microelectronics group

TTRN0110G 10 Gbits/s Clock Synthesizer, 16:1 Data Multiplexer

Features

- Fully-integrated 10 GHz clock synthesizer; 16:1 data multiplexer
- Supports standard OC-192/STM-64 data rate of 9.9532 GHz as well as FEC rate of 10.6642 GHz
- Supported clocking modes include the following:
 - Supports forward directional clocking for parallel transfer of input data with 311 MHz or 622 MHz data clocks
 - Supports contradirectional clocking for parallel transfer of input data based on a 622 MHz output clock
 - Supports a clockless data transfer mode
- Allows a 155.52 MHz or 622.08 MHz reference clock with common PLL loop filter components for both frequencies
- Additional 10 Gbits/s CML serial data output for system loopback
- Supports 10 GHz clock output for clocked laser driver applications
- Loss of lock indication
- Single 3.3 V supply
- LVDS 622.08 Mbits/s digital I/O
- Power dissipation as low as 1.2 W
- Available in a 198 BGA package
- Jitter generation and jitter transfer compliant with the following:
 - Telcordia Technologies* GR-1377 CORE
 - ITU-T G.825
 - ITU-T G.958
- Fully compatible with the Optical Interface Forum specification OIF99.102.5
- * Telcordia Technologies is a registered trademark of Bell Communications Research, Inc.

Applications

- SONET/SDH optical modules
- SONET/SDH line origination equipment
- SONET/SDH add/drop multiplexers
- SONET/SDH cross connects
- SONET/SDH test equipment
- Digital video transmission

Description

The Lucent Technologies Microelectronics Group TTRN0110G device provides a 16:1 multiplexer, accepts 16 differential LVDS data inputs and a 155.52 MHz or 622.08 MHz reference clock, and generates a CML 10 Gbits/s clock and data output. Both forward directional and contradirectional clocking schemes are supported for transferring data across the parallel interface. When contraclocking is used, the TTRN0110G provides one of four phases of a 622.08 MHz clock output back upstream to the data chip. The device also supports a clockless parallel data transfer mode. The TTRN0110G can be operated at either the standard OC-192/STM-64 data rate of 9.9532 GHz or at the FEC rate of 10.6642 GHz.

Page

Table of Contents

Contents

Features	1
Applications	1
Description	1
Pin Information	4
Functional Overview	11
FEC Rate Support	11
Clock Synthesizer Operation	11
Clock Synthesizer Loop Filter	11
Clock Synthesizer Settling Time	12
Loss of Lock Indicator (LCKLOSSN)	12
Clock Synthesizer Generated Jitter	12
Clock Synthesizer Jitter Transfer	13
Multiplexer Operation	14
10 GHz Clock Output Enable (ENCK10G)	14
Loopback 10 GHz Data Output (LBDP/N, ENLBDN)	14
Reset (RESETN)	14
Clocking Modes and Timing Adjustments	15
Forward Directional 622 Clocking Mode (CLKMOD[1:0] = 00, EXTCNTR, PICLKP/N, OVRFLW)	15
Forward Directional 311 Clocking Mode (CLKMOD[1:0] = 10, EXTCNTR, PICLKP/N, OVRFLW)	15
Contradirectional Clocking Mode (CLKMOD[1:0] = 01, PHADJ[1:0], EXTCNTR)	16
Clockless Transfer Mode (CLKMOD[1:0]= 11, EXTCNTR)	17
CML Output Structure (Used on Pins D10GP/N, CK10GP/N, LBDP/N)	18
Absolute Maximum Ratings	19
Handling Precautions	19
Operating Conditions	19
Electrical Characteristics	20
Reference Frequency (REFCLKP/N, REFFREQ) (Standard SONET Rate)	20
Reference Frequency (REFCLKP/N, REFFREQ) (FEC Rate)	20
LVDS, CMOS, CML Input and Output Pins	21
Timing Characteristics	24
Transmit Timing	24
Outline Diagram	28
198-Pin BGA	28
Ordering Information	29

Description (continued)

Note: Diagram is representative of device functionality and conceptual signal flow. Internal implementation details may be different than shown.

Figure 1. Functional Block Diagram of TTRN0110G

Pin Information

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A		Ō			\bigcirc	\bigcirc	\bigcirc	$\langle \cdot \rangle$	\odot	$\overline{\mathbb{C}}$	\odot	\bigcirc	\mathbf{C}	\bigcirc	\odot
В	\odot		$\overline{\cdot}$	(\cdot)				\bigcirc		\bigcirc		Ō	\mathbf{C}	Ċ	\odot
С	Ō	Ō	\bigcirc	Ō		Ō				Ō		Ō			\odot
D	Ō				\bigcirc		\odot	Ō	\bigcirc		\odot		\odot	Ō	\bigcirc
E	Ċ	Ċ	\odot	\bigcirc		Ċ	\odot	\bigcirc	\odot	Ċ	\odot	\bigcirc	\bigcirc	Ċ	Ō
F	Ċ				Ō	\bigcirc	\bigcirc	\bigcirc	Ō	Ċ	Ċ	\bigcirc	\bigcirc	Ċ	Ċ٢.
G		Ō	Ō	Ċ	Ō	Ō	$\overline{\mathbb{C}}$	Ċ	Ō	Ū	Ō	Ō		Ō	\odot
н	Ċ	\bigcirc	\odot		\bigcirc	\bigcirc	\odot	Ō	\bigcirc	\bigcirc	\odot	Ċ	\odot	\odot	\bigcirc
J	Ċ	Ō	\bigcirc	\odot	Ō	0	\bigcirc	Ō	\bigcirc	Ō	\odot	Ō	\bigcirc	Ċ	\bigcirc
к		Ō	Ō	(\cdot)		Ō	\bigcirc	5	Ō	0	\odot		(\cdot)	Ċ	\odot
L	\odot	Ċ	Ō	Ō	Ċ	Ō	\bigcirc	(\cdot)		Ō	Ō	\bigcirc	\bigcirc	\bigcirc	\bigcirc
М	Ċ	Ċ	\bigcirc	Ō	Ċ	\bigcirc	\bigcirc		\bigcirc	\bigcirc	Ċ	Ō	\bigcirc	Ċ	0
N	\mathbf{C}	\bigcirc	\bigcirc		Ċ	(\cdot)		Ċ	\odot			Ċ		Ċ	\odot
Ρ	Ċ		$\overline{\mathbb{C}}$	$\overline{\mathbb{C}}$	Ō	Ċ	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	Ō	\bigcirc	Ċ	\odot
R	\odot	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	\odot	Ō	\odot

