Rev. 1 — 11 August 2010

Preliminary data sheet

1. Product profile

1.1 General description

The BGA7027 MMIC is a one-stage amplifier, offered in a low-cost surface-mount package. It delivers 28 dBm output power at 1 dB gain compression and a superior performance up to 2700 MHz.

1.2 Features and benefits

- 400 MHz to 2700 MHz frequency operating range
- 11 dB small signal gain at 2 GHz
- 28 dBm output power at 1 dB gain compression
- Integrated active biasing
- External matching allows broad application optimization of the electrical performance
- 5 V single supply operation
- ESD protection at all pins

1.3 Applications

- Broadband CPE/MoCA
- WLAN/ISM/RFID
- Wireless infrastructure (base station, repeater, backhaul systems)
- Industrial applications
- E-metering
- Satellite Master Antenna TV (SMATV)

1.4 Quick reference data

Table 1. Quick reference data

Input and output impedances matched to 50 Ω . Typical values at: $I_{CC} = 170 \text{ mA}$; $V_{CC} = 5 \text{ V}$; $T_{case} = 25 \text{ °C}$; unless otherwise specified.

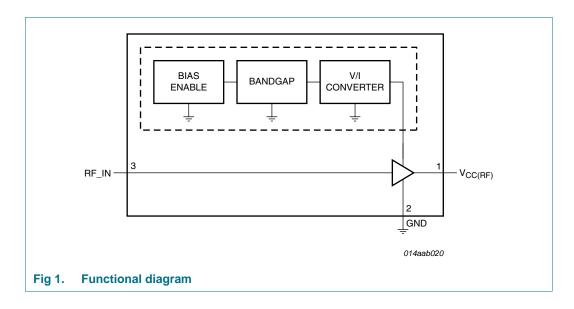
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	frequency		<u>[1]</u> 400	-	2700	MHz
G _p	gain power	f = 2140 MHz	-	11	-	dB
P _{L(1dB)}	output power at 1 dB gain compression	f = 2140 MHz	-	28	-	dBm
IP3 ₀	output third-order intercept point	f = 2140 MHz	[2] _	43	-	dBm

[1] Operation outside this range is possible but not guaranteed.

[2] $P_L = 17 \text{ dBm}$ per tone; spacing = 1 MHz.

2. Pinning information

Table 2.	Pinning		
Pin	Description	Simplified outline	Graphic symbol
1	V _{CC(RF)}	[1]	
2	GND	[2]	3-1
3	RF_IN		3 77 sym130


[1] This pin is DC-coupled and requires an external DC-blocking capacitor.

[2] The center metal base of the SOT89 also functions as heatsink for the power amplifier.

3. Ordering information

Table 3. Ordering information									
Type number	Packag	je							
	Name	Description	Version						
BGA7027	-	plastic surface-mounted package; exposed die pad for good heat transfer; 3 leads	SOT89						

4. Functional diagram

BGA7027 Preliminary data sheet

5. Limiting values

Table 4. In accorda	Limiting values ince with the Absolute Max	imum Rating System (IEC 60134).			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-	5.7	V
P _{i(RF)}	RF input power		-	<tbd></tbd>	dBm
T _{case}	case temperature		-40	+85	°C
Tj	junction temperature		-	150	°C
V _{ESD}	electrostatic discharge voltage	Human Body Model (HBM); according to JEDEC standard 22-A114E	-	2000	V
		Charged Device Model (CDM); according to JEDEC standard 22-C101B	-	500	V

6. Thermal characteristics

Table 5.	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-c)}	thermal resistance from junction to case	$T_{case} = 85 \text{ °C}; V_{CC} = 5 \text{ V};$ $I_{CC} = 170 \text{ mA}$	38	K/W

7. Static characteristics

Table 6. Characteristics

Input and output impedances matched to 50 Ω . Typical values at $T_{case} = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		-	5.0	-	V
I _{CC}	supply current	$V_{CC} = 5.0 V$	145	170	195	mA

