

U441 MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix U441

The U441 is a tightly matched Monolithic Dual N-Channel JFET

The U441 are monolithic dual JFETs mounted in a single TO-71 package. The monolithic dual chip design reduces parasitics and gives better performance at very high frequencies while ensuring extremely tight matching. These devices are an excellent choice for use as wideband differential amplifiers in demanding test and measurement applications. The U441 is a direct replacement for discontinued Siliconix U441.

The hermetically sealed TO-71 is well suited for military applications.

(See Packaging Information).

U441 Applications:

- Wideband Differential Amps
- High-Speed,Temp-Compensated Single-Ended Input Amps
- High-Speed Comparators
- Impedance Converters and vibrations detectors.

FEATURES							
Direct Replacement for SILICONIX U441							
HIGH CMRR	CMRR ≥ 85dB						
LOW GATE LEAKAGE	I _{GSS} ≤1 pA						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25°C (unless otherwise noted)							
Maximum Temperatures							
Storage Temperature	-65°C to +150°C						
Operating Junction Temperature	-55°C to +135°C						
Maximum Power Dissipation							
Continuous Power Dissipation (Total)	500mW						
Maximum Currents							
Gate Current	50mA						
Maximum Voltages							
Gate to Drain	-25V						
Gate to Source	-25V						
Gate to Gate	±50V						

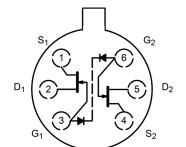
MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
$ V_{GS1} - V_{GS2} $	Differential Gate to Source Cutoff Voltage			_20	mV	$V_{DG} = 10V, I_{D} = 5mA$
$\Delta V_{GS1} - V_{GS2} /\Delta T$	Differential Gate to Source Cutoff		20		μV/°C	$V_{DG} = 10V, I_{D} = 5mA$
	Voltage Change with Temperature					T _A = -55°C to +125°C
I _{DSS1} / I _{DSS2}	Gate to Source Saturation Current Ratio		0.07		%	$V_{DS} = 10V$, $V_{GS} = 0V$
G _{fs1} / G _{fs2}	Forward Transconductance Ratio ²		0.97		%	$V_{DS} = 10V, I_{D} = 5mA, f = 1kHz$
CMRR	Common Mode Rejection Ratio		85		dB	$V_{DG} = 5 \text{ to } 10V, I_{D} = 5 \text{ mA}$

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV_GSS	Gate to Source Breakdown Voltage	-25			V	$I_{G} = -1\mu A$, $V_{DS} = 0V$
$V_{GS(off)}$	Gate to Source Cutoff Voltage	-1	-3.5	-6	V	$V_{DS} = 10V, I_{D} = 1nA$
I _{DSS}	Gate to Source Saturation Current	6	15	30	mA	$V_{DS} = 10V, V_{GS} = 0V$
I _{GSS}	Gate Leakage Current ³		-1	-500	pА	$V_{GS} = -15V, V_{DS} = 0V$
I _G	Gate Operating Current		-1	-500	pA	$V_{DG} = 10V, I_D = 5mA$
g fs	Forward Transconductance	4.5	6	9	mS	$V_{DS} = 10V, I_{D} = 5mA, f = 1kHz$
g _{os}	Output Conductance		70	200	μS	
C _{ISS}	Input Capacitance		3		pF	$V_{DS} = 10V$, $I_D = 5mA$, $f = 1MHz$
C_{RSS}	Reverse Transfer Capacitance		1		pF	
e _n	Equivalent Input Noise Voltage		4		nV/√Hz	$V_{DS} = 10V$, $I_{D} = 5mA$, $f = 10kHz$

Notes:


- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- 2. Pulse Test: PW ≤ 300µs Duty Cycle ≤ 3%
- 3. Assumes smaller value in numerator

Available Packages:

U441 in TO-71 U441 available as bare die micross

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com
Web: www.micross.com/distribution.aspx

TO-71 (Top View)

Information furnished by Linear Integrated Systems and Micross Components is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.