TOP VEIW

0642(F).a

Figure 2. Pin Diagram of 198-Pin BGA

Table 1. Pin	Assignments	for 198	-Pin BGA	by Pin	Number	Order

Pin	Signal Name	Pin	Signal Name]	Pin	Signal Name		Pin	Signal Name
A1	GND	C1	GND		E1	GND		G1	GND
A2	GND	C2	GND		E2	GND		G2	GND
A3	GND	C3	GND	1	E3	GND		G3	GND
A4	GND	C4	VCCD	1	E4	GND		G4	GND
A5	CK10GN	C5		1	E5	—		G5	VCCD
A6	GND	C6	GND	1	E6	GND		G6	GND
A7	CK10GP	C7		1	E7	INVDATN		G7	GND
A8	GND	C8		1	E8	GND		G8	GND
A9	D10GN	C9	—		E9	TESTN		G9	GND
A10	GND	C10	GND		E10	GND		G10	GND
A11	D10GP	C11	—		E11	GND		G11	GND
A12	GND	C12	GND		E12	GND		G12	LCKLOSSN
A13	GND	C13	—		E13	VCCA		G13	—
A14	GND	C14		1	E14	VCCA		G14	VCCD
A15	GND	C15	TSTCKP		E15	LFN		G15	VCCA
B1	GND	D1	LBDP	1	F1	LBDN		H1	VCCD
B2	GND	D2	—		F2	—		H2	GND
B3	GND	D3	—	1	F3	—		H3	GND
B4	GND	D4		1	F4	—		H4	—
B5	—	D5	GND	1	F5	GND		H5	GND
B6	GND	D6		1	F6	GND		H6	GND
B7	—	D7	VCCD	1	F7	ENLBDN		H7	GND
B8	GND	D8	RREFCML	1	F8	GND		H8	GND
B9	—	D9	VCCD		F9	ENCK10G		H9	GND
B10	GND	D10		1	F10	GND		H10	GND
B11	—	D11	GND	1	F11	GND		H11	GND
B12	GND	D12	—		F12	RREFLVDS		H12	GND
B13	VCCD	D13	GND	1	F13	VCCA		H13	GND
B14	GND	D14	GND]	F14	RREFVCO		H14	RESETN
B15	GND	D15	GND]	F15	LFP]	H15	CLKMOD[0]

Note: - refers to no ball. A ball has been removed for routing purposes.

Pin	Signal Name	Pin	Signal Name		Pin	Signal Name	Pin	Signal Name
J1	D0P	K13	ENCK155N		M9	GND	P5	D8P
J2	GND	K14	FECN		M10	D15P	P6	D9P
J3	GND	K15	EXTCNTR		M11	GND	P7	D10P
J4	GND	L1	D1P		M12	GND	P8	D12N
J5	VCCD	L2	GND		M13	GND	P9	D13N
J6	VCCD	L3	GND		M14	REFCLKN	P10	D14N
J7	GND	L4	GND		M15	PHADJ[0]	P11	CK155N
J8	GND	L5	GND		N1	D2P	P12	PICLKN
J9	GND	L6	VCCD		N2	D3P	P13	CK622N
J10	GND	L7	GND		N3	D4N	P14	GND
J11	GND	L8	VCCD		N4	GND	P15	GND
J12	GND	L9	—		N5	D7N	R1	GND
J13	VCCD	L10	GND		N6	GND	R2	D5P
J14	OVRFLW	L11	GND		N7	D10N	R3	D5N
J15	CLKMOD[1]	L12	GND		N8	D12P	R4	D6N
K1	D0N	L13	GND		N9	GND	R5	D8N
K2	GND	L14	PHADJ[1]		N10	D15N	R6	D9N
K3	GND	L15	REFFREQ		N11	GND	R7	D11P
K4	GND	M1	D1N		N12	GND	R8	D11N
K5		M2	GND		N13	GND	R9	D13P
K6	GND	M3	D4P		N14	REFCLKP	R10	D14P
K7	GND	M4	GND		N15	GND	R11	CK155P
K8	GND	M5	D7P		P1	D2N	R12	PICLKP
K9	VCCD	M6	GND		P2	D3N	R13	CK622P
K10	GND	M7	GND		P3	GND	R14	GND
K11	VCCD	M8	—		P4	D6P	R15	GND
K12				-				

Table 1. Pin Assignments for 198-Pin BGA by Pin Number Order (continued)

Note: — refers to no ball. A ball has been removed for routing purposes.

Note: In Table 2, when operating the TTRN0110G device at the OC-192/STM-64 rate, 10 Gbits/s should be interpreted as 9.9532 Gbits/s. When operating the TTRN0110G device at the RS FEC OC-192/STM-64 rate, 10 Gbits/s should be interpreted as 10.6642 Gbits/s.

