
Γ	REVISIONS																										
r	LTR	DESCRIPTION										DATE	(YR-	MO-D	A)	AP	PRO	VED									
r											T																
																							ŀ				
																	ı				ı				1		
ł																											
ı																											ĺ
l																											
١																											1
																											ł
																											i
١																											_
	REV																						_	_		_	Ш
	SHEET	Γ														ļ	_	<u> </u>		_	_	_	┞			├	\vdash
	REV								<u> </u>			<u> </u>				-	├	-	-	_	-	\vdash	-		-	╁	H
L	SHEET	ſ			L	L_		<u> </u>		<u> </u>		<u> </u>	├-			╀	-	┢	╀	-	├	-	╁╴	┢	-	╁╌	Н
۱	REV S		}	RE			-	2	3	4	. 5	6	7	8	9	10	11	 	\vdash	_	┢	┢		┢		十	
F	OF SHEETS SHEET		PDE	PARE		<u> </u>		Ļ	<u> </u>	Ů	Ť	1	<u>. </u>	<u>. </u>	.	L	<u> </u>	L		<u> </u>	L						
L	STANDARDIZED MILITARY				2			, C1	R	no	_				DEI	FENS	E EL	ECTI	RONI N, OI	CS S	UPP	LY CI	ENTE	:R			
١					СН	ECKE							1										NT31/	71 KI C' E			
١						Ka		<u> </u>	<u> </u>	nn	<u> </u>	<u> </u>	_	1 OU	DOM	C D	CCHC	TTK	ν ττ	1.	INVE	RIII	۱G.	ANCE OCTA	AL.		
	DRAWING THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE AMSC N/A			AP	PROY	IDD E)Y	11	يلر	1		- 1	LOW POWER, SCI BUFFER AND LI			LINE	DR	IVER	WI	14 1	HRE	:-51	AIL				
				DF	AWIN	IG AF	PRO		JATE			7	OUTPUTS, MONOLITHIC SILICON SIZE CAGE CODE														
							IL 1						A 67268 5962-885				385	91									
١				Ē	RE	VISIO	ON LE	VEL					Ì		СH	EET		1		OF		11					
١				1										311							1.1						

* U.S. GOVERNMENT PRINTING OFFICE: 1987 — 748-129/60911 5962-E904

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

- Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
- 3.2.1 Terminal connections and logic diagram. The terminal connections and logic diagram shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
- 3.2.3 Switching waveforms and test circuit. The switching waveforms and test circuit shall be as as specified on figure 3.
 - 3.2.4 Case outline. The case outline shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.

