

# **DIODES**

# **DMMT3906W**

#### MATCHED PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR

#### **Features**

Epitaxial Planar Die Construction

Intrinsically Matched PNP Pair (Note 1)

Small Surface Mount Package

2% Matched Tolerance, hFE, VCE(SAT), VBE(SAT)

Lead Free/RoHS Compliant (Note 2)

Qualified to AEC-Q101 Standards for High Reliability

# **Mechanical Data**

Case: SOT-363

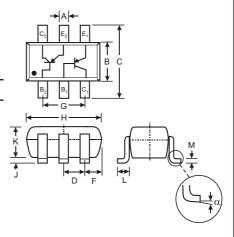
Case Material: Molded Plastic. UL Flammability

Classification Rating 94V-0

Moisture Sensitivity: Level 1 per J-STD-020C

Terminals: Solderable per MIL-STD-202, Method 208

Lead Free Plating (Matte Tin Finish annealed over Alloy 42


leadframe).

Terminal Connections: See Diagram

Marking (See Below): K4B

Ordering & Date Code Information: See Below

Weight: 0.015 grams (approximate)

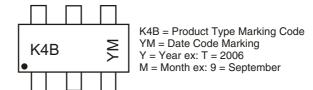


| SOT-363              |              |      |  |  |  |  |  |  |
|----------------------|--------------|------|--|--|--|--|--|--|
| Dim                  | Max          |      |  |  |  |  |  |  |
| Α                    | 0.10         | 0.30 |  |  |  |  |  |  |
| В                    | 1.15 1.35    |      |  |  |  |  |  |  |
| С                    | 2.00 2.20    |      |  |  |  |  |  |  |
| D                    | 0.65 Nominal |      |  |  |  |  |  |  |
| F                    | 0.30         | 0.40 |  |  |  |  |  |  |
| Н                    | 1.80         | 2.20 |  |  |  |  |  |  |
| J                    |              | 0.10 |  |  |  |  |  |  |
| K                    | 0.90         | 1.00 |  |  |  |  |  |  |
| L                    | 0.25 0.40    |      |  |  |  |  |  |  |
| M                    | 0.10 0.25    |      |  |  |  |  |  |  |
|                      | 8°           |      |  |  |  |  |  |  |
| All Dimensions in mm |              |      |  |  |  |  |  |  |

**Diodes Incorporated** 

#### Maximum Ratings @ T<sub>A</sub> = 25 C unless otherwise specified

| Characteristic                                   | Symbol                            | Value       | Unit |
|--------------------------------------------------|-----------------------------------|-------------|------|
| Collector-Base Voltage                           | V <sub>CBO</sub>                  | -40         | V    |
| Collector-Emitter Voltage                        | V <sub>CEO</sub>                  | -40         | V    |
| Emitter-Base Voltage                             | V <sub>EBO</sub>                  | -5.0        | V    |
| Collector Current - Continuous                   | Ic                                | -200        | mA   |
| Power Dissipation (Note 3)                       | P <sub>d</sub>                    | 200         | mW   |
| Thermal Resistance, Junction to Ambient (Note 3) | R JA                              | 625         | C/W  |
| Operating and Storage Temperature Range          | T <sub>j</sub> , T <sub>STG</sub> | -55 to +150 | С    |


### **Ordering Information** (Note 4)

| Device |               | Packaging | Shipping         |  |  |
|--------|---------------|-----------|------------------|--|--|
|        | DMMT3906W-7-F | SOT-363   | 3000/Tape & Reel |  |  |

Notes:

- 1. Built with adjacent die from a single wafer.
- 2. No purposefully added lead.
- 3. Device mounted on FR5 PCB: 1.0 x 0.75 x 0.62 in.; pad layout as shown on suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- 4. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

## **Marking Information**



#### Date Code Key

| Year | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |
|------|------|------|------|------|------|------|------|------|------|------|------|
| Code | N    | Р    | R    | S    | Т    | J    | V    | W    | X    | Υ    | Z    |

| Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Code  | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 0   | N   | D   |



