Low-Voltage, Low R ${ }_{\text {ON }}$ Quad SPST Analog Switch

DESCRIPTION

The DG2041/2042/2043 are quad single-pole/single-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, fast switching, low on-resistance $\left(\mathrm{R}_{\mathrm{DS}(o n)}\right): 1 \Omega$ at 2.7 V) and small physical size, the DG2041/2042/2043 are ideal for portable and battery powered applications requiring high performance and efficient use of board space.
The DG2041/2042/2043 are built on Vishay Siliconix's new high density low voltage process. An epitaxial layer prevents latchup.
Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

FEATURES

- Halogen-free according to IEC 61249-2-21 Definition
- Low Voltage Operation (1.8 V to 5.5 V)
- Low On-Resistance - $\mathrm{R}_{\mathrm{DS}(o n)}: 1 \Omega$
- Fast Switching - $14 \mathrm{~ns} \mathrm{t}_{\mathrm{ON}}$
- Low Charge Injection - $\mathrm{Q}_{\mathrm{INJ}}: 1 \mathrm{pC}$
- Low Power Consumption
- TTL/CMOS Compatible
- TSSOP-16 and QFN-16 Packages
- Compliant to RoHS Directive 2002/95/EC

BENEFITS

- Reduced Power Consumption
- Simple Logic Interface
- High Accuracy
- Reduce Board Space

APPLICATIONS

- Cellular Phones
- Communication Systems
- Portable Test Equipment
- Battery Operated Systems
- Sample and Hold Circuits

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG2041

TRUTH TABLE - DG2041

Logic	Switch
0	On
1	Off

Switches Shown for Logic "0" Input

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG2042, DG2043

TRUTH TABLE - DG2042

Logic	Switch
0	Off
1	On

Switches Shown for Logic "0" Input

TRUTH TABLE - DG2043				Switches 1, 4	Switches 2, 3
Logic	Off	On			
0	On	Off			
1					

Switches Shown for Logic"0" Input

ORDERING INFORMATION		
Temp Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TSSOP-16	DG2041DQ-T1
		DG2041DQ-T1-E3
		DG2042DQ-T1
		DG2042DQ-T1-E3
		DG2043DQ-T1
		DG2043DQ-T1-E3
	QFN-16 ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$)	DG2041DN-T1-E4
		DG2042DN-T1-E4
		DG2043DN-T1-E4

ABSOLUTE MAXIMUM RATINGS				
Parameter		Symbol	Limit	Unit
Reference V+ to GND			-0.3 to +6	V
IN, COM, NC, $\mathrm{NO}^{\text {a }}$			-0.3 to (V++0.3)	
Continuous Current (Any terminal)			± 50	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)			± 200	
Storage Temperature (D Suffix)			-65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	TSSOP-16 ${ }^{\text {c }}$		450	mW
	QFN-16 (4 mm $\times 4 \mathrm{~mm})^{\text {d }}$		1880	

Notes:
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
d. Derate $23.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
e. Manual soldering with soldering iron is not recommended for leadless components. The QFN is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

SPECIFICATIONS (V+ = 2 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified $\mathrm{V}+=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ or $1.6 \mathrm{~V}^{\mathrm{e}}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$ $\mathrm{V}_{\text {COM }}$		Full	0		V+	V
On- Resistance	R_{ON}	$\mathrm{V}+=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.2 \mathrm{~V} / 1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room Full		3	$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	Ω
$\mathrm{R}_{\text {ON }}$ Flatness ${ }^{\text {d }}$	R_{ON} Flatness	$\mathrm{V}+=2 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0 \mathrm{~V}$ to $\mathrm{V}+\mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room			4.2	
$\mathrm{R}_{\text {ON }}$ Match Between Channels	$\Delta \mathrm{R}_{\text {ON }}$		Room			0.4	
Switch Off Leakage Current ${ }^{\text {f }}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=2.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.2 \mathrm{~V} / 2 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=2 \mathrm{~V} / 0.2 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	nA
	Ісом(off)		$\begin{aligned} & \text { Room } \\ & \text { Full }^{d} \end{aligned}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current ${ }^{\text {f }}$	$\mathrm{I}_{\text {COM(on) }}$	$\mathrm{V}+=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.2 \mathrm{~V} / 2 \mathrm{~V}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	