8. Dynamic characteristics

Table 7. Characteristics

Input and output impedances matched to 50 Ω . Typical values at V_{CC} = 5 V; T_{case} = 25 °C, NXP application circuit; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	frequency		<u>[1]</u> 400	-	2700	MHz
G _p		f = 940 MHz	[2] _	19	-	dB
		f = 1960 MHz	[2] _	12	-	dB
		f = 2140 MHz	[2] _	11	-	dB
P _{L(1dB)}	output power at 1 dB gain compression	f = 940 MHz	-	28	-	dBm
		f = 1960 MHz	-	28	-	dBm
		f = 2140 MHz	-	28	-	dBm

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

Table 7. Characteristics ...continued

Input and output impedances matched to 50 Ω . Typical values at V_{CC} = 5 V; T_{case} = 25 °C, NXP application circuit; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IP3 ₀	output third-order intercept point	f = 940 MHz	<u>[3]</u>	42	-	dBm
		f = 1960 MHz	<u>[3]</u>	43	-	dBm
		f = 2140 MHz	<u>[3]</u>	43	-	dBm
NF	noise figure	f = 940 MHz	-	2.5	-	dB
		f = 1960 MHz	-	3.5	-	dB
		f = 2140 MHz	-	3.8	-	dB
RL _{in}	input return loss	f = 940 MHz	[2] _	-15	-	dB
		f = 1960 MHz	[2]	-8	-	dB
		f = 2140 MHz	[2]	-8	-	dB
RL _{out}	output return loss	f = 940 MHz	[2]	-11	-	dB
		f = 1960 MHz	[2]	-19	-	dB
		f = 2140 MHz	[2] _	-22	-	dB

[1] Operation outside this range is possible but not guaranteed.

[2] Defined at $P_{i(RF)} = -40$ dBm; small signal conditions.

[3] $P_L= 17 \text{ dBm per tone}$; spacing = 1 MHz.

9. Scattering parameters

Table 8. Scattering parameters at 5 V, MMIC only

 $V_{CC} = 5 V; I_{CC} = 180 mA; T_{case} = 25 °C.$

f (MHz)	S ₁₁	S ₁₁		s ₂₁ s			S ₂₂	
	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)
400	0.92	178	8.03	93	0.01	49	0.76	-176
500	0.92	176	6.55	89	0.01	53	0.75	-178
600	0.92	173	5.55	85	0.02	55	0.75	179
700	0.92	171	4.80	82	0.02	56	0.75	177
800	0.92	168	4.24	79	0.02	56	0.75	175
900	0.92	165	3.80	76	0.02	56	0.75	173
1000	0.92	162	3.46	72	0.03	55	0.76	170
1100	0.92	160	3.14	69	0.03	54	0.76	167
1200	0.92	157	2.85	66	0.03	53	0.76	165
1300	0.92	154	2.61	63	0.03	52	0.76	163
1400	0.93	152	2.39	61	0.03	50	0.77	161
1500	0.93	150	2.20	58	0.03	49	0.78	160
1600	0.93	149	2.03	56	0.04	48	0.78	159
1700	0.93	148	1.88	54	0.04	47	0.79	157
1800	0.94	147	1.75	63	0.04	47	0.80	157
1900	0.94	146	1.64	51	0.04	46	0.80	157
2000	0.94	146	1.53	50	0.04	46	0.80	157

BGA7027

f (MHz)	S ₁₁		s ₂₁	s ₂₁			S ₂₂	
	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)
2100	0.93	146	1.45	49	0.04	46	0.81	157
2200	0.93	147	1.39	49	0.05	46	0.81	157
2300	0.93	147	1.33	48	0.05	45	0.81	158
2400	0.92	147	1.29	48	0.05	45	0.80	159
2500	0.91	147	1.26	47	0.05	45	0.80	160
2600	0.91	148	1.24	46	0.06	45	0.80	160
2700	0.89	147	1.23	45	0.06	44	0.79	161

Table 8. Scattering parameters at 5 V, MMIC only ...continued

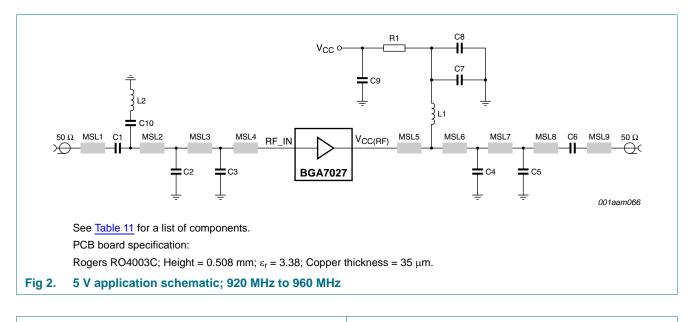

10. Reliability information

Table 9.	Reliability	
Life test	Conditions	Intrinsic failure rate
HTOL	according to JESD85; confidence level 60 %; $T_j = 55$ °C; activation energy = 0.7 eV; acceleration factor determined according to the Arrhenius equation	4