Table 2. Pin Descriptions—10 Gbits/s and Related Signals

Pin	Symbol*	Type [†]	Level	Name/Description
A11	D10GP	0	CML	Data Output (10 Gbits/s NRZ). 10 Gbits/s differential data out-
A9	D10GN			put. Note that this data rate will scale by 15/14 when operating
				at the FEC rate.
D1	LBDP	0	CML	Loopback Data Output. Additional 10 Gbits/s differential data
F1	LBDN			output for system loopback. Note that this data rate will scale by
	01// 0.05			15/14 when operating at the FEC rate.
A7	CK10GP	0	CML	Clock Output (10 GHz). 10 GHz differential clock output. Note
A5	CK10GN			that this clock frequency will scale by 15/14 when operating at
144.4	FEON		01400	THE FEC Tate.
K14	FECN	١٣	CIMOS	rete of 0.0522 CHz or the EEC rete of 10.6642 CHz
				0 = FEC rate of 10.6642 GHz
				1 or no connection = OC-192/STM-64 rate of 9.9532 GHz
				Note that all input and output clock and data rates are scaled by
				15/14 when operating at the FEC rate.
D8	RREFCML	I	Analog	Resistor Reference CML. CML current bias reference resistor.
				(See Table 16, page 23 for values.)
F9	ENCK10G	lu	CMOS	Enable CK10GP/N Clock Output.
				0 = CK10GP/N buffer powered off
				1 or no connection = CK10GP/N buffer enabled
F7	ENLBDN	lu	CMOS	Enable LBDP/N Data Output (Active-Low).
				0 = LBDP/N buffer enabled
		-		1 or no connection = LBDP/N buffer powered off
E7	INVDATN	lu	CMOS	Invert D10G Data Output (Active-Low).
				0 = invert
045	TOTOKD		014	Torno connection = noninvert
C15	ISICKP	I	CML	Test Clock Input. (Buffer is powered down when TESTN = 1.)
E9	IESIN	ľ	CMOS	Select Test Clock (Active-Low).
				U = select test clock
			Analar	Provide a provide a selective of the provide a selection of the provide a s
F14	KKEFVCO	I	Analog	Resistor Reference VUU. VUU bias reference resistor.

* Differential pairs are indicated by P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low. † I = input, O = output. I^u indicates an internal pull-up resistor on this pin. I^d indicates an internal pull-down resistor on this pin.

Note: In Table 3, when operating the TTRN0110G device at the OC-192/STM-64 rate, 155 Mbits/s should be interpreted as 155.52 Mbits/s. When operating the TTRN0110G device at the RS FEC OC-192/STM-64 rate, 155 Mbits/s should be interpreted as 166.62 Mbits/s.

Pin	Symbol*	Type [†]	Level	Name/Description
M10	D15P	I	LVDS	Data Input (622 Mbits/s). 622 Mbits/s differential data input.
N10	D15N			D15 is the most significant bit and is transmitted first on the
R10	D14P		LVDS	D10GP/N output. Note that the data rate will scale by 15/14
P10	D14N			when operating at the FEC rate.
R9	D13P		LVDS	
P9	D13N			
N8	D12P		LVDS	
P8	D12N			
R7	D11P		LVDS	
R8	D11N			
P7	D10P		LVDS	
N7	D10N			
P6	D9P		LVDS	
R6	D9N			
P5	D8P		LVDS	
R5	D8N			
M5	D7P		LVDS	
N5	D7N			
P4	D6P		LVDS	
R4	D6N			
R2	D5P		LVDS	
R3	D5N			
M3	D4P		LVDS	
N3	D4N			
N2	D3P		LVDS	
P2	D3N			
N1	D2P		LVDS	
P1	D2N			
L1	D1P		LVDS	
M1	D1N			
J1	D0P		LVDS	
K1	D0N			

Table 3. Pin Descriptions—622.08 Mbits/s and Related Signals

* Differential pairs are indicated by P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low. † I = input, O = output. I^u indicates an internal pull-up resistor on this pin. I^d indicates an internal pull-down resistor on this pin.

Table 3	. Pin	Descriptions-	-622.08	Mbits/s a	nd Relate	d Signals	(continued)
---------	-------	----------------------	---------	-----------	-----------	-----------	-------------

Pin	Symbol*	Type [†]	Level	Name/Description
R13	CK622P	0	LVDS	Clock Output (622 MHz). 622 MHz differential clock output.
P13	CK622N			Note that this clock frequency will scale by 15/14 when
				operating at the FEC rate.
M15	PHADJ[0]	ľ	CMOS	Phase Adjust. Adjusts phase of CK622 in 90 degree steps.
L14		0	11/00	
R11	CK155P	0	LVDS	Clock Output (155 MHZ). 155 MHZ differential clock output.
P11	CK155N			operating at the FEC rate
K13	ENCK155N	lu	CMOS	Enable CK155P/N Clock Output (Active-Low)
	Entertion	•	01100	0 = CK155P/N buffer enabled
				1 or no connection = CK155P/N buffer powered off
R12	PICLKP	I	LVDS	Parallel Input Clock (622 MHz). 622 MHz differential clock
P12	PICLKN			input used to register parallel data when using forward
				directional clocking mode. Note that this clock frequency will
				scale by 15/14 when operating at the FEC rate.
H15		ľ	CMOS	Clock Mode Select. Selects clocking method for data transfer
J15				mode. 00 - forward directional clocking
				00 = clockless transfer
				11 or no connections = contraclocking
G12	LCKLOSSN	0	CMOS	Loss of Lock (Active-Low).
				0 = PLL out of lock
K15	EXTCNTR	lq	CMOS	External Center. Centers the pointers in the parallel data
				storage element.
J14	OVRFLW	0	CMOS	Data Storage Overflow. Indicates (active high) when an
				overflow has occurred in the parallel data storage element.
N14	REFCLKP	I	LVDS	Reference Clock Input (622.08 MHz or 155.52 MHz).
M14	REFCLKN			Note that this clock frequency must scale by 15/14 when
1 1 5		IU	CMOS	Beference Cleak Frequency, Selects frequency of
LID	KEFFKEQ	I.	CIVIOS	REFCL KP/N
				0 = 155 MHz
				1 or no connection = 622 MHz
F15	LFP	I	Analog	Loop Filter PLL. Connect LFP and LFN to loop filter (see
E15	LFN			Figure 3, page 11).
F12	RREFLVDS	I	Analog	Resistor Reference LVDS. LVDS bias reference resistor.
				Connect a TBD k Ω resistor to VCCD.

* Differential pairs are indicated by P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low. † I = input, O = output. I^u indicates an internal pull-up resistor on this pin. I^d indicates an internal pull-down resistor on this pin.

Table 4. Pin Descriptions—Reset

Pin	Symbol*	Type [†]	Level	Name/Description
H14	RESETN	Ιu	CMOS	Reset (Active-Low). Resets all synchronous logic. During a reset, the true data outputs are in the low state and the barred data outputs are in the high state. Reset must be held active low for a minimum of 6.4 ns while the internal oscillator is active. 0 = reset 1 or no connection = normal operation

* Differential pairs are indicated by P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low. † I = input, O = output. I^u indicates an internal pull-up resistor on this pin. I^d indicates an internal pull-down resistor on this pin.

