Hitachi Single-Chip Microcomputer

H8S/2238 Series

H8S/2238B HD6432238B, HD6432238BW

> H8S/2238R HD6432238R

H8S/2236B HD6432236B, HD6432236BW

> H8S/2236R HD6432236R

H8S/2238F-ZTATTM HD64F2238B, HD64F2238R

Hardware Manual

HITACHI

ADE-602-176B Rev. 3.0 3/18/02 Hitachi Ltd.

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Preface

The H8S/2238 Series is a series of high-performance microcontrollers with a 32-bit H8S/2000 CPU core, and a set of on-chip supporting functions required for system configuration.

The H8S/2000 CPU can execute basic instructions in one state, and is provided with sixteen 16-bit general registers with a 32-bit internal configuration, and a concise and optimized instruction set. The CPU can handle a 16-Mbyte linear address space (architecturally 4 Gbytes). Programs based on the high-level language C can also be run efficiently.

The address space is divided into eight areas. The data bus width and access states can be selected for each of these areas, and various kinds of memory can be connected fast and easily.

Single-power-supply flash memory (F-ZTAT^{TM*}) and mask ROM versions are available, providing a quick and flexible response to conditions from ramp-up through full-scale volume production, even for applications with frequently changing specifications.

On-chip supporting functions include a 16-bit timer pulse unit (TPU), 8-bit timer unit (TMR), watchdog timer (WDT), serial communication interface (SCI), I²C bus interface (IIC), A/D converter, D/A converter, and I/O ports.

In addition, an on-chip data transfer controller (DTC) is provided, enabling high-speed data transfer without CPU intervention.

Use of the H8S/2238 Series enables compact, high-performance systems to be implemented easily.

This manual describes the hardware of the H8S/2238 Series. Refer to the H8S/2600 Series and H8S/2000 Series Programming Manual for a detailed description of the instruction set.

Note: * F-ZTAT is a trademark of Hitachi, Ltd.

Main Revisions and Additions in this Edition

Page	Item	Revisions (See Manual for Details)
All		112-pin plastic TFBGA (BP-112) is added to package types.
		Product code of HD64F2238M is amended to HD64F2238B.
		HD6432238RW and HD6432236RW (mask ROM version) added
9	1.3 Pin Description	Figure 1-4 Pin Arrangement added
66	2.10 Usage Notes	Description of STM/LDM instruction added
120	6.2.3 Break Control Register A (BCRA)	Note on condition match flag A added
203	8.5 Usage Notes	Description of module stop amended
402	12.2.2 Timer Control/Status Register (TCSR)	Note on overflow flag added
494	14.2.3 Serial Mode Register (SMR)	Values set to bits 6, 3, and 2 amended
523	15.2.1 I ² C Bus Data Register	Description amended
524	(ICDR)	Second setting condition of TDRE deleted
531	15.2.5 I ² C Bus Control Register (ICCR)	Description of setting conditions 1 and 2 of bit 4 partly deleted
545	15.3.2 Master Transmit	Operation entirely amended
546	Operation	Figure 15-6 Master Transmit Mode Operation Timing Example
		Entirely amended
548	15.3.3 Master Receive Operation	Figure 15-7 Example of Master Transmit Mode Continuous Transmit Operation Timing
		Deleted
546, 547	15.3.3 Master Receive	Operation entirely amended
548	Operation	Figure 15-8 Example of Master Receive Mode Operation Timing is divided into two figures (figures 15-7 and 15-8) and entirely amended
556, 557	15.3.9 Sample Flowcharts	Figure 15-14 Flowchart for Master Transmit Mode and figure 15-15 Flowchart for Master Receive Mode
		Entirely amended
559	15.3.10 Initialization of Internal State	Description of procedure when initializing IIC state amended

HITACHI

Page	Item	Revisions (See Manual for Details)
562	15.4 Usage Notes	Sixth description amended
565	-	Eighth description entirely amended
576	16.2.3 A/D Control Register	Bit 0 amended
	(ADCR)	Bits 2 and 3 amended
597	17.4 Usage Notes	Added
606	19.4.1 Features	T.B.D values of programming/erase times amended
614	19.6 Register Configuration	Notes on R/W and initial value of flash memory power control register in table 19-5 deleted
672	20.3.2 External Clock Input	Table 20-4 External Clock Input Conditions and table 20-5 External Clock Input Conditions when Duty Adjustment Circuit is not Used Amended
676	20.7 Subclock Oscillator	Figure 20-10 32.768 kHz Crystal Resonator Equivalent Circuit Model name amended
680	21.1 Overview	Table 21-1 H8S/2238 Series Internal States in Each Mode
		Description of subclock oscillator amended and note on subclock oscillator added
694	21.6.1 Software Standby Mode	Description amended
698	21.8.1 Watch Mode	Description amended
699	21.9.1 Subsleep Mode	Description amended
700	21.10.1 Subactive Mode	Description amended
702, 703	21.13 Usage Notes	Added
708	23.1 Power Supply Voltage and Operating Frequency Range	(5) in figure 23-1 Power Supply Voltage and Operating Ranges Amended
709	-	Figure 23-2 Power Supply Voltage and Operating Ranges Amended
711 to 718	23.2.2 DC Characteristics	Table 23-2 DC Characteristics (1) to (3), table 23-3 Permissible Output Currents, and table 23-4 Bus Drive Characteristics
	_	Conditions A and B: Values of AVcc amended from 3.0 to 5.5 V to 3.6 to 5.5 V
711, 712		Table 23.2 DC Characteristics (1)
		FWE added in input high and input low voltages and input leakage current

HITACHI

Page	Item	Revisions (See Manual for Details)
720 to 725	23.2.3 AC Characteristics	Table 23-5 Clock Timing, table 23-6 Control Signal Timing, table 23-7 Bus Timing, and table 23-8 Timing of On-Chip Supporting Modules
		Conditions A and B: Values of AVcc amended from 3.0 to 5.5 V to 3.6 to 5.5 V $$
727	23.2.4 A/D Conversion Characteristics	Table 23-10 A/D Conversion Characteristics (F-ZTAT version)
		Description of mask ROM version added
		Table 23-11 A/D Conversion Characteristics (Mask ROM version) Deleted
	23.2.5 D/A Conversion Characteristics	Table 23-11 D/A Conversion Characteristics Amended
728	23.2.6 Flash Memory Characteristics	Table 23-12 Flash Memory Characteristics Amended
730 to 750	23.3 Electrical Characteristics of 3 V Version H8S/2238R	Notation of preliminary deleted
730	23.3.1 Absolute Maximum Ratings	Table 23-13 Absolute Maximum Ratings Note amended
731 to 738	23.3.2 DC Characteristics	Table 23-14 DC Characteristics (1) to (3), table 23-15 Permissible Output Currents, and table 23-16 Bus Drive Characteristics Amended
740 to 745	23.3.3 AC Characteristics	Table 23-17 Clock Timing, table 23-18 Control Signal Timing, table 23-19 Bus Timing, and table 23-20 Timing of On-Chip Supporting Modules Amended
747	23.3.4 A/D Conversion Characteristics	Table 23-22 A/D Conversion Characteristics Amended
748	23.3.5 D/A Conversion Characteristics	Table 23-23 D/A Conversion Characteristics Amended
749, 750	23.3.6 Flash Memory Characteristics	Table 23-24 Flash Memory Characteristics Amended
845	B.1 Addresses	Bit 4 in SSR1 (H'FF84) amended
954	B.2 Functions	Description of bits 2 and 4 in SSR1 (H'FF84) amended
976		Description of bit 0 in ADCR (H'FF99) amended
1026	Appendix F Product Code Lineup	Table F-1 H8S/2238 Series Product Code Lineup Amended

HITACHI

Contents

Secti		Overview	1
1.1	Overvi	ew	1
1.2	Interna	l Block Diagrams	6
1.3	Pin Des	scription	7
	1.3.1	Pin Arrangements	7
	1.3.2	Pin Functions in Each Operating Mode	10
	1.3.3	Pin Functions	15
Secti	on 2	CPU	21
2.1	Overvi	ew	21
	2.1.1	Features	21
	2.1.2	Differences between H8S/2600 CPU and H8S/2000 CPU	22
	2.1.3	Differences from H8/300 CPU	23
	2.1.4	Differences from H8/300H CPU	23
2.2	CPU O	perating Modes	24
2.3		s Space	29
2.4		er Configuration	30
	2.4.1	Overview	30
	2.4.2	General Registers	31
	2.4.3	Control Registers	32
	2.4.4	Initial Register Values	34
2.5		ormats	35
	2.5.1	General Register Data Formats	35
	2.5.2	Memory Data Formats	37
2.6		tion Set	38
	2.6.1	Overview	38
	2.6.2	Instructions and Addressing Modes	39
	2.6.3	Table of Instructions Classified by Function.	41
	2.6.4	Basic Instruction Formats	48
	2.6.5	Notes on Use of Bit-Manipulation Instructions	49
2.7	Addres	sing Modes and Effective Address Calculation	49
	2.7.1	Addressing Mode	49
	2.7.2	Effective Address Calculation	52
2.8		sing States	56
	2.8.1	Overview	56
	2.8.2	Reset State	57
	2.8.3	Exception-Handling State	58
	2.8.4	Program Execution State	61
	2.8.5	Bus-Released State	61
		2.5 21516556 5466	51

	2.8.6	Power-Down State	61
2.9	Basic 7	Timing	62
	2.9.1	Overview	62
	2.9.2	On-Chip Memory (ROM, RAM)	62
	2.9.3	On-Chip Supporting Module Access Timing	64
	2.9.4	External Address Space Access Timing	65
2.10	Usage	Note	66
Sect	ion 3	MCU Operating Modes	67
3.1	Overvi	iew	67
	3.1.1	Operating Mode Selection	67
	3.1.2	Register Configuration	68
3.2	Registe	er Descriptions	68
	3.2.1	Mode Control Register (MDCR)	68
	3.2.2	System Control Register (SYSCR)	69
3.3	Operat	ing Mode Descriptions	71
	3.3.1	Mode 4	71
	3.3.2	Mode 5	71
	3.3.3	Mode 6	72
	3.3.4	Mode 7	72
3.4		nctions in Each Operating Mode	73
3.5		ry Map in Each Operating Mode	73
0.0	1,101110	Trup in Zuon operating 11000 immining	, .
Sect	ion 4	Exception Handling	77
4.1	Overvi	iew	77
	4.1.1	Exception Handling Types and Priority	77
	4.1.2	Exception Handling Operation	78
	4.1.3	Exception Sources and Vector Table	78
4.2	Reset.		80
	4.2.1	Overview	80
	4.2.2	Reset Types	80
	4.2.3	Reset Sequence	81
	4.2.4	Interrupts after Reset	83
	4.2.5	State of On-Chip Supporting Modules after Reset Release	83
4 3	Traces		84
4.4	Traces	pts	85
4.5		nstruction	86
4.6		Status after Exception Handling	87
4.7		on Use of the Stack	88
т.,	110103	on ese of the stack	00
Sect	ion 5	Interrupt Controller	89
5.1		iew	89
	5.1.1	Features	89
::	J.1.1	2	0,
ii			

	5.1.2	Block Diagram	90
	5.1.3	Pin Configuration.	91
	5.1.4	Register Configuration	91
5.2	Registe	r Descriptions	92
	5.2.1	System Control Register (SYSCR)	92
	5.2.2	Interrupt Priority Registers A to L, O (IPRA to IPRL, IPRO)	93
	5.2.3	IRQ Enable Register (IER)	94
	5.2.4	IRQ Sense Control Registers H and L (ISCRH, ISCRL)	95
	5.2.5	IRQ Status Register (ISR)	96
5.3	Interrup	ot Sources	97
	5.3.1	External Interrupts	97
	5.3.2	Internal Interrupts	98
	5.3.3	Interrupt Exception Handling Vector Table	98
5.4	Interrup	ot Operation	102
	5.4.1	Interrupt Control Modes and Interrupt Operation	102
	5.4.2	Interrupt Control Mode 0	105
	5.4.3	Interrupt Control Mode 2	107
	5.4.4	Interrupt Exception Handling Sequence	109
	5.4.5	Interrupt Response Times	110
5.5	Usage 1	Notes	111
	5.5.1	Contention between Interrupt Generation and Disabling	111
	5.5.2	Instructions that Disable Interrupts	112
	5.5.3	Times when Interrupts are Disabled	112
	5.5.4	Interrupts during Execution of EEPMOV Instruction	112
5.6	DTC A	ctivation by Interrupt	113
	5.6.1	Overview	113
	5.6.2	Block Diagram	113
	5.6.3	Operation	114
Secti	on 6	PC Break Controller (PBC)	117
6.1	Overvie	PW	117
	6.1.1	Features	117
	6.1.2	Block Diagram	118
	6.1.3	Register Configuration	119
6.2	Registe	r Descriptions	119
	6.2.1	Break Address Register A (BARA)	119
	6.2.2	Break Address Register B (BARB)	120
	6.2.3	Break Control Register A (BCRA)	120
	6.2.4	Break Control Register B (BCRB)	122
	6.2.5	Module Stop Control Register C (MSTPCRC)	122
6.3	Operati	on	123
	6.3.1	PC Break Interrupt Due to Instruction Fetch	123
	6.3.2	PC Break Interrupt Due to Data Access	123
			iii

	6.3.3	Notes on PC Break Interrupt Handling	124
	6.3.4	Operation in Transitions to Power-Down Modes	124
	6.3.5	PC Break Operation in Continuous Data Transfer	125
	6.3.6	When Instruction Execution is Delayed by One State	126
	6.3.7	Additional Notes	127
Sect	ion 7	Bus Controller	129
7.1	Overvi	ew	
	7.1.1	Features	
	7.1.2	Block Diagram	
	7.1.3	Pin Configuration	
	7.1.4	Register Configuration.	132
7.2	Registe	er Descriptions	
	7.2.1	Bus Width Control Register (ABWCR)	133
	7.2.2	Access State Control Register (ASTCR)	134
	7.2.3	Wait Control Registers H and L (WCRH, WCRL)	135
	7.2.4	Bus Control Register H (BCRH)	139
	7.2.5	Bus Control Register L (BCRL)	141
	7.2.6	Pin Function Control Register (PFCR)	142
7.3	Overvi	ew of Bus Control	144
	7.3.1	Area Partitioning	144
	7.3.2	Bus Specifications	145
	7.3.3	Memory Interfaces	
	7.3.4	Interface Specifications for Each Area	
	7.3.5	Chip Select Signals	
7.4	Basic E	Bus Interface	
	7.4.1	Overview	
	7.4.2	Data Size and Data Alignment	
	7.4.3	Valid Strobes	
	7.4.4	Basic Timing	
	7.4.5	Wait Control.	
7.5	Burst R	COM Interface	
,	7.5.1	Overview	
	7.5.2	Basic Timing	
	7.5.3	Wait Control.	
7.6		cle	
7.0	7.6.1	Operation	
	7.6.2	Pin States in Idle Cycle	
7.7		lease	
/./	7.7.1	Overview	
	7.7.1	Operation	
	7.7.2	Pin States in External Bus Released State	
	7.7.3 7.7.4	Transition Timing	
	1.1.4	Transmon Tilling	1/1
iv		L II T A OL II	

	7.7.5 U	sage Note	. 172
7.8	Bus Ar	bitration	172
	7.8.1	Overview	172
	7.8.2	Operation	. 172
	7.8.3	Bus Transfer Timing	173
	7.8.4	External Bus Release Usage Note	. 173
7.9	Resets	and the Bus Controller	
Sect	ion 8	Data Transfer Controller (DTC)	175
8.1	Overvi	ew	175
	8.1.1	Features	175
	8.1.2	Block Diagram	. 176
	8.1.3	Register Configuration.	177
8.2	Registe	r Descriptions	178
	8.2.1	DTC Mode Register A (MRA)	178
	8.2.2	DTC Mode Register B (MRB)	180
	8.2.3	DTC Source Address Register (SAR)	181
	8.2.4	DTC Destination Address Register (DAR)	181
	8.2.5	DTC Transfer Count Register A (CRA)	181
	8.2.6	DTC Transfer Count Register B (CRB)	. 182
	8.2.7	DTC Enable Registers (DTCER)	. 182
	8.2.8	DTC Vector Register (DTVECR)	183
	8.2.9	Module Stop Control Register A (MSTPCRA)	. 184
8.3	Operati	on	
	8.3.1	Overview	185
	8.3.2	Activation Sources	. 187
	8.3.3	DTC Vector Table	. 188
	8.3.4	Location of Register Information in Address Space	191
	8.3.5	Normal Mode	. 192
	8.3.6	Repeat Mode	193
	8.3.7	Block Transfer Mode	. 194
	8.3.8	Chain Transfer	. 196
	8.3.9	Operation Timing	. 197
	8.3.10	Number of DTC Execution States	. 198
	8.3.11	Procedures for Using DTC	200
	8.3.12	Examples of Use of the DTC	. 201
8.4		ots	
8.5	-	Notes	
Cost	ion O	I/O Douts	201
	ion 9	I/O Ports	
9.1		ew	
9.2			
	9.2.1	Overview	209
			\

	9.2.2	Register Configuration.	210
	9.2.3	Pin Functions	212
9.3	Port 3		220
	9.3.1	Overview	220
	9.3.2	Register Configuration.	221
	9.3.3	Pin Functions	223
9.4	Port 4		226
	9.4.1	Overview	226
	9.4.2	Register Configuration	226
	9.4.3	Pin Functions	227
9.5	Port 7		228
	9.5.1	Overview	228
	9.5.2	Register Configuration	229
	9.5.3	Pin Functions	230
9.6	Port 9		233
	9.6.1	Overview	233
	9.6.2	Register Configuration.	233
	9.6.3	Pin Functions	234
9.7	Port A		234
	9.7.1	Overview	234
	9.7.2	Register Configuration.	235
	9.7.3	Pin Functions	
	9.7.4	MOS Input Pull-Up Function.	
9.8	Port B		
	9.8.1	Overview	241
	9.8.2	Register Configuration	242
	9.8.3	Pin Functions	
	9.8.4	MOS Input Pull-Up Function.	
9.9	Port C		254
	9.9.1	Overview	254
	9.9.2	Register Configuration	255
	9.9.3	Pin Functions in Each Mode	
	9.9.4	MOS Input Pull-Up Function.	259
9.10	Port D		260
	9.10.1	Overview	260
	9.10.2	Register Configuration	
	9.10.3	Pin Functions in Each Mode	263
	9.10.4	MOS Input Pull-Up Function	264
9.11	Port E.		265
	9.11.1	Overview	265
		Register Configuration.	
		Pin Functions in Each Mode	
	9.11.4	MOS Input Pull-Up Function	269
vi		-	
••		LUTACLU	

		LUTACLU	٧
	10.6.1	Input/Output Timing	352
10.6	-	ion Timing	
		A/D Converter Activation	
		DTC Activation	
		Interrupt Sources and Priorities	
10.5		pts	
		Phase Counting Mode	
		PWM Modes	
		Cascaded Operation	
		Buffer Operation	
	10.4.3	Synchronous Operation	
		Basic Functions	
		Overview	
10.4	-	ion	
		8-Bit Registers	
		16-Bit Registers	
10.3		ce to Bus Master	
		Module Stop Control Register A (MSTPCRA)	
		Timer Synchro Register (TSYR)	
	10.2.8	Timer Start Register (TSTR)	
	10.2.7	Timer General Register (TGR)	
		Timer Counter (TCNT)	
		Timer Status Register (TSR)	
		Timer Interrupt Enable Register (TIER)	
		Timer I/O Control Register (TIOR)	
	10.2.2	Timer Mode Register (TMDR)	
	10.2.1	Timer Control Register (TCR)	
10.2	-	er Descriptions	
		Register Configuration	
		Pin Configuration	
		Block Diagram	
		Features	
10.1		ew	
		16-Bit Timer Pulse Unit (TPU)	
G	. 10	16 Diviti D. L. H. iv (IIDH)	
	9.13.3	Pin Functions	279
	9.13.2	Register Configuration.	27
	9.13.1	Overview	276
9.13	Port G		276
	9.12.3	Pin Functions	273
	9.12.2	Register Configuration	272
	9.12.1	Overview	27
9.12	Port F.		27

	10.6.2	Interrupt Signal Timing	356
10.7	Usage	Notes	360
Sect	ion 11	8-Bit Timers (TMR)	371
11.1	Overvi	ew	371
	11.1.1	Features	371
	11.1.2	Block Diagram	372
	11.1.3	Pin Configuration.	373
		Register Configuration	
11.2	Registe	er Descriptions	375
	11.2.1	Timer Counters 0 to 3 (TCNT0 to TCNT3)	375
	11.2.2	Time Constant Registers A0 to A3 (TCORA0 to TCORA3)	375
	11.2.3	Time Constant Registers B0 to B3 (TCORB0 to TCORB3)	376
	11.2.4	Timer Control Registers 0 to 3 (TCR0 to TCR3)	376
	11.2.5	Timer Control/Status Registers 0 to 3 (TCSR0 to TCSR3)	379
	11.2.6	Module Stop Control Register A (MSTPCRA)	382
11.3	Operati	ion	383
	11.3.1	TCNT Increment Timing	383
	11.3.2	Compare Match Timing	
	11.3.3	Timing of External RESET on TCNT	386
	11.3.4	Timing of Overflow Flag (OVF) Setting	386
	11.3.5	Operation with Cascaded Connection	
11.4		pts	
	-	Interrupt Sources and DTC Activation	
		A/D Converter Activation	
11.5		Application	
11.6	-	Notes	
		Contention between TCNT Write and Clear	
		Contention between TCNT Write and Increment	
		Contention between TCOR Write and Compare Match	
	11.6.4	· · · · · · · · · · · · · · · · · · ·	
	11.6.5	Switching of Internal Clocks and TCNT Operation	
	11.6.6	Interrupts and Module Stop Mode	
		1	
Sect	ion 12	Watchdog Timer (WDT)	397
12.1		ew	
		Features	
		Block Diagram	
		Pin Configuration	
		Register Configuration	
12.2		r Descriptions	
	12.2.1	Timer Counter (TCNT)	
		Timer Control/Status Register (TCSR)	
viii	12.2.2	Times Control Summer Register (1 Cost) minimum	.01
viii			

	12.2.3	Reset Control/Status Register (RSTCSR) (WDT0 Only)	406
	12.2.4	Pin Function Control Register (PFCR)	407
	12.2.5	Notes on Register Access	408
12.3	Operati	ion	409
	12.3.1	Watchdog Timer Operation	409
	12.3.2	Interval Timer Operation	410
	12.3.3	Timing of Setting of Overflow Flag (OVF)	411
	12.3.4	Timing of Setting of Watchdog Timer Overflow Flag (WOVF)	412
12.4	Interru	pts	412
12.5	Usage 1	Notes	413
	12.5.1	Contention between Timer Counter (TCNT) Write and Increment	413
	12.5.2	Changing Value of PSS and CKS2 to CKS0	413
	12.5.3	Switching between Watchdog Timer Mode and Interval Timer Mode	413
	12.5.4	Internal Reset in Watchdog Timer Mode	414
Secti	ion 13	Serial Communication Interface (SCI)	415
13.1	Overvi	ew	415
	13.1.1	Features	415
	13.1.2	Block Diagram	417
	13.1.3	Pin Configuration	418
	13.1.4	Register Configuration	419
13.2	Registe	er Descriptions	421
	13.2.1	Receive Shift Register (RSR)	421
	13.2.2	Receive Data Register (RDR)	421
	13.2.3	Transmit Shift Register (TSR)	422
	13.2.4	Transmit Data Register (TDR)	422
	13.2.5	Serial Mode Register (SMR)	423
	13.2.6	Serial Control Register (SCR)	426
	13.2.7	Serial Status Register (SSR)	430
	13.2.8	Bit Rate Register (BRR)	434
	13.2.9	Smart Card Mode Register (SCMR)	441
	13.2.10	Module Stop Control Registers B and C (MSTPCRB, MSTPCRC)	442
13.3	Operati	ion	444
	13.3.1	Overview	444
	13.3.2	Operation in Asynchronous Mode	446
	13.3.3	Multiprocessor Communication Function	457
	13.3.4	Operation in Clocked Synchronous Mode	465
13.4	SCI Int	errupts	473
13.5		Notes	
	-		
Secti	ion 14	Smart Card Interface	485
14.1	Overvi	ew	485
	14.1.1	Features	485
			ίχ

	14.1.2	Block Diagram	486
	14.1.3	Pin Configuration	487
	14.1.4	Register Configuration	488
14.2		er Descriptions	
	_	Smart Card Mode Register (SCMR)	
	14.2.2		
	14.2.3		
	14.2.4	Serial Control Register (SCR)	495
14.3	Operati	ion	496
	14.3.1	Overview	496
	14.3.2	Pin Connections	496
	14.3.3	Data Format	498
	14.3.4	Register Settings	
	14.3.5	Clock	502
	14.3.6	Data Transfer Operations	504
		Operation in GSM Mode	
		Operation in Block Transfer Mode	
14.4		Notes	
	Č		
Secti	ion 15	I ² C Bus Interface [Option]	517
15.1		ew	
	15.1.1	Features	517
	15.1.2	Block Diagram	518
	15.1.3	Input/Output Pins	520
	15.1.4	Register Configuration.	52
15.2	Registe	er Descriptions	522
	15.2.1	I ² C Bus Data Register (ICDR)	522
	15.2.2	Slave Address Register (SAR)	525
	15.2.3	Second Slave Address Register (SARX)	526
	15.2.4	I ² C Bus Mode Register (ICMR)	526
	15.2.5	I ² C Bus Control Register (ICCR)	529
	15.2.6	I ² C Bus Status Register (ICSR)	536
	15.2.7	Serial Control Register X (SCRX)	540
	15.2.8	DDC Switch Register (DDCSWR)	54
		Module Stop Control Register B (MSTPCRB)	
15.3		ion	
	15.3.1	I ² C Bus Data Format	543
		Master Transmit Operation	
		Master Receive Operation	
		Slave Receive Operation	
		Slave Transmit Operation	
		IRIC Setting Timing and SCL Control	
		Operation Using the DTC	
v			-

	15.3.8	Noise Canceler	555
	15.3.9	Sample Flowcharts	555
	15.3.10	Initialization of Internal State	559
15.4	Usage	Notes	561
Sect	ion 16	A/D Converter	569
16.1	Overvi	ew	569
	16.1.1	Features	569
	16.1.2	Block Diagram	570
	16.1.3	Pin Configuration	571
	16.1.4	Register Configuration.	572
16.2	Registe	r Descriptions	573
	16.2.1	A/D Data Registers A to D (ADDRA to ADDRD)	573
	16.2.2	A/D Control/Status Register (ADCSR)	574
	16.2.3	A/D Control Register (ADCR)	576
	16.2.4	Module Stop Control Register A (MSTPCRA)	577
16.3		ee to Bus Master	
16.4		on	
	-	Single Mode (SCAN = 0)	
	16.4.2		
	16.4.3	Input Sampling and A/D Conversion Time	
	16.4.4	External Trigger Input Timing	
16.5		ots	
16.6		Notes	
	C		
Sect	ion 17	D/A Converter	591
17.1	Overvi	ew	591
	17.1.1	Features	591
	17.1.2	Block Diagram	592
	17.1.3	Pin Configuration	593
	17.1.4	Register Configuration	593
17.2	Registe	er Descriptions	593
	17.2.1	D/A Data Registers 0 and 1 (DADR0, DADR1)	593
		D/A Control Register (DACR)	
	17.2.3	Module Stop Control Register C (MSTPCRC)	595
17.3		on	
17.4	-	Notes	
	Ü		
Sect	ion 18	RAM	599
18.1	Overvi	ew	599
	18.1.1	Block Diagram	599
		Register Configuration	
18.2		r Descriptions	
	J	-	хi
		LUTAGLU	A

	18.2.1	System Control Register (SYSCR)	600
18.3	Operati	on	601
18.4	Usage 1	Note	601
Sect	ion 19	ROM	603
19.1		ew	
17.1		Block Diagram	
		Register Configuration.	
19.2		er Descriptions	
19.2	_	Mode Control Register (MDCR)	
19.3		ion	
19.4	-	ew of Flash Memory	
17.7		Features	
		Block Diagram	
		Mode Transitions	
		On-Board Programming Modes	
		Flash Memory Emulation in RAM	
		Differences between Boot Mode and User Program Mode	
		Block Configuration.	
19.5		nfiguration	
19.6		er Configuration	
19.7	_	er Descriptions	
17.7	_	Flash Memory Control Register 1 (FLMCR1)	
		Flash Memory Control Register 2 (FLMCR2)	
		Erase Block Register 1 (EBR1)	
		Erase Block Register 2 (EBR2)	
		RAM Emulation Register (RAMER)	
		Flash Memory Power Control Register (FLPWCR)	
		Serial Control Register X (SCRX)	
19.8		ard Programming Modes	
17.0	19.8.1	Boot Mode	
		User Program Mode	
19.9		nming/Erasing Flash Memory	
-, ,,	_	Program Mode	
		Program-Verify Mode	
		Erase Mode	
		Erase-Verify Mode	
19.10		ion	
		Hardware Protection	
		Software Protection	
		Error Protection	
19.11		Memory Emulation in RAM	
		pt Handling when Programming/Erasing Flash Memory	
xii	- 1		
ΛII			

	ШТАСШ	xiii
21.4	Sleep Mode	691
21.3	Medium-Speed Mode	
21.2	21.2.5 Module Stop Control Register (MSTPCR)	
	21.2.4 Timer Control/Status Register (TCSR)	
	21.2.3 Low-Power Control Register (LPWRCR)	
	21.2.2 System Clock Control Register (SCKCR)	
	21.2.1 Standby Control Register (SBYCR)	
21.2	Register Descriptions	
	21.1.1 Register Configuration	
21.1	Overview	
	ion 21 Power-Down Modes	
20.9	Note on Crystal Resonator	
20.8	Subclock Waveform Shaping Circuit	677
20.7	Subclock Oscillator	
20.6	Bus Master Clock Selection Circuit	
20.5	Medium-Speed Clock Divider	
20.4	Duty Adjustment Circuit	
	20.3.2 External Clock Input	
	20.3.1 Connecting a Crystal Resonator	
20.3	System Clock Oscillator	
	20.2.2 Low-Power Control Register (LPWRCR)	
	20.2.1 System Clock Control Register (SCKCR)	
20.2	Register Descriptions	
	20.1.2 Register Configuration	
20.1	20.1.1 Block Diagram	
20.1	Overview	
Sect	ion 20 Clock Pulse Generator	663
19.16	Note on Switching from F-ZTAT Version to Mask ROM Version	100
	Flash Memory Programming and Erasing Precautions	
10.15	19.14.1 Note on Power-Down States	
19.14	Flash Memory and Power-Down States	
10.1	19.13.9 Notes on Memory Programming	
	19.13.8 Programmer Mode Transition Time	
	19.13.7 Status Polling	
	19.13.6 Status Read Mode	
	19.13.5 Auto-Erase Mode	
	19.13.4 Auto-Program Mode	
	19.13.3 Memory Read Mode	
	19.13.2 Programmer Mode Operation	
	19.13.1 Socket Adapter Pin Correspondence Diagram	
19.13	Flash Memory Programmer Mode	

	21.4.1	Sleep Mode	691
	21.4.2	Clearing Sleep Mode	691
21.5	Module	Stop Mode	692
	21.5.1	Module Stop Mode	692
	21.5.2	Usage Note	693
21.6	Softwar	re Standby Mode	694
	21.6.1	Software Standby Mode	694
	21.6.2	Clearing Software Standby Mode	694
	21.6.3	Setting Oscillation Stabilization Time after Clearing Software Standby Mode	695
	21.6.4	Software Standby Mode Application Example	695
	21.6.5	Usage Notes	
21.7	Hardwa	are Standby Mode	696
		Hardware Standby Mode	
	21.7.2	Hardware Standby Mode Timing	697
21.8	Watch	Mode	698
	21.8.1	Watch Mode	698
	21.8.2	Clearing Watch Mode	698
		Usage Notes	
21.9	Subslee	p Mode	699
		Subsleep Mode	
		Clearing Subsleep Mode	
21.10	Subacti	ve Mode	700
	21.10.1	Subactive Mode	700
	21.10.2	Clearing Subactive Mode	700
21.11	Direct 7	Fransition	701
	21.11.1	Overview of Direct Transition	701
21.12	ø Clock	COutput Disabling Function	701
		Notes	
	21.13.1	I/O Port Status	702
	21.13.2	Power Consumed during Oscillation Stabilization Standby	702
		DTC Module Stop	
		Interrupt by Internal Peripheral Module	
	21.13.5	MSTPCR Write	702
	21.13.6	Sub-active Mode/Watch Mode Transition and DTC Module Stop	703
Secti	on 22	Power Supply Circuit	705
22.1		ew	
22.2	Power	Supply Connection for H8S/2238B	
		al Power Supply Step-Down Circuit On-Chip)	705
22.3		Supply Connection for H8S/2238R	
		ernal Power Supply Step-Down Circuit)	706

Secti	on 23 Electrical Characteristics	707
23.1	Power Supply Voltage and Operating Frequency Range	707
23.2	Electrical Characteristics of 5 V Version H8S/2238B	710
	23.2.1 Absolute Maximum Ratings	710
	23.2.2 DC Characteristics	711
	23.2.3 AC Characteristics	719
	23.2.4 A/D Conversion Characteristics	727
	23.2.5 D/A Convervion Characteristics	727
	23.2.6 Flash Memory Characteristics	728
23.3	Electrical Characteristics of 3 V Version H8S/2238R	730
	23.3.1 Absolute Maximum Ratings	730
	23.3.2 DC Characteristics	730
	23.3.3 AC Characteristics	739
	23.3.4 A/D Conversion Characteristics	747
	23.3.5 D/A Conversion Characteristics	748
	23.3.6 Flash Memory Characteristics	749
23.4	perational Timing	751
	23.4.1 Clock Timing	751
	23.4.2 Control Signal Timing	752
	23.4.3 Bus Timing	753
	23.4.4 Timing of On-Chip Supporting Modules	
23.5	Usage Note	762
Appe	endix A Instruction Set	763
A.1	Instruction List	
A.2	Instruction Codes	
A.3	Operation Code Map	
A.4	Number of States Required for Instruction Execution	
A.5	Bus States During Instruction Execution	
A.6	Condition Code Modification	
11.0	Condition Code Production	000
Appe	endix B Internal I/O Register	839
B.1	Addresses	
B.2	Functions	847
Appe	endix C I/O Port Block Diagrams	984
C.1	Port 1 Block Diagrams	984
C.2	Port 3 Block Diagrams	988
C.3	Port 4 Block Diagram	995
C.4	Port 7 Block Diagrams	
C.5	Port 9 Block Diagram	1003
C.6	Port A Block Diagrams	1004

C.7	Port B Blo	ock Diagram	1008
		ock Diagram	
C.9	Port D Bl	ock Diagram	1010
C.10	Port E Blo	ock Diagram	1011
C.11	Port F Blo	ock Diagrams	1012
C.12	Port G Bl	ock Diagrams	1018
Appe	ndix D	Pin States	1022
D.1	Port State	s in Each Processing State	1022
Appe	ndix E	Timing of Transition to and Recovery from Hardware	
		Standby Mode	1025
Appe	ndix F	Product Code Lineup	1026
Appe	ndix G	Package Dimensions	1029

Section 1 Overview

1.1 Overview

The H8S/2238 Series is a series of microcomputers (MCUs: microcomputer units), built around the H8S/2000 CPU, employing Hitachi's proprietary architecture, and equipped with the on-chip peripheral functions necessary for system configuration.

The H8S/2000 CPU has an internal 32-bit architecture, is provided with sixteen 16-bit general registers and a concise, optimized instruction set designed for high-speed operation, and can address a 16-Mbyte linear address space. The instruction set is upward-compatible with H8/300 and H8/300H CPU instructions at the object-code level, facilitating migration from the H8/300, H8/300L, or H8/300H Series.

On-chip peripheral functions required for system configuration include data transfer controller (DTC) bus masters, ROM and RAM memory, a16-bit timer-pulse unit (TPU), 8-bit timer (TMR), watchdog timer (WDT), serial communication interface (SCI), I²C bus interface (IIC), A/D converter, D/A converter, and I/O ports.

The on-chip ROM is either single-power-supply flash memory (F-ZTAT^{TM*}) or mask ROM, with a capacity of 256 kbytes. ROM is connected to the CPU via a 16-bit data bus, enabling both byte and word data to be accessed in one state. Instruction fetching has been speeded up, and processing speed increased.

Four operating modes, modes 4 to 7, are provided, and there is a choice of single-chip mode or external expansion mode.

The features of the H8S/2238 Series are shown in table 1-1.

Note: * F-ZTAT is a trademark of Hitachi, Ltd.

Table 1-1 Overview

Item	Specification
CPU	 General-register machine Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit registers)
	 High-speed operation suitable for realtime control Maximum clock rate: 13.5 MHz High-speed arithmetic operations (at 13.5 MHz operation) 8/16/32-bit register-register add/subtract: 74 ns 16 × 16-bit register-register multiply: 1480 ns 32 ÷ 16-bit register-register divide: 1480 ns Instruction set suitable for high-speed operation Sixty-five basic instructions 8/16/32-bit move/arithmetic and logic instructions
	 Unsigned/signed multiply and divide instructions Powerful bit-manipulation instructions Two CPU operating modes Normal mode: 64-kbyte address space (not available in the H8S/2238 Series) Advanced mode: 16-Mbyte address space
Bus controller	 Address space divided into 8 areas, with bus specifications settable independently for each area Chip select output possible for each area Choice of 8-bit or 16-bit access space for each area 2-state or 3-state access space can be designated for each area Number of program wait states can be set for each area Burst ROM directly connectable External bus release function
Data transfer controller (DTC)	 Can be activated by internal interrupt or software Multiple transfers or multiple types of transfer possible for one activation source Transfer possible in repeat mode, block transfer mode, etc. Request can be sent to CPU for interrupt that activated DTC

Item	Specification								
16-bit timer-pulse	6-channel 16-bit tim	er on-chip							
unit (TPU)	Pulse I/O processin	g capability for up to 16 pi	ns'						
	Automatic 2-phase	encoder count capability							
8-bit timer (TMR)	8-bit up-counter (ex	ternal event count capabil	ity)						
4 channels	Four time constant in	registers							
	Two-channel connection possible								
Watchdog timer	Watchdog timer or i	nterval timer selectable							
(WDT) × 2 channels	Can operate on sub-	clock (1 channel only)							
Serial	Asynchronous mode	e or synchronous mode se	electable						
communication interface (SCI) ×	Multiprocessor com	munication function							
4 channels	Smart card interface	function							
A/D converter	Resolution: 10 bits								
	Input: 8 channels								
	• 9.6 µs minimum conversion time (at 13.5 MHz operation)								
	Single or scan mode selectable								
	Sample and hold cir	cuit							
	A/D conversion can	be activated by external t	rigger or timer trigger						
D/A converter	• Resolution: 8 bits								
	Output: 2 channels								
I/O ports	• 72 I/O pins, 10 inpu	t-only pins							
Memory	Flash memory or ma	ask ROM							
	High-speed static R	AM							
	Product Name	ROM	RAM						
	H8S/2238	256 kbytes	16 kbytes						
	H8S/2236	128 kbytes	8 kbytes						
Interrupt controller	Nine external interru	upt pins (NMI, IRQ0 to IRC	27)						
	61 internal interrupt	sources							
	Eight priority levels	settable							
PC break controller	Supports debugging	functions by means of Po	C break interrupts						
	Two break channels	3							

Item	Speci	fication								
Power-down state	Medium-speed mode									
	• Sle	eep mode								
	• Mo	odule stop m	ode							
	• So	ftware stand	by mode							
	• Ha	ardware stan	dby mode							
	• Su	ıbclock opera	ation (subactive mode, su	ıbsleep mo	de, watch	mode)				
Operating modes	Four N	MCU operati	ng modes							
		CPU			Externa	l Data Bus				
	Mode	Operating Mode	Description	On-Chip ROM	Initial Value	Maximum Value				
	4	Advanced	On-chip ROM disabled expansion mode	Disabled	16 bits	16 bits				
	5	_	On-chip ROM disabled expansion mode	Disabled	8 bits	16 bits				
	6	_	On-chip ROM enabled expansion mode	Enabled	8 bits	16 bits				
	7	_	Single-chip mode	Enabled	_					
Clock pulse	Two o	n chip clock	pulse generators							
generator		•	oulse generator: 2 to 13.5	MHz						
	Built-ii	n duty correc	ction circuit							
	• Su	ıbclock pulse	generator: 32.768 kHz							
Packages	100-pin plastic TQFP (TFP-100B, TFP-100G)									
	• 100-pin plastic QFP (FP-100A, FP-100B)									
	112-pin plastic TFBGA (BP-112)*									
I ² C bus interface	• Cc	onforms to bu	us interface standard pro	posed by P	hilips Cor	 р.				
(IIC) × 2 channels	• Bu	ıilt-in single r	master mode/slave mode							
[Option]	 Δr 	hitration-lost	condition can be assess	ed						

Arbitration-lost condition can be assessed

Supports two slave addresses

ltem	Specification								
Product lineup		Model Name	9						
	Voltage Version	Mask ROM Version	F-ZTAT Version	ROM/RAM (Bytes)	Packages				
	5 V version	HD6432238B	HD64F2238B	256 k/16 k	TFP-100B				
		HD6432238BV	V		TFP-100G				
		HD6432236B		128 k/8 k	FP-100A				
		HD6432236BV	V		FP-100B				
	3 V version	HD6432238R	HD64F2238R	256 k/16 k	TFP-100B				
		HD6432238RV	V		TFP-100G				
		HD6432236R		128 k/8 k	FP-100B				
		HD6432236RV	V		BP-112*				

Note: * In planning

1.2 Internal Block Diagrams

Figure 1-1 shows internal block diagrams.

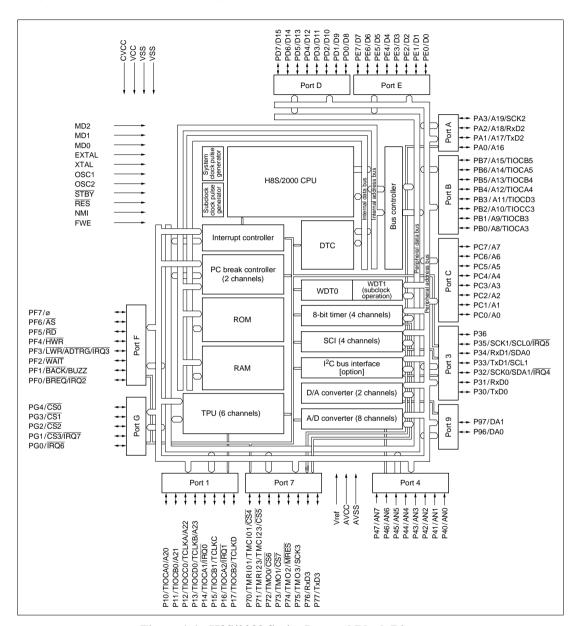


Figure 1-1 H8S/2238 Series Internal Block Diagram

1.3 Pin Description

1.3.1 Pin Arrangements

Figures 1-2 and 1-3 show the pin arrangements of the H8S/2238 Series.

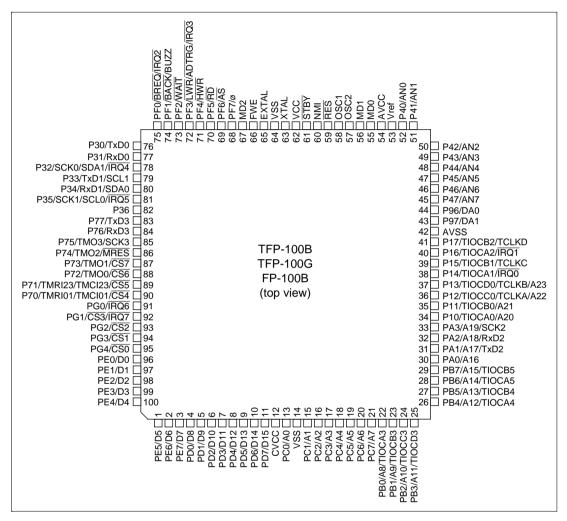


Figure 1-2 H8S/2238 Series Pin Arrangement (TFP-100B, TFP-100G, FP-100B: Top View)

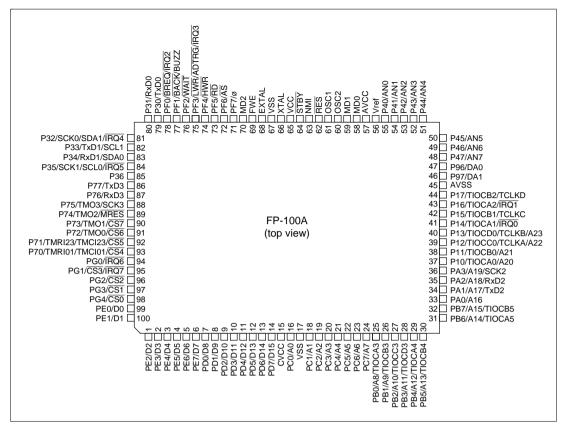


Figure 1-3 H8S/2238 Series Pin Arrangement (FP-100A: Top View, Only for H8S/2238B and H8S/2236B)

	1	2	3	4	5	6	7	8	9	10	11
А	NC	PE4	PE1	PG3	PG0	P72	P75	P36	P33	P30	NC
В	PE6	PE5	PE3	PE0	PG1	P71	P74	P35	P32	NC	PF1
С	PD1	PD0	NC	PE2	PG2	P73	P76	P34	PF0	PF2	PF4
D	PD4	PD3	PD2	PE7	PG4	P70	P77	P31	PF3	PF5	PF7
E	PD7	CV _{CC}	PD6	PD5	_			PF6	MD2	FWE	EXTAL
F	PC0	V _{SS}	CV _{CC}	V _{SS}	BP-112 (Top view)		V _{SS}	V _{CC}	V _{SS}	XTAL	
G	PC1	PC2	PC3	PC5			,	RES	NMI	V _{CC}	STBY
Н	PC4	PC6	РВ0	PB6	P10	P17	P47	V _{ref}	MD1	OSC2	OSC1
J	PC7	PB1	PB3	PA1	P11	P14	P97	P44	NC	AV _{CC}	MD0
K	PB2	PB4	PB7	PA2	P13	P16	AV _{SS}	P46	P43	P41	P40
L	NC	PB5	PA0	PA3	P12	P15	AV _{SS}	P96	P45	P42	NC

Figure 1-4 H8S/2238 Series Pin Arrangement (BP-112: Top View, Only HD64F2238R and HD6432238R are being Planned)

1.3.2 Pin Functions in Each Operating Mode

Table 1-2 shows the pin functions in each of the operating modes.

Table 1-2 Pin Functions in Each Operating Mode

Pin No.			Pin Name				
TFP-100B TFP-100G FP-100B	FP- 100A* ¹	BP- 112*2	Mode 4	Mode 5	Mode 6	Mode 7	Flash Memory Programmer Mode
1	4	B2	PE5/D5	PE5/D5	PE5/D5	PE5	ŌĒ
2	5	B1	PE6/D6	PE6/D6	PE6/D6	PE6	WE
3	6	D4	PE7/D7	PE7/D7	PE7/D7	PE7	CE
4	7	C2	D8	D8	D8	PD0	D0
5	8	C1	D9	D9	D9	PD1	D1
6	9	D3	D10	D10	D10	PD2	D2
7	10	D2	D11	D11	D11	PD3	D3
8	11	D1	D12	D12	D12	PD4	D4
9	12	E4	D13	D13	D13	PD5	D5
10	13	E3	D14	D14	D14	PD6	D6
11	14	E1	D15	D15	D15	PD7	D7
12	15	E2, F3	CVCC	CVCC	CVCC	CVCC	VCC
13	16	F1	A0	A0	PC0/A0	PC0	A0
14	17	F2, F4	VSS	VSS	VSS	VSS	VSS
15	18	G1	A1	A1	PC1/A1	PC1	A1
16	19	G2	A2	A2	PC2/A2	PC2	A2
17	20	G3	A3	A3	PC3/A3	PC3	A3
18	21	H1	A4	A4	PC4/A4	PC4	A4
19	22	G4	A5	A5	PC5/A5	PC5	A5
20	23	H2	A6	A6	PC6/A6	PC6	A6
21	24	J1	A7	A7	PC7/A7	PC7	A7
22	25	НЗ	PB0/A8/ TIOCA3	PB0/A8/ TIOCA3	PB0/A8/ TIOCA3	PB0/ TIOCA3	A8
23	26	J2	PB1/A9/ TIOCB3	PB1/A9/ TIOCB3	PB1/A9/ TIOCB3	PB1/ TIOCB3	A9
24	27	K1	PB2/A10/ TIOCC3	PB2/A10/ TIOCC3	PB2/A10/ TIOCC3	PB2/ TIOCC3	A10

Pin No.			Pin Name					
TFP-100B TFP-100G FP-100B	FP- 100A*	BP- ¹ 112* ²	Mode 4	Mode 5	Mode 6	Mode 7	Flash Memory Programmer Mode	
25	28	J3	PB3/A11/ TIOCD3	PB3/A11/ TIOCD3	PB3/A11/ TIOCD3	PB3/ TIOCD3	A11	
26	29	K2	PB4/A12/ TIOCA4	PB4/A12/ TIOCA4	PB4/A12/ TIOCA4	PB4/ TIOCA4	A12	
27	30	L2	PB5/A13/ TIOCB4	PB5/A13/ TIOCB4	PB5/A13/ TIOCB4	PB5/ TIOCB4	A13	
28	31	H4	PB6/A14/ TIOCA5	PB6/A14/ TIOCA5	PB6/A14/ TIOCA5	PB6/ TIOCA5	A14	
29	32	K3	PB7/A15/ TIOCB5	PB7/A15/ TIOCB5	PB7/A15/ TIOCB5	PB7/ TIOCB5	A15	
30	33	L3	PA0/A16	PA0/A16	PA0/A16	PA0	A16	
31	34	J4	PA1/A17/ TxD2	PA1/A17/ TxD2	PA1/A17/ TxD2	PA1/TxD2	A17	
32	35	K4	PA2/A18/ RxD2	PA2/A18/ RxD2	PA2/A18/ RxD2	PA2/RxD2	A18	
33	36	L4	PA3/A19/ SCK2	PA3/A19/ SCK2	PA3/A19/ SCK2	PA3/SCK2	NC	
34	37	H5	P10/ TIOCA0/ A20	P10/ TIOCA0/ A20	P10/ TIOCA0/ A20	P10/ TIOCA0	NC	
35	38	J5	P11/ TIOCB0/ A21	P11/ TIOCB0/ A21	P11/ TIOCB0/ A21	P11/ TIOCB0	NC	
36	39	L5	P12/ TIOCC0/ TCLKA/ A22	P12/ TIOCC0/ TCLKA/ A22	P12/ TIOCC0/ TCLKA/ A22	P12/ TIOCC0/ TCLKA	NC	
37	40	K5	P13/ TIOCD0/ TCLKB/ A23	P13/ TIOCD0/ TCLKB/ A23	P13/ TIOCD0/ TCLKB/ A23	P13/ TIOCD0/ TCLKB	NC	
38	41	J6	P14/ TIOCA1/ IRQ0	P14/ TIOCA1/ IRQ0	P14/ TIOCA1/ IRQ0	P14/ TIOCA1/ IRQ0	VSS	

Pin No.			Pin Name					
TFP-100B TFP-100G FP-100B	FP- 100A*	BP- * ¹ 112* ²	Mode 4	Mode 5	Mode 6	Mode 7	Flash Memory Programmer Mode	
39	42	L6	P15/ TIOCB1/ TCLKC	P15/ TIOCB1/ TCLKC	P15/ TIOCB1/ TCLKC	P15/ TIOCB1/ TCLKC	NC	
40	43	K6	P16/ TIOCA2/ IRQ1	P16/ TIOCA2/ IRQ1	P16/ TIOCA2/ IRQ1	P16/ TIOCA2/ IRQ1	VSS	
41	44	H6	P17/ TIOCB2/ TCLKD	P17/ TIOCB2/ TCLKD	P17/ TIOCB2/ TCLKD	P17/ TIOCB2/ TCLKD	NC	
42	45	K7, L7	AVSS	AVSS	AVSS	AVSS	VSS	
43	46	J7	P97/DA1	P97/DA1	P97/DA1	P97/DA1	NC	
44	47	L8	P96/DA0	P96/DA0	P96/DA0	P96/DA0	NC	
45	48	H7	P47/AN7	P47/AN7	P47/AN7	P47/AN7	NC	
46	49	K8	P46/AN6	P46/AN6	P46/AN6	P46/AN6	NC	
47	50	L9	P45/AN5	P45/AN5	P45/AN5	P45/AN5	NC	
48	51	J8	P44/AN4	P44/AN4	P44/AN4	P44/AN4	NC	
49	52	K9	P43/AN3	P43/AN3	P43/AN3	P43/AN3	NC	
50	53	L10	P42/AN2	P42/AN2	P42/AN2	P42/AN2	NC	
51	54	K10	P41/AN1	P41/AN1	P41/AN1	P41/AN1	NC	
52	55	K11	P40/AN0	P40/AN0	P40/AN0	P40/AN0	NC	
53	56	H8	Vref	Vref	Vref	Vref	VCC	
54	57	J10	AVCC	AVCC	AVCC	AVCC	VCC	
55	58	J11	MD0	MD0	MD0	MD0	VSS	
56	59	H9	MD1	MD1	MD1	MD1	VSS	
57	60	H10	OSC2	OSC2	OSC2	OSC2	NC	
58	61	H11	OSC1	OSC1	OSC1	OSC1	VCC	
59	62	G8	RES	RES	RES	RES	RES	
60	63	G9	NMI	NMI	NMI	NMI	VCC	
61	64	G11	STBY	STBY	STBY	STBY	VCC	
62	65	F9, F10	VCC	VCC	VCC	VCC	VCC	

P	in No.				Pin Name	9	
TFP-100B TFP-100G FP-100B	FP- 100A*	BP- 1112*2	Mode 4	Mode 5	Mode 6	Mode 7	Flash Memory Programmer Mode
63	66	F11	XTAL	XTAL	XTAL	XTAL	XTAL
64	67	F8, F10	VSS	VSS	VSS	VSS	VSS
65	68	E11	EXTAL	EXTAL	EXTAL	EXTAL	EXTAL
66	69	E10	FWE	FWE	FWE	FWE	FWE
67	70	E9	MD2	MD2	MD2	MD2	VSS
68	71	D11	PF7/ø	PF7/ø	PF7/ø	PF7/ø	NC
69	72	E8	ĀS	ĀS	ĀS	PF6	NC
70	73	D10	RD	RD	RD	PF5	NC
71	74	C11	HWR	HWR	HWR	PF4	NC
72	75	D9	PF3/LWR/ ADTRG/ IRQ3	PF3/LWR/ ADTRG/ IRQ3	PF3/LWR/ ADTRG/ IRQ3	PF3/ ADTRG/ IRQ3	NC
73	76	C10	PF2/WAIT	PF2/WAIT	PF2/WAIT	PF2	NC
74	77	B11	PF1/BACK/ BUZZ	PF1/BACK/ BUZZ	PF1/BACK/ BUZZ	PF1/BUZZ	NC
75	78	C9	PF0/BREQ/ IRQ2	PF0/BREQ/ IRQ2	PF0/BREQ/ IRQ2	PF0/IRQ2	VCC
76	79	A10	P30/TxD0	P30/TxD0	P30/TxD0	P30/TxD0	NC
77	80	D8	P31/RxD1	P31/RxD1	P31/RxD1	P31/RxD1	NC
78	81	B9	P32/SCK0/ SDA1/IRQ4	P32/SCK0/ SDA1/IRQ4	P32/SCK0/ SDA1/IRQ4	P32/SCK0/ SDA1/IRQ4	NC
79	82	A9	P33/TxD1/ SCL1	P33/TxD1/ SCL1	P33/TxD1/ SCL1	P33/TxD1/ SCL1	NC
80	83	C8	P34/RxD1/ SDA0	P34/RxD1/ SDA0	P34/RxD1/ SDA0	P34/RxD1/ SDA0	NC
81	84	B8	P35/SCK1/ SCL0/IRQ5	P35/SCK1/ SCL0/IRQ5	P35/SCK1/ SCL0/IRQ5	P35/SCK1/ SCL0/IRQ5	NC
82	85	A8	P36	P36	P36	P36	NC
83	86	D7	P77/TxD3	P77/TxD3	P77/TxD3	P77/TxD3	NC
84	87	C7	P76/RxD3	P76/RxD3	P76/RxD3	P76/RxD3	NC
85	88	A7	P75/TMO3/ SCK3	P75/TMO3/ SCK3	P75/TMO3/ SCK3	P75/TMO3/ SCK3	NC

Pi	in No.				Pin Name)	
TFP-100B TFP-100G FP-100B	FP- 100A*	BP- 1112*2	Mode 4	Mode 5	Mode 6	Mode 7	Flash Memory Programmer Mode
86	89	B7	P74/TMO2/ MRES	P74/TMO2/ MRES	P74/TMO2/ MRES	P74/TMO2/ MRES	NC
87	90	C6	P73/TMO1/ CS7	P73/TMO1/ CS7	P73/TMO1/ CS7	P73/TMO1	NC
88	91	A6	P72/TMO0/ CS6	P72/TMO0/ CS6	P72/TMO0/ CS6	P72/TMO0	NC
89	92	B6	P71/ TMRI23/ TMCI23/ CS5	P71/ TMRI23/ TMCI23/ CS5	P71/ TMRI23/ TMCI23/ CS5	P71/ TMRI23/ TMCI23/	NC
90	93	D6	P70/ TMRI01/ TMCI01/ CS4	P70/ TMRI01/ TMCI01/ CS4	P70/ TMRI01/ TMCI01/ CS4	P70/ TMRI01/ TMCI01	NC
91	94	A5	PG0/IRQ6	PG0/IRQ6	PG0/IRQ6	PG0/IRQ6	NC
92	95	B5	PG1/CS3/ IRQ7	PG1/CS3/ IRQ7	PG1/CS3/ IRQ7	PG1/IRQ7	NC
93	96	C5	PG2/CS2	PG2/CS2	PG2/CS2	PG2	NC
94	97	A4	PG3/CS1	PG3/CS1	PG3/CS1	PG3	NC
95	98	D5	PG4/CS0	PG4/CS0	PG4/CS0	PG4	NC
96	99	B4	PE0/D0	PE0/D0	PE0/D0	PE0	NC
97	100	А3	PE1/D1	PE1/D1	PE1/D1	PE1	NC
98	1	C4	PE2/D2	PE2/D2	PE2/D2	PE2	NC
99	2	В3	PE3/D3	PE3/D3	PE3/D3	PE3	VCC

Notes: *1 Only for the H8S/2238B and H8S/2236B.

PE4/D4

A2

PE4/D4

PE4/D4

PE4

VSS

100

3

^{*2} Only HD64F2238R and HD6432238R are being planned.

1.3.3 Pin Functions

Table 1-3 outlines the pin functions.

Table 1-3 Pin Functions

Туре	Symbol	I/O	Name and Function
Power	VCC	Input	Power supply: For connection to the power supply. All $V_{\rm cc}$ pins should be connected to the system power supply.
	CVCC	Input	Power supply: With a 5 V external power supply (H8S/2238B used), connect a 0.1 μF capacitance between this pin and ground.
			With a 3 V external power supply (H8S/2238R used), connect this pin to the system power supply.
			See section 22, Power Supply Circuit, for connection examples.
	VSS	Input	Ground: For connection to ground (0 V). All V _{ss} pins should be connected to the system power supply (0 V).
Clock	XTAL	Input	Crystal: Connects to a crystal oscillator. See section 20, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator and external clock input.
	EXTAL	Input	External clock: Connects to a crystal oscillator. The EXTAL pin can also input an external clock. See section 20, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator and external clock input.
	OSC1	Input	Subclock: Connects to a 32.768 kHz crystal oscillator. See section 20, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator.
	OSC2	Input	Subclock: Connects to a 32.768 kHz crystal oscillator. See section 20, Clock Pulse Generator, for typical connection diagrams for a crystal oscillator.
	Ø	Output	System clock: Supplies the system clock to an external device.

Туре	Symbol	I/O	Name a	and Function	on	
Operating mode control	MD2 to MD0	Input	relation operatir	between thing mode is	ne settings o shown belo	e operating mode. The of pins MD2 to MD0 and the w. These pins should not be Series is operating.
						de, the levels of mode pins pulling the pins up or down.
			MD2	MD1	MD0	Operating Mode
			0	0	0	_
					1	_
				1	0	_
					1	_
			1	0	0	Mode 4
					1	Mode 5
				1	0	Mode 6
					1	Mode 7
System control	RES	Input	the pow	er-on reset	state.	driven low, the chip enters
	MRES	Input		reset: Whenual reset s		s driven low, the chip enters
	STBY	Input		y: When th		ven low, a transition is made
	BREQ	Input		-	d by an exte H8S/2238 S	ernal bus master to issue a Series.
	BACK	Output		-	owledge: In external b	ndicates that the bus has ous master.
	FWE	Input	Flash v		e: Enables	or disables flash memory
Interrupts	NMI	Input				uests a nonmaskable used, it should be fixed high.
	IRQ7 to	Input	Interrup interrup	•	7 to 0: The	se pins request a maskable
Address bus	A23 to A0	Output	Addres	s bus: The	se pins out	put an address.
Data bus	D15 to D0	I/O	Data bu	us: These p	oins constitu	ite a bidirectional data bus.

Туре	Symbol	I/O	Name and Function
Bus control	CS7 to	Output	Chip select: Signals for selecting areas 7 to 0.
	ĀS	Output	Address strobe: When this pin is low, it indicates that address output on the address bus is enabled.
	RD	Output	Read: When this pin is low, it indicates that the external address space can be read.
	HWR	Output	High write: A strobe signal that writes to external space and indicates that the upper half (D15 to D8) of the data bus is enabled.
	LWR	Output	Low write: A strobe signal that writes to external space and indicates that the lower half (D7 to D0) of the data bus is enabled.
	WAIT	Input	Wait: Requests insertion of a wait state in the bus cycle when accessing external 3-state address space.
16-bit timer- pulse unit (TPU)	TCLKD to TCLKA	Input	Clock input D to A: These pins input an external clock.
	TIOCA0, TIOCB0, TIOCC0, TIOCD0	I/O	Input capture/output compare match A0 to D0: The TGR0A to TGR0D input capture input or output compare output, or PWM output pins.
	TIOCA1, TIOCB1	I/O	Input capture/output compare match A1 and B1: The TGR1A and TGR1B input capture input or output compare output, or PWM output pins.
	TIOCA2, TIOCB2	I/O	Input capture/output compare match A2 and B2: The TGR2A and TGR2B input capture input or output compare output, or PWM output pins.
	TIOCA3, TIOCB3, TIOCC3, TIOCD3	I/O	Input capture/output compare match A3 to D3: The TGR3A to TGR3D input capture input or output compare output, or PWM output pins.
	TIOCA4, TIOCB4	I/O	Input capture/output compare match A4 and B4: The TGR4A and TGR4B input capture input or output compare output, or PWM output pins.
	TIOCA5, TIOCB5	I/O	Input capture/output compare match A5 and B5: The TGR5A and TGR5B input capture input or output compare output, or PWM output pins.
8-bit timer	TMO0 to TMO3	Output	Compare match output: The compare match output pins.

Туре	Symbol	I/O	Name and Function
8-bit timer	TMCI01, TMCI23	Input	Counter external clock input: Input pins for the external clock input to the counter.
	TMRI01, TMRI23	Input	Counter external reset input: The counter reset input pins.
Watchdog timer (WDT)	BUZZ	Output	BUZZ output: Outputs pulses scaled by the watchdog timer.
Serial communication interface (SCI), smart card	TxD3, TxD2, TxD1, TxD0	Output	Transmit data: Data output pins.
interface	RxD3, RxD2, RxD1, RxD0	Input	Receive data: Data input pins.
	SCK3, SCK2, SCK1 SCK0	I/O	Serial clock: Clock I/O pins.
I ² C bus interface (IIC) [Option]	SCL0, SCL1	I/O	I ² C clock I/O (channels 0 and 1): These are the I ² C clock input/output pins. They also have a bus drive function. The SCL0 output type is NMOS open-drain.
	SDA0, SDA1	I/O	I ² C data I/O (channels 0 and 1): These are the I ² C data input/output pins. They also have a bus drive function. The SDA0 output type is NMOS open-drain.
A/D converter	AN7 to AN0	Input	Analog 7 to 0: Analog input pins.
	ADTRG	Input	A/D conversion external trigger input: Pin for input of an external trigger to start A/D conversion.
D/A converter	DA1, DA0	Output	Analog output: D/A converter analog output pins.
A/D converter and D/A converters	AV _{cc}	Input	This is the power supply pin for the A/D converter and D/A converter. When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (H8S/2238B: +5 V, H8S/2238R: +3 V).
	AV _{ss}	Input	This is the ground pin for the A/D converter and D/A converter. This pin should be connected to the system power supply (0 V).
	$\overline{V_{ref}}$	Input	This is the reference voltage input pin for the A/D converter and D/A converter. When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (H8S/2238B: +5 V, H8S/2238R: +3 V).

Туре	Symbol	I/O	Name and Function
I/O ports	P17 to P10	I/O	Port 1: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 1 data direction register (P1DDR).
	P36 to P30	I/O	Port 3: A 7-bit I/O port. Input or output can be designated for each bit by means of the port 3 data direction register (P3DDR). P34 and P35 are NMOS push-pull outputs.
	P47 to P40	Input	Port 4: An 8-bit input port.
	P77 to P70	I/O	Port 7: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 7 data direction register (P7DDR).
	P97, P96	Input	Port 9: A 2-bit input port.
	PA3 to PA0	I/O	Port A: A 4-bit I/O port. Input or output can be designated for each bit by means of the port A data direction register (PADDR).
	PB7 to PB0	I/O	Port B: An 8-bit I/O port. Input or output can be designated for each bit by means of the port B data direction register (PBDDR).
	PC7 to PC0	I/O	Port C: An 8-bit I/O port. Input or output can be designated for each bit by means of the port C data direction register (PCDDR).
	PD7 to PD0	I/O	Port D: An 8-bit I/O port. Input or output can be designated for each bit by means of the port D data direction register (PDDDR).
	PE7 to PE0	I/O	Port E: An 8-bit I/O port. Input or output can be designated for each bit by means of the port E data direction register (PEDDR).
	PF7 to PF0	I/O	Port F: An 8-bit I/O port. Input or output can be designated for each bit by means of the port F data direction register (PFDDR).
	PG4 to PG0	I/O	Port G: A 5-bit I/O port. Input or output can be designated for each bit by means of the port G data direction register (PGDDR).

Section 2 CPU

2.1 Overview

The H8S/2000 CPU is a high-speed central processing unit with an internal 32-bit architecture that is upward-compatible with the H8/300 and H8/300H CPUs. The H8S/2000 CPU has sixteen 16-bit general registers, can address a 16-Mbyte (architecturally 4-Gbyte) linear address space, and is ideal for realtime control.

2.1.1 Features

The H8S/2000 CPU has the following features.

- Upward-compatible with H8/300 and H8/300H CPUs
 - Can execute H8/300 and H8/300H object programs
- General-register architecture
 - Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit registers)
- Sixty-five basic instructions
 - 8/16/32-bit arithmetic and logic instructions
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]
 - Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32]
 - Immediate [#xx:8, #xx:16, or #xx:32]
 - Program-counter relative [@(d:8,PC) or @(d:16,PC)]
 - Memory indirect [@@aa:8]
- 16-Mbyte address space
 - Program: 16 Mbytes
 - Data: 16 Mbytes (4 Gbytes architecturally)

High-speed operation

— All frequently-used instructions execute in one or two states

— Maximum clock rate: 13.5 MHz

— 8/16/32-bit register-register add/subtract: 74 ns (at 13.5 MHz operation)

— 8 × 8-bit register-register multiply: 888 ns (at 13.5 MHz operation)

— 16 ÷ 8-bit register-register divide: 888 ns (at 13.5 MHz operation)

— 16×16 -bit register-register multiply: 1480 ns (at 13.5 MHz operation)

— 32 ÷ 16-bit register-register divide: 1480 ns (at 13.5 MHz operation)

Two CPU operating modes

- Normal mode*
- Advanced mode

Note: * Not available in the H8S/2238 Series.

Power-down state

- Transition to power-down state by SLEEP instruction
- CPU clock speed selection

2.1.2 Differences between H8S/2600 CPU and H8S/2000 CPU

The differences between the H8S/2600 CPU and the H8S/2000 CPU are as shown below.

Register configuration

The MAC register is supported only by the H8S/2600 CPU.

Basic instructions

The four instructions MAC, CLRMAC, LDMAC, and STMAC are supported only by the H8S/2600 CPU.

Number of execution states

The number of exection states of the MULXU and MULXS instructions.

Internal Operation

Instruction	Mnemonic	H8S/2600	H8S/2000	
MULXU	MULXU.B Rs, Rd	3	12	
	MULXU.W Rs, ERd	4	20	
MULXS	MULXS.B Rs, Rd	4	13	
	MULXS.W Rs, ERd	5	21	

There are also differences in the address space, CCR and EXR register functions, power-down state, etc., depending on the product.

2.1.3 Differences from H8/300 CPU

In comparison to the H8/300 CPU, the H8S/2000 CPU has the following enhancements.

- More general registers and control registers
 - Eight 16-bit expanded registers, plus one 8-bit and two 32-bit control registers, have been added.
- Expanded address space
 - Normal mode* supports the same 64-kbyte address space as the H8/300 CPU.
 - Advanced mode supports a maximum 16-Mbyte address space.

Note: * Not available in the H8S/2238 Series.

Enhanced addressing

— The addressing modes have been enhanced to make effective use of the 16-Mbyte address space.

Enhanced instructions

- Addressing modes of bit-manipulation instructions have been enhanced.
- Signed multiply and divide instructions have been added.
- Two-bit shift instructions have been added.
- Instructions for saving and restoring multiple registers have been added.
- A test and set instruction has been added.

Higher speed

— Basic instructions execute twice as fast.

2.1.4 Differences from H8/300H CPU

In comparison to the H8/300H CPU, the H8S/2000 CPU has the following enhancements.

- Additional control register
 - One 8-bit and two 32-bit control registers have been added.

Enhanced instructions

- Addressing modes of bit-manipulation instructions have been enhanced.
- Two-bit shift instructions have been added.
- Instructions for saving and restoring multiple registers have been added.
- A test and set instruction has been added.

- Higher speed
 - Basic instructions execute twice as fast.

2.2 **CPU Operating Modes**

The H8S/2000 CPU has two operating modes: normal* and advanced. Normal mode supports a maximum 64-kbyte address space. Advanced mode supports a maximum 16-Mbyte total address space (architecturally a maximum 16-Mbyte program area and a maximum of 4 Gbytes for program and data areas combined). The mode is selected by the mode pins of the microcontroller.

