

Integrated Device Technology, Inc

MULTILEVEL PIPELINE REGISTERS

PRELIMINARY IDT 29FCT520A/B IDT 29FCT521A/B

FEATURES:

- Equivalent to AMD's Am29520/21 bipolar Multilevel Pipeline Registers in pinout/function, speeds and output drive over full temperature and voltage supply extremes
- Four 8-bit high-speed registers
- · Dual two-level or single four-level push-only stack operation
- All registers available at multiplexed output
- Hold, transfer and load instructions
- Provides temporary address or data storage
- IoL = 48mA (commercial), 32mA (military)
- CMOS power levels (5μW typ. static)
- Substantially lower input current levels than AMD's bipolar (5μA typ.)
- TTL input and output level compatible
- · CMOS output level compatible
- Manufactured using advanced CEMOS[™] processing
- Available in 300 mil plastic and hermetic DIP, as well as LCC, SOIC and CERPACK
- Product available in Radiation Tolerant and Enhanced versions
- Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

T-46-09-09

The IDT29FCT520A/B and IDT29FCT521A/B each contain four 8-bit positive edge-triggered registers. These may be operated as a dual 2-level or as a single 4-level pipeline. A single 8-bit input is provided and any of the four registers is available at the 8-bit, 3-state output.

These devices differ only in the way data is loaded into and between the registers in 2-level operation. The difference is illustrated in Figure 1. In the IDT29FCT520A/B when data is entered into the first level (I = 2 or I = 1), the existing data in the first level is moved to the second level. In the IDT29FCT521A/B, these instructions simply cause the data in the first level to be overwritten. Transfer of data to the second level is achieved using the 4-level shift instruction (I = 0). Transfer also causes the first level to change. In either part I = 3 is for hold.

FUNCTIONAL BLOCK DIAGRAM

10=

CEMOS is a trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

JANUARY 1989

© 1989 Integrated Device Technology, Inc.

S10-45

DSC-4002/-1

T-46-09-09

PIN CONFIGURATIONS

DIP/CERPACK/SOIC TOP VIEW

LCC TOP VIEW

PIN DESCRIPTION

PIN NO.(1)	NAME	1/0	DESCRIPTION
3-10	D ₀ - D ₇	I	Register input port.
11	CLK	71	Clock input. Enter data into regis- ters on LOW-to-HIGH transitions.
1, 2	l ₀ , l ₁	1.	Instruction inputs. See Figure 1 and Instruction Control Tables.
23, 22	S ₀ , S ₁	1	Multiplexer select. Inputs either register A 1, A2, B1 or B2 data to be available at the output port.
13	ÖĒ	ı	Output enable for 3-state output port.
14-21	Y_7 - Y0	0	Register output port

NOTE:

REGISTER SELECTION

ſ	· S ₁	So	Register
Г	0	0 .	B ₂
١	. 0	- 1	B ₁
ı	1	0	A ₂
ı	1	1	A ₁

	DUAL 2-LEVEL -	SINGLE 4-LEVEL
IDT29FCT520A/B	A1 B1 A1 B1 A2 B2 B2 B2 B2	A1 B1 B2 B2 L = 0
IDT29FCT521A/B	A1 B1 A1 B1 A2 B2 A2 B2 = 1	A1 B1 B1 B2 B2 B2

1. I = 3 for hold.

Figure 1. Data Loading in 2-Level Operation

DIP configuration.

IDT29FCT520A/B AND IDT29FCT521A/B MULTILEVEL PIPELINE REGISTERS

MILITARY AND COMMERCIAL TEMPERATURE RANGES

ARSOLUTE MAXIMUM RATINGS (1)

SYMBOL	RATING	COMMERCIAL	MILITARY	UNIT
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
T _A	Operating Temperature	0 to +70	-55 to +125	°C
T _{BIAS}	Temperature Under Bias	-55 to + 125	-65 to +135	°C
T _{STG}	Storage Temperature	-55 to +125	-65 to +150	°C
PT	Power Dissipation	0.5	0.5	W
lout	DC Output Current	100	100	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress ratIng only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPAC	ITANCE (TA = +25°	°C, f = 1.0MHz)	T	-46	0-0	9-09
SYMBOL	PARAMETER ⁽¹⁾	CONDITIONS	TYP.	MAX.	UNIT	
C _{IN}	Input Capacitance	V _{IN} = 0V	6	10	рF	
COUT	Output Capacitance	V _{OUT} = 0V	8	12	рF	
						,

NOTE:

1. This parameter is measured at characterization but not tested.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: $V_{LC} = 0.2V$; $V_{HC} = V_{CO} - 0.2V$ Commercial: $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{CG} = 5.0V \pm 5\%$ Military: $T_A = -55^{\circ}C$ to $+125^{\circ}C$; $V_{CG} = 5.0V \pm 10\%$