# Electrical Characteristics @ T<sub>A</sub> = 25 C unless otherwise specified

| Characteristic                                | Symbol               | Min                         | Max            | Unit               | Test Condition                                                                                     |  |  |  |  |
|-----------------------------------------------|----------------------|-----------------------------|----------------|--------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| OFF CHARACTERISTICS (Note 5)                  |                      |                             |                |                    |                                                                                                    |  |  |  |  |
| Collector-Base Breakdown Voltage              | V <sub>(BR)CBO</sub> | -40                         |                | V                  | I <sub>C</sub> = -10 A, I <sub>E</sub> = 0                                                         |  |  |  |  |
| Collector-Emitter Breakdown Voltage           | V <sub>(BR)CEO</sub> | -40                         |                | V                  | I <sub>C</sub> = -1.0mA, I <sub>B</sub> = 0                                                        |  |  |  |  |
| Emitter-Base Breakdown Voltage                | V <sub>(BR)EBO</sub> | -5.0                        |                | V                  | I <sub>E</sub> = -10 A, I <sub>C</sub> = 0                                                         |  |  |  |  |
| Collector Cutoff Current                      | ICEX                 |                             | -50            | nA                 | $V_{CE} = -30V, V_{EB(OFF)} = -3.0V$                                                               |  |  |  |  |
| Base Cutoff Current                           | I <sub>BL</sub>      |                             | -50            | nA                 | $V_{CE} = -30V, V_{EB(OFF)} = -3.0V$                                                               |  |  |  |  |
| ON CHARACTERISTICS (Note 5)                   |                      |                             |                |                    |                                                                                                    |  |  |  |  |
| DC Current Gain (Note 6)                      | h <sub>FE</sub>      | 60<br>80<br>100<br>60<br>30 | 300            |                    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                             |  |  |  |  |
| Collector-Emitter Saturation Voltage (Note 6) | V <sub>CE(SAT)</sub> |                             | -0.25<br>-0.40 | V                  | I <sub>C</sub> = -10mA, I <sub>B</sub> = -1.0mA<br>I <sub>C</sub> = -50mA, I <sub>B</sub> = -5.0mA |  |  |  |  |
| Base-Emitter Saturation Voltage (Note 6)      | V <sub>BE(SAT)</sub> | -0.65                       | -0.85<br>-0.95 | V                  | I <sub>C</sub> = -10mA, I <sub>B</sub> = -1.0mA<br>I <sub>C</sub> = -50mA, I <sub>B</sub> = -5.0mA |  |  |  |  |
| Base-Emitter Voltage Matching                 | V <sub>BE</sub>      |                             | -1             | mV                 | $V_{CE} = -5V$ , $I_C = -2mA$                                                                      |  |  |  |  |
| SMALL SIGNAL CHARACTERISTICS                  | •                    |                             | •              | •                  |                                                                                                    |  |  |  |  |
| Output Capacitance                            | C <sub>obo</sub>     |                             | 4.5            | pF                 | $V_{CB} = -5.0V$ , $f = 1.0MHz$ , $I_E = 0$                                                        |  |  |  |  |
| Input Capacitance                             | C <sub>ibo</sub>     |                             | 10             | pF                 | $V_{EB} = -0.5V$ , $f = 1.0MHz$ , $I_C = 0$                                                        |  |  |  |  |
| Input Impedance                               | h <sub>ie</sub>      | 2.0                         | 12             | k                  |                                                                                                    |  |  |  |  |
| Voltage Feedback Ratio                        | h <sub>re</sub>      | 0.1                         | 10             | x 10 <sup>-4</sup> | $V_{CE} = 10V, I_{C} = 1.0mA,$                                                                     |  |  |  |  |
| Small Signal Current Gain                     | h <sub>fe</sub>      | 100                         | 400            |                    | f = 1.0kHz                                                                                         |  |  |  |  |
| Output Admittance                             | h <sub>oe</sub>      | 3.0                         | 60             | S                  |                                                                                                    |  |  |  |  |
| Current Gain-Bandwidth Product                | f <sub>T</sub>       | 250                         |                | MHz                | $V_{CE} = -20V, I_{C} = -10mA, f = 100MHz$                                                         |  |  |  |  |
| Noise Figure                                  | NF                   |                             | 4.0            | dB                 | V <sub>CE</sub> = -5.0V, I <sub>C</sub> = -100 A,<br>R <sub>S</sub> = 1.0k f = 1.0kHz              |  |  |  |  |
| SWITCHING CHARACTERISTICS                     |                      |                             |                |                    |                                                                                                    |  |  |  |  |
| Delay Time                                    | t <sub>d</sub>       |                             | 35             | ns                 | V <sub>CC</sub> = -3.0V, I <sub>C</sub> = -10mA,                                                   |  |  |  |  |
| Rise Time                                     | t <sub>r</sub>       |                             | 35             | ns                 | $V_{BE(off)} = 0.5V, I_{B1} = -1.0mA$                                                              |  |  |  |  |
| Storage Time                                  | t <sub>s</sub>       |                             | 225            | ns                 | $V_{CC} = -3.0V, I_{C} = -10mA,$                                                                   |  |  |  |  |
| Fall Time                                     | t <sub>f</sub>       |                             | 75             | ns                 | $I_{B1} = I_{B2} = -1.0 \text{mA}$                                                                 |  |  |  |  |