Note: * Not available in the H8S/2238 Series.

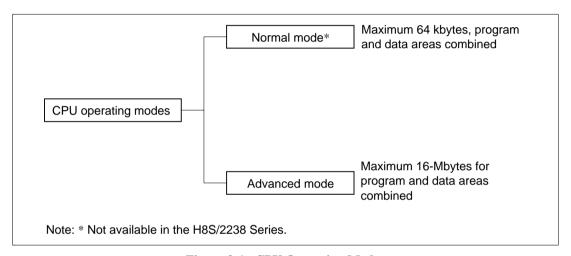


Figure 2-1 CPU Operating Modes

(1) Normal Mode (not available in the H8S/2238 Series)

The exception vector table and stack have the same structure as in the H8/300 CPU.

Address Space: A maximum address space of 64 kbytes can be accessed.

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers. When En is used as a 16-bit register it can contain any value, even when the corresponding general register (Rn) is used as an address register. If the general register is referenced in the register indirect addressing mode with pre-decrement (@-Rn) or post-increment (@Rn+) and a carry or borrow occurs, however, the value in the corresponding extended register (En) will be affected.

Instruction Set: All instructions and addressing modes can be used. Only the lower 16 bits of effective addresses (EA) are valid.

Exception Vector Table and Memory Indirect Branch Addresses: In normal mode the top area starting at H'0000 is allocated to the exception vector table. One branch address is stored per 16 bits. The configuration of the exception vector table in normal mode is shown in figure 2-2. For details of the exception vector table, see section 4, Exception Handling.

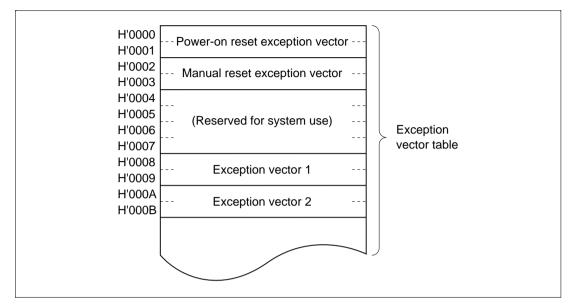


Figure 2-2 Exception Vector Table (Normal Mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. In normal mode the operand is a 16-bit word operand, providing a 16-bit branch address. Branch addresses can be stored in the top area from H'0000 to H'00FF. Note that this area is also used for the exception vector table.

Stack Structure: When the program counter (PC) is pushed onto the stack in a subroutine call, and the PC, condition-code register (CCR), and extended control register (EXR) are pushed onto the stack in exception handling, they are stored as shown in figure 2-3. When EXR is invalid, it is not pushed onto the stack. For details, see section 4, Exception Handling.

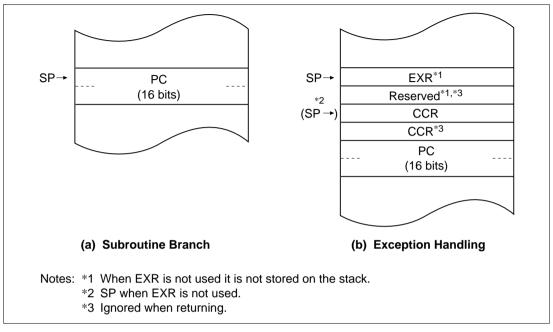


Figure 2-3 Stack Structure in Normal Mode

(2) Advanced Mode

Address Space: Linear access is provided to a 16-Mbyte maximum address space (architecturally a maximum 16-Mbyte program area and a maximum 4-Gbyte data area, with a maximum of 4 Gbytes for program and data areas combined).

Extended Registers (En): The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers or address registers.

Instruction Set: All instructions and addressing modes can be used.

Exception Vector Table and Memory Indirect Branch Addresses: In advanced mode the top area starting at H'00000000 is allocated to the exception vector table in units of 32 bits. In each 32 bits, the upper 8 bits are ignored and a branch address is stored in the lower 24 bits (figure 2-4). For details of the exception vector table, see section 4, Exception Handling.

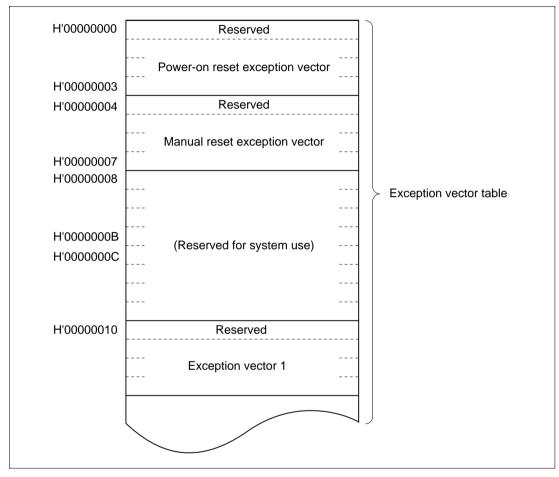


Figure 2-4 Exception Vector Table (Advanced Mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. In advanced mode the operand is a 32-bit longword operand, providing a 32-bit branch address. The upper 8 bits of these 32 bits are a reserved area that is regarded as H'00. Branch addresses can be stored in the area from H'000000000 to H'000000FF. Note that the first part of this range is also the exception vector table.

Stack Structure: In advanced mode, when the program counter (PC) is pushed onto the stack in a subroutine call, and the PC, condition-code register (CCR), and extended control register (EXR) are pushed onto the stack in exception handling, they are stored as shown in figure 2-5. When EXR is invalid, it is not pushed onto the stack. For details, see section 4, Exception Handling.

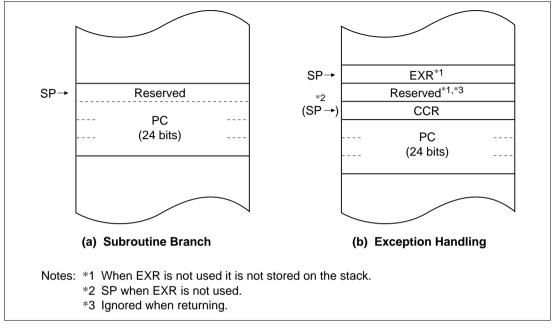


Figure 2-5 Stack Structure in Advanced Mode

2.3 Address Space

Figure 2-6 shows a memory map of the H8S/2000 CPU. The H8S/2000 CPU provides linear access to a maximum 64-kbyte address space in normal mode, and a maximum 16-Mbyte (architecturally 4-Gbyte) address space in advanced mode.

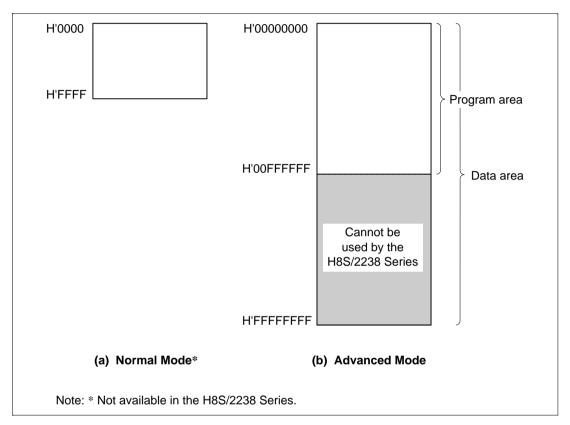


Figure 2-6 Memory Map

2.4 Register Configuration

2.4.1 Overview

The CPU has the internal registers shown in figure 2-7. There are two types of registers: general registers and control registers.

	15	07	O	7 0
ER0	E0		R0H	R0L
ER1	E1		R1H	R1L
ER2	E2		R2H	R2L
ER3	E3		R3H	R3L
ER4	E4		R4H	R4L
ER5	E5		R5H	R5L
ER6	E6		R6H	R6L
ER7 (SP	E7		R7H	R7L
			E	7 6 5 4 3 2 1 0 EXR T - 1 12 11 10
₋egend				7 6 5 4 3 2 1 0
SP:	Stack pointer	H:	(Half-carry flag	7 6 5 4 3 2 1 0
SP: PC:	Program counter	U:	(Half-carry flag User bit	7 6 5 4 3 2 1 0
SP: PC: EXR:	Program counter Extended control register	U: N:	Half-carry flag User bit Negative flag	7 6 5 4 3 2 1 0
SP: PC: EXR:	Program counter	U:	(Half-carry flag User bit	7 6 5 4 3 2 1 0

Figure 2-7 CPU Registers

2.4.2 General Registers

The CPU has eight 32-bit general registers. These general registers are all functionally alike and can be used as both address registers and data registers. When a general register is used as a data register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. When the general registers are used as 32-bit registers or address registers, they are designated by the letters ER (ER0 to ER7).

The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R (R0 to R7). These registers are functionally equivalent, providing a maximum sixteen 16-bit registers. The E registers (E0 to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers designated by the letters RH (R0H to R7H) and RL (R0L to R7L). These registers are functionally equivalent, providing a maximum sixteen 8-bit registers.

Figure 2-8 illustrates the usage of the general registers. The usage of each register can be selected independently.

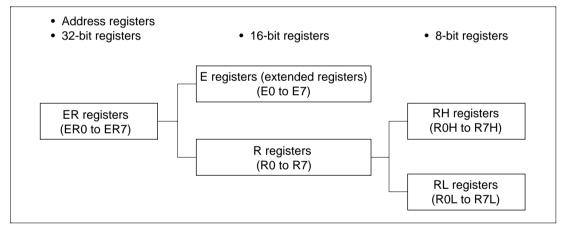


Figure 2-8 Usage of General Registers

General register ER7 has the function of stack pointer (SP) in addition to its general-register function, and is used implicitly in exception handling and subroutine calls. Figure 2-9 shows the stack.

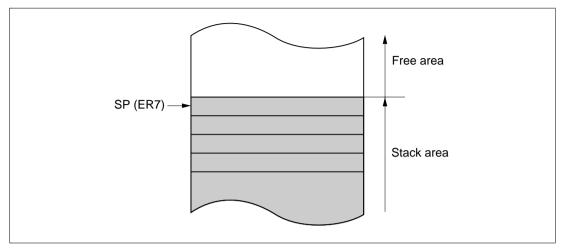


Figure 2-9 Stack

2.4.3 Control Registers

The control registers are the 24-bit program counter (PC), 8-bit extended control register (EXR), and 8-bit condition-code register (CCR).

- (1) **Program Counter (PC):** This 24-bit counter indicates the address of the next instruction the CPU will execute. The length of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (When an instruction is fetched, the least significant PC bit is regarded as 0.)
- (2) Extended Control Register (EXR): This 8-bit register contains the trace bit (T) and interrupt mask bit.

Bit 7—Trace Bit (T): Selects trace mode. When this bit is cleared to 0, instructions are executed in sequence. When this bit is set to 1, a trace exception is generated each time an instruction is executed.

Bits 6 to 3—Reserved: They are always read as 1.

Bits 2 to 0—Interrupt Mask Bits (I2 to I0): These bits designate the interrupt mask level (0 to 7). For details, refer to section 5, Interrupt Controller.

Operations can be performed on the EXR bits by the LDC, STC, ANDC, ORC, and XORC instructions. All interrupts, including NMI, are disabled for three states after one of these instructions is executed, except for STC.

- (3) Condition-Code Register (CCR): This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags.
- **Bit 7—Interrupt Mask Bit (I):** Masks interrupts other than NMI when set to 1. (NMI is accepted regardless of the I bit setting.) The I bit is set to 1 by hardware at the start of an exception-handling sequence. For details, refer to section 5, Interrupt Controller.
- Bit 6—User Bit or Interrupt Mask Bit (UI): Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions. With the H8S/2238 Series, this bit cannot be used as an interrupt mask bit.
- **Bit 5—Half-Carry Flag (H):** When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0 otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 27, and cleared to 0 otherwise.
- **Bit 4—User Bit (U):** Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions.
- Bit 3—Negative Flag (N): Stores the value of the most significant bit (sign bit) of data.
- Bit 2—Zero Flag (Z): Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data.
- **Bit 1—Overflow Flag (V):** Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.

Bit 0—Carry Flag (C): Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:

- Add instructions, to indicate a carry
- Subtract instructions, to indicate a borrow
- Shift and rotate instructions, to indicate a carry.

The carry flag is also used as a bit accumulator by bit manipulation instructions.

Some instructions leave some or all of the flag bits unchanged. For the action of each instruction on the flag bits, refer to Appendix A.1, Instruction List.

Operations can be performed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as branching conditions for conditional branch (Bcc) instructions.

2.4.4 Initial Register Values

Reset exception handling loads the CPU's program counter (PC) from the vector table, clears the trace bit in EXR to 0, and sets the interrupt mask bits in CCR and EXR to 1. The other CCR bits and the general registers are not initialized. In particular, the stack pointer (ER7) is not initialized. The stack pointer should therefore be initialized by an MOV.L instruction executed immediately after a reset.

2.5 Data Formats

The CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit (longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2, ..., 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two digits of 4-bit BCD data.

2.5.1 General Register Data Formats

Figure 2-10 shows the data formats in general registers.

Data Type	Register Number	Data Format
1-bit data	RnH	7 0 7 6 5 4 3 2 1 0 Don't care
1-bit data	RnL	7 0 Don't care 7 6 5 4 3 2 1 0
4-bit BCD data	RnH	7 4 3 0 Upper Lower Don't care
4-bit BCD data	RnL	7 4 3 0 Don't care Upper Lower
Byte data	RnH	7 0 Don't care MSB LSB
Byte data	RnL	7 0 Don't care LSB

Figure 2-10 General Register Data Formats

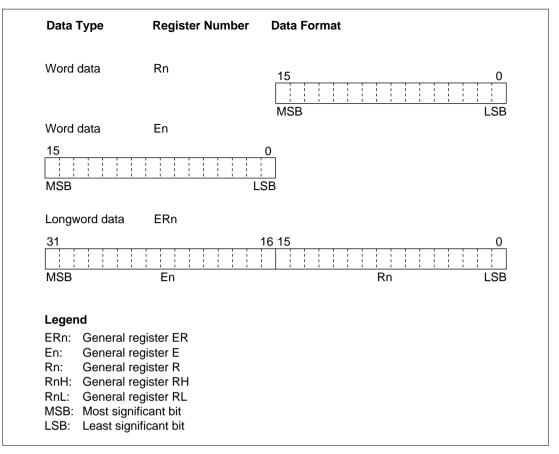


Figure 2-10 General Register Data Formats (cont)

2.5.2 Memory Data Formats

Figure 2-11 shows the data formats in memory. The CPU can access word data and longword data in memory, but word or longword data must begin at an even address. If an attempt is made to access word or longword data at an odd address, no address error occurs but the least significant bit of the address is regarded as 0, so the access starts at the preceding address. This also applies to instruction fetches.

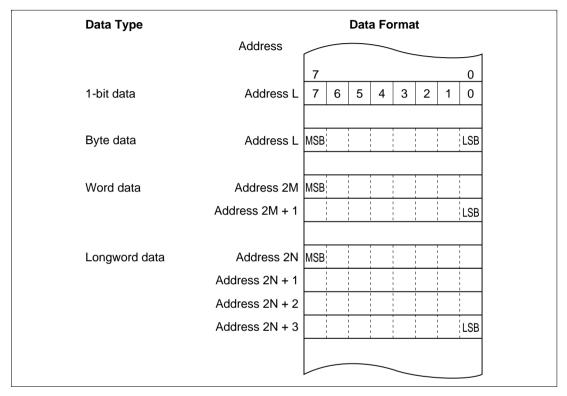


Figure 2-11 Memory Data Formats

When SP (ER7) is used as an address register to access the stack, the operand size should be word size or longword size.

2.6 Instruction Set

2.6.1 Overview

The H8S/2000 CPU has 65 types of instructions. The instructions are classified by function in table 2-1.

Table 2-1 Instruction Classification

Function	Instructions	Size	Types
Data transfer	MOV	BWL	5
	POP* ¹ , PUSH* ¹	WL	_
	LDM, STM	L	_
	MOVFPE* ³ , MOVTPE* ³	В	_
Arithmetic	ADD, SUB, CMP, NEG	BWL	19
operations	ADDX, SUBX, DAA, DAS	В	_
	INC, DEC	BWL	_
	ADDS, SUBS	L	_
	MULXU, DIVXU, MULXS, DIVXS	BW	_
	EXTU, EXTS	WL	_
	TAS* ⁴	В	_
Logic operations	AND, OR, XOR, NOT	BWL	4
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	BWL	8
Bit manipulation	BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR	В	14
Branch	Bcc*2, JMP, BSR, JSR, RTS	_	5
System control	TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	_	9
Block data transfer	EEPMOV	_	1
		Total	6E

Total: 65

Notes: B-byte size; W-word size; L-longword size.

^{*1} POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W Rn, @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and MOV.L ERn, @-SP.

^{*2} Bcc is the general name for conditional branch instructions.

^{*3} Cannot be used in the H8S/2238 Series.

^{*4} Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

2.6.2 Instructions and Addressing Modes

Table 2-2 indicates the combinations of instructions and addressing modes that the H8S/2000 CPU can use.

M۲ 1 Ī 1 Ī Ī I Ī I I Ī Ī @ @993:8 1 @(d:16,PC) I Ī I 1 I Ī Ī I I Ī @(d:8;PC) Ī I Ī 1 I Ī I Ī I I Ī BWL @99:35 Ī I Ī Ī Ī Ī 1 1 1 Ī Ī I @99:24 Ī Ī 1 I 1 I I Ī Addressing Modes @99:16 В 1 @ 99:8 I Ī Ī 1 1 1 Ī Ī Ī В BWL @-EKn/@EKn+ Ī 1 1 I 1 I I Ī @(q:35,ERn) BWL @(d:16,ERn) I BWL @EKn Ī 1 Ī В BWL BWL BWL BWL BWL Вn MS BW M I В В _ BWL BWL XX# $^{\mathsf{M}}$ Ī 1 М I I I Ī ADDX, SUBX ADDS, SUBS EXTU, EXTS Instruction POP, PUSH MOVFPE*1 MOVTPE*1 LDM, STM ADD, CMP DAA, DAS INC, DEC MULXU, MULXS, DIVXS DIVXU TAS*2 NEG SUB Arithmetic operations Function Data transfer

Table 2-2 Combinations of Instructions and Addressing Modes

							▼	Addressing Modes	g Modes						
Function	Instruction	xx#	В'n	@EKn	@(d:16,ERn)	@(d:32,ERn)	-ERn/@ERn+	8:55@	∂1:ss@	\ \2:66@	S:55®	(Dq,8:b)@	(Jq,8t:b)@	8:66@@	_
Logic operations	AND, OR, XOR	BWL	BWL	1	1	1	ı	ı	ı	1	ı	ı	I	1	I
-	LON	I	BWL	ı	ı	I	ı	ı	ı	ı	ı	ı	ı	I	
Shift		I	BWL	I	I	I	ı	ı	I	ı	ı	I	I	I	I
Bit manipulation	ion	ı	В	В	ı	ı	ı	В	В	ı	В	ı	ı	I	I
Branch	Bcc, BSR	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	0	0	ı	I
-	JMP, JSR	ı	ı	ı	ı	ı	ı	ı	ı	0	ı	I	ı	0	ı
-	RTS	I	ı	ı	ı	ı	1	ı	1	1	I	1	I	1	0
System	TRAPA	ı	ı	ı	ı	I	ı	ı	ı	ı	ı	I	I	I	0
control	RTE	ı	ı	ı	ı	1	1	1	1	1	ı	1	1	1	0
	SLEEP	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	I	ı	ı	0
-	LDC	В	В	×	×	8	8	ı	>	ı	>	ı	1	1	ı
	STC	ı	В	8	8	8	>	ı	>	ı	>	ı	ı	ı	1
	ANDC, ORC, XORC	В	_	1	1	1	-	1	1	1	1	I	_	1	1
	NOP	I	I	ı	ı	I	ı	ı	ı	ı	ı	ı	ı	I	0
Block data transfer	ansfer	ı	ı	ı	I	ı	I	ı	ı	ı	ı	ı	ı	ı	BW

Legend B: Byte

L: Longword W: Word

Notes: *1 Cannot be used in the H8S/2238 Series. *2 Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

2.6.3 Table of Instructions Classified by Function

Table 2-3 summarizes the instructions in each functional category. The notation used in table 2-3 is defined below.

Operation Notation

Rd	General register (destination)*
Rs	General register (source)*
Rn	General register*
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
EXR	Extended control register
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
^	Logical AND
<u></u>	Logical OR
\oplus	Logical exclusive OR
\rightarrow	Move
7	NOT (logical complement)
:8/:16/:24/:32	8-, 16-, 24-, or 32-bit length

Note: * General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers (ER0 to ER7).

Table 2-3 Instructions Classified by Function

Туре	Instruction	Size*1	Function	
Data transfer	MOV	B/W/L	$(EAs) \rightarrow Rd, Rs \rightarrow (EAd)$ Moves data between two general registers or between a general register and memory, or moves immediate data to a general register.	
	MOVFPE	В	Cannot be used in the H8S/2238 Series.	
	MOVTPE	В	Cannot be used in the H8S/2238 Series.	
	POP	W/L	@SP+ → Rn Pops a register from the stack. POP.W Rn is identical to MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+, ERn.	
	PUSH	W/L	$Rn \rightarrow @-SP$ Pushes a register onto the stack. PUSH.W Rn is identical to MOV.W Rn, $@-SP$. PUSH.L ERn is identical to MOV.L ERn, $@-SP$.	
	LDM	L	@SP+ → Rn (register list) Pops two or more general registers from the stack.	
	STM	L	Rn (register list) \rightarrow @-SP Pushes two or more general registers onto the stack.	
Arithmetic operations	ADD SUB	B/W/L	Rd \pm Rs \rightarrow Rd, Rd \pm #IMM \rightarrow Rd Performs addition or subtraction on data in two general registers, or on immediate data and data in a general register. (Immediate byte data cannot be subtracted from byte data in a general register. Use the SUBX or ADD instruction.)	
	ADDX SUBX	В	Rd \pm Rs \pm C \rightarrow Rd, Rd \pm #IMM \pm C \rightarrow Rd Performs addition or subtraction with carry or borrow on byte data in two general registers, or on immediate data and data in a general register.	
	INC DEC	B/W/L	Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd Increments or decrements a general register by 1 or 2. (Byte operands can be incremented or decremented by 1 only.)	
	ADDS SUBS	L	Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd, Rd \pm 4 \rightarrow Rd Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.	
	DAA DAS	В	Rd decimal adjust \rightarrow Rd Decimal-adjusts an addition or subtraction result in a general register by referring to the CCR to produce 4-bit BCD data.	

Туре	Instruction	Size*1	Function
Arithmetic operations	MULXU	B/W	$Rd \times Rs \rightarrow Rd$ Performs unsigned multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
	MULXS	B/W	$Rd \times Rs \rightarrow Rd$ Performs signed multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
	DIVXU	B/W	Rd \div Rs \rightarrow Rd Performs unsigned division on data in two general registers: either 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \rightarrow 16-bit quotient and 16- bit remainder.
	DIVXS	B/W	Rd \div Rs \rightarrow Rd Performs signed division on data in two general registers: either 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \rightarrow 16-bit quotient and 16- bit remainder.
	CMP	B/W/L	Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result.
	NEG	B/W/L	$0-Rd \rightarrow Rd$ Takes the two's complement (arithmetic complement) of data in a general register.
	EXTU	W/L	Rd (zero extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by padding with zeros on the left.
	EXTS	W/L	Rd (sign extension) → Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by extending the sign bit.
	TAS	В	@ERd $-$ 0, 1 \rightarrow (<bit 7=""> of @ERd)*2 Tests memory contents, and sets the most significant bit (bit 7) to 1.</bit>

Туре	Instruction	Size*1	Function	
Logic operations	AND	B/W/L	$Rd \wedge Rs \rightarrow Rd$, $Rd \wedge \#IMM \rightarrow Rd$ Performs a logical AND operation on a general register and another general register or immediate data.	
	OR	B/W/L	Rd ∨ Rs → Rd, Rd ∨ #IMM → Rd Performs a logical OR operation on a general register and another general register or immediate data.	
	XOR	B/W/L	Rd ⊕ Rs → Rd, Rd ⊕ #IMM → Rd Performs a logical exclusive OR operation on a general register and another general register or immediate data.	
	NOT	B/W/L	\neg (Rd) \rightarrow (Rd) Takes the one's complement of general register contents.	
Shift operations	SHAL SHAR	B/W/L	Rd (shift) → Rd Performs an arithmetic shift on general register contents. 1-bit or 2-bit shift is possible.	
	SHLL SHLR	B/W/L	Rd (shift) → Rd Performs a logical shift on general register contents. 1-bit or 2-bit shift is possible.	
	ROTL ROTR	B/W/L	Rd (rotate) → Rd Rotates general register contents. 1-bit or 2-bit rotation is possible.	
	ROTXL ROTXR	B/W/L	Rd (rotate) → Rd Rotates general register contents through the carry flag. 1-bit or 2-bit rotation is possible.	
Bit- manipulation instructions	BSET	В	1 → (<bit-no.> of <ead>) Sets a specified bit in a general register or memory operand to 1. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>	
	BCLR	В	0 → (<bit-no.> of <ead>) Clears a specified bit in a general register or memory operand to 0. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>	
	BNOT	В	\neg (<bit-no.> of <ead>) \rightarrow (<bit-no.> of <ead>) Inverts a specified bit in a general register or memory operand. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.></ead></bit-no.>	

Туре	Instruction	Size*1	Function
Bit-manipulation instructions	BTST	В	¬ (<bit-no.> of <ead>) → Z Tests a specified bit in a general register or memory operand and sets or clears the Z flag accordingly. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.</ead></bit-no.>
	BAND	В	$C \wedge (\text{sbit-No.} > \text{of } < \text{EAd} >) \rightarrow C$ ANDs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
	BIAND	В	$C \wedge [\neg (\text{sbit-No.} > \text{of } < \text{EAd}>)] \rightarrow C$ ANDs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.
	BOR	В	$C \lor (\mbox{\rm sit-No.> of }) \to C$ ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
	BIOR	В	$C \vee [\neg (\text{sbit-No.} > \text{of } < \text{EAd}>)] \to C$ ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.
	BXOR	В	$C \oplus (\text{-bit-No} \text{ of } \text{-EAd}) \to C$ Exclusive-ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
	BIXOR	В	$C \oplus [\neg (\text{sbit-No.} > \text{of } < \text{EAd} >)] \to C$ Exclusive-ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.
	BLD	В	(<bit-no.> of <ead>) \rightarrow C Transfers a specified bit in a general register or memory operand to the carry flag.</ead></bit-no.>
	BILD	В	\neg (<bit-no.> of <ead>) \rightarrow C Transfers the inverse of a specified bit in a general register or memory operand to the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>

Туре	Instruction	Size*1	Function			
Bit- manipulation instructions	BST	В	$C \rightarrow (\text{-bit-No} \text{ of } \text{-EAd})$ Transfers the carry flag value to a specified bit in a general register or memory operand.			
	BIST	В	specified bit in a g	of <ead>) rse of the carry flag va eneral register or mem specified by 3-bit imme</ead>	ory operand.	
Branch instructions	Bcc	_	Branches to a specified address if a specified condition is true. The branching conditions are listed below.			
			Mnemonic	Description	Condition	
			BRA(BT)	Always (true)	Always	
			BRN(BF)	Never (false)	Never	
			BHI	High	C ∨ Z = 0	
			BLS	Low or same	C ∨ Z = 1	
			BCC(BHS)	Carry clear (high or same)	C = 0	
			BCS(BLO)	Carry set (low)	C = 1	
			BNE	Not equal	Z = 0	
			BEQ	Equal	Z = 1	
			BVC	Overflow clear	V = 0	
			BVS	Overflow set	V = 1	
			BPL	Plus	N = 0	
			BMI	Minus	N = 1	
			BGE	Greater or equal	$N \oplus V = 0$	
			BLT	Less than	N ⊕ V = 1	
			BGT	Greater than	$Z\lor(N\oplus V)=0$	
			BLE	Less or equal	$Z\lor(N\oplus V)=1$	
	JMP		Branches unconditionally to a specified address.			
	BSR	_	Branches to a subroutine at a specified address.			
	JSR		Branches to a subroutine at a specified address.			
	RTS		Returns from a su	broutine		
System control	TRAPA	_	Starts trap-instruction exception handling.			
instructions	RTE	·	Returns from an exception-handling routine.			
	SLEEP	_	Causes a transition to a power-down state.			

Туре	Instruction	Size*1	Function		
System control instructions	LDC	B/W	(EAs) → CCR, (EAs) → EXR Moves the source operand contents or immediate data to CCR or EXR. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.		
	STC	B/W	CCR → (EAd), EXR → (EAd) Transfers CCR or EXR contents to a general register or memory. Although CCR and EXR are 8-bit registers, word-size transfers are performed between them and memory. The upper 8 bits are valid.		
	ANDC	В	CCR \land #IMM \rightarrow CCR, EXR \land #IMM \rightarrow EXR Logically ANDs the CCR or EXR contents with immediate data.		
	ORC	В	CCR \vee #IMM \rightarrow CCR, EXR \vee #IMM \rightarrow EXR Logically ORs the CCR or EXR contents with immediate data.		
	XORC	В	CCR \oplus #IMM \to CCR, EXR \oplus #IMM \to EXR Logically exclusive-ORs the CCR or EXR contents with immediate data.		
	NOP	_	$PC + 2 \rightarrow PC$ Only increments the program counter.		
Block data transfer instruction	EEPMOV.B		if R4L \neq 0 then Repeat @ER5+ \rightarrow @ER6+ R4L-1 \rightarrow R4L Until R4L = 0 else next;		
	EEPMOV.W	_	if R4 \neq 0 then Repeat @ER5+ \rightarrow @ER6+ R4-1 \rightarrow R4 Until R4 = 0 else next;		
			Transfers a data block according to parameters set in general registers R4L or R4, ER5, and ER6.		
			R4L or R4: size of block (bytes) ER5: starting source address ER6: starting destination address		
			Execution of the next instruction begins as soon as the transfer is completed.		

Notes: *1 Size refers to the operand size.

B: ByteW: WordL: Longword

^{*2} Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

2.6.4 Basic Instruction Formats

The CPU instructions consist of 2-byte (1-word) units. An instruction consists of an operation field (op field), a register field (r field), an effective address extension (EA field), and a condition field (cc field).

Figure 2-12 shows examples of instruction formats.

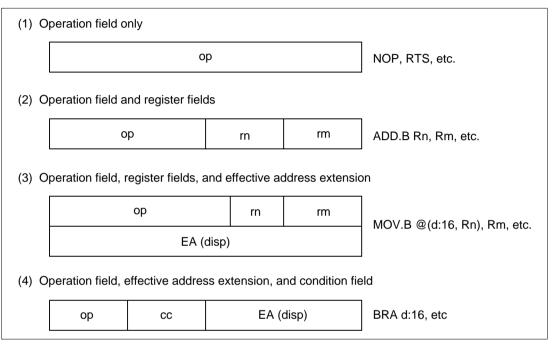


Figure 2-12 Instruction Formats (Examples)

- (1) **Operation Field:** Indicates the function of the instruction, the addressing mode, and the operation to be carried out on the operand. The operation field always includes the first four bits of the instruction. Some instructions have two operation fields.
- (2) **Register Field:** Specifies a general register. Address registers are specified by 3 bits, data registers by 3 bits or 4 bits. Some instructions have two register fields. Some have no register field.
- (3) Effective Address Extension: Eight, 16, or 32 bits specifying immediate data, an absolute address, or a displacement.
- (4) Condition Field: Specifies the branching condition of Bcc instructions.

2.6.5 Notes on Use of Bit-Manipulation Instructions

The BSET, BCLR, BNOT, BST, and BIST instructions read a byte of data, carry out bit manipulation, then write back the byte of data. Caution is therefore required when using these instructions on a register containing write-only bits, or a port.

The BCLR instruction can be used to clear internal I/O register flags to 0. In this case, the relevant flag need not be read beforehand if it is clear that it has been set to 1 in an interrupt handling routine, etc.

2.7 Addressing Modes and Effective Address Calculation

2.7.1 Addressing Mode

The H8S/2000 CPU supports the eight addressing modes listed in table 2-4. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer instructions can use all addressing modes except program-counter relative and memory indirect. Bit manipulation instructions use register direct, register indirect, or absolute addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand.

Table 2-4 Addressing Modes

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16,ERn)/@(d:32,ERn)
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @–ERn
5	Absolute address	@aa:8/@aa:16/@aa:24/@aa:32
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@ @aa:8

(1) **Register Direct—Rn:** The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

- (2) **Register Indirect**—@**ERn:** The register field of the instruction code specifies an address register (ERn) which contains the address of the operand on memory. If the address is a program instruction address, the lower 24 bits are valid and the upper 8 bits are all assumed to be 0 (H'00).
- (3) Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn): A 16-bit or 32-bit displacement contained in the instruction is added to an address register (ERn) specified by the register field of the instruction, and the sum gives the address of a memory operand. A 16-bit displacement is sign-extended when added.
- (4) Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn:
- Register indirect with post-increment—@ERn+ The register field of the instruction code specifies an address register (ERn) which contains the address of a memory operand. After the operand is accessed, 1, 2, or 4 is added to the address register contents and the sum is stored in the address register. The value added is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For word or longword transfer instruction, the register value should be even.
- Register indirect with pre-decrement—@-ERn The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field in the instruction code, and the result becomes the address of a memory operand. The result is also stored in the address register. The value subtracted is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For word or longword transfer instruction, the register value should be even.
- (5) **Absolute Address**—@aa:8, @aa:16, @aa:24, or @aa:32: The instruction code contains the absolute address of a memory operand. The absolute address may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24), or 32 bits long (@aa:32).

To access data, the absolute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 bits (@aa:32) long. For an 8-bit absolute address, the upper 24 bits are all assumed to be 1 (H'FFFFFF). For a 16-bit absolute address the upper 16 bits are a sign extension. A 32-bit absolute address can access the entire address space.

A 24-bit absolute address (@aa:24) indicates the address of a program instruction. The upper 8 bits are all assumed to be 0 (H'00).

Table 2-5 indicates the accessible absolute address ranges.

Table 2-5 Absolute Address Access Ranges

Absolute Address		Normal Mode*	Advanced Mode
Data address	8 bits (@aa:8)	H'FF00 to H'FFFF	H'FFFF00 to H'FFFFFF
	16 bits (@aa:16)	H'0000 to H'FFFF	H'000000 to H'007FFF, H'FF8000 to H'FFFFFF
	32 bits (@aa:32)		H'000000 to H'FFFFFF
Program instruction address	24 bits (@aa:24)	_	

Note: * Not available in the H8S/2238 Series.

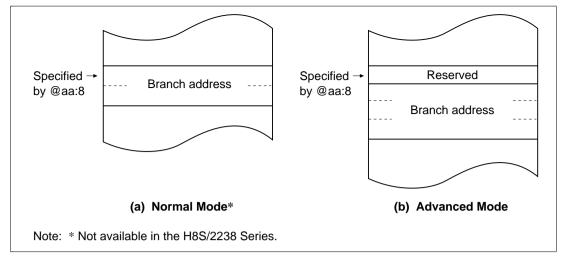
(6) Immediate—#xx:8, #xx:16, or #xx:32: The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an operand.

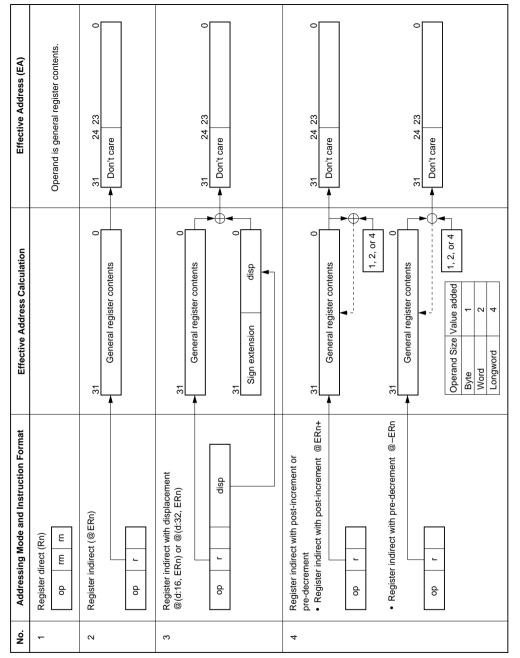
The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a vector address.

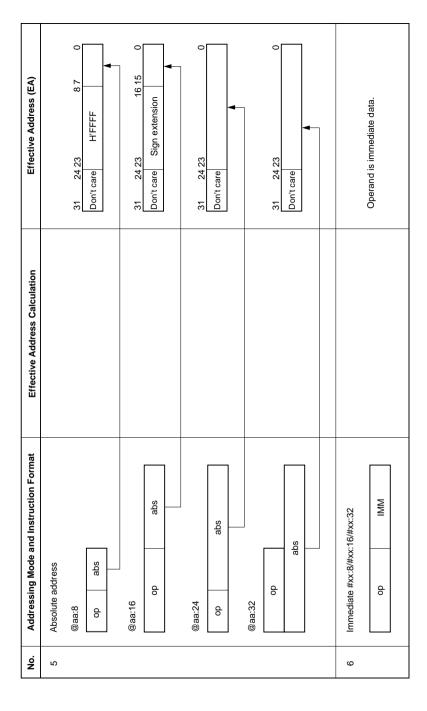
- (7) **Program-Counter Relative**—@(**d:8, PC**) or @(**d:16, PC**): This mode is used in the Bcc and BSR instructions. An 8-bit or 16-bit displacement contained in the instruction is sign-extended and added to the 24-bit PC contents to generate a branch address. Only the lower 24 bits of this branch address are valid; the upper 8 bits are all assumed to be 0 (H'00). The PC value to which the displacement is added is the address of the first byte of the next instruction, so the possible branching range is –126 to +128 bytes (–63 to +64 words) or –32766 to +32768 bytes (–16383 to +16384 words) from the branch instruction. The resulting value should be an even number.
- (8) Memory Indirect—@@aa:8: This mode can be used by the JMP and JSR instructions. The instruction code contains an 8-bit absolute address specifying a memory operand. This memory operand contains a branch address. The upper bits of the absolute address are all assumed to be 0, so the address range is 0 to 255 (H'0000 to H'00FF* in normal mode, H'000000 to H'000FF in advanced mode). In normal mode the memory operand is a word operand and the branch address is 16 bits long. In advanced mode the memory operand is a longword operand, the first byte of which is assumed to be all 0 (H'00).

Note that the first part of the address range is also the exception vector area. For further details, refer to section 4, Exception Handling.

Note: * Not available in the H8S/2238 Series.




Figure 2-13 Branch Address Specification in Memory Indirect Mode


If an odd address is specified in word or longword memory access, or as a branch address, the least significant bit is regarded as 0, causing data to be accessed or instruction code to be fetched at the address preceding the specified address. (For further information, see section 2.5.2, Memory Data Formats.)

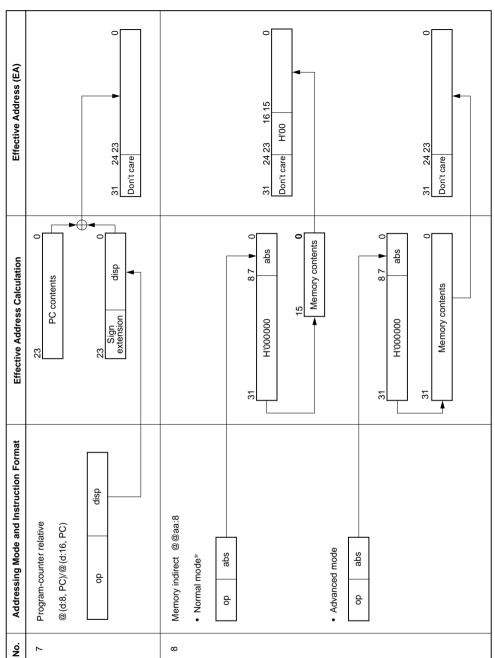

2.7.2 Effective Address Calculation

Table 2-6 indicates how effective addresses are calculated in each addressing mode. In normal mode the upper 8 bits of the effective address are ignored in order to generate a 16-bit address.

Table 2-6 Effective Address Calculation

Note: * Not available in the H8S/2238 Series.

2.8 Processing States

2.8.1 Overview

The CPU has five main processing states: the reset state, exception handling state, program execution state, bus-released state, and power-down state. Figure 2-14 shows a diagram of the processing states. Figure 2-15 indicates the state transitions.

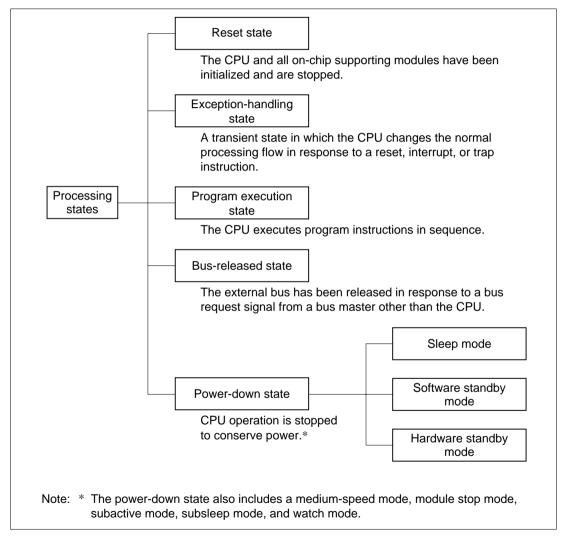
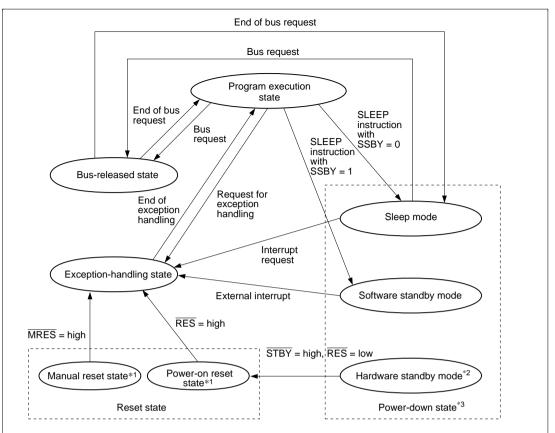



Figure 2-14 Processing States

Notes: *1 From any state except hardware standby mode, a transition to the power-on reset state occurs whenever RES goes low. From any state except hardware standby mode and the power-on reset state, a transition to the manual reset state occurs whenever MRES goes low. A transition can also be made to the reset state when the watchdog timer overflows.

- *2 From any state, a transition to hardware standby mode occurs when STBY goes low.
- *3 There are also other modes, including watch mode, subactive mode, and subsleep mode. For details, refer to section 21. Power-Down Modes.

Figure 2-15 State Transitions

2.8.2 Reset State

When the \overline{RES} input goes low all current processing stops and the CPU enters the power-on reset state. When the \overline{MRES} input goes low, the CPU enters the manual reset state. All interrupts are disabled in the reset state. Reset exception handling starts when the \overline{RES} or \overline{MRES} signal changes from low to high.

The reset state can also be entered by a watchdog timer overflow. For details, refer to section 12, Watchdog Timer.

2.8.3 Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the normal processing flow due to a reset, interrupt, or trap instruction. The CPU fetches a start address (vector) from the exception vector table and branches to that address.

(1) Types of Exception Handling and Their Priority

Exception handling is performed for resets, traces, interrupts, and trap instructions. Table 2-7 indicates the types of exception handling and their priority. Trap instruction exception handling is always accepted, in the program execution state.

Exception handling and the stack structure depend on the interrupt control mode set in SYSCR.

Table 2-7 Exception Handling Types and Priority

Priority	Type of Exception	Detection Timing	Start of Exception Handling	
High	Reset	Synchronized with clock	Exception handling starts immediately after a low-to-high transition at the RES or MRES pin, or when the watchdog timer overflows.	
	Trace	End of instruction execution or end of exception-handling sequence*1	When the trace (T) bit is set to 1, the trace starts at the end of the current instruction or current exception-handling sequence	
	Interrupt	End of instruction execution or end of exception-handling sequence*2	When an interrupt is requested, exception handling starts at the end of the current instruction or current exception-handling sequence	
Low	Trap instruction	When TRAPA instruction is executed	Exception handling starts when a trap (TRAPA) instruction is executed* ³	

Notes: *1 Traces are enabled only in interrupt control mode 2. Trace exception-handling is not executed at the end of the RTE instruction.

^{*2} Interrupts are not detected at the end of the ANDC, ORC, XORC, and LDC instructions, or immediately after reset exception handling.

^{*3} Trap instruction exception handling is always accepted, in the program execution state.

(2) Reset Exception Handling

After the \overline{RES} or \overline{MRES} pin has gone low and the reset state has been entered, reset exception handling starts when \overline{RES} or \overline{MRES} goes high again. The CPU enters the power-on reset state when the \overline{RES} pin is low, and the manual reset state when the \overline{MRES} pin is low. When reset exception handling starts the CPU fetches a start address (vector) from the exception vector table and starts program execution from that address. All interrupts, including NMI, are disabled during reset exception handling and after it ends.

(3) Traces

Traces are enabled only in interrupt control mode 2. Trace mode is entered when the T bit of EXR is set to 1. When trace mode is established, trace exception handling starts at the end of each instruction.

At the end of a trace exception-handling sequence, the T bit of EXR is cleared to 0 and trace mode is cleared. Interrupt masks are not affected.

The T bit saved on the stack retains its value of 1, and when the RTE instruction is executed to return from the trace exception-handling routine, trace mode is entered again. Trace exception-handling is not executed at the end of the RTE instruction.

Trace mode is not entered in interrupt control mode 0, regardless of the state of the T bit.

(4) Interrupt Exception Handling and Trap Instruction Exception Handling

When interrupt or trap-instruction exception handling begins, the CPU references the stack pointer (ER7) and pushes the program counter and other control registers onto the stack. Next, the CPU alters the settings of the interrupt mask bits in the control registers. Then the CPU fetches a start address (vector) from the exception vector table and program execution starts from that start address.

Figure 2-16 shows the stack after exception handling ends.

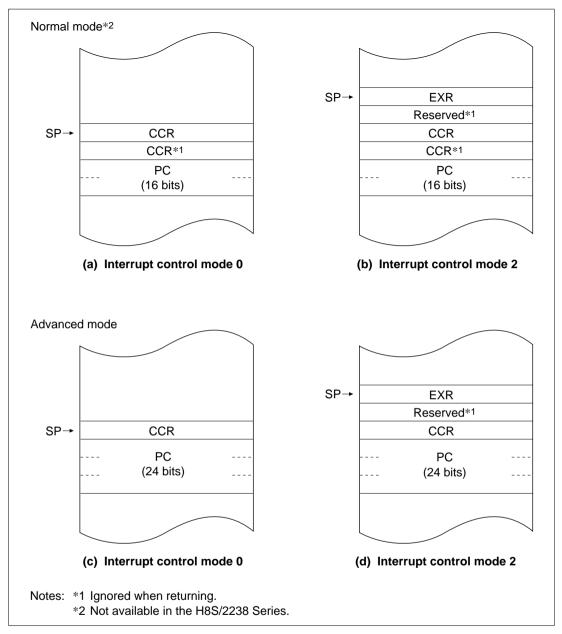


Figure 2-16 Stack Structure after Exception Handling (Examples)

2.8.4 Program Execution State

In this state the CPU executes program instructions in sequence.

2.8.5 Bus-Released State

This is a state in which the bus has been released in response to a bus request from a bus master other than the CPU. While the bus is released, the CPU halts operations.

There is one other bus master in addition to the CPU: the data transfer controller (DTC).

For further details, refer to section 7, Bus Controller.

2.8.6 Power-Down State

The power-down state includes both modes in which the CPU stops operating and modes in which the CPU does not stop. There are five modes in which the CPU stops operating: sleep mode, software standby mode, hardware standby mode, subsleep mode, and watch mode. There are also three other power-down modes: medium-speed mode, module stop mode, and subactive mode. In medium-speed mode the CPU and other bus masters operate on a medium-speed clock. Module stop mode permits halting of the operation of individual modules, other than the CPU. Subactive mode, subsleep mode, and watch mode are power-down states in which subclock input is used. For details, refer to section 21, Power-Down Modes.

- (1) Sleep Mode: A transition to sleep mode is made if the SLEEP instruction is executed while the SSBY bit in SBYCR and the LSON bit in LPWRCR are both cleared to 0. In sleep mode, CPU operations stop immediately after execution of the SLEEP instruction. The contents of CPU registers are retained.
- (2) **Software Standby Mode:** A transition to software standby mode is made if the SLEEP instruction is executed while the SSBY bit in SBYCR is set to 1, and the LSON bit in LPWRCR and the PSS bit in TCSR (WDT1) are both cleared to 0. In software standby mode, the CPU and clock halt and all MCU operations stop. As long as a specified voltage is supplied, the contents of CPU registers and on-chip RAM are retained. The I/O ports also remain in their existing states.
- (3) Hardware Standby Mode: A transition to hardware standby mode is made when the STBY pin goes low. In hardware standby mode, the CPU and clock halt and all MCU operations stop. The on-chip supporting modules are reset, but as long as a specified voltage is supplied, on-chip RAM contents are retained.

2.9 Basic Timing

2.9.1 Overview

The H8S/2000 CPU is driven by a system clock, denoted by the symbol ø. The period from one rising edge of ø to the next is referred to as a "state." The memory cycle or bus cycle consists of one, two, or three states. Different methods are used to access on-chip memory, on-chip supporting modules, and the external address space.

2.9.2 On-Chip Memory (ROM, RAM)

On-chip memory is accessed in one state. The data bus is 16 bits wide, permitting both byte and word transfer instruction. Figure 2-17 shows the on-chip memory access cycle. Figure 2-18 shows the pin states.

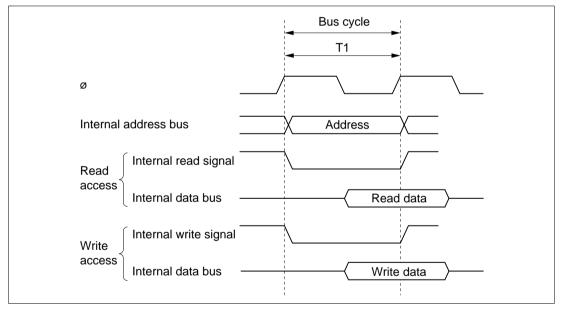


Figure 2-17 On-Chip Memory Access Cycle

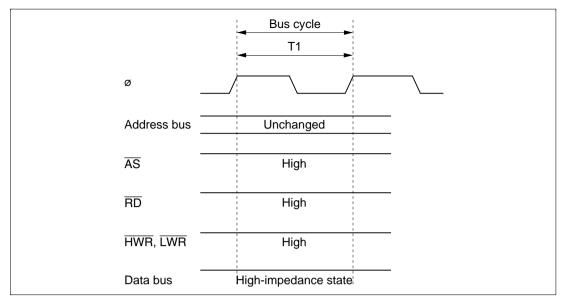


Figure 2-18 Pin States during On-Chip Memory Access

2.9.3 On-Chip Supporting Module Access Timing

The on-chip supporting modules are accessed in two states. The data bus is either 8 bits or 16 bits wide, depending on the particular internal I/O register being accessed. Figure 2-19 shows the access timing for the on-chip supporting modules. Figure 2-20 shows the pin states.

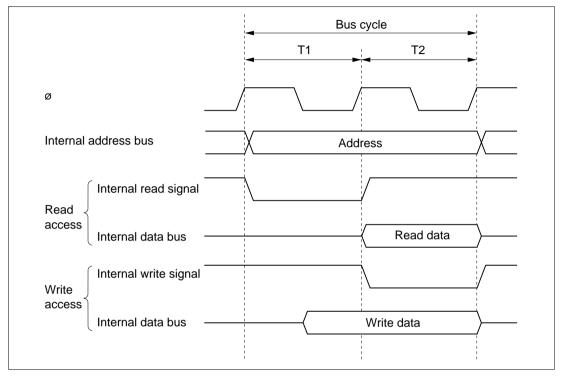


Figure 2-19 On-Chip Supporting Module Access Cycle

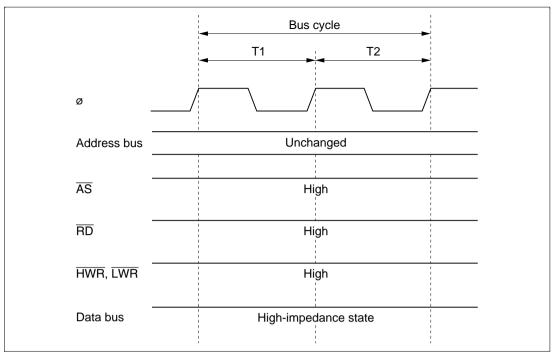


Figure 2-20 Pin States during On-Chip Supporting Module Access

2.9.4 External Address Space Access Timing

The external address space is accessed with an 8-bit or 16-bit data bus width in a two-state or three-state bus cycle. In three-state access, wait states can be inserted. For further details, refer to section 7, Bus Controller.

2.10 Usage Note

Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. The TAS instruction is not generated by the Hitachi H8S and H8/300 series C/C++ compilers. If the TAS instruction is used as a user-defined intrinsic function, ensure that only register ER0, ER1, ER4, or ER5 is used.

ER7 is not used as the register that can be saved (STM)/restored (LDM) when using STM/LDM instruction, because ER7 is the stack pointer. Two, three, or four registers can be saved/restored by one STM/LDM instruction. The following ranges can be specified in the register list.

Two registers: ER0-ER1, ER2-ER3, or ER4-ER5

Three registers: ER0-ER2, or ER4-ER6

Four registers: ER0-ER3

The STM/LDM instruction including ER7 is not generated by the Hitachi H8S and H8/300 series C/C++compilers.

Section 3 MCU Operating Modes

3.1 Overview

3.1.1 Operating Mode Selection

The H8S/2238 Series has four operating modes (modes 4 to 7). These modes enable selection of the CPU operating mode, enabling/disabling of on-chip ROM, and the initial bus width setting, by setting the mode pins (MD2 to MD0).

Table 3-1 lists the MCU operating modes.

Table 3-1 MCU Operating Mode Selection

MCU				CPU			Extern	al Data Bus
Operating Mode	MD2	MD1	MD0	Operating Mode	Description	On-Chip ROM	Initial Width	Max. Width
0*	0	0	0	_	_	_	_	
1*	_		1	_				
2*	_	1	0	_				
3*	_		1	_				
4	1	0	0	Advanced	On-chip ROM disabled expanded mode	Disabled	16 bits	16 bits
5	_		1	=			8 bits	16 bits
6	-	1	0	_	On-chip ROM enabled, expanded mode	Enabled	8 bits	16 bits
7	_		1	_	Single-chip mode	-	_	

Note: * Not available in the H8S/2238 Series.

The CPU's architecture allows for 4 Gbytes of address space, but the H8S/2238 Series actually accesses a maximum of 16 Mbytes.

Modes 4 to 6 are externally expanded modes that allow access to external memory and peripheral devices.

The external expansion modes allow switching between 8-bit and 16-bit bus modes. After program execution starts, an 8-bit or 16-bit address space can be set for each area, depending on the bus controller setting. If 16-bit access is selected for any one area, 16-bit bus mode is set; if 8-bit access is selected for all areas, 8-bit bus mode is set.

Note that the functions of each pin depend on the operating mode.

The H8S/2238 Series can be used only in modes 4 to 7. This means that the mode pins must be set to select one of these modes. Do not change the inputs at the mode pins during operation.

3.1.2 Register Configuration

The H8S/2238 Series has a mode control register (MDCR) that indicates the inputs at the mode pins (MD2 to MD0), and a system control register (SYSCR) that controls the operation of the H8S/2238 Series. Table 3-2 summarizes these registers.

Table 3-2 MCU Registers

Name	Abbreviation	R/W	Initial Value	Address*
Mode control register	MDCR	R	Undetermined	H'FDE7
System control register	SYSCR	R/W	H'01	H'FDE5

Note: * Lower 16 bits of the address.

3.2 Register Descriptions

3.2.1 Mode Control Register (MDCR)

Bit	:	7	6	5	4	3	2	1	0	_
		_	_	_	_	_	MDS2	MDS1	MDS0	
Initial va	ılue:	1	0	0	0	0	*	*	*	
R/W	:	_	_	_	_	_	R	R	R	

Note: * Determined by pins MD2 to MD0.

MDCR is an 8-bit read-only register that indicates the current operating mode of the H8S/2238 Series.

Bit 7—Reserved: This bit cannot be modified and is always read as 1.

Bits 6 to 3—Reserved: These bits cannot be modified and are always read as 0.

Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDS0): These bits indicate the input levels at pins MD2 to MD0 (the current operating mode). Bits MDS2 to MDS0 correspond to MD2 to MD0. MDS2 to MDS0 are read-only bits-they cannot be written to. The mode pin (MD2 to MD0) input levels are latched into these bits when MDCR is read. These latches are canceled by a power-on reset, but are retained after a manual reset.

3.2.2 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	INTM1	INTM0	NMIEG	MRESE	_	RAME
Initial va	alue:	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	R/W	_	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, the detected edge for NMI, and enables or disables MRES pin input and on-chip RAM.

SYSCR is initialized to H'01 by a power-on reset and in hardware standby mode. In a manual reset, the INTM1, INTM0, NMIEG, and RAME bits are initialized, but the MRESE bit is not. SYSCR is not initialized in software standby mode.

Bit 7—Reserved: Only 0 should be written to this bit.

Bit 6—Reserved: This bit cannot be modified and is always read as 0.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select the control mode of the interrupt controller. For details of the interrupt control modes, see section 5.4.1, Interrupt Control Modes and Interrupt Operation.

Bit 5	Bit 4	Interrupt				
INTM1 INTM0		Control Mode	Description			
0	0	0	Control of interrupts by I bit	(Initial value)		
	1		Setting prohibited			
1	0	2	Control of interrupts by I2 to I0 bits	and IPR		
	1	_	Setting prohibited			

Bit 3—NMI Edge Select (NMIEG): Selects the valid edge of the NMI interrupt input.

Bit 3

NMIEG	Description	
0	An interrupt is requested at the falling edge of NMI input	(Initial value)
1	An interrupt is requested at the rising edge of NMI input	

Bit 2—Manual Reset Select (MRESE): Enables or disables the $\overline{\text{MRES}}$ pin. Table 3-3 shows the relationship between the $\overline{\text{RES}}$ and $\overline{\text{MRES}}$ pin values and type of reset. For details of resets, see section 4.2, Resets.

Bit 2

MRESE	Description	
0	Manual reset is disabled P74/MRES pin can be used as P74 I/O pin	(Initial value)
1	Manual reset is enabled P74/MRES pin can be used as MRES input pin	

Table 3-3 Relationship between \overline{RES} and \overline{MRES} pin Values and Type of Reset

Pins

RES	MRES	Type of Reset
0	*	Power-on reset
1	0	Manual reset
1	1	Operating state

*: Don't care

Bit 1—Reserved: This bit cannot be modified and is always read as 0.

Bit 0—RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized when the reset status is released. It is not initialized in software standby mode.

Bit 0

RAME	Description	
0	On-chip RAM is disabled	
1	On-chip RAM is enabled	(Initial value)

Note: When the DTC is used, the RAME bit must be set to 1.

3.3 Operating Mode Descriptions

3.3.1 Mode 4

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled.

Pins P13 to P10, and ports A, B, and C function as an address bus, ports D and E function as a data bus, and part of port F carries bus control signals.

Pins P13 to P11 function as input ports immediately after a reset. Address (A23 to A21) output can be enabled or disabled by bits AE3 to AE0 in the pin function control register (PFCR) regardless of the corresponding data direction register (DDR) values. Pin 10 and ports A and B function as address (A20 to A8) outputs immediately after a reset. Address output can be enabled or disabled by bits AE3 to AE0 in PFCR regardless of the corresponding DDR values. Pins for which address output is disabled among pins P13 to P10 and in ports A and B become port outputs when the corresponding DDR bits are set to 1.

Port C always has an address (A7 to A0) output function.

The initial bus mode after a reset is 16 bits, with 16-bit access to all areas. However, note that if 8-bit access is designated by the bus controller for all areas, the bus mode switches to 8 bits.

3.3.2 Mode 5

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled.

Pins P13 to P10, and ports A, B, and C function as an address bus, ports D and E function as a data bus, and part of port F carries bus control signals.

Pins P13 to P11 function as input ports immediately after a reset. Address (A23 to A21) output can be enabled or disabled by bits AE3 to AE0 in the pin function control register (PFCR) regardless of the corresponding data direction register (DDR) values. Pin 10 and ports A and B function as address (A20 to A8) outputs immediately after a reset. Address output can be enabled or disabled by bits AE3 to AE0 in PFCR regardless of the corresponding DDR values. Pins for which address output is disabled among pins P13 to P10 and in ports A and B become port outputs when the corresponding DDR bits are set to 1.

Port C always has an address (A7 to A0) output function.

The initial bus mode after a reset is 8 bits, with 8-bit access to all areas. However, note that if 16-bit access is designated by the bus controller for any area, the bus mode switches to 16 bits and port E becomes a data bus.

3.3.3 Mode 6

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled.

Pins P13 to P10, and ports A and B function as input ports immediately after a reset. Address (A23 to A8) output can be enabled or disabled by bits AE3 to AE0 in the pin function control register (PFCR) regardless of the corresponding data direction register (DDR) values. Pins for which address output is disabled among pins P13 to P10 and in ports A and B become port outputs when the corresponding DDR bits are set to 1.

Ports D and E function as a data bus, and part of port F carries data bus signals.

Port C is an input port immediately after a reset. Addresses A7 to A0 are output by setting the corresponding DDR bits to 1.

The initial bus mode after a reset is 8 bits, with 8-bit access to all areas. However, note that if 16-bit access is designated by the bus controller for any area, the bus mode switches to 16 bits and port E becomes a data bus.

3.3.4 Mode 7

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled, but external addresses cannot be accessed.

All I/O ports are available for use as input-output ports.

3.4 Pin Functions in Each Operating Mode

The pin functions of ports 1, and A to F vary depending on the operating mode. Table 3-4 shows their functions in each operating mode.

Table 3-4 Pin Functions in Each Operating Mode

Port		Mode 4	Mode 5	Mode 6	Mode 7
Port 1	P13 to P11	P*/A	P*/A	P*/A	Р
	P10	P/A*	P/A*	P*/A	Р
Port A	PA3 to PA0	P/A*	P/A*	P*/A	Р
Port B		P/A*	P/A*	P*/A	Р
Port C		A	Α	P*/A	Р
Port D		D	D	D	Р
Port E		P/D*	P*/D	P*/D	Р
Port F	PF7	P/C*	P/C*	P/C*	P*/C
	PF6 to PF4	С	С	С	Р
	PF3	P/C*	P*/C	P*/C	
	PF2 to PF0	P*/C	P*/C	P*/C	

Legend

P: I/O port

A: Address bus output

D: Data bus I/O

C: Control signals, clock I/O

*: After reset

3.5 Memory Map in Each Operating Mode

Figures 3-1 and 3-2 show the memory map in each operating mode.

The address space is 16 Mbytes in modes 4 to 7 (advanced modes).

The address space is divided into eight areas for modes 4 to 7. For details, see section 7, Bus Controller.

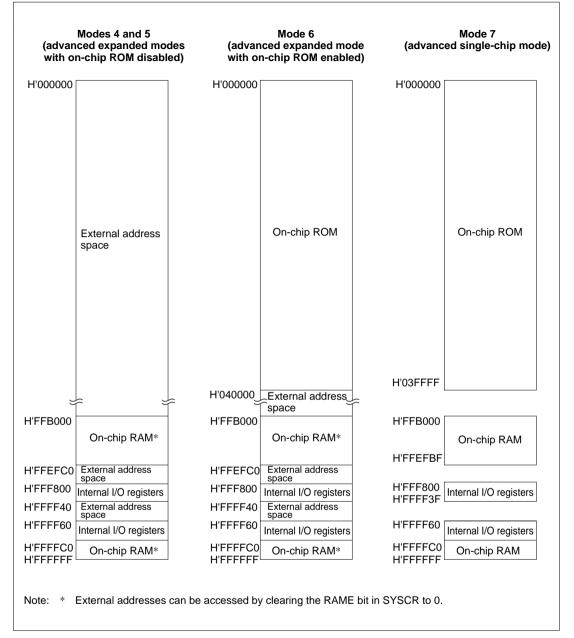


Figure 3-1 Memory Map in Each Operating Mode in the H8S/2238

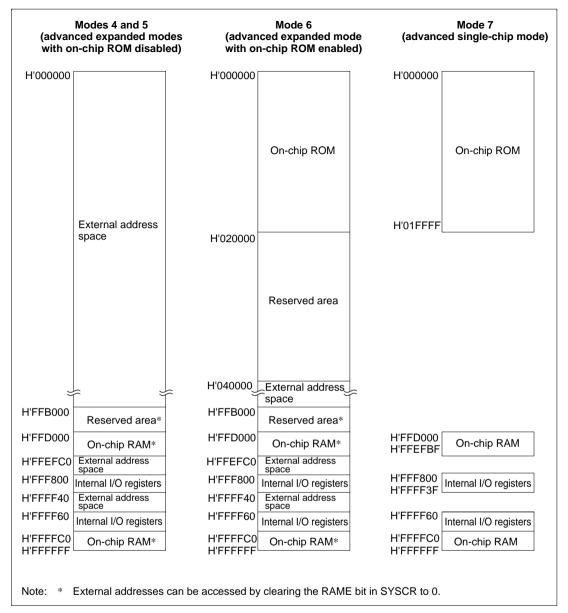


Figure 3-2 Memory Map in Each Operating Mode in the H8S/2236

Section 4 Exception Handling

4.1 Overview

4.1.1 Exception Handling Types and Priority

As table 4-1 indicates, exception handling may be caused by a reset, trace, trap instruction, or interrupt. Exception handling is prioritized as shown in table 4-1. If two or more exceptions occur simultaneously, they are accepted and processed in order of priority. Trap instruction exceptions are accepted at all times, in the program execution state.

Exception handling sources, the stack structure, and the operation of the CPU vary depending on the interrupt control mode set by the INTM0 and INTM1 bits of SYSCR.

Table 4-1 Exception Handling Types and Priority

Priority Exception Handling Type Start of Exception Handling

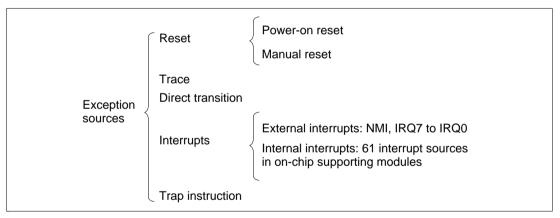
High	Reset	Starts immediately after a low-to-high transition at the \overline{RES} or \overline{MRES} pin, or when the watchdog timer overflows. The CPU enters the power-on reset state when the \overline{RES} pin is low, and the manual reset state when the \overline{MRES} pin is low.		
	Trace*1	Starts when execution of the current instruction or exception handling ends, if the trace (T) bit is set to 1		
	Interrupt	Starts when execution of the current instruction or exception handling ends, if an interrupt request has been issued*2		
Low	Trap instruction (TRAPA)*	Started by execution of a trap instruction (TRAPA)		

Notes: *1 Traces are enabled only in interrupt control mode 2. Trace exception handling is not executed after execution of an RTE instruction.

- *2 Interrupt detection is not performed on completion of ANDC, ORC, XORC, or LDC instruction execution, or on completion of reset exception handling.
- *3 Trap instruction exception handling requests are accepted at all times in program execution state.

4.1.2 Exception Handling Operation

Exceptions originate from various sources. Trap instructions and interrupts are handled as follows:


- 1. The program counter (PC), condition code register (CCR), and extended register (EXR) are pushed onto the stack.
- 2. The interrupt mask bits are updated. The T bit is cleared to 0.
- 3. A vector address corresponding to the exception source is generated, and program execution starts from that address.

For a reset exception, steps 2 and 3 above are carried out.

4.1.3 Exception Sources and Vector Table

The exception sources are classified as shown in figure 4-1. Different vector addresses are assigned to different exception sources.

Table 4-2 lists the exception sources and their vector addresses.

Figure 4-1 Exception Sources

Table 4-2 Exception Vector Table

			Vector Address*1	
Exception Source		Vector Number	Advanced Mode	
Power-on reset		0	H'0000 to H'0003	
Manual reset		1	H'0004 to H'0007	
Reserved for system	Reserved for system use		H'0008 to H'000B	
		3	H'000C to H'000F	
		4	H'0010 to H'0013	
Trace		5	H'0014 to H'0017	
Direct transition*3		6	H'0018 to H'001B	
External interrupt NMI		7	H'001C to H'001F	
Trap instruction (4 sources)		8	H'0020 to H'0023	
		9	H'0024 to H'0027	
		10	H'0028 to H'002B	
		11	H'002C to H'002F	
Reserved for system	use	12	H'0030 to H'0033	
		13	H'0034 to H'0037	
		14	H'0038 to H'003B	
		15	H'003C to H'003F	
External interrupt	IRQ0	16	H'0040 to H'0043	
	IRQ1	17	H'0044 to H'0047	
	IRQ2	18	H'0048 to H'004B	
	IRQ3	19	H'004C to H'004F	
	IRQ4	20	H'0050 to H'0053	
	IRQ5	21	H'0054 to H'0057	
	IRQ6	22	H'0058 to H'005B	
	IRQ7	23	H'005C to H'005F	
Internal interrupt*2	Internal interrupt*2		H'0060 to H'0063	
		123	H'01EC to H'01EF	

Notes: *1 Lower 16 bits of the address.

^{*2} For details of internal interrupt vectors, see section 5.3.3, Interrupt Exception Handling Vector Table.

^{*3} For details of direct transition, see section 21.11, Direct Transition.

4.2 Reset

4.2.1 Overview

A reset has the highest exception priority.

When the \overline{RES} or \overline{MRES} pin goes low, all processing halts and the H8S/2238 Series enters the reset state. A reset initializes the internal state of the CPU and the registers of on-chip supporting modules. Immediately after a reset, interrupt control mode 0 is set.

Reset exception handling begins when the \overline{RES} or \overline{MRES} pin changes from low to high.

The levels of the \overline{RES} and \overline{MRES} pins at reset determine whether a power-on reset or a manual reset is effected

The H8S/2238 Series can also be reset by overflow of the watchdog timer. For details see section 12, Watchdog Timer.

4.2.2 Reset Types

A reset can be of either of two types: a power-on reset or a manual reset. Reset types are shown in table 4-3. A power-on reset should be used when powering on.

The internal state of the CPU is initialized by either type of reset. A power-on reset also initializes all the registers in the on-chip supporting modules, while a manual reset initializes all the registers in the on-chip supporting modules except for the bus controller and I/O ports, which retain their previous states.

With a manual reset, since the on-chip supporting modules are initialized, ports used as on-chip supporting module I/O pins are switched to I/O ports controlled by DDR and DR.