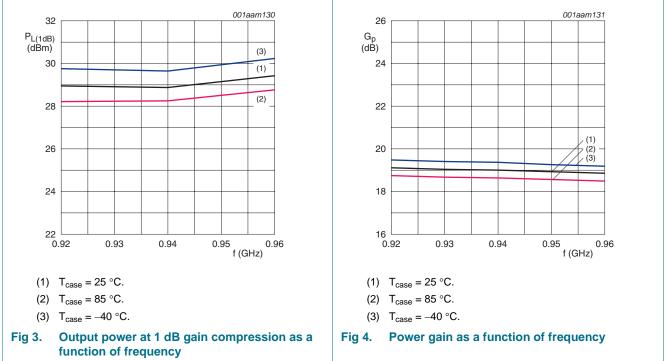
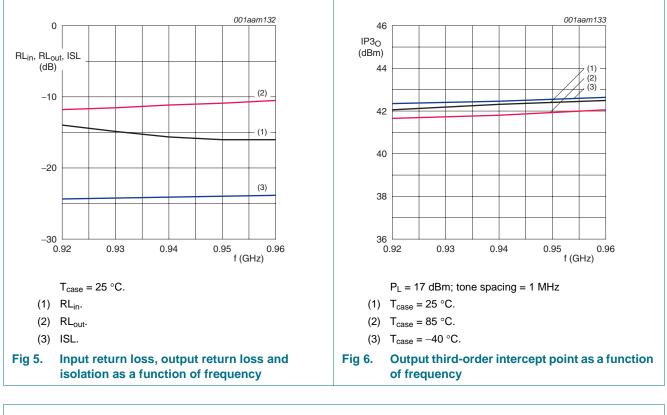
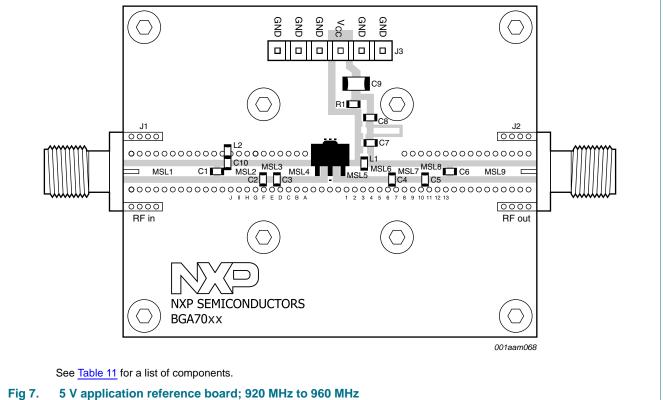