DG2041, DG2042, DG2043

Vishay Siliconix

SPECIFICATIONS (V+ = 2 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified $\mathrm{V}+=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V}$ or $1.6 \mathrm{~V}^{\mathrm{e}}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.6			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{O}	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ fig. 1 and 2	$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		30	$\begin{aligned} & 81 \\ & 82 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		$\begin{aligned} & \hline \text { Room } \\ & \text { Full }^{d} \end{aligned}$		22	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	
Break-Before-Make Time Delay	$t_{\text {D }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \\ \text { (DG2043 Only) } \end{gathered}$	Room	5			
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, fig. 2	Room		1		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-63		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-95		
NO, NC Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		24		pF
Channel-On Capacitance ${ }^{\text {d }}$	C_{ON}		Room		48		
Power Supply							
Power Supply Current ${ }^{\text {d }}$	I+	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+$			0.001	1	$\mu \mathrm{A}$

SPECIFICATIONS (V+ = 3 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \text { or } 2 \mathrm{~V}^{\mathrm{e}}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	R_{ON}	$\begin{gathered} \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.7 \mathrm{~V} / 1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \\ \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA} \end{gathered}$	Room Full		1.6	$\begin{aligned} & 2.1 \\ & 2.2 \end{aligned}$	Ω
$\mathrm{R}_{\text {ON }}$ Flatness $^{\text {d }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{ON}} \\ & \text { Flatness } \end{aligned}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}$ to $\mathrm{V}+, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room			0.7	
$\mathrm{R}_{\text {ON }}$ Match Between Channels	$\Delta \mathrm{R}_{\text {ON }}$		Room			0.3	
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	nA
	$\mathrm{I}_{\text {com(off) }}$		Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current ${ }^{\text {f }}$	$\mathrm{I}_{\text {COM(on) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} / 3 \mathrm{~V}$	$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Digital Control							
Input High Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INH }}$		Full	1.6			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$

SPECIFICATIONS (V+ = 3 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \text { or } 2 \mathrm{~V}^{\mathrm{e}}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	t_{ON}	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ fig. 1 and 2	Room Full		19	$\begin{aligned} & 51 \\ & 52 \\ & \hline \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	$t_{\text {OFF }}$		Room Full		17	$\begin{aligned} & 36 \\ & 37 \end{aligned}$	
Break-Before-Make Time Delay	t_{D}	$\begin{gathered} \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \text { (DG2043 Only) } \end{gathered}$	Room	2			
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, fig. 2	Room		3		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-63		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-94		
NO, NC Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		25		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{Con}^{\text {O }}$		Room		49		
Power Supply							
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+$			0.001	1	$\mu \mathrm{A}$

SPECIFICATIONS (V+ = 5 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified $\mathrm{V}+=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ or $2.4 \mathrm{~V}^{\mathrm{e}}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	R_{ON}	$\begin{gathered} \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.7 \mathrm{~V} / 2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}} \\ \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA} \end{gathered}$	Room Full		1	$\begin{aligned} & 1.5 \\ & 1.6 \end{aligned}$	Ω
$\mathrm{R}_{\text {ON }}$ Flatness ${ }^{\text {d }}$	$\begin{gathered} \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0 \mathrm{~V}$ to $\mathrm{V}+\mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room			0.7	
$\mathrm{R}_{\text {ON }}$ Match Between Channels	$\Delta \mathrm{R}_{\mathrm{ON}}$		Room			0.3	
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		1 10	nA
	$\mathrm{I}_{\text {COM (off) }}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current	${ }^{\text {COM (on) }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$	Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$

SPECIFICATIONS (V+ = 5 V)							
Parameter	Symbol	$\begin{gathered} \text { Test Conditions } \\ \text { Otherwise Unless Specified } \\ \mathrm{V}+=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V} \text { or } 2.4 \mathrm{~V} \end{gathered}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	t_{ON}	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ fig. 1 and 2	Room Full		13	$\begin{aligned} & 42 \\ & 43 \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	$\mathrm{t}_{\text {OFF }}$		Room Full		19	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	
Break-Before-Make Time Delay	$t_{\text {D }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \text { (DG2043 Only) } \end{gathered}$	Room	1			
Charge Injection ${ }^{\text {d }}$	$Q_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$, fig. 2	Room		3		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-63		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-93		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+\mathrm{f}$, $=1 \mathrm{MHz}$	Room		26		pF
Channel-On Capacitance ${ }^{\text {d }}$	C_{ON}		Room		49		
Power Supply							
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+$			0.001	1	$\mu \mathrm{A}$

