20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081

U.S.A. N-P-N GROWN-JUNCTION SILICON TRANSISTORS

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

1 watt at 25°C Case Temperature
Guaranteed - 55°C, 25°C, 125°C Beta

Designed for
Audio and Servo Amplifier Stages

environmental tests

Each unit is heat cycled from -65° to $+175^{\circ}$ for ten cycles. A rigorous tumbling test subjects each unit to 12 mechanical shocks of up to 500 G's to ensure mechanical reliability. Each unit is thor-

oughly tested to determine the electrical characteristics. Production samples are life tested at regularly scheduled periods to ensure maximum reliability under extreme operating conditions.

mechanical data

The transistor is in a JEDEC TO-11 hermetically sealed, welded package with glass-to-metal hermetic seal between case and leads. Approximate weight is 2.0 grams. The noninsulated mounting

clip (TI P/N 354001-99) is provided with each transistor. It is suitable for applications where thermal dissipation to a heat sink is desired. Materials beryllium copper, cadmium plated-gold iridited.

THE EMITTER IS IN ELECTRICAL CONTACT WITH THE CASE

maximum ratings at 25°C ambient temperature (unless otherwise noted)

	2N342B	2N343B	
Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage	85v 85v 2v	65v 65v 2v	
Total device dissipation at case temperature 25°C (see note 1) Total device dissipation at 25°C ambient (see note 2) Storage Temperature Range	1000 mw 750 mw — 65°C to 150°C		

Note 1: Derate linearly to 150°C case temperature at the rate of 8.0 mw/°C.

Note 2: Derate linearly to 150°C ambient temperature at the rate of 6.0 mw/°C.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

TYPES 2N342B AND 2N343B N-P-N GROWN-JUNCTION SILICON TRANSISTORS

electrical characteristics at 25°C ambient temperature (unless otherwise noted)

PARAMETER TEST CONDITION		2N342B MIN MA				UNIT	
I _{CBO} Collector Reverse Current	V _{CB} = 30v	I _E = 0		1	1	1	μα
I _{CBO} Collector Reverse Current	V _{CB} = 30v T _A = 150°	I _E = 0		50		50	μα
I _{CBO} Collector Reverse Current	V _{C8} = 65v	I _E = 0				50	μα
I _{CBO} Collector Reverse Current	V _{CB} = 85v	I _E = 0		50			μα
I _{CEO} Collector Reverse Current	V _{CE} = 65v	I _B = 0				100	μα
I _{CEO} Collector Reverse Current	V _{CE} = 85v	I _B = 0		100	· ·		μα
I _{EBO} Emitter Reverse Current	V _{E8} = 2v	I _C = 0		100	1	100	μα
h AC Common Freither	T _A = -55°C	I _E = -5 ma f = 1 kc	9	32	24	90	
h _{fe} A-C Common-Emitter Forward Current Transfer Ratie	V _{CE} = 10v T _A = 25°C	l _E == -5 ma f == 1 kc	9	32	28	90	
	V _{CE} = 10v T _A = 125°C	1 _E == -5 ma f == 1 kc	9	32	28	90	
h _{fe} A-C Common-Emitter Forward Current Transfer Ratio	V _{CE} = 5v	I _E = -1 me f = 1 kc	7	32	20	90	
h _{ie} A-C Common-Emitter Input Resistance	V _{CE} = 10v	I _E = -5 ma f = 1 kc		500		1000	ohms
h _{ib} A-C Common-Base Input Resistance	V _{C8} = 10v	I _E == -5 me f == 1 kc		30		30	ohms
h _{rb} A-C Common-Base Reverse Voltage Transfer Ratio	V _{CB} = 10v	I _E = -5 ma f = 1 kc		300		300	ohms
h _{ob} A-C Common-Base Output Admittance	V _{CB} = 10v	I _E = -5 ma f = 1 kc		2		2	μmhe
C _{ob} Common Base Output Capacitance	A ^{CB} = 10A	I _E = 0 f = 1 kc		20		20	μμί
R _{cs} Saturation Resistance	I _C = 20 mg	I _B = 3 me		200		200	ohms