Table 4-3 Reset Types

	Reset Transition Conditions		Internal State		
Туре	MRES	RES	CPU	On-Chip Supporting Modules	
Power-on reset	*	Low	Initialized	Initialized	
Manual reset	Low	High	Initialized	Initialized, except for bus controller and I/O ports	

*: Don't care

A reset caused by the watchdog timer can also be of either of two types: a power-on reset or a manual reset.

When the \overline{MRES} pin is used, \overline{MRES} pin input must be enabled by setting the MRESE bit to 1 in SYSCR.

4.2.3 Reset Sequence

The H8S/2238 Series enters the reset state when the \overline{RES} or \overline{MRES} pin goes low.

To ensure that the H8S/2238 Series is reset, hold the \overline{RES} or \overline{MRES} pin low for at least 20 ms at power-up. To reset the H8S/2238 Series during operation, hold the \overline{RES} or \overline{MRES} pin low for at least 20 states.

When the \overline{RES} or \overline{MRES} pin goes high after being held low for the necessary time, the chip starts reset exception handling as follows:

- 1. The internal state of the CPU and the registers of the on-chip supporting modules are initialized, the T bit is cleared to 0 in EXR, and the I bit is set to 1 in EXR and CCR.
- 2. The reset exception handling vector address is read and transferred to the PC, and program execution starts from the address indicated by the PC.

Figures 4-2 and 4-3 show examples of the reset sequence.

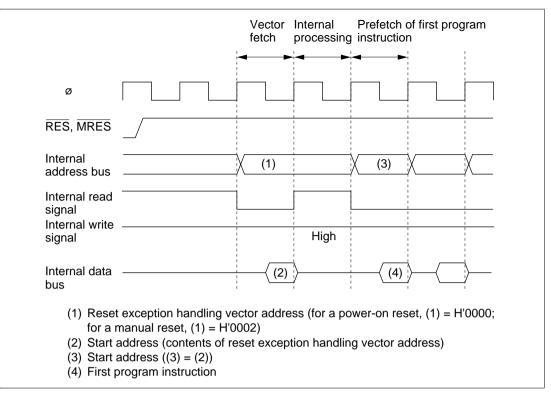


Figure 4-2 Reset Sequence (Modes 2 and 3: Not available in the H8S/2238 Series)

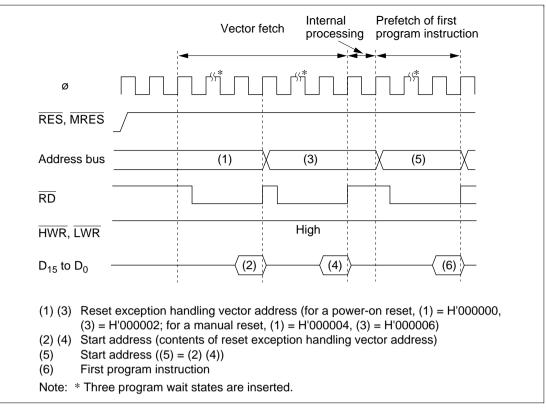


Figure 4-3 Reset Sequence (Mode 4)

4.2.4 Interrupts after Reset

If an interrupt is accepted after a reset but before the stack pointer (SP) is initialized, the PC and CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt requests, including NMI, are disabled immediately after a reset. Since the first instruction of a program is always executed immediately after the reset state ends, make sure that this instruction initializes the stack pointer (example: MOV.L #xx:32, SP).

4.2.5 State of On-Chip Supporting Modules after Reset Release

After reset release, MSTPCRA is initialized to H'3F, MSTPCRB and MSTPCRC are initialized to H'FF, and all modules except the DTC enter module stop mode. Consequently, on-chip supporting module registers cannot be read or written to. Register reading and writing is enabled when module stop mode is exited.

4.3 Traces

Traces are enabled in interrupt control mode 2. Trace mode is not activated in interrupt control mode 0, irrespective of the state of the T bit. For details of interrupt control modes, see section 5, Interrupt Controller.

If the T bit in EXR is set to 1, trace mode is activated. In trace mode, a trace exception occurs on completion of each instruction.

Trace mode is canceled by clearing the T bit in EXR to 0. It is not affected by interrupt masking.

Table 4-4 shows the state of CCR and EXR after execution of trace exception handling.

Interrupts are accepted even within the trace exception handling routine.

The T bit saved on the stack retains its value of 1, and when control is returned from the trace exception handling routine by the RTE instruction, trace mode resumes.

Trace exception handling is not carried out after execution of the RTE instruction.

Table 4-4 Status of CCR and EXR after Trace Exception Handling

	CCR			EXR	
Interrupt Control Mode	I	UI	I2 to I0	T	
0	Trace exception handling cannot be used.				
2	1	<u> </u>		0	

Legend

1: Set to 1

0: Cleared to 0

—: Retains value prior to execution.

4.4 Interrupts

Interrupt exception handling can be requested by nine external sources (NMI, IRQ7 to IRQ0) and 61 internal sources in the on-chip supporting modules. Figure 4-4 classifies the interrupt sources and the number of interrupts of each type.

The on-chip supporting modules that can request interrupts include the watchdog timer (WDT), 16-bit timer-pulse unit (TPU), 8-bit timer, serial communication interface (SCI), I²C bus interface (IIC), data transfer controller (DTC), PC break controller (PBC) and A/D converter. Each interrupt source has a separate vector address.

NMI is the highest-priority interrupt. Interrupts are controlled by the interrupt controller. The interrupt controller has two interrupt control modes and can assign interrupts other than NMI to eight priority/mask levels to enable multiplexed interrupt control.

For details of interrupts, see section 5, Interrupt Controller.

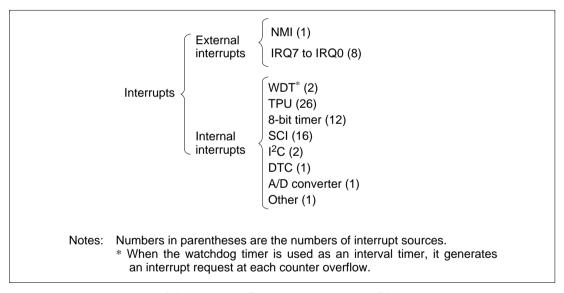


Figure 4-4 Interrupt Sources and Number of Interrupts

4.5 Trap Instruction

Trap instruction exception handling starts when a TRAPA instruction is executed. Trap instruction exception handling can be executed at all times in the program execution state.

The TRAPA instruction fetches a start address from a vector table entry corresponding to a vector number from 0 to 3, as specified in the instruction code.

Table 4-5 shows the status of CCR and EXR after execution of trap instruction exception handling.

Table 4-5 Status of CCR and EXR after Trap Instruction Exception Handling

	CCR		EXR		
Interrupt Control Mode	Ī	UI	l2 to l0	Т	
0	1	_	_	_	
2	1	<u>—</u>		0	

Legend

1: Set to 1

0: Cleared to 0

—: Retains value prior to execution.

4.6 Stack Status after Exception Handling

Figure 4-5 shows the stack after completion of trap instruction exception handling and interrupt exception handling.

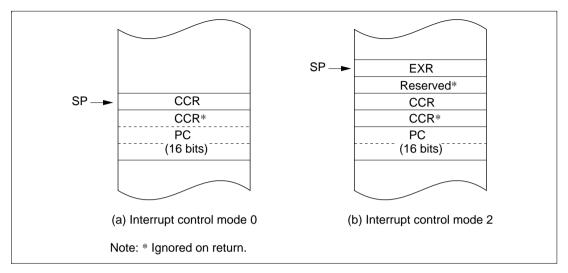


Figure 4-5 (1) Stack Status after Exception Handling (Normal Modes: Not available in the H8S/2238 Series)

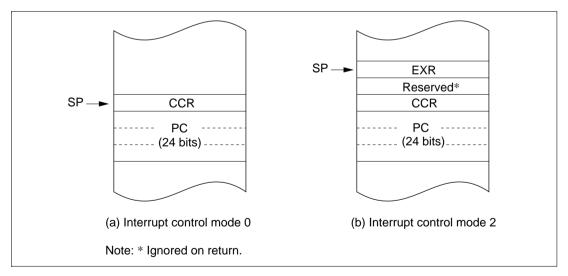


Figure 4-5 (2) Stack Status after Exception Handling (Advanced Modes)

4.7 Notes on Use of the Stack

When accessing word data or longword data, the H8S/2238 Series assumes that the lowest address bit is 0. The stack should always be accessed by word transfer instruction or longword transfer instruction, and the value of the stack pointer (SP: ER7) should always be kept even. Use the following instructions to save registers:

```
PUSH.W Rn (or MOV.W Rn, @-SP)

PUSH.L ERn (or MOV.L ERn, @-SP)
```

Use the following instructions to restore registers:

```
POP.W Rn (or MOV.W @SP+, Rn)
POP.L ERn (or MOV.L @SP+, ERn)
```

Setting SP to an odd value may lead to a malfunction. Figure 4-6 shows an example of what happens when the SP value is odd.

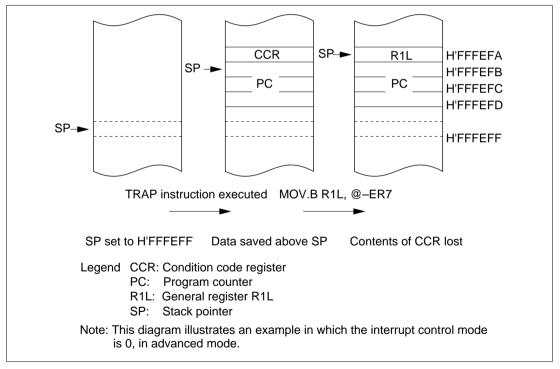


Figure 4-6 Operation when SP Value is Odd

Section 5 Interrupt Controller

5.1 Overview

5.1.1 Features

The H8S/2238 Series controls interrupts by means of an interrupt controller. The interrupt controller has the following features:

- Two interrupt control modes
 - Any of two interrupt control modes can be set by means of the INTM1 and INTM0 bits in the system control register (SYSCR).
- Priorities settable with IPR
 - An interrupt priority register (IPR) is provided for setting interrupt priorities. Eight priority levels can be set for each module for all interrupts except NMI.
 - NMI is assigned the highest priority level of 8, and can be accepted at all times.
- Independent vector addresses
 - All interrupt sources are assigned independent vector addresses, making it unnecessary for the source to be identified in the interrupt handling routine.
- Nine external interrupts
 - NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or falling edge can be selected for NMI.
 - Falling edge, rising edge, or both edge detection, or level sensing, can be selected for IRQ7 to IRQ0.
- DTC control
 - DTC activation is performed by means of interrupts.

5.1.2 Block Diagram

A block diagram of the interrupt controller is shown in figure 5-1.

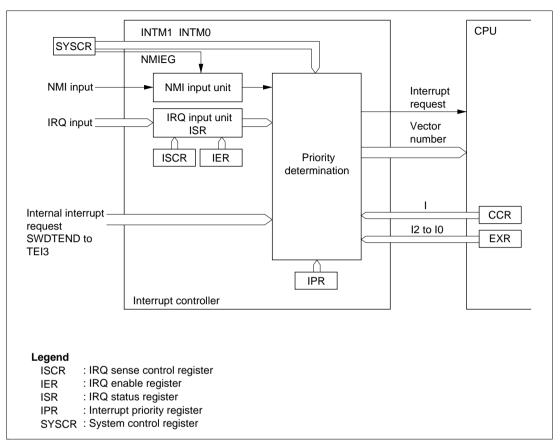


Figure 5-1 Block Diagram of Interrupt Controller

5.1.3 Pin Configuration

Table 5-1 summarizes the pins of the interrupt controller.

Table 5-1 Interrupt Controller Pins

Name	Symbol	I/O	Function
Nonmaskable interrupt	NMI	Input	Nonmaskable external interrupt; rising or falling edge can be selected
External interrupt requests 7 to 0	ĪRQ7 to ĪRQ0	Input	Maskable external interrupts; rising, falling, or both edges, or level sensing, can be selected

5.1.4 Register Configuration

Table 5-2 summarizes the registers of the interrupt controller.

Table 5-2 Interrupt Controller Registers

Name	Abbreviation	R/W	Initial Value	Address*1
System control register	SYSCR	R/W	H'01	H'FDE5
IRQ sense control register H	ISCRH	R/W	H'00	H'FE12
IRQ sense control register L	ISCRL	R/W	H'00	H'FE13
IRQ enable register	IER	R/W	H'00	H'FE14
IRQ status register	ISR	R/(W)*2	H'00	H'FE15
Interrupt priority register A	IPRA	R/W	H'77	H'FEC0
Interrupt priority register B	IPRB	R/W	H'77	H'FEC1
Interrupt priority register C	IPRC	R/W	H'77	H'FEC2
Interrupt priority register D	IPRD	R/W	H'77	H'FEC3
Interrupt priority register E	IPRE	R/W	H'77	H'FEC4
Interrupt priority register F	IPRF	R/W	H'77	H'FEC5
Interrupt priority register G	IPRG	R/W	H'77	H'FEC6
Interrupt priority register H	IPRH	R/W	H'77	H'FEC7
Interrupt priority register I	IPRI	R/W	H'77	H'FEC8
Interrupt priority register J	IPRJ	R/W	H'77	H'FEC9
Interrupt priority register K	IPRK	R/W	H'77	H'FECA
Interrupt priority register L	IPRL	R/W	H'77	H'FECB
Interrupt priority register O	IPRO	R/W	H'77	H'FECE

Notes: *1 Lower 16 bits of the address.

^{*2} Can only be written with 0 for flag clearing.

5.2 Register Descriptions

5.2.1 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	INTM1	INTM0	NMIEG	MRESE	_	RAME
Initial va	lue:	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	R/W	_	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, and the detected edge for NMI.

Only bits 5 to 3 are described here; for details of the other bits, see section 3.2.2, System Control Register (SYSCR).

SYSCR is initialized to H'01 by a power-on reset and in hardware standby mode. In a manual reset, the INTM1, INTM0, NMIEG, and RAME bits are initialized, but the MRESE bit is not. SYSCR is not initialized in software standby mode.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select one of two interrupt control modes for the interrupt controller.

Bit 5	Bit 4	Interrupt	
INTM1	INTM0	Control Mode	Description
0	0	0	Interrupts are controlled by I bit (Initial value)
	1	_	Setting prohibited
1	0	2	Interrupts are controlled by bits I2 to I0, and IPR
	1		Setting prohibited

Bit 3—NMI Edge Select (NMIEG): Selects the input edge for the NMI pin.

Bit 3

NMIEG	Description	
0	Interrupt request generated at falling edge of NMI input	(Initial value)
1	Interrupt request generated at rising edge of NMI input	

5.2.2 Interrupt Priority Registers A to L, O (IPRA to IPRL, IPRO)

Bit	:	7	6	5	4	3	2	1	0
		_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0
Initial va	alue:	0	1	1	1	0	1	1	1
R/W	:	_	R/W	R/W	R/W	_	R/W	R/W	R/W

The IPR registers are thirteen 8-bit readable/writable registers that set priorities (levels 7 to 0) for interrupts other than NMI.

The correspondence between IPR settings and interrupt sources is shown in table 5-3.

The IPR registers set a priority (level 7 to 0) for each interrupt source other than NMI.

The IPR registers are initialized to H'77 by a reset and in hardware standby mode.

They are not initialized in software standby mode.

Bits 7 and 3—Reserved: These bits cannot be modified and are always read as 0.

Table 5-3 Correspondence between Interrupt Sources and IPR Settings

		Bits
Register	6 to 4	2 to 0
IPRA	IRQ0	IRQ1
IPRB	IRQ2 IRQ3	IRQ4 IRQ5
IPRC	IRQ6 IRQ7	DTC
IPRD	Watchdog timer 0	*
IPRE	PC break	A/D converter, watchdog timer 1
IPRF	TPU channel 0	TPU channel 1
IPRG	TPU channel 2	TPU channel 3
IPRH	TPU channel 4	TPU channel 5
IPRI	8-bit timer channel 0	8-bit timer channel 1
IPRJ	*	SCI channel 0
IPRK	SCI channel 1	SCI channel 2
IPRL	8-bit timer channel 2, 3	IIC (option)
IPRO	SCI channel 3	*

Note: * Reserved bits. These bits cannot be modified and are always read as 1.

As shown in table 5-3, multiple interrupts are assigned to one IPR. Setting a value in the range from H'0 to H'7 in the 3-bit groups of bits 6 to 4 and 2 to 0 sets the priority of the corresponding interrupt. The lowest priority level, level 0, is assigned by setting H'0, and the highest priority level, level 7, by setting H'7.

When interrupt requests are generated, the highest-priority interrupt according to the priority levels set in the IPR registers is selected. This interrupt level is then compared with the interrupt mask level set by the interrupt mask bits (I2 to I0) in the extend register (EXR) in the CPU, and if the priority level of the interrupt is higher than the set mask level, an interrupt request is issued to the CPU.

5.2.3 IRQ Enable Register (IER)

Bit	:	7	6	5	4	3	2	1	0
		IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E
Initial va	lue:	0	0	0	0	0	0	0	0
R/W	:	R/W							

IER is an 8-bit readable/writable register that controls enabling and disabling of interrupt requests IRQ7 to IRQ0.

IER is initialized to H'00 by a reset and in hardware standby mode.

It is not initialized in software standby mode.

Bits 7 to 0—IRQ7 to IRQ0 Enable (IRQ7E to IRQ0E): These bits select whether IRQ7 to IRQ0 are enabled or disabled.

Bit n

IRQnE		
0	IRQn interrupts disabled	(Initial value)
1	IRQn interrupts enabled	

(n = 7 to 0)

5.2.4 IRQ Sense Control Registers H and L (ISCRH, ISCRL)

ISCRH

Bit :	15	14	13	12	11	10	9	8
	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA
Initial value:	0	0	0	0	0	0	0	0
R/W :	R/W							
ISCRL								
Bit :	7	6	5	4	3	2	1	0
	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA
Initial value:	0	0	0	0	0	0	0	0
R/W :	R/W							

The ISCR registers are 16-bit readable/writable registers that select rising edge, falling edge, or both edge detection, or level sensing, for the input at pins $\overline{IRQ7}$ to $\overline{IRQ0}$.

The ISCR registers are initialized to H'0000 by a reset and in hardware standby mode.

They are not initialized in software standby mode.

Bits 15 to 0—IRQ7 Sense Control A and B (IRQ7SCA, IRQ7SCB) to IRQ0 Sense Control A and B (IRQ0SCA, IRQ0SCB)

Bits 15 to 0

IRQ7SCB to IRQ0SCB	IRQ7SCA to IRQ0SCA	Description
0	0	Interrupt request generated at IRQ7 to IRQ0 input low level (initial value)
	1	Interrupt request generated at falling edge of IRQ7 to IRQ0 input
1	0	Interrupt request generated at rising edge of IRQ7 to IRQ0 input
	1	Interrupt request generated at both falling and rising edges of IRQ7 to IRQ0 input

5.2.5 IRQ Status Register (ISR)

Bit	:	7	6	5	4	3	2	1	0
		IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
Initial value:		0	0	0	0	0	0	0	0
R/W	:	R/(W)*							

Note: * Only 0 can be written, to clear the flag.

ISR is an 8-bit readable/writable register that indicates the status of IRQ7 to IRQ0 interrupt requests.

ISR is initialized to H'00 by a reset and in hardware standby mode.

It is not initialized in software standby mode.

Bits 7 to 0—IRQ7 to IRQ0 flags (IRQ7F to IRQ0F): These bits indicate the status of IRQ7 to IRQ0 interrupt requests.

Bit n

IRQnF							
0	[Clearing conditions]	(Initial value)					
	• Cleared by reading IRQnF flag when IRQnF = 1, then writing 0 to IRQn	nF flag					
	 When interrupt exception handling is executed when low-level detection (IRQnSCB = IRQnSCA = 0) and IRQn input is high 	on is set					
	 When IRQn interrupt exception handling is executed when falling, risin detection is set (IRQnSCB = 1 or IRQnSCA = 1) 	g, or both-edge					
	 When the DTC is activated by an IRQn interrupt, and the DISEL bit in DTC is cleared to 0 	MRB of the					
1	[Setting conditions]						
	 When IRQn input goes low when low-level detection is set (IRQnSCB 0) 	= IRQnSCA =					
	 When a falling edge occurs in IRQn input when falling edge detection in (IRQnSCB = 0, IRQnSCA = 1) 	is set					
	 When a rising edge occurs in IRQn input when rising edge detection is (IRQnSCB = 1, IRQnSCA = 0) 	s set					
	 When a falling or rising edge occurs in IRQn input when both-edge det (IRQnSCB = IRQnSCA = 1) 	tection is set					

(n = 7 to 0)

5.3 Interrupt Sources

Interrupt sources comprise external interrupts (NMI and IRQ7 to IRQ0) and internal interrupts (H8S/2238 Series: 61 sources).

5.3.1 External Interrupts

There are nine external interrupts: NMI and IRQ7 to IRQ0. These interrupts can be used to restore the H8S/2238 Series from software standby mode.

NMI Interrupt: NMI is the highest-priority interrupt, and is always accepted by the CPU regardless of the interrupt control mode or the status of the CPU interrupt mask bits. The NMIEG bit in SYSCR can be used to select whether an interrupt is requested at a rising edge or a falling edge on the NMI pin.

The vector number for NMI interrupt exception handling is 7.

IRQ7 to IRQ0 Interrupts: Interrupts IRQ7 to IRQ0 are requested by an input signal at pins IRQ7 to IRQ0. Interrupts IRQ7 to IRQ0 have the following features:

- Using ISCR, it is possible to select whether an interrupt is generated by a low level, falling edge, rising edge, or both edges, at pins $\overline{IRQ7}$ to $\overline{IRQ0}$.
- Enabling or disabling of interrupt requests IRQ7 to IRQ0 can be selected with IER.
- The interrupt priority level can be set with IPR.
- The status of interrupt requests IRQ7 to IRQ0 is indicated in ISR. ISR flags can be cleared to 0 by software.

A block diagram of interrupts IRQ7 to IRQ0 is shown in figure 5-2.

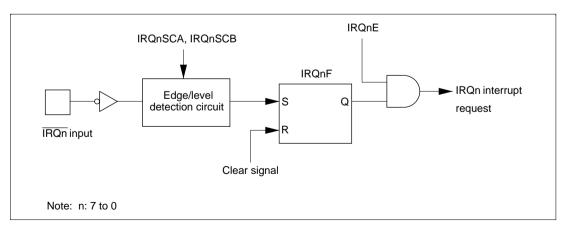


Figure 5-2 Block Diagram of Interrupts IRQ7 to IRQ0

Figure 5-3 shows the timing of setting IRQnF.

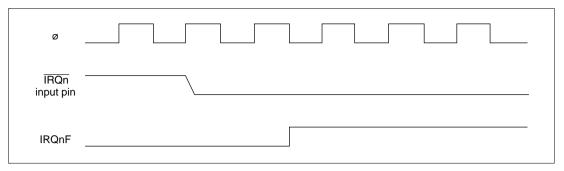


Figure 5-3 Timing of Setting IRQnF

The vector numbers for IRQ7 to IRQ0 interrupt exception handling are 23 to 16.

Detection of IRQ7 to IRQ0 interrupts does not depend on whether the relevant pin has been set for input or output. However, when a pin is used as an external interrupt input pin, do not clear the corresponding DDR to 0 and use the pin as an I/O pin for another function. Since interrupt request flags IRQ7F to IRQ0F are set when the setting condition is satisfied, regardless of the IER setting, only the necessary flags should be referenced.

5.3.2 Internal Interrupts

There are 61 (H8S/2238 Series) sources for internal interrupts from on-chip supporting modules.

- For each on-chip supporting module there are flags that indicate the interrupt request status, and enable bits that select enabling or disabling of these interrupts. If both of these are set to 1 for a particular interrupt source, an interrupt request is issued to the interrupt controller.
- The interrupt priority level can be set by means of IPR.
- The DTC can be activated by a TPU, 8-bit timer, SCI, or other interrupt request. When the
 DTC is activated by an interrupt, the interrupt control mode and interrupt mask bits are not
 affected.

5.3.3 Interrupt Exception Handling Vector Table

Table 5-4 shows interrupt exception handling sources, vector addresses, and interrupt priorities. For default priorities, the lower the vector number, the higher the priority.

Priorities among modules can be set by means of the IPR. The situation when two or more modules are set to the same priority, and priorities within a module, are fixed as shown in table 5-4.

Table 5-4 Interrupt Sources, Vector Addresses, and Interrupt Priorities

	Origin of		Vector Address*		
Interrupt Source	Interrupt Source	Vector Number	Advanced Mode	IPR	Priority
NMI	External	7	H'001C		High
IRQ0	pin	16	H'0040	IPRA6 to 4	_ ↑
IRQ1		17	H'0044	IPRA2 to 0	
IRQ2 IRQ3		18 19	H'0048 H'004C	IPRB6 to 4	
IRQ4 IRQ5		20 21	H'0050 H'0054	IPRB2 to 0	_
IRQ6 IRQ7	_	22 23	H'0058 H'005C	IPRC6 to 4	_
SWDTEND (software activation interrupt end)	DTC	24	H'0060	IPRC2 to 0	_
WOVI0 (interval timer 0)	Watchdog timer 0	25	H'0064	IPRD6 to 4	
PC break	PC break	27	H'006C	IPRE6 to 4	
ADI (A/D conversion end)	A/D	28	H'0070	IPRE2 to 0	_
WOVI1 (interval timer 1)	Watchdog timer 1	29	H'0074		
Reserved	_	30 31	H'0078 H'007C		
TGI0A (TGR0A input capture/compare match)	TPU channel 0	32	H'0080	IPRF6 to 4	
TGI0B (TGR0B input capture/compare match)		33	H'0084		
TGI0C (TGR0C input capture/compare match)		34	H'0088		
TGI0D (TGR0D input capture/compare match)		35	H'008C		
TCI0V (overflow 0)		36	H'0090		_
Reserved	_	37 38	H'0094 H'0098		
		39	H'009C		Low

	Origin of		Vector Address*		
Interrupt Source	Interrupt Source	Vector Number	Advanced Mode	IPR	Priority
TGI1A (TGR1A input capture/compare match)	TPU channel 1	40	H'00A0	IPRF2 to 0	High
TGI1B (TGR1B input capture/compare match)		41	H'00A4		
TCI1V (overflow 1)		42	H'00A8		
TCI1U (underflow 1)		43	H'00AC		_
TGI2A (TGR2A input capture/compare match)	TPU channel 2	44	H'00B0	IPRG6 to 4	
TGI2B (TGR2B input capture/compare match)		45	H'00B4		
TCI2V (overflow 2)		46	H'00B8		
TCI2U (underflow 2)		47	H'00BC		_
TGI3A (TGR3A input capture/compare match)	TPU channel 3	48	H'00C0	IPRG2 to 0	
TGI3B (TGR3B input capture/compare match)		49	H'00C4		
TGI3C (TGR3C input capture/compare match)		50	H'00C8		
TGI3D (TGR3D input capture/compare match)		51	H'00CC		
TCI3V (overflow 3)		52	H'00D0		
Reserved	_	53	H'00D4		
		54	H'00D8		
		55	H'00DC		_
TGI4A (TGR4A input capture/compare match)	TPU channel 4	56	H'00E0	IPRH6 to 4	
TGI4B (TGR4B input capture/compare match)		57	H'00E4		
TCI4V (overflow 4)		58	H'00E8		
TCI4U (underflow 4)		59	H'00EC		_
TGI5A (TGR5A input capture/compare match)	TPU channel 5	60	H'00F0	IPRH2 to 0	
TGI5B (TGR5B input capture/compare match)		61	H'00F4		
TCI5V (overflow 5)		62	H'00F8		
TCI5U (underflow 5)		63	H'00FC		Low

	Origin of		Vector Address*		
Interrupt Source	Interrupt Source	Vector Number	Advanced Mode	IPR	Priority
CMIA0 (compare match A0) CMIB0 (compare match B0) OVI0 (overflow 0)	8-bit timer channel 0	64 65 66	H'0100 H'0104 H'0108	IPRI6 to 4	High
Reserved	_	67	H'010C	· 	
CMIA1 (compare match A1) CMIB1 (compare match B1) OVI1 (overflow 1)	8-bit timer channel 1	68 69 70	H'0110 H'0114 H'0118	IPRI2 to 0	_
Reserved		71	H'011C		_
ERI0 (receive error 0) RXI0 (reception completed 0) TXI0 (transmit data empty 0) TEI0 (transmission end 0)	SCI channel 0	80 81 82 83	H'0140 H'0144 H'0148 H'014C	IPRJ2 to 0	
ERI1 (receive error 1) RXI1 (reception completed 1) TXI1 (transmit data empty 1) TEI1 (transmission end 1)	SCI channel 1	84 85 86 87	H'0150 H'0154 H'0158 H'015C	IPRK6 to 4	-
ERI2 (receive error 2) RXI2 (reception completed 2) TXI2 (transmit data empty 2) TEI2 (transmission end 2)	SCI channel 2	88 89 90 91	H'0160 H'0164 H'0168 H'016C	IPRK2 to 0	_
CMIA2 (compare match A2) CMIB2 (compare match B2) OVI2 (overflow 2)	8-bit timer channel 2	92 93 94	H'0170 H'0174 H'0178	IPRL6 to 4	_
Reserved	_	95	H'017C		
CMIA3 (compare match A3) CMIB3 (compare match B3) OVI3 (overflow 3)	8-bit timer channel 3	96 97 98	H'0180 H'0184 H'0188		
Reserved		99	H'018C		
IICI0 (1-byte transmission/ reception completed)	IIC channel 0 [option]	100	H'0190	IPRL2 to 0	_
Reserved		101	H'0194	_	
IICI1 (1-byte transmission/ reception completed) Reserved	IIC channel 1 [option]	102 103	H'0198 H'019C		
-	001			IDDO0 to 4	-
ERI3 (receive error 3) RXI3 (reception completed 3) TXI3 (transmit data empty 3) TEI3 (transmission end 3)	SCI channel 3	120 121 122 123	H'01E0 H'01E4 H'01E8 H'01EC	IPRO6 to 4	Low

Note: * Lower 16 bits of the start address.

5.4 Interrupt Operation

5.4.1 Interrupt Control Modes and Interrupt Operation

Interrupt operations in the H8S/2238 Series differ depending on the interrupt control mode.

NMI interrupts are accepted at all times except in the reset state and the hardware standby state. In the case of IRQ interrupts and on-chip supporting module interrupts, an enable bit is provided for each interrupt. Clearing an enable bit to 0 disables the corresponding interrupt request. Interrupt sources for which the enable bits are set to 1 are controlled by the interrupt controller.

Table 5-5 shows the interrupt control modes.

The interrupt controller performs interrupt control according to the interrupt control mode set by the INTM1 and INTM0 bits in SYSCR, the priorities set in IPR, and the masking state indicated by the I and UI bits in the CPU's CCR, and bits I2 to I0 in EXR.

Table 5-5 Interrupt Control Modes

Interrupt	SYSCR		Priority Setting	Interrupt	
Control Mode	INTM1	INTM0	Registers	Mask Bits	Description
0	0	0	_	I	Interrupt mask control is performed by the I bit.
_	_	1	_	_	Setting prohibited
2	1	0	IPR	I2 to I0	8-level interrupt mask control is performed by bits I2 to I0. 8 priority levels can be set with IPR.
_		1		_	Setting prohibited

Figure 5-4 shows a block diagram of the priority decision circuit.

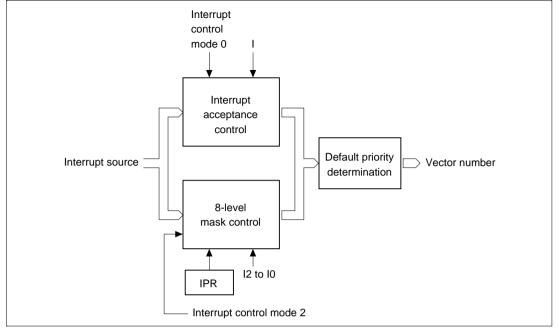


Figure 5-4 Block Diagram of Interrupt Control Operation

(1) Interrupt Acceptance Control

In interrupt control mode 0, interrupt acceptance is controlled by the I bit in CCR.

Table 5-6 shows the interrupts selected in each interrupt control mode.

Table 5-6 Interrupts Selected in Each Interrupt Control Mode (1)

	Interrupt Mask Bits	
Interrupt Control Mode	Ī	Selected Interrupts
0	0	All interrupts
	1	NMI interrupts
2	*	All interrupts

*: Don't care

(2) 8-Level Control

In interrupt control mode 2, 8-level mask level determination is performed for the selected interrupts in interrupt acceptance control according to the interrupt priority level (IPR).

The interrupt source selected is the interrupt with the highest priority level, and whose priority level set in IPR is higher than the mask level.

Table 5-7 Interrupts Selected in Each Interrupt Control Mode (2)

Interrupt Control Mode	Selected Interrupts
0	All interrupts
2	Highest-priority-level (IPR) interrupt whose priority level is greater than the mask level (IPR > I2 to I0).

(3) Default Priority Determination

When an interrupt is selected by 8-level control, its priority is determined and a vector number is generated.

If the same value is set for IPR, acceptance of multiple interrupts is enabled, and so only the interrupt source with the highest priority according to the preset default priorities is selected and has a vector number generated.

Interrupt sources with a lower priority than the accepted interrupt source are held pending.

Table 5-8 shows operations and control signal functions in each interrupt control mode.

Table 5-8 Operations and Control Signal Functions in Each Interrupt Control Mode

Interrupt Control	Setting		Interrupt Acceptance Control		8	-Level Co	ontrol	Default _Priority	т
Mode	INTM1	INTM0		1		12 to 10	IPR	Determination	(Trace)
0	0	0	0	IM	Χ	_	<u>_*</u> 2	0	_
2	1	0	X	<u></u> *1	0	IM	PR	0	T

Legend

: Interrupt operation control performedX : No operation. (All interrupts enabled)

IM: Used as interrupt mask bit

PR: Sets priority.

—: Not used.

Notes: *1 Set to 1 when interrupt is accepted.

*2 Keep the initial setting.

5.4.2 Interrupt Control Mode 0

Enabling and disabling of IRQ interrupts and on-chip supporting module interrupts can be set by means of the I bit in the CPU's CCR. Interrupts are enabled when the I bit is cleared to 0, and disabled when set to 1.

Figure 5-5 shows a flowchart of the interrupt acceptance operation in this case.

- [1] If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- [2] The I bit is then referenced. If the I bit is cleared to 0, the interrupt request is accepted. If the I bit is set to 1, only an NMI interrupt is accepted, and other interrupt requests are held pending.
- [3] Interrupt requests are sent to the interrupt controller, the highest-ranked interrupt according to the priority system is accepted, and other interrupt requests are held pending.
- [4] When an interrupt request is accepted, interrupt exception handling starts after execution of the current instruction has been completed.
- [5] The PC and CCR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- [6] Next, the I bit in CCR is set to 1. This masks all interrupts except NMI.
- [7] A vector address is generated for the accepted interrupt, and execution of the interrupt handling routine starts at the address indicated by the contents of that vector address.

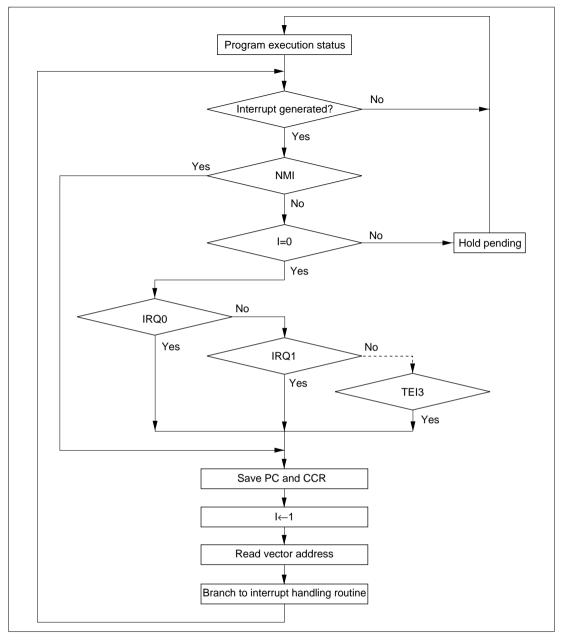


Figure 5-5 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 0

5.4.3 Interrupt Control Mode 2

Eight-level masking is implemented for IRQ interrupts and on-chip supporting module interrupts by comparing the interrupt mask level set by bits I2 to I0 of EXR in the CPU with IPR.

Figure 5-6 shows a flowchart of the interrupt acceptance operation in this case.

- [1] If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, an interrupt request is sent to the interrupt controller.
- [2] When interrupt requests are sent to the interrupt controller, the interrupt with the highest priority according to the interrupt priority levels set in IPR is selected, and lower-priority interrupt requests are held pending. If a number of interrupt requests with the same priority are generated at the same time, the interrupt request with the highest priority according to the priority system shown in table 5-4 is selected.
- [3] Next, the priority of the selected interrupt request is compared with the interrupt mask level set in EXR. An interrupt request with a priority no higher than the mask level set at that time is held pending, and only an interrupt request with a priority higher than the interrupt mask level is accepted.
- [4] When an interrupt request is accepted, interrupt exception handling starts after execution of the current instruction has been completed.
- [5] The PC, CCR, and EXR are saved to the stack area by interrupt exception handling. The PC saved on the stack shows the address of the first instruction to be executed after returning from the interrupt handling routine.
- [6] The T bit in EXR is cleared to 0. The interrupt mask level is rewritten with the priority level of the accepted interrupt.
 - If the accepted interrupt is NMI, the interrupt mask level is set to H'7.
- [7] A vector address is generated for the accepted interrupt, and execution of the interrupt handling routine starts at the address indicated by the contents of that vector address.

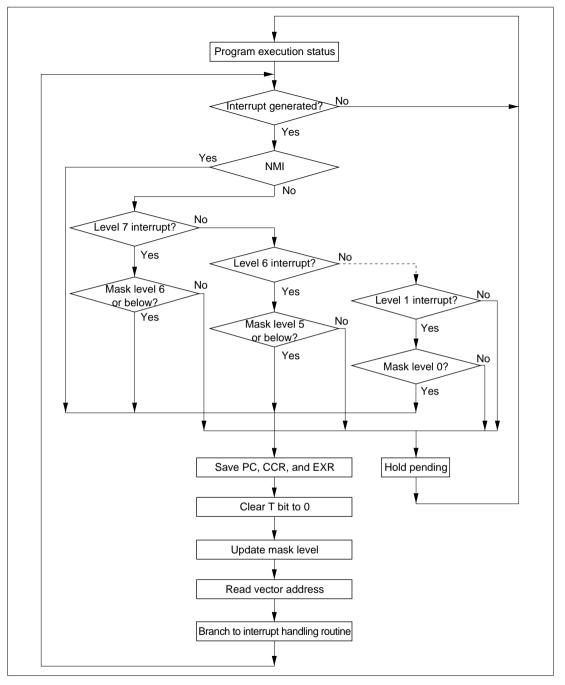


Figure 5-6 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 2

5.4.4 Interrupt Exception Handling Sequence

Figure 5-7 shows the interrupt exception handling sequence. The example shown is for the case where interrupt control mode 0 is set in advanced mode, and the program area and stack area are in on-chip memory.

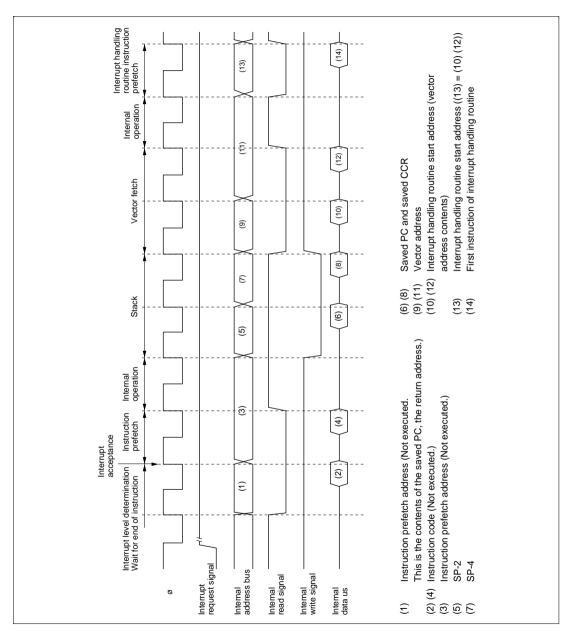


Figure 5-7 Interrupt Exception Handling

5.4.5 Interrupt Response Times

The H8S/2238 Series is capable of fast word transfer instruction to on-chip memory, and the program area is provided in on-chip ROM and the stack area in on-chip RAM, enabling high-speed processing.

Table 5-9 shows interrupt response times - the interval between generation of an interrupt request and execution of the first instruction in the interrupt handling routine. The execution status symbols used in table 5-9 are explained in table 5-10.

Table 5-9 Interrupt Response Times

		Norma	l Mode*⁵	Advanced Mode		
No.	Execution Status	INTM1 = 0	INTM1 = 1	INTM1 = 0	INTM1 = 1	
1	Interrupt priority determination*1	3	3	3	3	
2	Number of wait states until executing instruction ends*2	(1 to 19) +2·S ₁				
3	PC, CCR, EXR stack save	2-S _K	3⋅S _κ	2.S _K	3.S _K	
4	Vector fetch	Sı	Sı	2·S ₁	2·S ₁	
5	Instruction fetch*3	2·S ₁	2·S ₁	2·S ₁	2·S ₁	
6	Internal processing*4	2	2	2	2	
Total	(using on-chip memory)	11 to 31	12 to 32	12 to 32	13 to 33	

Notes: *1 Two states in case of internal interrupt.

Table 5-10 Number of States in Interrupt Handling Routine Execution Statuses

			Object of Access					
	Internal Memory	External Device						
		8 Bit Bus		16 Bit Bu	S			
Symbol		2-State Access	3-State Access	2-State Access	3-State Access			
Instruction fetch	Sı	1	4	6+2m	2	3+m		
Branch address read	S _J							
Stack manipulation	S_{κ}							

m: Number of wait states in an external device access.

^{*2} Refers to MULXS and DIVXS instructions.

^{*3} Prefetch after interrupt acceptance and interrupt handling routine prefetch.

^{*4} Internal processing after interrupt acceptance and internal processing after vector fetch.

^{*5} Not available in the H8S/2238 Series.

5.5 Usage Notes

5.5.1 Contention between Interrupt Generation and Disabling

When an interrupt enable bit is cleared to 0 to disable interrupts, the disabling becomes effective after execution of the instruction.

In other words, when an interrupt enable bit is cleared to 0 by an instruction such as BCLR or MOV, if an interrupt is generated during execution of the instruction, the interrupt concerned will still be enabled on completion of the instruction, and so interrupt exception handling for that interrupt will be executed on completion of the instruction. However, if there is an interrupt request of higher priority than that interrupt, interrupt exception handling will be executed for the higher-priority interrupt, and the lower-priority interrupt will be ignored.

The same also applies when an interrupt source flag is cleared to 0.

Figure 5-8 shows and example in which the CMIEA bit in 8-bit timer TCR is cleared to 0.

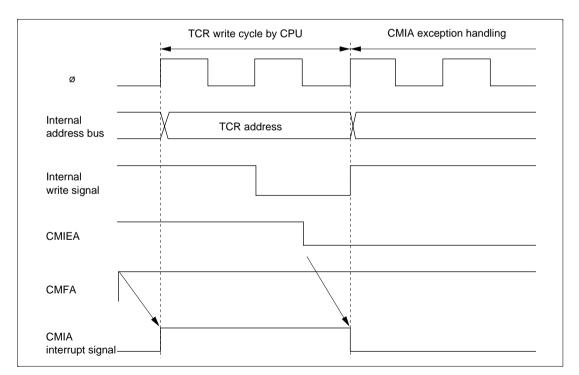


Figure 5-8 Contention between Interrupt Generation and Disabling

The above contention will not occur if an enable bit or interrupt source flag is cleared to 0 while the interrupt is masked.

5.5.2 Instructions that Disable Interrupts

Instructions that disable interrupts are LDC, ANDC, ORC, and XORC. After any of these instructions is executed, all interrupts including NMI are disabled and the next instruction is always executed. When the I bit is set by one of these instructions, the new value becomes valid two states after execution of the instruction ends

5.5.3 Times when Interrupts are Disabled

There are times when interrupt acceptance is disabled by the interrupt controller.

The interrupt controller disables interrupt acceptance for a 3-state period after the CPU has updated the mask level with an LDC, ANDC, ORC, or XORC instruction.

5.5.4 Interrupts during Execution of EEPMOV Instruction

Interrupt operation differs between the EEPMOV.B instruction and the EEPMOV.W instruction.

With the EEPMOV.B instruction, an interrupt request (including NMI) issued during the transfer is not accepted until the move is completed.

With the EEPMOV.W instruction, if an interrupt request is issued during the transfer, interrupt exception handling starts at a break in the transfer cycle. The PC value saved on the stack in this case is the address of the next instruction.

Therefore, if an interrupt is generated during execution of an EEPMOV.W instruction, the following coding should be used.

L1: EEPMOV.W

MOV.W R4,R4

BNE L1

5.6 DTC Activation by Interrupt

5.6.1 Overview

The DTC can be activated by an interrupt. In this case, the following options are available:

- Interrupt request to CPU
- Activation request to DTC
- Selection of a number of the above

For details of interrupt requests that can be used with to activate the DTC, see section 8, Data Transfer Controller.

5.6.2 Block Diagram

Figure 5-9 shows a block diagram of the DTC interrupt controller.

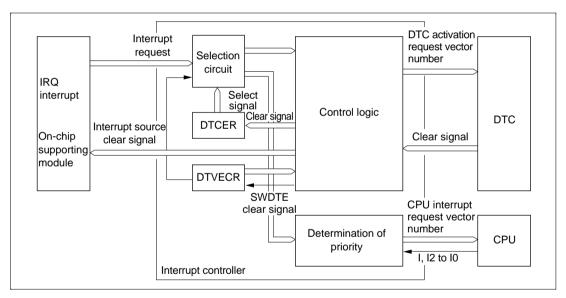


Figure 5-9 Interrupt Control for DTC

5.6.3 Operation

The interrupt controller has three main functions in DTC control.

(1) **Selection of Interrupt Source:** Interrupt sources can be specified as DTC activation requests or CPU interrupt requests by means of the DTCE bit of DTCERA to DTCERF, and DTCERI in the DTC.

After a DTC data transfer, the DTCE bit can be cleared to 0 and an interrupt request sent to the CPU in accordance with the specification of the DISEL bit of MRB in the DTC.

When the DTC has performed the specified number of data transfers and the transfer counter value is zero, the DTCE bit is cleared to 0 and an interrupt request is sent to the CPU after the DTC data transfer.

- (2) **Determination of Priority:** The DTC activation source is selected in accordance with the default priority order, and is not affected by mask or priority levels. See section 8.3.3, DTC Vector Table, for the respective priorities.
- (3) **Operation Order:** If the same interrupt is selected as a DTC activation source and a CPU interrupt source, the DTC data transfer is performed first, followed by CPU interrupt exception handling.

Table 5-11 summarizes interrupt source selection and interrupt source clearance control according to the settings of the DTCE bit of DTCERA to DTCERF and DTCERI in the DTC, and the DISEL bit of MRB in the DTC.

Table 5-11 Interrupt Source Selection and Clearing Control

DTC Interrupt Source Selection/Clearing Control DTCE DISEL DTC CPU 0 * X Δ 1 0 Λ X

 \bigcirc

Δ

Legend

- Δ : The relevant interrupt is used. Interrupt source clearing is performed. (The CPU should clear the source flag in the interrupt handling routine.)
- O: The relevant interrupt is used. The interrupt source is not cleared.
- X: The relevant bit cannot be used.

Settings

1

* : Don't care

(4) Usage Note: SCI and A/D converter interrupt sources are cleared when the DTC reads or writes to the prescribed register, and are not dependent on the DTCE and DISEL bits.	

Section 6 PC Break Controller (PBC)

6.1 Overview

The PC break controller (PBC) provides functions that simplify program debugging. Using these functions, it is easy to create a self-monitoring debugger, enabling programs to be debugged with the chip alone, without using an in-circuit emulator. Four break conditions can be set in the PBC: instruction fetch, data read, data write, and data read/write.

6.1.1 Features

The PC break controller has the following features:

- Two break channels (A and B)
- The following can be set as break compare conditions:
 - 24 address bits
 - Bit masking possible
 - Bus cycle
 - Instruction fetch
 - Data access: data read, data write, data read/write
 - Bus master
 - Either CPU or CPU/DTC can be selected
- The timing of PC break exception handling after the occurrence of a break condition is as follows:
 - Immediately before execution of the instruction fetched at the set address (instruction fetch)
 - Immediately after execution of the instruction that accesses data at the set address (data access)
- Module stop mode can be set
 - The initial setting is for PBC operation to be halted. Register access is enabled by clearing module stop mode.

6.1.2 Block Diagram

Figure 6-1 shows a block diagram of the PC break controller.

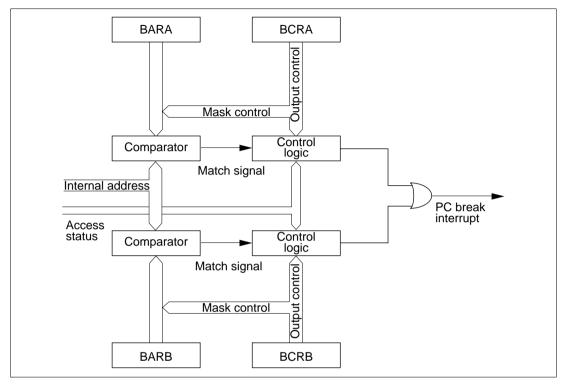
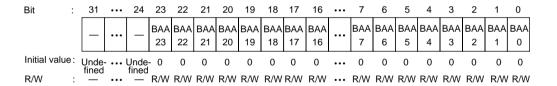


Figure 6-1 Block Diagram of PC Break Controller

6.1.3 Register Configuration

Table 6-1 shows the PC break controller registers.


Table 6-1 PC Break Controller Registers

			Initia		
Name	Abbreviation	R/W	Power-On	Manual	Address*1
Break address register A	BARA	R/W	H'000000	Retained	H'FE00
Break address register B	BARB	R/W	H'000000	Retained	H'FE04
Break control register A	BCRA	R(W)	* ² H'00	Retained	H'FE08
Break control register B	BCRB	R(W)	* ² H'00	Retained	H'FE09
Module stop control register C	MSTPCRC	R/W	H'FF	Retained	H'FDEA

Notes: *1 Lower 16 bits of the address.

6.2 Register Descriptions

6.2.1 Break Address Register A (BARA)

BARA is a 32-bit readable/writable register that specifies the channel A break address.

BAA23 to BAA0 are initialized to H'000000 by a power-on reset and in hardware standby mode.

Bits 31 to 24—Reserved: These bits return an undefined value if read, and cannot be modified.

Bits 23 to 0—Break Address A23 to A0 (BAA23 to BAA0): These bits hold the channel A PC break address.

^{*2} Only 0 can be written, to clear the flag.

6.2.2 Break Address Register B (BARB)

BARB is the channel B break address register. The bit configuration is the same as for BARA.

6.2.3 Break Control Register A (BCRA)

Bit	:	7	6	5	4	3	2	1	0
		CMFA	CDA	BAMRA2	BAMRA1	BAMRA0	CSELA1	CSELA0	BIEA
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Only 0 can be written to bit 7, to clear this flag.

BCRA is an 8-bit readable/writable register that controls channel A PC breaks. BCRA (1) selects the break condition bus master, (2) specifies bits subject to address comparison masking, and (3) specifies whether the break condition is applied to an instruction fetch or a data access. It also contains a condition match flag.

BCRA is initialized to H'00 by a power-on reset and in hardware standby mode.

Bit 7—Condition Match Flag A (CMFA): Set to 1 when a break condition set for channel A is satisfied. This flag is not cleared to 0.

Bit 7

CMFA	 Description	
0	[Clearing condition]	
	When 0 is written to CMFA after reading CMFA = 1*	(Initial value)
1	[Setting condition]	
	When a condition set for channel A is satisfied	

Note: *When CMFA is polled and the PC break interrupt is disabled, CMFA = 1 must be read at least twice.

Bit 6—CPU Cycle/DTC Cycle Select A (CDA): Selects the channel A break condition bus master.

Bit 6

CDA	Description	
0	PC break is performed when CPU is bus master	(Initial value)
1	PC break is performed when CPU or DTC is bus master	

Bits 5 to 3—Break Address Mask Register A2 to A0 (BAMRA2 to BAMRA0): These bits specify which bits of the break address (BAA23 to BAA0) set in BARA are to be masked.

Bit 5	Bit 4	Bit 3	
BAMRA2	BAMRA1	BAMRA0	Description
0	0	0	All BARA bits are unmasked and included in break conditions (Initial value)
		1	BAA0 (lowest bit) is masked, and not included in break conditions
	1	0	BAA1 to 0 (lower 2 bits) are masked, and not included in break conditions
		1	BAA2 to 0 (lower 3 bits) are masked, and not included in break conditions
1	0	0	BAA3 to 0 (lower 4 bits) are masked, and not included in break conditions
		1	BAA7 to 0 (lower 8 bits) are masked, and not included in break conditions
	1	0	BAA11 to 0 (lower 12 bits) are masked, and not included in break conditions
		1	BAA15 to 0 (lower 16 bits) are masked, and not included in break conditions

Bits 2 and 1—Break Condition Select A (CSELA1, CSELA0): These bits selection an instruction fetch, data read, data write, or data read/write cycle as the channel A break condition.

Bit 2	Bit 1		
CSELA1	CSELA0		
0	0	Instruction fetch is used as break condition	(Initial value)
	1	Data read cycle is used as break condition	
1	0	Data write cycle is used as break condition	
	1	Data read/write cycle is used as break condition	

 $\textbf{Bits 0} \color{red}\textbf{--Break Interrupt Enable A (BIEA):} \ Enables \ or \ disables \ channel \ A \ PC \ break \ interrupts.$

Bit 0

BIEA	 Description	
0	PC break interrupts are disabled	(Initial value)
1	PC break interrupts are enabled	

6.2.4 Break Control Register B (BCRB)

BCRB is the channel B break control register. The bit configuration is the same as for BCRA.

6.2.5 Module Stop Control Register C (MSTPCRC)

Bit	:	7	6	5	4	3	2	1	0
		MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRC is an 8-bit readable/writable register that performs module stop mode control.

When the MSTPC4 bit is set to 1, PC break controller operation is stopped at the end of the bus cycle, and module stop mode is entered. Register read/write accesses are not possible in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCRC is initialized to H'FF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 4—Module Stop (MSTPC4): Specifies the PC break controller module stop mode.

Bit 4

MSTPC4	Description	
0	PC break controller module stop mode is cleared	_
1	PC break controller module stop mode is set	(Initial value)

6.3 Operation

The operation flow from break condition setting to PC break interrupt exception handling is shown in sections 6.3.1 and 6.3.2, taking the example of channel A.

6.3.1 PC Break Interrupt Due to Instruction Fetch

(1) Initial settings

- Set the break address in BARA. For a PC break caused by an instruction fetch, set the address of the first instruction byte as the break address.
- Set the break conditions in BCRA.

BCRA bit 6 (CDA): With a PC break caused by an instruction fetch, the bus master must be the CPU. Set 0 to select the CPU.

BCRA bits 5 to 3 (BAMA2 to 0): Set the address bits to be masked.

BCRA bits 2 to 1 (CSELA1 to 0): Set 00 to specify an instruction fetch as the break condition.

BCRA bit 0 (BIEA): Set to 1 to enable break interrupts.

(2) Satisfaction of break condition

— When the instruction at the set address is fetched, a PC break request is generated immediately before execution of the fetched instruction, and the condition match flag (CMFA) is set.

(3) Interrupt handling

— After priority determination by the interrupt controller, PC break interrupt exception handling is started.

6.3.2 PC Break Interrupt Due to Data Access

(1) Initial settings

- Set the break address in BARA. For a PC break caused by a data access, set the target ROM, RAM, I/O, or external address space address as the break address. Stack operations and branch address reads are included in data accesses.
- Set the break conditions in BCRA.

BCRA bit 6 (CDA): Select the bus master.

BCRA bits 5 to 3 (BAMA2 to 0): Set the address bits to be masked.

BCRA bits 2 to 1 (CSELA1 to 0): Set 01, 10, or 11 to specify data access as the break condition.

BCRA bit 0 (BIEA): Set to 1 to enable break interrupts.

- (2) Satisfaction of break condition
 - After execution of the instruction that performs a data access on the set address, a PC break request is generated and the condition match flag (CMFA) is set.
- (3) Interrupt handling
 - After priority determination by the interrupt controller, PC break interrupt exception handling is started.

6.3.3 Notes on PC Break Interrupt Handling

- (1) The PC break interrupt is shared by channels A and B. The channel from which the request was issued must be determined by the interrupt handler.
- (2) The CMFA and CMFB flags are not cleared to 0, so 0 must be written to CMFA or CMFB after first reading the flag while it is set to 1. If the flag is left set to 1, another interrupt will be requested after interrupt handling ends.
- (3) A PC break interrupt generated when the DTC is the bus master is accepted after the bus has been transferred to the CPU by the bus controller.

6.3.4 Operation in Transitions to Power-Down Modes

The operation when a PC break interrupt is set for an instruction fetch at the address after a SLEEP instruction is shown below.

- (1) When the SLEEP instruction causes a transition from high-speed (medium-speed) mode to sleep mode, or from subactive mode to subsleep mode:
 - After execution of the SLEEP instruction, a transition is not made to sleep mode or subsleep mode, and PC break interrupt handling is executed. After execution of PC break interrupt handling, the instruction at the address after the SLEEP instruction is executed (figure 6-2 (A)).
- (2) When the SLEEP instruction causes a transition from high-speed (medium-speed) mode to subactive mode:
 - After execution of the SLEEP instruction, a transition is made to subactive mode via direct transition exception handling. After the transition, PC break interrupt handling is executed, then the instruction at the address after the SLEEP instruction is executed (figure 6-2 (B)).
- (3) When the SLEEP instruction causes a transition from subactive mode to high-speed (medium-speed) mode:

After execution of the SLEEP instruction, and following the clock oscillation stabilization time, a transition is made to high-speed (medium-speed) mode via direct transition exception handling. After the transition, PC break interrupt handling is executed, then the instruction at the address after the SLEEP instruction is executed (figure 6-2 (C)).

(4) When the SLEEP instruction causes a transition to software standby mode or watch mode: After execution of the SLEEP instruction, a transition is made to the respective mode, and PC break interrupt handling is not executed. However, the CMFA or CMFB flag is set (figure 6-2 (D)).

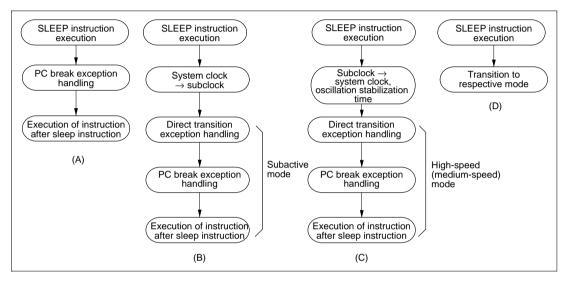


Figure 6-2 Operation in Power-Down Mode Transitions

6.3.5 PC Break Operation in Continuous Data Transfer

If a PC break interrupt is generated when the following operations are being performed, exception handling is executed on completion of the specified transfer.

- (1) When a PC break interrupt is generated at the transfer address of an EEPMOV.B instruction: PC break exception handling is executed after all data transfers have been completed and the EEPMOV.B instruction has ended.
- (2) When a PC break interrupt is generated at a DTC transfer address:
 PC break exception handling is executed after the DTC has completed the specified number of data transfers, or after data for which the DISEL bit is set to 1 has been transferred.

6.3.6 When Instruction Execution is Delayed by One State

Caution is required in the following cases, as instruction execution is one state later than usual.

- (1) When the PBC is enabled (i.e. when the break interrupt enable bit is set to 1), execution of a one-word branch instruction (Bcc d:8, BSR, JSR, JMP, TRAPA, RTE, or RTS) located in on-chip ROM or RAM is always delayed by one state.
- (2) When break interruption by instruction fetch is set, the set address indicates on-chip ROM or RAM space, and that address is used for data access, the instruction that executes the data access is one state later than in normal operation.
- (3) When break interruption by instruction fetch is set and a break interrupt is generated, if the executing instruction immediately preceding the set instruction has one of the addressing modes shown below, and that address indicates on-chip ROM or RAM, the instruction will be one state later than in normal operation.
 - @ERn, @(d:16,ERn), @(d:32,ERn), @-ERn/ERn+, @aa:8, @aa:24, @aa:32, @(d:8,PC), @(d:16,PC), @@aa:8
- (4) When break interruption by instruction fetch is set and a break interrupt is generated, if the executing instruction immediately preceding the set instruction is NOP or SLEEP, or has #xx,Rn as its addressing mode, and that instruction is located in on-chip ROM or RAM, the instruction will be one state later than in normal operation.

6.3.7 Additional Notes

- (1) When a PC break is set for an instruction fetch at the address following a BSR, JSR, JMP, TRAPA, RTE, or RTS instruction:
 - Even if the instruction at the address following a BSR, JSR, JMP, TRAPA, RTE, or RTS instruction is fetched, it is not executed, and so a PC break interrupt is not generated by the instruction fetch at the next address.
- (2) When the I bit is set by an LDC, ANDC, ORC, or XORC instruction, a PC break interrupt becomes valid two states after the end of the executing instruction. If a PC break interrupt is set for the instruction following one of these instructions, since interrupts, including NMI, are disabled for a 3-state period in the case of LDC, ANDC, ORC, and XORC, the next instruction is always executed. For details, see section 5, Interrupt Controller.
- (3) When a PC break is set for an instruction fetch at the address following a Bcc instruction: A PC break interrupt is generated if the instruction at the next address is executed in accordance with the branch condition, but is not generated if the instruction at the next address is not executed.
- (4) When a PC break is set for an instruction fetch at the branch destination address of a Bcc instruction:
 - A PC break interrupt is generated if the instruction at the branch destination is executed in accordance with the branch condition, but is not generated if the instruction at the branch destination is not executed.

Section 7 Bus Controller

7.1 Overview

The H8S/2238 Series has a built-in bus controller (BSC) that manages the external address space divided into eight areas. The bus specifications, such as bus width and number of access states, can be set independently for each area, enabling multiple memories to be connected easily.

The bus controller also has a bus arbitration function, and controls the operation of the internal bus masters: the CPU and data transfer controller (DTC).

7.1.1 Features

The features of the bus controller are listed below.

- Manages external address space in area units
 - Manages the external space as 8 areas of 2-Mbytes
 - Bus specifications can be set independently for each area
 - Burst ROM interface can be set
- Basic bus interface
 - Chip select ($\overline{CS0}$ to $\overline{CS7}$) can be output for areas 0 to 7
 - 8-bit access or 16-bit access can be selected for each area
 - 2-state access or 3-state access can be selected for each area
 - Program wait states can be inserted for each area
- Burst ROM interface
 - Burst ROM interface can be set for area 0
 - Choice of 1- or 2-state burst access
- Idle cycle insertion
 - An idle cycle can be inserted in case of an external read cycle between different areas
 - An idle cycle can be inserted in case of an external write cycle immediately after an external read cycle
- Bus arbitration function
 - Includes a bus arbiter that arbitrates bus mastership among the CPU and DTC
- Other features
 - External bus release function

7.1.2 Block Diagram

Figure 7-1 shows a block diagram of the bus controller.

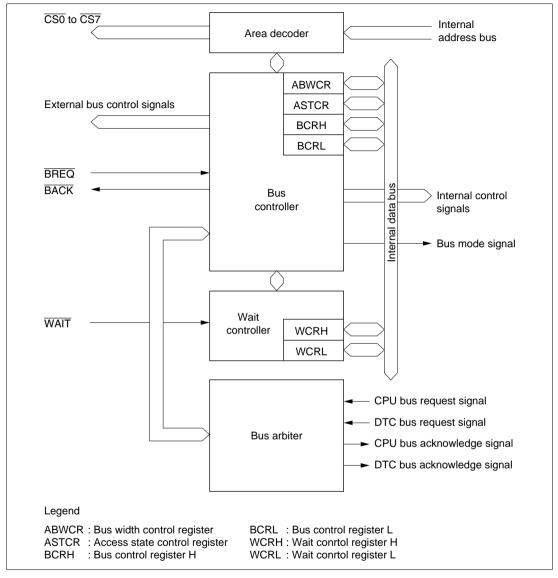


Figure 7-1 Block Diagram of Bus Controller

7.1.3 Pin Configuration

Table 7-1 summarizes the pins of the bus controller.

Table 7-1 Bus Controller Pins

Name	Symbol	I/O	Function
Address strobe	ĀS	Output	Strobe signal indicating that address output on address bus is enabled.
Read	RD	Output	Strobe signal indicating that external space is being read.
High write	HWR	Output	Strobe signal indicating that external space is to be written, and upper half (D15 to D8) of data bus is enabled.
Low write	LWR	Output	Strobe signal indicating that external space is to be written, and lower half (D7 to D0) of data bus is enabled.
Chip select 0 to 7	CS0 to	Output	Strobe signal indicating that areas 0 to 7 are selected.
Wait	WAIT	Input	Wait request signal when accessing external 3-state access space.
Bus request	BREQ	Input	Request signal that releases bus to external device.
Bus request acknowledge	BACK	Output	Acknowledge signal indicating that bus has been released.

7.1.4 Register Configuration

Table 7-2 summarizes the registers of the bus controller.

Table 7-2 Bus Controller Registers

			Initial		
Name	Abbreviation	R/W	Power-On Reset	Manual Reset	- Address* ¹
Bus width control register	ABWCR	R/W	H'FF/H'00*2	Retained	H'FED0
Access state control register	ASTCR	R/W	H'FF	Retained	H'FED1
Wait control register H	WCRH	R/W	H'FF	Retained	H'FED2
Wait control register L	WCRL	R/W	H'FF	Retained	H'FED3
Bus control register H	BCRH	R/W	H'D0	Retained	H'FED4
Bus control register L	BCRL	R/W	H'08	Retained	H'FED5
Pin function control register	PFCR	R/W	H'0D/H'00*3	Retained	H'FDEB

Notes: *1 Lower 16 bits of the address.

^{*2} Determined by the MCU operating mode. Initialized to H'00 in mode 4, and to H'FF in modes 5 to 7.

^{*3} Initialized to H'0D in modes 4 and 5, and to H'00 in modes 6 and 7.

7.2 Register Descriptions

7.2.1 Bus Width Control Register (ABWCR)

Bit :	: _	7	6	5	4	3	2	1	0
		ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0
Modes 5 to 7	7								
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							
Mode 4									
Initial value	:	0	0	0	0	0	0	0	0
	:	R/W							

ABWCR is an 8-bit readable/writable register that designates each area for either 8-bit access or 16-bit access.

ABWCR sets the data bus width for the external memory space. The bus width for on-chip memory and internal I/O registers is fixed regardless of the settings in ABWCR.

After a power-on reset and in hardware standby mode, ABWCR is initialized to H'FF in modes 5, 6, 7, and to H'00 in mode 4. It is not initialized by a manual reset or in software standby mode.

Bits 7 to 0—Area 7 to 0 Bus Width Control (ABW7 to ABW0): These bits select whether the corresponding area is to be designated for 8-bit access or 16-bit access.

Bit n

ABWn	Description
0	Area n is designated for 16-bit access
1	Area n is designated for 8-bit access
	(

(n = 7 to 0)

7.2.2 Access State Control Register (ASTCR)

Bit	:	7	6	5	4	3	2	1	0
		AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0
Initial value:		1	1	1	1	1	1	1	1
R/W	:	R/W							

ASTCR is an 8-bit readable/writable register that designates each area as either a 2-state access space or a 3-state access space.

ASTCR sets the number of access states for the external memory space. The number of access states for on-chip memory and internal I/O registers is fixed regardless of the settings in ASTCR.

ASTCR is initialized to H'FF by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

Bits 7 to 0—Area 7 to 0 Access State Control (AST7 to AST0): These bits select whether the corresponding area is to be designated as a 2-state access space or a 3-state access space.

Wait state insertion is enabled or disabled at the same time.

Bit n

ASTn	Description	
0	Area n is designated for 2-state access Wait state insertion in area n external space is disabled	
1	Area n is designated for 3-state access Wait state insertion in area n external space is enabled	(Initial value)
-		(n 7 to 0)

(n = 7 to 0)

7.2.3 Wait Control Registers H and L (WCRH, WCRL)

WCRH and WCRL are 8-bit readable/writable registers that select the number of program wait states for each area.

Program waits are not inserted in the case of on-chip memory or internal I/O registers.

WCRH and WCRL are initialized to HFF by a power-on reset and in hardware standby mode. They are not initialized by a manual reset or in software standby mode.

(1) WCRH

Bit	:	7	6	5	4	3	2	1	0
		W71	W70	W61	W60	W51	W50	W41	W40
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

Bits 7 and 6—Area 7 Wait Control 1 and 0 (W71, W70): These bits select the number of program wait states when area 7 in external space is accessed while the AST7 bit in ASTCR is set to 1.

Bit 7	Bit 6	
W71	W70	Description
0	0	Program wait not inserted when external space area 7 is accessed
	1	1 program wait state inserted when external space area 7 is accessed
1	0	2 program wait states inserted when external space area 7 is accessed
	1	3 program wait states inserted when external space area 7 is accessed (Initial value)

Bits 5 and 4—Area 6 Wait Control 1 and 0 (W61, W60): These bits select the number of program wait states when area 6 in external space is accessed while the AST6 bit in ASTCR is set to 1.

Bit 5	Bit 4	
W61	W60	Description
0	0	Program wait not inserted when external space area 6 is accessed
	1	1 program wait state inserted when external space area 6 is accessed
1	0	2 program wait states inserted when external space area 6 is accessed
	1	3 program wait states inserted when external space area 6 is accessed (Initial value)

Bits 3 and 2—Area 5 Wait Control 1 and 0 (W51, W50): These bits select the number of program wait states when area 5 in external space is accessed while the AST5 bit in ASTCR is set to 1.

Bit 3	Bit 2	
W51	W50	Description
0	Program wait not inserted when external space area 5 is accessed	
	1	1 program wait state inserted when external space area 5 is accessed
1 0 21		2 program wait states inserted when external space area 5 is accessed
	1	3 program wait states inserted when external space area 5 is accessed (Initial value)

Bits 1 and 0—Area 4 Wait Control 1 and 0 (W41, W40): These bits select the number of program wait states when area 4 in external space is accessed while the AST4 bit in ASTCR is set to 1.

