
PI74ALVCH1622601S

18-Bit Universal Bus Transceiver With 3-State Outputs

Product Features

- PI74ALVCH1622601S is designed for low voltage operation
- $V_{CC}=2.3V \text{ to } 3.6V$
- Hysteresis on all inputs
- Typical VOLP (Output Ground Bounce) < 0.8 V at $V_{CC} = 3.3 \text{V}$, $T_A = 25 ^{\circ}\text{C}$
- Typical VOHV (Output VOH Undershoot) < 2.0 V at $V_{CC} = 3.3 \text{V}$, $T_A = 25 ^{\circ}\text{C}$
- Inputs/Outputs have equivalent 26Ω series resistors, no external resistors are required.
- Bus Hold retains last active bus state during 3-state eliminates the need for external pullup resistors
- Industrial operation at -40°C to +85°C
- Packages available:
 - 56-pin 240 mil wide plastic TSSOP (A56)
 - 56-pin 300 mil wide plastic SSOP (V56)

Logic Block Diagram

Product Description

Pericom Semiconductor's PI74ALVCH series of logic circuits are produced in the Company's advanced 0.5 micron CMOS technology, achieving industry leading speed.

The PI74ALVCH1622601S uses D-type latches and D-type flip-flops with 3-state outputs to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by Output Enable (OEAB and OEBA), Latched Enable (LEAB and LEBA), and Clock (CLKAB and CLKBA) inputs. The clock can be controlled by the Clock Enable (CLKENAB and CLKENBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When \overline{OEAB} is low, the outputs are active. When \overline{OEAB} is HIGH, the outputs are in the high-impedance state.

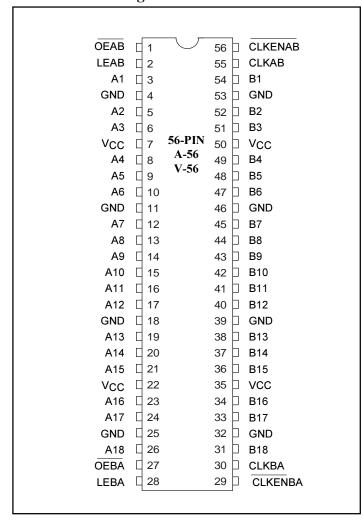
Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, CLKBA, and CLKENBA.

To reduce overshoot and undershoot, the inputs/outputs include 26Ω series resistors.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The PI74ALVCH1622601S has "Bus Hold" which retains the data input's last state whenever the data input goes to high-impedance preventing "floating" inputs and eliminating the need for pullup/ down resistors.

05/11/98


1

Product Pin Description

Pin Name	Description
CLKEN	Clock Enable Input (Active LOW)
ŌĒ	Output Enable Input (Active LOW)
LE	Latch Enable (Active HIGH)
CLK	Clock Input (Active HIGH)
Ax	Data I/O
Bx	Data I/O
GND	Ground
Vcc	Power

Product Pin Configuration

Truth Table(1)†

	Output				
CLKENAB	OEAB	LEAB	CLKAB	A	В
X	Н	X	X	X	Z
X	L	Н	X	L	L
X	L	Н	S	Н	Н
Н	L	L	X	X	B ₀ ‡
Н	L	L	X	X	B ₀ ‡
L	L	L	1	L	L
L	L	L	1	Н	Н
L	L	L	L	X	B ₀ ‡
L	L	L	Н	X	B ₀ §

Notes:

2

- 1. H = High Signal Level
 - L = Low Signal Level
 - Z = High Impedance
 - ↑ = LOW-to-HIGH Transition
 - † A-to-B data flow is shown:
 - B-to-A flow is similar but uses OEBA, LEBA, CLKBA, and CLKENBA.
 - ‡ Output level before the indicated steady-state input conditions were established.
 - § Output level before the indicated steady-state input conditions were established, provided that CLKAB is LOW before LEAB goes LOW.

05/11/98

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Input Voltage Range, VIN	0.5V to V _{CC} +0.5V
Output Voltage Range, VOUT	0.5V to V _{CC} +0.5V
DC Input Voltage	0.5V to +5.0V
DC Output Current	100mA
Power Dissipation	1.0W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions(1)

Parameters	Description	Test Conditions	Min.	Тур.	Max.	Units	
V_{CC}	Supply Voltage		2.3		3.6		
V	Innut HICH Valtage	$V_{CC} = 2.3 V \text{ to } 2.7 V$	1.7				
$V_{ m IH}$	Input HIGH Voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2.0				
1 7	In a LOW When	$V_{CC} = 2.3 \text{V to } 2.7 \text{V}$			0.7	V	
$ m V_{IL}$	Input LOW Voltage	$V_{CC} = 2.7 \text{V to } 3.6 \text{V}$			0.8		
V _{IN}	Input Voltage	0		V _{CC}			
V _{OUT}	Output Voltage		0		V _{CC}		
	High-level Output Current	$V_{CC} = 2.3V$			-6		
I_{OH}		$V_{\rm CC} = 2.7 V$			-8		
		$V_{\rm CC} = 3.0 V$			-12		
		$V_{CC} = 2.3V$			6	mA	
I_{OL}	Low-level Output Current	$V_{\rm CC} = 2.7 V$			8		
		$V_{CC} = 3.0V$			12		
T _A	Operating Free-Air	Temperature	-40		85	°C	

3

Note:

1. Unused control inputs must be held HIGH or LOW to prevent them from floating.

DC Electrical Characteristics (Over the Operating Range, TA = -40°C to +85°C, VCC = 3.3V ± 10%)