Lucent Technologies Inc.

Table 5. Pin Descriptions—Power and Ground

Note: VCCA and VCCD have the same dc value, which is represented as VCC unless otherwise specified. However, high-frequency filtering is suggested between the individual supplies.

Pin	Symbol*	Type [†]	Level	Name/Description
E13, E14, F13, G15	VCCA	I	Power	Analog Power Supply (3.3 V).
B13, C4, D7, D9, G5, G14, H1, J5, J6, J13, K9, K11, L6, L8	VCCD	Ι	Power	Digital Power Supply (3.3 V).
A1—A4, A6, A10, A12—A15, B1—B4, B6, B8, B10, B12, B14, B15, C1—C3, C6, C10, C12, D5, D11, D13—D15, E1—E4, E6, E8, E10—E12, F5, F6, F8, F10, F11, G1—G4, G6—G11, H2, H3, H5—H13, J2—J4, J7—J12, K2—K4, K6—K8, K10, L2—L5, L7, L10—L13, M2, M4, M6, M7, M9, M11—M13, N4, N6, N9, N11—N13, N15, P3, P14, P15,	GND		Ground	Ground.
R1, R14, R15				

* Differential pairs are indicated by P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.

 \uparrow I = input, O = output. I^u indicates an internal pull-up resistor on this pin. I^d indicates an internal pull-down resistor on this pin.

Functional Overview

The TTRN0110G performs the clock synthesis and 16:1 data multiplexing operations required to support 10 Gbits/s* OC-192/STM-64 applications compliant with *Telcordia Technologies* and ITU standards. Parallel 622 Mbits/s data is clocked into an input register. Both forward directional and contradirectional clocking modes are supported as well as a clockless data transfer mode. The data is then multiplexed into a 10 Gbits/s serial stream and output buffered for interfacing to a laser driver. A 10 GHz clock is synthesized from a reference clock and is used to retime the serial data. The 10 GHz clock is optionally available as an output.

FEC Rate Support

The TTRN0110G will support both the normal OC-192/STM-64 rate of 9.9532 GHz and the forward error correction (FEC) rate of 10.6642 GHz. The FECN pin selects the rate at which the part is operating. Throughout this document, most specifications are given in terms of the normal operating rate only. All frequency-based specifications are to be multiplied by 15/14 when operating at the FEC rate and all time-based specifications, with the exception of electrical signal rise and fall times, are to be multiplied by 14/15 when operating at the FEC rate. For example, the reference clock would need to be applied at 166.628 MHz or 666.515 MHz and the parallel data interface would operate at 666.515 MHz when FECN = 0.

Clock Synthesizer Operation

The clock synthesizer uses a PLL to synthesize a 10 GHz clock from a reference frequency. A 622 MHz clock derived from the 10 GHz synthesized clock may be used to clock in the parallel data in contradirectional clocking applications.

Clock Synthesizer Loop Filter

A typical loop filter that provides adequate damping for less than 0.1 dB of jitter peaking is shown in Figure 3. Connect the filter components to LFP and LFN. The component values can be varied to adjust the loop dynamic response (see Table 6).

Components	Values for 8 MHz Loop Bandwidth
C1 [†]	TBD μF ± 10%
C2, C3	TBD pF ± 20%
R1	TBD $\Omega \pm 5\%$

Table 6. Clock Synthesizer Loop Filter Component Values

† Capacitor C1 should be either ceramic or nonpolar.

5-8061(F).c

Figure 3. Clock Synthesizer Loop Filter Components

* The OC-192/STM-64 data rate of 9.95328 Gbits/s is typically approximated as 10 Gbits/s in this document when referring to the application rate. Similarly, the low-speed parallel interface data rate of 622.08 Mbits/s is typically approximated as 622 Mbits/s. The exact frequencies are used only when necessary for clarity.

Clock Synthesizer Operation (continued)

Clock Synthesizer Settling Time

The clock synthesizer will acquire phase/frequency lock after a valid REFCLKP/N signal is applied. The actual time to acquire lock is a function of the loop bandwidth selected. The loop will acquire lock within 5 ms when using the external loop bandwidth components corresponding to a corner of less than 8 MHz.

Loss of Lock Indicator (LCKLOSSN)

The LCKLOSSN pin indicates (active-low) when the clock synthesizer has exceeded phase-lock limits with the incoming REFCLKP/N phase. The lock detect function compares the phases of the input 155 MHz or 622 MHz clock at the REFCLKP/N pins with the internally generated 622 MHz output clock at the CK622P/N pin. When the phase difference in the two signals is close to zero as determined by a second internal phase detector and filter, the lock detect signal LCKLOSSN is set to a logic high. When the phase difference between the two signals is changing at a rate exceeding the filter's cutoff frequency, the TTRN0110G is declared out of lock and LCKLOSSN is set to a logic low. If a set of highly damped phase-locked loop parameters is chosen, LCKLOSSN may exhibit more than one positive edge transition during the acquisition process before a steady logic-high state is achieved.

Upon a transition from the out-of-lock condition to the in-lock condition, the parallel data storage element pointers are centered.

Clock Synthesizer Generated Jitter

The clock synthesizer's generated jitter performance meets the requirements shown in Table 7. These specifications apply to the jitter generated at the 10 GHz clock pins CK10GP/N when the jitter on the reference clock REFCLKP/N is within the specifications given in Table 10 on page 20, and the loop filter components are chosen to provide a loop bandwidth of less than 8 MHz.

Table 7. Clock Synthesizer Generated Jitter Specifications

Parameter	Typical	Max (Device)*	Unit
Generated Jitter (p-p) SONET Rate: Measured with 50 kHz to 80 MHz Bandpass Filter 1 UI = 1/9.95328 GHz	TBD	0.09	Ulp-p
Generated Jitter (p-p) FEC Rate: Measured with ?? kHz to ?? MHz Bandpass Filter 1 UI = (14/15)(9.95328 GHz)	TBD	0.09	Ulp-p

* This denotes the device specification for system SONET/SDH compliance when the loop filter in Table 6 and Figure 3 is used.