11. Moisture sensitivity

Table 10.	Moisture sensitivity level	
Test meth	odology	Class
JESD-22-/	A113	1

12. Application information




12.1 920 MHz to 960 MHz

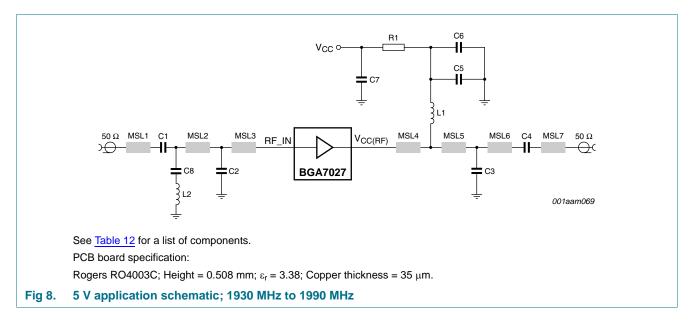
BGA7027

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

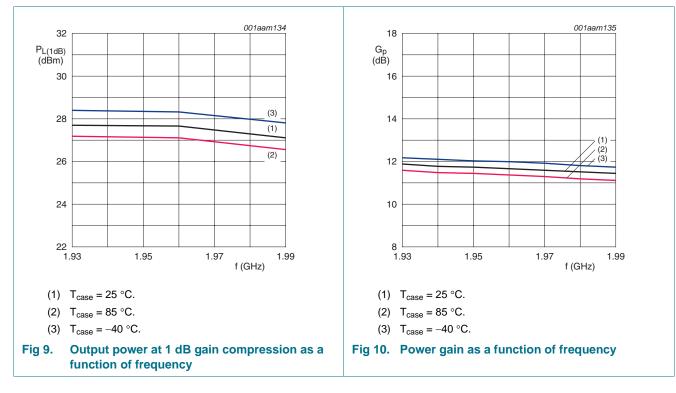
BGA7027 Preliminary data sheet

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

Component Description Value **Function** Remarks C1, C6 capacitor 68 pF DC blocking Murata, GRM1885C1H680JA01D C2 capacitor 5.6 pF input match Murata, GRM1885C1H5R6CZ01D C3 Murata, GRM1885C1H2R7CZ01D capacitor 2.7 pF input match C4 capacitor 1.0 pF output match Murata, GRM1885C1H1R0CZ01D C5 capacitor 3.9 pF output match Murata, GRM1885C1H3R9CZ01D C7 capacitor 68 pF **RF** decoupling Murata, GRM1885C1H680JA01D C8 capacitor 100 nF LF decoupling AVX, 0603YC104KAT2A C9 capacitor 10 μF LF decoupling AVX, 1206ZG106ZAT2A C10 Murata, GRM1888R71H683KA93D capacitor 68 nF IMD3 suppression J1, J2 **RF** connector SMA Emerson Network Power, 142-0701-841 J3 DC connector 6 pins MOLEX L1 inductor 22 nH DC Feed Tyco Electronics, 36501J022JTDG L2[1] inductor 33 nH IMD3 suppression Tyco Electronics, 36501J033JTDG MSL1^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 10.95 \text{ mm}$ input match MSL2^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 4.3 \text{ mm}$ input match MSL3^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 1.7 \text{ mm}$ input match MSL4^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 4.8 \text{mm}$ input match MSL5^[2] micro stripline $1.14~\text{mm} \times 0.8~\text{mm} \times 2.7~\text{mm}$ output match MSL6^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 3.2 \text{ mm}$ output match MSL7^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 4.0 \text{ mm}$ output match MSL8^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 1.6 \text{ mm}$ output match MSL9^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 10.95 \text{ mm}$ output match R1 resistor 0Ω Multicomp, MC 0.063W 0603 0R

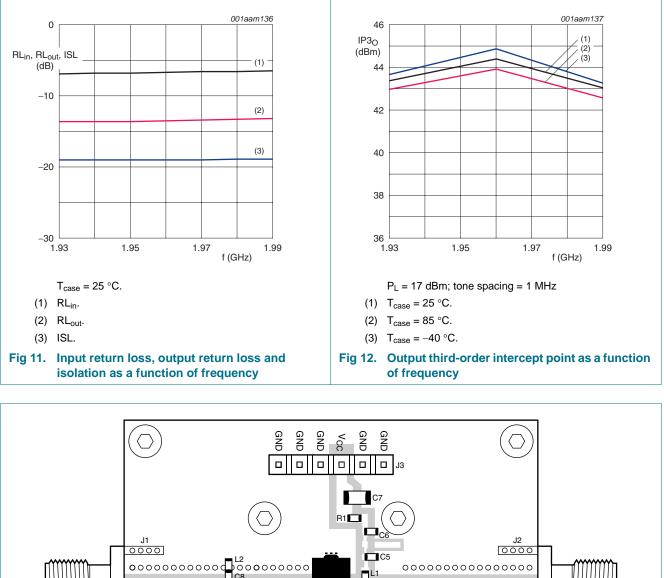

List of components of 920 MHz to 960 MHz, 5 V application Table 11. See Figure 2 and Figure 7 for component layout.

Printed-Circuit Board (PCB): Rogers RO4003C stack; height = 0.508 mm; copper plating thickness = 35 μm.