Notes:
a. Room $=25^{\circ} \mathrm{C}$, full $=$ as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$ unless noted)

$R_{\text {ON }}$ vs. $V_{\text {COM }}$ and Supply Voltage

Supply Current vs. Temperature

Leakage Current vs. Temperature

R_{ON} vs. Analog Voltage and Temperature

Supply Current vs. Input Switching Frequency

Leakage vs. Analog Voltage

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ unless noted)

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 2. Charge Injection

Figure 3. Off-Isolation

Figure 4. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?72091.

QFN-16 (4 $\times 4 \mathrm{~mm})$

JEDEC Part Number: MO-220

Vishay Siliconix

QFN-16 (4 $\times 4 \mathrm{~mm}$)

JEDEC Part Number: MO-220

Dim	MILLIMETERS*			INCHES			Notes
	Min	Nom	Max	Min	Nom	Max	
A	0.80	0.90	1.00	0.0315	0.0354	0.0394	
A1	0	0.02	0.05	0	0.0008	0.0020	
A3	-	0.20 Ref	-	-	0.0079	-	
AA	-	0.345	-	-	0.0136	-	
aaa	-	0.25	-	-	0.0098	-	
BB	-	0.345	-	-	0.0136	-	
b	0.23	0.30	0.38	0.0091	0.0118	0.0150	5
bbb	-	0.10	-	-	0.0039	-	
CC	-	0.18	-	-	0.0071	-	
ccc	-	0.10	-	-	0.0039	-	
D	4.00 BSC			0.1575 BSC			
D2	2.00	2.15	2.25	0.0787	0.0846	0.0886	
DD	-	0.18	-	-	0.0071	-	
E	4.00 BSC			0.1575 BSC			
E2	2.00	2.15	2.25	0.0787	0.0846	0.0886	
e	0.65 BSC			0.0256 BSC			
L	0.45	0.55	0.65	0.0177	0.0217	0.0256	
N	16			16			3, 7
ND	-	4	-	-	4	-	6
NE	-	4	-	-	4	-	6
r	$\mathrm{b}(\mathrm{min}) / 2$	-	-	$\mathrm{b}(\mathrm{min}) / 2$	-	-	

* Use millimeters as the primary measurement.

$$
\begin{array}{|l}
\hline \text { ECN: S-21437—Rev. A, 19-Aug-02 } \\
\text { DWG: } 5890 \\
\hline
\end{array}
$$

NOTES:

1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
2. All dimensions are in millimeters. All angels are in degrees.
3. N is the total number of terminals.

The terminal \#1 identifier and terminal numbering convention shall conform to JESD 95-1 SPP-012. Details of terminal \#1 identifier are optional, but must be located within the zone indicated. The terminal \#1 identifier may be either a molded or marked feature. The X and Y dimension will vary according to lead counts.

Dimension b applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip.
ND and NE refer to the number of terminals on the D and E side respectively

Depopulation is possible in a symmetrical fashion.
Variation HHD is shown for illustration only.
Coplanarity applies to the exposed heat sink slug as well as the terminals.

TSSOP: 16-LEAD

Symbols	DIMENSIONS IN MILLIMETERS		
	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
B	0.22	0.28	0.38
C	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
e	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
y	-	-	0.10
11	0°	3°	6°
ECN: S-61920-Rev. D, 23-Oct-06			
DWG: 5624			

RECOMMENDED MINIMUM PADS FOR QFN-16 (4 x 4 MM BODY)

	Inches	Millimeters
C1	0.142	3.60
C2	0.142	3.60
E	0.026	0.65
X1	0.014	0.35
X2	0.089	2.25
Y1	0.037	0.95
Y2	0.089	2.25

Note:
QFN-16 (4 x 4) has an exposed center pad that must not come into contact with any metalized structure on the PCB. This area is considered a Keep Out Zone.

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