Bit 1	Bit 0	
W41	W40	Description
0	0	Program wait not inserted when external space area 4 is accessed
	1	1 program wait state inserted when external space area 4 is accessed
1	0	2 program wait states inserted when external space area 4 is accessed
	1	3 program wait states inserted when external space area 4 is accessed (Initial value)

(2) WCRL

Bit	:	7	6	5	4	3	2	1	0
		W31	W30	W21	W20	W11	W10	W01	W00
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

Bits 7 and 6—Area 3 Wait Control 1 and 0 (W31, W30): These bits select the number of program wait states when area 3 in external space is accessed while the AST3 bit in ASTCR is set to 1.

Bit 7	Bit 6	
W31	W30	Description
0	0	Program wait not inserted when external space area 3 is accessed
	1	1 program wait state inserted when external space area 3 is accessed
1	0	2 program wait states inserted when external space area 3 is accessed
	1	3 program wait states inserted when external space area 3 is accessed (Initial value)

Bits 5 and 4—Area 2 Wait Control 1 and 0 (W21, W20): These bits select the number of program wait states when area 2 in external space is accessed while the AST2 bit in ASTCR is set to 1.

Bit 5	Bit 4	
W21	W20	Description
0	0	Program wait not inserted when external space area 2 is accessed
	1	1 program wait state inserted when external space area 2 is accessed
1	0	2 program wait states inserted when external space area 2 is accessed
	1	3 program wait states inserted when external space area 2 is accessed (Initial value)

Bits 3 and 2—Area 1 Wait Control 1 and 0 (W11, W10): These bits select the number of program wait states when area 1 in external space is accessed while the AST1 bit in ASTCR is set to 1.

Bit 3	Bit 2	
W11	W10	Description
0	Program wait not inserted when external space area 1 is accessed	
	1	1 program wait state inserted when external space area 1 is accessed
1	0	2 program wait states inserted when external space area 1 is accessed
	1	3 program wait states inserted when external space area 1 is accessed (Initial value)

Bits 1 and 0—Area 0 Wait Control 1 and 0 (W01, W00): These bits select the number of program wait states when area 0 in external space is accessed while the AST0 bit in ASTCR is set to 1.

Bit 1	Bit 0	
W01	W00	Description
0	0	Program wait not inserted when external space area 0 is accessed
	1	1 program wait state inserted when external space area 0 is accessed
1	0	2 program wait states inserted when external space area 0 is accessed
	1	3 program wait states inserted when external space area 0 is accessed (Initial value)

7.2.4 Bus Control Register H (BCRH)

Bit	:	7	6	5	4	3	2	1	0
		ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	_	_	_
Initial value:		1	1	0	1	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

BCRH is an 8-bit readable/writable register that selects enabling or disabling of idle cycle insertion, and the memory interface for area 0.

BCRH is initialized to H'D0 by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

Bit 7—Idle Cycle Insert 1 (ICIS1): Selects whether or not one idle cycle state is to be inserted between bus cycles when successive external read cycles are performed in different areas.

Bit 7

ICIS1	Description
0	Idle cycle not inserted in case of successive external read cycles in different areas
1	Idle cycle inserted in case of successive external read cycles in different areas
	(Initial value)

Bit 6—Idle Cycle Insert 0 (ICIS0): Selects whether or not one idle cycle state is to be inserted between bus cycles when successive external read and external write cycles are performed.

Bit 6

ICIS0	Description
0	Idle cycle not inserted in case of successive external read and external write cycles
1	Idle cycle inserted in case of successive external read and external write cycles (Initial value)

Bit 5—Burst ROM Enable (BRSTRM): Selects whether area 0 is used as a burst ROM interface.

Bit 5

BRSTRM		
0	Area 0 is basic bus interface	(Initial value)
1	Area 0 is burst ROM interface	

Bit 4—Burst Cycle Select 1 (BRSTS1): Selects the number of burst cycles for the burst ROM interface.

Bit 4

BRSTS1	 Description	
0	Burst cycle comprises 1 state	_
1	Burst cycle comprises 2 states	(Initial value)

Bit 3—Burst Cycle Select 0 (BRSTS0): Selects the number of words that can be accessed in a burst ROM interface burst access.

Bit 3

BRSTS0	Description	
0	Max. 4 words in burst access	(Initial value)
1	Max. 8 words in burst access	

Bits 2 to 0—Reserved: Only 0 should be written to these bits.

7.2.5 Bus Control Register L (BCRL)

Bit	:	7	6	5	4	3	2	1	0
		BRLE	_		_	_	_	_	WAITE
Initial va	alue :	0	0	0	0	1	0	0	0
R/W	:	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W

BCRL is an 8-bit readable/writable register that performs selection of the external bus-released state protocol, and enabling or disabling of WAIT pin input.

BCRL is initialized to H'08 by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

Bit 7—Bus Release Enable (BRLE): Enables or disables external bus release.

Bit 7

BRLE	Description
0	External bus release is disabled. $\overline{\text{BREQ}}$ and $\overline{\text{BACK}}$ can be used as I/O ports. (Initial value)
1	External bus release is enabled.

Bit 6—Reserved: Only 0 should be written to this bit.

Bit 5—Reserved: This bit cannot be modified and is always read as 0.

Bit 4—Reserved: Only 0 should be written to this bit.

Bit 3—Reserved: Only 1 should be written to this bit.

Bits 2 and 1—Reserved: Only 0 should be written to these bits.

Bit 0—WAIT Pin Enable (WAITE): Selects enabling or disabling of wait input by the \overline{WAIT} pin.

Bit 0

WAITE	Description	
0	Wait input by $\overline{\text{WAIT}}$ pin disabled. $\overline{\text{WAIT}}$ pin can be used as I/O port.	(Initial value)
1	Wait input by WAIT pin enabled	

7.2.6 Pin Function Control Register (PFCR)

	:	7	6	5	4	3	2	1	0
		_	_	BUZZE	_	AE3	AE2	AE1	AE0
Modes 4 and 5									
Initial value	:	0	0	0	0	1	1	0	1
Modes 6 and 7									
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PFCR is an 8-bit readable/writable register that performs address output control in external expanded mode.

PFCR is initialized to H'0D (modes 4 and 5) or H'00 (modes 6 and 7) by a power-on reset and in hardware standby mode. It retains its previous state in a manual reset and in software standby mode.

Bits 7 and 6—Reserved: Only 0 should be written to these bits.

Bit 5—BUZZ Output Enable (BUZZE): Enables or disables BUZZ output from the PF1 pin. The WDT1 input clock selected with bits PSS and CKS2 to CKS0 is output as the BUZZ signal.

Bit 5

BUZZE	Description	
0	Functions as PF1 I/O pin	(Initial value)
1	Functions as BUZZ output pin	

Bit 4—Reserved: Only 0 should be written to this bit.

Bits 3 to 0—Address Output Enable 3 to 0 (AE3 to AE0): These bits select enabling or disabling of address outputs A8 to A23 in ROMless expanded mode and modes with ROM. When a pin is enabled for address output, the address is output regardless of the corresponding DDR setting. When a pin is disabled for address output, it becomes an output port when the corresponding DDR bit is set to 1.

Bit 3	Bit 2	Bit 1	Bit 0				
AE3 AE2 AE1 AE0		AE0					
0 0		0	0	A8 to A23 output disabled (Initial value*1)			
			1	A8 output enabled; A9 to A23 output disabled			
		1	0	A8, A9 output enabled; A10 to A23 output disabled			
			1	A8 to A10 output enabled; A11 to A23 output disabled			
	1	0	0	A8 to A11 output enabled; A12 to A23 output disabled			
			1	A8 to A12 output enabled; A13 to A23 output disabled			
		1	0	A8 to A13 output enabled; A14 to A23 output disabled			
			1	A8 to A14 output enabled; A15 to A23 output disabled			
1 0		0	0	A8 to A15 output enabled; A16 to A23 output disabled			
			1	A8 to A16 output enabled; A17 to A23 output disabled			
		1	0	A8 to A17 output enabled; A18 to A23 output disabled			
			1	A8 to A18 output enabled; A19 to A23 output disabled			
	1	0	0	A8 to A19 output enabled; A20 to A23 output disabled			
			1	A8 to A20 output enabled; A21 to A23 output disabled (Initial value*2)			
		1	0	A8 to A21 output enabled; A22, A23 output disabled			
			1	A8 to A23 output enabled			

Notes: *1 In expanded mode with ROM, bits AE3 to AE0 are initialized to B'0000.

In expanded mode with ROM, address pins A0 to A7 are made address outputs by setting the corresponding DDR bits to 1.

^{*2} In ROMless expanded mode, bits AE3 to AE0 are initialized to B'1101.

In ROMless expanded mode, address pins A0 to A7 are always made address output.

7.3 Overview of Bus Control

7.3.1 Area Partitioning

In advanced mode, the bus controller partitions the 16 Mbytes address space into eight areas, 0 to 7, in 2-Mbyte units, and performs bus control for external space in area units. In normal mode*, it controls a 64-kbyte address space comprising part of area 0 (not available in the H8S/2238 Series). Figure 7-2 shows an outline of the memory map.

Chip select signals ($\overline{CS0}$ to $\overline{CS7}$) can be output for each area.

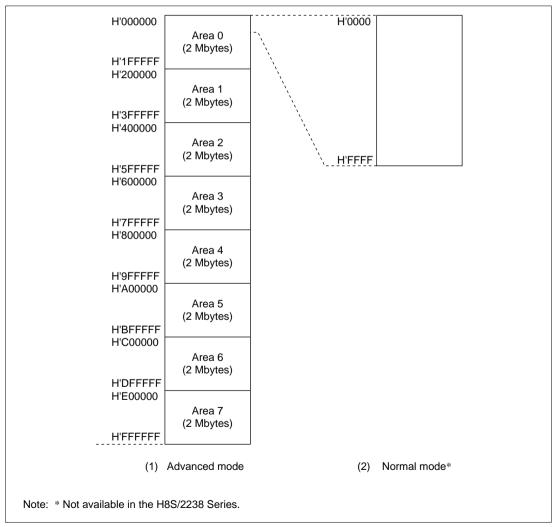


Figure 7-2 Overview of Area Partitioning

7.3.2 Bus Specifications

The external space bus specifications consist of three elements: bus width, number of access states, and number of program wait states.

The bus width and number of access states for on-chip memory and internal I/O registers are fixed, and are not affected by the bus controller.

(1) **Bus Width:** A bus width of 8 or 16 bits can be selected with ABWCR. An area for which an 8-bit bus is selected functions as an 8-bit access space, and an area for which a 16-bit bus is selected functions as a16-bit access space.

If all areas are designated for 8-bit access, 8-bit bus mode is set; if any area is designated for 16-bit access, 16-bit bus mode is set. When the burst ROM interface is designated, 16-bit bus mode is always set.

(2) Number of Access States: Two or three access states can be selected with ASTCR. An area for which 2-state access is selected functions as a 2-state access space, and an area for which 3-state access is selected functions as a 3-state access space.

With the burst ROM interface, the number of access states may be determined without regard to ASTCR.

When 2-state access space is designated, wait insertion is disabled.

(3) Number of Program Wait States: When 3-state access space is designated by ASTCR, the number of program wait states to be inserted automatically is selected with WCRH and WCRL. From 0 to 3 program wait states can be selected.

Table 7-3 shows the bus specifications for each basic bus interface area.

 Table 7-3
 Bus Specifications for Each Area (Basic Bus Interface)

ABWCR	ASTCR	WCRH, WCRL		Bus Specifications (Basic Bus Interface)			
ABWn	ASTn	Wn1	n1 Wn0	Bus Width	Access States	Program Wait States	
0	0	_	_	16	2	0	
	1	0	0		3	0	
			1			1	
		1	0	<u> </u>		2	
			1			3	
1	0		_	8	2	0	
	1	0	0		3	0	
			1			1	
		1	0			2	
			1			3	

7.3.3 Memory Interfaces

The H8S/2238 Series memory interfaces comprise a basic bus interface that allows direct connection of ROM, SRAM, and so on, and a burst ROM interface (for area 0 only) that allows direct connection of burst ROM.

An area for which the basic bus interface is designated functions as normal space, and an area for which the burst ROM interface is designated functions as burst ROM space.

7.3.4 Interface Specifications for Each Area

The initial state of each area is basic bus interface, 3-state access space. The initial bus width is selected according to the operating mode. The bus specifications described here cover basic items only, and the sections on each memory interface (sections 7.4 and 7.5) should be referred to for further details.

Area 0: Area 0 includes on-chip ROM, and in ROM-disabled expansion mode, all of area 0 is external space. In ROM-enabled expansion mode, the space excluding on-chip ROM is external space.

When area 0 external space is accessed, the \overline{CSO} signal can be output.

Either basic bus interface or burst ROM interface can be selected for area 0.

Areas 1 to 6: In external expansion mode, all of areas 1 to 6 is external space.

When area 1 to 6 external space is accessed, the $\overline{CS1}$ to $\overline{CS6}$ pin signals respectively can be output.

Only the basic bus interface can be used for areas 1 to 6.

Area 7: Area 7 includes the on-chip RAM and internal I/O registers. In external expansion mode, the space excluding the on-chip RAM and internal I/O registers is external space. The on-chip RAM is enabled when the RAME bit in the system control register (SYSCR) is set to 1; when the RAME bit is cleared to 0, the on-chip RAM is disabled and the corresponding space becomes external space.

When area 7 external space is accessed, the $\overline{\text{CS7}}$ signal can be output.

Only the basic bus interface can be used for the area 7.

7.3.5 Chip Select Signals

The H8S/2238 Series can output chip select signals ($\overline{CS0}$ to $\overline{CS7}$) to areas 0 to 7, the signal being driven low when the corresponding external space area is accessed.

Figure 7-3 shows an example of \overline{CSn} (n = 0 to 7) output timing.

Enabling or disabling of the \overline{CSn} signal is performed by setting the data direction register (DDR) for the port corresponding to the particular \overline{CSn} pin.

In ROM-disabled expansion mode, the $\overline{CS0}$ pin is placed in the output state after a power-on reset. Pins $\overline{CS1}$ to $\overline{CS7}$ are placed in the input state after a power-on reset, and so the corresponding DDR should be set to 1 when outputting signals $\overline{CS1}$ to $\overline{CS7}$.

In ROM-enabled expansion mode, pins \overline{CSO} to $\overline{CS7}$ are all placed in the input state after a power-on reset, and so the corresponding DDR should be set to 1 when outputting signals \overline{CSO} to $\overline{CS7}$.

For details, see section 9, I/O Ports.

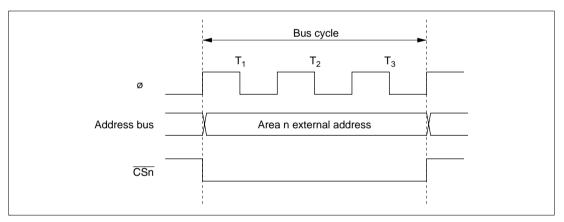


Figure 7-3 \overline{CSn} Signal Output Timing (n = 0 to 7)

7.4 Basic Bus Interface

7.4.1 Overview

The basic bus interface enables direct connection of ROM, SRAM, and so on.

The bus specifications can be selected with ABWCR, ASTCR, WCRH, and WCRL (see table 7-3).

7.4.2 Data Size and Data Alignment

Data sizes for the CPU and other internal bus masters are byte, word, and longword. The bus controller has a data alignment function, and when accessing external space, controls whether the upper data bus (D15 to D8) or lower data bus (D7 to D0) is used according to the bus specifications for the area being accessed (8-bit access space or 16-bit access space) and the data size.

8-Bit Access Space: Figure 7-4 illustrates data alignment control for the 8-bit access space. With the 8-bit access space, the upper data bus (D15 to D8) is always used for accesses. The amount of data that can be accessed at one time is one byte: a word transfer instruction is performed as two byte accesses, and a longword transfer instruction, as four byte accesses.

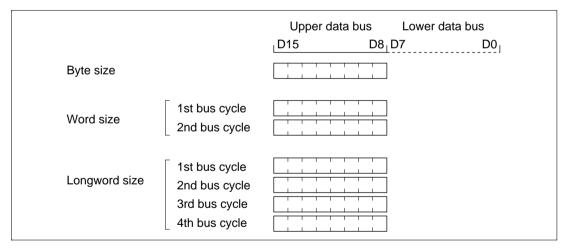


Figure 7-4 Access Sizes and Data Alignment Control (8-Bit Access Space)

16-Bit Access Space: Figure 7-5 illustrates data alignment control for the 16-bit access space. With the 16-bit access space, the upper data bus (D15 to D8) and lower data bus (D7 to D0) are used for accesses. The amount of data that can be accessed at one time is one byte or one word, and a longword transfer instruction is executed as two word transfer instructions.

In byte access, whether the upper or lower data bus is used is determined by whether the address is even or odd. The upper data bus is used for an even address, and the lower data bus for an odd address.

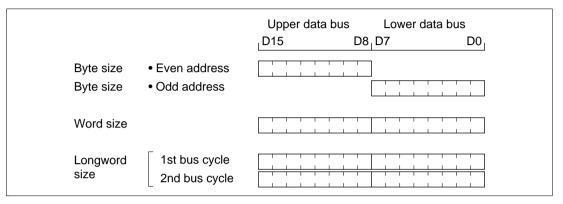


Figure 7-5 Access Sizes and Data Alignment Control (16-Bit Access Space)

7.4.3 Valid Strobes

Table 7-4 shows the data buses used and valid strobes for the access spaces.

In a read, the \overline{RD} signal is valid without discrimination between the upper and lower halves of the data bus.

In a write, the \overline{HWR} signal is valid for the upper half of the data bus, and the \overline{LWR} signal for the lower half.

Table 7-4 Data Buses Used and Valid Strobes

Area	Access Size	Read/ Write	Address	Valid Strobe	Upper Data Bus (D15 to D8)	Lower data bus (D7 to D0)
8-bit access space	Byte	Read	_	RD	Valid	Invalid
		Write		HWR	_	Hi-Z
16-bit access	Byte	Read	Even	RD	Valid	Invalid
space			Odd	_	Invalid	Valid
		Write	Even	HWR	Valid	Hi-Z
			Odd	LWR	Hi-Z	Valid
	Word	Read		RD	Valid	Valid
		Write	_	HWR, LWR	Valid	Valid

Hi-Z: High impedance.

Invalid: Input state; input value is ignored.

7.4.4 Basic Timing

8-Bit 2-State Access Space: Figure 7-6 shows the bus timing for an 8-bit 2-state access space. When an 8-bit access space is accessed, the upper half (D15 to D8) of the data bus is used.

Wait states cannot be inserted.

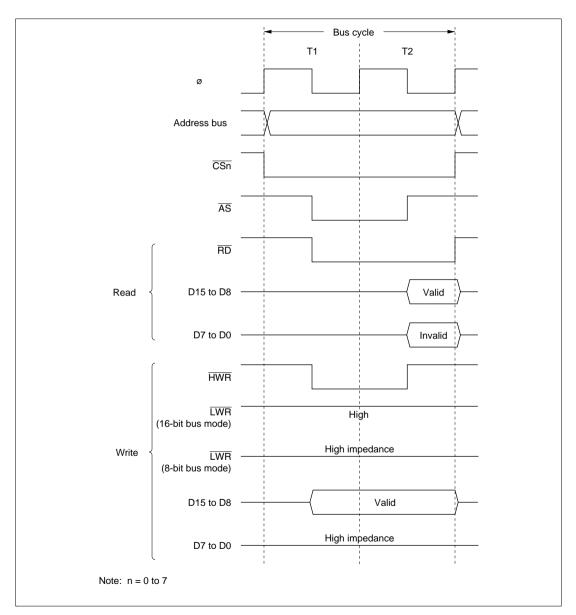


Figure 7-6 Bus Timing for 8-Bit 2-State Access Space

8-Bit 3-State Access Space: Figure 7-7 shows the bus timing for an 8-bit 3-state access space. When an 8-bit access space is accessed, the upper half (D15 to D8) of the data bus is used.

Wait states can be inserted.

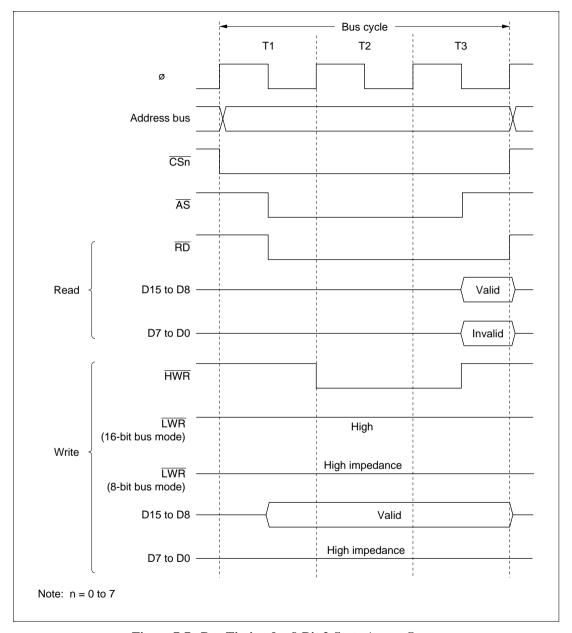


Figure 7-7 Bus Timing for 8-Bit 3-State Access Space

16-Bit 2-State Access Space: Figures 7-8 to 7-10 show bus timings for a 16-bit 2-state access space. When a 16-bit access space is accessed, the upper half (D15 to D8) of the data bus is used for the even address, and the lower half (D7 to D0) for the odd address.

Wait states cannot be inserted.

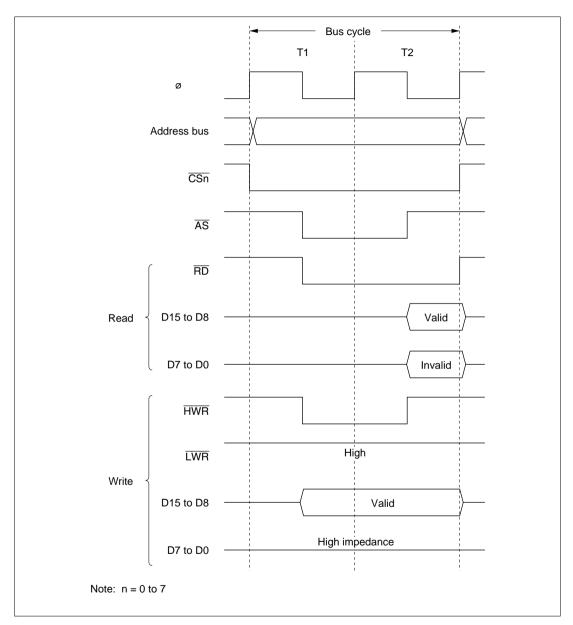


Figure 7-8 Bus Timing for 16-Bit 2-State Access Space (Even Address Byte Access)

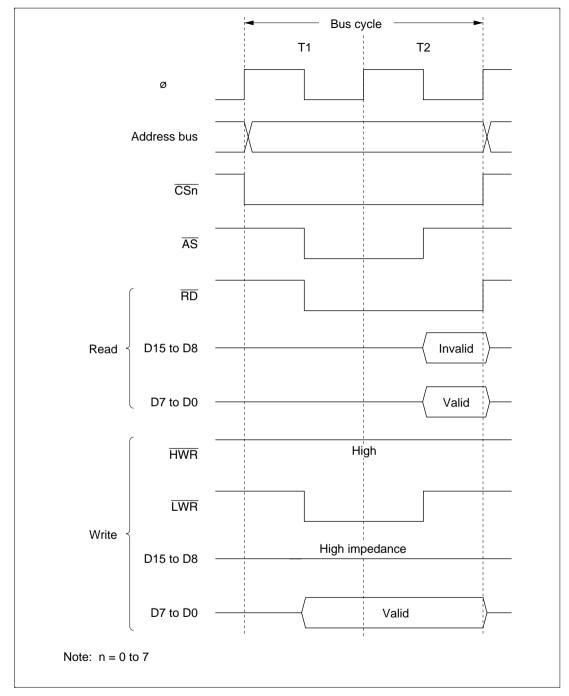


Figure 7-9 Bus Timing for 16-Bit 2-State Access Space (Odd Address Byte Access)

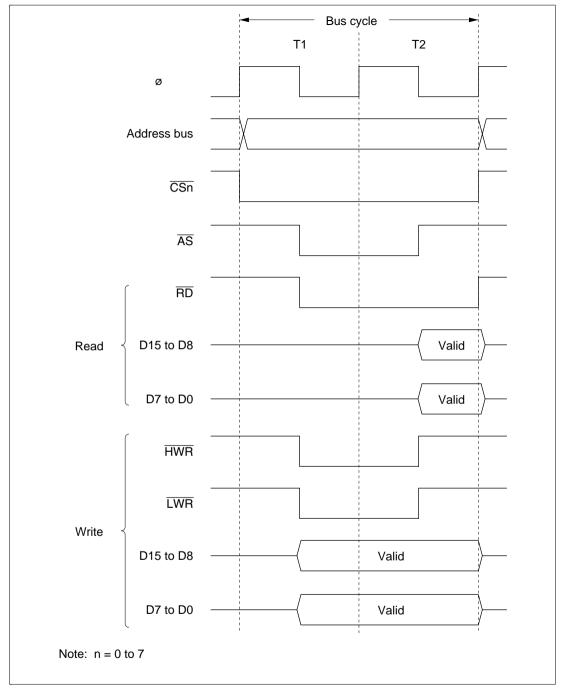


Figure 7-10 Bus Timing for 16-Bit 2-State Access Space (Word Access)

16-Bit 3-State Access Space: Figures 7-11 to 7-13 show bus timings for a 16-bit 3-state access space. When a 16-bit access space is accessed, the upper half (D15 to D8) of the data bus is used for the even address, and the lower half (D7 to D0) for the odd address.

Wait states can be inserted.

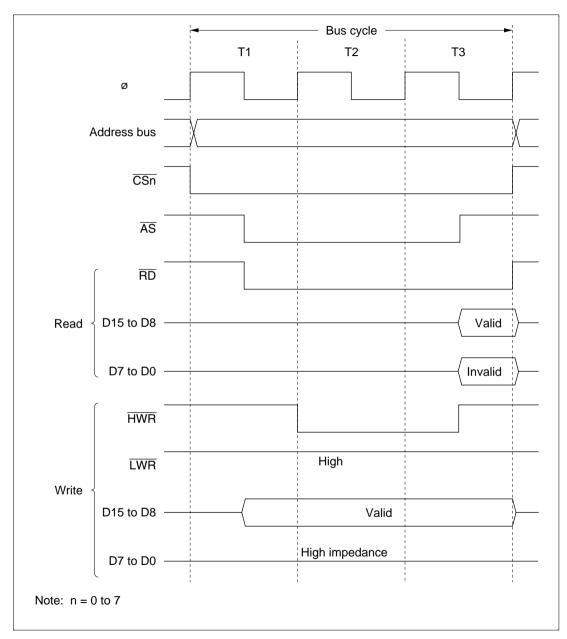


Figure 7-11 Bus Timing for 16-Bit 3-State Access Space (Even Address Byte Access)

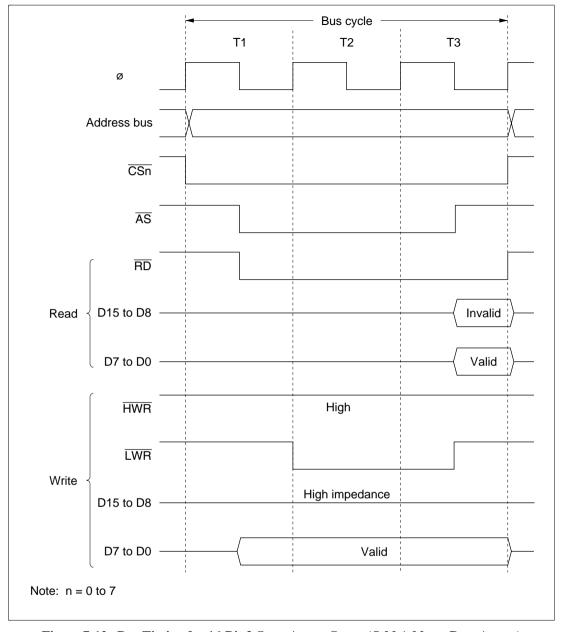


Figure 7-12 Bus Timing for 16-Bit 3-State Access Space (Odd Address Byte Access)

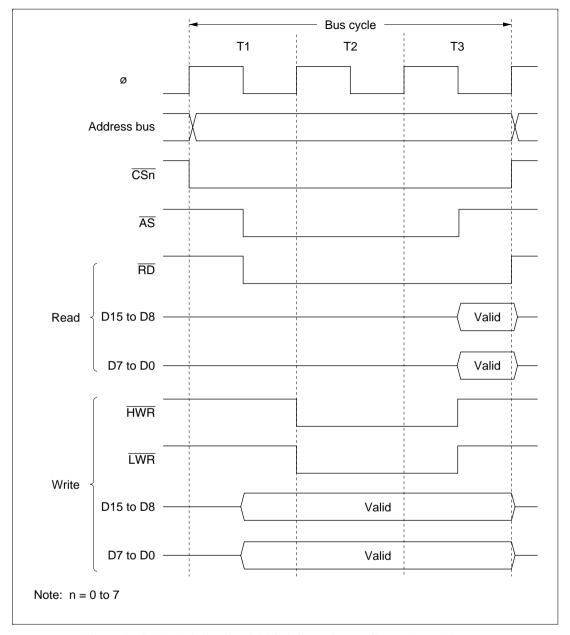


Figure 7-13 Bus Timing for 16-Bit 3-State Access Space (Word Access)

7.4.5 Wait Control

When accessing external space, the H8S/2238 Series can extend the bus cycle by inserting one or more wait states (Tw). There are two ways of inserting wait states: program wait insertion and pin wait insertion using the $\overline{\text{WAIT}}$ pin.

Program Wait Insertion

From 0 to 3 wait states can be inserted automatically between the T2 state and T3 state on an individual area basis in 3-state access space, according to the settings of WCRH and WCRL.

Pin Wait Insertion

Setting the WAITE bit in BCRH to 1 enables wait insertion by means of the \overline{WAIT} pin. When external space is accessed in this state, program wait insertion is first carried out according to the settings in WCRH and WCRL. Then , if the \overline{WAIT} pin is low at the falling edge of ø in the last T2 or Tw state, a Tw state is inserted. If the \overline{WAIT} pin is held low, Tw states are inserted until it goes high.

This is useful when inserting four or more Tw states, or when changing the number of Tw states for different external devices

The WAITE bit setting applies to all areas.

Figure 7-14 shows an example of wait state insertion timing.

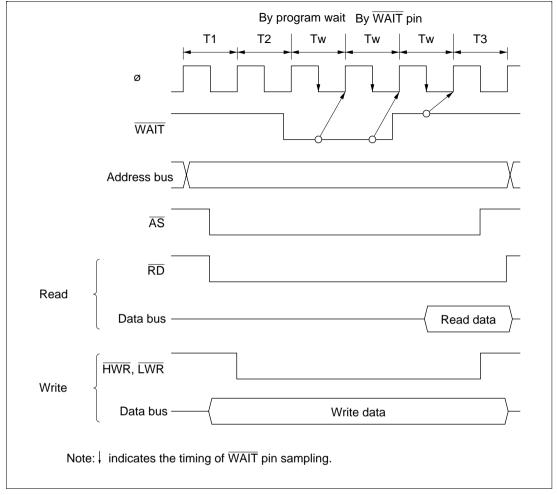


Figure 7-14 Example of Wait State Insertion Timing

The settings after a power-on reset are: 3-state access, 3 program wait state insertion, and \overline{WAIT} input disabled. When a manual reset is performed, the contents of bus controller registers are retained, and the wait control settings remain the same as before the reset.

7.5 Burst ROM Interface

7.5.1 Overview

With the H8S/2238 Series, external space area 0 can be designated as burst ROM space, and burst ROM interfacing can be performed. The burst ROM space interface enables 16-bit configuration ROM with burst access capability to be accessed at high speed.

Area 0 can be designated as burst ROM space by means of the BRSTRM bit in BCRH. Consecutive burst accesses of a maximum of 4 words or 8 words can be performed for CPU instruction fetches only. One or two states can be selected for burst access.

7.5.2 Basic Timing

The number of states in the initial cycle (full access) of the burst ROM interface is in accordance with the setting of the AST0 bit in ASTCR. Also, when the AST0 bit is set to 1, wait state insertion is possible. One or two states can be selected for the burst cycle, according to the setting of the BRSTS1 bit in BCRH. Wait states cannot be inserted. When area 0 is designated as burst ROM space, it becomes 16-bit access space regardless of the setting of the ABW0 bit in ABWCR.

When the BRSTS0 bit in BCRH is cleared to 0, burst access of up to 4 words is performed; when the BRSTS0 bit is set to 1, burst access of up to 8 words is performed.

The basic access timing for burst ROM space is shown in figures 7-15 (a) and (b). The timing shown in figure 7-15 (a) is for the case where the AST0 and BRSTS1 bits are both set to 1, and that in figure 7-15 (b) is for the case where both these bits are cleared to 0.

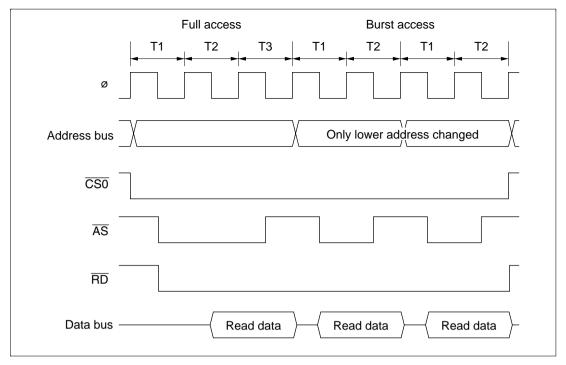


Figure 7-15 (a) Example of Burst ROM Access Timing (When AST0 = BRSTS1 = 1)

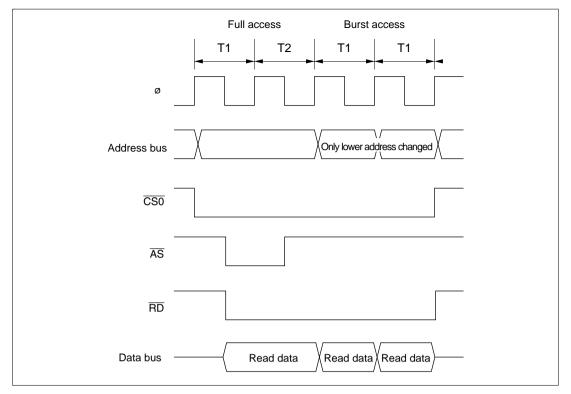


Figure 7-15 (b) Example of Burst ROM Access Timing (When AST0 = BRSTS1 = 0)

7.5.3 Wait Control

As with the basic bus interface, either program wait insertion or pin wait insertion using the $\overline{\text{WAIT}}$ pin can be used in the initial cycle (full access) of the burst ROM interface. See section 7.4.5, Wait Control.

Wait states cannot be inserted in a burst cycle.

7.6 Idle Cycle

7.6.1 Operation

When the H8S/2238 Series accesses external space , it can insert a 1-state idle cycle (T_I) between bus cycles in the following two cases: (1) when read accesses between different areas occur consecutively, and (2) when a write cycle occurs immediately after a read cycle. By inserting an idle cycle it is possible, for example, to avoid data collisions between ROM, with a long output floating time, and high-speed memory, I/O interfaces, and so on.

(1) Consecutive Reads between Different Areas

If consecutive reads between different areas occur while the ICIS1 bit in BCRH is set to 1, an idle cycle is inserted at the start of the second read cycle.

Figure 7-16 shows an example of the operation in this case. In this example, bus cycle A is a read cycle from ROM with a long output floating time, and bus cycle B is a read cycle from SRAM, each being located in a different area. In (a), an idle cycle is not inserted, and a collision occurs in cycle B between the read data from ROM and that from SRAM. In (b), an idle cycle is inserted, and a data collision is prevented.

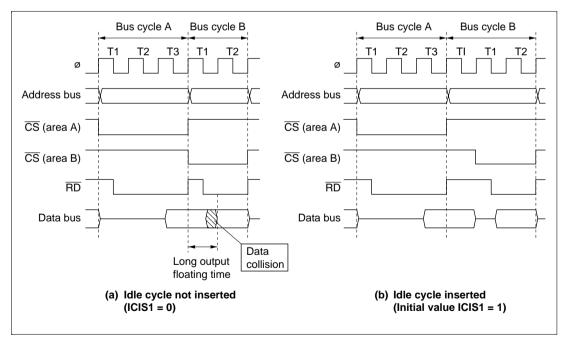


Figure 7-16 Example of Idle Cycle Operation (1)

(2) Write after Read

If an external write occurs after an external read while the ICISO bit in BCRH is set to 1, an idle cycle is inserted at the start of the write cycle.

Figure 7-17 shows an example of the operation in this case. In this example, bus cycle A is a read cycle from ROM with a long output floating time, and bus cycle B is a CPU write cycle. In (a), an idle cycle is not inserted, and a collision occurs in cycle B between the read data from ROM and the CPU write data. In (b), an idle cycle is inserted, and a data collision is prevented.

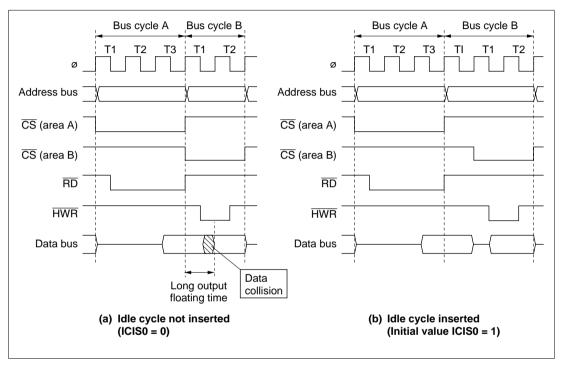


Figure 7-17 Example of Idle Cycle Operation (2)

(3) Relationship between Chip Select ($\overline{\text{CS}}$) Signal and Read ($\overline{\text{RD}}$) Signal

Depending on the system's load conditions, the \overline{RD} signal may lag behind the \overline{CS} signal. An example is shown in figure 7-18.

In this case, with the setting for no idle cycle insertion (a), there may be a period of overlap between the bus cycle A \overline{RD} signal and the bus cycle B \overline{CS} signal.

Setting idle cycle insertion, as in (b), however, will prevent any overlap between the \overline{RD} and \overline{CS} signals.

In the initial state after reset release, idle cycle insertion (b) is set.

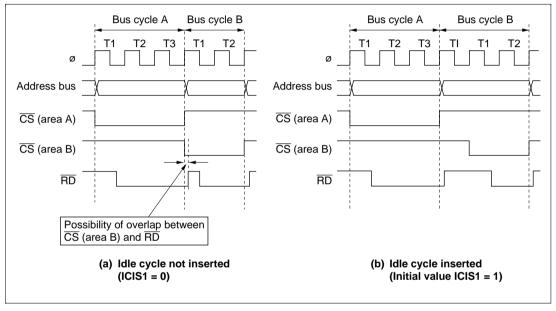


Figure 7-18 Relationship between Chip Select (\overline{CS}) and Read (\overline{RD})

7.6.2 Pin States in Idle Cycle

Table 7-5 shows pin states in an idle cycle.

Table 7-5 Pin States in Idle Cycle

Pins	Pin State
A23 to A0	Contents of next bus cycle
D15 to D0	High impedance
CSn	High
AS	High
RD	High
HWR	High
LWR	High

7.7 Bus Release

7.7.1 Overview

The H8S/2238 Series can release the external bus in response to a bus request from an external device. In the external bus released state, the internal bus master continues to operate as long as there is no external access.

7.7.2 Operation

In external expansion mode, the bus can be released to an external device by setting the BRLE bit in BCRL to 1. Driving the \overline{BREQ} pin low issues an external bus request to the H8S/2238 Series. When the \overline{BREQ} pin is sampled, at the prescribed timing the \overline{BACK} pin is driven low, and the address bus, data bus, and bus control signals are placed in the high-impedance state, establishing the external bus-released state.

In the external bus released state, an internal bus master can perform accesses using the internal bus. When an internal bus master wants to make an external access, it temporarily defers activation of the bus cycle, and waits for the bus request from the external bus master to be dropped.

When the \overline{BREQ} pin is driven high, the \overline{BACK} pin is driven high at the prescribed timing and the external bus released state is terminated.

In the event of simultaneous external bus release request and external access request generation, the order of priority is as follows:

(High) External bus release > Internal bus master external access (Low)

7.7.3 Pin States in External Bus Released State

Table 7-6 shows pin states in the external bus released state.

Table 7-6 Pin States in Bus Released State

Pins	Pin State
A23 to A0	High impedance
D15 to D0	High impedance
CSn	High impedance
AS	High impedance
RD	High impedance
HWR	High impedance
LWR	High impedance

7.7.4 Transition Timing

Figure 7-19 shows the timing for transition to the bus-released state.

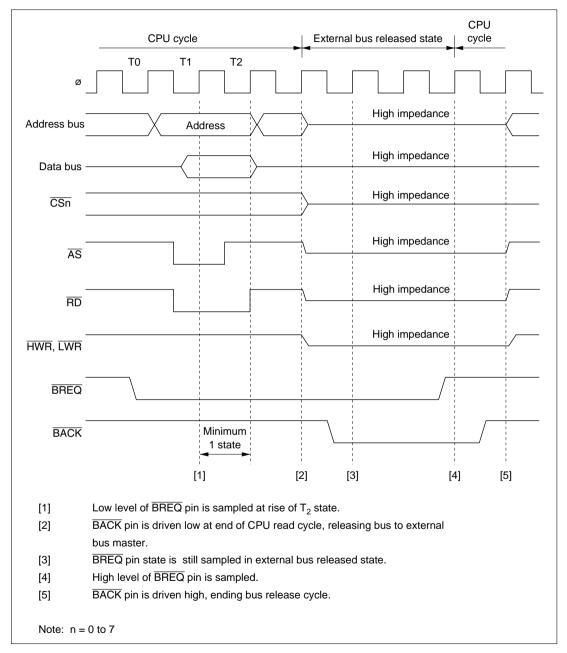


Figure 7-19 Bus-Released State Transition Timing

7.7.5 Usage Note

When MSTPCR is set to H'FFFFFF and a transition is made to sleep mode, the external bus release function halts. Therefore, MSTPCR should not be set to H'FFFFFF if the external bus release function is to be used in sleep mode.

7.8 Bus Arbitration

7.8.1 Overview

The H8S/2238 Series has a bus arbiter that arbitrates bus master operations.

There are two bus masters, the CPU and DTC, which perform read/write operations when they have possession of the bus. Each bus master requests the bus by means of a bus request signal. The bus arbiter determines priorities at the prescribed timing, and permits use of the bus by means of a bus request acknowledge signal. The selected bus master then takes possession of the bus and begins its operation.

7.8.2 Operation

The bus arbiter detects the bus masters' bus request signals, and if the bus is requested, sends a bus request acknowledge signal to the bus master making the request. If there are bus requests from more than one bus master, the bus request acknowledge signal is sent to the one with the highest priority. When a bus master receives the bus request acknowledge signal, it takes possession of the bus until that signal is canceled.

The order of priority of the bus masters is as follows:

An internal bus access by an internal bus master, and external bus release, can be executed in parallel.

In the event of simultaneous external bus release request, and internal bus master external access request generation, the order of priority is as follows:

(High) External bus release > Internal bus master external access (Low)

7.8.3 Bus Transfer Timing

Even if a bus request is received from a bus master with a higher priority than that of the bus master that has acquired the bus and is currently operating, the bus is not necessarily transferred immediately. There are specific times at which each bus master can relinquish the bus.

CPU: The CPU is the lowest-priority bus master, and if a bus request is received from the DTC, the bus arbiter transfers the bus to the bus master that issued the request. The timing for transfer of the bus is as follows:

- The bus is transferred at a break between bus cycles. However, if a bus cycle is executed in
 discrete operations, as in the case of a longword-size access, the bus is not transferred between
 the operations. See Appendix A.5, Bus States During Instruction Execution, for timings at
 which the bus is not transferred.
- If the CPU is in sleep mode, it transfers the bus immediately.

DTC: The DTC sends the bus arbiter a request for the bus when an activation request is generated.

The DTC can release the bus after a vector read, a register information read (3 states), a single data transfer, or a register information write (3 states). It does not release the bus during a register information read (3 states), a single data transfer, or a register information write (3 states).

7.8.4 External Bus Release Usage Note

External bus release can be performed on completion of an external bus cycle. The CS signal remains low until the end of the external bus cycle. Therefore, when external bus release is performed, the $\overline{\text{CS}}$ signal may change from the low level to the high-impedance state.

7.9 Resets and the Bus Controller

In a power-on reset, the H8S/2238 Series, including the bus controller, enters the reset state at that point, and an executing bus cycle is discontinued.

In a manual reset, the bus controller's registers and internal state are maintained, and an executing external bus cycle is completed. In this case, \overline{WAIT} input is ignored and write data is not guaranteed.

Section 8 Data Transfer Controller (DTC)

8.1 Overview

The H8S/2238 Series includes a data transfer controller (DTC). The DTC can be activated by an interrupt or software, to transfer data.

8.1.1 Features

The features of the DTC are:

- Transfer possible over any number of channels
 - Transfer information is stored in memory
 - One activation source can trigger a number of data transfers (chain transfer)
- Wide range of transfer modes
 - Normal, repeat, and block transfer modes available
 - Incrementing, decrementing, and fixing of source and destination addresses can be selected
- Direct specification of 16-Mbyte address space possible
 - 24-bit transfer source and destination addresses can be specified
- Transfer can be set in byte or word units
- A CPU interrupt can be requested for the interrupt that activated the DTC
 - An interrupt request can be issued to the CPU after one data transfer ends
 - An interrupt request can be issued to the CPU after the specified data transfers have completely ended
- Activation by software is possible
- Module stop mode can be set
 - The initial setting enables DTC registers to be accessed. DTC operation is halted by setting module stop mode.

8.1.2 Block Diagram

Figure 8-1 shows a block diagram of the DTC.

The DTC's register information is stored in the on-chip RAM*. A 32-bit bus connects the DTC to the on-chip RAM (1 kbyte), enabling 32-bit/1-state reading and writing of the DTC register information.

Note: * When the DTC is used, the RAME bit in SYSCR must be set to 1.

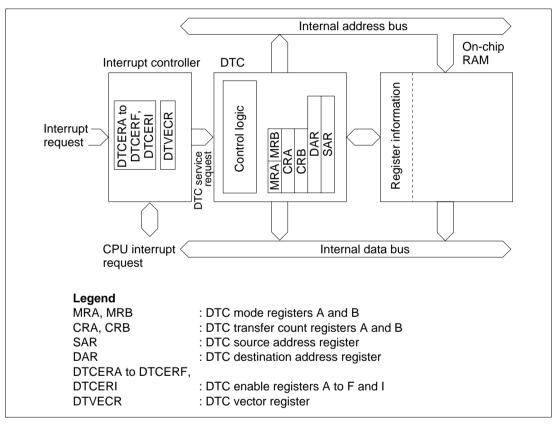


Figure 8-1 Block Diagram of DTC

8.1.3 **Register Configuration**

Table 8-1 summarizes the DTC registers.

Table 8-1 **DTC Registers**

Name	Abbreviation	R/W	Initial Value	Address*1
DTC mode register A	MRA	<u>*</u> *2	Undefined	—* ³
DTC mode register B	MRB	<u>_*2</u>	Undefined	*3
DTC source address register	SAR	*2	Undefined	*3
DTC destination address register	DAR	*2	Undefined	*3
DTC transfer count register A	CRA	<u>_*</u> 2	Undefined	*3
DTC transfer count register B	CRB	<u>_*</u> 2	Undefined	*3
DTC enable registers	DTCER	R/W	H'00	H'FF16 to H'FE1B, H'FE1E
DTC vector register	DTVECR	R/W	H'00	H'FE1F
Module stop control register A	MSTPCRA	R/W	H'3F	H'FDE8

Notes: *1 Lower 16 bits of the address.

^{*2} Registers within the DTC cannot be read or written to directly.

^{*3} Register information is located in on-chip RAM addresses H'EBC0 to H'EFBF. It cannot be located in external memory space. When the DTC is used, do not clear the RAME bit in SYSCR to 0.

8.2 Register Descriptions

8.2.1 DTC Mode Register A (MRA)

Bit	:	7	6	5	4	3	2	1	0
		SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz
Initial val	lue :	Unde- fined							
R/W	:	_	_	_	_	_	_	_	_

MRA is an 8-bit register that controls the DTC operating mode.

Bits 7 and 6—Source Address Mode 1 and 0 (SM1, SM0): These bits specify whether SAR is to be incremented, decremented, or left fixed after a data transfer.

Bit 7	Bit 6	
SM1	SM0	Description
0	_	SAR is fixed
1	0	SAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)
	1	SAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)

Bits 5 and 4—Destination Address Mode 1 and 0 (DM1, DM0): These bits specify whether DAR is to be incremented, decremented, or left fixed after a data transfer.

Bit 5	Bit 4	
DM1	DM0	Description
0	_	DAR is fixed
1	0	DAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)
	1	DAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)

Bits 3 and 2—DTC Mode (MD1, MD0): These bits specify the DTC transfer mode.

Bit 3	Bit 2	
MD1	MD0	 Description
0	0	Normal mode
	1	Repeat mode
1	0	Block transfer mode
	1	_

Bit 1—DTC Transfer Mode Select (DTS): Specifies whether the source side or the destination side is set to be a repeat area or block area, in repeat mode or block transfer mode.

Bit 1

DTS	Description Description
0	Destination side is repeat area or block area
1	Source side is repeat area or block area

Bit 0—DTC Data Transfer Size (Sz): Specifies the size of data to be transferred.

Bit 0

Sz	Description	
0	Byte-size transfer	
1	Word-size transfer	

8.2.2 DTC Mode Register B (MRB)

Bit	:	7	6	5	4	3	2	1	0
		CHNE	DISEL	_	_	_	_	_	_
Initial value	e:	Unde-							
R/W		fined —							

MRB is an 8-bit register that controls the DTC operating mode.

Bit 7—DTC Chain Transfer Enable (CHNE): Specifies chain transfer. With chain transfer, a number of data transfers can be performed consecutively in response to a single transfer request.

In data transfer with CHNE set to 1, determination of the end of the specified number of transfers, clearing of the interrupt source flag, and clearing of DTCER is not performed.

Bit 7

CHNE	Description
0	End of DTC data transfer (activation waiting state is entered)
1	DTC chain transfer (new register information is read, then data is transferred)

Bit 6—DTC Interrupt Select (DISEL): Specifies whether interrupt requests to the CPU are disabled or enabled after a data transfer.

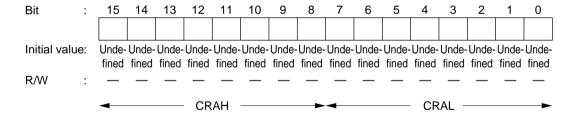
Bit 6

DISEL	Description
0	After a data transfer ends, the CPU interrupt is disabled unless the transfer counter is 0 (the DTC clears the interrupt source flag of the activating interrupt to 0)
1	After a data transfer ends, the CPU interrupt is enabled (the DTC does not clear the interrupt source flag of the activating interrupt to 0)

Bits 5 to 0—Reserved: These bits have no effect on DTC operation in the H8S/2238 Series, and should always be written with 0.

8.2.3 DTC Source Address Register (SAR)

Bit	:	23	22	21	20	19	 4	3	2	1	0
Initial valu	ue:	Unde-	Unde-	Unde-	Unde-	Unde-	 Unde-	Unde-	Unde-	Unde-	Unde-
		fined	fined	fined	fined	fined	fined	fined	fined	fined	fined
R/W							 _	_			


SAR is a 24-bit register that designates the source address of data to be transferred by the DTC. For word-size transfer, specify an even source address.

8.2.4 DTC Destination Address Register (DAR)

Bit	:	23	22	21	20	19	 4	3	2	1	0
Initial value	:	Unde-	Unde-	Unde-	Unde-	Unde-	 Unde-	Unde-	Unde-	Unde-	Unde-
		fined	fined	fined	fined	fined	fined	fined	fined	fined	fined
R/W	:	_	_	_	_	_	 _	_	_	_	_

DAR is a 24-bit register that designates the destination address of data to be transferred by the DTC. For word-size transfer, specify an even destination address.

8.2.5 DTC Transfer Count Register A (CRA)

CRA is a 16-bit register that designates the number of times data is to be transferred by the DTC.

In normal mode, the entire CRA functions as a 16-bit transfer counter (1 to 65536). It is decremented by 1 every time data is transferred, and transfer ends when the count reaches H'0000.

In repeat mode or block transfer mode, the CRA is divided into two parts: the upper 8 bits (CRAH) and the lower 8 bits (CRAL). CRAH holds the number of transfers while CRAL functions as an 8-bit transfer counter (1 to 256). CRAL is decremented by 1 every time data is transferred, and the contents of CRAH are sent when the count reaches H'00. This operation is repeated.

8.2.6 DTC Transfer Count Register B (CRB)

Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial val	ue:	Unde-															
		fined															
R/W	:	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

CRB is a 16-bit register that designates the number of times data is to be transferred by the DTC in block transfer mode. It functions as a 16-bit transfer counter (1 to 65536) that is decremented by 1 every time data is transferred, and transfer ends when the count reaches H'0000.

8.2.7 DTC Enable Registers (DTCER)

Bit	:	7	6	5	4	3	2	1	0
		DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0
Initial va	alue:	0	0	0	0	0	0	0	0
R/W	:	R/W							

The DTC enable registers comprise seven 8-bit readable/writable registers, DTCERA to DTCERF and DTCERI, with bits corresponding to the interrupt sources that can control enabling and disabling of DTC activation. These bits enable or disable DTC service for the corresponding interrupt sources.

The DTC enable registers are initialized to H'00 by a reset and in hardware standby mode.

Bit n—DTC Activation Enable (DTCEn)

Bit n

DTCEn	Description								
0	DTC activation by this interrupt is disabled (Initial v								
	[Clearing conditions]								
	When the DISEL bit is 1 and the data transfer has ended								
	When the specified number of transfers have ended								
1	DTC activation by this interrupt is enabled								
	[Holding condition]								
	When the DISEL bit is 0 and the specified number of transfers have	e not ended							
		(n = 7 to 0)							

A DTCE bit can be set for each interrupt source that can activate the DTC. The correspondence between interrupt sources and DTCE bits is shown in table 8-4, together with the vector number generated for each interrupt controller.

For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR for reading and writing. If all interrupts are masked, multiple activation sources can be set at one time by writing data after executing a dummy read on the relevant register.

8.2.8 DTC Vector Register (DTVECR)

Bit	:	7	6	5	4	3	2	1	0
		SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0
Initial va	lue:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*1	R/(W)*2						

Notes: *1 Only 1 can be written to the SWDTE bit.

DTVECR is an 8-bit readable/writable register that enables or disables DTC activation by software, and sets a vector number for the software activation interrupt.

DTVECR is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—DTC Software Activation Enable (SWDTE): Enables or disables DTC activation by software.

Bit 7

SWDTE	Description							
0	DTC software activation is disabled (Initial value [Clearing conditions]							
	 When the DISEL bit is 0 and the specified number of transfers have not ended When 0 is written to the DISEL bit after a software-activated data transfer end interrupt (SWDTEND) request has been sent to the CPU 							
1	DTC software activation is enabled [Holding conditions] When the DISEL bit is 1 and data transfer has ended When the specified number of transfers have ended During data transfer due to software activation							

Bits 6 to 0—DTC Software Activation Vectors 6 to 0 (DTVEC6 to DTVEC0): These bits specify a vector number for DTC software activation.

The vector address is expressed as H'0400 + ((vector number) << 1). <<1 indicates a one-bit left-shift. For example, when DTVEC6 to DTVEC0 = H'10, the vector address is H'0420.

^{*2} Bits DTVEC6 to DTVEC0 can be written to when SWDTE = 0.

8.2.9 Module Stop Control Register A (MSTPCRA)

Bit	:	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	:	0	0	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRA is an 8-bit readable/writable register that performs module stop mode control.

When the MSTPA6 bit in MSTPCRA is set to 1, the DTC operation stops at the end of the bus cycle and a transition is made to module stop mode. However, 1 cannot be written in the MSTPA6 bit while the DTC is operating. For details, see section 21.5, Module Stop Mode.

MSTPCRA is initialized to H'3F by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 6—Module Stop (MSTPA6): Specifies the DTC module stop mode.

Bit 6

MSTPA6		
0	DTC module stop mode cleared	(Initial value)
1	DTC module stop mode set	

8.3 Operation

8.3.1 Overview

When activated, the DTC reads register information that is already stored in memory and transfers data on the basis of that register information. After the data transfer, it writes updated register information back to memory. Pre-storage of register information in memory makes it possible to transfer data over any required number of channels. Setting the CHNE bit to 1 makes it possible to perform a number of transfers with a single activation.

Figure 8-2 shows a flowchart of DTC operation.

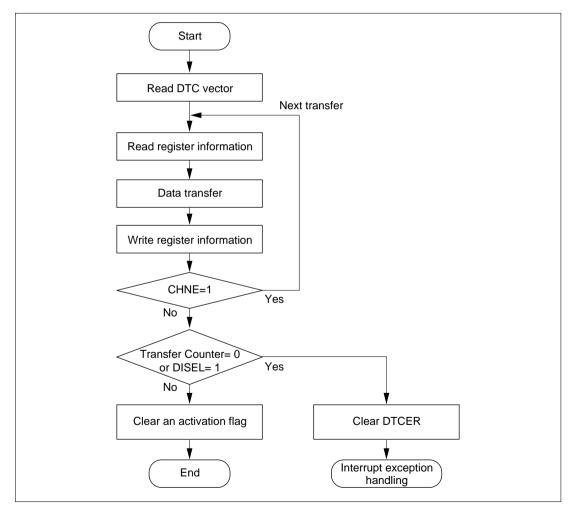


Figure 8-2 Flowchart of DTC Operation

The DTC transfer mode can be normal mode, repeat mode, or block transfer mode.

The 24-bit SAR designates the DTC transfer source address and the 24-bit DAR designates the transfer destination address. After each transfer, SAR and DAR are independently incremented, decremented, or left fixed.

Table 8-2 outlines the functions of the DTC.

Table 8-2 DTC Functions

		Addres	s Registers
Transfer Mode	Activation Source	Transfer Source	Transfer Destination
 Normal mode One transfer request transfers one byte or one word Memory addresses are incremented or decremented by 1 or 2 Up to 65,536 transfers possible Repeat mode One transfer request transfers one byte or one word Memory addresses are incremented or decremented by 1 or 2 After the specified number of transfers (1 to 256), the initial state resumes and operation continues Block transfer mode One transfer request transfers a block of the specified size Block size is from 1 to 256 bytes or words Up to 65,536 transfers possible A block area can be designated at either the source or destination 	 IRQ TPU TGI 8-bit timer CMI SCI TXI or RXI IIC IICI A/D converter ADI Software 	24 bits	24 bits

8.3.2 Activation Sources

The DTC operates when activated by an interrupt or by a write to DTVECR by software. An interrupt request can be directed to the CPU or DTC, as designated by the corresponding DTCER bit. An interrupt becomes a DTC activation source when the corresponding bit is set to 1, and a CPU interrupt source when the bit is cleared to 0.

At the end of a data transfer (or the last consecutive transfer in the case of chain transfer), the activation source or corresponding DTCER bit is cleared. Table 8-3 shows activation source and DTCER clearance. The activation source flag, in the case of RXIO, for example, is the RDRF flag of SCIO.

Table 8-3 Activation Source and DTCER Clearance

Activation Source	When the DISEL Bit Is 0 and the Specified Number of Transfers Have Not Ended	When the DISEL Bit Is 1, or when the Specified Number of Transfers Have Ended
Software activation	The SWDTE bit is cleared to 0	The SWDTE bit remains set to 1
		An interrupt is issued to the CPU
Interrupt activation	The corresponding DTCER bit remains set to 1	The corresponding DTCER bit is cleared to 0
	The activation source flag is	The activation source flag remains set to 1
	cleared to 0	A request is issued to the CPU for the activation source interrupt

Figure 8-3 shows a block diagram of activation source control. For details see section 5, Interrupt Controller.

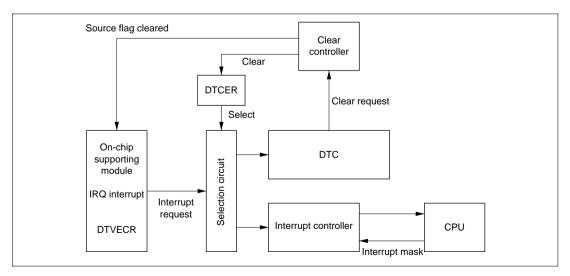


Figure 8-3 Block Diagram of DTC Activation Source Control

When an interrupt has been designated a DTC activation source, existing CPU mask level and interrupt controller priorities have no effect. If there is more than one activation source at the same time, the DTC operates in accordance with the default priorities.

8.3.3 DTC Vector Table

Figure 8-4 shows the correspondence between DTC vector addresses and register information.

Table 8-4 shows the correspondence between activation and vector addresses. When the DTC is activated by software, the vector address is obtained from: H'0400 + (DTVECR[6:0] << 1) (where << 1 indicates a 1-bit left shift). For example, if DTVECR is H'10, the vector address is H'0420.

The DTC reads the start address of the register information from the vector address set for each activation source, and then reads the register information from that start address. The register information can be placed at predetermined addresses in the on-chip RAM. The start address of the register information should be an integral multiple of four.

The configuration of the vector address is the same in both normal* and advanced modes, a 2-byte unit being used in both cases. These two bytes specify the lower bits of the address in the on-chip RAM.

Note: * Not available in the H8S/2238 Series.

 Table 8-4
 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*	Priority
Write to DTVECR	Software	DTVECR	H'0400+ (DTVECR [6:0] <<1)	_	High
IRQ0	External pin	16	H'0420	DTCEA7	
IRQ1	_	17	H'0422	DTCEA6	
IRQ2		18	H'0424	DTCEA5	
IRQ3		19	H'0426	DTCEA4	
IRQ4		20	H'0428	DTCEA3	
IRQ5		21	H'042A	DTCEA2	
IRQ6		22	H'042C	DTCEA1	
IRQ7		23	H'042E	DTCEA0	
ADI (A/D conversion end)	A/D	28	H'0438	DTCEB6	_
TGI0A (GR0A compare match/ input capture)	TPU channel 0	32	H'0440	DTCEB5	
TGI0B (GR0B compare match/input capture)		33	H'0442	DTCEB4	
TGI0C (GR0C compare match/input capture)		34	H'0444	DTCEB3	
TGI0D (GR0D compare match/input capture)		35	H'0446	DTCEB2	
TGI1A (GR1A compare match/input capture)	TPU channel 1	40	H'0450	DTCEB1	_
TGI1B (GR1B compare match/input capture)		41	H'0452	DTCEB0	_
TGI2A (GR2A compare match/input capture)	TPU channel 2	44	H'0458	DTCEC7	_
TGI2B (GR2B compare match/input capture)		45	H'045A	DTCEC6	
TGI3A (GR3A compare match/input capture)	TPU channel 3	48	H'0460	DTCEC5	Low

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*	Priority
TGI3B (GR3B compare match/input capture)	TPU channel 3	49	H'0462	DTCEC4	High •
TGI3C (GR3C compare match/input capture)		50	H'0464	DTCEC3	_
TGI3D (GR3D compare match/input capture)		51	H'0466	DTCEC2	
TGI4A (GR4A compare match/ input capture)	TPU channel 4	56	H'0470	DTCEC1	
TGI4B (GR4B compare match/ input capture)		57	H'0472	DTCEC0	_
TGI5A (GR5A compare match/ input capture)	TPU channel 5	60	H'0478	DTCED5	
TGI5B (GR5B compare match/ input capture)		61	H'047A	DTCED4	
CMIA0 (compare match A)	8-bit timer channel 0	64	H'0480	DTCED3	_
CMIB0 (compare match B)		65	H'0482	DTCED2	_
CMIA1 (compare match A)	8-bit timer channel 1	68	H'0488	DTCED1	_
CMIB1 (compare match B)		69	H'048A	DTCED0	_
RXI0 (reception complete 0)	SCI channel 0	81	H'04A2	DTCEE3	_
TXI0 (transmit data empty 0)		82	H'04A4	DTCEE2	_
RXI1 (reception complete 1)	SCI channel 1	85	H'04AA	DTCEE1	_
TXI1 (transmit data empty 1)		86	H'04AC	DTCEE0	_
RXI2 (reception complete 2)	SCI	89	H'04B2	DTCEF7	_
TXI2 (transmit data empty 2)	channel 2	90	H'04B4	DTCEF6	_
CMIA2 (compare match A)	8-bit timer channel 2	92	H'04B8	DTCEF5	_
CMIB2 (compare match B)		93	H'04BA	DTCEF4	_
CMIA3 (compare match A)	8-bit timer channel 3	96	H'04C0	DTCEF3	_
CMIB3 (compare match B)		97	H'04C2	DTCEF2	_
IICI0 (1-byte transmission/ reception completed)	IIC channel 0 [option]	100	H'04C8	DTCEF1	
IICI1 (1-byte transmission/ reception completed)	IIC channel 1 [option]	102	H'04CC	DTCEF0	
RXI3 (reception complete 3)	SCI channel 3	121	H'04F2	DTCEI7	
TXI3 (transmit data empty 3)		122	H'04F4	DTCEI6	Low

Note: * DTCE bits with no corresponding interrupt are reserved, and should be written with 0.

Figure 8-4 Correspondence between DTC Vector Address and Register Information

8.3.4 Location of Register Information in Address Space

Figure 8-5 shows how the register information should be located in the address space.

Locate the MRA, SAR, MRB, DAR, CRA, and CRB registers, in that order, from the start address of the register information (contents of the vector address). In the case of chain transfer, register information should be located in consecutive areas.

Locate the register information in the on-chip RAM (addresses: H'FFEBC0 to H'FFEFBF).

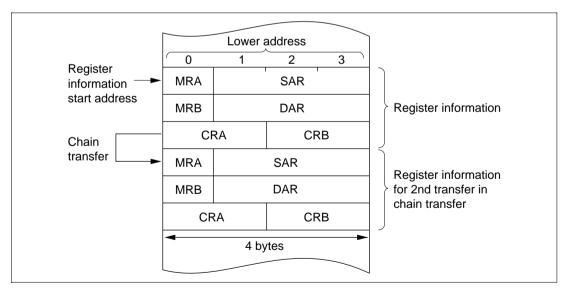


Figure 8-5 Location of Register Information in Address Space

8.3.5 Normal Mode

In normal mode, one operation transfers one byte or one word of data.

From 1 to 65,536 transfers can be specified. Once the specified number of transfers have ended, a CPU interrupt can be requested.

Table 8-5 lists the register information in normal mode and figure 8-6 shows memory mapping in normal mode.

Table 8-5 Register Information in Normal Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register A	CRA	Designates transfer count
DTC transfer count register B	CRB	Not used

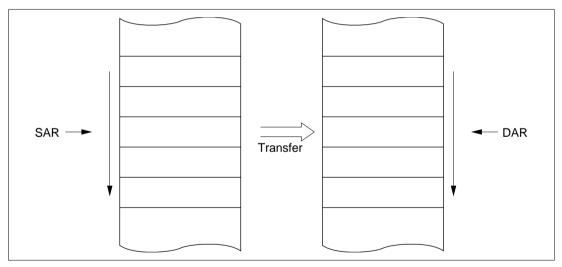


Figure 8-6 Memory Mapping in Normal Mode

8.3.6 Repeat Mode

In repeat mode, one operation transfers one byte or one word of data.

From 1 to 256 transfers can be specified. Once the specified number of transfers have ended, the initial state of the transfer counter and the address register specified as the repeat area is restored, and transfer is repeated. In repeat mode the transfer counter value does not reach H'00, and therefore CPU interrupts cannot be requested when DISEL = 0.

Table 8-6 lists the register information in repeat mode and figure 8-7 shows memory mapping in repeat mode.

Table 8-6 Register Information in Repeat Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register AH	CRAH	Holds number of transfers
DTC transfer count register AL	CRAL	Designates transfer count
DTC transfer count register B	CRB	Not used

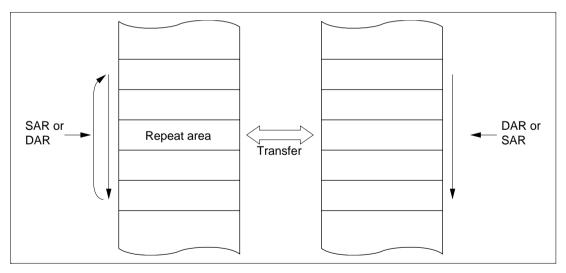


Figure 8-7 Memory Mapping in Repeat Mode

8.3.7 Block Transfer Mode

In block transfer mode, one operation transfers one block of data. Either the transfer source or the transfer destination is designated as a block area.

The block size is 1 to 256. When the transfer of one block ends, the initial state of the block size counter and the address register specified as the block area is restored. The other address register is then incremented, decremented, or left fixed.

From 1 to 65,536 transfers can be specified. Once the specified number of transfers have ended, a CPU interrupt is requested.

Table 8-7 lists the register information in block transfer mode and figure 8-8 shows memory mapping in block transfer mode.

Table 8-7 Register Information in Block Transfer Mode

Name	Abbreviation	Function
DTC source address register	SAR	Designates source address
DTC destination address register	DAR	Designates destination address
DTC transfer count register AH	CRAH	Holds block size
DTC transfer count register AL	CRAL	Designates block size count
DTC transfer count register B	CRB	Transfer count

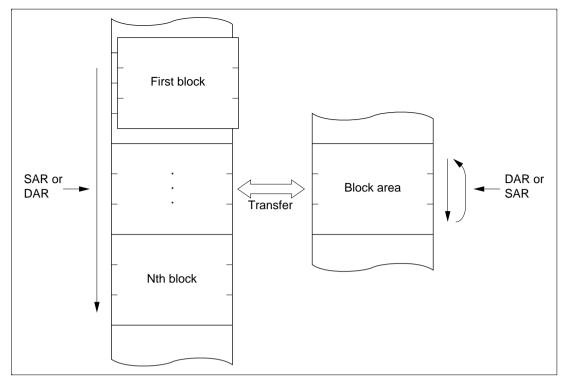


Figure 8-8 Memory Mapping in Block Transfer Mode

8.3.8 Chain Transfer

Setting the CHNE bit to 1 enables a number of data transfers to be performed consectutively in response to a single transfer request. SAR, DAR, CRA, CRB, MRA, and MRB, which define data transfers, can be set independently.

Figure 8-9 shows the memory map for chain transfer.



Figure 8-9 Chain Transfer Memory Map

In the case of transfer with CHNE set to 1, an interrupt request to the CPU is not generated at the end of the specified number of transfers or by setting of the DISEL bit to 1, and the interrupt source flag for the activation source is not affected.

8.3.9 Operation Timing

Figures 8-10 to 8-12 show an example of DTC operation timing.