Parameters	Test Condit	ions	$\mathbf{v_{cc}}^{(1)}$	Min.	Typ .(2)	Max.	Units	
	I _{OH} = -100 μA	Min. to Max.	V _{CC} -0.2					
	$I_{OH} = -4 \text{ mA}$	$V_{IH} = 1.7V$	2.3V	1.9				
Vor	$I_{OH} = -6 \text{ mA}$	$V_{IH} = 1.7V$	2.3V	1.7				
$V_{ m OH}$	10H – -0 IIIA	$V_{IH} = 2.0V$	3.0V	2.4			.	
	$I_{OH} = -8 \text{ mA}$	$V_{IH} = 2.0V$	2.7V	2.0				
	$I_{OH} = -12 \text{ mA}$	$V_{IH} = 2.0V$	3.0V	2.0				
	$I_{OL} = 100 \mu A$		Min. to Max.	V _{CC} -0.2		0.2	V	
	$I_{OL} = 4 \text{ mA}$	$V_{\rm IL} = 0.7V$	2.3V			0.4		
Vor	Ior = 6 mA	$V_{\rm IL} = 0.7 V$	2.3V			0.55		
$V_{ m OL}$	$I_{OL} = 6 \text{ mA}$	$V_{IL} = 0.8V$	3.0V			0.55		
	$I_{OL} = 8 \text{ mA}$	$V_{\rm IL} = 0.8 V$	2.7V			0.6		
	$I_{\rm OL} = 12 \text{ mA}$	3.0V			0.8			
${ m I_I}$	$V_{I} = V_{CC}$ or GND	3.6V			±5			
	$V_I = 0.7V$	2.3V	45			μΑ		
	$V_I = 1.7V$		-45					
I _I (Hold) ⁽³⁾	$V_{\rm I} = 0.8 V$	2.017	75					
	$V_I = 2.0V$	3.0V	-75					
	$V_I = 0$ to 3.6V	3.6V			±500			
$I_{OZ}^{(4)}$	$V_{O} = V_{CC}$ or GND		3.6V			±10		
I_{CC}	$V_I = V_{CC}$ or GND	3.6V			40			
ΔI_{CC}	One input at V _{CC} -0.6V, other input	s at V _{CC} or GND	3V to 3.6V			750		
C _I Control Inputs	$V_I = V_{CC}$ or GND	3.3V		4		"E		
C _{IO} A or B ports	$V_{O} = V_{CC}$ or GND		3.3V		8		pF	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at V_{CC} = 3.3V, +25°C ambient and maximum loading.
- 3. Bus Hold maximum dynamic current required to switch the input from one state to another.
- 4. For I/O ports, the $I_{\mbox{\scriptsize OZ}}$ includes the input leakage current.

Operating Characteristics, TA = 25°C

Parameter		Test	$\mathbf{Vcc} = 2.5\mathbf{V} \pm 0.2\mathbf{V}$	$\mathbf{Vcc} = 3.3\mathbf{V} \pm 0.3\mathbf{V}$	Units
		Conditions	Typical	Typical	Units
C _{PD} Power Dissipation	Outputs Enabled	C _L = 50pF,	41	50	nΕ
Capacitance	Outputs Disabled	F = 10 MHz	6	6	pF

4 05/11/98

Timing Requirements over Operating Range

Dawamatawa	Description	$V_{CC} = 2.5V \pm 0.2V$		$V_{CC} = 2.7V$		$V_{CC} = 3.3V \pm 0.3V$		Units
Parameters	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
fclock	Clock frequency	0	140	0	150	0	150	MHz
tw Pulse	LE high	3.3		3.3		3.3		
Duration	CLK high or low	3.3		3.3		3.3		
	Data before CLK high	2.3		2.4		2.1		
t _{SU} Setup	Data before LE low, CLK high	2.0		1.6		1.6		
time	Data before $\overline{\text{LE}}$ low, CLK low	1.3		1.2		1.1		ng
	CLKEN before CLK high	2.0		2.0		1.7		ns
	Data after CLK high	0.7		0.7		0.8		
t _H Hold time	Data after LE low, CLK high	1.3		1.6		1.4		
	Data after LE low, CLK low	1.7		2.0		1.7		
	CLKEN after CLK high	0.3		0.5		0.6		
$\Delta t/\Delta v^{(1)}$	Input Transition Rise or Fall	0	10	0	10	0	10	ns/V

Note:

$Switching \ Characteristics \ over \ Operating \ Range^{(1)}$

Parameters	From	То	$V_{CC} = 2.5V \pm 0.2V$		$V_{CC} = 2.7V$		$V_{CC} = 3.3V \pm 0.3V$		Units
	(INPUT)	(OUTPUT)	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	
f _{MAX}			140		150		150		MHz
t _{PD}	A	В	1.8	5.4		5.2	1.6	4.5	
t _{PD}	В	A	1.8	5.4		5.2	1.6	4.5	
tpD	LEAB	В	1.5	6.1		5.9	1.5	5.1	
tpD	LEBA	A	1.5	6.1		5.9	1.5	5.1	
tpD	CLKAB	В	2	6.7		6.3	1.6	5.5	
t _{PD}	CLKBA	A	1.2	6.7		6.3	1.6	5.5	ns
$t_{\rm EN}$	OEAB	В	1.7	6.6		6.7	1.6	5.7	
t _{DIS}	OEAB	В	2.5	5.9		5.3	1.8	4.8	
$t_{\rm EN}$	OEBA	A	1.7	6.6		6.7	1.6	5.7	
t _{DIS}	OEBA	A	2.5	5.9		5.3	1.8	4.8	

Notes:

- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com

05/11/98

^{1.} Unused control inputs must be held HIGH or LOW to prevent them from floating.