SYMBOL	PARAMETER	TEST	CONDITIONS(1)	MIN.	TYP.(2)	MAX.	UNIT
V _{IH}	input HIGH Level	Guaranteed Logic High	2.0	_	_	v	
V _{IL}	Input LOW Level	Guaranteed Logic Low L	_	_	0.8	V	
Ин	Input HIGH Current		V _I = V _{CC}	-		5	·
1H 		V 14au	V ₁ = 2.7V	-	-	5(4)	·
1 _{IL}	Input LOW Current		V ₁ = 0.5V		-	-5(4)	μA
"L	input cow current	Guaranteed Logic High Level Guaranteed Logic Low Level V _I V _I V _I V _I V _I V _I V _{CC} = Max. V _{CC} = Max. V _{CC} = Max. V _{CC} = Min. V _{CC} = Min. V _{CC} = 3V, V _{IN} = V _{LC} or V _{HC} , I _C V _{CC} = 3V, V _{IN} = V _{LC} or V _{HC} , I _C V _{CC} = Min. V _{CC} = 3V, V _{IN} = V _{LC} or V _{HC} , I _C V _{CC} = Min. V _{CC} = Min.	V _i = GND -		_	-5	
			$V_{O} = V_{CC}$	· -	-	10	
loz Off State (High Impedance) V _{CC} = Max.	V - Hov	V ₀ = 2.7V	-	_	10(4)		
-02	Output Current	VCC = Max.	V ₀ = 0.5V	, - `	-	-10 ⁽⁴⁾	μA
			Vo = GND		-	-10	
los	Short Circuit Current	$V_{CC} = Max^{(3)}, V_O = GN$	D	-60	-120		mA
	•	$V_{CC} = 3V$, $V_{IN} = V_{LC}$ or	V _{HC} , I _{OH} = -32μA	V _{HC}	Vcc	-	
V _{OH}	Output HIGH Voltage	·	l _{OH} = -300μA	V _{HC}	Vcc.		
<u> </u>	- Acquare mark valuage		I _{OH} = -12mA MIL.	2.4	4.3		
			I _{OH} = -15mA COM'L.	2.4	4.3	-	٧
		$V_{CC} = 3V$, $V_{IN} = V_{LC}$ or	V _{HC} , I _{OL} = 300µA	-	GND	V _{LC}	
VoL	Output LOW Voltage	V - Nin	I _{OL} = 300µA		GND	V _{LC}	
<u> </u>		$V_{iN} = V_{iH} \text{ or } V_{iL}$	I _{OL} = 32mA MIL.	-	. 0.3	0.5	.,
	<u> </u>		I _{OL} = 48mA COM'L.	-	0.3	0.5	٧

- 1. For conditions shown as max, or min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 5.0V_1 + 25$ °C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.
- 4. This parameter is guaranteed but not tested.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

POWER SUPPLY CHARACTERISTICS

IDT29FCT520A/B AND IDT29FCT521A/B MULTILEVEL PIPELINE REGISTERS

 $V_{LC} = 0.2V; V_{HC} = V_{CC} - 0.2V$

SYMBOL	PARAMETER	TEST CONDITIONS	TEST CONDITIONS (1)				UNIT
I _{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$ $V_{IN} \ge V_{HC}; V_{IN} \le V_{LO}$ $f_{CP}^c = f_1 = 0$		1	0.001	1.5	mA
Δι _{сс}	Quiescent Power Supply Current TTL Inputs HIGH	V _{CC} = Max. V _{IN} = 3.4V ⁽³⁾	erik og gregorion og det en og det gregorion	; I.	0.5	2.0	mA
I _{CCD}	Dynamic Power Supply Current ⁽⁴⁾	V _{CO} = Max, Outputs Open OE = GND One Input Toggling 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ V _{LC}	1	0.15	0.25	mA/MHz
		V _{CC} = Max. Outputs Open 1 _{CP} = 10MHz 50% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ V _{LC} (FCT)		2.3	4	
	4.0	OE = GND One Bit Toggling at f ₁ = 5MHz 50% Duty Cycle	V _{IN} = 3.4V or V _{IN} = GND		2.8	6	mA
l _o	Total Power Supply Current ⁽⁶⁾	V _{CC} = Max. Outputs Open f _{CP} = 10MHz 60% Duty Cycle	V _{IN} ≥ V _{HC} V _{IN} ≤ V _{LC} (FCT)	• : : - : : • ₋ :	9.8	17.8 ⁽⁵⁾	
		OE = GND Eight Bits and Four Controls Toggling at f ₁ = 5MHz 50% Duty Cycle	V _{IN} = 3.4V or V _{IN} = GND	_	13.0	30.8 ⁽⁵⁾	

NOTES:

- 1. For conditions shown as max, or min., use appropriate value specified under Electrical Characteristics for the applicable device type.