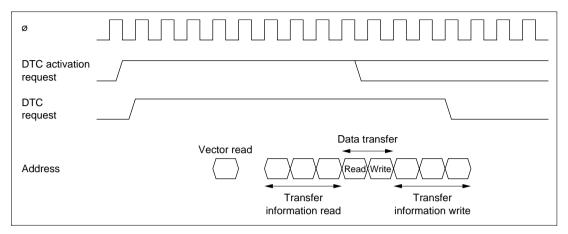


Figure 8-10 DTC Operation Timing (Example in Normal Mode or Repeat Mode)

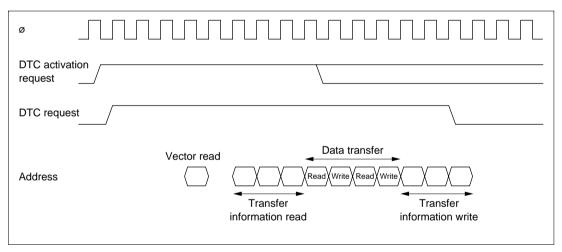


Figure 8-11 DTC Operation Timing (Example of Block Transfer Mode, with Block Size of 2)

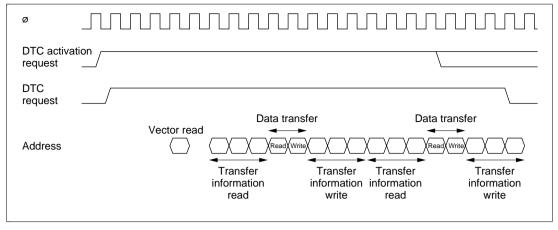


Figure 8-12 DTC Operation Timing (Example of Chain Transfer)

8.3.10 Number of DTC Execution States

Table 8-8 lists execution statuses for a single DTC data transfer, and table 8-9 shows the number of states required for each execution status.

Table 8-8 DTC Execution Statuses

Mode	Vector Read I	Register Information Read/Write J	Data Read K	Data Write L	Internal Operations M
Normal	1	6	1	1	3
Repeat	1	6	1	1	3
Block transfer	1	6	N	N	3

N: Block size (initial setting of CRAH and CRAL)

Table 8-9 Number of States Required for Each Execution Status

Object to be Accessed			On- Chip RAM	On- Chip ROM	On-C Regi	chip I/O sters	Exter	nal Devic	es	
Bus	width		32	16	8	16	8	8	16	16
Acce	ess states		1	1	2	2	2	3	2	3
	Vector read	Sı	_	1	_	_	4	6+2m	2	3+m
Execution status	Register information read/write	S _J	1	_	_	_			_	_
tion	Byte data read	S_{κ}	1	1	2	2	2	3+m	2	3+m
ecn	Word data read	S_{κ}	1	1	4	2	4	6+2m	2	3+m
ы́	Byte data write	$S_{\scriptscriptstyle L}$	1	1	2	2	2	3+m	2	3+m
	Word data write	S _L	1	1	4	2	4	6+2m	2	3+m
	Internal operation	S _M	1	1	1	1	1	1	1	1

m: Number of wait states in external device access

The number of execution states is calculated from the formula below. Note that Σ means the sum of all transfers activated by one activation event (the number in which the CHNE bit is set to 1, plus 1).

Number of execution states = I
$$\cdot$$
 S_I + Σ (J \cdot S_J + K \cdot S_K + L \cdot S_L) + M \cdot S_M

For example, when the DTC vector address table is located in on-chip ROM, normal mode is set, and data is transferred from the on-chip ROM to an internal I/O register, the time required for the DTC operation is 13 states. The time from activation to the end of the data write is 10 states.

8.3.11 Procedures for Using DTC

Activation by Interrupt: The procedure for using the DTC with interrupt activation is as follows:

- [1] Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in the on-chip RAM.
- [2] Set the start address of the register information in the DTC vector address.
- [3] Set the corresponding bit in DTCER to 1.
- [4] Set the enable bits for the interrupt sources to be used as the activation sources to 1. The DTC is activated when an interrupt used as an activation source is generated.
- [5] After the end of one data transfer, or after the specified number of data transfers have ended, the DTCE bit is cleared to 0 and a CPU interrupt is requested. If the DTC is to continue transferring data, set the DTCE bit to 1.

Activation by Software: The procedure for using the DTC with software activation is as follows:

- [1] Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in the on-chip RAM.
- [2] Set the start address of the register information in the DTC vector address.
- [3] Check that the SWDTE bit is 0.
- [4] Write 1 to SWDTE bit and the vector number to DTVECR.
- [5] Check the vector number written to DTVECR.
- [6] After the end of one data transfer, if the DISEL bit is 0 and a CPU interrupt is not requested, the SWDTE bit is cleared to 0. If the DTC is to continue transferring data, set the SWDTE bit to 1. When the DISEL bit is 1, or after the specified number of data transfers have ended, the SWDTE bit is held at 1 and a CPU interrupt is requested.

8.3.12 Examples of Use of the DTC

(1) Normal Mode

An example is shown in which the DTC is used to receive 128 bytes of data via the SCI.

- [1] Set MRA to fixed source address (SM1 = SM0 = 0), incrementing destination address (DM1 = 1, DM0 = 0), normal mode (MD1 = MD0 = 0), and byte size (Sz = 0). The DTS bit can have any value. Set MRB for one data transfer by one interrupt (CHNE = 0, DISEL = 0). Set the SCI RDR address in SAR, the start address of the RAM area where the data will be received in DAR, and 128 (H'0080) in CRA. CRB can be set to any value.
- [2] Set the start address of the register information at the DTC vector address.
- [3] Set the corresponding bit in DTCER to 1.
- [4] Set the SCI to the appropriate receive mode. Set the RIE bit in SCR to 1 to enable the reception complete (RXI) interrupt. Since the generation of a receive error during the SCI reception operation will disable subsequent reception, the CPU should be enabled to accept receive error interrupts.
- [5] Each time reception of one byte of data ends on the SCI, the RDRF flag in SSR is set to 1, an RXI interrupt is generated, and the DTC is activated. The receive data is transferred from RDR to RAM by the DTC. DAR is incremented and CRA is decremented. The RDRF flag is automatically cleared to 0.
- [6] When CRA becomes 0 after the 128 data transfers have ended, the RDRF flag is held at 1, the DTCE bit is cleared to 0, and an RXI interrupt request is sent to the CPU. The interrupt handling routine should perform wrap-up processing.

(2) Software Activation

An example is shown in which the DTC is used to transfer a block of 128 bytes of data by means of software activation. The transfer source address is H'1000 and the destination address is H'2000. The vector number is H'60, so the vector address is H'04C0.

- [1] Set MRA to incrementing source address (SM1 = 1, SM0 = 0), incrementing destination address (DM1 = 1, DM0 = 0), block transfer mode (MD1 = 1, MD0 = 0), and byte size (Sz = 0). The DTS bit can have any value. Set MRB for one block transfer by one interrupt (CHNE = 0). Set the transfer source address (H'1000) in SAR, the destination address (H'2000) in DAR, and 128 (H'8080) in CRA. Set 1 (H'0001) in CRB.
- [2] Set the start address of the register information at the DTC vector address (H'04C0).
- [3] Check that the SWDTE bit in DTVECR is 0. Check that there is currently no transfer activated by software.
- [4] Write 1 to the SWDTE bit and the vector number (H'60) to DTVECR. The write data is H'E0.
- [5] Read DTVECR again and check that it is set to the vector number (H'60). If it is not, this indicates that the write failed. This is presumably because an interrupt occurred between steps 3 and 4 and led to a different software activation. To activate this transfer, go back to step 3.
- [6] If the write was successful, the DTC is activated and a block of 128 bytes of data is transferred.
- [7] After the transfer, an SWDTEND interrupt occurs. The interrupt handling routine should clear the SWDTE bit to 0 and perform other wrap-up processing.

8.4 Interrupts

An interrupt request is issued to the CPU when the DTC finishes the specified number of data transfers, or a data transfer for which the DISEL bit was set to 1. In the case of interrupt activation, the interrupt set as the activation source is generated. These interrupts to the CPU are subject to CPU mask level and interrupt controller priority level control.

In the case of activation by software, a software activated data transfer end interrupt (SWDTEND) is generated.

When the DISEL bit is 1 and one data transfer has ended, or the specified number of transfers have ended, after data transfer ends, the SWDTE bit is held at 1 and an SWDTEND interrupt is generated. The interrupt handling routine should clear the SWDTE bit to 0.

When the DTC is activated by software, an SWDTEND interrupt is not generated during a data transfer wait or during data transfer even if the SWDTE bit is set to 1.

8.5 Usage Notes

Module Stop: DTC operation can be disabled or enabled using the module stop control register. The initial setting is for DTC operation to be enabled. Register access is disabled by setting module stop mode. Module stop mode cannot be set during DTC operation. For details, see section 21, Power-Down Modes.

On-Chip RAM: The MRA, MRB, SAR, DAR, CRA, and CRB registers are all located in on-chip RAM. When the DTC is used, the RAME bit in SYSCR must not be cleared to 0.

DTCE Bit Setting: For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR. If all interrupts are masked, multiple activation sources can be set at one time by writing data after executing a dummy read on the relevant register.

Section 9 I/O Ports

9.1 Overview

The H8S/2238 Series has ten I/O ports (ports 1, 3, 7, and A to G), and two input-only ports (ports 4 and 9).

Table 9-1 summarizes the port functions. The pins of each port also have other functions.

Each port includes a data direction register (DDR) that controls input/output (not provided for the input-only ports), a data register (DR) that stores output data, and a port register (PORT) used to read the pin states.

Ports A to E have a built-in MOS input pull-up function, and in addition to DR and DDR, have a MOS input pull-up control register (PCR) to control the on/off status of the MOS input pull-ups.

Ports 3 and A include an open-drain control register (ODR) that controls the on/off status of the output buffer PMOS.

All the ports can drive a single TTL load and 30 pF capacitive load.

The output type of P34 and P35 in port 3 is NMOS push-pull.

The IRQ pins are Schmitt-triggered inputs.

Block diagrams of each port are give in Appendix C, I/O Port Block Diagrams.

Table 9-1 H8S/2238 Series Port Functions

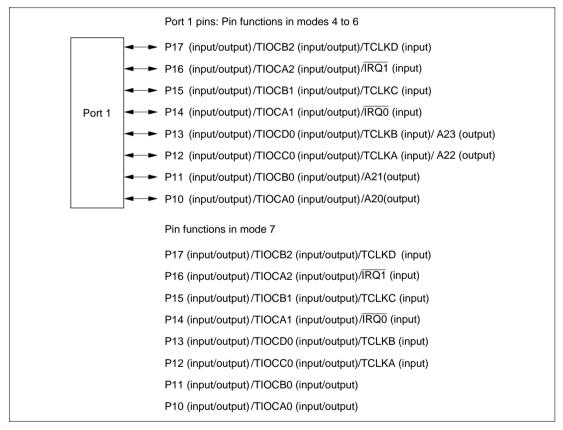
Port	Description	Pins	Mode 4	Mode 5	Mode 6	Mode 7	
Port 1	8-bit I/O port Schmitt- triggered input (IRQ0, IRQ1)	P17/TIOCB2/TCLKD P16/TIOCA2/ĪRQ1 P15/TIOCB1/TCLKC P14/TIOCA1/ĪRQ0 P13/TIOCD0/TCLKB/ A23 P12/TIOCC0/TCLKA/ A22 P11/TIOCB0/A21 P10/TIOCA0/A20	pins (TCLKA, TIOCA0, TIO TIOCA1, TIO interrupt input	also functioning TCLKB, TCLK CB0, TIOCC0, CB1, TIOCA2, t pins (IRQ0, IF ut (A20 to A23)	TC, TCLKD, TIOCD0, TIOCB2), RQ1), and	8-bit I/O port also functioning as TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCAO, TIOCBO, TIOCCO, TIOCA1, TIOCB1, TIOCA2, TIOCB2) and interrupt input pins (IRQ0, IRQ1)	
Port 3	7-bit I/O port Open-drain output capability Schmitt-triggered input (IRQ4, IRQ5)	P36 P35/SCK1/SCL0/ĪRQ5 P34/RxD1/SDA0 P33/TxD1/SCL1 P32/SCK0/SDA1/ĪRQ4 P31/RxD0 P30/TxD0	interface I/O pins (SCL0, SDA0, SCL1, SDA1), and interrup input pins (IRQ4, IRQ5)				
Port 4	• 8-bit input port	P47/AN7 P46/AN6 P45/AN5 P44/AN4 P43/AN3 P42/AN2 P41/AN1 P40/AN0	8-bit input poi (AN7 to AN0)		ng as A/D conv	erter analog input	
Port 7	• 8-bit I/O port	P77/TxD3 P76/RxD3 P75/TMO3/SCK3 P74/TMO2/MRES	8-bit I/O port also functioning as SCI (channel 3) I/O pins (TxD3, RxD3, SCK3), manual reset pin (MRES), and 8-bit timer (channels 2 and 3) I/O pins (TMO2, TMO3)				
		P73/TMO1/CS7 P72/TMO0/CS6 P71/TMRI23/TMCI23/ CS5 P70/TMRI01/TMCI01/ CS4	ports and 8-b I/O pins (TMF TMCI23, TMC When DDR = timer (channe TMCI01, TMF	0: Dual function tit timer (channer (ch	els 0 to 3) TMRI23, on as 8-bit ins (TMRI01, TMO0,	8-bit I/O port also functioning as SCI (channel 3) I/O pins (TxD3, RxD3, SCK3), manual reset pin (MRES), and 8-bit timer (channels 0 to 3) I/O pins (TMRI01, TMCI01, TMRI23, TMCI23, TMO0, TMO1)	

Port	Description	Pins	Mode 4	Mode 5	Mode 6	Mode 7
Port 9	• 2-bit input port	P97/DA1 P96/DA0	2-bit input po (DA1, DA0)	rt also function	ing as D/A conv	verter analog output
Port A	4-bit I/O port Built-in MOS input pull-up Open-drain output capability	PA3/A19/SCK2 PA2/A18/RxD2 PA1/A17/TxD2 PA0/A16	4-bit I/O port (channel 2) I/ and address	RxD2, SCK2)	4-bit I/O port also functioning as SCI (channel 2) I/O pins (TxD2, RxD2, SCK2)	
Port B	8-bit I/O port Built-in MOS input pull-up	PB7/A15/TIOCB5 PB6/A14/TIOCA5 PB5/A13/TIOCB4 PB4/A12/TIOCA4 PB3/A11/TIOCD3 PB2/A10/TIOCC3 PB1/A9/TIOCB3 PB0/A8/TIOCA3	pins (TIOCB5 TIOCD3, TIO	also functioning 5, TIOCA5, TIO CC3, TIOCB3, ut (A15 to A8)	CB4, TIOCA4,	8-bit I/O port also functioning as TPU I/O pins (TIOCB5,TIOCA5, TIOCB4, TIOCA4, TIOCD3, TIOCC3, TIOCB3, TIOCA3)
Port C	8-bit I/O port Built-in MOS input pull-up	PC7/A7 to PC0/A0	Address outp	ut (A7–A0)	When DDR = 0: Input port When DDR = 1: Address output	8-bit I/O port
Port D	8-bit I/O port Built-in MOS input pull-up	PD7/D15 to PD0/D8	Data bus inpu	ut/output	·	I/O port
Port E	8-bit I/O portBuilt-in MOS input pull-up	PE7/D7 to PE0/D0	In 8-bit bus m	node: I/O port mode: Data bu	s input/output	I/O port
Port F	8-bit I/O port Schmitt-triggered input (IRQ3, IRQ2)	PF7/ø		When DDR = 0: Input port When DDR = 1 (after reset): Ø output		When DDR = 0 (after reset): Input port When DDR = 1: ø output
		PF6/AS PF5/RD PF4/HWR	AS, RD, HWF	R output		I/O port
		PF3/LWR/ADTRG/ IRQ3	In 8-bit bus m	mode: LWR outlode: I/O ports interrupt input (AD)	also t pin (IRQ3)	I/O ports also functioning as interrupt input pin (IRQ3) and A/D converter input (ADTRG)

Port	Description	Pins	Mode 4	Mode 5	Mode 6	Mode 7	
Port F	• 8-bit I/O port • Schmitt-	PF2/WAIT		When WAITE = 0 (after reset): I/O port When WAITE = 1: $\overline{\text{WAIT}}$ input			
	triggered input (IRQ3, IRQ2)	PF1/BACK/BUZZ PF0/BREQ/IRQ2	When BRLE also function (BUZZ) and i When BRLE output, and in	I/O ports also functioning as WDT output pin (BUZZ) and interrupt input pin (IRQ2)			
Port G	Port G • 5-bit I/O port • Schmitt-	PG4/CS0		: 0* ¹ : Input por : 1* ² : CS0 outp		I/O port	
	triggered input (IRQ7, IRQ6)	PG3/ <u>CS1</u> PG2/ <u>CS2</u> PG1/ <u>CS3/IRQ7</u>	also function (IRQ7) When DDR =	o (after reset) ing as interrupt 1: CS1, CS2, input pin (IRQ	t input pin CS3 output	I/O ports also functioning as interrupt input pin (IRQ7)	
		I/O port also functioning as interrupt input pin (IRQ6)			I/O port also functioning as interrupt input pin (IRQ6)		

Notes: *1 After mode 6 reset

^{*2} After mode 4 or 5 reset


9.2 Port 1

9.2.1 Overview

Port 1 is an 8-bit I/O port. Port 1 pins also function as TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA0, TIOCB0, TIOCC0, TIOCD0, TIOCA1, TIOCB1, TIOCA2, and TIOCB2), external interrupt pins ($\overline{IRQ0}$ and $\overline{IRQ1}$), and address bus output pins (A23 to A20). Port 1 pin functions depend on the operating mode.

The interrupt input pins ($\overline{IRQ0}$ and $\overline{IRQ1}$) are Schmitt-triggered inputs.

Figure 9-1 shows the port 1 pin configuration.

Figure 9-1 Port 1 Pin Functions

9.2.2 Register Configuration

Table 9-2 shows the port 1 register configuration.

Table 9-2 Port 1 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 1 data direction register	P1DDR	W	H'00	H'FE30
Port 1 data register	P1DR	R/W	H'00	H'FF00
Port 1 register	PORT1	R	Undefined	H'FFB0

Note: * Lower 16 bits of the address.

(1) Port 1 Data Direction Register (P1DDR)

Bit	:	7	6	5	4	3	2	1	0
		P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P1DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 1. P1DDR cannot be read; if it is, an undefined value will be read.

P1DDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode. As the TPU is initialized by a manual reset, the pin states in this case are determined by the P1DDR and P1DR specifications.

The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

(a) Modes 4, 5, and 6

If address output is enabled by the setting of bits AE3 to AE0 in PFCR, pins P13 to P10 are address outputs. Pins P17 to P14, and pins P13 to P10 when address output is disabled, are output ports when the corresponding P1DDR bits are set to 1, and input ports when the corresponding P1DDR bits are cleared to 0.

(b) Mode 7

Setting a P1DDR bit to 1 makes the corresponding port 1 pin an output port, while clearing the bit to 0 makes the pin an input port.

(2) Port 1 Data Register (P1DR)

Bit	:	7	6	5	4	3	2	1	0
		P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

P1DR is an 8-bit readable/writable register that stores output data for the port 1 pins (P17 to P10).

P1DR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(3) Port 1 Register (PORT1)

Bit	:	7	6	5	4	3	2	1	0
		P17	P16	P15	P14	P13	P12	P11	P10
Initial value	:	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R
Note: * Determined by the state of pins P17 to P10.									

PORT1 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 1 pins (P17 to P10) must always be performed on P1DR.

If a port 1 read is performed while P1DDR bits are set to 1, the P1DR values are read. If a port 1 read is performed while P1DDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORT1 contents are determined by the pin states, as P1DDR and P1DR are initialized. PORT1 retains its previous state after a manual reset and in software standby mode.

9.2.3 Pin Functions

Port 1 pins also function as TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA0, TIOCB0, TIOCC0, TIOCD0, TIOCA1, TIOCB1, TIOCA2, and TIOCB2), external interrupt input pins ($\overline{IRQ0}$ and $\overline{IRQ1}$), and address output pins (A23 to A20). Port 1 pin functions are shown in table 9-3.

Table 9-3 Port 1 Pin Functions

Pin Pin Functions and Selection Method

P17/ TIOCB2/ TCLKD The pin function is switched as shown below according to the combination of the TPU channel 2 settings (bits MD3 to MD0 in TMDR2, bits IOB3 to IOB0 in TIOR2, and bits CCLR1 and CCLR0 in TCR2), bits TPSC2 to TPSC0 in TCR0 and TCR5, and bit P17DDR.

TPU channel 2 settings	(1) in table below	(2) in table below				
P17DDR	_	0 1				
Pin function	TIOCB2 output	P17 input P17 output				
		TIOCB2 input*1				
		TCLKD input*2				

Notes: *1 TIOCB2 input when MD3 to MD0 = B'0000 or B'01xx and IOB3 = 1.

Also, TCLKD input when channels 2 and 4 are set to phase counting mode.

TPU channel 2 settings	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'C	0000, B'01xx	B'0010	B'0011		
IOB3 to IOB0		B'0001 to B'0011 B'0101 to B'0111		B'xx00	B'xx00 Other than B'xx00	
CCLR1, CCLR0	_	_	_	_	Other than B'10	B'10
Output function	_	Output compare output	_	_	PWM mode 2 output	_

x: Don't care

^{*2} TCLKD input when the setting for either TCR0 or TCR5 is: TPSC2 to TPSC0 = B'111.

P16/ TIOCA2/ IRQ1 The pin function is switched as shown below according to the combination of the TPU channel 2 settings (bits MD3 to MD0 in TMDR2, bits IOA3 to IOA0 in TIOR2, and bits CCLR1 and CCLR0 in TCR2) and bit P16DDR.

TPU channel 2 settings	(1) in table below	(2) in table below				
P16DDR	_	0	1			
Pin function	TIOCA2 output	P16 input	P16 output			
		TIOCA2 input*1				
		ĪRQ1 input*2				

TPU channel 2 settings	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'(0000, B'01xx	B'001x	B'0010	B'0011	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		Other than B'xx00	Other than B'xx00	
CCLR1, CCLR0	_	_	_	_	Other than B'01	B'01
Output function	_	Output compare output	_	PWM mode 1 output*3	PWM mode 2 output	_

x: Don't care

Notes: *1 TIOCA2 input when MD3 to MD0 = B'0000 or B'01xx and IOA3 = 1.

^{*2} When used as an external interrupt pin, do not use for another function.

^{*3} Output is disabled for TIOCB2.

P15/ TIOCB1/ TCLKC The pin function is switched as shown below according to the combination of the TPU channel 1 settings (bits MD3 to MD0 in TMDR1, bits IOB3 to IOB0 in TIOR1, and bits CCLR1 and CCLR0 in TCR1), bits TPSC2 to TPSC0 in TCR0, TCR2, TCR4, and TCR5, and bit P15DDR.

TPU channel 1 settings	(1) in table below	(2) in table below				
P15DDR	_	0	1			
Pin function	TIOCB1 output	P15 input	P15 output			
		TIOCB1 input*1				
		TCLKC input*2				

Notes: *1 TIOCB1 input when MD3 to MD0 = B'0000 or B'01xx and IOB3 to IOB0 = B'10xx.

*2 TCLKC input when the setting for either TCR0 or TCR2 is: TPSC2 to TPSC0 = B'110, or the setting for either TCR4 or TCR5 is: TPSC2 to TPSC0 = B'101.

Also, TCLKC input when channels 2 and 4 are set to phase counting mode.

TPU channel 1 settings	(2)	(1)	(2)	(2)	(1)	(2)	
MD3 to MD0	B'0	0000, B'01xx	B'0010		B'0011		
IOB3 to IOB0		B'0001 to B'0011 B'0101 to B'0111		B'xx00	B'xx00 Other than B'xx00		
CCLR1, CCLR0	_	_	_	_	Other than B'10	B'10	
Output function	_	Output compare output	_	_	PWM mode 2 output	_	

x: Don't care

P14/ TIOCA1/ IRQ0 The pin function is switched as shown below according to the combination of the TPU channel 1 settings (bits MD3 to MD0 in TMDR1, bits IOA3 to IOA0 in TIOR1, and bits CCLR1 and CCLR0 in TCR1) and bit P14DDR.

TPU channel 1 settings	(1) in table below	(2) in table below				
P14DDR	_	0	1			
Pin function	TIOCA1 output	P14 input	P14 output			
		TIOCA1 input*1				
		ĪRQ0 input*2				

TPU channel 1 settings	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0	B'0000, B'01xx		B'0010	B'0011	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		Other than B'xx00	Other than E	3'xx00
CCLR1, CCLR0	_	_	_	_	Other than B'01	B'01
Output function	_	Output compare output	_	PWM mode 1 output*3	PWM mode 2 output	_

x: Don't care

Notes: *1 TIOCA1 input when MD3 to MD0 = B'0000 or B'01xx and IOA3 to IOA0= B'10xx.

- *2 When used as an external interrupt pin, do not use for another function.
- *3 Output is disabled for TIOCB1.

P13/ TIOCD0/ TCLKB/ A23 The pin function is switched as shown below according to the combination of the operating mode, the TPU channel 0 settings (bits MD3 to MD0 in TMDR0, bits IOD3 to IOD0 in TIOR0L, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in TCR0 to TCR2, bits AE3 to AE0 in PFCR, and bit P13DDR.

Operating mode	Modes 4, 5, 6				Мо	de 7	
AE3 to AE0	Other than B'1111			B'1111	_		
TPU channel 0 settings	(1) in table below	(2) in table below		_	(1) in table below	(2) in table below	
P13DDR	_	0	1	_	_	0	1
Pin function	TIOCD0 output	P13 input	P13 output	_	TIOCD0 output	P13 input	P13 output
		TIOCD0 input*1		_			CD0 ut* ¹
	TCLKB	input* ²	!	A23 output	TCLKB	input* ²	!

Notes: *1 TIOCD0 input when MD3 to MD0 = B'0000 and IOD3 to IOD0 = B'10xx.

*2 TCLKB input when the setting for any of TCR0 to TCR2 is: TPSC2 to TPSC0 = B'101.

Also, TCLKB input when channels 1 and 5 are set to phase counting mode.

TPU channel 0 settings	(2)	(1)	(2)	(2)	(1)	(2)	
MD3 to MD0		B'0000	B'0010		B'0011		
IOD3 to IOD0		B'0001 to B'0011 B'0101 to B'0111		B'xx00	Other than B'xx00		
CCLR2 to CCLR0	_	_	_	_	Other than B'110	B'110	
Output function	_	Output compare output	_	_	PWM mode 2 output	_	

x: Don't care

P12/ TIOCC0/ TCLKA/ A22 The pin function is switched as shown below according to the combination of the operating mode, the TPU channel 0 settings (bits MD3 to MD0 in TMDR0, bits IOC3 to IOC0 in TIOR0L, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in TCR0 to TCR5, bits AE3 to AE0 in PFCR, and bit P12DDR.

Operating mode	Modes 4, 5, 6				Мо	de 7	
AE3 to AE0	Other than B'1111			B'1111	_		
TPU channel 0 settings	(1) in table below	(2) in table below		_	(1) in table below	(2) in table below	
P12DDR	_	0 1		_	_	0	1
Pin function	TIOCC0 output	P12 input	P12 output	_	TIOCC0 output	P12 input	P12 output
		TIOCC0 input*1		_		_	CC0 ut* ¹
	TCLKA	input* ²	!	A22 output	TCLKA	input* ²	!

TPU channel 0 settings	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0		B'0000	B'001x	B'0010	B'0011	
IOC3 to IOC0	B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 B'1xxx			Other than B'xx00	Other than B'xx00	
CCLR2 to CCLR0	_	_	_	_	Other than B'101	B'101
Output function	_	Output compare output	_	PWM mode 1 output*3	PWM mode 2 output	_

x: Don't care

Notes: *1 TIOCC0 input when MD3 to MD0 = B'0000 and IOC3 to IOC0 = B'10xx.

*2 TCLKA input when the setting for any of TCR0 to TCR5 is: TPSC2 to TPSC0 = B'100.

Also, TCLKA input when channels 1 and 5 are set to phase counting mode.

*3 Output is disabled for TIOCD0.

When BFA = 1 or BFB = 1 in TMDR0, output is disabled and the settings in (2) apply.

P11/ TIOCB0/ A21 The pin function is switched as shown below according to the combination of the operating mode, the TPU channel 0 settings (bits MD3 to MD0 in TMDR0 and bits IOB3 to IOB0 in TIOR0H), bits AE3 to AE0 in PFCR, and bit P11DDR.

Operating mode	Modes 4, 5, 6				Мо	de 7	
AE3 to AE0	Other than B'111x B'111x				_	_	
TPU channel 0 settings	(1) in table below	(2) in table below		_	(1) in table below	(2) in table below	
P11DDR	_	0	1	_	_	0 1	
Pin function	TIOCB0 output	P11 P11 input output		_	TIOCB0 output	P11 input	P11 output
		_	CB0 ut*	A21 output		_	CB0 ut*

Note: *TIOCB0 input when MD3 to MD0 = B'0000 and IOB3 to IOB0 = B'10xx.

TPU channel 0 settings	(2)	(1)	(2)	(2)	(1)	(2)	
MD3 to MD0		B'0000	B'0010		B'0011		
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		B'xx00	0ther than B'xx00		
CCLR2 to CCLR0 —		_	_	_	Other than B'010	B'010	
Output function	_	Output compare output	_	_	PWM mode 2 output	_	

x: Don't care

P10/ TIOCA0/ A20 The pin function is switched as shown below according to the combination of the operating mode, the TPU channel 0 settings (bits MD3 to MD0 in TMDR0, bits IOA3 to IOA0 in TIOR0H, and bits CCLR2 to CCLR0 in TCR0), bits AE3 to AE0 in PFCR, and bit P10DDR.

Operating mode	Мо	des 4, 5	5, 6		Mode 7			
AE3 to AE0	Other than (B'1	101 or	B'111x)	B'1101	_			
				or B'111x				
TPU channel 0	(1)	(2)		_	(1)	(2)		
settings	in table below	in table	e below		in table below	in table	e below	
P10DDR	_	0	1	_	_	0	1	
Pin function	TIOCA0 output	P10 input	P10 output	_	TIOCA0 output	P10 input	P10 output	
		_	TIOCA0 input* ¹			_	CA0 ut* ¹	

TPU channel 0 settings	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0		B'0000	B'001x	B'0010	B'0011	
IOA3 to IOA0		B'0001 to B'0011 B'0101 to B'0111		Other than B'xx00	Other than E	3'xx00
CCLR2 to CCLR0		_	1	1	Other than B'001	B'001
Output function	_	Output compare output		PWM mode 1 output*2	PWM mode 2 output	_

x: Don't care

Notes: *1 TIOCA0 input when MD3 to MD0 = B'0000 and IOA3 to IOA0 = B'10xx.

*2 Output is disabled for TIOCB0.

9.3 Port 3

9.3.1 Overview

Port 3 is a 7-bit I/O port. Port 3 pins also function as SCI I/O pins (TxD0, RxD0, SCK0, TxD1, RxD1, and SCK1), I²C bus interface I/O pins (SCL0, SDA0, SCL1, SDA1), and external interrupt input pins ($\overline{IRQ4}$ and $\overline{IRQ5}$). Port 3 pin functions are the same in all operating modes.

The interrupt input pins ($\overline{IRQ4}$ and $\overline{IRQ5}$) are Schmitt-triggered inputs.

The output type of P34, P35, and SCK1 is NMOS push-pull. The output type of SCL0 and SDA0 is open-drain.

Figure 9-2 shows the port 3 pin configuration.

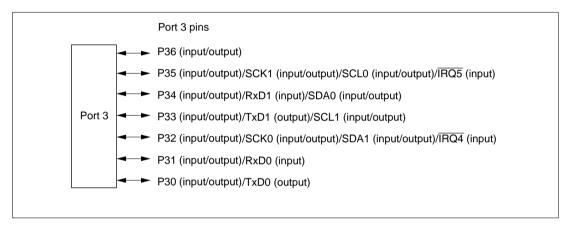


Figure 9-2 Port 3 Pin Functions

9.3.2 Register Configuration

Table 9-4 shows the port 3 register configuration.

Table 9-4 Port 3 Registers

Name	Abbreviation	R/W	Initial Value*2	Address*1
Port 3 data direction register	P3DDR	W	H'00	H'FE32
Port 3 data register	P3DR	R/W	H'00	H'FF02
Port 3 register	PORT3	R	H'00	H'FFB2
Port 3 open-drain control register	P3ODR	R/W	H'00	H'FE46

Notes: *1 Lower 16 bits of the address.

(1) Port 3 Data Direction Register (P3DDR)

Bit	:	7	6	5	4	3	2	1	0
		_	P36DDR	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR
Initial value	:	Undefined	0	0	0	0	0	0	0
R/W	:	_	W	W	W	W	W	W	W

P3DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 3. P3DDR cannot be read; if it is, an undefined value will be returned. Bit 7 is reserved; this bit cannot be modified and will return an undefined value if read.

Setting a P3DDR bit to 1 makes the corresponding port 3 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P3DDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode. As the SCI is initialized by a manual reset, the pin states in this case are determined by the P3DDR and P3DR specifications.

^{*2} Value of bits 6 to 0.

(2) Port 3 Data Register (P3DR)

Bit	:	7	6	5	4	3	2	1	0
		_	P36DR	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR
Initial value	:	Undefined	0	0	0	0	0	0	0
R/W	:	_	R/W						

P3DR is an 8-bit readable/writable register that stores output data for the port 3 pins (P36 to P30). Bit 7 is reserved; this bit cannot be modified and will return an undefined value if read.

P3DR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(3) Port 3 Register (PORT3)

Bit	:	7	6	5	4	3	2	1	0
		_	P36	P35	P34	P33	P32	P31	P30
Initial value	:	Undefined	*	*	*	*	*	*	*
R/W	:	_	R	R	R	R	R	R	R

Note: * Determined by the state of pins P36 to P30.

PORT3 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 3 pins (P36 to P30) must always be performed on P3DR. Bit 7 is reserved; this bit cannot be modified and will return an undefined value if read.

If a port 3 read is performed while P3DDR bits are set to 1, the P3DR values are read. If a port 3 read is performed while P3DDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORT3 contents are determined by the pin states, as P3DDR and P3DR are initialized. PORT3 retains its previous state after a manual reset and in software standby mode.

(4) Port 3 Open-Drain Control Register (P3ODR)

Bit	:	7	6	5	4	3	2	1	0
		_	P36ODR	P35ODR	P34ODR	P33ODR	P32ODR	P31ODR	P30ODR
Initial value	:	Undefined	0	0	0	0	0	0	0
R/W	:	_	R/W						

P3ODR is an 8-bit readable/writable register that controls the PMOS on/off status for each port 3 pin (P36 to P30). Bit 7 is reserved; this bit cannot be modified and will return an undefined value if read.

For port 3 pins P36 and P33 to P30, setting the corresponding P3ODR bit to 1 makes the pin an NMOS open-drain output pin, while clearing the bit to 0 makes the pin a CMOS output pin.

For port 3 pins P35 and P34, setting the corresponding P3ODR bit to 1 makes the pin an NMOS open-drain output pin, while clearing the bit to 0 makes the pin an NMOS push-pull output pin.

P3ODR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

9.3.3 Pin Functions

Port 3 pins also function as SCI I/O pins (TxD0, RxD0, SCK0, TxD1, RxD1, and SCK1), I^2C bus interface I/O pins (SCL0, SDA0, SCL1, SDA1), and interrupt input pins ($\overline{IRQ4}$ and $\overline{IRQ5}$).

As shown in figure 9.3, in the case of the P34, P35, SCL0, and SDA0 type of open-drain output, the bus lines are not affected even if the chip power supply goes down. When using bus lines that have a state in which power is not supplied to the chip, the open-drain output shown in (a) should be used.

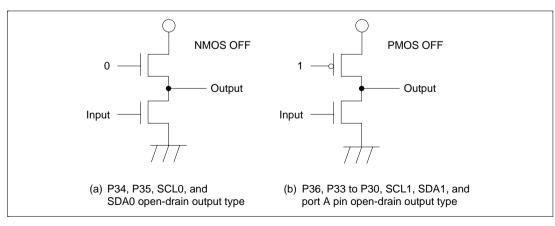


Figure 9-3 Differences in Open-Drain Output Types

Table 9-5 **Port 3 Pin Functions**

P36

Pin Pin Functions and Selection Method

The pin function is switched as shown below according to the setting of the P36DDR bit.

P36DDR	0	1	
Pin function	P36 input	P36 output*	

Note: * NMOS open-drain output when P36ODR = 1.

P35/SCK1/ The pin function is switched as shown below according to the combination of bit ICE in SCL0/IRQ5 ICCR0 of IIC0, bit C/A in SMR of SCI1, bits CKE0 and CKE1 in SCR, and bit P35DDR.

> When this pin is used as the SCL0 I/O pin, bits CKE0 and CKE1 in SCR of SCI1 and bit C/\overline{A} in SMR must all be cleared to 0.

SCL0 is of the NMOS open-drain output type, and has direct bus drive capability.

The output type of this pin when designated as the P35 output pin or SCK1 output pin is NMOS push-pull.

ICE		0					
CKE1				1	0		
C/A		0		1	_	0	
CKE0		0	1	_	_	0	
P35DDR	0	1	_	_	_	_	
Pin function	P35 input	P35 output* ¹	SCK1 output*1	SCK1 output*1	SCK1 input	SCL0 I/O	
		•	ĪRQ5	input*2			

Notes: *1 NMOS open-drain output when P35ODR = 1.

SDA0

P34/RxD1/ The pin function is switched as shown below according to the combination of bit ICE in ICCR0 of IIC0, bit RE in SCR of SCI1, and bit P34DDR.

SDA0 is of the NMOS open-drain output type, and has direct bus drive capability.

The output type of this pin when designated as the P34 output pin is NMOS push-pull.

ICE		0				
RE)	1	_		
P34DDR	0	1	_	_		
Pin function	P34 input	P34 output*	RxD1 input	SDA0 I/O		

Note: * NMOS open-drain output when P34ODR = 1.

^{*2} When used as an external interrupt pin, do not use for another function.

P33/TxD1/ SCL1

The pin function is switched as shown below according to the combination of bit ICE in ICCR1 of IIC1, bit TE in SCR of SCI1, and bit P33DDR. SCL1 is of the NMOS-only output type, and has direct bus drive capability.

ICE		0					
TE		0	1	_			
P33DDR	0	1	_	_			
Pin function	P33 input	P33 output*	TxD1 output*	SCL1 I/O			

Note: * NMOS open-drain output when P33ODR = 1.

P32/SCK0/ The pin function is switched as shown below according to the combination of bit ICE in SDA1/IRQ4 ICCR1 of IIC1, bit C/A in SMR of SCI0, bits CKE0 and CKE1 in SCR, and bit P32DDR.

> When this pin is used as the SDA1 I/O pin, bits CKE0 and CKE1 in SCR of SCI0 and bit C/\overline{A} in SMR must all be cleared to 0.

SDA1 is of the NMOS-only output type, and has direct bus drive capability.

ICE	0				1	
CKE1	0			1	0	
C/A	0			1	_	0
CKE0	0		1	_	_	0
P32DDR	0	1	_	_	_	_
Pin function	P32 input	P32 output* ¹	SCK0 output* ¹	SCK0 output* ¹	SCK0 input	SDA1 I/O
	ĪRQ4 input*2					

Notes: *1 NMOS open-drain output when P32ODR = 1.

P31/RxD0 The pin function is switched as shown below according to the combination of bit RE in SCR of SCI0 and bit P31DDR.

RE		0	1	
P31DDR	0	1	_	
Pin function	P31 input	P31 output*	RxD0 input	

Note: * NMOS open-drain output when P31ODR = 1.

P30/TxD0 The pin function is switched as shown below according to the combination of bit TE in SCR of SCI0 and bit P30DDR.

TE	(1		
P30DDR	0	1	_	
Pin function	P30 input	P30 output*	TxD0 output*	

Note: * NMOS open-drain output when P30ODR = 1.

^{*2} When used as an external interrupt pin, do not use for another function.

9.4 Port 4

9.4.1 Overview

Port 4 is an 8-bit input-only port. Port 4 pins also function as A/D converter analog input pins (AN0 to AN7). Port 4 pin functions are the same in all operating modes. Figure 9-4 shows the port 4 pin configuration.

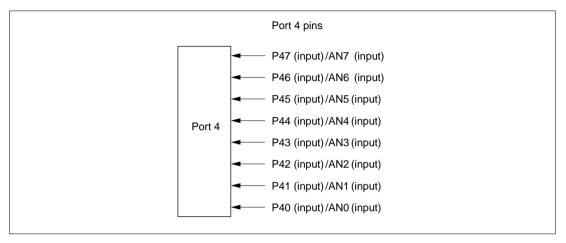


Figure 9-4 Port 4 Pin Functions

9.4.2 Register Configuration

Table 9-6 shows the port 4 register configuration. Port 4 is an input-only register, and does not have a data direction register or data register.

Table 9-6 Port 4 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 4 register	PORT4	R	Undefined	H'FFB3

Note: * Lower 16 bits of the address.

(1) Port 4 Register (PORT4)

Bit 7 3 2 1 6 5 4 0 P47 P46 P45 P44 P43 P42 P41 P40 Initial value __* ___* ___* ___* ___* ___* ___* ___* R/W R R R R R R R R

Note: * Determined by the state of pins P47 to P40.

PORT4 is an 8-bit read-only register. The pin states are always read when a port 4 read is performed. This register cannot be written to.

9.4.3 Pin Functions

Port 4 pins also function as A/D converter analog input pins (AN0 to AN7).

9.5 Port 7

9.5.1 Overview

Port 7 is an 8-bit I/O port. Port 7 pins also function as 8-bit timer I/O pins (TMRI01, TMCI01, TMRI23, TMCI23, TMO0, TMO1, TMO2, and TMO3), bus control output pins ($\overline{CS4}$ to $\overline{CS7}$), SCI I/O pins (SCK3, RxD3, and TxD3), and the manual reset input pin (\overline{MRES}). The functions of pins P77 to P74 are the same in all operating mode, but the functions of pins P73 to P70 depend on the operating mode.

Figure 9-5 shows the port 7 pin configuration.

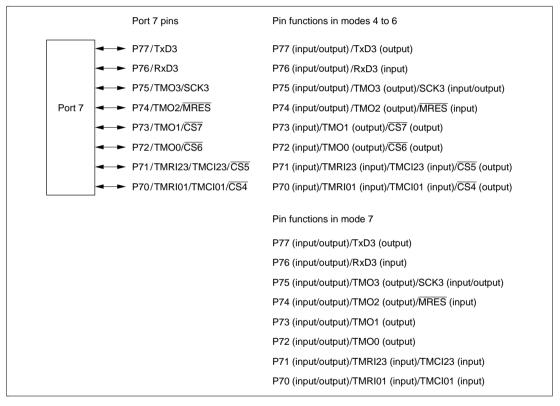


Figure 9-5 Port 7 Pin Functions

9.5.2 Register Configuration

Table 9-7 shows the port 7 register configuration.

Table 9-7 Port 7 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 7 data direction register	P7DDR	W	H'00	H'FE36
Port 7 data register	P7DR	R/W	H'00	H'FF06
Port 7 register	PORT7	R	Undefined	H'FFB6

Note: * Lower 16 bits of the address.

(1) Port 7 Data Direction Register (P7DDR)

Bit	:	7	6	5	4	3	2	1	0
		P77DDR	P76DDR	P75DDR	P74DDR	P73DDR	P72DDR	P71DDR	P70DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P7DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 7. P7DDR cannot be read; if it is, an undefined value will be read.

Setting a P7DDR bit to 1 makes the corresponding port 7 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P7DDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode. As the 8-bit timer and SCI are initialized by a manual reset, the pin states in this case are determined by the P7DDR and P7DR specifications.

(2) Port 7 Data Register (P7DR)

Bit	:	7	6	5	4	3	2	1	0
		P77DR	P76DR	P75DR	P74DR	P73DR	P72DR	P71DR	P70DR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

P7DR is an 8-bit readable/writable register that stores output data for the port 7 pins (P77 to P70).

P7DR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(3) Port 7 Register (PORT7)

Bit	:	7	6	5	4	3	2	1	0
		P77	P76	P75	P74	P73	P72	P71	P70
Initial value	:	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by the state of pins P77 to P70.

PORT7 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 7 pins (P77 to P70) must always be performed on P7DR.

If a port 7 read is performed while P7DDR bits are set to 1, the P7DR values are read. If a port 7 read is performed while P7DDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORT7 contents are determined by the pin states, as P7DDR and P7DR are initialized. PORT7 retains its previous state after a manual reset and in software standby mode.

9.5.3 Pin Functions

Port 7 pins also function as 8-bit timer I/O pins (TMRI01, TMCI01, TMRI23, TMCI23, TMO0, TMO1, TMO2, and TMO3), bus control output pins ($\overline{CS4}$ to $\overline{CS7}$), SCI I/O pins (SCK3, RxD3, and TxD3), and the manual reset input pin (\overline{MRES}). Port 7 pin functions are shown in table 9-8.

Table 9-8 Port 7 Pin Functions

Pin Pin Functions and Selection Method

P77/TxD3 The pin function is switched as shown below according to the combination of bit TE in SCR of SCI3 and bit P77DDR.

TE	(1	
P77DDR	0	1	_
Pin function	P77 input	P77 output	TxD3 output

P76/RxD3 The pin function is switched as shown below according to the combination of bit RE in SCR of SCI3 and bit P76DDR.

RE	()	1	
P76DDR	0	1	_	
Pin function	P76 input	P76 output	RxD3 output	

P75/TMO3/ The pin function is switched as shown below according to the combination of bits OS3 SCK3 to OS0 in TCSR3 of the 8-bit timer, bit C/\overline{A} in SMR of SCI3, bits CKE0 and CKE1 in SCR, and bit P75DDR.

OS3 to OS0		All 0					
CKE1		(0		1	_	
C/A		0		1	_	_	
CKE0		0	1	_	_	_	
P75DDR	0	0 1		_	_	_	
Pin function	in function P75 P75 input output			SCK3 output	SCK3 input	TMO3 output	

 $\frac{\text{P74/TMO2/}}{\text{MRES}} \text{ The pin function is switched as shown below according to the combination of bits OS3} \\ \frac{\text{MRES}}{\text{MRES}} \text{ to OS0 in TCSR2 of the 8-bit timer, bit MRESET in SYSCR, and bit P74DDR.} \\$

MRESE		1		
OS3 to OS0	Al	10	Not all 0	_
P74DDR	0	1	_	0
Pin function	P74 input	P74 output	TMO2 output	MRES input

Pin Pin Functions and Selection Method

CS7

P73/TMO1/ The pin function is switched as shown below according to the combination of the operating mode, bits OS3 to OS0 in TCSR1 of the 8-bit timer, and bit P73DDR.

Operating mode	N	/lodes 4, 5,	6	Mode 7		
OS3 to OS0	All 0 0 1 P73		Not all 0	All 0		Not all 0
P73DDR			_	0	1	_
Pin function			TMO1 output	P73 input	P73 output	TMO1 output

P72/TMO0/ The pin function is switched as shown below according to the combination of the operating mode, bits OS3 to OS0 in TCSR0 of the 8-bit timer, and bit P72DDR. CS6

Operating mode	N	Modes 4, 5,	6	Mode 7		
OS3 to OS0	All 0 0 1		Not all 0	All 0		Not all 0
P72DDR			_	0	1	_
Pin function	P72 input	CS6 output	TMO0 output	P72 input	P72 output	TMO0 output

P71/ TMRI23/ TMCI23/ CS5

The pin function is switched as shown below according to the combination of the operating mode and bit P71DDR.

Operating mode	Modes	4, 5, 6	Mode 7			
P71DDR	0	1	0	1		
Pin function	P71 input	CS5 output	P71 input	P71 output		
		TMRI23, TI	MCI23 input			

P70/ TMRI01/ TMCI01/ CS4

The pin function is switched as shown below according to the combination of the operating mode and bit P70DDR.

Operating mode	Modes	4, 5, 6	Mode 7		
P70DDR	0	1	0	1	
Pin function	P70 input	CS4 output	P70 input	P70 output	
	TMRI01, TMCI01 input				

9.6 Port 9

9.6.1 Overview

Port 9 is a 2-bit input-only port. Port 9 pins also function as D/A converter analog output pins (DA0 and DA1). Port 9 pin functions are the same in all operating modes. Figure 9-6 shows the port 9 pin configuration.

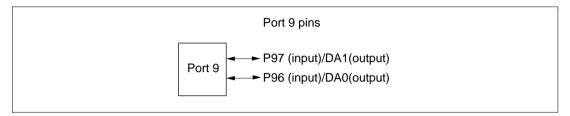


Figure 9-6 Port 9 Pin Functions

9.6.2 Register Configuration

Table 9-9 shows the port 9 register configuration. Port 9 is an input-only register, and does not have a data direction register or data register.

Table 9-9 Port 9 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 9 register	PORT9	R	Undefined	H'FFB8

Note: * Lower 16 bits of the address.

(1) Port 9 Register (PORT9)

Bit	:	7	6	5	4	3	2	1	0
		P97	P96				_		_
Initial value	:	*	*	_	_	_	_		_
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by the state of pins P97 to P96.

PORT9 is an 8-bit read-only register. The pin states are always read when a port 9 read is performed. This register cannot be written to. Bits 5 to 0 are reserved, and will return an undefined value if read.

9.6.3 Pin Functions

Port 9 pins also function as D/A converter analog output pins (DA0 and DA1).

9.7 Port A

9.7.1 Overview

Port A is an 8-bit I/O port. Port A pins also function as address bus outputs and SCI2 I/O pins (SCK2, RxD2, and TxD2). The pin functions depend on the operating mode.

Port A has a built-in MOS input pull-up function that can be controlled by software.

Figure 9-7 shows the port A pin configuration.

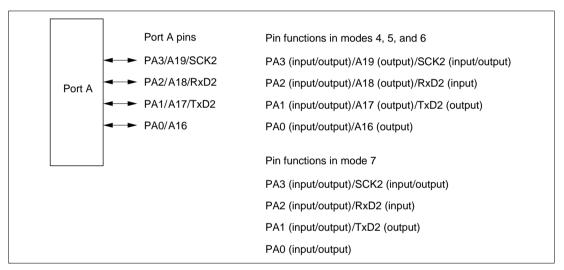


Figure 9-7 Port A Pin Functions

9.7.2 Register Configuration

Table 9-10 shows the port A register configuration.

Table 9-10 Port A Registers

Name	Abbreviation	R/W	Initial Value*2	Address*1
Port A data direction register	PADDR	W	H'0	H'FE39
Port A data register	PADR	R/W	H'0	H'FF09
Port A register	PORTA	R	Undefined	H'FFB9
Port A MOS pull-up control register	PAPCR	R/W	H'0	H'FE40
Port A open-drain control register	PAODR	R/W	H'0	H'FE47

Notes: *1 Lower 16 bits of the address.

(1) Port A Data Direction Register (PADDR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	PA3DDR	PA2DDR	PA1DDR	PA0DDR
Initial value	:	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W	:	_	_	_	_	W	W	W	W

PADDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port A. PADDR cannot be read; if it is, an undefined value will be read.

Bits 7 to 4 are reserved; these bits cannot be modified and will return an undefined value if read.

PADDR is initialized to H'0 (bits 3 to 0) by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

(a) Modes 4, 5, and 6

If address output is enabled by the setting of bits AE3 to AE0 in PFCR, the corresponding port A pins are address outputs.

When address output is disabled, setting a PADDR bit to 1 makes the corresponding port A pin an output port, while clearing the bit to 0 makes the pin an input port.

(b) Mode 7

Setting a PADDR bit to 1 makes the corresponding port A pin an output port, while clearing the bit to 0 makes the pin an input port.

^{*2} Value of bits 3 to 0.

(2) Port A Data Register (PADR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	PA3DR	PA2DR	PA1DR	PA0DR
Initial value	:	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W

PADR is an 8-bit readable/writable register that stores output data for the port A pins (PA3 to PA0).

Bits 7 to 4 are reserved; these bits cannot be modified and will return an undefined value if read.

PADR is initialized to H'0 (bits 3 to 0) by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(3) Port A Register (PORTA)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	PA3	PA2	PA1	PA0
Initial value	:	Undefined	Undefined	Undefined	Undefined	*	*	*	*
R/W	:	_	_	_	_	R	R	R	R

Note: * Determined by the state of pins PA3 to PA0.

PORTA is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port A pins (PA3 to PA0) must always be performed on PADR.

Bits 7 to 4 are reserved; these bits cannot be modified and will return an undefined value if read.

If a port A read is performed while PADDR bits are set to 1, the PADR values are read. If a port A read is performed while PADDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORTA contents are determined by the pin states, as PADDR and PADR are initialized. PORTA retains its previous state after a manual reset and in software standby mode.

(4) Port A MOS Pull-Up Control Register (PAPCR)

Bit	:	7	6	5	4	3	2	1	0
		_		_	_	PA3PCR	PA2PCR	PA1PCR	PA0PCR
Initial value	:	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W	:		_	_		R/W	R/W	R/W	R/W

PAPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port A on a bit-by-bit basis.

Bits 7 to 4 are reserved; these bits cannot be modified and will return an undefined value if read.

PAPCR is valid for port input and SCI input pins. When a PADDR bit is cleared to 0 (input port setting), setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PAPCR is initialized to H'0 (bits 3 to 0) by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(5) Port A Open-Drain Control Register (PAODR)

Bit	:	7	6	5	4	3	2	1	0
		_		_	_	PA3ODR	PA2ODR	PA10DR	PA0ODR
Initial value	:	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W

PAODR is an 8-bit readable/writable register that controls the PMOS on/off status for each port A pin (PA3 to PA0).

Bits 7 to 4 are reserved; these bits cannot be modified and will return an undefined value if read.

PAODR is valid for port output and SCI output pins.

Setting a PAODR bit to 1 makes the corresponding port A pin an NMOS open-drain output pin, while clearing the bit to 0 makes the pin a CMOS output pin.

PAODR is initialized to H'0 (bits 3 to 0) by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

9.7.3 Pin Functions

Port A pins also function as SCI2 I/O pins (TxD2, RxD2, and SCK2) and address output pins (A19 to A16). Port A pin functions are shown in table 9-11.

Table 9-11 Port A Pin Functions

Pin Pin Functions and Selection Method

PA3/A19/ SCK2 The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, SCI channel 2 settings, and bit PA3DDR.

Operating mode		Modes 4 to 6									
AE3 to AE0	11xx	Other than 11xx									
CKE1	_		0 1								
C/A	_		0 1 —								
CKE0	_	()	1	_	_					
PA3DDR	_	0	0 1 — —								
Pin function	A19 output	9 output PA3 input PA3 SCK2 SCK2 SC output* output* output* in									

Operating mode			Mode 7		
AE3 to AE0			_		
CKE1		()		1
C/A		0		1	_
CKE0		0	1	_	_
PA3DDR	0	1	_	_	_
Pin function	PA3 input	PA3 output*	SCK2 output*	SCK2 output*	SCK2 input

Note: *NMOS open-drain output when PA3ODR = 1 in PAODR.

PA2/A18/ RxD2 The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, SCI channel 2 settings, and bit PA2DDR.

Operating mode		Modes	s 4 to 6		Mode 7		
AE3 to AE0	1011 or 11xx	Other th	nan (1011	or 11xx)		_	
RE	_	(0 1			0	1
PA2DDR	_	0	1	_	0	1	_
Pin function	A18 output	PA2 input	PA2 output*	RxD2 input	PA2 input	PA2 output*	RxD2 input

x: Don't care

Note: * NMOS open-drain output when PA2ODR = 1 in PAODR.

Pin Pin Functions and Selection Method

PA1/A17/ TxD2

The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, SCI channel 2 settings, and bit PA1DDR.

Operating mode		Modes	s 4 to 6		Mode 7		
AE3 to AE0	101x or 11xx	Other th	nan (101x	or 11xx)		_	
TE	_	()	1	()	1
PA1DDR	_	0	1	_	0	1	_
Pin function	A17 output	PA1 input	PA1 output*	TxD2 output*	PA1 input	PA1 output*	TxD2 output*

Note: * NMOS open-drain output when PA1ODR = 1 in PAODR.

PA0/A16

The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, and bit PA0DDR.

Operating mode	Мо	des 4 to 6		Mode 7		
AE3 to AE0	Other than (0xxx or 1000)	0xxx o	r 1000	_	_	
PA0DDR	_	0	1	0	1	
Pin function	A16 output	PA0 input	PA0 output*	PA0 input	PA0 output*	

x: Don't care

Note: * NMOS open-drain output when PA0ODR = 1 in PAODR.

9.7.4 MOS Input Pull-Up Function

Port A has a built-in MOS input pull-up function that can be controlled by software. MOS input pull-up can be specified as on or off for individual bits.

With port input and SCI input pins, when a PADDR bit is cleared to 0, setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset and in hardware standby mode. The previous state is retained after a manual reset and in software standby mode.

Table 9-12 summarizes the MOS input pull-up states.

Table 9-12 MOS Input Pull-Up States (Port A)

Pins	Power-On Reset	Hardware Standby Mode	Manual Reset	Software Standby Mode	In Other Operations
Address output, port output, SCI output	OFF	OFF	OFF	OFF	OFF
Port input, SCI input	OFF	OFF	ON/OFF	ON/OFF	ON/OFF

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PADDR = 0 and PAPCR = 1: otherwise off.

9.8 Port B

9.8.1 Overview

Port B is an 8-bit I/O port. Port B pins also function as TPU I/O pins (TIOCA3, TIOCB3, TIOCC3, TIOCD3, TIOCA4, TIOCB4, TIOCA5, and TIOCB5) and address bus outputs. The pin functions depend on the operating mode.

Port B has a built-in MOS input pull-up function that can be controlled by software.

Figure 9-8 shows the port B pin configuration.

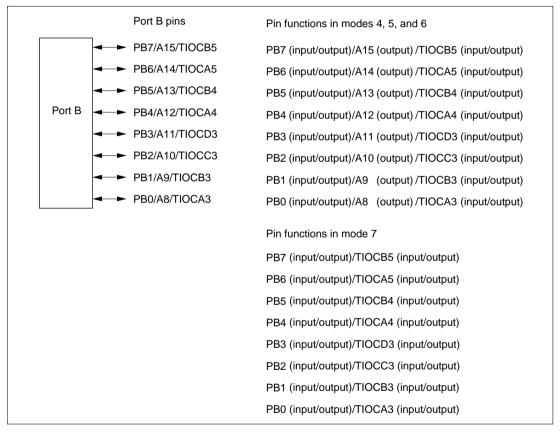


Figure 9-8 Port B Pin Functions

9.8.2 Register Configuration

Table 9-13 shows the port B register configuration.

Table 9-13 Port B Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port B data direction register	PBDDR	W	H'00	H'FE3A
Port B data register	PBDR	R/W	H'00	H'FF0A
Port B register	PORTB	R	Undefined	H'FFBA
Port B MOS pull-up control register	PBPCR	R/W	H'00	H'FE41

Note: * Lower 16 bits of the address.

(1) Port B Data Direction Register (PBDDR)

Bit	:	7	6	5	4	3	2	1	0
		PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PBDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port B. PBDDR cannot be read; if it is, an undefined value will be read.

PBDDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

(a) Modes 4, 5, and 6

If address output is enabled by the setting of bits AE3 to AE0 in PFCR, the corresponding port B pins are address outputs.

When address output is disabled, setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

(b) Mode 7

Setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

(2) Port B Data Register (PBDR)

Bit	:	7	6	5	4	3	2	1	0
		PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PBDR is an 8-bit readable/writable register that stores output data for the port B pins (PB7 to PB0).

PBDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(3) Port B Register (PORTB)

Bit	:	7	6	5	4	3	2	1	0
		PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Initial value	:	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R
N-4 * D-4				DD7 4- I	200				

Note: * Determined by the state of pins PB7 to PB0.

PORTB is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port B pins (PB7 to PB0) must always be performed on PBDR.

If a port B read is performed while PBDDR bits are set to 1, the PBDR values are read. If a port B read is performed while PBDDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORTB contents are determined by the pin states, as PBDDR and PBDR are initialized. PORTB retains its previous state after a manual reset and in software standby mode.

(4) Port B MOS Pull-Up Control Register (PBPCR)

Bit	:	7	6	5	4	3	2	1	0
		PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PBPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port B on a bit-by-bit basis.

PBPCR is valid for port input and TPU input pins.

When a PBDDR bit is cleared to 0 (input port setting), setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PBPCR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

9.8.3 Pin Functions

Port B pins also function as TPU I/O pins (TIOCA3, TIOCB3, TIOCC3, TIOCD3, TIOCA4, TIOCB4, TIOCA5, and TIOCB5) and address output pins (A15 to A8). Port B pin functions are shown in table 9-14.

Table 9-14 Port B Pin Functions

Pin Pin Functions and Selection Method

PB7/A15/ TIOCB5 The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, TPU channel 5 settings (bits MD3 to MD0 in TMDR5, bits IOB3 to IOB0 in TIOR5, and bits CCLR1 and CCLR0 in TCR5) and bit PB7DDR.

Operating mode	Modes 4 to 6					
AE3 to AE0 in PFCR	B'1xxx	Other than B'1xxx				
TPU channel 5 settings	_	(1) in table below	(2) in table below			
PB7DDR	_	_	0	1		
Pin function	A15 output	TIOCB5 output	PB7 input PB7 output			
			TIOCB5 input*			

Operating mode	Mode 7				
AE3 to AE0 in PFCR	_				
TPU channel 5 settings	(1) in table below	(2) in table below			
PB7DDR	_	0 1			
Pin function	TIOCB5 output	PB7 input PB7 output			
		TIOCB5 input*			

Note: *TIOCB5 input when MD3 to MD0 = B'0000 or B'01xx and IOB3 = 1.

TPU channel 5 settings	(2)	(1)	(2)
MD3 to MD0	B'0000	, B'01xx	B'0010
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_
CCLR1 to CCLR0	_	_	_
Output pin	_	Output compare output	_

TPU channel 5 settings	(2)	(1)	(2)		
MD3 to MD0	B'0011				
IOB3 to IOB0	B'xx00	Other than B'xx00			
CCLR1 to CCLR0	_	Other than B'10	B'10		
Output pin	_	PWM mode 2 output	_		

x: Don't care

PB6/A14/ TIOCA5

The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, TPU channel 5 settings (bits MD3 to MD0 in TMDR5, bits IOA3 to IOA0 in TIOR5, and bits CCLR1 and CCLR0 in TCR5) and bit PB6DDR.

Operating mode	Modes 4 to 6					
AE3 to AE0 in PFCR	B'0111 or B'1xxx	Other than (B'0111 or B'1xxx)				
TPU channel 5 settings	_	(1) in table below	(1) (2) in table below			
PB6DDR	_	_	0	1		
Pin function	A14 output	TIOCA5 output	PB6 input PB6 output			
		TIOCA5 input				

Operating mode	Mode 7			
AE3 to AE0 in PFCR	_			
TPU channel 5 settings	(1) in table below	(2) in table below		
PB6DDR	_	0 1		
Pin function	TIOCA5 output	PB6 input PB6 output		
•		TIOCA5 input*1		

TPU channel 5 settings	(2)	(1)	(2)
MD3 to MD0	B'0000, B'01xx		B'0010
IOA3 to IOA0	B'0000 B'0001 to B'0011 B'0100 B'0101 to B'0111 B'1xxx		B'xx00
CCLR1 to CCLR0		_	
Output pin	_	Output compare output	_

TPU channel 5 settings	(1)	(1)	(2)	
MD3 to MD0	B'0010	B'0011		
IOA3 to IOA0	Other than B'xx00			
CCLR1 to CCLR0	— Other than B'01 B'10			
Output pin	PWM mode 1 output* ²	PWM mode 2 output	_	

x: Don't care

Notes: *1 TIOCA5 input when MD3 to MD0 = B'0000 or B'01xx and IOA3 = 1.

*2 Output is disabled for TIOCA5.

Pin Pin Functions and Selection Method

PB5/A13/ TIOCB4 The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, TPU channel 4 settings (bits MD3 to MD0 in TMDR4, bits IOB3 to IOB0 in TIOR4, and bits CCLR1 and CCLR0 in TCR4) and bit PB5DDR.

	- ,			
Operating mode	Modes 4 to 6			
AE3 to AE0 in PFCR	B'011x or Other than (B'011x or B'1xxx) B'1xxx			
TPU channel 4 settings	_	(1) (2) in table below		,
PB5DDR	_	_	0 1	
Pin function	A13 output	TIOCB4 output PB5 input PB5 output		PB5 output
		TIOCB4 input*		4 input*

Operating mode	Mode 7			
AE3 to AE0 in PFCR	_			
TPU channel 4 settings	(1) in table below	(2) in table below		
PB5DDR	_	0 1		
Pin function	TIOCB4 output	PB5 input PB5 output		
		TIOCB4 input*		

Note: *TIOCB4 input when MD3 to MD0 = B'0000 or B'01xx and IOB3 to IOB0 = B'10xx.

TPU channel 4 settings	(2)	(1)	(2)
MD3 to MD0	B'0000, B'01xx		B'0010
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_
CCLR1 to CCLR0	_	_	_
Output pin	_	Output compare output	_

TPU channel 4 settings	(2)	(1)	(2)	
MD3 to MD0	B'0011			
IOB3 to IOB0	B'xx00	Other than B'xx00		
CCLR1 to CCLR0	_	Other than B'10 B'10		
Output pin	_	PWM mode 2 output	_	

x: Don't care

PB4/A12/ TIOCA4

The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, TPU channel 4 settings (bits MD3 to MD0 in TMDR4, bits IOA3 to IOA0 in TIOR4, and bits CCLR1 and CCLR0 in TCR4) and bit PB4DDR.

Operating made	Modes 4 to 6					
Operating mode		Modes 4 to 6				
AE3 to AE0 in PFCR		Other than (B'0100 or B'00xx)				
TPU channel 4 settings	(1) in table below	(2) in tab	_			
PB4DDR	_	0				
Pin function	TIOCA4 output	PB4 input	A12 output			
		TIOCA4				

Operating mode	Mode 7			
AE3 to AE0 in PFCR	_			
TPU channel 4 settings	(1) in table below	(2) in table below		
PB4DDR	_	0 1		
Pin function	TIOCA4 output	PB4 input PB4 output		
		TIOCA4 input*1		

TPU channel 4 settings	(2)	(1)	(2)
MD3 to MD0	B'0000	B'001x	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00
CCLR2 to CCLR0	<u> </u>	_	
Output pin	_	Output compare output	_

TPU channel 4 settings	(1)	(1)	(2)	
MD3 to MD0	B'0010	B'0011		
IOA3 to IOA0	Other than B'xx00			
CCLR1 to CCLR0	Other than B'01 B'01			
Output pin	PWM mode 1 output* ²	PWM mode 2 output	_	

x: Don't care

Notes: *1 TIOCA4 input when MD3 to MD0 = B'0000 or B'01xx and IOA3 to IOA0 = B'10xx.

*2 Output is disabled for TIOCB4.

Pin Pin Functions and Selection Method

PB3/A11/ TIOCD3 The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, TPU channel 3 settings (bits MD3 to MD0 in TMDR3, bits IOD3 to IOD0 in TIOR3L, and bits CCLR2 to CCLR0 in TCR3) and bit PB3DDR.

Operating mode	Modes 4 to 6			
AE3 to AE0 in PFCR		Other than B'00xx		
TPU channel 3 settings	(1) in table below	(2) in tab	_	
PB3DDR	_	0	_	
Pin function	TIOCD3 output	PB3 input	A11 output	
		TIOCD		

Operating mode	Mode 7			
AE3 to AE0 in PFCR	_			
TPU channel 3 settings	(1) in table below	(2) in table below		
PB3DDR	_	0 1		
Pin function	TIOCD3 output	PB3 input PB3 output		
		TIOCD3 input*		

Note: *TIOCD3 input when MD3 to MD0 = B'0000 and IOD3 to IOD0 = B'10xx.

TPU channel 3 settings	(2)	(1)	(2)
MD3 to MD0	B'0	B'0010	
IOD3 to IOD0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	1
CCLR2 to CCLR0	_	_	_
Output pin	_	Output compare output	_

TPU channel 3 settings	(2)	(1)	(2)	
MD3 to MD0	B'0011			
IOD3 to IOD0	B'xx00	Other than B'xx00		
CCLR2 to CCLR0	_	Other than B'110 B'110		
Output pin	_	PWM mode 2 output	_	

x: Don't care

PB2/A10/ TIOCC3

The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, TPU channel 3 settings (bits MD3 to MD0 in TMDR3, bits IOC3 to IOC0 in TIOR3L, and bits CCLR2 to CCLR0 in TCR3) and bit PB2DDR.

Operating mode	Modes 4 to 6			
AE3 to AE0 in PFCR		B'0010 or B'000x		
TPU channel 3 settings	(1) in table below	(2) in tab	_	
PB2DDR	_	0	_	
Pin function	TIOCC3 output	PB2 input	A10 output	
		TIOCC		

Operating mode	Mode 7			
AE3 to AE0 in PFCR	_			
TPU channel 3 settings	(1) in table below	(2) in table below		
PB2DDR	_	0 1		
Pin function	TIOCC3 output	PB2 input PB2 output		
		TIOCC3 input*1		

TPU channel 3 settings	(2)	(1)	(2)
MD3 to MD0	B'0	B'001x	
IOC3 to IOC0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00
CCLR2 to CCLR0	_	_	_
Output pin	_	Output compare output	_

TPU channel 3 settings	(1)	(1)	(2)	
MD3 to MD0	B'0010	B'0011		
IOC3 to IOC0	Other than B'xx00			
CCLR2 to CCLR0	Other than B'101 B'101			
Output pin	PWM mode 1 output* ²	PWM mode 2 output	_	

x: Don't care

Notes: *1 TIOCC3 input when MD3 to MD0 = B'0000 and IOC3 to IOC0 = B'10xx.

*2 Output is disabled for TIOCD3.

Pin Pin Functions and Selection Method

PB1/A9/ TIOCB3 The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, TPU channel 3 settings (bits MD3 to MD0 in TMDR3, bits IOB3 to IOB0 in TIOR3H, and bits CCLR2 to CCLR0 in TCR3) and bit PB1DDR.

Operating mode	Modes 4 to 6			
AE3 to AE0 in PFCR		Other than B'000x		
TPU channel 3 settings	(1) in table below	(2) in tab	_	
PB1DDR	_	0		
Pin function	TIOCB3 output	PB1 input	A9 output	
		TIOCB3 input*		

Operating mode	Mode 7			
AE3 to AE0 in PFCR	_			
TPU channel 3 settings	(1) in table below	(2) in table below		
PB1DDR	_	0 1		
Pin function	TIOCB3 output	PB1 input PB1 output		
		TIOCB3 input*		

Note: *TIOCB3 input when MD3 to MD0 = B'0000 and IOB3 to IOB0 = B'10xx.