Clock Synthesizer Operation (continued)

Clock Synthesizer Jitter Transfer

The clock synthesizer's jitter transfer performance meets the requirement shown in Figure 4 when the loop filter values shown in Table 6 on page 11 are used.

Figure 4. Clock Synthesizer Jitter Transfer

Multiplexer Operation

The parallel 622 Mbits/s data is clocked into an input buffer then clocked into a 16:1 multiplexer. The relationship between the parallel D[15:0]P/N input data and the serial output data D10GP/N is given in Figure 5. The D15 bit is the most significant bit (MSB) and is shifted out first in time in the serial output stream.

10 GHz Clock Output Enable (ENCK10G)

The 10 GHz clock output CK10GP/N may be disabled by setting the ENCK10G pin to logic low. ENCK10G is an active-high CMOS input with a pull-up resistor so the default condition will enable the CK10GP/N output and a ground or logic-low signal must be applied to disable the CK10GP/N output. When disabled, the CK10GP/N pins should be either left floating or be connected to a load which returns to VCC. The output must not be connected directly to ground when it is disabled.

Loopback 10 GHz Data Output (LBDP/N, ENLBDN)

An alternate 10 Gbits/s CML data output is available on the LBDP/N pin. This pin is provided for use in system loopback testing and avoids the need for off-chip signal splitting of the data signal path. The alternate 10 Gbits/s loopback data output may be enabled by setting the ENLBDN pin to logic low. ENLBDN enable is an active-low CMOS input with a pull-up resistor so the default condition will disable the LBDP/N output, and a ground or logic-low signal must be applied to enable the loopback output. When disabled, the LBDP/N pin should be either left floating, or be connected to a load which returns to VCC. The output must not be connected directly to ground when it is disabled.

Reset (RESETN)

The RESETN signal must be held active low for a minimum of 6.4 ns when the internal VCO is active and running, in order for the internal logic to be completely reset.

Clocking Modes and Timing Adjustments

The TTRN0110G supports four timing modes for the 622 Mbits/s data input: forward directional 622, forward directional 311, contradirectional, and clockless transfer, as selected by the CLKMOD[1:0] pins.

Forward Directional 622 Clocking Mode (CLKMOD[1:0] = 00, EXTCNTR, PICLKP/N, OVRFLW)

In forward directional 622 clocking mode (CLKMOD[1:0] = 00), data is clocked into a 16-bit wide input register on the TTRN0110G device by the PICLKP/N parallel input clock. The setup and hold times for the data relative to PICLK are given in Figure 8 on page 24 and Table 18 on page 26. An internal data buffer is used to absorb timing drift between PICLK and the internal clocks derived from the 10 GHz internal oscillator. A PICLK phase drift of up to \pm 1600 ps relative to the internal clocks can be absorbed by the buffer, as long as the bandwidth of this phase drift is less than 16 MHz. Note that the read and write addresses for the data buffer must be initially reset in order for the buffer to absorb the full range of PICLK phase drift.

The read and write addresses for the data buffer are reset at the time the PLL acquires lock and the loss of lock indicator transitions from the out-of-lock condition to the in-lock condition. After LCKLOSSN goes high the buffer will be centered and data integrity will be obtained within approximately $2 \,\mu$ s.

The data buffer can also be recentered by applying EXTCNTR (active high) for a minimum of 6.4 ns. After EXTCNTR goes low the buffer will be centered and data integrity will be lost and subsequently restored within approximately 2 μ s.

If the timing drift exceeds ± 1600 ps, the data buffer will indicate overflow with a logic-high signal on the OVRFLW pin for a minimum of 6.4 ns. After a time interval of 4.8 ns after OVRFLW goes low, the buffer will be recentered and data integrity will be lost and subsequently restored within approximately 2 μ s. During the 11.2 ns between the rising edge of OVRFLW and the recentering of the buffer, data integrity may be lost if the timing drift exceeds ± 2000 ps.

If the output clock CK622P/N is not used when in CLKMOD[1:0] = 00, it can be left unconnected to conserve power.

Forward Directional 311 Clocking Mode (CLKMOD[1:0] = 10, EXTCNTR, PICLKP/N, OVRFLW)

In forward directional 311 clocking mode (CLKMOD[1:0] = 10), data is clocked into a 16-bit wide input register on the TTRN0110G device by the PICLKP/N parallel input clock. In contrast to forward directional 622 mode, the PICLK signal is at half the data rate (311 MHz instead of 622 MHz). The setup and hold times for the data relative to PICLK are given in Figure 9 on page 24 and Table 18 on page 26. An internal data buffer is used to absorb timing drift between PICLK and the internal clocks derived from the 10 GHz internal oscillator. A PICLK phase drift of up to \pm 1600 ps relative to the internal clocks can be absorbed by the buffer, as long as the bandwidth of this phase drift is less than 500 kHz. Note that the read and write addresses for the data buffer must be initially reset in order for the buffer to absorb the full range of PICLK phase drift.

The read and write addresses for the data buffer are reset at the time the PLL acquires lock and the loss of lock indicator transitions from the out-of-lock condition to the in-lock condition. After LCKLOSSN goes high, the buffer will be centered and data integrity will be obtained within approximately 2 μ s.

The data buffer can also be recentered by applying EXTCNTR (active high) for a minimum of 6.4 ns. After EXTCNTR goes low, the buffer will be centered and data integrity will be lost and subsequently restored within approximately 2 μ s.

If the timing drift exceeds ± 1600 ps, the data buffer will indicate overflow with a logic-high signal on the OVRFLW pin for a minimum of 6.4 ns. After a time interval of 4.8 ns after OVRFLW goes low, the buffer will be recentered and data integrity will be lost and subsequently restored within approximately 2 μ s. During the 11.2 ns between the rising edge of OVRFLW and the recentering of the buffer, data integrity may be lost if the timing drift exceeds ± 2000 ps.

If the output clock CK622P/N is not used when in CLKMOD[1:0] = 10 it can be left unconnected to conserve power.

Lucent Technologies Inc.

