

HPR1XX SERIES 0.75 WATTS UNREGULATED

DC/DC CONVERTERS

MINIATURE SIP, DIP AND SMD PACKAGES

FEATURES

- LOW COST
- SINGLE-IN-LINE PACKAGE (SIP)
- INTERNAL INPUT AND OUTPUT FILTERING
- NON-CONDUCTIVE CASE

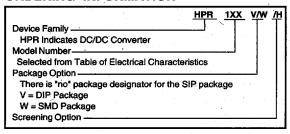
- HIGH OUTPUT POWER DENSITY: 10 WATTS/INCH³
- EXTENDED TEMPERATURE RANGE:-25°C to +85°C
- HIGH EFFICIENCY: to 80%

DESCRIPTION

The HPR1XX Series uses advanced circuit design and packaging technology to deliver superior reliability and performance. A 170kHz push-pull oscillator is used in the input stage. Beat-frequency oscillation problems are reduced when using the HPR1XX Series with high frequency isolation amplifiers.

Reduced parts count and high efficiency add to the reliability of the HPR1XX Series. The high efficiency of the HPR1XX Series means less internal power dissipation, as low as 190mW. With reduced heat dissipation the HPR1XX Series can operate at higher temperatures with no degradation. In addition, the

high efficiency of the HPR1XX Series means the series is able to offer greater than 10 W/inch³ of output power density. Operation down to no load will not impact the reliability of the series, although a 1mA minimum load is needed to realize published specifications.


The HPR1XX Series provides the user low cost without sacrificing reliability. The use of surface mounted devices and advanced manufacturing technologies make it possible to offer premium performance and low cost.

ABSOLUTE MAXIMUM RATINGS

· · · · · · · · · · · · · · · · · · ·	
Internal Power Dissipation	 450mW
Short Circuit Duration	
Lead Temperature (soldering, 10 seconds max)	
,	

^{*} NOTE: Refer to Reflow Profile for SMD Models.

ORDERING INFORMATION

136

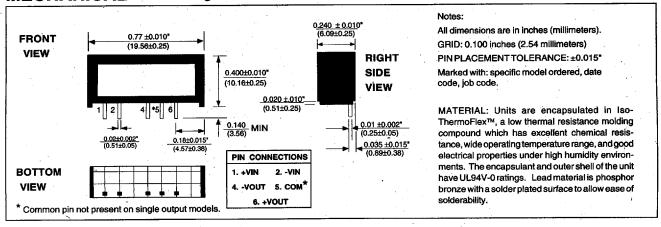
9006050 0000429 975

ELECTRICAL SPECIFICATIONS

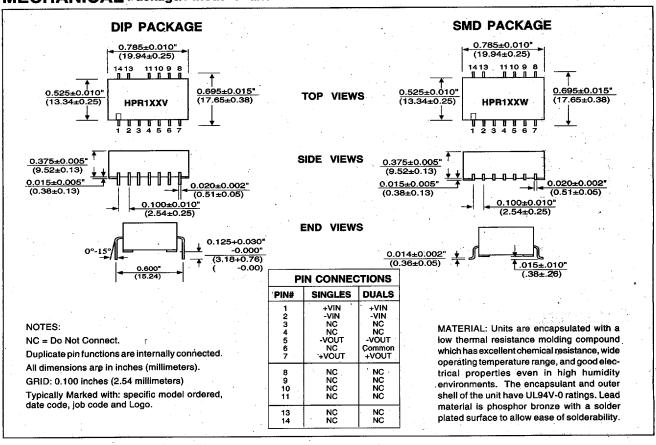
Specifications typical at $T_A = +25$ °C, nominal input voltage, rated output current unless otherwise specified.

	NOMINAL INPUT	RATED	RATED OUTPUT OUTPUT CURRENT (VDC) (mA)	INPUT CURRENT		REFLECTED	
MODEL	VOLTAGE VOLTAGE	VOLTAGE		MIN LOAD (mA)	RATED LOAD (mA)	RIPPLE CURRENT (mAp-p)	EFFICIENCY (%)
HPR100 HPR101 HPR102 HPR103 HPR104 HPR105	5 5 5 5 5 5 5	5 12 15 ±5 ±12 ±15	150 62 50 ±75 ±30 ±25	20 20 20 20 20 20 20	216 200 199 208 192 190	10 5 5 5 5 5	69 73 75 70 78 79
HPR106 HPR107 HPR108 HPR109 HPR110 HPR111	12 12 12 12 12 12	5 12 15 ±5 ±12 ±15	150 62 50 ±75 ±30 ,±25	10 10 10 10 10 10	90 81 78 87 78 78	555555	69 77 80 72 80 80
HPR112 HPR113 HPR114 HPR115 HPR116 HPR117	15 15 15 15 15 15	5 12 15 ±5 ±12 ±15	150 62 50 ±75 ±30 ±25	8 8 8 8	72 67 63 68 63 63	555555	69. 75 80 73 80 80
HPR118 HPR119 HPR120 HPR121 HPR122 HPR123	24 24 24 24 24 24	5 12 15 ±5 ±12 ±15	150 62 50 ±75 ±30 ±25	8 8 8 8 8	44 42 41 41 40 40	15 15 15 15 15 15	70 74 76 76 78 79

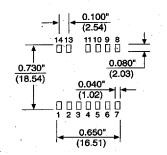
Note: Other input to output voltages may be available. Please contact factory.