Low Q inductor. [1]

MSL1 to MSL9 dimensions are specified as Width (W), Spacing (S) and Length (L). [2]

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier



BGA7027

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

MSL3 MSL1 C1 MSL2 MSL6 C4 MSL7 MSL4 C2 C3 <u>o</u>oooooooooooooooooooooo 0000 000 00 0000 0000 RF in RF out NXP SEMICONDUCTORS BGA70xx 001aam072 See Table 12 for a list of components. Fig 13. 5 V application reference board; 1930 MHz to 1990 MHz

BGA7027 Preliminary data sheet

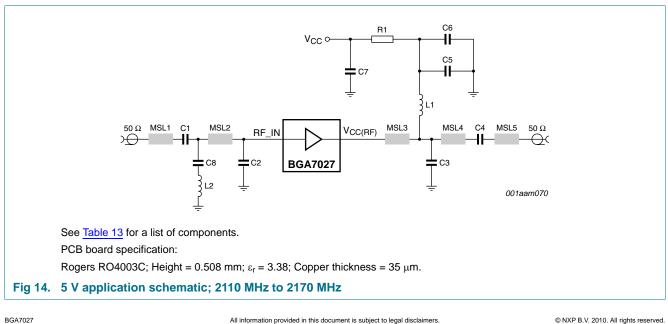
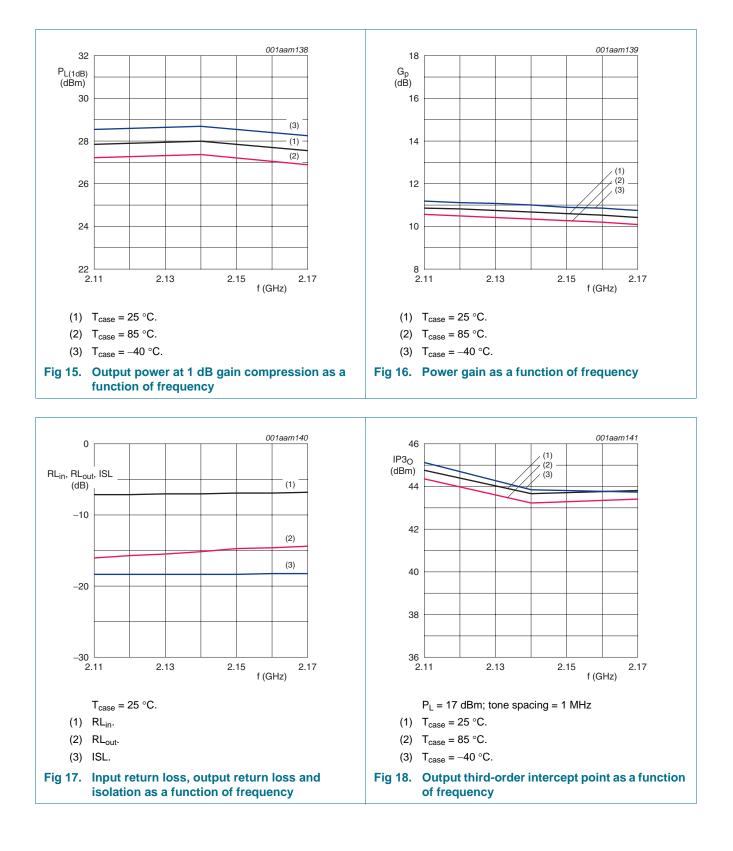