TPU channel 3 settings	(2)	(1)	(2)
MD3 to MD0	B'0	B'0010	
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	I
CCLR2 to CCLR0	_	_	_
Output pin	_	Output compare output	_

TPU channel 3 settings	(2)	(1)	(2)	
MD3 to MD0	B'0011			
IOB3 to IOB0	B'xx00	Other than B'xx00		
CCLR2 to CCLR0	_	Other than B'010	B'010	
Output pin	_	PWM mode 2 output	_	

x: Don't care

PB0/A8/ TIOCA3

The pin function is switched as shown below according to the combination of the operating mode, PFCR setting, TPU channel 3 settings (bits MD3 to MD0 in TMDR3, bits IOA3 to IOA0 in TIOR3H, and bits CCLR2 to CCLR0 in TCR3) and bit PB1DDR.

Operating mode	Modes 4 to 6				
AE3 to AE0 in PFCR		Other than B'0000			
TPU channel 3 settings	(1) in table below	(2) in tab	_		
PB0DDR	_	0	_		
Pin function	TIOCA3 output	PB0 input	A8 output		
		TIOCAS			

Operating mode	Mode 7					
AE3 to AE0 in PFCR	-					
TPU channel 3 settings	(1) in table below	(2) in table below				
PB0DDR	_	0	1			
Pin function	TIOCA3 output	PB0 input PB0 output				
		TIOCA3 input*1				

TPU channel 3 settings	(2)	(1)	(2)
MD3 to MD0	B'0	B'001x	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0000 to B'0011 B'0101 to B'0111	B'xx00
CCLR2 to CCLR0	_	_	_
Output pin	_	Output compare output	_

TPU channel 3 settings	(1)	(1)	(2)		
MD3 to MD0	B'0010	B'0011			
IOA3 to IOA0	Other than B'xx00				
CCLR2 to CCLR0	_	Other than B'001	B'001		
Output pin	PWM mode 1 output*2	PWM mode 2 output	_		

x: Don't care

Notes: *1 TIOCA3 input when MD3 to MD0 = B'0000 and IOA3 to IOA0 = B'10xx.

*2 Output is disabled for TIOCB3.

9.8.4 MOS Input Pull-Up Function

Port B has a built-in MOS input pull-up function that can be controlled by software. MOS input pull-up can be specified as on or off for individual bits.

With port input and TPU input pins, when a PBDDR bit is cleared to 0, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset and in hardware standby mode. The previous state is retained after a manual reset and in software standby mode.

Table 9-15 summarizes the MOS input pull-up states.

Table 9-15 MOS Input Pull-Up States (Port B)

Pins	Power-On Reset	Hardware Standby Mode	Manual Reset	Software Standby Mode	In Other Operations
Address output, port output, TPU output	OFF	OFF	OFF	OFF	OFF
Port input, TPU input	OFF	OFF	ON/OFF	ON/OFF	ON/OFF

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PBDDR = 0 and PBPCR = 1; otherwise off.

9.9 Port C

9.9.1 Overview

Port C is an 8-bit I/O port. Port C pins also function as address bus outputs. The pin functions depend on the operating mode.

Port C has a built-in MOS input pull-up function that can be controlled by software.

Figure 9-9 shows the port C pin configuration.

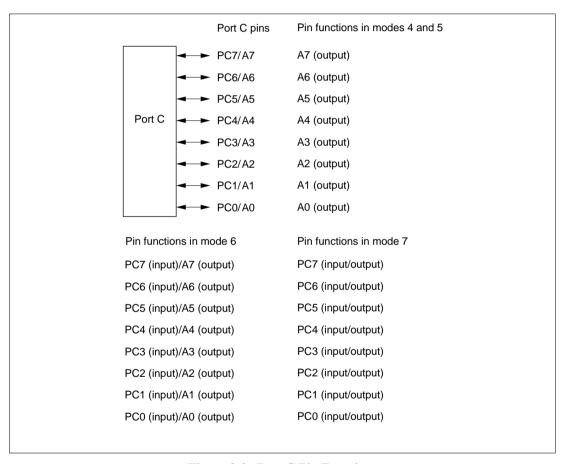


Figure 9-9 Port C Pin Functions

9.9.2 Register Configuration

Table 9-16 shows the port C register configuration.

Table 9-16 Port C Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port C data direction register	PCDDR	W	H'00	H'FE3B
Port C data register	PCDR	R/W	H'00	H'FF0B
Port C register	PORTC	R	Undefined	H'FFBB
Port C MOS pull-up control register	PCPCR	R/W	H'00	H'FE42

Note: * Lower 16 bits of the address.

(1) Port C Data Direction Register (PCDDR)

Bit	:	7	6	5	4	3	2	1	0
		PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PCDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port C. PCDDR cannot be read; if it is, an undefined value will be read.

PCDDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

(a) Modes 4 and 5

Port C pins are address outputs regardless of the PCDDR settings.

(b) Mode 6

Setting a PCDDR bit to 1 makes the corresponding port C pin an address output, while clearing the bit to 0 makes the pin an input port.

(c) Mode 7

Setting a PCDDR bit to 1 makes the corresponding port C pin an output port, while clearing the bit to 0 makes the pin an input port.

(2) Port C Data Register (PCDR)

Bit	:	7	6	5	4	3	2	1	0
		PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PCDR is an 8-bit readable/writable register that stores output data for the port C pins (PC7 to PC0).

PCDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(3) Port C Register (PORTC)

Bit	:	7	6	5	4	3	2	1	0
		PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Initial value	:	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R
Note: * Determined by the state of pins PC7 to PC0.									

PORTC is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port C pins (PC7 to PC0) must always be performed on PCDR.

If a port C read is performed while PCDDR bits are set to 1, the PCDR values are read. If a port C read is performed while PCDDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORTC contents are determined by the pin states, as PCDDR and PCDR are initialized. PORTC retains its previous state after a manual reset and in software standby mode.

(4) Port C MOS Pull-Up Control Register (PCPCR)

Bit	:	7	6	5	4	3	2	1	0
		PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PCPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port C on a bit-by-bit basis.

PCPCR is valid for port input (modes 6 and 7).

When a PCDDR bit is cleared to 0 (input port setting), setting the corresponding PCPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PCPCR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

9.9.3 Pin Functions in Each Mode

(1) Modes 4 and 5

In modes 4 and 5, port C pins function as address outputs automatically. Port C pin functions in modes 4 and 5 are shown in figure 9-10.

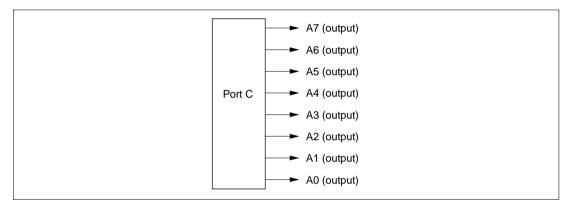


Figure 9-10 Port C Pin Functions (Modes 4 and 5)

(2) Mode 6

In mode 6, port C pins function as address outputs or input ports, and input or output can be specified bit by bit. Setting a PCDDR bit to 1 makes the corresponding port C pin an address output, while clearing the bit to 0 makes the pin an input port.

Port C pin functions in mode 6 are shown in figure 9-11.

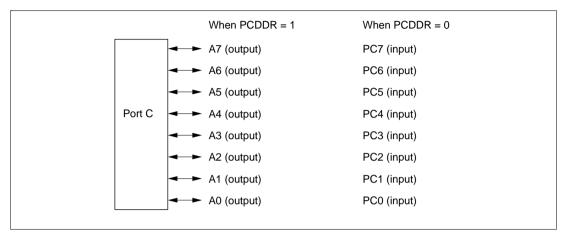


Figure 9-11 Port C Pin Functions (Mode 6)

(3) Mode 7

In mode 7, port C functions as an I/O port, and input or output can be specified bit by bit. Setting a PCDDR bit to 1 makes the corresponding port C pin an output port, while clearing the bit to 0 makes the pin an input port.

Port C pin functions in mode 7 are shown in figure 9-12.

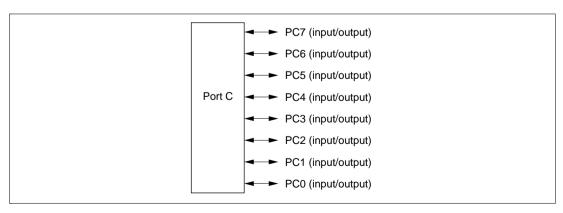


Figure 9-12 Port C Pin Functions (Mode 7)

9.9.4 MOS Input Pull-Up Function

Port C has a built-in MOS input pull-up function that can be controlled by software. MOS input pull-up can be used in modes 6 and 7, and can be specified as on or off for individual bits.

With the port input pin function (modes 6 and 7), when a PCDDR bit is cleared to 0, setting the corresponding PCPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset and in hardware standby mode. The previous state is retained after a manual reset and in software standby mode.

Table 9-17 summarizes the MOS input pull-up states.

Table 9-17 MOS Input Pull-Up States (Port C)

Pins	Power-On Reset	Hardware Standby Mode	Manual Reset	Software Standby Mode	In Other Operations
Address output (modes 4 and 5), port output (modes 6 and 7)	OFF	OFF	OFF	OFF	OFF
Port input (modes 6 and 7)	OFF	OFF	ON/OFF	ON/OFF	ON/OFF

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PCDDR = 0 and PCPCR = 1; otherwise off.

9.10 Port D

9.10.1 Overview

Port D is an 8-bit I/O port. Port D pins also function as data bus input/output pins. The pin functions depend on the operating mode.

Port D has a built-in MOS input pull-up function that can be controlled by software.

Figure 9-13 shows the port D pin configuration.

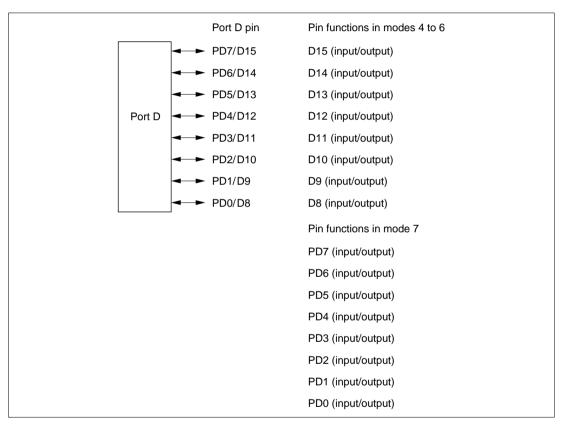


Figure 9-13 Port D Pin Functions

9.10.2 Register Configuration

Table 9-18 shows the port D register configuration.

Table 9-18 Port D Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port D data direction register	PDDDR	W	H'00	H'FE3C
Port D data register	PDDR	R/W	H'00	H'FF0C
Port D register	PORTD	R	Undefined	H'FFBC
Port D MOS pull-up control register	PDPCR	R/W	H'00	H'FE43

Note: * Lower 16 bits of the address.

(1) Port D Data Direction Register (PDDDR)

Bit	:	7	6	5	4	3	2	1	0
		PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PDDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port D. PDDDR cannot be read; if it is, an undefined value will be read.

PDDDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(a) Modes 4 to 6

The input/output direction settings in PDDDR are ignored, and port D pins automatically function as data input/output pins.

(b) Mode 7

Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

(2) Port D Data Register (PDDR)

Bit	:	7	6	5	4	3	2	1	0
		PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PDDR is an 8-bit readable/writable register that stores output data for the port D pins (PD7 to PD0).

PDDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(3) Port D Register (PORTD)

Bit	:	7	6	5	4	3	2	1	0
		PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Initial value	:	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by the state of pins PD7 to PD0.

PORTD is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port D pins (PD7 to PD0) must always be performed on PDDR.

If a port D read is performed while PDDDR bits are set to 1, the PDDR values are read. If a port D read is performed while PDDDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORTD contents are determined by the pin states, as PDDDR and PDDR are initialized. PORTD retains its previous state after a manual reset and in software standby mode.

(4) Port D MOS Pull-Up Control Register (PDPCR)

Bit	:	7	6	5	4	3	2	1	0
		PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PDPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port D on a bit-by-bit basis.

PDPCR is valid for port input pins (mode 7). When a PDDDR bit is cleared to 0 (input port setting), setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PDPCR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

9.10.3 Pin Functions in Each Mode

(1) Modes 4 to 6

In modes 4 to 6, port D pins function as data input/output pins automatically. Port D pin functions in modes 4 to 6 are shown in figure 9-14.

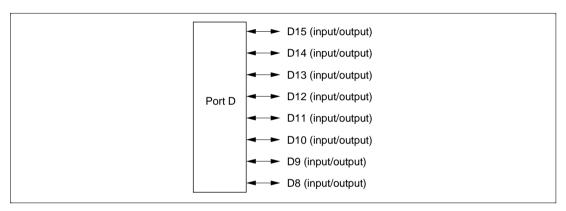


Figure 9-14 Port D Pin Functions (Modes 4 to 6)

(2) Mode 7

In mode 7, port D functions as an I/O port, and input or output can be specified bit by bit. Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

Port D pin functions in mode 7 are shown in figure 9-15.

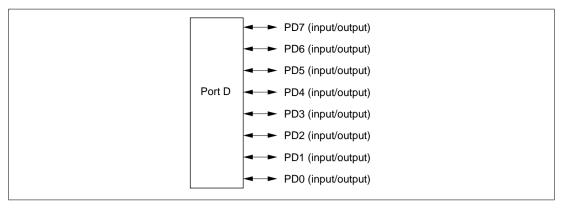


Figure 9-15 Port D Pin Functions (Mode 7)

9.10.4 MOS Input Pull-Up Function

Port D has a built-in MOS input pull-up function that can be controlled by software. MOS input pull-up can be used in mode 7, and can be specified as on or off for individual bits.

With the port input pin function (mode 7), when a PDDDR bit is cleared to 0, setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset and in hardware standby mode. The previous state is retained after a manual reset and in software standby mode.

Table 9-19 summarizes the MOS input pull-up states.

Table 9-19 MOS Input Pull-Up States (Port D)

Pins	Power-On Reset	Hardware Standby Mode	Manual Reset	Software Standby Mode	In Other Operations
Data input/output (modes 4 to 6), port output (mode 7)	OFF	OFF	OFF	OFF	OFF
Port input (mode 7)	OFF	OFF	ON/OFF	ON/OFF	ON/OFF

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PDDDR = 0 and PDPCR = 1; otherwise off.

9.11 Port E

9.11.1 Overview

Port E is an 8-bit I/O port. Port E pins also function as data bus input/output pins. The pin functions depend on the operating mode and on whether 8-bit or 16-bit bus mode is used.

Port E has a built-in MOS input pull-up function that can be controlled by software.

Figure 9-16 shows the port E pin configuration.

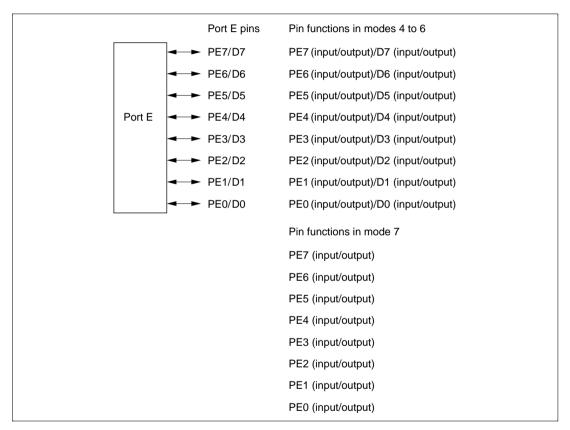


Figure 9-16 Port E Pin Functions

9.11.2 Register Configuration

Table 9-20 shows the port E register configuration.

Table 9-20 Port E Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port E data direction register	PEDDR	W	H'00	H'FE3D
Port E data register	PEDR	R/W	H'00	H'FF0D
Port E register	PORTE	R	Undefined	H'FFBD
Port E MOS pull-up control register	PEPCR	R/W	H'00	H'FE44

Note: * Lower 16 bits of the address.

(1) Port E Data Direction Register (PEDDR)

Bit	:	7	6	5	4	3	2	1	0
		PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PEDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port E. PEDDR cannot be read; if it is, an undefined value will be read.

PEDDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(a) Modes 4 to 6

When 8-bit bus mode is selected, port E functions as an I/O port. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

When 16-bit bus mode is selected, the input/output direction settings in PEDDR are ignored, and port E pins automatically function as data input/output pins.

For details of the 8-bit and 16-bit bus modes, see section 7, Bus Controller.

(b) Mode 7

Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

(2) Port E Data Register (PEDR)

Bit	:	7	6	5	4	3	2	1	0
		PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PEDR is an 8-bit readable/writable register that stores output data for the port E pins (PE7 to PE0).

PEDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(3) Port E Register (PORTE)

Bit	:	7	6	5	4	3	2	1	0	
		PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	
Initial value	:	*	*	*	*	*	*	*	*	
R/W	:	R	R	R	R	R	R	R	R	
Note: * Determined by the state of pins PE7 to PE0.										

PORTE is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port E pins (PE7 to PE0) must always be performed on PEDR.

If a port E read is performed while PEDDR bits are set to 1, the PEDR values are read. If a port E read is performed while PEDDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORTE contents are determined by the pin states, as PEDDR and PEDR are initialized. PORTE retains its previous state after a manual reset and in software standby mode.

(4) Port E MOS Pull-Up Control Register (PEPCR)

Bit	:	7	6	5	4	3	2	1	0
		PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PEPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port E on a bit-by-bit basis.

PEPCR is valid for port input pins (modes 4 to 6 in 8-bit bus mode, or mode 7).

When a PEDDR bit is cleared to 0 (input port setting), setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PEPCR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

9.11.3 Pin Functions in Each Mode

(1) Modes 4 to 6

In modes 4 to 6, if 8-bit access space is designated and 8-bit bus mode is selected, port E functions as an I/O port. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

When 16-bit bus mode is selected, the input/output direction settings in PEDDR are ignored, and port E pins function as data input/output pins.

Port E pin functions in modes 4 to 6 are shown in figure 9-17.

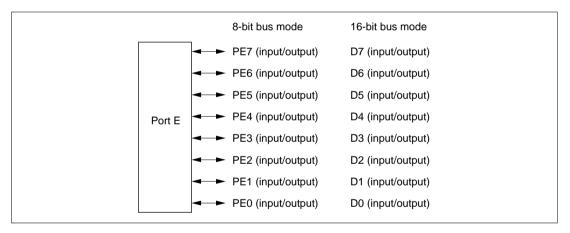


Figure 9-17 Port E Pin Functions (Modes 4 to 6)

(2) Mode 7

In mode 7, port E functions as an I/O port, and input or output can be specified bit by bit. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

Port E pin functions in mode 7 are shown in figure 9-18.

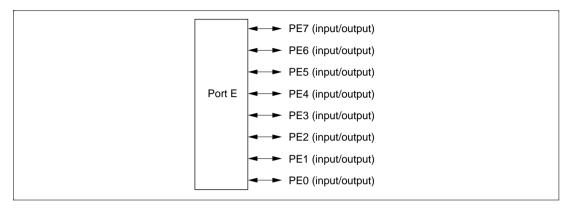


Figure 9-18 Port E Pin Functions (Mode 7)

9.11.4 MOS Input Pull-Up Function

Port E has a built-in MOS input pull-up function that can be controlled by software. MOS input pull-up can be used in modes 4 to 6 in 8-bit bus mode, or in mode 7, and can be specified as on or off for individual bits.

With the port input pin function (modes 4 to 6 in 8-bit bus mode, or mode 7), when a PEDDR bit is cleared to 0, setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a power-on reset and in hardware standby mode. The previous state is retained after a manual reset and in software standby mode.

Table 9-21 summarizes the MOS input pull-up states.

Table 9-21 MOS Input Pull-Up States (Port E)

Pins	Power-On Reset	Hardware Standby Mode	Manual Reset	Software Standby Mode	In Other Operations
Data input/output (modes 4 to 6 with 16-bit bus), port output (modes 4 to 6 with 8-bit bus, mode 7)	OFF S	OFF	OFF	OFF	OFF
Port input (modes 4 to 6 with 8-bit bus, mode 7)	OFF	OFF	ON/OFF	ON/OFF	ON/OFF

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PEDDR = 0 and PEPCR = 1; otherwise off.

9.12 Port F

9.12.1 Overview

Port F is an 8-bit I/O port. Port F pins also function as external interrupt input pins ($\overline{IRQ2}$ and $\overline{IRQ3}$), the BUZZ output pin, the A/D trigger input pin (\overline{ADTRG}), bus control signal I/O pins (\overline{AS} , \overline{RD} , \overline{HWR} , \overline{LWR} , \overline{WAIT} , \overline{BREQ} , and \overline{BACK}), and the system clock (\emptyset) output pin.

The interrupt input pins ($\overline{IRQ2}$ and $\overline{IRQ3}$) are Schmitt-triggered inputs.

Figure 9-19 shows the port F pin configuration.

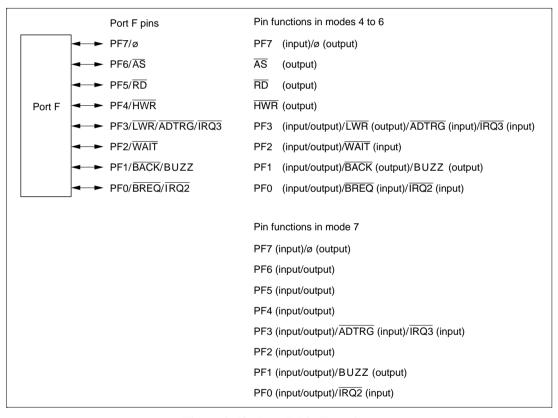


Figure 9-19 Port F Pin Functions

9.12.2 Register Configuration

Table 9-22 shows the port F register configuration.

Table 9-22 Port F Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Port F data direction register	PFDDR	W	H'80/H'00*2	H'FE3E
Port F data register	PFDR	R/W	H'00	H'FF0E
Port F register	PORTF	R	Undefined	H'FFBE

Notes: *1 Lower 16 bits of the address.

PFDDR is initialized to H'80 in modes 4 to 6, and to H'00 in mode 7.

(1) Port F Data Direction Register (PFDDR)

Bit	:	7	6	5	4	3	2	1	0
		PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR
Modes 4 to 6									
Initial value	:	1	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W
Mode 7									
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PFDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port F. PFDDR cannot be read; if it is, an undefined value will be read.

PFDDR is initialized to H'80 (modes 4 to 6) or H'00 (mode 7) by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode. The OPE bit in SBYCR is used to select whether the bus control output pins retain their output state or become high-impedance when a transition is made to software standby mode.

(a) Modes 4 to 6

Pin PF7 functions as the \emptyset output pin when the corresponding PFDDR bit is set to 1, and as an input port when the bit is cleared to 0.

The input/output direction specification in PFDDR is ignored for pins PF6 to PF3, which are automatically designated as bus control outputs (AS, RD, HWR, and LWR).

Pins PF2 to PF0 are made bus control input/output pins (\overline{WAIT} , \overline{BACK} , and \overline{BREQ}) by bus controller settings. Otherwise, setting a PFDDR bit to 1 makes the corresponding pin an output port, while clearing the bit to 0 makes the pin an input port.

^{*2} Initial value depends on the mode.

(b) Mode 7

Setting a PFDDR bit to 1 makes the corresponding port F pin PF6 to PF0 an output port, or in the case of pin PF7, the ø output pin. Clearing the bit to 0 makes the pin an input port.

(2) Port F Data Register (PFDR)

Bit	:	7	6	5	4	3	2	1	0
		PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PFDR is an 8-bit readable/writable register that stores output data for the port F pins (PF7 to PF0).

PFDR is initialized to H'00 by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(3) Port F Register (PORTF)

Bit	:	7	6	5	4	3	2	1	0	
		PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	
Initial value	:	*	*	*	*	*	*	*	*	
R/W	:	R	R	R	R	R	R	R	R	
Note: * Determined by the state of pins PF7 to PF0.										

PORTF is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port F pins (PF7 to PF0) must always be performed on PFDR.

If a port F read is performed while PFDDR bits are set to 1, the PFDR values are read. If a port F read is performed while PFDDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORTF contents are determined by the pin states, as PFDDR and PFDR are initialized. PORTF retains its previous state after a manual reset and in software standby mode.

9.12.3 Pin Functions

Port F pins also function as external interrupt input pins ($\overline{IRQ2}$ and $\overline{IRQ3}$), the BUZZ output pin, the A/D trigger input pin (\overline{ADTRG}), bus control signal I/O pins (\overline{AS} , \overline{RD} , \overline{HWR} , \overline{LWR} , \overline{WAIT} , \overline{BREQ} , and \overline{BACK}), and the system clock (\emptyset) output pin. The pin functions differ between modes 4 to 6 and mode 7. Port F pin functions are shown in table 9-23.

Table 9-23 Port F Pin Functions

Pin Pin Functions and Selection Method

PF7/ø

The pin function is switched as shown below according to bit PF7DDR.

PF7DDR	0	1
Pin function	PF7 input	ø output

PF6/AS

The pin function is switched as shown below according to the operating mode and bit PF6DDR.

Operating mode	Modes 4 to 6	Mode 7			
PF6DDR	_	0	1		
Pin function	AS output	PF6 input	PF6 output		

PF5/RD

The pin function is switched as shown below according to the operating mode and bit PF5DDR.

Operating mode	Modes 4 to 6	Mode 7			
PF5DDR	_	0 1			
Pin function	RD output	PF5 input	PF5 output		

PF4/HWR

The pin function is switched as shown below according to the operating mode and bit PF4DDR.

Operating mode	Modes 4 to 6	Mode 7			
PF4DDR	_	0 1			
Pin function	HWR output	PF4 input	PF4 output		

PF3/LWR/ ADTRG/ The pin function is switched as shown below according to the operating mode, the bus mode, A/D converter bits TRGS1 and TRGS0, and bit PF3DDR.

ĪRQ3

•							
Operating mode		Modes 4 to 6		Mode 7			
Bus mode	16-bit bus mode			_	_		
PF3DDR	_	0	1	0	1		
Pin function	LWR output	PF3 input	PF3 output	PF3 input	PF3 output		
		ADTRG input*1					
		ĪRQ3 input*2					

Notes: *1 \overline{ADTRG} input when TRGS0 = TRGS1 = 1.

*2 When used as an external interrupt input pin, do not use as an I/O pin for another function.

Pin Pin Functions and Selection Method

PF2/WAIT The pin function is switched as shown below according to the operating mode, bit WAITE, and bit PF2DDR.

Operating mode		Modes 4 to 6	Мо	de 7		
WAITE	()	1	_		
PF2DDR	0 1		_	0	1	
Pin function	PF2 input	PF2 output	WAIT input	PF2 input	PF2 output	

PF1/BACK/ The pin function is switched as shown below according to the operating mode, bit BUZZ BRLE, bit BUZZE in PFCR, and bit PF1DDR.

Operating mode		Modes	s 4 to 6	Mode 7			
BRLE		0		1	_		
BUZZE	()	1	_	0		1
PF1DDR	0	1	_	_	0	1	_
Pin function	PF1 input	PF1 output	BUZZ output	BACK output			BUZZ output

PF0/BREQ/ The pin function is switched as shown below according to the operating mode, bit IRQ2 BRLE, and bit PF0DDR.

Operating mode		Modes 4 to 6	Mode 7		
BRLE	()	1	_	
PF0DDR	0 1		_	0 1	
Pin function	PF0 input PF0 output		BREQ input	put PF0 input PF0 out	
		•			

Note: * When used as an external interrupt input pin, do not use as an I/O pin for another function.

9.13 Port G

9.13.1 Overview

Port G is a 5-bit I/O port. Port G pins also function as external interrupt input pins ($\overline{IRQ6}$ and $\overline{IRQ7}$) and bus control signal output pins ($\overline{CS0}$ to $\overline{CS3}$).

The interrupt input pins ($\overline{IRQ6}$ and $\overline{IRQ7}$) are Schmitt-triggered inputs.

Figure 9-20 shows the port G pin configuration.

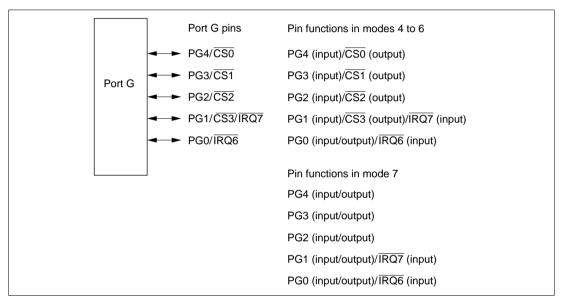


Figure 9-20 Port G Pin Functions

9.13.2 Register Configuration

Table 9-24 shows the port G register configuration.

Table 9-24 Port G Registers

Name	Abbreviation	R/W	Initial Value*2	Address*1
Port G data direction register	PGDDR	W	H'10/H'00* ³	H'FE3F
Port G data register	PGDR	R/W	H'00	H'FF0F
Port G register	PORTG	R	Undefined	H'FFBF

Notes: *1 Lower 16 bits of the address.

PGDDR is initialized to H'10 in modes 4 and 5, and to H'00 in modes 6 and 7.

(1) Port G Data Direction Register (PGDDR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR
Modes 4 and	5								
Initial value	:	Undefined	Undefined	Undefined	1	0	0	0	0
R/W	:	_	_	_	W	W	W	W	W
Modes 6 and	7								
Initial value	:	Undefined	Undefined	Undefined	0	0	0	0	0
R/W	:	_	_	_	W	W	W	W	W

PGDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port G. PGDDR cannot be read. Also, bits 7 to 5 are reserved, and will return an undefined value if read.

Bit PG4DDR is initialized to 1 (modes 4 and 5) or 0 (modes 6 and 7) by a power-on reset and in hardware standby mode. PGDDR retains its previous state after a manual reset and in software standby mode. The OPE bit in SBYCR is used to select whether the bus control output pins retain their output state or become high-impedance when a transition is made to software standby mode.

(a) Modes 4 to 6

Pins PG4 to PG1 function as bus control signal output pins $(\overline{CS0})$ to $\overline{CS3}$) when the corresponding PGDDR bits are set to 1, and as input ports when the bits are cleared to 0. Pin PG0 functions as an output port when the corresponding PGDDR bit is set to 1, and as an input port when the bit is cleared to 0.

^{*2} Value of bits 4 to 0.

^{*3} Initial value depends on the mode.

(b) Mode 7

Setting a PGDDR bit to 1 makes the corresponding pin an output port, while clearing the bit to 0 makes the pin an input port.

(2) Port G Data Register (PGDR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	PG4DR	PG3DR	PG2DR	PG1DR	PG0DR
Initial value	:	Undefined	Undefined	Undefined	0	0	0	0	0
R/W	:		_		R/W	R/W	R/W	R/W	R/W

PGDR is an 8-bit readable/writable register that stores output data for the port G pins (PG4 to PG0).

Bits 7 to 5 are reserved; these bits cannot be modified and will return an undefined value if read.

PGDR is initialized to H'00 (bits 4 to 0) by a power-on reset and in hardware standby mode. It retains its previous state after a manual reset and in software standby mode.

(3) Port G Register (PORTG)

Bit	:	7	6	5	4	3	2	1	0	
		_	_	_	PG4	PG3	PG2	PG1	PG0	ı
Initial value	:	Undefined	Undefined	Undefined	*	*	*	*	*	
R/W	:	_	_	_	R	R	R	R	R	

Note: * Determined by the state of pins PG4 to PG0.

PORTG is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port G pins (PG4 to PG0) must always be performed on PGDR.

Bits 7 to 5 are reserved; these bits cannot be modified and will return an undefined value if read.

If a port G read is performed while PGDDR bits are set to 1, the PGDR values are read. If a port G read is performed while PGDDR bits are cleared to 0, the pin states are read.

After a power-on reset and in hardware standby mode, PORTG contents are determined by the pin states, as PGDDR and PGDR are initialized. PORTG retains its previous state after a manual reset and in software standby mode.

9.13.3 Pin Functions

Port G pins also function as external interrupt input pins ($\overline{IRQ6}$ and $\overline{IRQ7}$) and bus control signal output pins ($\overline{CS0}$ to $\overline{CS3}$). The pin functions differ between modes 4 to 6 and mode 7. Port G pin functions are shown in table 9-25.

Table 9-25 Port G Pin Functions

Pin Pin Functions and Selection Method

PG4/CS0 Th

The pin function is switched as shown below according to the operating mode and bit PG4DDR.

Operating mode	Modes	s 4 to 6	Mo	de 7	
PG4DDR	0	1	0 1		
Pin function	PG4 input	CS0 output	PG4 input	PG4 output	

PG3/CS1

The pin function is switched as shown below according to the operating mode and bit PG3DDR.

Operating mode	Modes	s 4 to 6	Mo	de 7		
PG3DDR	0	1	0 1			
Pin function	PG3 input	CS1 output	PG3 input	PG3 output		

PG2/CS2

The pin function is switched as shown below according to the operating mode and bit PG2DDR.

Operating mode	Modes	s 4 to 6	Mode 7		
PG2DDR	0	1	0	1	
Pin function	PG2 input	CS2 output	PG2 input	PG2 output	

PG1/CS3/ IRQ7 The pin function is switched as shown below according to the operating mode and bit PG1DDR.

Operating mode	Modes	s 4 to 6	Mode 7				
PG1DDR	0	1	0	1			
Pin function	PG1 input	CS3 output	PG1 input	PG1 output			
		IRQ7 input*					

Note: * When used as an external interrupt input pin, do not use as an I/O pin for another function.

Pin Pin Functions and Selection Method PG0/ĪRQ6 The pin function is switched as shown below according to bit PG0DDR. PG0DDR 0 1 Pin function PG0 input PG0 output

Note: * When used as an external interrupt input pin, do not use as an I/O pin for another function.

IRQ6 input*

Section 10 16-Bit Timer Pulse Unit (TPU)

10.1 Overview

The H8S/2238 Series has an on-chip 16-bit timer pulse unit (TPU) that comprises six 16-bit timer channels.

10.1.1 Features

- Maximum 16-pulse input/output capability
 - A total of 16 timer general registers (TGRs) are provided (four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5), each of which can be set independently as an output compare/input capture register
 - TGRC and TGRD for channels 0 and 3 can also be used as buffer registers
- Selection of 8 counter input clocks for each channel
- The following operations can be set for each channel:
 - Waveform output at compare match: Selection of 0, 1, or toggle output
 - Input capture function: Selection of rising edge, falling edge, or both edge detection
 - Counter clear operation: Counter clearing possible by compare match or input capture
 - Synchronous operation: Multiple timer counters (TCNT) can be written to simultaneously
 Simultaneous clearing by compare match and input capture possible
 Register simultaneous input/output possible by counter synchronous operation
 - PWM mode: Any PWM output duty can be set
 Maximum of 15-phase PWM output possible by combination with synchronous operation
- Buffer operation settable for channels 0 and 3
 - Input capture register double-buffering possible
 - Automatic rewriting of output compare register possible
- Phase counting mode settable independently for each of channels 1, 2, 4, and 5
 - Two-phase encoder pulse up/down-count possible
- Cascaded operation
 - Channel 1 (channel 4) input clock operates as 32-bit counter by setting channel 2 (channel 5) overflow/underflow
- Fast access via internal 16-bit bus
 - Fast access is possible via a 16-bit bus interface

- 26 interrupt sources
 - For channels 0 and 3, four compare match/input capture dual-function interrupts and one overflow interrupt can be requested independently
 - For channels 1, 2, 4, and 5, two compare match/input capture dual-function interrupts, one overflow interrupt, and one underflow interrupt can be requested independently
- Automatic transfer of register data
 - Block transfer, 1-word data transfer, and 1-byte data transfer possible by data transfer controller (DTC) activation
- A/D converter conversion start trigger can be generated
 - Channel 0 to 5 compare match A/input capture A signals can be used as A/D converter conversion start trigger
- Module stop mode can be set
 - As the initial setting, TPU operation is halted. Register access is enabled by exiting module stop mode.

Table 10-1 lists the functions of the TPU.

Table 10-1 TPU Functions

Item	Item		Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
Count clock		ø/1 ø/4 ø/16 ø/64 TCLKA TCLKB TCLKC	ø/1 ø/4 ø/16 ø/64 ø/256 TCLKA TCLKB	ø/1 ø/4 ø/16 ø/64 ø/1024 TCLKA TCLKB	ø/1 ø/4 ø/16 ø/64 ø/256 ø/1024 ø/4096 TCLKA	ø/1 ø/4 ø/16 ø/64 ø/1024 TCLKA TCLKC	ø/1 ø/4 ø/16 ø/64 ø/256 TCLKA TCLKC
General re	egisters	TGR0A TGR0B	TGR1A TGR1B	TGR2A TGR2B	TGR3A TGR3B	TGR4A TGR4B	TGR5A TGR5B
General re buffer regi		TGR0C TGR0D	_		TGR3C TGR3D		_
I/O pins		TIOCA0 TIOCB0 TIOCC0 TIOCD0	TIOCA1 TIOCB1	TIOCA2 TIOCB2	TIOCA3 TIOCB3 TIOCC3 TIOCD3	TIOCA4 TIOCB4	TIOCA5 TIOCB5
Counter cl function	ear	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
Compare	0 output	0	0	0	0	0	0
match	1 output	0	0	0	0	0	0
output	Toggle output	0	0	0	0	0	0
Input captor function	ure	0	0	0	0	0	0
Synchrono	Synchronous operation		0	0	0	0	0
PWM mod	le	0	0	0	0	0	0
Phase cou	ınting	_	0	0	_	0	0
Buffer ope	ration	0		_	0	_	

Item	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
DTC activation	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
A/D converter trigger	TGR0A compare match or input capture	TGR1A compare match or input capture	TGR2A compare match or input capture	TGR3A compare match or input capture	TGR4A compare match or input capture	TGR5A compare match or input capture
Interrupt	5 sources	4 sources	4 sources	5 sources	4 sources	4 sources
sources	 Compare match or input capture 0A 	 Compare match or input capture 1A 	Compare match or e input capture 2A	 Compare match or input capture 3A 	 Compare match or input capture 4A 	 Compare match or input capture 5A
	 Compare match or input capture 0B 	Compare match or input capture 1B	Compare match or input capture 2B	 Compare match or input capture 3B 	Compare match or input capture 4B	Compare match or input capture 5B
	 Compare 	 Overflow 	 Overflow 	 Compare 	 Overflow 	 Overflow
	match or input • Underflow capture 0C		Underflow	match or input capture 3C	Underflow	• Underflow
	 Compare match or input capture 0D 			 Compare match or input capture 3D 	e	
	 Overflow 			 Overflow 		

Legend

○ : Possible

— : Not possible

10.1.2 Block Diagram

Figure 10-1 shows a block diagram of the TPU.

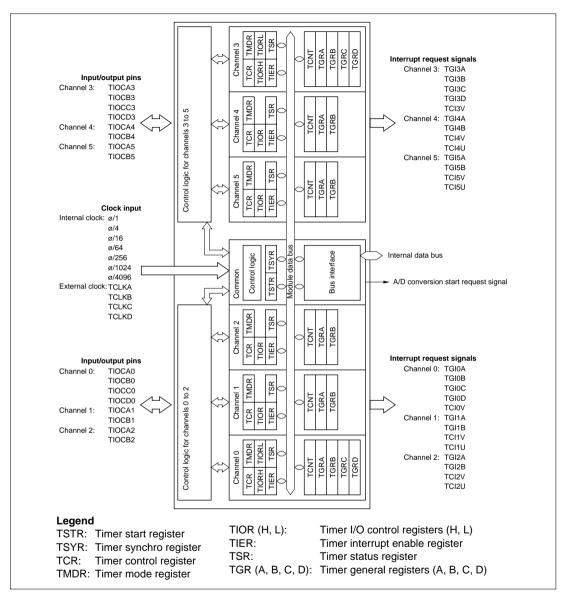


Figure 10-1 Block Diagram of TPU

10.1.3 Pin Configuration

Table 10-2 summarizes the TPU pins.

Table 10-2 TPU Pins

Channel	Name	Symbol	I/O	Function
All	Clock input A	TCLKA	Input	External clock A input pin (Channels 1 and 5 phase counting mode A phase input)
	Clock input B	TCLKB	Input	External clock B input pin (Channels 1 and 5 phase counting mode B phase input)
	Clock input C	TCLKC	Input	External clock C input pin (Channels 2 and 4 phase counting mode A phase input)
	Clock input D	TCLKD	Input	External clock D input pin (Channels 2 and 4 phase counting mode B phase input)
0	Input capture/out compare match A0	TIOCA0	I/O	TGR0A input capture input/output compare output/PWM output pin
	Input capture/out compare match B0	TIOCB0	I/O	TGR0B input capture input/output compare output/PWM output pin
	Input capture/out compare match C0	TIOCC0	I/O	TGR0C input capture input/output compare output/PWM output pin
	Input capture/out compare match D0	TIOCD0	I/O	TGR0D input capture input/output compare output/PWM output pin
1	Input capture/out compare match A1	TIOCA1	I/O	TGR1A input capture input/output compare output/PWM output pin
	Input capture/out compare match B1	TIOCB1	I/O	TGR1B input capture input/output compare output/PWM output pin
2	Input capture/out compare match A2	TIOCA2	I/O	TGR2A input capture input/output compare output/PWM output pin
	Input capture/out compare match B2	TIOCB2	I/O	TGR2B input capture input/output compare output/PWM output pin

Channel	Name	Symbol	I/O	Function
3	Input capture/out compare match A3	TIOCA3	I/O	TGR3A input capture input/output compare output/PWM output pin
	Input capture/out compare match B3	TIOCB3	I/O	TGR3B input capture input/output compare output/PWM output pin
	Input capture/out compare match C3	TIOCC3	I/O	TGR3C input capture input/output compare output/PWM output pin
	Input capture/out compare match D3	TIOCD3	I/O	TGR3D input capture input/output compare output/PWM output pin
4	Input capture/out compare match A4	TIOCA4	I/O	TGR4A input capture input/output compare output/PWM output pin
	Input capture/out compare match B4	TIOCB4	I/O	TGR4B input capture input/output compare output/PWM output pin
5	Input capture/out compare match A5	TIOCA5	I/O	TGR5A input capture input/output compare output/PWM output pin
	Input capture/out compare match B5	TIOCB5	I/O	TGR5B input capture input/output compare output/PWM output pin

10.1.4 Register Configuration

Table 10-3 summarizes the TPU registers.

Table 10-3 TPU Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address *1
0	Timer control register 0	TCR0	R/W	H'00	H'FF10
	Timer mode register 0	TMDR0	R/W	H'C0	H'FF11
	Timer I/O control register 0H	TIOR0H	R/W	H'00	H'FF12
	Timer I/O control register 0L	TIOR0L	R/W	H'00	H'FF13
	Timer interrupt enable register 0	TIER0	R/W	H'40	H'FF14
	Timer status register 0	TSR0	R/(W)*2	H'C0	H'FF15
	Timer counter 0	TCNT0	R/W	H'0000	H'FF16
	Timer general register 0A	TGR0A	R/W	H'FFFF	H'FF18
	Timer general register 0B	TGR0B	R/W	H'FFFF	H'FF1A
	Timer general register 0C	TGR0C	R/W	H'FFFF	H'FF1C
	Timer general register 0D	TGR0D	R/W	H'FFFF	H'FF1E
1	Timer control register 1	TCR1	R/W	H'00	H'FF20
	Timer mode register 1	TMDR1	R/W	H'C0	H'FF21
	Timer I/O control register 1	TIOR1	R/W	H'00	H'FF22
	Timer interrupt enable register 1	TIER1	R/W	H'40	H'FF24
	Timer status register 1	TSR1	R/(W) *2	H'C0	H'FF25
	Timer counter 1	TCNT1	R/W	H'0000	H'FF26
	Timer general register 1A	TGR1A	R/W	H'FFFF	H'FF28
	Timer general register 1B	TGR1B	R/W	H'FFFF	H'FF2A
2	Timer control register 2	TCR2	R/W	H'00	H'FF30
	Timer mode register 2	TMDR2	R/W	H'C0	H'FF31
	Timer I/O control register 2	TIOR2	R/W	H'00	H'FF32
	Timer interrupt enable register 2	TIER2	R/W	H'40	H'FF34
	Timer status register 2	TSR2	R/(W) *2	H'C0	H'FF35
	Timer counter 2	TCNT2	R/W	H'0000	H'FF36
	Timer general register 2A	TGR2A	R/W	H'FFFF	H'FF38
	Timer general register 2B	TGR2B	R/W	H'FFFF	H'FF3A

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
3	Timer control register 3	TCR3	R/W	H'00	H'FE80
	Timer mode register 3	TMDR3	R/W	H'C0	H'FE81
	Timer I/O control register 3H	TIOR3H	R/W	H'00	H'FE82
	Timer I/O control register 3L	TIOR3L	R/W	H'00	H'FE83
	Timer interrupt enable register 3	TIER3	R/W	H'40	H'FE84
	Timer status register 3	TSR3	R/(W)*2	H'C0	H'FE85
	Timer counter 3	TCNT3	R/W	H'0000	H'FE86
	Timer general register 3A	TGR3A	R/W	H'FFFF	H'FE88
	Timer general register 3B	TGR3B	R/W	H'FFFF	H'FE8A
	Timer general register 3C	TGR3C	R/W	H'FFFF	H'FE8C
	Timer general register 3D	TGR3D	R/W	H'FFFF	H'FE8E
4	Timer control register 4	TCR4	R/W	H'00	H'FE90
	Timer mode register 4	TMDR4	R/W	H'C0	H'FE91
	Timer I/O control register 4	TIOR4	R/W	H'00	H'FE92
	Timer interrupt enable register 4	TIER4	R/W	H'40	H'FE94
	Timer status register 4	TSR4	R/(W) *2	H'C0	H'FE95
	Timer counter 4	TCNT4	R/W	H'0000	H'FE96
	Timer general register 4A	TGR4A	R/W	H'FFFF	H'FE98
	Timer general register 4B	TGR4B	R/W	H'FFFF	H'FE9A
5	Timer control register 5	TCR5	R/W	H'00	H'FEA0
	Timer mode register 5	TMDR5	R/W	H'C0	H'FEA1
	Timer I/O control register 5	TIOR5	R/W	H'00	H'FEA2
	Timer interrupt enable register 5	TIER5	R/W	H'40	H'FEA4
	Timer status register 5	TSR5	R/(W) *2	H'C0	H'FEA5
	Timer counter 5	TCNT5	R/W	H'0000	H'FEA6
	Timer general register 5A	TGR5A	R/W	H'FFFF	H'FEA8
	Timer general register 5B	TGR5B	R/W	H'FFFF	H'FEAA
Common	Timer start register	TSTR	R/W	H'00	H'FEB0
	Timer synchro register	TSYR	R/W	H'00	H'FEB1
	Module stop control register A	MSTPCRA	R/W	H'3F	H'FDE8

Notes: *1 Lower 16 bits of the address.

^{*2} Can only be written with 0 for flag clearing.

10.2 Register Descriptions

10.2.1 Timer Control Register (TCR)

Channel 0: TCR0
Channel 3: TCR3

Bit	:	7	6	5	4	3	2	1	0
		CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

Channel 1: TCR1
Channel 2: TCR2
Channel 4: TCR4
Channel 5: TCR5

Bit	:	7	6	5	4	3	2	1	0
		_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0
Initial value	e :	0	0	0	0	0	0	0	0
R/W	:	_	R/W						

The TCR registers are 8-bit registers that control the TCNT channels. The TPU has six TCR registers, one for each of channels 0 to 5. The TCR registers are initialized to H'00 by a reset, and in hardware standby mode.

Bits 7 to 5—Counter Clear 2 to 0 (CCLR2 to CCLR0): These bits select the TCNT counter clearing source.

	Bit 7	Bit 6	Bit 5	
Channel	CCLR2	CCLR1	CCLR0	 Description
0, 3	0	0	0	TCNT clearing disabled (Initial value)
		1	1	TCNT cleared by TGRA compare match/input capture
		1	0	TCNT cleared by TGRB compare match/input capture
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation *1
	1	0	0	TCNT clearing disabled
			1	TCNT cleared by TGRC compare match/input capture *2
		1	0	TCNT cleared by TGRD compare match/input capture *2
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation *1

	Bit 7	Bit 6	Bit 5	
Channel	Reserved	d*3 CCLR1	CCLR0	 Description
1, 2, 4, 5 0 0	0	0	TCNT clearing disabled (Initial value)	
			1	TCNT cleared by TGRA compare match/input capture
		1	0	TCNT cleared by TGRB compare match/input capture
			1	TCNT cleared by counter clearing for another channel performing synchronous clearing/ synchronous operation *1

Notes: *1 Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

^{*2} When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.

^{*3} Bit 7 is reserved in channels 1, 2, 4, and 5. It is always read as 0 and cannot be modified.

Bits 4 and 3—Clock Edge 1 and 0 (CKEG1, CKEG0): These bits select the input clock edge. When the input clock is counted using both edges, the input clock period is halved (e.g. $\emptyset/4$ both edges = $\emptyset/2$ rising edge). If phase counting mode is used on channels 1, 2, 4, and 5, this setting is ignored and the phase counting mode setting has priority.

Bit 4	Bit 3		
CKEG1	CKEG0	 Description	
0	0	Count at rising edge	(Initial value)
	1	Count at falling edge	
1	<u>—</u>	Count at both edges	

Note: Internal clock edge selection is valid when the input clock is Ø/4 or slower. This setting is ignored if the input clock is Ø/1, or when overflow/underflow of another channel is selected.

Bits 2 to 0—Time Prescaler 2 to 0 (TPSC2 to TPSC0): These bits select the TCNT counter clock. The clock source can be selected independently for each channel. Table 10-4 shows the clock sources that can be set for each channel.

Table 10-4 TPU Clock Sources

	Internal Clock External Clock									Overflow/ Underflow on Another		
Channel	ø/1	ø/4	ø/16	ø/64	ø/256	ø/1024	ø/4096	TCLKA	TCLKB	TCLKC	TCLKD	Channel
0	0	0	0	0				0	0	0	0	
1	0	0	0	0	0			0	0			0
2	0	0	0	0		0		0	0	0		
3	0	0	0	0	0	0	0	0				
4	0	0	0	0		0		0		0		0
5	0	0	0	0	0			0		0	0	

Legend

: SettingBlank : No setting

	Bit 2	Bit 1	Bit 0	
Channel	TPSC2	TPSC1	TPSC0	 Description
0	0	0	0	Internal clock: counts on ø/1 (Initial value)
			1	Internal clock: counts on Ø/4
		1	0	Internal clock: counts on ø/16
			1	Internal clock: counts on ø/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	External clock: counts on TCLKC pin input
			1	External clock: counts on TCLKD pin input

	Bit 2	Bit 1	Bit 0	
Channel	TPSC2	TPSC1	TPSC0	 Description
1	0	0	0	Internal clock: counts on ø/1 (Initial value)
			1	Internal clock: counts on ø/4
		1	0	Internal clock: counts on ø/16
			1	Internal clock: counts on ø/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	Internal clock: counts on ø/256
			1	Counts on TCNT2 overflow/underflow

Note: This setting is ignored when channel 1 is in phase counting mode.

	Bit 2	Bit 1	Bit 0	
Channel	TPSC2	TPSC1	TPSC0	 Description
2	0	0	0	Internal clock: counts on ø/1 (Initial value)
			1	Internal clock: counts on ø/4
		1	0	Internal clock: counts on ø/16
			1	Internal clock: counts on ø/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKB pin input
		1	0	External clock: counts on TCLKC pin input
			1	Internal clock: counts on ø/1024

Note: This setting is ignored when channel 2 is in phase counting mode.

	Bit 2	Bit 1	Bit 0					
Channel	TPSC2	TPSC1	TPSC0	 Description				
3	0	0	0	Internal clock: counts on ø/1 (Initial value)				
			1	Internal clock: counts on ø/4				
		1	0	Internal clock: counts on ø/16				
			1	Internal clock: counts on ø/64				
	1	0	0	External clock: counts on TCLKA pin input				
			1	Internal clock: counts on ø/1024				
		1	0	Internal clock: counts on ø/256				
			1	Internal clock: counts on ø/4096				

	Bit 2	Bit 1	Bit 0					
Channel	TPSC2	TPSC1	TPSC0	 Description				
4	0	0	0	Internal clock: counts on ø/1 (Initial value)				
			1	Internal clock: counts on ø/4				
		1	0	Internal clock: counts on ø/16				
			1	Internal clock: counts on ø/64				
	1	0	0	External clock: counts on TCLKA pin input				
			1	External clock: counts on TCLKC pin input				
		1	0	Internal clock: counts on ø/1024				
			1	Counts on TCNT5 overflow/underflow				

Note: This setting is ignored when channel 4 is in phase counting mode.

	Bit 2	Bit 1	Bit 0	
Channel	TPSC2	TPSC1	TPSC0	 Description
5	0	0	0	Internal clock: counts on ø/1 (Initial value)
			1	Internal clock: counts on ø/4
		1	0	Internal clock: counts on ø/16
			1	Internal clock: counts on ø/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKC pin input
		1	0	Internal clock: counts on ø/256
			1	External clock: counts on TCLKD pin input

Note: This setting is ignored when channel 5 is in phase counting mode.

10.2.2 Timer Mode Register (TMDR)

Channel 0: TMDR0
Channel 3: TMDR3

Bit	:	7	6	5	4	3	2	1	0
			_	BFB	BFA	MD3	MD2	MD1	MD0
Initial value	:	1	1	0	0	0	0	0	0
R/W	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W

Channel 1: TMDR1 Channel 2: TMDR2 Channel 4: TMDR4 Channel 5: TMDR5

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	MD3	MD2	MD1	MD0
Initial value	:	1	1	0	0	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W

The TMDR registers are 8-bit readable/writable registers that are used to set the operating mode for each channel. The TPU has six TMDR registers, one for each channel. The TMDR registers are initialized to H'C0 by a reset, and in hardware standby mode.

Bits 7 and 6—Reserved: These bits cannot be modified and are always read as 1.

Bit 5—Buffer Operation B (BFB): Specifies whether TGRB is to operate in the normal way, or TGRB and TGRD are to be used together for buffer operation. When TGRD is used as a buffer register, TGRD input capture/output compare is not generated.

In channels 1, 2, 4, and 5, which have no TGRD, bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit 5

BFB	Description	
0	TGRB operates normally	(Initial value)
1	TGRB and TGRD used together for buffer operation	

Bit 4—Buffer Operation A (BFA): Specifies whether TGRA is to operate in the normal way, or TGRA and TGRC are to be used together for buffer operation. When TGRC is used as a buffer register, TGRC input capture/output compare is not generated.

In channels 1, 2, 4, and 5, which have no TGRC, bit 4 is reserved. It is always read as 0 and cannot be modified.

Bit 4

BFA	Description	
0	TGRA operates normally	(Initial value)
1	TGRA and TGRC used together for buffer operation	

Bits 3 to 0—Modes 3 to 0 (MD3 to MD0): These bits are used to set the timer operating mode.

Bit 3	Bit 2	Bit 1	Bit 0		
MD3*1	MD2*2	MD1	MD0	 Description	
0	0	0	0	Normal operation	(Initial value)
			1	Reserved	
		1	0	PWM mode 1	
			1	PWM mode 2	
	1	0	0	Phase counting mode 1	
			1	Phase counting mode 2	
		1	0	Phase counting mode 3	
			1	Phase counting mode 4	
1	*	*	*	_	

^{*:} Don't care

Notes: *1 MD3 is a reserved bit. In a write, it should always be written with 0.

^{*2} Phase counting mode cannot be set for channels 0 and 3. In this case, 0 should always be written to MD2.

10.2.3 Timer I/O Control Register (TIOR)

Channel 0: TIOR0H Channel 1: TIOR1 Channel 2: TIOR2 Channel 3: TIOR3H Channel 4: TIOR4 Channel 5: TIOR5

Bit	:	7	6	5	4	3	2	1	0
		IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Initial value	: '	0	0	0	0	0	0	0	0
	:	R/W							

Channel 0: TIOR0L Channel 3: TIOR3L

Bit	:	7	6	5	4	3	2	1	0
		IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

The TIOR registers are 8-bit registers that control the TGR registers. The TPU has eight TIOR registers, two each for channels 0 and 3, and one each for channels 1, 2, 4, and 5. The TIOR registers are initialized to H'00 by a reset, and in hardware standby mode.

Care is required since TIOR is affected by the TMDR setting. The initial output specified by TIOR is valid when the counter is stopped (the CST bit in TSTR is cleared to 0). Note also that, in PWM mode 2, the output at the point at which the counter is cleared to 0 is specified.

Bits 7 to 4— I/O Control B3 to B0 (IOB3 to IOB0) I/O Control D3 to D0 (IOD3 to IOD0):

Bits IOB3 to IOB0 specify the function of TGRB. Bits IOD3 to IOD0 specify the function of TGRD.

	Bit 7	Bit 6	Bit 5	Bit 4								
Channel	IOB3	IOB2	IOB1	IOB0	Description	on						
0	0	0	0	0	TGR0B is	Output disabled	(Initial value)					
				1	output	Initial output is 0 output	0 output at compare match					
			1	0	compare register		1 output at compare match					
				1	_		Toggle output at compare match					
		1	0	0	_	Output disabled						
				1	_	Initial output is 1	0 output at compare match					
								1	0	_	output	1 output at compare match
				1	_		Toggle output at compare match					
	1	0	0	0	TGR0B is	Capture input	Input capture at rising edge					
				1	input	source is	Input capture at falling edge					
				capture TIOCB0 pin 1 * register	Input capture at both edges							
		1	*	*	-	Capture input source is channel 1/count clock	Input capture at TCNT1 count- up/count-down*1					

*: Don't care

Note: *1 When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and ø/1 is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.

	Bit 7	Bit 6	Bit 5	Bit 4			
Channel	IOD3	IOD2	IOD1	IOD0	Description	on	
0	0	0	0	0	TGR0D is	Output disabled	(Initial value)
				1	output compare	Initial output is 0	0 output at compare match
			1	0	register*2	output	1 output at compare match
				1	_		Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1	0 output at compare match
			1	0		output	1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR0D is	Capture input	Input capture at rising edge
				1	input	source is TIOCD0 pin	Input capture at falling edge
			1	*	-capture register*2		Input capture at both edges
		1	*	*	_	Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/count-down*1

*: Don't care

Notes: *1 When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and Ø/1 is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.

^{*2} When the BFB bit in TMDR0 is set to 1 and TGR0D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

	Bit 7	Bit 6	Bit 5	Bit 4				
Channel	IOB3	IOB2	IOB1	IOB0	Description	on		
1	0	0	0	0	TGR1B is	Output disabled	(Initial value)	
				1	output	Initial output is 0 output	0 output at compare match	
			1	0	-compare register		1 output at compare match	
				1			Toggle output at compare match	
		1	0	0	_	Output disabled		
				1	- - -	Initial output is 1 output	0 output at compare match	
			1	0			1 output at compare match	
				1			Toggle output at compare match	
	1	0	0	0	TGR1B is	Capture input	Input capture at rising edge	
					1	input	source is	Input capture at falling edge
				1	*	-capture register	TIOCB1 pin	Input capture at both edges
		1	*	*	_	Capture input source is TGR0C compare match/ input capture	Input capture at generation of TGR0C compare match/input capture	

*: Don't care

	Bit 7	Bit 6	Bit 5	Bit 4					
Channel	IOB3	IOB2	IOB1	IOB0	Description	on			
2	0	0	0	0	TGR2B is	Output disabled	(Initial value)		
				1	output	Initial output is 0	0 output at compare match		
			1	0	-compare register	output	1 output at compare match		
		1		Toggle output at compare match					
				1	0	0		Output disabled	
		Initial output is 1	0 output at compare match						
		output	1 output at compare match						
				1	_		Toggle output at compare match		
1 input source is	Capture input	Input capture at rising edge							
	1 input source is capture TIOCB2 pin register			1	•		Input capture at falling edge		
-		Input capture at both edges							

*: Don't care

	Bit 7	Bit 6	Bit 5	Bit 4				
Channel	IOB3	IOB2	IOB1	IOB0	Description	on		
3	0	0	0	0	TGR3B is	Output disabled	(Initial value)	
				1	output	Initial output is 0	0 output at compare match	
			1	0	-compare register	output	1 output at compare match	
				1	_		Toggle output at compare match	
		1	0	0	_	Output disabled		
				1	_	Initial output is 1	0 output at compare match	
				1	0	_	output 1 output at 0	1 output at compare match
				1	_		Toggle output at compare match	
	1	0	0	0	TGR3B is	Capture input	Input capture at rising edge	
				1	input	source is TIOCB3 pin	Input capture at falling edge	
			1	*	-capture register	ПОСВЗ РІП	Input capture at both edges	
				1	*	*	_	Capture input source is channel 4/count clock

^{*:} Don't care

Note: *1 When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and ø/1 is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.

	Bit 7	Bit 6	Bit 5	Bit 4			
Channel	IOD3	IOD2	IOD1	IOD0	Description	on	
3	0	0	0	0	TGR3D is	Output disabled	(Initial value)
				1	output compare	Initial output is 0	0 output at compare match
			1	0	register*2	output	1 output at compare match
				1	_		Toggle output at compare match
		1	0	0	_	Output disabled	
				1	_	Initial output is 1	0 output at compare match
				1	0	output 1 c	1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR3D is	Capture input	Input capture at rising edge
				1	input	source is TIOCD3 pin	Input capture at falling edge
			1	*	—capture register*2	ПОСЬЗ РІП	Input capture at both edges
			1	*	*	_	Capture input source is channel 4/count clock

Notes: *1 When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and Ø/1 is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.

^{*2} When the BFB bit in TMDR3 is set to 1 and TGR3D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

	Bit 7	Bit 6	Bit 5	Bit 4				
Channel	IOB3	IOB2	IOB1	IOB0	_ Description	on		
4	0	0	0	0	TGR4B is	Output disabled	(Initial value)	
				1	output	Initial output is 0	0 output at compare match	
			1	0	compare register	output	1 output at compare match	
				1	To	Toggle output at compare match		
		1	0	0		Output disabled		
				1	_	Initial output is 1	0 output at compare match	
				1	0	_	output	1 output at compare match
				1	_		Toggle output at compare match	
	1	0	0	0	TGR4B is	Capture input source is	Input capture at rising edge	
				1	input		Input capture at falling edge	
				1	*	capture TIOCB4 p	TIOCB4 pin	Input capture at both edges
		1	*	*	_	Capture input source is TGR3C compare match/ input capture	Input capture at generation of TGR3C compare match/input capture	

Bit 7	Bit 6	Bit 5	Bit 4							
IOB3	IOB2	IOB1	IOB0	Description	on					
0	0	0	0	TGR5B is	Output disabled	(Initial value)				
			1	output	Initial output is 0	0 output at compare match				
		1	0	-compare register	output	1 output at compare match				
			1	_ 0		Toggle output at compare match				
	1	0	0	_	Output disabled					
			1	_	Initial output is 1	0 output at compare match				
						1	0		output	1 output at compare match
									1	_
1	*	0	0	TGR5B is	Capture input	Input capture at rising edge				
			1	input	source is	Input capture at falling edge				
				1	*	capture register	HOCB5 pin	Input capture at both edges		
	IOB3	10B3 10B2 0 0 1	10B3 10B2 10B1 0 0 0 1 1 1 1 0 1 1	IOB3 IOB2 IOB1 IOB0	TGR5B is output TGR5B is input TGR5B is in	IOB3 IOB2 IOB1 IOB0 Description 0 0 TGR5B is output compare register Output disabled Initial output is 0 output 1 0 0 Output disabled Initial output is 1 output is 1 output 1 0 0 Initial output is 1 output 1 0 0 TGR5B is output Capture input source is TIOCB5 pin				

Bits 3 to 0— I/O Control A3 to A0 (IOA3 to IOA0) I/O Control C3 to C0 (IOC3 to IOC0):

IOA3 to IOA0 specify the function of TGRA. IOC3 to IOC0 specify the function of TGRC.

	Bit 3	Bit 2	Bit 1	Bit 0					
Channel	IOA3	IOA2	IOA1	IOA0		on			
0	0	0	0	0	TGR0A is	Output disabled	(Initial value)		
				1	output	Initial output is 0	0 output at compare match		
			1		-compare register	output	1 output at compare match		
				1	_		Toggle output at compare match		
		1	0	0	_	Output disabled			
				1	_	Initial output is 1	0 output at compare match		
						1	0	_	output 1 outp
				1			Toggle output at compare match		
	1	0	0	0	TGR0A is	Capture input	Input capture at rising edge		
				1	input	source is	Input capture at falling edge		
			1	*	-capture register	TIOCA0 pin	Input capture at both edges		
			1	*	*	_	Capture input source is channel 1/ count clock	Input capture at TCNT1 count-up/count-down	

	Bit 3	Bit 2	Bit 1	Bit 0						
Channel	IOC3	IOC2	IOC1	IOC0	Description					
0	0	0	0	0	TGR0C is	Output disabled	(Initial value)			
				1	output	Initial output is 0	0 output at compare match			
			1	0	-compare register*1	output	1 output at compare match			
			1		Toggle output at compare match					
		1	0	0	_	Output disabled				
				1		output 1 outp	0 output at compare match			
			1	0	_		1 output at compare match			
				1	_		Toggle output at compare match			
	1	0	0	0	TGR0C is	Capture input	Input capture at rising edge			
				1	input	source is TIOCC0 pin	Input capture at falling edge			
			1		riocco pin	Input capture at both edges				
			1	*	*	_	Capture input source is channel 1/count clock	Input capture at TCNT1 count-up/count-down		

^{*:} Don't care

Note: *1 When the BFA bit in TMDR0 is set to 1 and TGR0C is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

	Bit 3	Bit 2	Bit 1	Bit 0								
Channel	IOA3	IOA2	IOA1	IOA0	Description	Description						
1	0	0	0	0	_	Output disabled	(Initial value)					
				1	output -compare	Initial output is 0	0 output at compare match					
			1	0	register	output	1 output at compare match					
				1	_		Toggle output at compare match					
		1	0	0	_	Output disabled						
				1	_	Initial output is 1	0 output at compare match					
			1	0	_	output	1 output at compare match					
				1	_		Toggle output at compare match					
			TGR1A is	Capture input	Input capture at rising edge							
				1	⁻input –capture	source is TIOCA1 pin	Input capture at falling edge					
			1	*	register	ΠΟΟΛΤΡΙΙΙ	Input capture at both edges					
		1	*	*		Capture input source is TGR0A compare match/ input capture	Input capture at generation of channel 0/TGR0A compare match/input capture					
							*: Don't care					
	Bit 3	Bit 2	Bit 1	Bit 0	_							
Channel	IOA3	IOA2	IOA1	IOA0	Description	on						
2	0	0	0	0	_	Output disabled	(Initial value)					
				1	output –compare	Initial output is 0 output	0 output at compare match					
			1	0	register	output	1 output at compare match					
				1	_		Toggle output at compare match					
		1	0	0	_	Output disabled						
				1	_	Initial output is 1	0 output at compare match					
			1	0	_	output	1 output at compare match					
				1	_		Toggle output at compare match					
	1	*	0	0		Capture input	Input capture at rising edge					
			_	1	input -capture	source is TIOCA2 pin	Input capture at falling edge					
			1	*	capture register	TIOCA2 pin	Input capture at both edges					

	Bit 3	Bit 2	Bit 1	Bit 0			
Channel	IOA3	IOA2	IOA1	IOA0	Description	on	
3	0	0	0	0	TGR3A is	Output disabled	(Initial value)
				1	output -compare	Initial output is 0	0 output at compare match
			1	0	register	Output , ,	1 output at compare match
				1	_		Toggle output at compare match
		1	0	0	_	Output disabled	
				1	_	Initial output is 1	0 output at compare match
			1	0		output	1 output at compare match
				1	_		Toggle output at compare match
	1	0	0	0	TGR3A is	Capture input	Input capture at rising edge
				1	input -capture	source is TIOCA3 pin	Input capture at falling edge
			1	*	register	ПОСАЗ РІП	Input capture at both edges
		1	*	*	0	Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down

	Bit 3	Bit 2	Bit 1	Bit 0				
Channel	IOC3	IOC2	IOC1	IOC0	Description	on		
3	0	0	0	0	TGR3C is	Output disabled	(Initial value)	
				1	output	Initial output is 0	0 output at compare match	
				-compare register* ¹	output	1 output at compare match		
				1		Toggle output at compare match		
		1	0	0	_	Output disabled		
				1		Initial output is 1	0 output at compare match	
				1	0	_	output	1 output at compare match
				1			Toggle output at compare match	
	1	0	0	0	TGR3C is	Capture input	Input capture at rising edge	
				1	input	source is	Input capture at falling edge	
			1	*	-capture register*1	TIOCC3 pin	Input capture at both edges	
		1	*	*	_	Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/count-down	

Note: *1 When the BFA bit in TMDR3 is set to 1 and TGR3C is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

	Bit 3	Bit 2	Bit 1	Bit 0			
Channel	IOA3	IOA2	IOA1	IOA0	Description	on	
4	0	0	0	0	TGR4A is	Output disabled	(Initial value)
				1	output	Initial output is 0	0 output at compare match
			1	0	-compare register	output	1 output at compare match
				1	<u> </u>		Toggle output at compare match
		1	0	0		Output disabled	
				1		Initial output is 1 0	0 output at compare match
			1	0		output	1 output at compare match
				1			Toggle output at compare match
	1	0	0	0	TGR4A is	Capture input	Input capture at rising edge
				1	input	source is	Input capture at falling edge
			1	*	-capture register	TIOCA4 pin	Input capture at both edges
		1	*	*	_	Capture input source is TGR3A compare match/ input capture	Input capture at generation of TGR3A compare match/input capture

	Bit 3	Bit 2	Bit 1	Bit 0						
Channel	IOA3	IOA2	IOA1	IOA0	Description	on				
5	0	0	0	0	TGR5A is	Output disabled	(Initial value)			
				1	output compare	Initial output is 0	0 output at compare match			
			1	0	register	output	1 output at compare match			
				1	_		Toggle output at compare match			
		1	0	0	_	Output disabled				
				1	_	Initial output is 1	0 output at compare match			
			1	0	_	output	1 output at compare match			
							1	_		Toggle output at compare match
	1	*	0	0	TGR5A is	Capture input	Input capture at rising edge			
				1	input capture	source is TIOCA5 pin	Input capture at falling edge			
				1	ste.	register	ПООЛЈ РІП	Input capture at both edges		

10.2.4 Timer Interrupt Enable Register (TIER)

Channel 0: TIER0
Channel 3: TIER3

3 0 Bit 7 5 4 2 1 TTGE **TCIEV TGIED TGIEC** TGIEB **TGIEA** Initial value: 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W

Channel 1: TIER1 Channel 2: TIER2 Channel 4: TIER4 Channel 5: TIER5

Bit	:	7	6	5	4	3	2	1	0
		TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA
Initial value	e :	0	1	0	0	0	0	0	0
R/W	:	R/W	_	R/W	R/W	_	_	R/W	R/W

The TIER registers are 8-bit registers that control enabling or disabling of interrupt requests for each channel. The TPU has six TIER registers, one for each channel. The TIER registers are initialized to H'40 by a reset, and in hardware standby mode.

