20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. N-P-N GROWN-JUNCTION SILICON TRANSISTORS TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960 1 watt at 25°C Case Temperature Guaranteed - 55°C, 25°C, 125°C Beta Designed for Audio and Servo Amplifier Stages #### environmental tests Each unit is heat cycled from -65° to $+175^{\circ}$ for ten cycles. A rigorous tumbling test subjects each unit to 12 mechanical shocks of up to 500 G's to ensure mechanical reliability. Each unit is thor- oughly tested to determine the electrical characteristics. Production samples are life tested at regularly scheduled periods to ensure maximum reliability under extreme operating conditions. ## mechanical data The transistor is in a JEDEC TO-11 hermetically sealed, welded package with glass-to-metal hermetic seal between case and leads. Approximate weight is 2.0 grams. The noninsulated mounting clip (TI P/N 354001-99) is provided with each transistor. It is suitable for applications where thermal dissipation to a heat sink is desired. Materials beryllium copper, cadmium plated-gold iridited. #### THE EMITTER IS IN ELECTRICAL CONTACT WITH THE CASE ## maximum ratings at 25°C ambient temperature (unless otherwise noted) | | 2N342B | 2N343B | | |--|--------------------------------------|------------------|--| | Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage | 85v
85v
2v | 65v
65v
2v | | | Total device dissipation at case temperature 25°C (see note 1) Total device dissipation at 25°C ambient (see note 2) Storage Temperature Range | 1000 mw
750 mw
— 65°C to 150°C | | | Note 1: Derate linearly to 150°C case temperature at the rate of 8.0 mw/°C. Note 2: Derate linearly to 150°C ambient temperature at the rate of 6.0 mw/°C. NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders. # TYPES 2N342B AND 2N343B N-P-N GROWN-JUNCTION SILICON TRANSISTORS # electrical characteristics at 25°C ambient temperature (unless otherwise noted) | PARAMETER TEST CONDITION | | 2N342B
MIN MA | | | | UNIT | | |---|---|--------------------------------------|---|-----|-----|------|------| | I _{CBO} Collector Reverse Current | V _{CB} = 30v | I _E = 0 | | 1 | 1 | 1 | μα | | I _{CBO} Collector Reverse Current | V _{CB} = 30v
T _A = 150° | I _E = 0 | | 50 | | 50 | μα | | I _{CBO} Collector Reverse Current | V _{C8} = 65v | I _E = 0 | | | | 50 | μα | | I _{CBO} Collector Reverse Current | V _{CB} = 85v | I _E = 0 | | 50 | | | μα | | I _{CEO} Collector Reverse Current | V _{CE} = 65v | I _B = 0 | | | | 100 | μα | | I _{CEO} Collector Reverse Current | V _{CE} = 85v | I _B = 0 | | 100 | · · | | μα | | I _{EBO} Emitter Reverse Current | V _{E8} = 2v | I _C = 0 | | 100 | 1 | 100 | μα | | h AC Common Freither | T _A = -55°C | I _E = -5 ma
f = 1 kc | 9 | 32 | 24 | 90 | | | h _{fe} A-C Common-Emitter Forward Current Transfer Ratie | V _{CE} = 10v
T _A = 25°C | l _E == -5 ma
f == 1 kc | 9 | 32 | 28 | 90 | | | | V _{CE} = 10v
T _A = 125°C | 1 _E == -5 ma
f == 1 kc | 9 | 32 | 28 | 90 | | | h _{fe} A-C Common-Emitter Forward Current Transfer Ratio | V _{CE} = 5v | I _E = -1 me
f = 1 kc | 7 | 32 | 20 | 90 | | | h _{ie} A-C Common-Emitter Input Resistance | V _{CE} = 10v | I _E = -5 ma
f = 1 kc | | 500 | | 1000 | ohms | | h _{ib} A-C Common-Base Input Resistance | V _{C8} = 10v | I _E == -5 me
f == 1 kc | | 30 | | 30 | ohms | | h _{rb} A-C Common-Base Reverse Voltage Transfer Ratio | V _{CB} = 10v | I _E = -5 ma
f = 1 kc | | 300 | | 300 | ohms | | h _{ob} A-C Common-Base Output Admittance | V _{CB} = 10v | I _E = -5 ma
f = 1 kc | | 2 | | 2 | μmhe | | C _{ob} Common Base Output Capacitance | A ^{CB} = 10A | I _E = 0
f = 1 kc | | 20 | | 20 | μμί | | R _{cs} Saturation Resistance | I _C = 20 mg | I _B = 3 me | | 200 | | 200 | ohms |