<sup>Notes: 5. Short duration pulse test used to minimize self-heating effect.
6. The DC current gain, h<sub>FE</sub>, (matched at I<sub>C</sub> = -10mA and V<sub>CE</sub> = -1.0V) Collector-Emitter Saturation Voltage, V<sub>CE</sub> (sat), and Base-Emitter Saturation Voltage, V<sub>BE</sub>(sat) are matched with typical matched tolerances of 1% and maximum of 2%.</sup> 



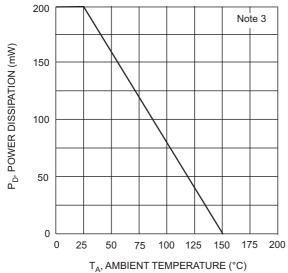
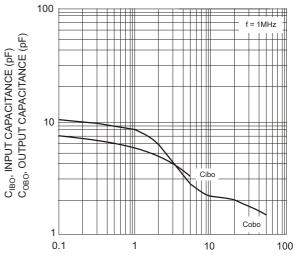




Fig. 1, Max Power Dissipation vs Ambient Temperature



 $V_{CB}$ , COLLECTOR-BASE VOLTAGE (V) Fig. 2, Input and Output Capacitance vs.
Collector-Base Voltage

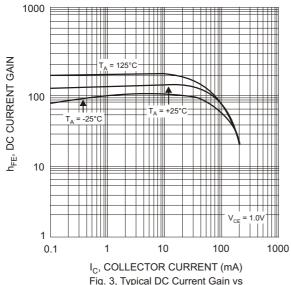
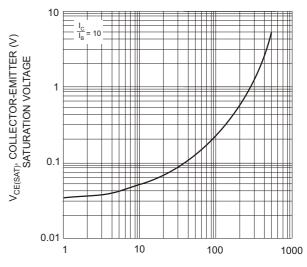
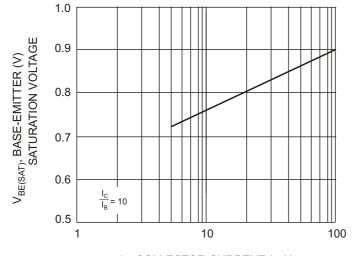





Fig. 3, Typical DC Current Gain vs Collector Current



 $I_{\rm C}$ , COLLECTOR CURRENT (mA) Fig. 4, Typical Collector-Emitter Saturation Voltage vs. Collector Current



 $I_{\mathbb{C}}$ , COLLECTOR CURRENT (mA) Fig. 5, Typical Base-Emitter Saturation Voltage vs. Collector Current



#### IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

#### LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.