STANDARDIZED MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

DESC FORM 193A SEP 87 \$\forall U.S. GOVERNMENT PRINTING OFFICE: 1987--549-096

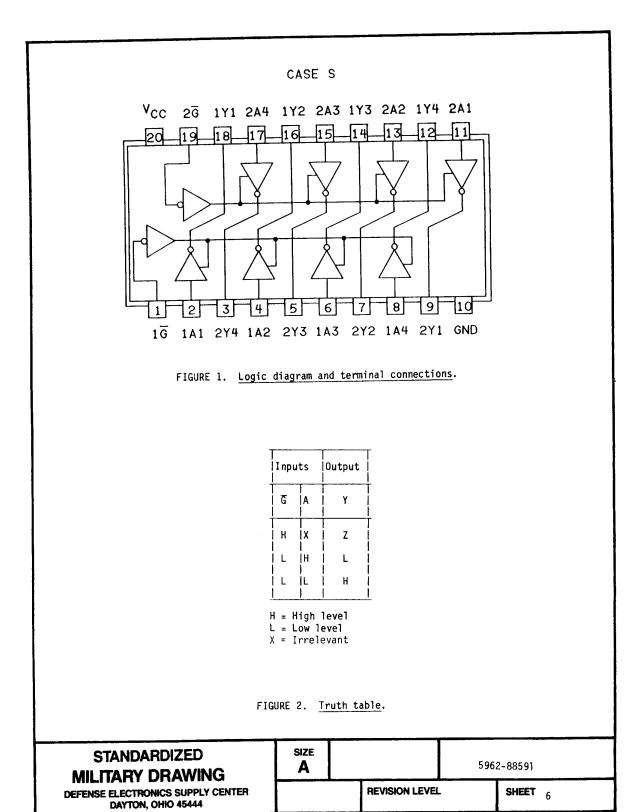
Test Symbol			Group A	Limits Min Max		Unit
V _{OH1}	VIH = 2.0 V V _{CC} = 4.5 V I _{OH} = -12.0 mA 2/	V _{IL} = 0.8 V V _{IL} = 0.7 V	1,3	2.0		 V
V _{0H2}	V _{IH} = 2.0 V V _{CC} = 4.5 V I _{OH} = -3.0 mA 2/	$V_{IL} = 0.8 \text{ V}$ $V_{IL} = 0.7 \text{ V}$	1,3	2.4	[V
V _{ОНЗ}	V _{IH} = 2.0 V V _{CC} = 4.5 V I _{OH} = -0.4 mA <u>2</u> /	V _{IL} = 0.8 V	1,3	2.5	 	V
V _{OL}	V _{IH} = 2.0 V V _{CC} = 4.5 V I _{OL} = 12 mA <u>2</u> /	$V_{IL} = 0.8 \text{ V}$ $V_{IL} = 0.7 \text{ V}$	1,3		0.4	V
AIC	V _{CC} = 4.5 V I _{IN} = -18 mA		1,2,3		-1.2	V
IOZH	V _{CC} = 5.5 V V _{IN} = 2.0 V	V _{OUT} = 2.7 V	1,2,3	 	20	μА
I _{OZL}	 	V _{OUT} = 0.4 V	1,2,3		-20	μ A
I _I IH1	VCC = 5.5 V VIN = 2.7 V All other inputs =	0.0 V	1,2,3		20	μA
I _{IH2}	$ V_{IN} = 7.0 \text{ V}$	0.0 V	1,2,3		100	μ Α
IIL		4.5 Y	1,2,3	 	-0.1	l mA
Io	 V _{CC} = 5.5 V		1,2,3	-30	-112	m.A
ble.						
	V _{OH2} V _{OH3} V _{OH3} V _{OL} V _{IC} I _{OZH} I _{IOZL} I _{IH1} I _{IH2} I _{IL}	VIH = 2.0 V VCC = 4.5 V IOH = -12.0 mA 2/ VOH2 VCC = 4.5 V IOH = -3.0 mA 2/ VOH2 VCC = 4.5 V IOH = -0.4 mA 2/ VIH = 2.0 V VCC = 4.5 V IOH = -0.4 mA 2/ VIH = 2.0 V VCC = 4.5 V IOH = -12 mA 2/ VIH = 2.0 V VCC = 4.5 V IOL = 12 mA 2/ VIN = -18 mA IOZH VCC = 5.5 V VIN = 2.7 V IOZL VIN = 2.7 V IOZL VIN = 7.0 V IOZL IOZL IOZL VCC = 5.5 V VIN = 7.0 V IOZL IOZL	VIH = 2.0 V	Vil = 2.0 V	Symbol -55°C < TC < 125°C Stock Subgroups Min Subgroups Su	Symbol -55°C < TC < 125°C Stock Subgroups MIn Max VoH1

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

☆ U.S. GOVERNMENT PRINTING OFFICE: 1987—549-096

4

5962-88591


SHEET

REVISION LEVEL

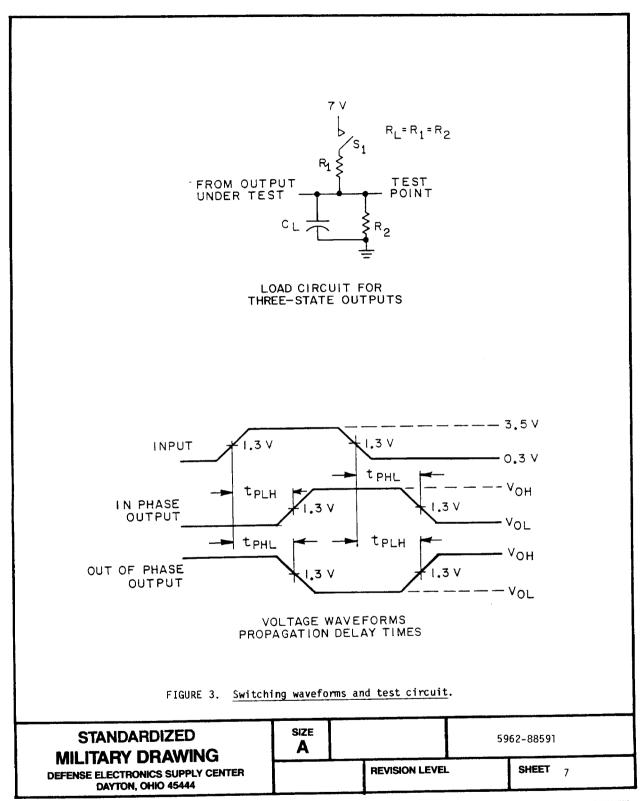
TABLE	I. Electr	rical performance characteristics	- Continued.	1/		
Test	Symbol	Conditions -55°C < T _C < +125°C unless otherwise specified	Group A	Lim	Unit	
		unless otherwise specified	subgroups	Min	Max	! !
Supply current	Іссн	 V _{CC} = 5.5 V 	1,2,3		11	mA
	ICCL	T 	1,2,3		23	πA
Supply current disabled	ICCZ	<u> </u> 	1,2,3		25	mA
Functional tests			7,8		 	
Propagation delay time, A to Y	t _{PLH}	V _{CC} = 4.5 V to 5.5 V C _L = 50 pF R ₁ = 500Ω <u>5</u> /	9,10,11	2	12	l ns
	t _{PHL}	$TR_1 = 500\Omega$ $5/$ $IR_2 = 500\Omega$ S See figure 3	9,10,11	2	9	ns
Output enable time,	tpzL	 	9,10,11	5	18	ns
	t _{PZH}	 	9,10,11	4	15	ns
Output disable time,	t _{PLZ}	 	9,10,11	3	15	ns
	t _{PHZ}		9,10,11	1	 10	ns

