±50pA ±1.0 ±0.5pA/°C	±100pA ±150pA ±1 ±3pA/°C	
300kΩ NA	80kΩ//0.01µF 10 ⁹ Ω//0.02µF	300kΩ NA	500kΩ NA	
0.7μV 1.5μV 2μV 2pA 4pA	0.4µV 1.0µV 4pA 10pA	1.5 μV 10μV 5 μV 10pA 35pA	5μV 10μV 10μV 10pA -	
NA NA ±15V	±1.0V 110dB ±20V	NA NA ±15V	NA NA ±15V	
±(12 to 18)V ±15V@5mA	±(10 to 18)V ±15V@6mA	±(12 to 18)V ±15V@+8, -10mA	±(12 to 18)V ±15V@+30, -4mA	
0 to $+70^{\circ}$ C	0 to +70°C	0 to $+70^{\circ}$ C	0 to +70°C	
F-3 1.5" x 1.5" x 0.4"	FA-6 1.5" x 1.5" x 0.62"	WA-1 3.6" x 1.6" x 0.4"	R-7 2.87" x 1.37" x 0.99"	
\$54 \$65 \$89 \$49 \$59 \$82	\$49 \$64 \$45 \$58	\$80 \$115 \$74 \$105	\$157 \$113 \$148 \$107	
	A second s			

AMPLIFIERS 49

R PACKAGE models 210, 211

MODEL 425 OUTLINE

NOTES:

1. Model 425 gain adjust pot in series with X input.

2. Mating socket supplied with unit (ADI part no. 60-42820).