Component	Description	Value	Function	Remarks
C1, C4	capacitor	15 pF	DC blocking	Murata, GRM1885C1H150JA01D
C2	capacitor	2.4 pF	input match	Murata, GRM1885C1H2R4CZ01D
C3	capacitor	2.0 pF	output match	Murata, GRM1885C1H2R0CZ01D
C5	capacitor	15 pF	RF decoupling	Murata, GRM1885C1H150JA01D
C6	capacitor	100 nF	LF decoupling	AVX, 0603YC104KAT2A
C7	capacitor	10 μF	LF decoupling	AVX, 1206ZG106ZAT2A
C8	capacitor	68 nF	IMD3 suppression	Murata, GRM1888R71H683KA93D
J1, J2	RF connector	SMA		Emerson Network Power, 142-0701-841
J3	DC connector	6 pins		MOLEX
L1	inductor	22 nH	DC Feed	Tyco Electronics, 36501J022JTDG
L2 ^[1]	inductor	33 nH	IMD3 suppression	Tyco Electronics, 36501J033JTDG
MSL1 ^[2]	micro stripline	1.14 mm \times 0.8 mm \times 10.95 mm	input match	
MSL2 ^[2]	micro stripline	1.14 mm \times 0.8 mm \times 10.6 mm	input match	
MSL3 ^[2]	micro stripline	1.14 mm \times 0.8 mm \times 1.0 mm	input match	
MSL4 ^[2]	micro stripline	1.14 mm \times 0.8 mm \times 2.7 mm	output match	
MSL5 ^[2]	micro stripline	1.14 mm \times 0.8 mm \times 2.0 mm	output match	
MSL6 ^[2]	micro stripline	1.14 mm \times 0.8 mm \times 6.8 mm	output match	
MSL7 ^[2]	micro stripline	1.14 mm \times 0.8 mm \times 10.95 mm	output match	
R1	resistor	0 Ω		Multicomp. MC 0.063W 0603 0R

Table 12. List of components of 1930 MHz to 1990 MHz, 5 V application

See Figure 8 and Figure 13 for component layout. Printed-Circuit Board (PCB): Rogers RO4003C stack: height = 0.508 mm; copper plating thickness = 35 vm

[1] Low Q inductor.

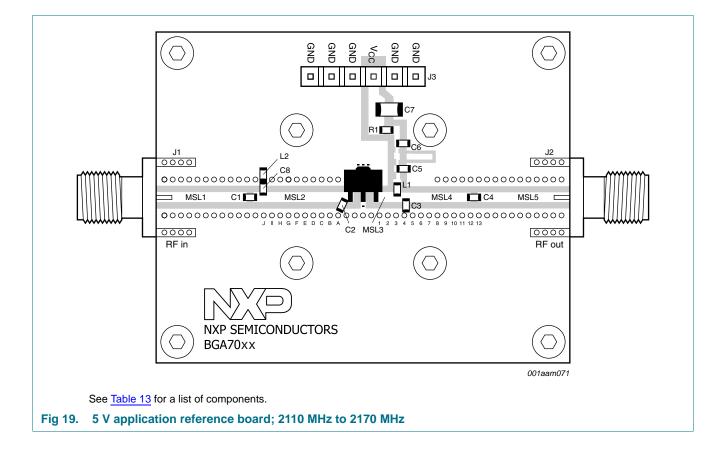
[2] MSL1 to MSL7 dimensions are specified as Width (W), Spacing (S) and Length (L).



12.3 2110 MHz to 2170 MHz

All information provided in this document is subject to legal disclaimers.

BGA7027


400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

BGA7027

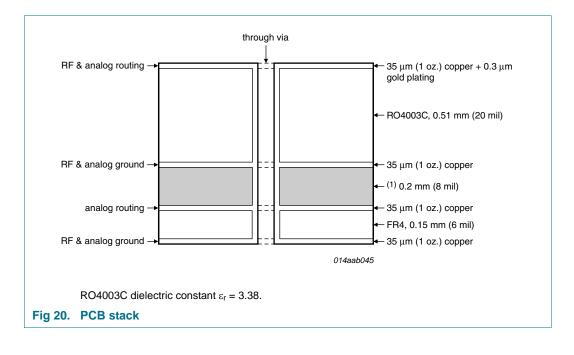
BGA7027

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

See Figure 14 and Figure 19 for component layout.

Table 13.

