NAPC/PHILIPS SEMICOND

8-Channel analog multiplexer/demultiplexer

74LV4051

FEATURES

- Optimized for Low Voltage applications: 1.0 to 6.0 V
- Accepts TTL input levels between V_{cc} = 2.7 V and V_{cc} = 3.6 V
- Low typ "ON" resistance: 50 Ω at V_{CC} V_{EE} = 4.5 V 70 Ω at V_{CC} V_{EE} = 3.0 V 120 Ω at V_{CC} V_{EE} = 2.0 V
- Logic level translation: to enable 3 V logic to communicate with ± 3 V analog signals
- Typical "break before make" built in
- Output capability: nonstandard
- I_{cc} category: MSI

GENERAL DESCRIPTION

The 74LV4051 is a low-voltage CMOS device and is pin and function compatible with the 74HC/HCT4051.

The 74LV4051 is a 8-channel analog multiplexer/demultiplexer with three digital select inputs (S₀ to S₂), an active LOW enable input (E), eight independent inputs/outputs (Y₀ to Y₇) and a common input/output (Z).

With \overline{E} LOW, one of the eight switches is selected (low impedance ON-state) by S₀ to S₂. With \overline{E} HIGH, all switches are in high impedance OFF-state, independent of S₀ to S₂.

 $V_{\rm cc}$ and GND are the supply voltage pins for the digital control inputs ($S_{\rm o}$ to $S_{\rm 2}$, and \overline{E}). The $V_{\rm cc}$ to GND ranges are 1.0 to 6.0 V. The analog inputs/outputs ($Y_{\rm o}$ to $Y_{\rm 7}$, and Z) can swing between $V_{\rm cc}$ as a positive limit and $V_{\rm EE}$ as a negative limit. $V_{\rm cc}$ - $V_{\rm EE}$ may not exceed 6.0 V. For operation as a digital multiplexer/demultiplexer, $V_{\rm EE}$ is connected to GND (typically ground).

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_r \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PZH} /t _{PZL}	turn "ON" time E to V _{os} S _n to V _{os}	$C_L = 15 \text{ pF}$ $R_L = 1K\Omega$ $V_{\infty} = 3.3 \text{ V}$	22	ns
t _{PHZ} /t _{PLZ}	turn "OFF" time E to V _{os} S _n to V _{os}		19	ns
C,	input capacitance		3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	22	pF
C,	maximum switch capacitance independent (Y) common (Z)		5 25	pF pF

Notes to the quick reference data

- 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW) $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma ((C_L + C_s) \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; C_L = output load capacity in pF; f_o = output frequency in MHz; C_s = max. switch capacitance in pF; V_{CC} = supply voltage in V; $\Sigma ((C_L + C_s) \times V_{CC}^2 \times f_o)$ = sum of the outputs.
- 2. The condition is $V_1 = GND$ to V_{CC}

ORDERING AND PACKAGE INFORMATION

	PACKAGES				
TYPE NUMBER	PINS	PACKAGE	MATERIAL	CODE	
74LV4051N	16	DIL	plastic	DIL16/SOT38Z	
74LV4051D	16	so	plastic	SO16/SOT109A	

PINNING

DIN NO	SYMBOL	NAME AND FUNCTION		
PIN NO.	STMBUL	NAME AND PONCTION		
3	z	common input/output		
6	E	enable input (active LOW)		
7	V _{EE}	negative supply voltage		
8	GND	ground (0 V)		
11, 10, 9	S ₀ to S ₂	select inputs		
13, 14, 15, 12, 1, 5, 2, 4	Y ₀ to Y ₇	independent inputs/outputs		
16	V _{cc}	positive supply voltage		