

Dual Low Power, Low Cost, Precision FET Op Amp

AD796

FEATURES

Low Noise

2.5 μV p-p max, 0.1 Hz to 10 Hz

10 nV/√Hz max at 10 kHz

14 fA p-p Current Noise 0.1 Hz to 10 Hz

High DC Accuracy

300 μV max Offset Voltage

3 μV/°C max Drift

2 pA max Input Bias Current

114 dB Open Loop Gain

Low Power: 1.5 mA max per Amplifier

Good AC Performance

1 V/us Slew Rate

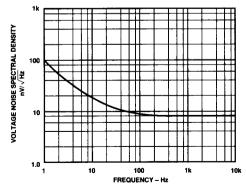
2 MHz Unity Gain Bandwidth

Available in 8-Pin Plastic Mini-DIP, Cerdin and Surface

Mount (SOIC) Packages

APPLICATIONS

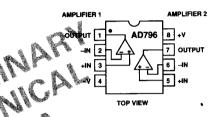
Low Noise Photodiode Preamps


CT Scanners

Precision I/V Converters

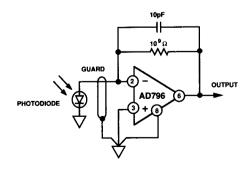
PRODUCT DESCRIPTION

The AD796 is a low noise, precision, FET input, dual monolithic operational amplifier. Each amplifier offers both the low voltage noise and low offset drift of a bipolar input op amp and the very low bias current of a FET input device. The $10^{14}~\Omega$ common-mode impedance insures that input bias current is essentially independent of common-mode voltage variations.


The AD796 has both excellent dc performance and a guaranteed and tested maximum input voltage noise. Each amplifier features 2 pA maximum input bias current and 300 μ V maximum offset voltage (AD796B) along with 1.5 mA max power supply current.

Voltage Noise Spectral Density

CONNECTION DIAGRAM


Plastic Mini-DIP (N) Package, Cerdip (Q) Package, and SOIC (R) Package

The AD796 features a guaranteed low input noise of 2.5 μ V p-p (0.1 Hz to 10 Hz) and a 10 nV/ $\sqrt{\rm Hz}$ max noise level at 10 kHz. The AD796 has a fully specified and tested input offset voltage drift of only 3 μ V/°C max which is trimmed at the wafer level to keep device cost low.

The AD796 is the ideal choice for many high input impedance, low noise applications. It is available in three performance grades. The AD796A and AD796B are rated over the industrial temperature of -40°C to +85°C. The AD796S is rated over the military temperature range of -55°C to +125°C and is available processed to MIL-STD-883B.

The AD796 is available in 8-pin plastic mini-DIP, cerdip, and surface mount (SOIC).

The AD796 Used as a Sensitive Photodiode Preamplifier

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

AD796—SPECIFICATIONS (@ +25°C and ±15 V dc, unless otherwise noted)