Clocking Modes and Timing Adjustments (continued)

Contradirectional Clocking Mode (CLKMOD[1:0] = 01, PHADJ[1:0], EXTCNTR)

In the contradirectional clocking mode (CLKMOD[1:0] = 01) the TTRN0110G device sends a 622 MHz clock with one of four user-selectable phases out to the upstream device for clocking the data toward the TTRN0110G. The user can program PHADJ[1:0] to adjust the phase of CK622P/N as a function of PWB layout and upstream device propagation delay in order to meet the setup and hold time of the 622 Mbits/s data input to the TTRN0110G. PHADJ[1:0] changes the phase of the CK622P/N clock without changing the input data sampling time. PHADJ[1:0] setting information is given in Table 8, and the phase relationship of CK622P/N for each PHADJ[1:0] setting is shown in Figure 6.

Input Pins		Phase
PHADJ[1]	PHADJ[0]	
0	0	(See part A of Figure 6.)
1	1	(See part B of Figure 6.)
1	0	(See part C of Figure 6.)
0	1	(See part D of Figure 6.)

In this mode, the TTRN0110G input data still passes though the data buffer described in the forward directional clocking sections, however, there will no longer be any phase drift or overflow since the CK622P/N output serves as the master clock for the upstream device. The read and write addresses for the data buffer are initially reset at the time the PLL acquires lock and the loss of lock indicator transitions from the out-of-lock condition to the inlock condition. After LCKLOSSN goes high the buffer will be recentered and data integrity will be obtained within approximately 2 μ s.

5-8064(F).r2

Figure 6. CK622 Phase Relation vs. PHADJ Setting

Clocking Modes and Timing Adjustments (continued)

Clockless Transfer Mode (CLKMOD[1:0]= 11, EXTCNTR)

In clockless transfer mode (CLKMOD[1:0] = 11), data may be sent to the TTRN0110G device without providing PICLKP/N. An internal delay-locked loop (DLL) automatically produces a 622 MHz clock that is aligned to the parallel data based on the phase of the D0P/N data input. The skew of all data bits D[15:1]P/N relative to D0P/N must be less than 650 ps as shown in Figure 11 on page 25.

An internal data buffer is used to absorb timing drift between D0 and the internal clocks derived from the 10 GHz internal oscillator. A D0 phase drift of up to \pm 1600 ps relative to the internal clocks can be absorbed by the buffer, as long as the bandwidth of this phase drift is less than 500 kHz. Note that the read and write addresses for the data buffer must be initially reset in order for the buffer to absorb the full range of D[15:0]P/N phase drift.

The read and write addresses for the data buffer are reset at the time the PLL acquires lock and the loss of lock indicator transitions from the out-of-lock condition to the in-lock condition. After LCKLOSSN goes high the buffer will be centered and data integrity will be obtained within approximately $2 \,\mu$ s.

The data buffer can also be recentered by applying EXTCNTR (active high) for a minimum of 6.4 ns. After EXTCNTR goes low the buffer will be centered and data integrity will be lost and subsequently restored within approximately 2 μ s.

If the timing drift exceeds ± 1600 ps, the data buffer will indicate overflow with a logic-high signal on the OVRFLW pin for a minimum of 6.4 ns. After a time interval of 4.8 ns after OVRFLW goes low the buffer will be recentered and data integrity will be lost and subsequently restored within approximately 2 μ s. During the 11.2 ns between the rising edge of OVRFLW and the recentering of the buffer, data integrity may be lost if the timing drift exceeds ± 2000 ps.

If the output clock CK622P/N is not used when in CLKMOD[1:0] = 11, it can be left unconnected to conserve power.

Because the clockless data transfer mode uses the transitions on the D0 data bit as a phase reference for clocking the data, a constraint of a maximum number of consecutive zeroes of less than **TBD** data periods is placed on the D0 bit when operating in the clockless data transfer mode.

CML Output Structure (Used on Pins D10GP/N, CK10GP/N, LBDP/N)

The CML architecture is essentially a current-steering mechanism combined with an amplifier. This makes the output swing of the signal a function of the termination resistor and the output current. The on-chip, 50 Ω termination resistor provides a back termination and the output may be direct or ac-coupled to the load. For the direct coupled case, the 50 Ω load should be referenced to the positive 3.3 V supply, VCC. This will ensure dc levels that comply with the limits set in Table 16 and Table 17 on page 23. The value for RREFCML is also given in these tables.

0358(F)

Figure 7. Typical CML Output Structure

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Min	Max	Unit
Power Supply Voltage (VCC)	—	—	V
Storage Temperature	-40	125	°C
Pin Voltage	GND – 0.5	Vcc + 0.5	V

Handling Precautions

Although protection circuitry has been designed into this device, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. Lucent employs a human-body model (HBM) and charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used in the defined model. No industrywide standard has been adopted for the CDM. However, a standard HBM (resistance = 1500 Ω , capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes:

Device	Voltage
TTRN0110G	TBD

Operating Conditions

Table 9. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Power Supply (dc voltage)	_	3.135	3.3	3.465	V
Ground	_	—	_	_	V
Input Voltage:					
Low	VIL	See Table 13,	See Table 13,	See Table 13,	V
High	VIH	Table 14.	Table 14.	Table 14.	V
Temperature:					
Ambient	_	-40	—	85	°C
Power Dissipation:	PD	—	1.2	TBD	W
LBD Disabled					
Power Dissipation:	PD	—	1.7	TBD	W
D10G Active, CK10G Active,					
Power Dissipation:	PD	—	1.9	TBD	W
LBD Active					

Electrical Characteristics

Reference Frequency (REFCLKP/N, REFFREQ) (Standard SONET Rate)

The device requires a 155.52 MHz or a 622.08 MHz differential LVDS reference clock input. Table 10 provides the characteristics of the REFCLKP/N input.

Table 10. Reference Frequency Cha	aracteristics (standard SON	ET)
-----------------------------------	-----------------------------	-----

Parameter	Min	Тур	Мах	Unit
Reference Frequency (REFCLKP/N):				
When REFFREQ = 0	—	155.52	—	MHz
When REFFREQ = 1	—	622.08	—	MHz
Reference Frequency Tolerance*	-20		20	ppm
Duty Cycle	40		60	%
Phase Jitter [†]	_	_	TBD	ps(rms)
Temperature [‡]	-40	_	85	°C
Supply Voltage [‡]	3.00	_	3.60	V

* Includes effects of power supply variation, temperature, electrical loading, and aging. The ±20 ppm tolerance is required to meet SONET/SDH requirements. For non-SONET/SDH compliant systems, looser tolerances may apply.

