UDN-6540B 8-CHANNEL DMOS HIGH-VOLTAGE DRIVER

FEATURES

- 200 V Outputs
- CMOS, PMOS Compatible
- Internal Gate Limiting Resistors
- Diode Clamped Inputs and Outputs
- Improved Output SOA

The UDN-6540B is an eight-channel high-voltage DMOS driver capable of sinking 200 mA and maintaining an output OFF voltage of 200 V. This device has many possible applications such as driving piezoelectric elements, gas-discharge or electroluminescent displays, and other high-voltage power loads. This device is input compatible with 7-20 V logic such as PMOS, CMOS, and high-voltage open collector TTL.

Because DMOS outputs have output SOA superior to that of conventional bipolar technologies, the UDN-6540B is ideal for inductive load applications. Unlike NPN transistors, DMOS devices can operate safely to their breakdown voltage limit without risk of secondary breakdown (latch-back) or sacrifice of reliability.

Dwg. No. W-103

The UDN-6540B is furnished in a 22-pin dual inline package with 0.400" row centers and sink contact tabs. A copper-alloy lead frame provides maximum power dissipation using standard cooling methods. This lead configuration facilitates attachment of external heat-sinks for increased power dissipation with standard IC sockets and printed wiring boards.

Dwg. No. W-104

ABSOLUTE MAXIMUM RATINGS at +25°C Free-Air Temperature

Output Voltage, V _{DS}	200 V
Input Voltage, V _{IN}	20V
Output Current, IouT	250 mA
Power Dissipation, P _D	See Graph
Storage Temperature Range	~ 55°C to + 150°C
Operating Temperature Range Ta	- 20°C to + 85°C

Dwg. No. W-169

ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}C$

	Symbol	Test Conditions		Limits		
Characteristics				Max.	Units	
Output Leakage Current	Ipss	V _{DS} = 200 V, Gate Shorted to Source		10	μA	
Drain to Source ON Voltage	V _{DS(ON)}	$V_{GS} = 10 V$, $I_{OUT} = 100 \text{ mA}$	<u> </u>	2.5	V	
		$V_{GS} = 10 V$, $I_{OUT} = 200 \text{ mA}$		5.0	٧	
		$V_{GS} = 15V$, $I_{OUT} = 200 \text{ mA}$	_	4.0	V	
Input Threshold Voitage V _{TH}	V _{TH}	$I_{OUT} = 10 \text{ mA}, V_{DS} = 0.5 \text{ V}$		7.0	V	
		$I_{OUT} = 50 \text{ mA}, V_{DS} = 1.0 \text{ V}$	_	8.5	V	
Turn-On Delay	ton	$0.5E_{IN}$ to $0.5E_{OUT}$, $R_L = 1 k\Omega$, $V_{OUT} = 200 V$	_	0.5	μS	
Turn-Off Delay	toff	$0.5E_{IN}$ to $0.5E_{OUT}$, $R_L=1$ k Ω , $V_{OUT}=200$ V	_	0.5	μS	

BREAKDOWN CHARACTERISTICS

Dwg. No. SD-113

ALLOWABLE AVERAGE PACKAGE POWER DISSIPATION AS A FUNCTION OF TEMPERATURE

Dwg. No. W-105