


DM54109 Dual Positive-Edge-Triggered J-K Flip-Flops with Preset, Clear, and Complementary Outputs

General Description

This device contains two independent positive-edge-triggered J- \overline{K} flip-flops with complementary outputs. The J and \overline{K} data is accepted by the flip-flop on the rising edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of

the clock. The data on the J and \overline{K} inputs may be changed while the clock is high or low as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Connection Diagram

Order Number DM54109J or DM54109W See NS Package Number J16A or W16A

TL/F/6537-1

Function Table

	Inputs			Out	Outputs		
PR	CLR	CLK	J	K	Q	Q	
L	н	х	х	х	Н	L	
н	L	X	×	×	L	Н	
L	L	X	×	×	H*	H*	
н	н	1	L	L	L	Н	
Н	Н	1	Н	L	To	ggle Q ₀	
Н	Н	↑	L	н	Q ₀	\overline{Q}_0	
н	н	↑	н	н	н	L	
Н	Н	L	X	Х	Q ₀	\overline{Q}_0	

H = High Logic Level

L = Low Logic Level

↑ = Rising Edge of Pulse.

 This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

Q₀ = The output logic level of Q before the indicated input conditions were

Toggle = Each output changes to the complement of its previous level on each active transition of the clock pulse.

Absolute Maximum Ratings (Note)

if Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Input Voltage

Operating Free Air Temperature Range

DM54 -55°C to +125°C

Storage Temperature Range

-65°C to +150°C

5.5V

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter Supply Voltage		DM54109			Unite
			Min	Nom	Max	Office
Vcc			4.5	5	5.5	٧
ViH	High Level Input Voltage		2			٧
V _{IL}	Low Level Input Vo	oltage			0.8	V
Юн	High Level Output	Current			-1.2	mA
loL	Low Level Output Current				16	mA
f _{GLK}	Clock Frequency (Note 6)		0		30	MHz
tw	Pulse Width (Note 6)	Clock High	20			ns
		Clock Low	20	-		
		Preset Low	20			
		Clear Low	20			
tsu	Input Setup Time (Notes 1 & 6)		15↑			ns
t _H	Input Hold Time (Notes 1 & 6)		10↓			ns
TA	Free Air Operating Temperature		-55		125	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
v_{l}	Input Clamp Voltage	V _{CC} = Min, I _I :	= -12 mA			-1.5	٧
V _{OH}	High Level Output Voltage	V _{CC} = Min, I _{OH} = Max V _{IL} = Max, V _{IH} = Min		2.4	3.4	_	٧
V _{OL}	Low Level Output Voltage	V _{CC} = Min, I _{OL} = Max V _{IH} = Min, V _{IL} = Max			0.2	0.4	٧
l _l	Input Current @ Max Input Voltage	V _{CC} = Max, V _I	= 5.5V			1	mA
u _Н	High Level Input Current	V _{CC} = Max	J,K			40	μΑ
		V _I = 2.4V	Preset			80	
			Clock			80	
			Clear			160	
i _t _	Low Level Input Current	V _I = 0.4V Pri	J, K			-1.6	mA
			Preset			-3.2	
			Clock			-3.2	
			Clear			-4.8	
los	Short Circuit Output Current	V _{CC} = Max (Note 3)		-30		-85	mA
lcc	Supply Current	V _{CC} = Max (N	ote 4)		20	30	mA

Note 1: The symbol (1) indicates the rising edge of the clock pulse is used for reference.

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 3: Not more than one output should be shorted at a time.

Note 4: With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement the clock input grounded.

Note 5: Clear is tested with preset high and preset is tested with clear high.

Note 6: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Symbol	Parameter	From (Input) To (Output)	$R_L = 400\Omega$ $C_L = 15 pF$		Units
			Min	Max	
^f MAX	Maximum Clock Frequency		30		MHz
^t PLH	Propagation Delay Time Low to High Level Output	Preset to Q		14	ns
†PHL	Propagation Delay Time High to Low Level Output	Preset to Q		29	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clear to Q		14	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clear to Q		25	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Clock to Q or Q		18	ns
tphL	Propagation Delay Time High to Low Level Output	Clock to Q or Q		28	ns