† Measured under one 3.3 V LVDS load. Includes frequency components up to 8 MHz.

[‡] Specified range is to be compatible with environmental specification of TTRN0110G. Applications requiring a reduced temperature range may specify the reference frequency oscillator accordingly.

Reference Frequency (REFCLKP/N, REFFREQ) (FEC Rate)

The device requires a (15/14)155.52 MHz or a (15/14)622.08 MHz differential LVDS reference clock input. Table 11 provides the characteristics of the REFCLKP/N input.

Table 11. Reference Frequency Characteristics (FEC rate)

Parameter	Min	Тур	Max	Unit
Reference Frequency (REFCLKP/N):				
When REFFREQ = 0	—	(15/14)155.52	—	MHz
When REFFREQ = 1	—	(15/14)622.08	_	MHz
Reference Frequency Tolerance*	-20	—	20	ppm
Duty Cycle	40	—	60	%
Phase Jitter [†]	—	—	TBD	ps(rms)
Temperature [‡]	-40	—	85	°C
Supply Voltage [‡]	3.00	—	3.60	V

* Includes effects of power supply variation, temperature, electrical loading, and aging. The ±20 ppm tolerance is required to meet SONET/SDH requirements. For non-SONET/SDH compliant systems, looser tolerances may apply.

† Measured under one 3.3 V LVDS load. Includes frequency components up to 8 MHz.

‡ Specified range is to be compatible with environmental specification of TTRN0110G. Applications requiring a reduced temperature range may specify the reference frequency oscillator accordingly.

Electrical Characteristics (continued)

LVDS, CMOS, CML Output Pins

Notes:

- 1. For Table 12 through Table 19, Vcc = 3.3 V \pm 5%, Tambient = -40 °C to +85 °C.
- 2. For more information on interpreting CML specifications, see the CML Output Structure (Used on Pins D10GP/N, CK10GP/N, LBDP/N) section on page 18.

Applicable	Symbol	Parameter	Conditions	Min	Тур	Max	Units
Pins							
CK622P/N,	Voh	Output Voltage High,	Rload = $100 \Omega \pm 1\%$	—		1475	mV
CK155P/N		Voa or Vob					
	Vol	Output Voltage Low,	Rload = 100 $\Omega \pm 1\%$	925		—	mV
		Voa or Vob					
	Vod	Output Differential Voltage	Rload = 100 $\Omega \pm 1\%$	250	—	400	mV
	Vos	Output Offset Voltage	Rload = $100 \Omega \pm 1\%$	1125	_	1275	mV
	Ro	Differential Output	Vcm = 1.0 V and 1.4 V	80	100	280	Ω
		Impedance					
	ΔRo	Ro Mismatch Between	Vcm = 1.0 V and 1.4 V			10	%
		A & B					
	∆Vod	Change in Vod Between	Rload = $100 \Omega \pm 1\%$			25	mV
		Logic 0 and Logic 1					
	ΔVos	Change in Vos Between	Rload = 100 Ω ± 1%		_	25	mV
		Logic 0 and Logic 1					
	lsa, Isb	Output Current	Driver shorted			24	mA
			to GND				
	Isab	Output Current	Drivers shorted	-		12	mA
			together				
	lxa , lxb	Power-Off Output Leakage	—	_	—	TBD	mA
		Data Vod:					
	trised	Rise Time, 20% to 80%	Zload = $100 \Omega \pm 1\%$	200		450	ps
	tfalld	Fall Time, 20% to 80%	Zload = $100 \Omega \pm 1\%$	200		450	ps
		Clock Vod:					
	trisec	Rise Time, 20% to 80%	Zload = $100 \Omega \pm 1\%$	100	—	450	ps
	tfallc	Fall Time, 20% to 80%	Zload = $100 \Omega \pm 1\%$	100	—	450	ps
	tskew1	Differential Skew*	_	_	_	TBD	ps
	tskew2	Channel to Channel*	—	—		200	ps

Table 12. LVDS Output Pin Parametrics

* As defined in the $IEEE^{\dagger}$ standard 1596.3 -1996.

† IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.

Electrical Characteristics (continued)

LVDS, CMOS, CML Output Pins (continued)

Table 13. LVDS Input Pin Parametrics

Applicable Pins	Symbol	Parameter	Conditions	Min	Тур	Мах	Units
D[15:0]P/N, REFCLKP/N	Vcm	Input Common Mode Voltage Range	Avg(Via,Vib)	0	1200	2400	mV
PICLKP/N	Vdiff	Input Peak Differential Voltage	Via-Vib	100	—	800	mV
	Vhyst	Threshold Hysteresis*	(+Vid) – (–Vid)	_	—	_	mV
	Rin	Differential Input Impedance [†]	f = 250 MHz	80	100	120	Ω

* Buffer will not produce output transitions when input is open-circuited.

† Looser than ICORE/IEEE spec of ±10 $\Omega.$

Table 14. CMOS Input Pin Characteristics

Applicable	Symbol	Parameter	Conditions	Min	Мах	Unit
Pins						
RESETN,	Vih	Input Voltage High	—	Vcc – 1.0	Vcc	V
FECN,	VIL	Input Voltage Low	—	GND	1.0	V
	Iн	Input Current High Leakage	VIN = VCC	—	10	μA
ELKMOD[1:0], REFFREQ, ENCK10G, ENLBDN, ENCK155N, TESTN	Ιι∟	Input Current Low Leakage	VIN = GND	-225		μΑ
EXTCNTR	VIH	Input Voltage High	—	Vcc – 1.0	Vcc	V
	VIL	Input Voltage Low		GND	1.0	V
	Іін	Input Current High Leakage	VIN = VCC	—	225	μA
	١L	Input Current Low Leakage	VIN = GND	-10		μA