Bit 7—A/D Conversion Start Request Enable (TTGE): Enables or disables generation of A/D conversion start requests by TGRA input capture/compare match.

Bit 7

TTGE	Description	
0	A/D conversion start request generation disabled	(Initial value)
1	A/D conversion start request generation enabled	

Bit 6—Reserved: This bit cannot be modified and is always read as 1.

Bit 5—Underflow Interrupt Enable (TCIEU): Enables or disables interrupt requests (TCIU) by the TCFU flag when the TCFU flag in TSR is set to 1 in channels 1, 2, 4, and 5.

In channels 0 and 3, bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit 5

TCIEU	Description	
0	Interrupt requests (TCIU) by TCFU disabled	(Initial value)
1	Interrupt requests (TCIU) by TCFU enabled	

Bit 4—Overflow Interrupt Enable (TCIEV): Enables or disables interrupt requests (TCIV) by the TCFV flag when the TCFV flag in TSR is set to 1.

Bit 4

TCIEV	Description	
0	Interrupt requests (TCIV) by TCFV disabled	(Initial value)
1	Interrupt requests (TCIV) by TCFV enabled	

Bit 3—TGR Interrupt Enable D (TGIED): Enables or disables interrupt requests (TGID) by the TGFD bit when the TGFD bit in TSR is set to 1 in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 3 is reserved. It is always read as 0 and cannot be modified.

Bit 3

TGIED	Description	
0	Interrupt requests (TGID) by TGFD bit disabled	(Initial value)
1	Interrupt requests (TGID) by TGFD bit enabled	

Bit 2—TGR Interrupt Enable C (TGIEC): Enables or disables interrupt requests (TGIC) by the TGFC bit when the TGFC bit in TSR is set to 1 in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 2 is reserved. It is always read as 0 and cannot be modified.

Bit 2

TGIEC	Description	
0	Interrupt requests (TGIC) by TGFC bit disabled	(Initial value)
1	Interrupt requests (TGIC) by TGFC bit enabled	

Bit 1—TGR Interrupt Enable B (TGIEB): Enables or disables interrupt requests (TGIB) by the TGFB bit when the TGFB bit in TSR is set to 1.

Bit 1

TGIEB	Description	
0	Interrupt requests (TGIB) by TGFB bit disabled	(Initial value)
1	Interrupt requests (TGIB) by TGFB bit enabled	

Bit 0—TGR Interrupt Enable A (TGIEA): Enables or disables interrupt requests (TGIA) by the TGFA bit when the TGFA bit in TSR is set to 1.

Bit 0

TGIEA	Description	
0	Interrupt requests (TGIA) by TGFA bit disabled	(Initial value)
1	Interrupt requests (TGIA) by TGFA bit enabled	

10.2.5 Timer Status Register (TSR)

Channel 0: TSR0 Channel 3: TSR3

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA
Initial value	: '	1	1	0	0	0	0	0	0
R/W	:	_	_	_	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*

Channel 1: TSR1 Channel 2: TSR2 Channel 4: TSR4 Channel 5: TSR5

Bit	:	7	6	5	4	3	2	1	0
		TCFD	_	TCFU	TCFV	_		TGFB	TGFA
Initial value	:	1	1	0	0	0	0	0	0
R/W	:	R	_	R/(W)*	R/(W)*	_	_	R/(W)*	R/(W)*

Note: * Can only be written with 0 for flag clearing.

The TSR registers are 8-bit registers that indicate the status of each channel. The TPU has six TSR registers, one for each channel. The TSR registers are initialized to H'C0 by a reset, and in hardware standby mode.

Bit 7—Count Direction Flag (TCFD): Status flag that shows the direction in which TCNT counts in channels 1, 2, 4, and 5.

In channels 0 and 3, bit 7 is reserved. It is always read as 1 and cannot be modified.

Bit 7

TCFD	Description	
0	TCNT counts down	
1	TCNT counts up	(Initial value)

Bit 6—Reserved: This bit cannot be modified and is always read as 1.

Bit 5—Underflow Flag (TCFU): Status flag that indicates that TCNT underflow has occurred when channels 1, 2, 4, and 5 are set to phase counting mode.

In channels 0 and 3, bit 5 is reserved. It is always read as 0 and cannot be modified.

Bit 5

TCFU	 Description	
0	[Clearing condition] When 0 is written to TCFU after reading TCFU = 1	(Initial value)
1	[Setting condition] When the TCNT value underflows (changes from H'0000 to H'FFFF)	

Bit 4—Overflow Flag (TCFV): Status flag that indicates that TCNT overflow has occurred.

Bit 4

TCFV	Description	
0	[Clearing condition]	(Initial value)
	When 0 is written to TCFV after reading TCFV = 1	
1	[Setting condition]	
	When the TCNT value overflows (changes from H'FFFF to H'0000)	

Bit 3—Input Capture/Output Compare Flag D (TGFD): Status flag that indicates the occurrence of TGRD input capture or compare match in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 3 is reserved. It is always read as 0 and cannot be modified.

Bit 3

TGFD	Description					
0	[Clearing conditions] (Initial value)					
	When DTC is activated by TGID interrupt while DISEL bit of MRB in DTC is 0					
	 When 0 is written to TGFD after reading TGFD = 1 					
1	[Setting conditions]					
	When TCNT = TGRD while TGRD is functioning as output compare register					
	When TCNT value is transferred to TGRD by input capture signal while TGRD is					
	functioning as input capture register					

Bit 2—Input Capture/Output Compare Flag C (**TGFC**): Status flag that indicates the occurrence of TGRC input capture or compare match in channels 0 and 3.

In channels 1, 2, 4, and 5, bit 2 is reserved. It is always read as 0 and cannot be modified.

Bit 2

TGFC	Description						
0	[Clearing conditions] (Initial value)						
	When DTC is activated by TGIC interrupt while DISEL bit of MRB in DTC is 0						
	 When 0 is written to TGFC after reading TGFC = 1 						
1	[Setting conditions]						
	When TCNT = TGRC while TGRC is functioning as output compare register						
	When TCNT value is transferred to TGRC by input capture signal while TGRC is						
	functioning as input capture register						

Bit 1—Input Capture/Output Compare Flag B (TGFB): Status flag that indicates the occurrence of TGRB input capture or compare match.

Bit 1

TGFB	Description				
0	[Clearing conditions] (Initial value)				
	 When DTC is activated by TGIB interrupt while DISEL bit of MRB in DTC is 0 				
	 When 0 is written to TGFB after reading TGFB = 1 				
1	[Setting conditions]				
	 When TCNT = TGRB while TGRB is functioning as output compare register 				
	When TCNT value is transferred to TGRB by input capture signal while TGRB is				
	functioning as input capture register				

Bit 0—Input Capture/Output Compare Flag A (TGFA): Status flag that indicates the occurrence of TGRA input capture or compare match.

Bit 0

TGFA	Description					
0	[Clearing conditions] (Initial value)					
	 When DTC is activated by TGIA interrupt while DISEL bit of MRB in DTC is 0 					
	 When 0 is written to TGFA after reading TGFA = 1 					
1	[Setting conditions]					
	 When TCNT = TGRA while TGRA is functioning as output compare register 					
	 When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register 					

10.2.6 Timer Counter (TCNT)

Channel 0: TCNT0 (up-counter)

Channel 1: TCNT1 (up/down-counter*)
Channel 2: TCNT2 (up/down-counter*)

Channel 3: TCNT3 (up-counter)

Channel 4: TCNT4 (up/down-counter*)
Channel 5: TCNT5 (up/down-counter*)

Bit Initial value: n O O O O R/W

Note: * These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as up-counters.

The TCNT registers are 16-bit counters. The TPU has six TCNT counters, one for each channel.

The TCNT counters are initialized to H'0000 by a reset, and in hardware standby mode.

The TCNT counters cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit.

10.2.7 Timer General Register (TGR)

Bit Initial value:

 $\mathsf{R/W} \qquad : \quad \mathsf{R/W} \; \mathsf{R/W}$

The TGR registers are 16-bit registers with a dual function as output compare and input capture registers. The TPU has 16 TGR registers, four each for channels 0 and 3 and two each for channels 1, 2, 4, and 5. TGRC and TGRD for channels 0 and 3 can also be designated for operation as buffer registers*. The TGR registers are initialized to H'FFFF by a reset, and in hardware standby mode.

The TGR registers cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit.

Note: * TGR buffer register combinations are TGRA to TGRC and TGRB to TGRD.

10.2.8 Timer Start Register (TSTR)

Bit	:	7	6	5	4	3	2	1	0	
		_	_	CST5	CST4	CST3	CST2	CST1	CST0	
Initial valu	ue :	0	0	0	0	0	0	0	0	
R/W	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

TSTR is an 8-bit readable/writable register that selects operation/stoppage for channels 0 to 5. TSTR is initialized to H'00 by a reset, and in hardware standby mode.

TCNT counter operation must be halted before setting the operating mode in TMDR, or setting the TCNT count clock in TCR.

Bits 7 and 6—Reserved: Should always be written with 0.

Bits 5 to 0—Counter Start 5 to 0 (CST5 to CST0): These bits select operation or stoppage for TCNT.

Bit n

CSTn	Description	
0	TCNTn count operation is stopped	(Initial value)
1	TCNTn performs count operation	

n = 5 to 0

Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value.

10.2.9 Timer Synchro Register (TSYR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W

TSYR is an 8-bit readable/writable register that selects independent operation or synchronous operation for the channel 0 to 4 TCNT counters. A channel performs synchronous operation when the corresponding bit in TSYR is set to 1.

TSYR is initialized to H'00 by a reset, and in hardware standby mode.

Bits 7 and 6—Reserved: Should always be written with 0.

Bits 5 to 0—Timer Synchro 5 to 0 (SYNC5 to SYNC0): These bits select whether operation is independent of or synchronized with other channels.

When synchronous operation is selected, synchronous presetting of multiple channels*¹, and synchronous clearing through counter clearing on another channel*² are possible.

Bit n

SYNCn	Description	
0	TCNTn operates independently (TCNT presetting/clearing is unrelate other channels)	ed to (Initial value)
1	TCNTn performs synchronous operation	
	TCNT synchronous presetting/synchronous clearing is possible	
		- <u> </u>

n = 5 to 0

Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1.

2. To set synchronous clearing, in addition to the SYNC bit, the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.

10.2.10 Module Stop Control Register A (MSTPCRA)

Bit	:	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	:	0	0	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRA is a 16-bit readable/writable register that performs module stop mode control.

When the MSTPA5 bit in MSTPCR is set to 1, TPU operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCRA is initialized to H'3F by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 5—Module Stop (MSTPA5): Specifies the TPU module stop mode.

Bit 5

MSTPA5		
0	TPU module stop mode cleared	
1	TPU module stop mode set	(Initial value)

10.3 Interface to Bus Master

10.3.1 16-Bit Registers

TCNT and TGR are 16-bit registers. As the data bus to the bus master is 16 bits wide, these registers can be read and written to in 16-bit units.

These registers cannot be read or written to in 8-bit units; 16-bit access must always be used.

An example of 16-bit register access operation is shown in figure 10-2.

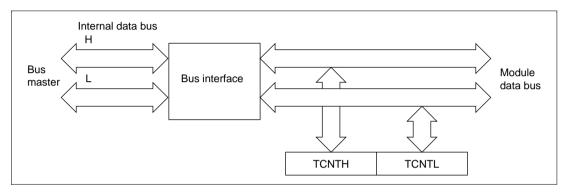


Figure 10-2 16-Bit Register Access Operation [Bus Master ↔ TCNT (16 Bits)]

10.3.2 8-Bit Registers

Registers other than TCNT and TGR are 8-bit. As the data bus to the CPU is 16 bits wide, these registers can be read and written to in 16-bit units. They can also be read and written to in 8-bit units.

Examples of 8-bit register access operation are shown in figures 10-3, 10-4, and 10-5.

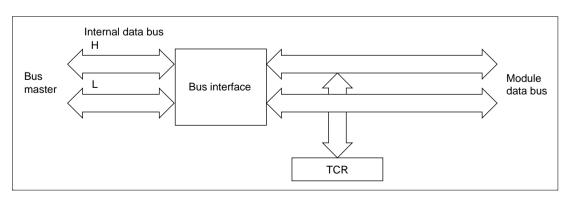


Figure 10-3 8-Bit Register Access Operation [Bus Master \leftrightarrow TCR (Upper 8 Bits)]

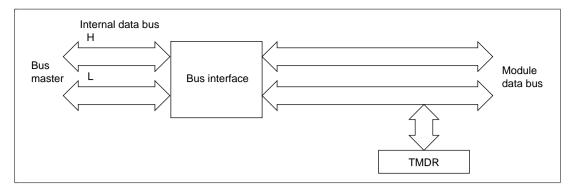


Figure 10-4 8-Bit Register Access Operation [Bus Master \leftrightarrow TMDR (Lower 8 Bits)]

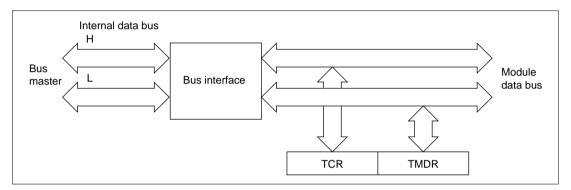


Figure 10-5 8-Bit Register Access Operation [Bus Master ↔ TCR and TMDR (16 Bits)]

10.4 Operation

10.4.1 Overview

Operation in each mode is outlined below.

Normal Operation: Each channel has a TCNT and TGR register. TCNT performs up-counting, and is also capable of free-running operation, synchronous counting, and external event counting.

Each TGR can be used as an input capture register or output compare register.

Synchronous Operation: When synchronous operation is designated for a channel, TCNT for that channel performs synchronous presetting. That is, when TCNT for a channel designated for synchronous operation is rewritten, the TCNT counters for the other channels are also rewritten at the same time. Synchronous clearing of the TCNT counters is also possible by setting the timer synchronization bits in TSYR for channels designated for synchronous operation.

Buffer Operation

- When TGR is an output compare register
 When a compare match occurs, the value in the buffer register for the relevant channel is transferred to TGR.
- When TGR is an input capture register
 When input capture occurs, the value in TCNT is transfer to TGR and the value previously held in TGR is transferred to the buffer register.

Cascaded Operation: The channel 1 counter (TCNT1), channel 2 counter (TCNT2), channel 4 counter (TCNT4), and channel 5 counter (TCNT5) can be connected together to operate as a 32-bit counter.

PWM Mode: In this mode, a PWM waveform is output. The output level can be set by means of TIOR. A PWM waveform with a duty of between 0% and 100% can be output, according to the setting of each TGR register.

Phase Counting Mode: In this mode, TCNT is incremented or decremented by detecting the phases of two clocks input from the external clock input pins in channels 1, 2, 4, and 5. When phase counting mode is set, the corresponding TCLK pin functions as the clock pin, and TCNT performs up- or down-counting.

This can be used for two-phase encoder pulse input.

10.4.2 Basic Functions

Counter Operation: When one of bits CST0 to CST5 is set to 1 in TSTR, the TCNT counter for the corresponding channel starts counting. TCNT can operate as a free-running counter, periodic counter, and so on.

• Example of count operation setting procedure
Figure 10-6 shows an example of the count operation setting procedure.

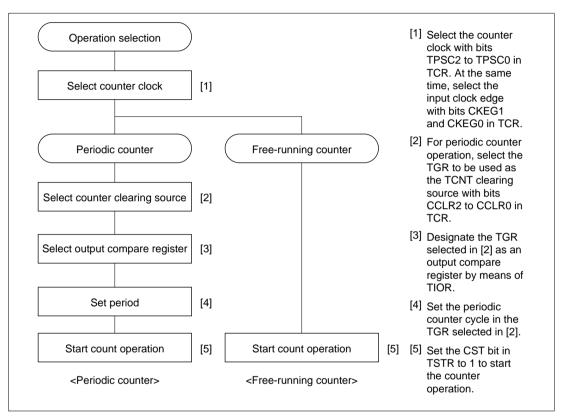


Figure 10-6 Example of Counter Operation Setting Procedure

Free-running count operation and periodic count operation
Immediately after a reset, the TPU's TCNT counters are all designated as free-running counters. When the relevant bit in TSTR is set to 1 the corresponding TCNT counter starts upcount operation as a free-running counter. When TCNT overflows (from H'FFFF to H'0000), the TCFV bit in TSR is set to 1. If the value of the corresponding TCIEV bit in TIER is 1 at this point, the TPU requests an interrupt. After overflow, TCNT starts counting up again from H'0000.

Figure 10-7 illustrates free-running counter operation.

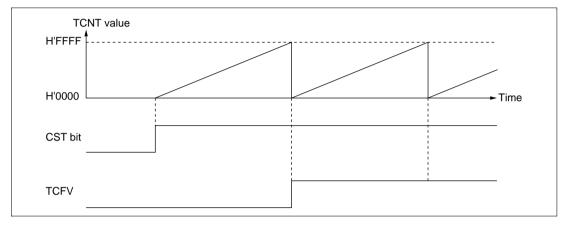


Figure 10-7 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for the relevant channel performs periodic count operation. The TGR register for setting the period is designated as an output compare register, and counter clearing by compare match is selected by means of bits CCLR2 to CCLR0 in TCR. After the settings have been made, TCNT starts up-count operation as periodic counter when the corresponding bit in TSTR is set to 1. When the count value matches the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to H'0000.

If the value of the corresponding TGIE bit in TIER is 1 at this point, the TPU requests an interrupt. After a compare match, TCNT starts counting up again from H'0000.

Figure 10-8 illustrates periodic counter operation.

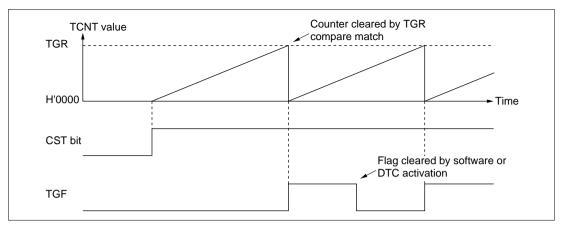


Figure 10-8 Periodic Counter Operation

Waveform Output by Compare Match: The TPU can perform 0, 1, or toggle output from the corresponding output pin using compare match.

Example of setting procedure for waveform output by compare match
 Figure 10-9 shows an example of the setting procedure for waveform output by compare match.

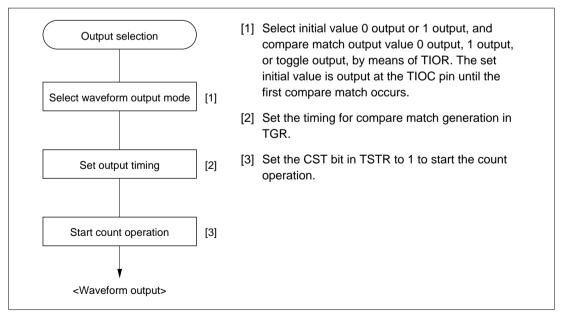


Figure 10-9 Example Of Setting Procedure For Waveform Output By Compare Match

Examples of waveform output operation
 Figure 10-10 shows an example of 0 output/1 output.

In this example TCNT has been designated as a free-running counter, and settings have been made so that 1 is output by compare match A, and 0 is output by compare match B. When the set level and the pin level coincide, the pin level does not change.

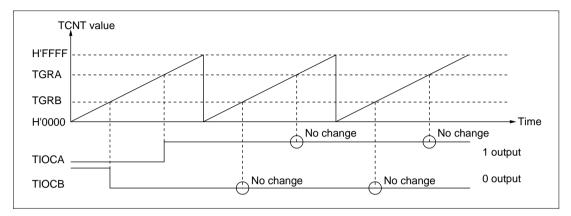


Figure 10-10 Example of 0 Output/1 Output Operation

Figure 10-11 shows an example of toggle output.

In this example TCNT has been designated as a periodic counter (with counter clearing performed by compare match B), and settings have been made so that output is toggled by both compare match A and compare match B.

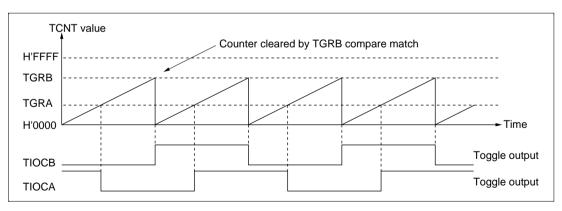


Figure 10-11 Example of Toggle Output Operation

Input Capture Function: The TCNT value can be transferred to TGR on detection of the TIOC pin input edge.

Rising edge, falling edge, or both edges can be selected as the detected edge. For channels 0, 1, 3, and 4, it is also possible to specify another channel's counter input clock or compare match signal as the input capture source.

Note: When another channel's counter input clock is used as the input capture input for channels 0 and 3, $\emptyset/1$ should not be selected as the counter input clock used for input capture input. Input capture will not be generated if $\emptyset/1$ is selected.

• Example of input capture operation setting procedure
Figure 10-12 shows an example of the input capture operation setting procedure.

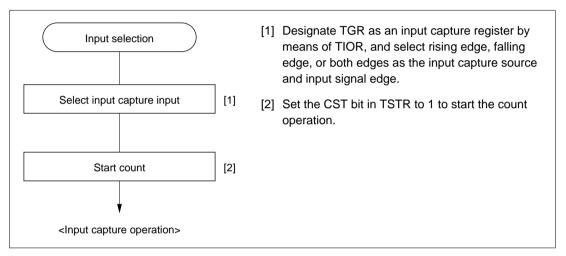


Figure 10-12 Example of Input Capture Operation Setting Procedure

• Example of input capture operation
Figure 10-13 shows an example of input capture operation.

In this example both rising and falling edges have been selected as the TIOCA pin input capture input edge, falling edge has been selected as the TIOCB pin input capture input edge, and counter clearing by TGRB input capture has been designated for TCNT.

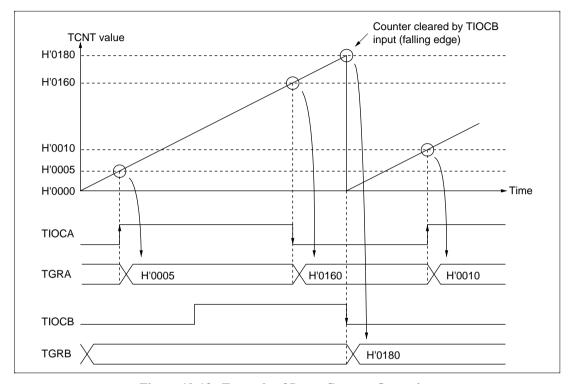


Figure 10-13 Example of Input Capture Operation

10.4.3 Synchronous Operation

In synchronous operation, the values in a number of TCNT counters can be rewritten simultaneously (synchronous presetting). Also, a number of TCNT counters can be cleared simultaneously by making the appropriate setting in TCR (synchronous clearing).

Synchronous operation enables TGR to be incremented with respect to a single time base.

Channels 0 to 5 can all be designated for synchronous operation.

Example of Synchronous Operation Setting Procedure: Figure 10-14 shows an example of the synchronous operation setting procedure.

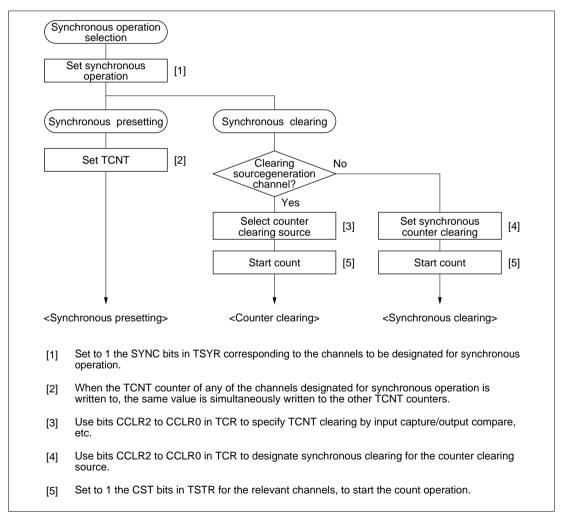


Figure 10-14 Example of Synchronous Operation Setting Procedure

Example of Synchronous Operation: Figure 10-15 shows an example of synchronous operation.

In this example, synchronous operation and PWM mode 1 have been designated for channels 0 to 2, TGR0B compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing source.

Three-phase PWM waveforms are output from pins TIOC0A, TIOC1A, and TIOC2A. At this time, synchronous presetting, and synchronous clearing by TGR0B compare match, is performed for channel 0 to 2 TCNT counters, and the data set in TGR0B is used as the PWM cycle.

For details of PWM modes, see section 10.4.6, PWM Modes.

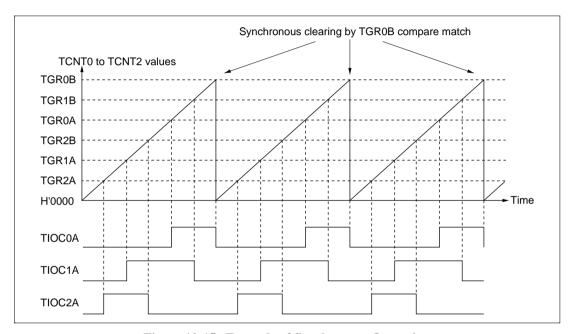


Figure 10-15 Example of Synchronous Operation

10.4.4 Buffer Operation

Buffer operation, provided for channels 0 and 3, enables TGRC and TGRD to be used as buffer registers.

Buffer operation differs depending on whether TGR has been designated as an input capture register or as a compare match register.

Table 10-5 shows the register combinations used in buffer operation.

Table 10-5 Register Combinations in Buffer Operation

Channel	Timer General Register	Buffer Register
0	TGR0A	TGR0C
	TGR0B	TGR0D
3	TGR3A	TGR3C
	TGR3B	TGR3D

• When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding channel is transferred to the timer general register.

This operation is illustrated in figure 10-16.

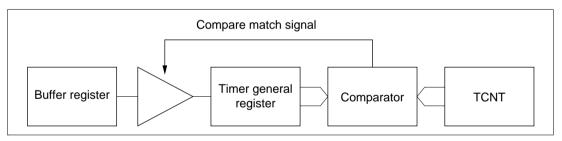


Figure 10-16 Compare Match Buffer Operation

When TGR is an input capture register
When input capture occurs, the value in TCNT is transferred to TGR and the value previously held in the timer general register is transferred to the buffer register.

This operation is illustrated in figure 10-17.

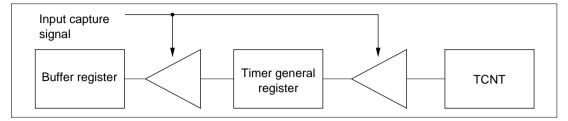


Figure 10-17 Input Capture Buffer Operation

Example of Buffer Operation Setting Procedure: Figure 10-18 shows an example of the buffer operation setting procedure.

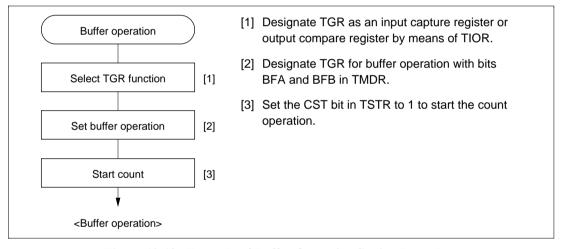


Figure 10-18 Example of Buffer Operation Setting Procedure

Examples of Buffer Operation

• When TGR is an output compare register

Figure 10-19 shows an operation example in which PWM mode 1 has been designated for channel 0, and buffer operation has been designated for TGRA and TGRC. The settings used in this example are TCNT clearing by compare match B, 1 output at compare match A, and 0 output at compare match B.

As buffer operation has been set, when compare match A occurs the output changes and the value in buffer register TGRC is simultaneously transferred to timer general register TGRA. This operation is repeated each time compare match A occurs.

For details of PWM modes, see section 10.4.6, PWM Modes.

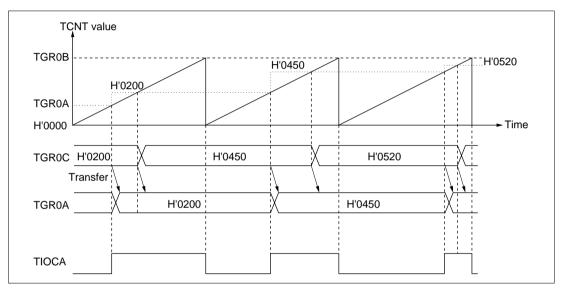


Figure 10-19 Example of Buffer Operation (1)

• When TGR is an input capture register

Figure 10-20 shows an operation example in which TGRA has been designated as an input capture register, and buffer operation has been designated for TGRA and TGRC.

Counter clearing by TGRA input capture has been set for TCNT, and both rising and falling edges have been selected as the TIOCA pin input capture input edge.

As buffer operation has been set, when the TCNT value is stored in TGRA upon occurrence of input capture A, the value previously stored in TGRA is simultaneously transferred to TGRC.

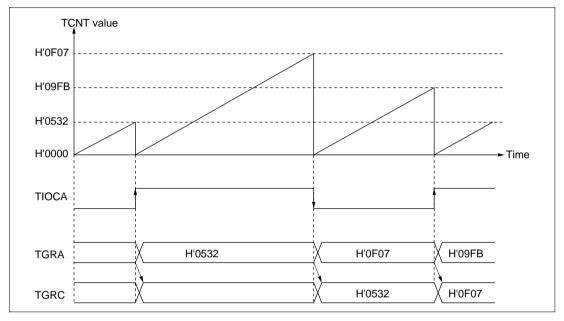


Figure 10-20 Example of Buffer Operation (2)

10.4.5 Cascaded Operation

In cascaded operation, two 16-bit counters for different channels are used together as a 32-bit counter.

This function works by counting the channel 1 (channel 4) counter clock upon overflow/underflow of TCNT2 (TCNT5) as set in bits TPSC2 to TPSC0 in TCR.

Underflow occurs only when the lower 16-bit TCNT is in phase-counting mode.

Table 10-6 shows the register combinations used in cascaded operation.

Note: When phase counting mode is set for channel 1 or 4, the counter clock setting is invalid and the counter operates independently in phase counting mode.

Table 10-6 Cascaded Combinations

Combination	Upper 16 Bits	Lower 16 Bits
Channels 1 and 2	TCNT1	TCNT2
Channels 4 and 5	TCNT4	TCNT5

Example of Cascaded Operation Setting Procedure: Figure 10-21 shows an example of the setting procedure for cascaded operation.

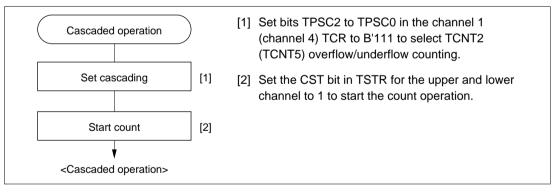


Figure 10-21 Cascaded Operation Setting Procedure

Examples of Cascaded Operation: Figure 10-22 illustrates the operation when counting upon TCNT2 overflow/underflow has been set for TCNT1, TGR1A and TGR2A have been designated as input capture registers, and TIOC pin rising edge has been selected.

When a rising edge is input to the TIOCA1 and TIOCA2 pins simultaneously, the upper 16 bits of the 32-bit data are transferred to TGR1A, and the lower 16 bits to TGR2A.

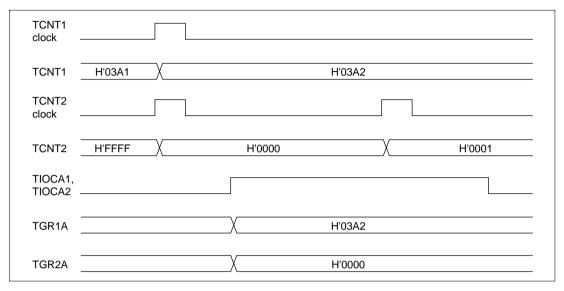


Figure 10-22 Example of Cascaded Operation (1)

Figure 10-23 illustrates the operation when counting upon TCNT2 overflow/underflow has been set for TCNT1, and phase counting mode has been designated for channel 2.

TCNT1 is incremented by TCNT2 overflow and decremented by TCNT2 underflow.

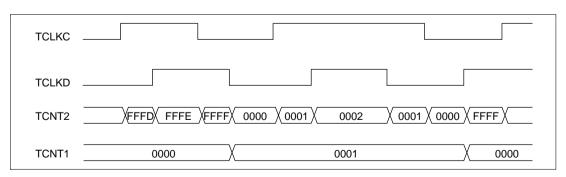


Figure 10-23 Example of Cascaded Operation (2)

10.4.6 PWM Modes

In PWM mode, PWM waveforms are output from the output pins. 0, 1, or toggle output can be selected as the output level in response to compare match of each TGR.

Designating TGR compare match as the counter clearing source enables the period to be set in that register. All channels can be designated for PWM mode independently. Synchronous operation is also possible.

There are two PWM modes, as described below.

PWM mode 1

PWM output is generated from the TIOCA and TIOCC pins by pairing TGRA with TGRB and TGRC with TGRD. The output specified by bits IOA3 to IOA0 and IOC3 to IOC0 in TIOR is output from the TIOCA and TIOCC pins at compare matches A and C, and the output specified by bits IOB3 to IOB0 and IOD3 to IOD0 in TIOR is output at compare matches B and D. The initial output value is the value set in TGRA or TGRC. If the set values of paired TGRs are identical, the output value does not change when a compare match occurs. In PWM mode 1, a maximum 8-phase PWM output is possible.

PWM mode 2

PWM output is generated using one TGR as the cycle register and the others as duty registers. The output specified in TIOR is performed by means of compare matches. Upon counter clearing by a synchronization register compare match, the output value of each pin is the initial value set in TIOR. If the set values of the cycle and duty registers are identical, the output value does not change when a compare match occurs.

In PWM mode 2, a maximum 15-phase PWM output is possible by combined use with synchronous operation.

The correspondence between PWM output pins and registers is shown in table 10-7.

Table 10-7 PWM Output Registers and Output Pins

0	ut	่อเ	ıt	Ρi	ns

Channel	Registers	PWM Mode 1	PWM Mode 2
0	TGR0A	TIOCA0	TIOCA0
	TGR0B		TIOCB0
	TGR0C	TIOCC0	TIOCC0
	TGR0D		TIOCD0
1	TGR1A	TIOCA1	TIOCA1
	TGR1B		TIOCB1
2	TGR2A	TIOCA2	TIOCA2
	TGR2B		TIOCB2
3	TGR3A	TIOCA3	TIOCA3
	TGR3B		TIOCB3
	TGR3C	TIOCC3	TIOCC3
	TGR3D		TIOCD3
4	TGR4A	TIOCA4	TIOCA4
	TGR4B		TIOCB4
5	TGR5A	TIOCA5	TIOCA5
	TGR5B		TIOCB5

Note: In PWM mode 2, PWM output is not possible for the TGR register in which the period is set.

Example of PWM Mode Setting Procedure: Figure 10-24 shows an example of the PWM mode setting procedure.

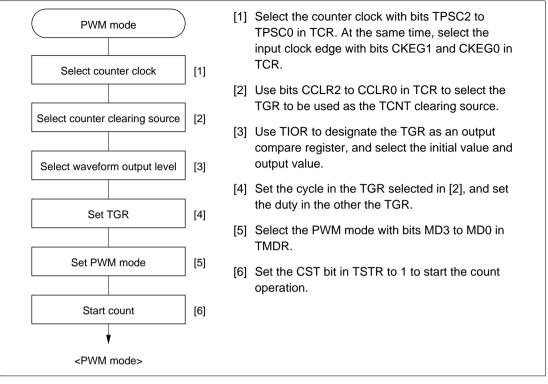


Figure 10-24 Example of PWM Mode Setting Procedure

Examples of PWM Mode Operation: Figure 10-25 shows an example of PWM mode 1 operation.

In this example, TGRA compare match is set as the TCNT clearing source, 0 is set for the TGRA initial output value and output value, and 1 is set as the TGRB output value.

In this case, the value set in TGRA is used as the period, and the values set in TGRB registers as the duty.

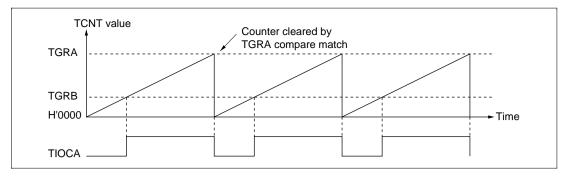


Figure 10-25 Example of PWM Mode Operation (1)

Figure 10-26 shows an example of PWM mode 2 operation.

In this example, synchronous operation is designated for channels 0 and 1, TGR1B compare match is set as the TCNT clearing source, and 0 is set for the initial output value and 1 for the output value of the other TGR registers (TGR0A to TGR0D, TGR1A), to output a 5-phase PWM waveform.

In this case, the value set in TGR1B is used as the cycle, and the values set in the other TGRs as the duty.

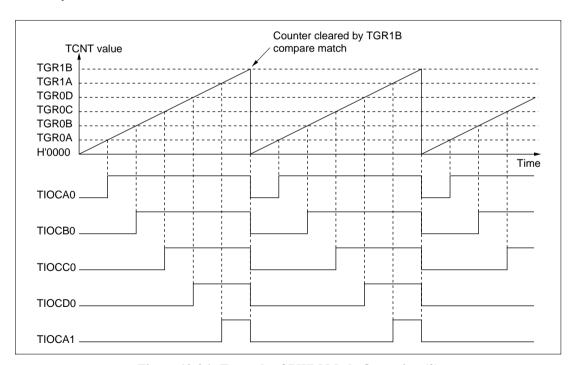


Figure 10-26 Example of PWM Mode Operation (2)

Figure 10-27 shows examples of PWM waveform output with 0% duty and 100% duty in PWM mode.

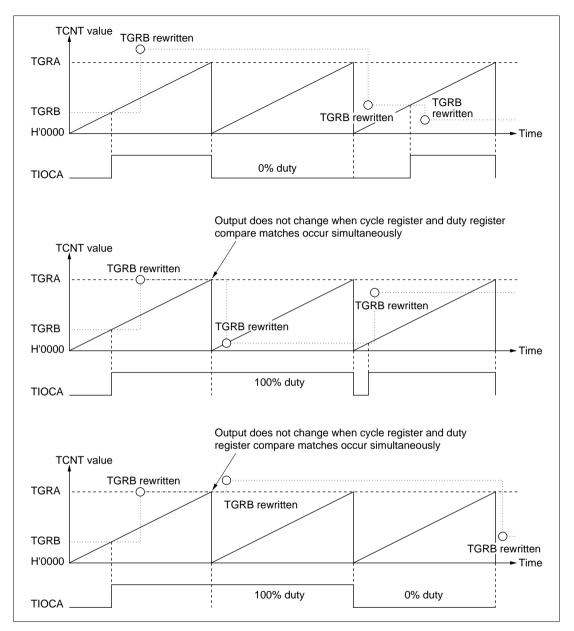


Figure 10-27 Example of PWM Mode Operation (3)

10.4.7 Phase Counting Mode

In phase counting mode, the phase difference between two external clock inputs is detected and TCNT is incremented/decremented accordingly. This mode can be set for channels 1, 2, 4, and 5.

When phase counting mode is set, an external clock is selected as the counter input clock and TCNT operates as an up/down-counter regardless of the setting of bits TPSC2 to TPSC0 and bits CKEG1 and CKEG0 in TCR. However, the functions of bits CCLR1 and CCLR0 in TCR, and of TIOR, TIER, and TGR are valid, and input capture/compare match and interrupt functions can be used.

When overflow occurs while TCNT is counting up, the TCFV flag in TSR is set; when underflow occurs while TCNT is counting down, the TCFU flag is set.

The TCFD bit in TSR is the count direction flag. Reading the TCFD flag provides an indication of whether TCNT is counting up or down.

Table 10-8 shows the correspondence between external clock pins and channels.

Table 10-8 Phase Counting Mode Clock Input Pins

	External Clock Pins		
Channels	A-Phase	B-Phase	
When channel 1 or 5 is set to phase counting mode	TCLKA	TCLKB	
When channel 2 or 4 is set to phase counting mode	TCLKC	TCLKD	

Example of Phase Counting Mode Setting Procedure: Figure 10-28 shows an example of the phase counting mode setting procedure.

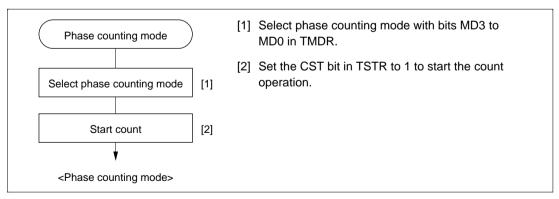


Figure 10-28 Example of Phase Counting Mode Setting Procedure

Examples of Phase Counting Mode Operation: In phase counting mode, TCNT counts up or down according to the phase difference between two external clocks. There are four modes, according to the count conditions.

Phase counting mode 1
 Figure 10-29 shows an example of phase counting mode 1 operation, and table 10-9
 summarizes the TCNT up/down-count conditions.

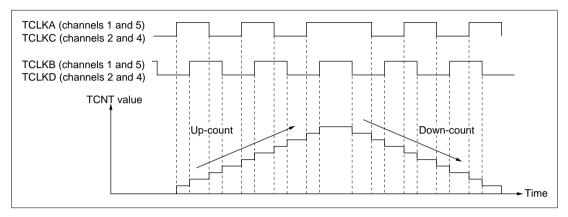


Figure 10-29 Example of Phase Counting Mode 1 Operation

Table 10-9 Up/Down-Count Conditions in Phase Counting Mode 1

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level		Up-count
Low level	7_	
	Low level	
7_	High level	
High level	7_	Down-count
Low level		
	High level	
7_	Low level	

Legend

 Phase counting mode 2
Figure 10-30 shows an example of phase counting mode 2 operation, and table 10-10 summarizes the TCNT up/down-count conditions.

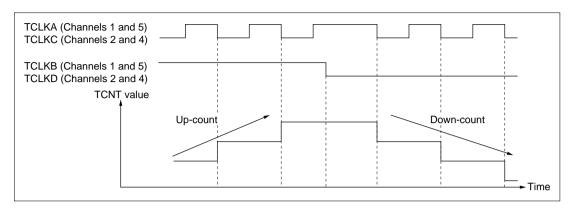


Figure 10-30 Example of Phase Counting Mode 2 Operation

Table 10-10 Up/Down-Count Conditions in Phase Counting Mode 2

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level	Ŧ	Don't care
Low level	7_	Don't care
<u>_</u>	Low level	Don't care
7_	High level	Up-count
High level	7_	Don't care
Low level	<u>-</u>	Don't care
<u>_</u>	High level	Don't care
7_	Low level	Down-count

Legend

 Phase counting mode 3
Figure 10-31 shows an example of phase counting mode 3 operation, and table 10-11 summarizes the TCNT up/down-count conditions.

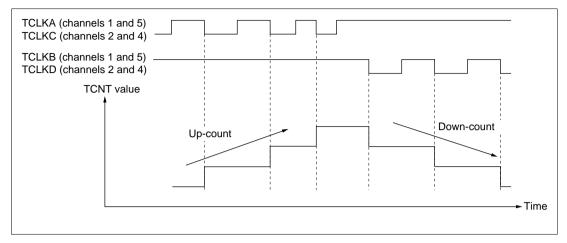


Figure 10-31 Example of Phase Counting Mode 3 Operation

Table 10-11 Up/Down-Count Conditions in Phase Counting Mode 3

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level	<u>.</u>	Don't care
Low level	7_	Don't care
<u></u>	Low level	Don't care
7_	High level	Up-count
High level	<u> </u>	Down-count
Low level	<u>_</u>	Don't care
<u>_</u>	High level	Don't care
7_	Low level	Don't care

Legend

☐ : Rising edge ☐ : Falling edge

Phase counting mode 4
Figure 10-32 shows an example of phase counting mode 4 operation, and table 10-12 summarizes the TCNT up/down-count conditions.

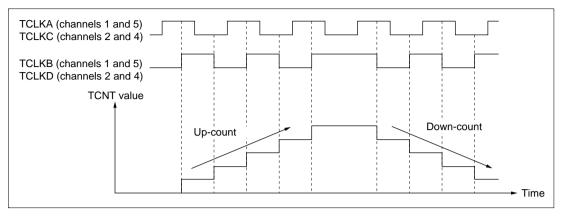


Figure 10-32 Example of Phase Counting Mode 4 Operation

Table 10-12 Up/Down-Count Conditions in Phase Counting Mode 4

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level	Ŧ	Up-count
Low level	7_	
<u></u>	Low level	Don't care
7_	High level	
High level	7_	Down-count
Low level	<u>_</u>	
<u>_</u>	High level	Don't care
7_	Low level	

Legend

 Phase Counting Mode Application Example: Figure 10-33 shows an example in which phase counting mode is designated for channel 1, and channel 1 is coupled with channel 0 to input servo motor 2-phase encoder pulses in order to detect the position or speed.

Channel 1 is set to phase counting mode 1, and the encoder pulse A-phase and B-phase are input to TCLKA and TCLKB.

Channel 0 operates with TCNT counter clearing by TGR0C compare match; TGR0A and TGR0C are used for the compare match function, and are set with the speed control period and position control period. TGR0B is used for input capture, with TGR0B and TGR0D operating in buffer mode. The channel 1 counter input clock is designated as the TGR0B input capture source, and detection of the pulse width of 2-phase encoder 4-multiplication pulses is performed.

TGR1A and TGR1B for channel 1 are designated for input capture, channel 0 TGR0A and TGR0C compare matches are selected as the input capture source, and store the up/down-counter values for the control periods.

This procedure enables accurate position/speed detection to be achieved.

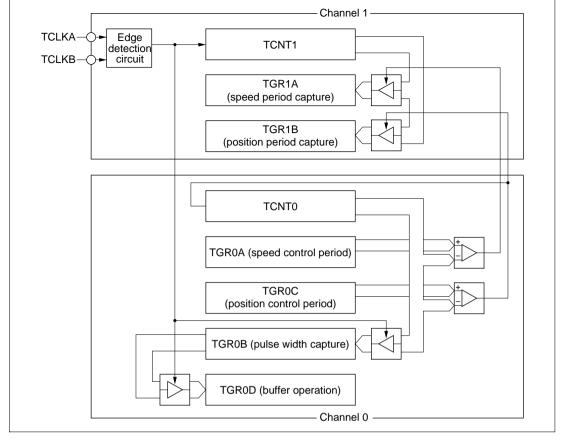


Figure 10-33 Phase Counting Mode Application Example

10.5 Interrupts

10.5.1 Interrupt Sources and Priorities

There are three kinds of TPU interrupt source: TGR input capture/compare match, TCNT overflow, and TCNT underflow. Each interrupt source has its own status flag and enable/disabled bit, allowing generation of interrupt request signals to be enabled or disabled individually.

When an interrupt request is generated, the corresponding status flag in TSR is set to 1. If the corresponding enable/disable bit in TIER is set to 1 at this time, an interrupt is requested. The interrupt request is cleared by clearing the status flag to 0.

Relative channel priorities can be changed by the interrupt controller, but the priority order within a channel is fixed. For details, see section 5, Interrupt Controller.

Table 10-13 TPU Interrupts

Channel	Interrupt Source	Description	DTC Activation	Priority
0	TGI0A	TGR0A input capture/compare match	Possible	High
	TGI0B	TGR0B input capture/compare match	Possible	_ 🛉
	TGI0C	TGR0C input capture/compare match	Possible	_
	TGI0D	TGR0D input capture/compare match	Possible	_
	TCI0V	TCNT0 overflow	Not possible	_
1	TGI1A	TGR1A input capture/compare match	Possible	_
	TGI1B	TGR1B input capture/compare match	Possible	_
	TCI1V	TCNT1 overflow	Not possible	_
	TCI1U	TCNT1 underflow	Not possible	_
2	TGI2A	TGR2A input capture/compare match	Possible	_
	TGI2B	TGR2B input capture/compare match	Possible	_
	TCI2V	TCNT2 overflow	Not possible	_
	TCI2U	TCNT2 underflow	Not possible	_
3	TGI3A	TGR3A input capture/compare match	Possible	_
	TGI3B	TGR3B input capture/compare match	Possible	_
	TGI3C	TGR3C input capture/compare match	Possible	_
	TGI3D	TGR3D input capture/compare match	Possible	_
	TCI3V	TCNT3 overflow	Not possible	_
4	TGI4A	TGR4A input capture/compare match	Possible	_
	TGI4B	TGR4B input capture/compare match	Possible	_
	TCI4V	TCNT4 overflow	Not possible	_
	TCI4U	TCNT4 underflow	Not possible	_
5	TGI5A	TGR5A input capture/compare match	Possible	
	TGI5B	TGR5B input capture/compare match	Possible	
	TCI5V	TCNT5 overflow	Not possible	_
	TCI5U	TCNT5 underflow	Not possible	Low

Note: This table shows the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller.

Input Capture/Compare Match Interrupt: An interrupt is requested if the TGIE bit in TIER is set to 1 when the TGF flag in TSR is set to 1 by the occurrence of a TGR input capture/compare match on a particular channel. The interrupt request is cleared by clearing the TGF flag to 0. The TPU has 16 input capture/compare match interrupts, four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5.

Overflow Interrupt: An interrupt is requested if the TCIEV bit in TIER is set to 1 when the TCFV flag in TSR is set to 1 by the occurrence of TCNT overflow on a channel. The interrupt request is cleared by clearing the TCFV flag to 0. The TPU has six overflow interrupts, one for each channel.

Underflow Interrupt: An interrupt is requested if the TCIEU bit in TIER is set to 1 when the TCFU flag in TSR is set to 1 by the occurrence of TCNT underflow on a channel. The interrupt request is cleared by clearing the TCFU flag to 0. The TPU has four overflow interrupts, one each for channels 1, 2, 4, and 5.

10.5.2 DTC Activation

DTC Activation: The DTC can be activated by the TGR input capture/compare match interrupt for a channel. For details, see section 8, Data Transfer Controller (DTC).

A total of 16 TPU input capture/compare match interrupts can be used as DTC activation sources, four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5.

10.5.3 A/D Converter Activation

The A/D converter can be activated by the TGRA input capture/compare match for a channel.

If the TTGE bit in TIER is set to 1 when the TGFA flag in TSR is set to 1 by the occurrence of a TGRA input capture/compare match on a particular channel, a request to start A/D conversion is sent to the A/D converter. If the TPU conversion start trigger has been selected on the A/D converter side at this time, A/D conversion is started.

In the TPU, a total of six TGRA input capture/compare match interrupts can be used as A/D converter conversion start sources, one for each channel.

10.6 Operation Timing

10.6.1 Input/Output Timing

TCNT Count Timing: Figure 10-34 shows TCNT count timing in internal clock operation, and figure 10-35 shows TCNT count timing in external clock operation.

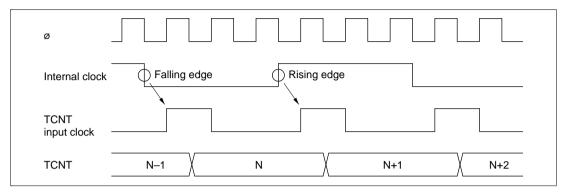


Figure 10-34 Count Timing in Internal Clock Operation

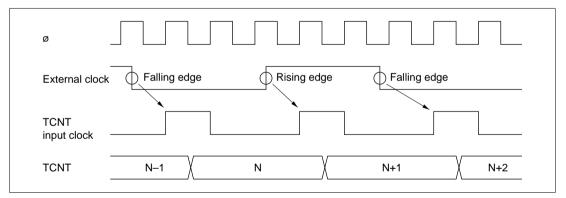


Figure 10-35 Count Timing in External Clock Operation

Output Compare Output Timing: A compare match signal is generated in the final state in which TCNT and TGR match (the point at which the count value matched by TCNT is updated). When a compare match signal is generated, the output value set in TIOR is output at the output compare output pin (TIOC pin). After a match between TCNT and TGR, the compare match signal is not generated until the TCNT input clock is generated.

Figure 10-36 shows output compare output timing.

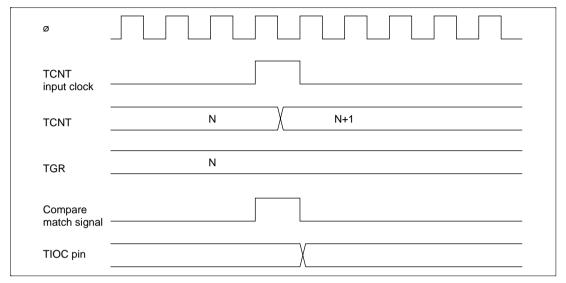


Figure 10-36 Output Compare Output Timing

Input Capture Signal Timing: Figure 10-37 shows input capture signal timing.

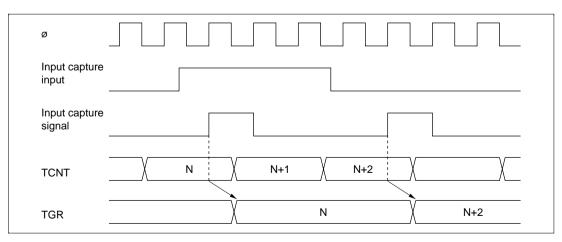


Figure 10-37 Input Capture Input Signal Timing

Timing for Counter Clearing by Compare Match/Input Capture: Figure 10-38 shows the timing when counter clearing by compare match occurrence is specified, and figure 10-39 shows the timing when counter clearing by input capture occurrence is specified.

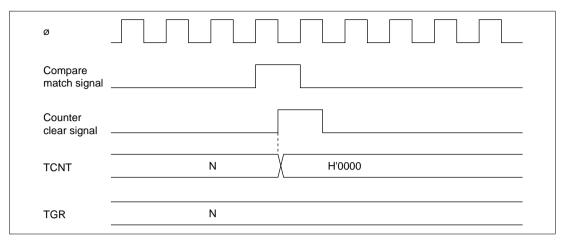


Figure 10-38 Counter Clear Timing (Compare Match)

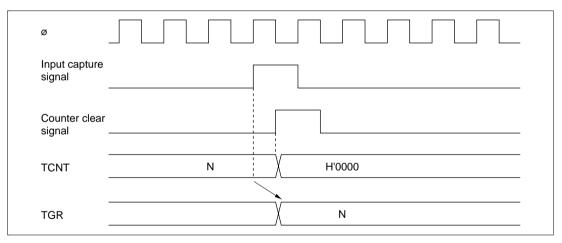


Figure 10-39 Counter Clear Timing (Input Capture)

Buffer Operation Timing: Figures 10-40 and 10-41 show the timing in buffer operation.

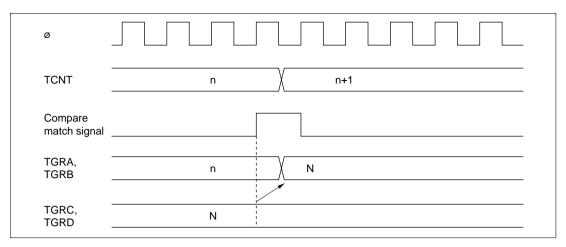


Figure 10-40 Buffer Operation Timing (Compare Match)

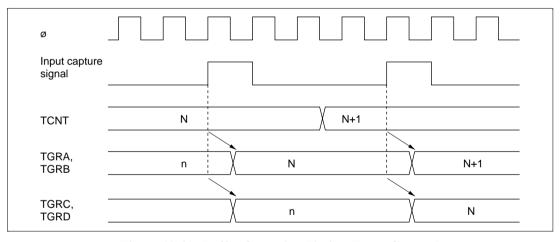


Figure 10-41 Buffer Operation Timing (Input Capture)

10.6.2 Interrupt Signal Timing

TGF Flag Setting Timing in Case of Compare Match: Figure 10-42 shows the timing for setting of the TGF flag in TSR by compare match occurrence, and TGI interrupt request signal timing.

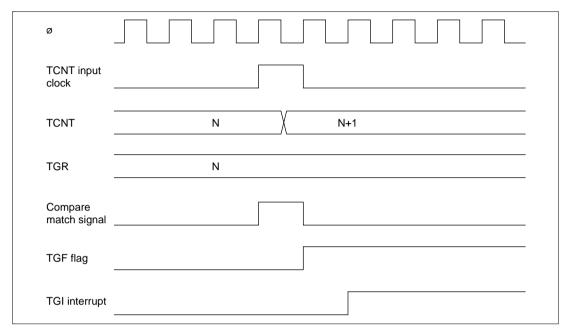


Figure 10-42 TGI Interrupt Timing (Compare Match)

TGF Flag Setting Timing in Case of Input Capture: Figure 10-43 shows the timing for setting of the TGF flag in TSR by input capture occurrence, and TGI interrupt request signal timing.

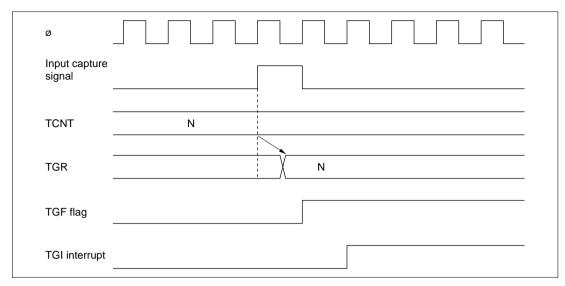


Figure 10-43 TGI Interrupt Timing (Input Capture)

TCFV Flag/TCFU Flag Setting Timing: Figure 10-44 shows the timing for setting of the TCFV flag in TSR by overflow occurrence, and TCIV interrupt request signal timing.

Figure 10-45 shows the timing for setting of the TCFU flag in TSR by underflow occurrence, and TCIU interrupt request signal timing.

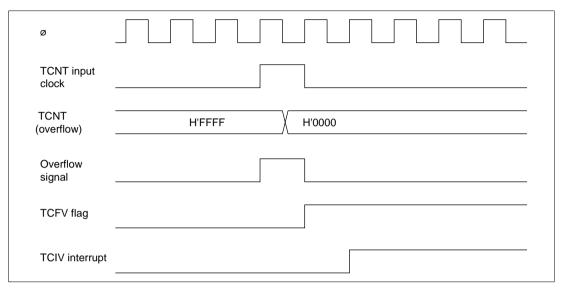


Figure 10-44 TCIV Interrupt Setting Timing

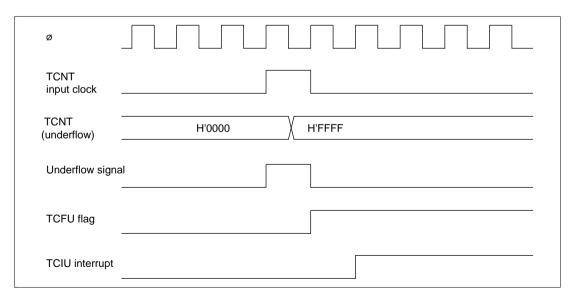


Figure 10-45 TCIU Interrupt Setting Timing

Status Flag Clearing Timing: After a status flag is read as 1 by the CPU, it is cleared by writing 0 to it. When the DTC is activated, the flag is cleared automatically. Figure 10-46 shows the timing for status flag clearing by the CPU, and figure 10-47 shows the timing for status flag clearing by the DTC.

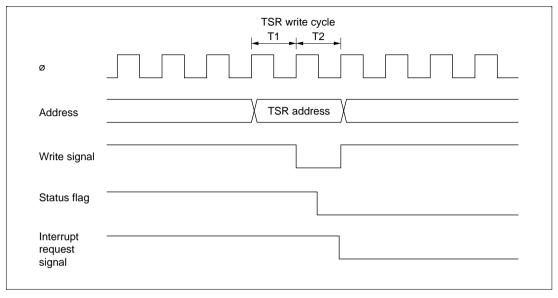


Figure 10-46 Timing for Status Flag Clearing by CPU

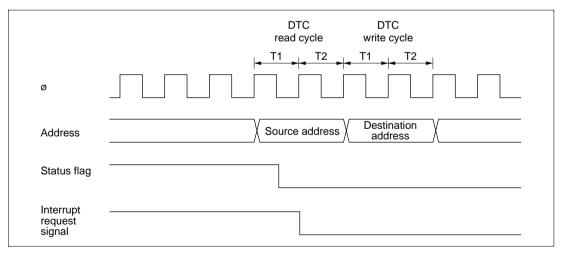


Figure 10-47 Timing for Status Flag Clearing by DTC Activation

10.7 Usage Notes

Note that the kinds of operation and contention described below occur during TPU operation.

Input Clock Restrictions: The input clock pulse width must be at least 1.5 states in the case of single-edge detection, and at least 2.5 states in the case of both-edge detection. The TPU will not operate properly with a narrower pulse width.

In phase counting mode, the phase difference and overlap between the two input clocks must be at least 1.5 states, and the pulse width must be at least 2.5 states. Figure 10-48 shows the input clock conditions in phase counting mode.

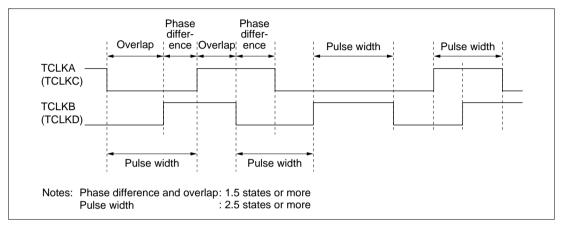


Figure 10-48 Phase Difference, Overlap, and Pulse Width in Phase Counting Mode

Caution on Period Setting: When counter clearing by compare match is set, TCNT is cleared in the final state in which it matches the TGR value (the point at which the count value matched by TCNT is updated). Consequently, the actual counter frequency is given by the following formula:

$$f = \frac{\emptyset}{(N+1)}$$

Where

f : Counter frequency

ø : Operating frequency

N: TGR set value

Contention between TCNT Write and Clear Operations: If the counter clear signal is generated in the T2 state of a TCNT write cycle, TCNT clearing takes precedence and the TCNT write is not performed.

Figure 10-49 shows the timing in this case.

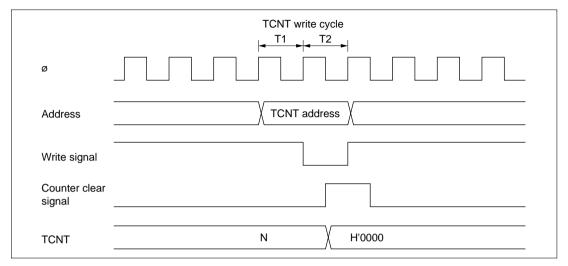


Figure 10-49 Contention between TCNT Write and Clear Operations

Contention between TCNT Write and Increment Operations: If incrementing occurs in the T2 state of a TCNT write cycle, the TCNT write takes precedence and TCNT is not incremented.

Figure 10-50 shows the timing in this case.

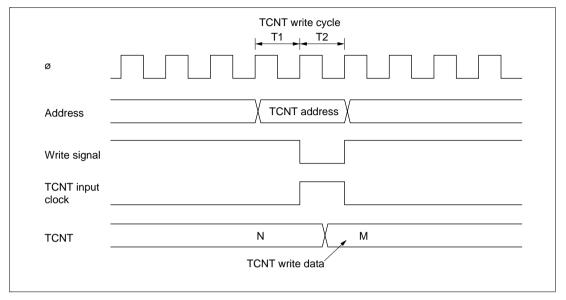


Figure 10-50 Contention between TCNT Write and Increment Operations

Contention between TGR Write and Compare Match: If a compare match occurs in the T2 state of a TGR write cycle, the TGR write takes precedence and the compare match signal is inhibited. A compare match does not occur even if the same value as before is written.

Figure 10-51 shows the timing in this case.

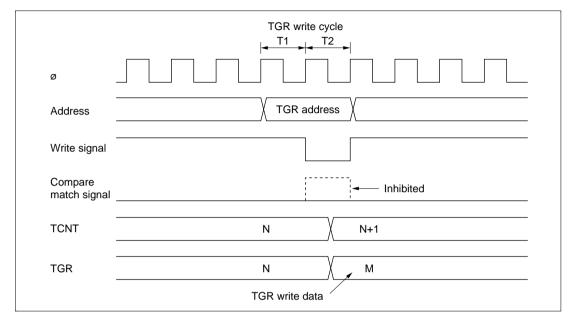


Figure 10-51 Contention between TGR Write and Compare Match

Contention between Buffer Register Write and Compare Match: If a compare match occurs in the T2 state of a TGR write cycle, the data transferred to TGR by the buffer operation will be the data prior to the write.

Figure 10-52 shows the timing in this case.

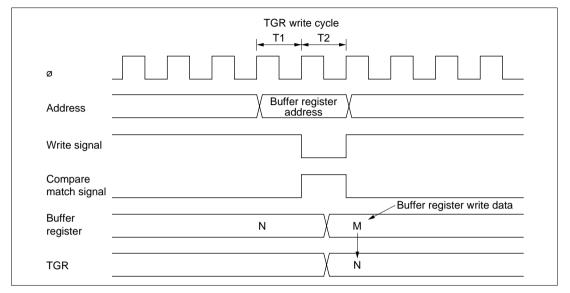


Figure 10-52 Contention between Buffer Register Write and Compare Match

Contention between TGR Read and Input Capture: If the input capture signal is generated in the T1 state of a TGR read cycle, the data that is read will be the data after input capture transfer.

Figure 10-53 shows the timing in this case.

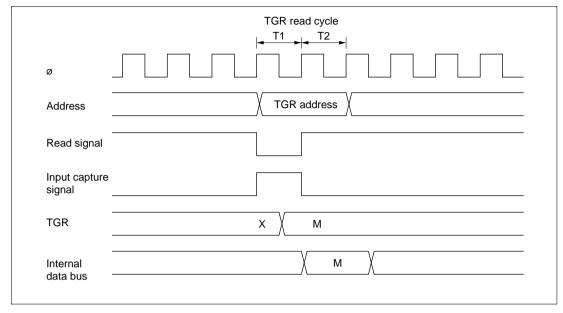


Figure 10-53 Contention between TGR Read and Input Capture

Contention between TGR Write and Input Capture: If the input capture signal is generated in the T2 state of a TGR write cycle, the input capture operation takes precedence and the write to TGR is not performed.

Figure 10-54 shows the timing in this case.

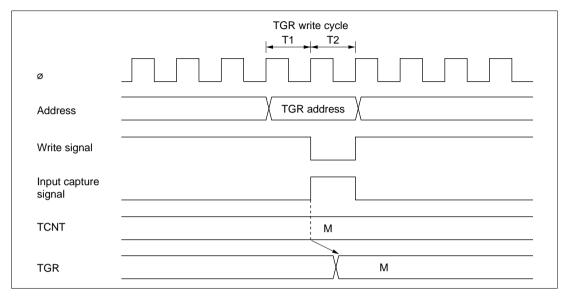


Figure 10-54 Contention between TGR Write and Input Capture

Contention between Buffer Register Write and Input Capture: If the input capture signal is generated in the T2 state of a buffer write cycle, the buffer operation takes precedence and the write to the buffer register is not performed.

Figure 10-55 shows the timing in this case.

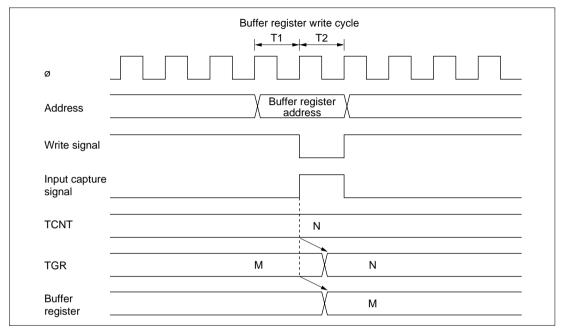


Figure 10-55 Contention between Buffer Register Write and Input Capture

Contention between Overflow/Underflow and Counter Clearing: If overflow/underflow and counter clearing occur simultaneously, the TCFV/TCFU flag in TSR is not set and TCNT clearing takes precedence.

Figure 10-56 shows the operation timing when a TGR compare match is specified as the clearing source, and H'FFFF is set in TGR.

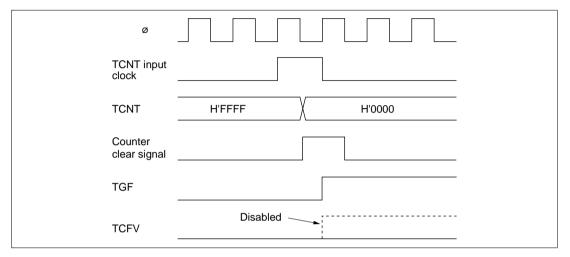


Figure 10-56 Contention between Overflow and Counter Clearing

Contention between TCNT Write and Overflow/Underflow: If there is an up-count or down-count in the T2 state of a TCNT write cycle, and overflow/underflow occurs, the TCNT write takes precedence and the TCFV/TCFU flag in TSR is not set.

Figure 10-57 shows the operation timing when there is contention between TCNT write and overflow.

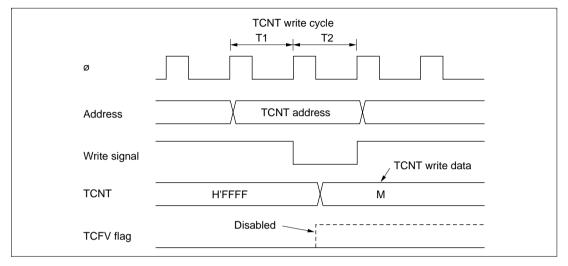


Figure 10-57 Contention between TCNT Write and Overflow

Multiplexing of I/O Pins: In the H8S/2238 Series, the TCLKA input pin is multiplexed with the TIOCC0 I/O pin, the TCLKB input pin with the TIOCD0 I/O pin, the TCLKC input pin with the TIOCB1 I/O pin, and the TCLKD input pin with the TIOCB2 I/O pin. When an external clock is input, compare match output should not be performed from a multiplexed pin.

Interrupts and Module Stop Mode: If module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Section 11 8-Bit Timers (TMR)

11.1 Overview

The H8S/2238 Series includes an 8-bit timer module with four channels (TMR0, TMR1, TMR2, and TMR3). Each channel has an 8-bit counter (TCNT) and two time constant registers (TCORA and TCORB) that are constantly compared with the TCNT value to detect compare match events. The 8-bit timer module can thus be used for a variety of functions, including pulse output with an arbitrary duty cycle.

11.1.1 Features

The features of the 8-bit timer module are listed below.