Conditions	Min	AD796A Typ	Max	Min	AD796B Typ	Max	Min	AD796S Typ	Max	Units
T _{MIN} -T _{MAX}	90	100 300 3 110	500 1000 12	94	50 100 2 110	300 400 3	90	100 500 4 110	500 1500 10	μV μV μV/°C dB
$T_{MIN}-T_{MAX}$		100		90	100		86	95		dB
$V_{CM} = 0 V$ $V_{CM} = 0 V$ $V_{CM} = +10 V$ $V_{CM} = 0 V$ $V_{CM} = 0 V$		1.5 34/96 1.5 0.1 2/6	2.5		1.5 34/96 1.5 0.1 2/6	0.5		2 2050 1.5 0.1 100	5	pA pA pA pA pA
0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 100 Hz f = 1 kHz f = 10 kHz		1.0 20 10 7 8	3.3 50 30 15		1.0 26 10 7 8	2.5 40 20 10 10		1.0 20 10 7 8	3.3 50 30 15 10	$\mu V p - p$ nV/\sqrt{H} nV/\sqrt{H} nV/\sqrt{H} nV/\sqrt{H}
f = 0.1 Hz to 10 Hz f = 0.1 kHz to 20 kHz		0.7			0.7			0.8	•	fA p <u>−p</u> fA√Hz
$G = -1$ $V_O = 20 \text{ V p-p}$ $P = -2 \text{ kO}$	12.8	2		12.8	2 16		12.8	2 16		MHz kHz
$V_{OUT} = 20 \text{ V p-p}$ $R_{LOAD} = 2 \text{ k}\Omega$		1			1			1		V/µs
50% Overdrive f = 1 kHz		11 12 5			11 12 5			11 12 5		μs μs μs
$V_{DIFF} = \pm 1 \text{ V}$		$10^{12} 1 10^{14} 2.2$			$10^{12} \ 1 \\ 10^{14} \ 2.2$			$10^{12} \ 1$ $10^{14} \ 2.2$		Ω pF Ω pF
$V_{CM} = \pm 10 \text{ V}$ T_{MIN} to T_{MAX}	±10 ±10 90	±20 ±11 110 100		±10 ±10 94 90	±20 ±11 110 100		±10 ±10 90 86	±20 ±11 110 100		V V V dB dB
$V_{O} = \pm 10 \text{ V}$ $R_{LOAD} \ge 2 \text{ k}\Omega$ $T_{MIN} - T_{MAX}$	100	110		100 100	110		114 110	130		dB dB
$R_{LOAD} \ge 2 k\Omega$ $T_{MIN} - T_{MAX}$	±10	±11		±10	±11	-	±10	±11		V V mA
V _{OUT} = ±10 V Short Circuit	±5	±10 ±15		± >	±10 ±15		±3	±15		mA
	±5	±15	± 18	±5	±15	±18	±5	±15	±18	V V mA
	$\begin{split} T_{MIN} - T_{MAX} \\ V_{CM} &= 0 \text{ V} \\ 0.1 \text{ Hz to } 10 \text{ Hz} \\ f &= 0.1 \text{ Hz to } 10 \text{ Hz} \\ f &= 0.1 \text{ Hz to } 10 \text{ Hz} \\ f &= 0.1 \text{ Hz to } 20 \text{ kHz} \\ \end{split}$ $G &= -1 \\ V_{O} &= 20 \text{ V p-p} \\ R_{LOAD} &= 2 \text{ k}\Omega \\ V_{OUT} &= 20 \text{ V p-p} \\ R_{LOAD} &= 2 \text{ k}\Omega \\ \end{split}$ $V_{OHT} &= 20 \text{ V p-p} \\ V_{OHT} &= 20 V p-p$	$T_{MIN}\text{-}T_{MAX} \\ V_{CM} = 0 \text{ V} \\ 0.1 \text{ Hz to } 10 \text{ Hz} \\ f = 10 \text{ Hz} \\ f = 100 \text{ Hz} \\ f = 10 \text{ Hz} \\ f = 0.1 \text{ Hz to } 10 \text{ Hz} \\ f = 0.1 \text{ kHz to } 20 \text{ kHz} \\ \end{bmatrix}$ $G = -1 \\ V_{OU} = 20 \text{ V p-p} \\ R_{LOAD} = 2 \text{ k\Omega} \\ V_{OUT} = 20 \text{ V p-p} \\ R_{LOAD} = 2 \text{ k\Omega} \\ \end{bmatrix}$ $V_{OUT} = 20 \text{ V p-p} \\ V_{CM} = \pm 10 \text{ V} \\ V_{DIFF} = \pm 1 \text{ V} \\ \end{bmatrix}$ $V_{CM} = \pm 10 \text{ V} \\ T_{MIN} \text{ to } T_{MAX} \\ V_{O} = \pm 10 \text{ V} \\ R_{LOAD} \geq 2 \text{ k\Omega} \\ T_{MIN}\text{-}T_{MAX} \\ V_{OUT} = \pm 10 \text{ V} \\ Short Circuit}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

¹Input offset voltage specifications are guaranteed after 5 minutes of operation at $T_A = +25^{\circ}\text{C}$.

²Bias current specifications are guaranteed maximum at either input after 5 minutes of operation at $T_A = +25^{\circ}\text{C}$. For higher temperature, the current doubles

 $^{^{3}}$ Gain = -1, R_{LOAD} = 2 $k\Omega$. *Defined as the time required for the amplifier's output to return to normal operation after removal of a 50% overload from the amplifier input.

 $^{^5}$ Defined as the maximum continuous voltage between the inputs such that neither input exceeds $\pm 10~\mathrm{V}$ from ground.

All min and max specifications are guaranteed.

Specifications subject to change without notice.

ADOOL LINE MANUALINA DAMINAGO	Nomeo
ABSOLUTE MAXIMUM RATINGS ¹	NOTES Stresses above those liste
Supply Voltage	permanent damage to the
Internal Power Dissipation ² (@ $T_A = +25^{\circ}C$)	operation of the device at
8-Pin Header Package	in the operational section
8-Pin Mini-DIP Package	absolute maximum rating
8-Pin SOIC Package	reliability.
Input Voltage	² 8-Pin Plastic Mini-DIP Pa 8-Pin Small Outline Pack
Output Short Circuit Duration Indefinite	8-Pin Cerdip Package: θ ₁
Differential Input Voltage $\dots \dots + V_S$ and $-V_S$	o i in Geruip i ackage. oj
Storage Temperature Range (Q)65°C to +150°C	
Storage Temperature Range (N)65°C to +125°C	
Storage Temperature Range (R) $\dots -65^{\circ}$ C to $+125^{\circ}$ C	
Operating Temperature Range	_ #
AD796A/B40°C to +85°C	
AD796S55°C to +125°C	
Lead Temperature Range (Soldering 60 secs) +300°C	
	MIN
ORDERU	G GUIDE

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device

²8-Pin Plastic Mini-DIP Package: $\theta_{JA} = 100^{\circ}$ C/Watt 8-Pin Small Outline Package: $\theta_{JA} = 155^{\circ}$ C/Watt 8-Pin Cerdip Package: $\theta_{JA} = 110^{\circ}$ C/Watt

ORDERIJA GODE									
Model	Temperature Range	Package Option*							
AD796AN	-40°C (o \ 8 °C	N-8							
AD796BN	−40°C (485°C	N-8							
AD796AR	-40°C to +85°C	R-8							
AD796SO-883B	-55°C to +125°C	O-08							

^{*}N = Plastic mini-DIP, Q-8 = Cerdip, R = SOIC package. See outline information see Package Information section.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.