- Unused inputs that do not directly control the pin under test must be \geq 2.5 V or \leq 0.4 V. Unused inputs shall not exceed 5.5 V or go less than 0.0 V. No inputs shall be floated.
- 2/ All outputs must be tested. In the case where only one input at V $_{\rm IL}$ maximum or V $_{\rm IH}$ minimum produces the proper output state, the test must be performed with each input being selected as the V $_{\rm IL}$ maximum or V $_{\rm IH}$ minimum input.
- 3/ The output conditions have been chosen to produce a current that closely approximates one-half of the true short circuit output current, $I_{\rm OS}$. Not more than one output will be tested at a time and the duration of the test condition shall not exceed one second.
- 4/ Functional tests shall be conducted at input test conditions of GND \leq V_{IL} \leq V_{OL} and V_{OH} \leq V_{IH} \leq V_{CC}.
- 5/ The propagation delay limits are based on single output switching. Unused inputs = 3.5 V or ≤ 0.3 V.

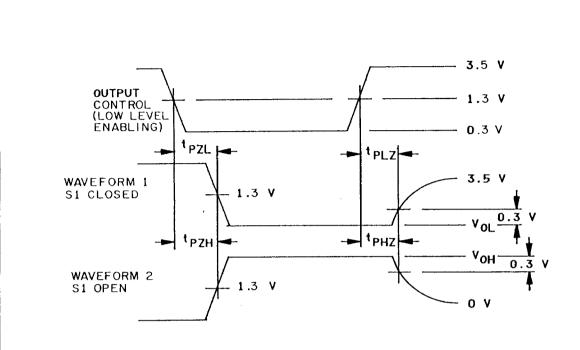
STANDARDIZED MILITARY DRAWING	SIZE A		5	5962-88591	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL		SHEET 5	

立しS. GOVERNMENT PRINTING OFFICE: 1987 - 748-129-609ほ

Springs of a


B125 5 399

10-021200-2


स्ट्राट्यासर दव राज्य १९ श्री कथा

independents.

COMPANIA

 $\Re (1.8)$ GOVERNMENT PRINTING OFFICE: 1987 - 748-129-60913

- 1. C_L includes probe and jig capacitance.
- 2. All input pulses have the following characteristics: PRR \leq 10 MHz, duty cycle = 50%, t_{r} = t_{f} = 3 ns ±1 ns.
- The outputs are measured one at a time with one input transition per measurement. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 5. When measuring propagation delay times of three-state outputs, switch S1 is open.

FIGURE 3. Switching waveforms and test circuit - Continued.

SIZE **STANDARDIZED** 5962-88591 Α **MILITARY DRAWING REVISION LEVEL DEFENSE ELECTRONICS SUPPLY CENTER** SHEET DAYTON, OHIO 45444

DESC FORM 193A SEP 87

☆U.S. GOVERNMENT PRINTING OFFICE: 1987 - 748-129-60913

- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section $\frac{1}{2}$ of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_{\Delta} = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method $\overline{5005}$ of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroups 7 and 8 tests shall verify the truth table as specified on figure 2 herein.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_{\Lambda} = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-88591		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVE	SHEET 9		

TABLE II. Electrical test requirements.

 MIL-STD-883 test requirements 	Subgroups ((per method 5005, table I)
 Interim electrical parameters (method 5004)	
 Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8, 1 9, 10, 11
Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

^{*} PDA applies to subgroup 1.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

- 6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/38301B--.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

STANDARDIZED MILITARY DRAWING	SIZE A	5962-88591				
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	-	SHEET 10		

DESC FORM 193A SEP 87

6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing	Vendor	Vendor	Replacement military specification part number
part number	CAGE	similar part	
	number	number <u>1</u> /	
5962-8859101SX	27014 18324 01295	54ALS240AW/883 54ALS240A/BSA SNJ54ALS240AW	M38510/38301BSX

1/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number	Vendor name and address
01295	Texas Instruments Incorporated P.O. Box 6448 Midland, TX 79701
18324	Signetics Corporation 4130 South Market Court Sacramento, CA 95834
27014	National Semiconductor Corporation 2900 Semiconductor Drive Santa Clara, CA 95051

STANDARDIZED

MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

DESC FORM 193A SEP 87