 2. Typical values are at V_{CO} = 5.0V, +25°C ambient and maximum loading.

 3. Per TTL driven input (V_{IN} = 3.4V); all other inputs at V_{CO} or GND.

 4. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

 5. Values for these conditions are examples of the I_{CC} formula. These limits are guaranteed but not tested.

- 5. Values for these conditions are examples of the I_{CC} formula. These limits are g
 6. I_C = I_{QUISCENT} + I_{INPUTS} + I_{DYNAMO}
 I_C = I_{CC} + ΔI_{CC} D_HN_T + I_{CCD} (f_{CP}/2 + f₁ N₁)
 I_{CC} = Quiescent Current
 ΔI_{CC} = Power Supply Current for a TTL High Input (V_{IN} = 3.4V)
 D_H = Duty Cycle for TTL Inputs High
 N_T = Number of TTL Inputs at D_H
 I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 f_{CP} = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 f₁ = Input Frequency
 N_L = Number of Inputs at f₁

- n = input requency
 N₁ = Number of Inputs at f₁
 All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

T-4	16-	09-	09
-----	-----	-----	----

			-	IDT2	9FCT5	20A/21A	,		IDT2	9FCT52	20B/21B	(4)	
SYMBOL	PARAMETER	CONDITIONS ⁽¹⁾	TYP ⁽³⁾	co	M'L.	M	IIL.		CO	Λ'L.	M	IL	UNIT
			1100	MIN.(2)	MAX.	MIN (2)	MÁX.	TYP(3)	MIN.(2)	MAX.	MIN.(2)	MAX.	
t _{PHL} t _{PLH}	Clock to Data Output		7.0	2.0	14,0	2.0	16.0	_	2.0	7.5	2.0	8.0	ПS
t _{PHL} t _{PLH}	S ₀ , S ₁ to Data Output		7.0	2.0	13.0	2.0	15.0	-	2.0	7.5	2.0	8.0	ns
t _{SU}	Set-up Time Input Data to Clock		-	5.0	-	6.0	_	-	2.5	- "	2.8	» –	ns
t _H	Hold Time Input Data to Clock	R _L = 500Ω C _L = 50pF	_	2.0	_	2.0	-	-	2.0	Â	2.0	-	ns
t _{su}	Set-up Time Instruction to Clock		_	5.0	1	6.0	· -	1	4.0 &	-	4.5		ns
t _H	Hold Time Instruction to Clock			2.0	-	2.0	_	1	2:0	4	2.0	-	ris
t _{PHZ}	Output Disable Time	÷	6.0	1.5	12.0	1.5	13.0	- ,	1.5	7.0	1.5	7.5	ns
t _{PZH} t _{PZL}	Output Enable Time		9.0	1.5	15.0	1.5	16.0	70	1.5	7.5	1.5	8.0	ns
t _W	Clock Pulse Width HIGH or LOW		4.0	7.0	-	8.0	_ ·		5.5	-	6.0	-	ns

NOTES:

- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Typical values are at $V_{CC} = 5.0V$, $+25^{\circ}C$ ambient and maximum loading.
- 4. Preliminary information only.

As companies like IDT continue to integrate more onto each device and put each device into smaller packages such as surface mount devices, the board level testing becomes more complex for the designer and the manufacturing divisions of companies. To help this situation, serial diagnostics was invented. This allows for observation of critical signals deep within the system. During system test, when an error is observed, these signals may be modified in order to zero in on the fault in the system.

Serial diagnostics is primarily a scheme utilizing only a few pins (4) to examine and after the internal state of a system for the our

Serial diagnostics is primarily a scheme utilizing only a few pins (4) to examine and alter the internal state of a system for the purpose of monitoring and diagnosing system faults. It can be used at many points in the life of a product: design debug and verification, manufacturing test and field service. This document describes a serial diagnostic scheme which was developed at IDT and will be used in future VLSI logic devices designed by IDT.

CMOS TESTING CONSIDERATIONS

Special test board considerations must be taken into account when applying high-speed CMOS products to the automatic test environment. Large output currents are being switched in very short periods and proper testing demands that test set-ups have minimized inductance and guaranteed zero voltage grounds. The techniques listed below will assist the user in obtaining accurate testing results:

 All input pins should be connected to a voltage potential during testing. If left floating, the device may oscillate, causing improper device operation and possible latchup.

- 2) Placement and value of decoupling capacitors is critical. Each physical set-up has different electrical characteristics and it is recommended that various decoupling capacitor sizes be experimented with. Capacitors should be positioned using the minimum lead lengths. They should also be distributed to decouple power supply lines and be placed as close as possible to the DUT power pins.
- 3) Device grounding is extremely critical for proper device testing. The use of multi-layer performance boards with radial decoupling between power and ground planes is necessary. The ground plane must be sustained from the performance board to the DUT interface board and wiring unused interconnect pins to the ground plane is recommended. Heavy gauge stranded wire should be used for power wiring, with twisted pairs being recommended for minimized inductance.
- 4) To guarantee data sheet compliance, the input thresholds should be tested per input pin in a static environment. To allow for testing and hardware-induced noise, it may be necessary to use V_{IL} ≤ 0V and V_{IH} ≥ 3V for ATE testing purposes.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

IDT29FCT520A/B AND IDT29FCT521A/B MULTILEVEL PIPELINE REGISTERS

- 1-485

ORDERING INFORMATION

Commercial (0°C to +70°C)

Military (-55°C to +125°C) Compliant to MIL-STD-883, Class B

Plastic DIP CERDIP Leadless Chip Carrier CERPACK Small Outline IC

Multilevel Pipeline Register Multilevel Pipeline Register Fast Multilevel Pipeline Register Fast Multilevel Pipeline Register