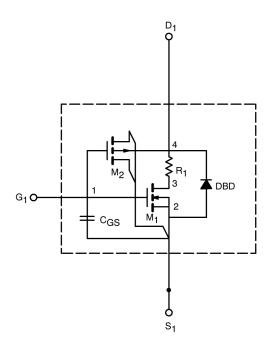
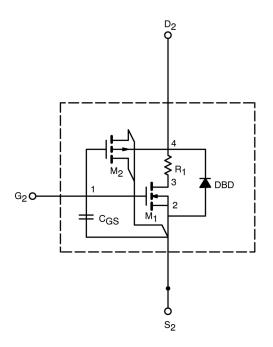


Dual N-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 70683 www.vishay.com 21-Jul-01 1

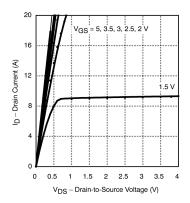
SPICE Device Model Si7904DN

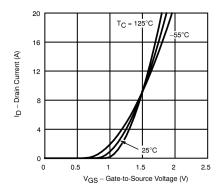
Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UN	LESS OTHERV	VISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 935\mu A$	0.53		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5V$, $V_{GS} = 4.5V$	175		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 4.5V, I _D = 7.7A	0.023	0.025	Ω
		$V_{GS} = 2.5V, I_{D} = 7A$	0.030	0.030	
		V _{GS} = 1.8V, I _D = 1A	0.038	0.037	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 10V, I_D = 7.7A$	24	23	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = 2.3A$, $V_{GS} = 0V$	0.8	0.70	V
Dynamic ^b					
Total Gate Charge	Q_g	V_{DS} = 10V, V_{GS} = 4.5V, I_D = 7.7A	9.8	10.2	nC
Gate-Source Charge	Q_{gs}		1.3	1.3	
Gate-Drain Charge	Q_{gd}		2.4	2.4	
Turn-On Delay Time	t _{d(on)}	$V_{DD}=10V,R_L=10\Omega$ $I_D\cong 1A,V_{GEN}=4.5V,R_G=6\Omega$ $I_F=~2.3A,di/dt=100~A/\mu s$	14	15	ns
Rise Time	t _r		16	50	
Turn-Off Delay Time	$t_{d(off)}$		56	60	
Fall Time	t _f		68	45	
Source-Drain Reverse Recovery Time	t _{rr}		37	40	

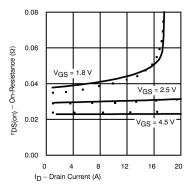
Notes

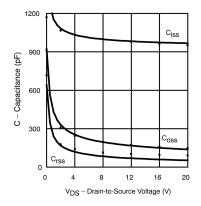
www.vishay.com Document Number: 70683


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.






Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data.

Document Number: 70683 www.vishay.com 21-Jul-01