COMMON SPECIFICATIONS

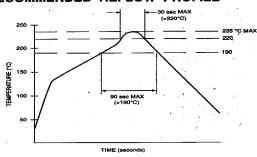
Specifications typical at $T_A = +25$ °C, nominal input voltage, rated output current unless otherwise specified.


Parameter	Conditions	Min	Тур	Max	Units
INPUT Voltage Range Voltage Rise Time	See Typical Performance Curves & App	4.5 10.8 13.5 21.6 plication Notes: "Cap	5 12 15 24 acitive Loading Effec	5.5 13.2 16.5 26.4 ts on Start-Up of DC	VDC VDC VDC VDC /DC Converters"
ISOLATION Rated Voltage Test Voltage Resistance Capacitance Leakage Current	60 Hz, 10 Seconds V _{iso} = 240VAC, 60Hz	750 750	10 25 2	100 8.5	VDC Vpk GΩ pF μArms
OUTPUT Rated Power Voltage Setpoint Accuracy Ripple & Noise HPR103 Voltage	Rated Load, Nominal V _{IN} BW = DC to 10MHz BW =10Hz to 2MHz BW = DC to 10MHz 1mA Load, V _{IN} = 5V		750 45 30 90	±5 7	mW % mVp-p mVrms mVp-p
Temperature Coefficent	1mA Load, V _{our} = 5V 1mA Load, V _{our} = 12V 1mA Load, V _{our} = 15V		.01	15 18	VDC VDC VDC %/Deg·C
REGULATION Line Regulation Load Regulation (5V out only) Load Regulation (All other Models)	High Line to Low Line Rated Load to 1mA Load Rated Load to 1mA Load		1 10 3		%/%Vin % %
GENERAL Switching Frequency Frequency Change Package Weight * MTTF per MIL-HDBK-217, Rev. E Ground Benign Fixed Ground Naval Sheltered Airborne Uninhabited Fighter	Over Line and Load Circuit Stress Method T _A = +25°C T _A = +35°C T _A = +35°C T _A = +35°C		170 24 2 7.9 1.9 1.2 300		kHz % g MHr MHr MHr kHr
TEMPERATURE Specification Operation Storage		-25 -40 -40	+25	+85 +100 +110	င့် ငွဲ ငွဲ

^{*} For demonstrated MTTF results reference Power Convertibles Reliability Report HPR105

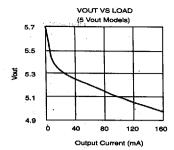

MECHANICAL "SIP" Package/Pinout

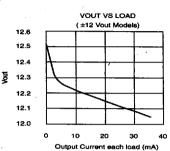
MECHANICAL Package/Pinout "V" and "W"

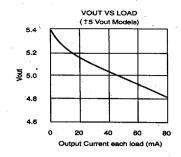

RECOMMENDED LAND PATTERN

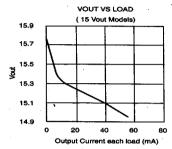
38

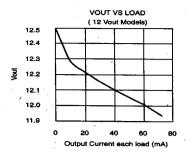
RECOMMENDED REFLOW PROFILE

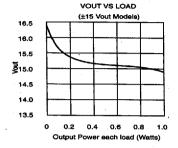

523 I

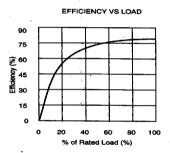


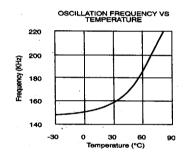

= 9006050 000**0**431 5a

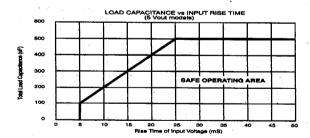

TYPICAL PERFORMANCE CURVES

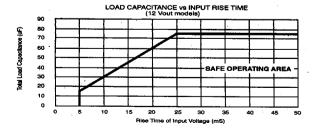

Specifications typical at T_A = +25°C, nominal input voltage, rated output current unless otherwise specified.

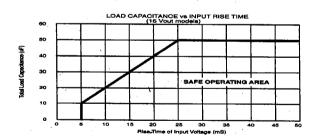












SAFE OPERATING AREA

NOTES:

- When operated within the SAFE OPERATING AREA as defined by the above curves, the output voltage of HPR1XX devices is guaranteed to be within 95% of its steady-state value within 100 milliseconds after the input voltage has reached 95% of its steadystate value.
- For dual output models, total load capacitance is the sum of the capacitances on the plus and minus outputs.

39

■ 9006050 0000432 46T **■**