Table 15. CMOS Output Pin Characteristics

Applicable Pins	Symbol	Parameter	Conditions	Min	Мах	Unit
LCKLOSSN	Vон	Output Voltage High	IOH = -4.0 mA	Vcc – 0.5	Vcc	V
OVRFLW	Vol	Output Voltage Low	IOL = 4.0 mA	GND	0.5	V
	Ci	Output Load Capacitance		—	15	pF

Electrical Characteristics (continued)

LVDS, CMOS, CML Output Pins (continued)

Table 16. CML Output Pin dc Characteristics

Applicable Pins	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
D10GP/N,	Vol	Output Voltage Low	$RL = 50 \Omega$,	Vcc – 1.2	—	—	V
CK10GP/N	Vон	Output Voltage High	Referenced to VCC	—	_	Vcc + 0.3	V
	Vamp	Voltage Amplitude Single-Ended	RREFCML = TBD kΩ	400	500	600	mV

Table 17. CML Output Pin dc Characteristics (High Amplitude Data Swing)

Applicable	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pins							
D10GP/N,	Vol	Output Voltage Low	RL = 50 Ω , Referenced to VCC	Vcc – 1.6		—	V
LBDP/N	Vон	Output Voltage High			_	Vcc + 0.3	V
	Vamp	Voltage Amplitude Single-Ended	RREFCML = TBD kΩ	600	700	800	mV
CK10GP/N	Vol	Output Voltage Low		Vcc – 1.2		_	V
	Vон	Output Voltage High				Vcc + 0.3	V
	VAMP	Voltage Amplitude Single-Ended		400	500	600	mV

Timing Characteristics

Note that all timing diagrams involving differential signals represent the positive signal as a solid line and the negative signal as a dashed line. This is especially important when referencing the rising or falling edge of a differential signal.

Transmit Timing

Figure 8 shows the required timing relationships between the input clock PICLKP/N and the input data D[15:0]P/N in forward directional 622 clocking mode.

0359(F)r.1

Figure 8. Transmit Timing Waveforms (Forward Directional 622 Clocking Mode)

Figure 9 shows the timing relationships between the input clock PICLKP/N and the input data D[15:0]P/N in forward directional 311 clocking mode.

0360(F)r.1

Figure 9. Transmit Timing Waveform (Forward Directional 311 Clocking Mode)

Timing Characteristics (continued)

Transmit Timing (continued)

Figure 10 shows the timing relationships between the output clock CK622P/N and the input data D[15:0]P/N. This relationship is true for both the contraclocking mode and the clockless transfer mode.

Note: Tsu and THOLD only apply in contraclocking mode when CLKMOD[1:0] = 01.

Figure 10. Transmit Timing Waveform (Contradirectional Clocking Mode)

Figure 11 shows the skew relationship between the D0P/N data remainder of the D[15:1]P/N data bus required to support clockless data transfer.

Figure 11. Transmit Timing Waveform (Clockless Transfer Mode)

0362(F)r.1

Timing Characteristics (continued)

Transmit Timing (continued)

The output 622 MHz clock and data signals are specified in Table 18.

Table 18. LVDS Input/Output Pin ac Timing Characteristics

Applicable	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pins							
CK622P/N	—	Duty Cycle	All signals differential	40	50	60	%
PICLKP/N	tPERIOD	Clock Period			1.6	—	ns
forward							
622							
PICLKP/N		Duty Cycle	All signals differential	45	50	55	%
forward		Clock Period			3.2		, o
directional	(FERIOD	CIUCK FEIIUU			5.2		115
311							
	I	Input	Timing		I.		I.
D[15:0]P/N,	ts∪	Setup from Clock Edge to	CLKMOD = 01,	TBD			ns
CK622P/N		D[15:0]P/N	All signals differential				
PICLKP/N	tHOLD	Hold from Clock Edge to	CLKMOD = 01,	TBD	_		ns
		D[15:0]P/N	All signals differential				
	tRISE,	Rise, Fall Times:	All signals differential	TBD	TBD	TBD	ps
	tFALL	20%—80%					
	tSKEW	Transition Skew Rise to Fall		-TBD	0	TBD	ps

Timing Characteristics (continued)

Transmit Timing (continued)

Figure 12 shows the timing relationships between the output 10 GHz clock CK10GP/N and the output 10 Gbits/s data D10GP/N.

Figure 12. Transmit Timing Waveform with 10 GHz Clock

The output 10 GHz clock and data signals from Figure 12 are characterized in Table 19.

Applicable	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pins							
CK10GP/N		Duty Cycle	RREFCML = TBD k Ω	40	50	60	%
	t PERIOD	CK10GP/N Clock Period		_	100	_	ps
D10GP/N,	tDD	Time Delay from Clock	$RL = 50 \Omega$	30	50	70	ps
CK10GP/N		Edge to Data Edge					
CK10GP/N	tRISE,	Rise, Fall Times:		15	25	35	ps
D10GP/N,	tFALL	20%—80%					
LBDP/N	t SKEW	Transition Skew Rise to Fall		-20	0	20	ps
	RLOSS	Output Return Loss:					
		10 GHz	—	—	12	—	dB
		< 7 GHz	_		15	_	dB

Table 19. CML Output Pin ac Timing Characteristics

0357(F)r.1

Outline Diagram

198-Pin BGA

Note: Dimensions are in millimeters. Tolerance is ±0.076 mm unless otherwise noted.

0627(F)

Ordering Information

Device Code	Package	Temperature	Comcode (Ordering Number)
TTRN0110G	198-pin BGA	–40 °C to +85 °C	108698465
—	_	—	_
	_	—	—

For additional in	nformation, contact your Microelectronics Group Account Manager or the following:
INTERNET:	http://www.lucent.com/micro
E-MAIL:	docmaster@micro.lucent.com
N. AMERICA:	Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
	1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC:	Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
	Tel. (65) 778 8833, FAX (65) 777 7495
CHINA:	Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai
	200233 P. R. China Tel. (86) 21 6440 0468, ext. 325, FAX (86) 21 6440 0652
JAPAN:	Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
	Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE:	Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148
	Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
	FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki),
	ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)

Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Copyright © 2000 Lucent Technologies Inc. All Rights Reserved microelectronics group

September 2000 DS00-346HSPL