BGA7027

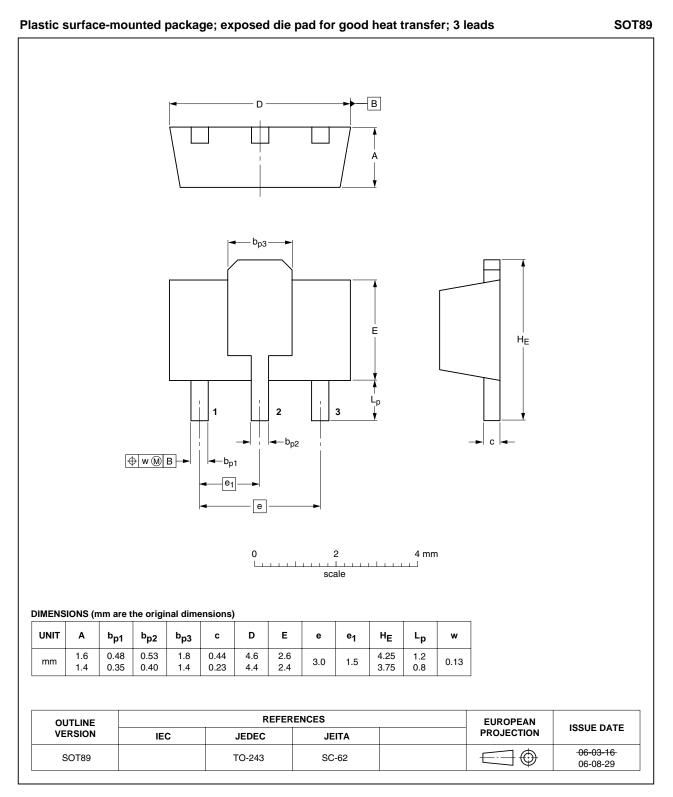

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

Printed-Circuit Board (PCB): Rogers RO4003C stack; height = 0.508 mm; copper plating thickness = 35 μm. **Component Description** Value Function Remarks C1, C4 capacitor 15 pF DC blocking Murata, GRM1885C1H150JA01D C2 capacitor 2.2 pF input match Murata, GRM1885C1H2R2CZ01D C3 Murata, GRM1885C1H1R0CZ01D capacitor 2.0 pF output match C5 capacitor 15 pF **RF** decoupling Murata, GRM1885C1H150JA01D C6 capacitor 100 nF LF decoupling AVX, 0603YC104KAT2A C7 LF decoupling capacitor 10 μF AVX, 1206ZG106ZAT2A IMD3 suppression C8 capacitor 68 nF Murata, GRM1888R71H683KA92D J1. J2 **RF** connector SMA Emerson Network Power. 142-0701-841 J3 DC connector 6 pins MOLEX L1 inductor 22 nH DC Feed Tyco Electronics, 36501J022JTDG 12[1] inductor 33 nH IMD3 suppression Tyco Electronics, 36501J033JTDG MSL1^[2] micro stripline 1.14 mm \times 0.8 mm \times 10.95 mm input match MSL2^[2] micro stripline 1.14 mm \times 0.8 mm \times 11.3 mm input match MSL3^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 3.2 \text{ mm}$ output match MSL4^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 8.0 \text{ mm}$ output match MSL5^[2] micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 10.95 \text{ mm}$ output match R1 resistor 0Ω Multicomp, MC 0.063W 0603 0R

[1] Low Q inductor.

[2] MSL1 to MSL5 dimensions are specified as Width (W), Spacing (S) and Length (L).

List of components of 2110 MHz to 2170 MHz, 5 V application



12.4 PCB stack

BGA7027

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

13. Package outline

Fig 21. Package outline SOT89

All information provided in this document is subject to legal disclaimers.

BGA7027

14. Abbreviations

Table 14. Abbreviations				
Acronym	Description			
CPE	Customer-Premises Equipment			
ESD	ElectroStatic Discharge			
HTOL	High Temperature Operating Life			
ISM	Industrial, Scientific and Medical			
MMIC	Monolithic Microwave Integrated Circuit			
RFID	Radio Frequency IDentification			
ТХ	Transmit			
W-LAN	Wireless Local Area Network			

15. Revision history

Table 15. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
BGA7027 v.1	20100811	Preliminary data sheet	-	-	

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

17 of 19

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any

17. Contact information

liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

18. Contents

Product profile
General description 1
Features and benefits 1
Applications 1
Quick reference data 1
Pinning information 2
Ordering information 2
Functional diagram 2
Limiting values 3
Thermal characteristics 3
Static characteristics 3
Dynamic characteristics 3
Scattering parameters 4
Reliability information 5
Moisture sensitivity 5
Application information
920 MHz to 960 MHz 6
1930 MHz to 1990 MHz 9
2110 MHz to 2170 MHz 11
PCB stack 14
Package outline 15
Abbreviations 16
Revision history 16
Legal information 17
Data sheet status 17
Definitions 17
Disclaimers
Trademarks 18
Contact information 18
Contents 19

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11 August 2010 Document identifier: BGA7027