- Selection of four clock sources
 - The counters can be driven by one of three internal clock signals ($\emptyset/8$, $\emptyset/64$, or $\emptyset/8192$) or an external clock input (enabling use as an external event counter).
- Selection of three ways to clear the counters
 - The counters can be cleared on compare match A or B, or by an external reset signal.
- Timer output control by a combination of two compare match signals
 - The timer output signal in each channel is controlled by a combination of two independent compare match signals, enabling the timer to generate output waveforms with an arbitrary duty cycle or PWM output.
- Provision for cascading of two channels
 - Operation as a 16-bit timer is possible, using channel 0 (channel 2) for the upper 8 bits and channel 1 (channel 3) for the lower 8 bits (16-bit count mode).
 - Channel 1 (channel 3) can be used to count channel 0 (channel 2) compare matches (compare match count mode).
- Three independent interrupts
 - Compare match A and B and overflow interrupts can be requested independently.
- A/D converter conversion start trigger can be generated
 - Channel 0 compare match A signal can be used as an A/D converter conversion start trigger.
- Module stop mode can be set
 - As the initial setting, 8-bit timer operation is halted. Register access is enabled by exiting module stop mode.

11.1.2 Block Diagram

Figure 11-1 shows a block diagram of the 8-bit timer module in case of TMR0 and TMR1.

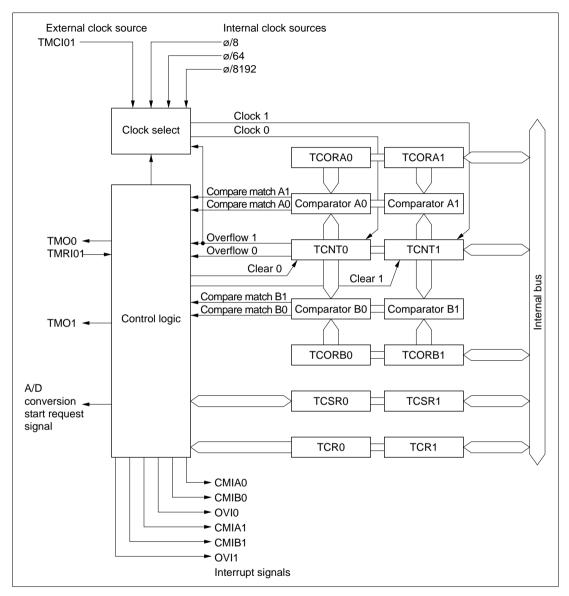


Figure 11-1 Block Diagram of 8-Bit Timer

11.1.3 Pin Configuration

Table 11-1 summarizes the input and output pins of the 8-bit timer.

Table 11-1 Input and Output Pins of 8-Bit Timer

Channel	Name	Symbol	I/O	Function
0	Timer output pin 0	TMO0	Output	Outputs at compare match
1	Timer output pin 1	TMO1	Output	Outputs at compare match
0, 1 All	Timer clock input pin 01	TMCI01	Input	Inputs external clock for counter
	Timer reset input pin 01	TMRI01	Input	Inputs external reset to counter
2	Timer output pin 2	TMO2	Output	Outputs at compare match
3	Timer output pin 3	TMO3	Output	Outputs at compare match
2, 3 All	Timer clock input pin 23	TMCI23	Input	Inputs external clock for counter
	Timer reset input pin 23	TMRI23	Input	Inputs external reset to counter

11.1.4 Register Configuration

Table 11-2 summarizes the registers of the 8-bit timer module.

Table 11-2 8-Bit Timer Registers

Channel	Name	Abbreviation	R/W	Initial value	Address*1
0	Timer control register 0	TCR0	R/W	H'00	H'FF68
	Timer control/status register 0	TCSR0	R/(W)*2	H'00	H'FF6A
	Time constant register A0	TCORA0	R/W	H'FF	H'FF6C
	Time constant register B0	TCORB0	R/W	H'FF	H'FF6E
	Timer counter 0	TCNT0	R/W	H'00	H'FF70
1	Timer control register 1	TCR1	R/W	H'00	H'FF69
	Timer control/status register 1	TCSR1	R/(W)*2	H'10	H'FF6B
	Time constant register A1	TCORA1	R/W	H'FF	H'FF6D
	Time constant register B1	TCORB1	R/W	H'FF	H'FF6F
	Timer counter 1	TCNT1	R/W	H'00	H'FF71
2	Timer control register 2	TCR2	R/W	H'00	H'FDC0
	Timer control/status register 2	TCSR2	R/(W)*2	H'00	H'FDC2
	Time constant register A2	TCORA2	R/W	H'FF	H'FDC4
	Time constant register B2	TCORB2	R/W	H'FF	H'FDC6
	Timer counter 2	TCNT2	R/W	H'00	H'FDC8
3	Timer control register 3	TCR3	R/W	H'00	H'FDC1
	Timer control/status register 3	TCSR3	R/(W)*2	H'10	H'FDC3
	Time constant register A3	TCORA3	R/W	H'FF	H'FDC5
	Time constant register B3	TCORB3	R/W	H'FF	H'FDC7
	Timer counter 3	TCNT3	R/W	H'00	H'FDC9
Common	Module stop control register A	MSTPCRA	R/W	H'3F	H'FDE8

Notes: *1 Lower 16 bits of the address

Each pair of registers for channel 0 (channel 2) and channel 1 (channel 3) is a 16-bit register with the upper 8 bits for channel 0 (channel 2) and the lower 8 bits for channel 1 (channel 3), so they can be accessed together by word transfer instruction.

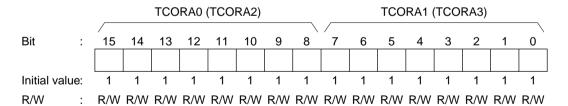
^{*2} Only 0 can be written to bits 7 to 5, to clear these flags.

11.2 Register Descriptions

11.2.1 Timer Counters 0 to 3 (TCNT0 to TCNT3)

			TCNT0 (TCNT2)							TCNT1 (TCNT3)							
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial va	alue:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCNT0 to TCNT3 are 8-bit readable/writable up-counters that increment on pulses generated from an internal or external clock source. This clock source is selected by clock select bits CKS2 to CKS0 of TCR. The CPU can read or write to TCNT0 to TCNT3 at all times.


TCNT0 and TCNT1 (TCNT2 and TCNT3) comprise a single 16-bit register, so they can be accessed together by a word transfer instruction.

TCNT0 to TCNT3 can be cleared by an external reset input or by a compare match signal. Which signal is to be used for clearing is selected by clock clear bits CCLR1 and CCLR0 of TCR.

When a timer counter overflows from H'FF to H'00, OVF in TCSR is set to 1.

TCNT0 to TCNT3 are each initialized to H'00 by a reset and in hardware standby mode.

11.2.2 Time Constant Registers A0 to A3 (TCORA0 to TCORA3)

TCORA0 to TCORA3 are 8-bit readable/writable registers. TCORA0 and TCORA1 (TCORA2 and TCORA3) comprise a single 16-bit register so they can be accessed together by word transfer instruction.

TCORA is continually compared with the value in TCNT. When a match is detected, the corresponding CMFA flag in TCSR is set to 1. Note, however, that comparison is disabled during the T2 state of a TCOR write cycle.

The timer output can be freely controlled by these compare match signals and the settings of bits OS1 and OS0 of TCSR.

TCORA0 to TCORA3 are each initialized to H'FF by a reset and in hardware standby mode.

11.2.3 Time Constant Registers B0 to B3 (TCORB0 to TCORB3)

			TCORB0 (TCORB2)							TCORB1 (TCORB3)							
									$\overline{}$								
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial va	lue:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCORB0 to TCORB3 are 8-bit readable/writable registers. TCORB0 and TCORB1 (TCORB2 and TCORB3) comprise a single 16-bit register so they can be accessed together by word transfer instruction.

TCORB is continually compared with the value in TCNT. When a match is detected, the corresponding CMFB flag in TCSR is set to 1. Note, however, that comparison is disabled during the T2 state of a TCOR write cycle.

The timer output can be freely controlled by these compare match signals and the settings of output select bits OS3 and OS2 of TCSR.

TCORB0 to TCORB3 are each initialized to H'FF by a reset and in hardware standby mode.

11.2.4 Timer Control Registers 0 to 3 (TCR0 to TCR3)

Bit	:	7	6	5	4	3	2	1	0
		CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0
Initial va	alue:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TCR0 to TCR3 are 8-bit readable/writable registers that select the input clock source and the time at which TCNT is cleared, and enable interrupts.

TCR0 to TCR3 are each initialized to H'00 by a reset and in hardware standby mode.

For details of this timing, see section 11.3, Operation.

Bit 7—Compare Match Interrupt Enable B (CMIEB): Selects whether CMFB interrupt requests (CMIB) are enabled or disabled when the CMFB flag of TCSR is set to 1.

Bit 7

CMIEB		
0	CMFB interrupt requests (CMIB) are disabled	(Initial value)
1	CMFB interrupt requests (CMIB) are enabled	

Bit 6—Compare Match Interrupt Enable A (CMIEA): Selects whether CMFA interrupt requests (CMIA) are enabled or disabled when the CMFA flag of TCSR is set to 1.

Bit 6

CMIEA	Description	
0	CMFA interrupt requests (CMIA) are disabled	(Initial value)
1	CMFA interrupt requests (CMIA) are enabled	

Bit 5—Timer Overflow Interrupt Enable (OVIE): Selects whether OVF interrupt requests (OVI) are enabled or disabled when the OVF flag of TCSR is set to 1.

Bit 5

OVIE	Description	
0	OVF interrupt requests (OVI) are disabled	(Initial value)
1	OVF interrupt requests (OVI) are enabled	

Bits 4 and 3—Counter Clear 1 and 0 (CCLR1, CCLR0): These bits select the method by which TCNT is cleared: by compare match A or B, or by an external reset input.

Bit 4	Bit 3		
CCLR1	CCLR0	Description	
0	0	Clear is disabled	(Initial value)
	1	Clear by compare match A	
1	0	Clear by compare match B	
	1	Clear by rising edge of external reset input	

Bits 2 to 0—Clock Select 2 to 0 (CKS2 to CKS0): These bits select whether the clock input to TCNT is an internal or external clock.

Three internal clocks can be selected, all divided from the system clock (\emptyset): $\emptyset/8$, $\emptyset/64$, and $\emptyset/8192$. The falling edge of the selected internal clock triggers the count.

When use of an external clock is selected, three types of count can be selected: at the rising edge, the falling edge, and both rising and falling edges.

Some functions differ between channel 0 and channel 1 (channel 2 and channel 3).

Bit 2	Bit 1	Bit 0		
CKS2	CKS1	CKS0		
0	0	0	Clock input disabled	(Initial value)
		1	Internal clock, counted at falling edge of ø/8	
	1	0	Internal clock, counted at falling edge of ø/64	
		1	Internal clock, counted at falling edge of ø/8192	
1	0	0	For channel 0: count at TCNT1 overflow signal*	
			For channel 1: count at TCNT0 compare match A*	
			For channel 2: count at TCNT3 overflow signal*	
			For channel 3: count at TCNT2 compare match A*	
		1	External clock, counted at rising edge	
	1	0	External clock, counted at falling edge	
		1	External clock, counted at both rising and falling edge	es

Note: * If the count input of channel 0 (channel 2) is the TCNT1 (TCNT3) overflow signal and that of channel 1 (channel 3) is the TCNT0 (TCNT2) compare match signal, no incrementing clock is generated. Do not use this setting.

11.2.5 Timer Control/Status Registers 0 to 3 (TCSR0 to TCSR3)

TCSR0

Bit	:	7	6	5	4	3	2	1	0	
		CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OS0	
Initial va	ılue:	0	0	0	0	0	0	0	0	_
R/W	:	R/(W)*	R/(W)*	R/(W)*	R/W	R/W	R/W	R/W	R/W	

TCSR1, TCSR3

Bit	:	7	6	5	4	3	2	1	0	
		CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	
Initial va	alue :	0	0	0	1	0	0	0	0	
R/W	:	R/(W)*	R/(W)*	R/(W)*	_	R/W	R/W	R/W	R/W	

TCSR2

Bit	:	7	6	5	4	3	2	1	0
		CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0
Initial va	lue:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/(W)*	R/(W)*	R/W	R/W	R/W	R/W	R/W

Note: * Only 0 can be written to bits 7 to 5, to clear these flags.

TCSR0 to TCSR3 are 8-bit registers that display compare match and overflow statuses, and control compare match output.

TCSR0 and TCSR2 are initialized to H'00, and TCSR1 and TCSR3 to H'10, by a reset and in hardware standby mode.

Bit 7—Compare Match Flag B (CMFB): Status flag indicating whether the values of TCNT and TCORB match.

Bit 7

CMFB	Description				
0	[Clearing conditions]	(Initial value)			
	• Cleared by reading CMFB when CMFB = 1, then writing 0 to CMFB				
	When DTC is activated by CMIB interrupt while DISEL bit of MRB in	DTC is 0			
1	[Setting condition]				
	Set when TCNT matches TCORB				

Bit 6—Compare Match Flag A (CMFA): Status flag indicating whether the values of TCNT and TCORA match.

Bit 6

CMFA	Description	
0	[Clearing conditions] (In	nitial value)
	 Cleared by reading CMFA when CMFA = 1, then writing 0 to CMFA 	
	When DTC is activated by CMIA interrupt while DISEL bit of MRB in DT	C is 0
1	[Setting condition]	
	Set when TCNT matches TCORA	

Bit 5—Timer Overflow Flag (OVF): Status flag indicating that TCNT has overflowed (changed from H'FF to H'00).

Bit 5

OVF	Description				
0	[Clearing condition] (Initial value				
	Cleared by reading OVF when OVF = 1, then writing 0 to OVF				
1	[Setting condition]				
	Set when TCNT overflows from H'FF to H'00				

Bit 4—A/D Trigger Enable (ADTE) (TCSR0 Only): Selects enabling or disabling of A/D converter start requests by compare-match A.

TCSR1 to TCSR3 are reserved bits. When TCSR1 and TCSR3 are read, always 1 is read off. Write is disenabled. TCSR2 is readable/writable.

Bit 4

ADTE	Description	
0	A/D converter start requests by compare match A are disabled	(Initial value)
1	A/D converter start requests by compare match A are enabled	

Bits 3 to 0—Output Select 3 to 0 (OS3 to OS0): These bits specify how the timer output level is to be changed by a compare match of TCOR and TCNT.

Bits OS3 and OS2 select the effect of compare match B on the output level, bits OS1 and OS0 select the effect of compare match A on the output level, and both of them can be controlled independently.

Note, however, that priorities are set such that: toggle output > 1 output > 0 output. If compare matches occur simultaneously, the output changes according to the compare match with the higher priority.

Timer output is disabled when bits OS3 to OS0 are all 0.

After a reset, the timer output is 0 until the first compare match event occurs.

Bit 3	Bit 2		
OS3	OS2	Description	
0	0	No change when compare match B occurs	(Initial value)
	1	0 is output when compare match B occurs	
1	0	1 is output when compare match B occurs	
	1	Output is inverted when compare match B occurs (toggle outpu	t)

Bit 1	Bit 0		
OS1	OS0	Description	
0	0	No change when compare match A occurs	(Initial value)
	1	0 is output when compare match A occurs	
1	0	1 is output when compare match A occurs	
	1	Output is inverted when compare match A occurs (toggle output	t)

11.2.6 Module Stop Control Register A (MSTPCRA)

Bit	:	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	:	0	0	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRA is an 8-bit readable/writable register that performs module stop mode control.

When the MSTPA4 and MSTPA0 bits in MSTPCR is set to 1, the 8-bit timer operation stops at the end of the bus cycle and a transition is made to module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCRA is initialized to H'3F by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 4—Module Stop (MSTPA4): Specifies the TMR0 and TMR1 module stop mode.

Bit 4

MSTPA4	Description	
0	TMR0, TMR1 module stop mode cleared	
1	TMR0, TMR1 module stop mode set	(Initial value)

Bit 0—Module Stop (MSTPA0): Specifies the TMR2 and TMR3 module stop mode.

Bit 0

MSTPA0		
0	TMR2, TMR3 module stop mode cleared	
1	TMR2, TMR3 module stop mode set	(Initial value)

11.3 Operation

11.3.1 TCNT Increment Timing

TCNT is incremented by input clock pulses (either internal or external).

Internal Clock: Three different internal clock signals ($\emptyset/8$, $\emptyset/64$, or $\emptyset/8192$) divided from the system clock (\emptyset) can be selected, by setting bits CKS2 to CKS0 in TCR. Figure 11-2 shows the count timing.

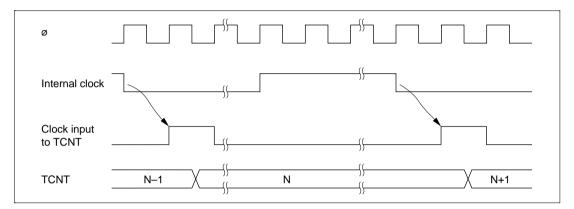


Figure 11-2 Count Timing for Internal Clock Input

External Clock: Three increment methods can be selected by setting bits CKS2 to CKS0 in TCR: at the rising edge, the falling edge, and both rising and falling edges.

Note that the external clock pulse width must be at least 1.5 states for incrementing at a single edge, and at least 2.5 states for incrementing at both edges. The counter will not increment correctly if the pulse width is less than these values.

Figure 11-3 shows the timing of incrementing at both edges of an external clock signal.

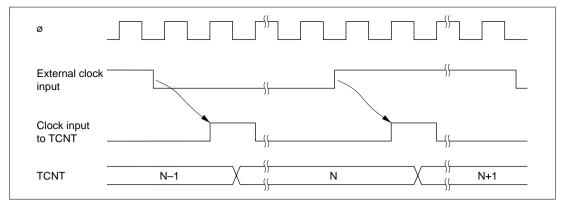


Figure 11-3 Count Timing for External Clock Input

11.3.2 Compare Match Timing

Setting of Compare Match Flags A and B (CMFA, CMFB): The CMFA and CMFB flags in TCSR are set to 1 by a compare match signal generated when the TCOR and TCNT values match. The compare match signal is generated at the last state in which the match is true, just before the timer counter is updated.

Therefore, when TCOR and TCNT match, the compare match signal is not generated until the next increment clock input. Figure 11-4 shows this timing.

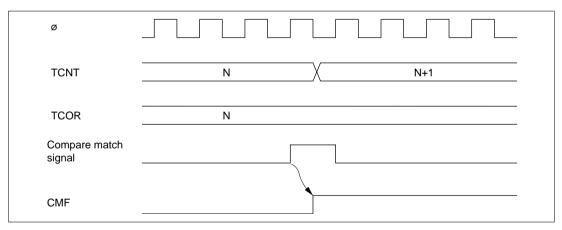


Figure 11-4 Timing of CMF Setting

Timer Output Timing: When compare match A or B occurs, the timer output changes a specified by bits OS3 to OS0 in TCSR. Depending on these bits, the output can remain the same, change to 0, change to 1, or toggle.

Figure 11-5 shows the timing when the output is set to toggle at compare match A.

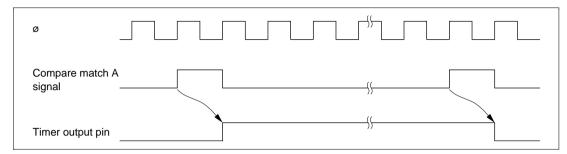


Figure 11-5 Timing of Timer Output

Timing of Compare Match Clear: The timer counter is cleared when compare match A or B occurs, depending on the setting of the CCLR1 and CCLR0 bits in TCR. Figure 11-6 shows the timing of this operation.

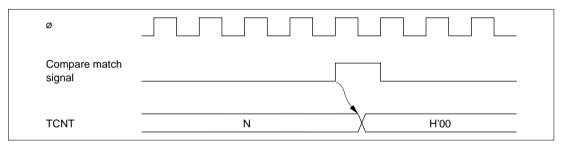


Figure 11-6 Timing of Compare Match Clear

11.3.3 Timing of External RESET on TCNT

TCNT is cleared at the rising edge of an external reset input, depending on the settings of the CCLR1 and CCLR0 bits in TCR. The clear pulse width must be at least 1.5 states. Figure 11-7 shows the timing of this operation.

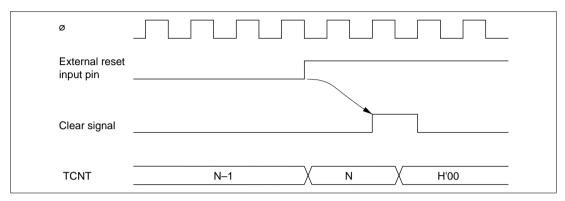


Figure 11-7 Timing of External Reset

11.3.4 Timing of Overflow Flag (OVF) Setting

The OVF in TCSR is set to 1 when the timer count overflows (changes from H'FF to H'00). Figure 11-8 shows the timing of this operation.

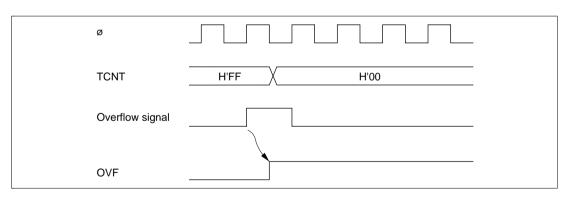


Figure 11-8 Timing of OVF Setting

11.3.5 Operation with Cascaded Connection

If bits CKS2 to CKS0 in either TCR0 or TCR1 (TCR2 or TCR3) are set to B'100, the 8-bit timers of the two channels are cascaded. With this configuration, a single 16-bit timer could be used (16-bit timer mode) or compare matches of the 8-bit timer channel 0 (channel 2) could be counted by the timer of channel 1 (channel 3) (compare match counter mode). In this case, the timer operates as below.

16-Bit Counter Mode: When bits CKS2 to CKS0 in TCR0 (TCR2) are set to B'100, the timer functions as a single 16-bit timer with channel 0 (channel 2) occupying the upper 8 bits and channel 1 (channel 3) occupying the lower 8 bits.

- Setting of compare match flags
 - The CMF flag in TCSR0 and TCSR2 is set to 1 when a 16-bit compare match event occurs.
 - The CMF flag in TCSR1 and TCSR3 is set to 1 when a lower 8-bit compare match event occurs.

Counter clear specification

- If the CCLR1 and CCLR0 bits in TCR0 (TCR2) have been set for counter clear at compare match, the 16-bit counter (TCNT0 and TCNT1 (TCNT2 and TCNT3) together) is cleared when a 16-bit compare match event occurs. The 16-bit counter (TCNT0 and TCNT1 (TCNT2 and TCNT3) together) is cleared even if counter clear by the TMRI01 (TMRI23) pin has also been set.
- The settings of the CCLR1 and CCLR0 bits in TCR1 and TCR3 are ignored. The lower 8 bits cannot be cleared independently.

Pin output

- Control of output from the TMO0 (TMO2) pin by bits OS3 to OS0 in TCSR0 (TCSR2) is in accordance with the 16-bit compare match conditions.
- Control of output from the TMO1 (TMO3) pin by bits OS3 to OS0 in TCSR1 (TCSR3) is in accordance with the lower 8-bit compare match conditions.

Compare Match Counter Mode: When bits CKS2 to CKS0 in TCR1 (TCR3) are B'100, TCNT1 (TCNT3) counts compare match A's for channel 0 (channel 2).

Channels 0 to 3 are controlled independently. Conditions such as setting of the CMF flag, generation of interrupts, output from the TMO pin, and counter clear are in accordance with the settings for each channel.

Note on Usage: If the 16-bit counter mode and compare match counter mode are set simultaneously, the input clock pulses for TCNT0 and TCNT1 (TCNT2 and TCNT3) are not generated and thus the counters will stop operating. Software should therefore avoid using both these modes.

11.4 Interrupts

11.4.1 Interrupt Sources and DTC Activation

There are three 8-bit timer interrupt sources: CMIA, CMIB, and OVI. Their relative priorities are shown in Table 11-3. Each interrupt source is set as enabled or disabled by the corresponding interrupt enable bit in TCR, and independent interrupt requests are sent for each to the interrupt controller. It is also possible to activate the DTC by means of CMIA and CMIB interrupts.

Table 11-3 8-Bit Timer Interrupt Sources

Channel	Interrupt Source	Description	DTC Activation	Priority
0	CMIA0	Interrupt by CMFA	Possible	High
	CMIB0	Interrupt by CMFB	Possible	
	OVI0	Interrupt by OVF	Not possible	
1	CMIA1	Interrupt by CMFA	Possible	
	CMIB1	Interrupt by CMFB	Possible	
	OVI1	Interrupt by OVF	Not possible	
2	CMIA2	Interrupt by CMFA	Possible	
	CMIB2	Interrupt by CMFB	Possible	
	OVI2	Interrupt by OVF	Not possible	
3	CMIA3	Interrupt by CMFA	Possible	
	CMIB3	Interrupt by CMFB	Possible	
	OVI3	Interrupt by OVF	Not possible	Low

Note: This table shows the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller.

11.4.2 A/D Converter Activation

The A/D converter can be activated only by channel 0 compare match A.

If the ADTE bit in TCSR0 is set to 1 when the CMFA flag is set to 1 by the occurrence of channel 0 compare match A, a request to start A/D conversion is sent to the A/D converter. If the 8-bit timer conversion start trigger has been selected on the A/D converter side at this time, A/D conversion is started.

11.5 Sample Application

In the example below, the 8-bit timer is used to generate a pulse output with a selected duty cycle, as shown in figure 11-9. The control bits are set as follows:

- [1] In TCR, bit CCLR1 is cleared to 0 and bit CCLR0 is set to 1 so that the timer counter is cleared when its value matches the constant in TCORA.
- [2] In TCSR, bits OS3 to OS0 are set to B'0110, causing the output to change to 1 at a TCORA compare match and to 0 at a TCORB compare match.

With these settings, the 8-bit timer provides output of pulses at a rate determined by TCORA with a pulse width determined by TCORB. No software intervention is required.

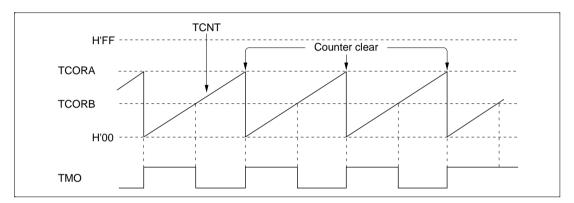


Figure 11-9 Example of Pulse Output

11.6 Usage Notes

Application programmers should note that the following kinds of contention can occur in the 8-bit timer.

11.6.1 Contention between TCNT Write and Clear

If a timer counter clock pulse is generated during the T2 state of a TCNT write cycle, the clear takes priority, so that the counter is cleared and the write is not performed.

Figure 11-10 shows this operation.

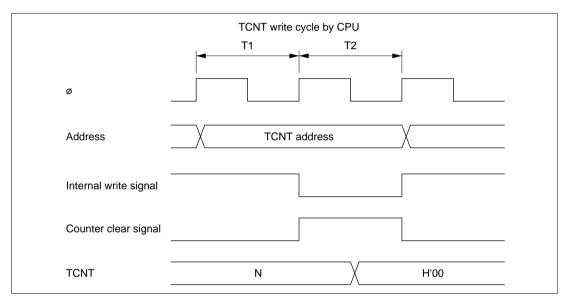


Figure 11-10 Contention between TCNT Write and Clear

11.6.2 Contention between TCNT Write and Increment

If a timer counter clock pulse is generated during the T2 state of a TCNT write cycle, the write takes priority and the counter is not incremented.

Figure 11-11 shows this operation.

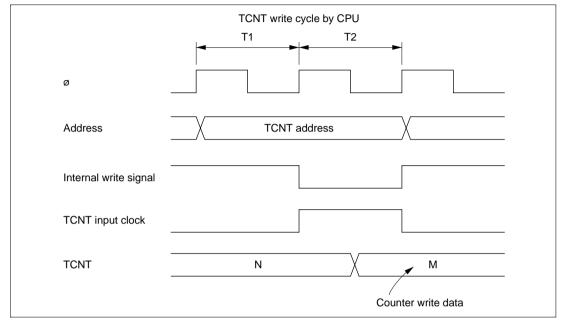


Figure 11-11 Contention between TCNT Write and Increment

11.6.3 Contention between TCOR Write and Compare Match

During the T2 state of a TCOR write cycle, the TCOR write has priority and the compare match signal is disabled even if a compare match event occurs.

Figure 11-12 shows this operation.

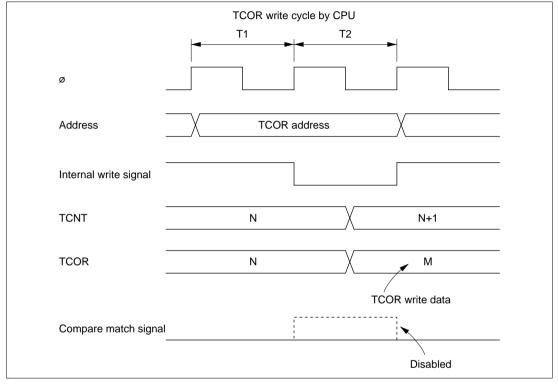


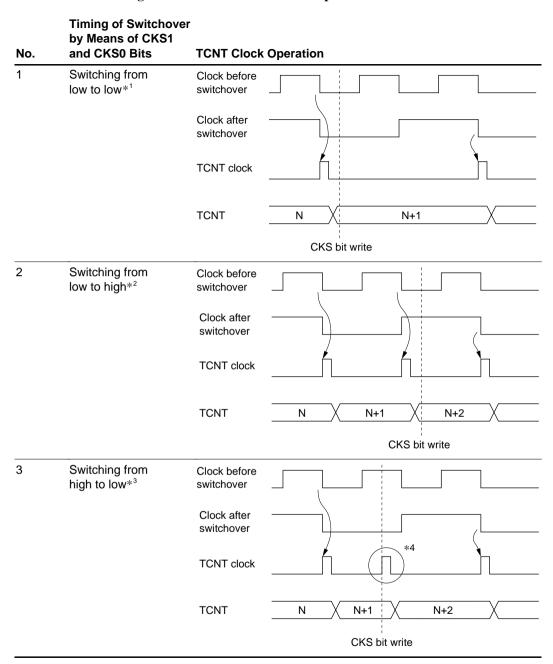
Figure 11-12 Contention between TCOR Write and Compare Match

11.6.4 Contention between Compare Matches A and B

If compare match events A and B occur at the same time, the 8-bit timer operates in accordance with the priorities for the output statuses set for compare match A and compare match B, as shown in table 11-4.

Table 11-4 Timer Output Priorities

Output Setting	Priority
Toggle output	High
1 output	<u> </u>
0 output	
No change	Low


11.6.5 Switching of Internal Clocks and TCNT Operation

TCNT may increment erroneously when the internal clock is switched over. Table 11-5 shows the relationship between the timing at which the internal clock is switched (by writing to the CKS1 and CKS0 bits) and the TCNT operation.

When the TCNT clock is generated from an internal clock, the falling edge of the internal clock pulse is detected. If clock switching causes a change from high to low level, as shown in case 3 in table 11-5, a TCNT clock pulse is generated on the assumption that the switchover is a falling edge. This increments TCNT.

Erroneous incrementing can also happen when switching between internal and external clocks.

Table 11-5 Switching of Internal Clock and TCNT Operation

Timing of Switchover by Means of CKS1 No. and CKS0 Bits **TCNT Clock Operation** 4 Clock before Switching from high switchover to high Clock after switchover TCNT clock **TCNT** Ν N+1 N+2 CKS bit write

Notes: *1 Includes switching from low to stop, and from stop to low.

- *2 Includes switching from stop to high.
- *3 Includes switching from high to stop.
- *4 Generated on the assumption that the switchover is a falling edge; TCNT is incremented.

11.6.6 Interrupts and Module Stop Mode

If module stop mode is entered when an interrupt has been requested, it will not be possible to clear the CPU interrupt source or DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

Section 12 Watchdog Timer (WDT)

12.1 Overview

The H8S/2238 Series has an on-chip watchdog timer with two channels (WDT0 and WDT1). The watchdog timer can generate an internal reset signal if a system crash prevents the CPU from writing to the counter, allowing it to overflow.

When this watchdog function is not needed, the WDT can be used as an interval timer. In interval timer mode, an interval timer interrupt is generated each time the counter overflows.

12.1.1 Features

WDT features are listed below.

- Switchable between watchdog timer mode and interval timer mode
- Internal reset or internal interrupt generated when watchdog timer mode
 - WDT0

Choice of whether or not an internal reset (power-on reset or manual reset selectable) is effected when the counter overflows

— WDT1

Choice of internal power-on reset or NMI interrupt generation when the counter overflows

- Interrupt generation in interval timer mode
 - An interval timer interrupt is generated when the counter overflows
- Choice of 8 (WDT0) or 16 (WDT1) counter input clocks
 - Maximum WDT interval: system clock period × 131072 × 256
 - Subclock can be selected for the WDT1 input counter
 Maximum interval when the subclock is selected: subclock period × 256 × 256
- Selected clock can be output from the BUZZ output pin (WDT1)

12.1.2 Block Diagram

Figures 12-1 (a) and (b) show block diagrams of WDT0 and WDT1.

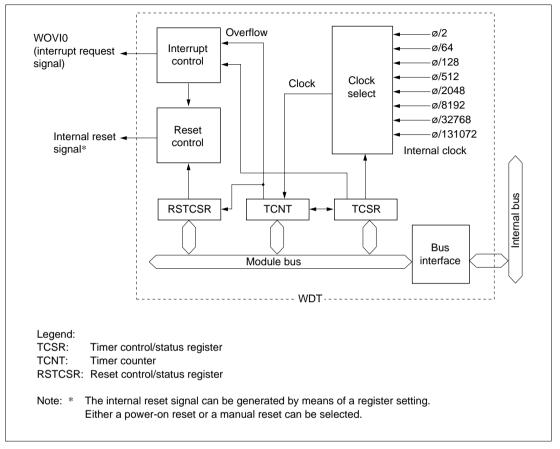


Figure 12-1 (a) Block Diagram of WDT0

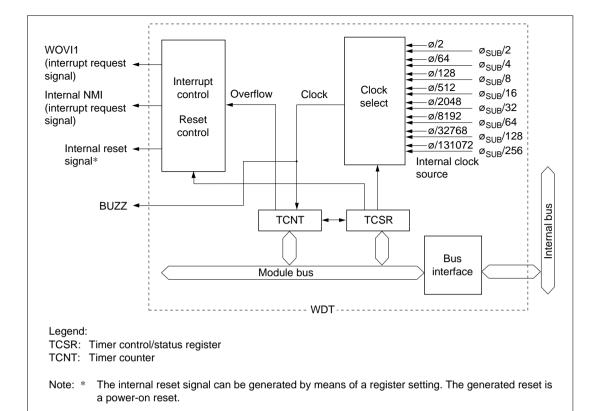


Figure 12-1 (b) Block Diagram of WDT1

12.1.3 Pin Configuration

Table 12-1 describes the WDT input pin.

Table 12-1 WDT Pin

Name	Symbol	I/O	Function
Buzzer output	BUZZ	Output	Outputs clock selected by watchdog timer (WDT1)

12.1.4 Register Configuration

Table 12-2 summarizes the WDT registers. These registers control clock selection, WDT mode switching, the reset signal, etc.

Table 12-2 WDT Registers

					Add	ress*1
Channel	Name	Abbreviation	R/W	Initial Value	Write*2	Read
0	Timer control/status register 0	TCSR0	R/(W)*3	H'18	H'FF74	H'FF74
	Timer counter 0	TCNT0	R/W	H'00	H'FF74	H'FF75
	Reset control/status register	RSTCSR	R/(W)* ³	H'1F	H'FF76	H'FF77
1	Timer control/status register 1	TCSR1	R/(W)* ³	H'00	H'FFA2	H'FFA2
	Timer counter 1	TCNT1	R/W	H'00	H'FFA2	H'FFA3
Common	Pin function control register	PFCR	R/W	H'0D/H'00*4	H'FDEB	H'FDEB

Notes: *1 Lower 16 bits of the address.

^{*2} For details of write operations, see section 12.2.5, Notes on Register Access.

^{*3} Only 0 can be written in bit 7, to clear the flag.

^{*4} Initialized to H'0D in modes 4 and 5, and to H'00 in modes 6 and 7.

12.2 Register Descriptions

12.2.1 Timer Counter (TCNT)

Bit	:	7	6	5	4	3	2	1	0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

TCNT is an 8-bit readable/writable* up-counter.

When the TME bit is set to 1 in TCSR, TCNT starts counting pulses generated from the internal clock source selected by bits CKS2 to CKS0 in TCSR. When the count overflows (changes from H'FF to H'00), the OVF flag in TCSR is set to 1.

TCNT is initialized to H'00 by a reset, in hardware standby mode, or when the TME bit is cleared to 0. It is not initialized in software standby mode.

Note: * TCNT is write-protected by a password to prevent accidental overwriting. For details see section 12.2.5, Notes on Register Access.

12.2.2 Timer Control/Status Register (TCSR)

TCSR0

Bit	:	7	6	5	4	3	2	1	0
		OVF	WT/ IT	TME	_	_	CKS2	CKS1	CKS0
Initial value	:	0	0	0	1	1	0	0	0
R/W	:	R/(W) *	R/W	R/W	_	_	R/W	R/W	R/W

Note: * Only 0 can be written, to clear the flag.

TCSR1

Bit	:	7	6	5	4	3	2	1	0
		OVF	WT/ IT	TME	PSS	RST/NMI	CKS2	CKS1	CKS0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Only 0 can be written, to clear the flag.

TCSR is an 8-bit readable/writable* register. Its functions include selecting the clock source to be input to TCNT, and the timer mode.

TCR is initialized to H'18 (H'00) by a reset and in hardware standby mode. It is not initialized in software standby mode.

Note: * TCSR is write-protected by a password to prevent accidental overwriting. For details see section 12.2.5, Notes on Register Access.

Bit 7—Overflow Flag (OVF): A status flag that indicates that TCNT has overflowed from H'FF to H'00.

Bit 7

OVF	 Description					
0	[Clearing conditions] (Initial v					
	 Write 0 in the TME bit (Only applies to WDT1) 					
	 Read TCSR* when OVF = 1, then write 0 in OVFA 					
1	[Setting condition]					
	When TCNT overflows (changes from H'FF to H'00) When internal reset request generation is selected in watchdog timer mode, OVF is cleared automatically by the internal reset.					

Note: * When OVF is polled and the interval timer interrupt is disabled, OVF = 1 must be read at least twice.

Bit 6—Timer Mode Select (WT/IT): Selects whether the WDT is used as a watchdog timer or interval timer. If WDT0 is used in watchdog timer mode, it can generate a reset when TCNT overflows. If WDT0 is used in interval timer mode, it generates a WOVI interrupt request to the CPU when TCNT overflows. WDT1 generates a power-on reset or NMI interrupt request if used in watchdog timer mode, and a WOVI interrupt request if used in interval timer mode.

WDT0 mode selection

WDT0 TCSR

WT/IT	Description			
0	s sent to (Initial value)			
1	Watchdog timer mode: Internal reset can be selected when TCNT overflows*			

Note: * For details of the case where TCNT overflows in watchdog timer mode, see section 12.2.3, Reset Control/Status Register (RSTCSR).

WDT1 mode selection

WDT1 TCSR

WT/ĪT	Description	
0	Interval timer mode: Interval timer interrupt (WOVI) reques CPU when TCNT overflows	st is sent to (Initial value)
1	Watchdog timer mode: Power-on reset or NMI interrupt re when TCNT overflows	quest is sent to CPU

Bit 5—Timer Enable (TME): Selects whether TCNT runs or is halted.

Bit 5

TME	Description	
0	TCNT is initialized to H'00 and count operation is halted	(Initial value)
1	TCNT counts	

WDT0 TCSR Bit 4—Reserved: This bit cannot be modified and is always read as 1.

WDT1 TCSR Bit 4—Prescaler Select (PSS): Selects the input clock source for TCNT in WDT1. For details, see the description of the CKS2 to CKS0 bits below.

WDT1 TCSR Bit 4

PSS	Description	
0	TCNT counts ø-based prescaler (PSM) divided clock pulses	(Initial value)
1	TCNT counts øSUB-based prescaler (PSS) divided clock pulses	

WDT0 TCSR Bit 3—Reserved: This bit cannot be modified and is always read as 1.

WDT1 TCSR Bit 3—Power-on Reset or NMI (RST/NMI): Specifies whether a power-on reset or NMI interrupt is requested on TCNT overflow in watchdog timer mode.

Bit 3

RST/NMI		
0	An NMI interrupt is requested	(Initial value)
1	A power-on reset is requested	

Bits 2 to 0—Clock Select 2 to 0 (CKS2 to CKS0): These bits select an internal clock source, obtained by dividing the system clock (\$\varphi\$), or subclock (\$\varphi\$SUB) for input to TCNT.

• WDT0 input clock selection

Bit 2	Bit 1	Bit 0		Description
CKS2	CKS1	CKS0	Clock	Overflow Period* (when ø = 10 MHz)
0	0	0	ø/2 (Initial value)	51.2 µs
		1	ø/64	1.6 ms
	1	0	ø/128	3.2 ms
		1	ø/512	13.2 ms
1	0	0	ø/2048	52.4 ms
		1	ø/8192	209.8 ms
	1	0	ø/32768	838.8 ms
		1	ø/131072	3.36 s

Note: *The overflow period is the time from when TCNT starts counting up from H'00 until overflow occurs.

• WDT1 input clock selection

Bit 4	Bit 2	Bit 1	Bit 0	Description		
PSS	CKS2	CKS1	CKS0	Clock	Overflow Period* (when $\emptyset = 10$ MHz and $\emptyset_{SUB} = 32.768$ kHz)	
0	0	0	0	ø/2 (Initial value)	51.2 µs	
			1	ø/64	1.6 ms	
		1	0	ø/128	3.2 ms	
			1	ø/512	13.2 ms	
	1	0	0	ø/2048	52.4 ms	
			1	ø/8192	209.8 ms	
		1	0	ø/32768	838.8 ms	
			1	ø/131072	3.36 s	
1	0	0	0	øSUB/2	15.6 ms	
			1	øSUB/4	31.3 ms	
		1	0	øSUB/8	62.5 ms	
			1	øSUB/16	125 ms	
	1	0	0	øSUB/32	250 ms	
			1	øSUB/64	500 ms	
		1	0	øSUB/128	1 s	
			1	øSUB/256	2 s	

Note: * The overflow period is the time from when TCNT starts counting up from H'00 until overflow occurs.

12.2.3 Reset Control/Status Register (RSTCSR) (WDT0 Only)

Bit	:	7	6	5	4	3	2	1	0
		WOVF	RSTE	RSTS	_	_	_	_	_
Initial value	:	0	0	0	1	1	1	1	1
R/W	:	R/(W) *	R/W	R/W	_	_	_	_	_

Note: * Only 0 can be written, to clear the flag.

RSTCSR is an 8-bit readable/writable* register that controls the generation of the internal reset signal when TCNT overflows, and selects the type of internal reset signal.

RSTCSR is initialized to H'1F by a reset signal from the \overline{RES} pin, but not by the internal reset signal caused by a WDT overflow.

Note: * RSTCSR is write-protected by a password to prevent accidental overwriting. For details see section 12.2.5, Notes on Register Access.

Bit 7—Watchdog Overflow Flag (WOVF): Indicates that TCNT has overflowed (from H'FF to H'00) during watchdog timer operation. This bit is not set in interval timer mode.

Bit 7

WOVF	Description				
0	[Clearing condition] (Initial value)				
	Cleared by reading RSTCSR when WOVF = 1, then writing 0 to WOVF				
1	[Setting condition]				
	When TCNT overflows (from H'FF to H'00) in watchdog timer mode				

Bit 6—Reset Enable (RSTE): Specifies whether or not an internal reset signal is generated if TCNT overflows in watchdog timer mode.

Bit 6

RSTE	 Description	
0	No internal reset when TCNT overflows*	(Initial value)
1	Internal reset is generated when TCNT overflows	

Note: * The chip is not reset internally, but TCNT and TCSR in WDT0 are reset.

Bit 5—Reset Select (RSTS): Selects the type of internal reset generated if TCNT overflows in watchdog timer mode.

For details of the types of resets, see section 4, Exception Handling.

Bit 5

RSTS	Description	
0	Power-on reset	(Initial value)
1	Manual reset	

Bits 4 to 0—Reserved: These bits cannot be modified and are always read as 1.

12.2.4 Pin Function Control Register (PFCR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	BUZZE	_	AE3	AE2	AE1	AE0
Modes 4 and	5								
Initial value	:	0	0	0	0	1	1	0	1
Modes 6 and 7									
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PFCR is an 8-bit readable/writable register that performs address output control in external expanded mode.

Only bit 5 is described here. For details of the other bits, see section 7.2.6, Pin Function Control Register (PFCR).

Bit 5—BUZZ Output Enable (BUZZE): Enables or disables BUZZ output from the PF1 pin. The WDT1 input clock selected with bits PSS and CKS2 to CKS0 is output as the BUZZ signal.

Bit 5

BUZZE		
0	Functions as PF1 I/O pin	(Initial value)
1	Functions as BUZZ output pin	

12.2.5 Notes on Register Access

The watchdog timer's TCNT, TCSR, and RSTCSR registers differ from other registers in being more difficult to write to. The procedures for writing to and reading these registers are given below.

Writing to TCNT and TCSR: These registers must be written to by a word transfer instruction. They cannot be written to with byte transfer instructions.

Figure 12-2 shows the format of data written to TCNT and TCSR. TCNT and TCSR both have the same write address. For a write to TCNT, the upper byte of the written word must contain H'5A and the lower byte must contain the write data. For a write to TCSR, the upper byte of the written word must contain H'A5 and the lower byte must contain the write data. This transfers the write data from the lower byte to TCNT or TCSR.

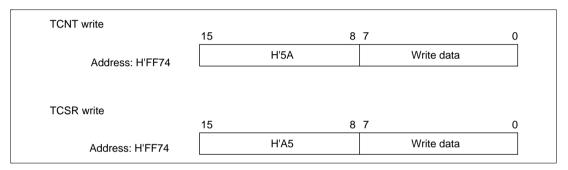


Figure 12-2 Format of Data Written to TCNT and TCSR (Example of WDT0)

Writing to RSTCSR: RSTCSR must be written to by a word transfer to address H'FF76. It cannot be written to with byte instructions.

Figure 12-3 shows the format of data written to RSTCSR. The method of writing 0 to the WOVF bit differs from that for writing to the RSTE and RSTS bits.

To write 0 to the WOVF bit, the upper byte of the written word must contain H'A5 and the lower byte must contain H'00. This clears the WOVF bit to 0, but has no effect on the RSTE and RSTS bits. To write to the RSTE and RSTS bits, the upper byte must contain H'5A and the lower byte must contain the write data. This writes the values in bits 6 and 5 of the lower byte into the RSTE and RSTS bits, but has no effect on the WOVF bit.

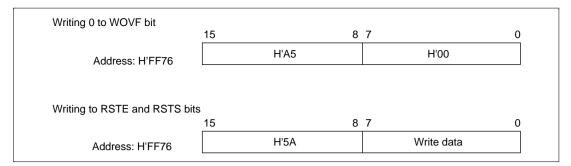


Figure 12-3 Format of Data Written to RSTCSR (Example of WDT0)

Reading TCNT, TCSR, and RSTCSR (Example of WDT0): These registers are read in the same way as other registers. The read addresses are H'FF74 for TCSR, H'FF75 for TCNT, and H'FF77 for RSTCSR

12.3 Operation

12.3.1 Watchdog Timer Operation

To use the WDT as a watchdog timer, set the WT/IT and TME bits in TCSR to 1. Software must prevent TCNT overflows by rewriting the TCNT value (normally by writing H'00) before overflow occurs. This ensures that TCNT does not overflow while the system is operating normally.

In this way, TCNT will not overflow while the system is operating normally, but if TCNT is not rewritten and overflows because of a system crash or other error, in the case of WDT0, if the RSTE bit in RSTCSR is set to 1 beforehand, a signal is generated that effects an internal chip reset. Either a power-on reset or a manual reset can be selected with the RSTS bit in RSTCSR. The internal reset signal is output for 518 states. This is illustrated in figure 12-4.

If a reset caused by an input signal from the \overline{RES} pin and a reset caused by WDT overflow occur simultaneously, the \overline{RES} pin reset has priority, and the WOVF bit in RSTCSR is cleared to 0.

In the case of WDT1, the chip is reset, or an NMI interrupt request is generated, for 516 system clock periods (516 ϕ) (515 or 516 clock periods when the clock source is ϕ sub (PSS = 1)). This is illustrated in figure 12-4.

An NMI interrupt request from the watchdog timer and an interrupt request from the NMI pin are handled via the same vector. Simultaneous handling of a watchdog timer NMI interrupt request and an NMI pin interrupt request must therefore be avoided.

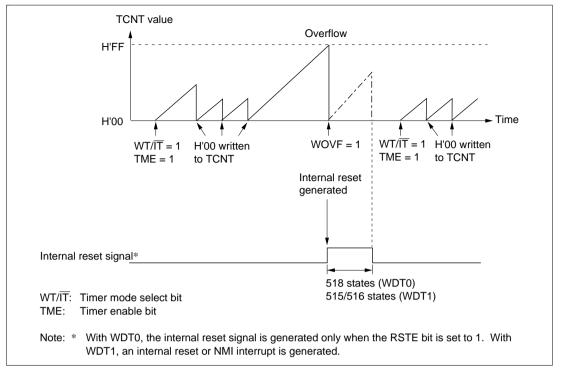


Figure 12-4 Operation in Watchdog Timer Mode

12.3.2 Interval Timer Operation

To use the WDT as an interval timer, clear the WT/ $\overline{\text{IT}}$ bit in TCSR to 0 and set the TME bit to 1. An interval timer interrupt (WOVI) is generated each time TCNT overflows, provided that the WDT is operating as an interval timer, as shown in figure 12-5. This function can be used to generate interrupt requests at regular intervals.

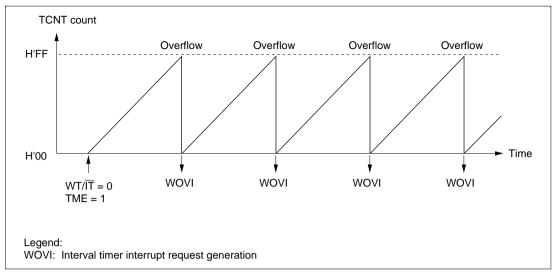


Figure 12-5 Operation in Interval Timer Mode

12.3.3 Timing of Setting of Overflow Flag (OVF)

The OVF flag is set to 1 if TCNT overflows during interval timer operation. At the same time, an interval timer interrupt (WOVI) is requested. This timing is shown in figure 12-6.

If NMI request generation is selected in watchdog timer mode, when TCNT overflows the OVF bit in TCSR is set to 1 and at the same time an NMI interrupt is requested.

Figure 12-6 Timing of OVF Setting

12.3.4 Timing of Setting of Watchdog Timer Overflow Flag (WOVF)

With WDT0, the WOVF bit in RSTCSR is set to 1 if TCNT overflows in watchdog timer mode. If TCNT overflows while the RSTE bit in RSTCSR is set to 1, an internal reset signal is generated for the entire chip. This timing is illustrated in figure 12-7.

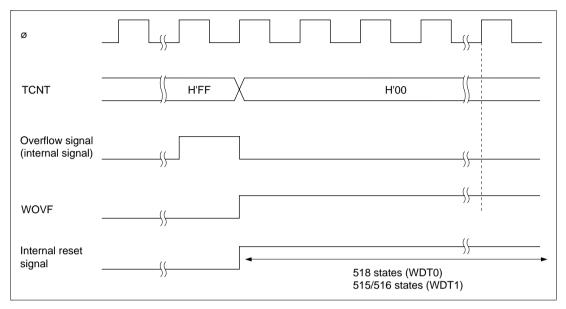


Figure 12-7 Timing of WOVF Setting

12.4 Interrupts

During interval timer mode operation, an overflow generates an interval timer interrupt (WOVI). The interval timer interrupt is requested whenever the OVF flag is set to 1 in TCSR. OVF must be cleared to 0 in the interrupt handling routine. When NMI interrupt request generation is selected in watchdog timer mode, an overflow generates an NMI interrupt request.

12.5 Usage Notes

12.5.1 Contention between Timer Counter (TCNT) Write and Increment

If a timer counter clock pulse is generated during the T2 state of a TCNT write cycle, the write takes priority and the timer counter is not incremented. Figure 12-8 shows this operation.

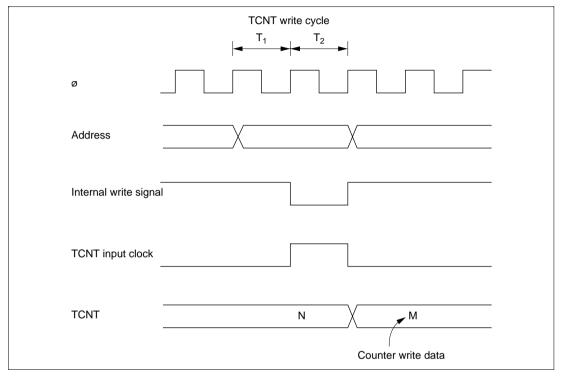


Figure 12-8 Contention between TCNT Write and Increment

12.5.2 Changing Value of PSS and CKS2 to CKS0

If bits PSS and CKS2 to CKS0 in TCSR are written to while the WDT is operating, errors could occur in the incrementation. Software must stop the watchdog timer (by clearing the TME bit to 0) before changing the value of bits PSS and CKS2 to CKS0.

12.5.3 Switching between Watchdog Timer Mode and Interval Timer Mode

If the mode is switched from watchdog timer to interval timer, or vice versa, while the WDT is operating, errors could occur in the incrementation. Software must stop the watchdog timer (by clearing the TME bit to 0) before switching the mode.

12.5.4 Internal Reset in Watchdog Timer Mode

If the RSTE bit is cleared to 0 in watchdog timer mode, the chip will not be reset internally if TCNT overflows, but TCNT0 and TCSR0 in WDT0 will be reset.

TCNT, TCSR, and RSTCR cannot be written to for a 132-state interval after overflow occurs, and a read of the WOVF flag is not recognized during this time. It is therefore necessary to wait for 132 states after overflow occurs before writing 0 to the WOVF flag to clear it.

Section 13 Serial Communication Interface (SCI)

13.1 Overview

The H8S/2238 Series is equipped with mutually independent serial communication interface (SCI) channels. The SCI can handle both asynchronous and clocked synchronous serial communication. A function is also provided for serial communication between processors (multiprocessor communication function).

13.1.1 Features

SCI features are listed below.

· Choice of asynchronous or clocked synchronous serial communication mode

Asynchronous mode

- Serial data communication executed using asynchronous system in which synchronization is achieved character by character
 - Serial data communication can be carried out with standard asynchronous communication chips such as a Universal Asynchronous Receiver/Transmitter (UART) or Asynchronous Communication Interface Adapter (ACIA)
- A multiprocessor communication function is provided that enables serial data communication with a number of processors
- Choice of 12 serial data transfer formats

Data length : 7 or 8 bits Stop bit length : 1 or 2 bits

Parity : Even, odd, or none

Multiprocessor bit : 1 or 0

— Receive error detection: Parity, overrun, and framing errors

— Break detection : Break can be detected by reading the RxD pin level directly in

case of a framing error

Clocked Synchronous mode

Serial data communication synchronized with a clock
 Serial data communication can be carried out with other chips that have a synchronous communication function

— One serial data transfer format

Data length : 8 bits

- Receive error detection: Overrun errors detected

- Full-duplex communication capability
 - The transmitter and receiver are mutually independent, enabling transmission and reception to be executed simultaneously
 - Double-buffering is used in both the transmitter and the receiver, enabling continuous transmission and continuous reception of serial data
- Choice of LSB-first or MSB-first transfer
 - Can be selected regardless of the communication mode* (except in the case of asynchronous mode 7-bit data)
 - Note: * Descriptions in this section refer to LSB-first transfer.
- On-chip baud rate generator allows any bit rate to be selected
- Choice of serial clock source: internal clock from baud rate generator or external clock from SCK pin
- Four interrupt sources
 - Four interrupt sources transmit-data-empty, transmit-end, receive-data-full, and receive error that can issue requests independently
 - The transmit-data-empty interrupt and receive data full interrupts can activate the data transfer controller (DTC) to execute data transfer
- Module stop mode can be set
 - As the initial setting, SCI operation is halted. Register access is enabled by exiting module stop mode.

13.1.2 Block Diagram

Figure 13-1 shows a block diagram of the SCI.

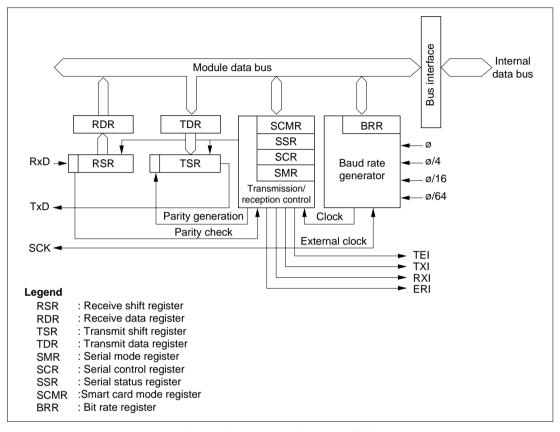


Figure 13-1 Block Diagram of SCI

13.1.3 Pin Configuration

Table 13-1 shows the serial pins for each SCI channel.

Table 13-1 SCI Pins

Channel	Pin Name	Symbol	I/O	Function
0	Serial clock pin 0	SCK0	I/O	SCI0 clock input/output
	Receive data pin 0	RxD0	Input	SCI0 receive data input
	Transmit data pin 0	TxD0	Output	SCI0 transmit data output
1	Serial clock pin 1	SCK1	I/O	SCI1 clock input/output
	Receive data pin 1	RxD1	Input	SCI1 receive data input
	Transmit data pin 1	TxD1	Output	SCI1 transmit data output
2	Serial clock pin 2	SCK2	I/O	SCI2 clock input/output
	Receive data pin 2	RxD2	Input	SCI2 receive data input
	Transmit data pin 2	TxD2	Output	SCI2 transmit data output
3	Serial clock pin 3	SCK3	I/O	SCI3 clock input/output
	Receive data pin 3	RxD3	Input	SCI3 receive data input
	Transmit data pin 3	TxD3	Output	SCI3 transmit data output

Note: Pin names SCK, RxD, and TxD are used in the text for all channels, omitting the channel designation.

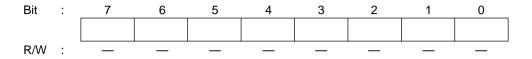
13.1.4 Register Configuration

The SCI has the internal registers shown in table 13-2. These registers are used to specify asynchronous mode or clocked synchronous mode, the data format, and the bit rate, and to control transmitter/receiver.

Table 13-2 SCI Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
0	Serial mode register 0	SMR0	R/W	H'00	H'FF78*3
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79*3
	Serial control register 0	SCR0	R/W	H'00	H'FF7A*3
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B*3
	Serial status register 0	SSR0	R/(W)*2	H'84	H'FF7C*3
	Receive data register 0	RDR0	R	H'00	H'FF7D*3
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E*3
1	Serial mode register 1	SMR1	R/W	H'00	H'FF80*3
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81*3
	Serial control register 1	SCR1	R/W	H'00	H'FF82*3
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83*3
	Serial status register 1	SSR1	R/(W)*2	H'84	H'FF84*3
	Receive data register 1	RDR1	R	H'00	H'FF85*3
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86*3
2	Serial mode register 2	SMR2	R/W	H'00	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	H'00	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	R/(W)*2	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'F2	H'FF8E

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
3	Serial mode register 3	SMR3	R/W	H'00	H'FDD0
	Bit rate register 3	BRR3	R/W	H'FF	H'FDD1
	Serial control register 3	SCR3	R/W	H'00	H'FDD2
	Transmit data register 3	TDR3	R/W	H'FF	H'FDD3
	Serial status register 3	SSR3	R/(W)*2	H'84	H'FDD4
	Receive data register 3	RDR3	R	H'00	H'FDD5
	Smart card mode register 3	SCMR3	R/W	H'F2	H'FDD6
Common	Module stop control register B	MSTPCRB	R/W	H'FF	H'FDE9
	Module stop control register C	MSTPCRC	R/W	H'FF	H'FDEA


Notes: *1 Lower 16 bits of the address.

^{*2} Can only be written with 0 for flag clearing.

^{*3} SCI0/SCI1 registers are allocated to the same addresses as IIC0/IIC1 registers. The IICE bit in serial control register X (SCRX) selects the respective registers.

13.2 Register Descriptions

13.2.1 Receive Shift Register (RSR)

RSR is a register used to receive serial data.

The SCI sets serial data input from the RxD pin in RSR in the order received, starting with the LSB (bit 0), and converts it to parallel data. When one byte of data has been received, it is transferred to RDR automatically.

RSR cannot be directly read or written to by the CPU.

13.2.2 Receive Data Register (RDR)

Bit	:	7	6	5	4	3	2	1	0	
Initial value	:	0	0	0	0	0	0	0	0	
R/W	:	R	R	R	R	R	R	R	R	

RDR is a register that stores received serial data.

When the SCI has received one byte of serial data, it transfers the received serial data from RSR to RDR where it is stored, and completes the receive operation. After this, RSR is receive-enabled.

Since RSR and RDR function as a double buffer in this way, enables continuous receive operations to be performed.

RDR is a read-only register, and cannot be written to by the CPU.

RDR is initialized to H'00 by a reset, in standby mode, watch mode, subactive mode, and subsleep mode or module stop mode.

13.2.3 Transmit Shift Register (TSR)

Bit	:	7	6	5	4	3	2	1	0
R/W	:	_	_		_	_	_	_	_

TSR is a register used to transmit serial data.

To perform serial data transmission, the SCI first transfers transmit data from TDR to TSR, then sends the data to the TxD pin starting with the LSB (bit 0).

When transmission of one byte is completed, the next transmit data is transferred from TDR to TSR, and transmission started, automatically. However, data transfer from TDR to TSR is not performed if the TDRE bit in SSR is set to 1.

TSR cannot be directly read or written to by the CPU.

13.2.4 Transmit Data Register (TDR)

Bit	:	7	6	5	4	3	2	1	0
Initial value:		1	1	1	1	1	1	1	1
R/W	:	R/W							

TDR is an 8-bit register that stores data for serial transmission.

When the SCI detects that TSR is empty, it transfers the transmit data written in TDR to TSR and starts serial transmission. Continuous serial transmission can be carried out by writing the next transmit data to TDR during serial transmission of the data in TSR.

TDR can be read or written to by the CPU at all times.

TDR is initialized to H'FF by a reset, in standby mode, watch mode, subactive mode, and subsleep mode or module stop mode.

13.2.5 Serial Mode Register (SMR)

Bit	:	7	6	5	4	3	2	1	0
		C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SMR is an 8-bit register used to set the SCI's serial transfer format and select the baud rate generator clock source.

SMR can be read or written to by the CPU at all times.

SMR is initialized to H'00 by a reset and in hardware standby mode. It retains its previous state in module stop mode, software standby mode, watch mode, subactive mode, and subsleep mode.

Bit 7—Communication Mode (C/\overline{A}) : Selects asynchronous mode or clocked synchronous mode as the SCI operating mode.

Bit 7

C/A	Description	
0	Asynchronous mode	(Initial value)
1	Clocked synchronous mode	

Bit 6—Character Length (CHR): Selects 7 or 8 bits as the data length in asynchronous mode. In clocked synchronous mode, a fixed data length of 8 bits is used regardless of the CHR setting.

Bit 6

CHR	Description	
0	8-bit data	(Initial value)
1	7-bit data*	

Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted, and it is not possible to choose between LSB-first or MSB-first transfer.

Bit 5—Parity Enable (PE): In asynchronous mode, selects whether or not parity bit addition is performed in transmission, and parity bit checking in reception. In clocked synchronous mode with a multiprocessor format, parity bit addition and checking is not performed, regardless of the PE bit setting.

Bit 5

PE	Description	
0	Parity bit addition and checking disabled	(Initial value)
1	Parity bit addition and checking enabled*	

Note:* When the PE bit is set to 1, the parity (even or odd) specified by the O/\overline{E} bit is added to transmit data before transmission. In reception, the parity bit is checked for the parity (even or odd) specified by the O/\overline{E} bit.

Bit 4—Parity Mode (O/\overline{E}) : Selects either even or odd parity for use in parity addition and checking.

The O/\overline{E} bit setting is only valid when the PE bit is set to 1, enabling parity bit addition and checking, in asynchronous mode. The O/\overline{E} bit setting is invalid in clocked synchronous mode, when parity addition and checking is disabled in asynchronous mode, and when a multiprocessor format is used.

Bit 4

O/E	Description	
0	Even parity* ¹	(Initial value)
1	Odd parity*2	

Notes: *1 When even parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is even.

In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is even.

*2 When odd parity is set, parity bit addition is performed in transmission so that the total number of 1 bits in the transmit character plus the parity bit is odd.

In reception, a check is performed to see if the total number of 1 bits in the receive character plus the parity bit is odd.

Bit 3—Stop Bit Length (STOP): Selects 1 or 2 bits as the stop bit length in asynchronous mode. The STOP bits setting is only valid in asynchronous mode. If clocked synchronous mode is set the STOP bit setting is invalid since stop bits are not added.

Bit 3

STOP	Description	
0	1 stop bit: In transmission, a single 1 bit (stop bit) is added to the end of a transmit character before it is sent.	(Initial value)
1	2 stop bits: In transmission, two 1 bits (stop bits) are added to the end of character before it is sent.	of a transmit

In reception, only the first stop bit is checked, regardless of the STOP bit setting. If the second stop bit is 1, it is treated as a stop bit; if it is 0, it is treated as the start bit of the next transmit character.

Bit 2—Multiprocessor Mode (MP): Selects multiprocessor format. When multiprocessor format is selected, the PE bit and O/\overline{E} bit parity settings are invalid. The MP bit setting is only valid in asynchronous mode; it is invalid in clocked synchronous mode.

For details of the multiprocessor communication function, see section 13.3.3, Multiprocessor Communication Function.

Bit 2

MP	Description	
0	Multiprocessor function disabled	(Initial value)
1	Multiprocessor format selected	

Bits 1 and 0—Clock Select 1 and 0 (CKS1, CKS0): These bits select the clock source for the baud rate generator. The clock source can be selected from \emptyset , $\emptyset/4$, $\emptyset/16$, and $\emptyset/64$, according to the setting of bits CKS1 and CKS0.

For the relation between the clock source, the bit rate register setting, and the baud rate, see section 13.2.8, Bit Rate Register.

Bit 1	Bit 0		
CKS1	CKS0	 Description	
0	0	ø clock	(Initial value)
	1	ø/4 clock	
1	0	ø/16 clock	
	1	ø/64 clock	

13.2.6 Serial Control Register (SCR)

Bit	:	7	6	5	4	3	2	1	0	
		TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	
Initial val	ue:	0	0	0	0	0	0	0	0	
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

SCR is a register that performs enabling or disabling of SCI transfer operations, serial clock output in asynchronous mode, and interrupt requests, and selection of the serial clock source.

SCR can be read or written to by the CPU at all times.

SCR is initialized to H'00 by a reset and in hardware standby mode. It retains its previous state in module stop mode, software standby mode, watch mode, subactive mode, and subsleep mode.

Bit 7—Transmit Interrupt Enable (TIE): Enables or disables transmit data empty interrupt (TXI) request generation when serial transmit data is transferred from TDR to TSR and the TDRE flag in SSR is set to 1.

Bit 7

TIE	Description	
0	Transmit data empty interrupt (TXI) requests disabled	(Initial value)
1	Transmit data empty interrupt (TXI) requests enabled	

Note: TXI interrupt request cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or clearing the TIE bit to 0.

Bit 6—Receive Interrupt Enable (RIE): Enables or disables receive data full interrupt (RXI) request and receive error interrupt (ERI) request generation when serial receive data is transferred from RSR to RDR and the RDRF flag in SSR is set to 1.

Bit 6

RIE	Description
0	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request disabled* (Initial value)
1	Receive data full interrupt (RXI) request and receive error interrupt (ERI) request enabled

Note:* RXI and ERI interrupt request cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0, or clearing the RIE bit to 0.

Bit 5—Transmit Enable (TE): Enables or disables the start of serial transmission by the SCI.

Bit 5

TE	Description	
0	Transmission disabled*1	(Initial value)
1	Transmission enabled*2	

Notes: *1 The TDRE flag in SSR is fixed at 1.

*2 In this state, serial transmission is started when transmit data is written to TDR and the TDRE flag in SSR is cleared to 0.

SMR setting must be performed to decide the transfer format before setting the TE bit to 1.

Bit 4—Receive Enable (RE): Enables or disables the start of serial reception by the SCI.

Bit 4

RE	Description	
0	Reception disabled*1	(Initial value)
1	Reception enabled*2	

Notes: *1 Clearing the RE bit to 0 does not affect the RDRF, FER, PER, and ORER flags, which retain their states.

*2 Serial reception is started in this state when a start bit is detected in asynchronous mode or serial clock input is detected in clocked synchronous mode.

SMR setting must be performed to decide the transfer format before setting the RE bit to 1.

Bit 3—Multiprocessor Interrupt Enable (MPIE): Enables or disables multiprocessor interrupts. The MPIE bit setting is only valid in asynchronous mode when the MP bit in SMR is set to 1.

The MPIE bit setting is invalid in clocked synchronous mode or when the MP bit is cleared to 0.

Bit 3

MPIE	Description					
0	Multiprocessor interrupts disabled (normal reception performed)	(Initial value)				
	[Clearing conditions]					
	When the MPIE bit is cleared to 0					
	When MPB= 1 data is received					
1	Multiprocessor interrupts enabled*					
	Receive interrupt (RXI) requests, receive error interrupt (ERI) request of the RDRF, FER, and ORER flags in SSR are disabled until data with multiprocessor bit set to 1 is received.					

Note: * When receive data including MPB = 0 is received, receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.

Bit 2—Transmit End Interrupt Enable (TEIE): Enables or disables transmit end interrupt (TEI) request generation when there is no valid transmit data in TDR in MSB data transmission.

Bit 2

TEIE	Description	
0	Transmit end interrupt (TEI) request disabled*	(Initial value)
1	Transmit end interrupt (TEI) request enabled*	

Note: *TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or clearing the TEIE bit to 0.

Bits 1 and 0—Clock Enable 1 and 0 (CKE1, CKE0): These bits are used to select the SCI clock source and enable or disable clock output from the SCK pin. The combination of the CKE1 and CKE0 bits determines whether the SCK pin functions as an I/O port, the serial clock output pin, or the serial clock input pin.

The setting of the CKE0 bit, however, is only valid for internal clock operation (CKE1 = 0) in asynchronous mode. The CKE0 bit setting is invalid in clocked synchronous mode, and in the case of external clock operation (CKE1 = 1). Note that the SCI's operating mode must be decided using SMR after setting the CKE1 and CKE0 bits.

For details of clock source selection, see table 13-9 in section 13.3, Operation.

Bit 1	Bit 0						
CKE1 CKE0		Description					
0	0	Asynchronous mode	Internal clock/SCK pin functions as I/O port*1				
		Clocked synchronous mode	Internal clock/SCK pin functions as serial clock output*1				
	1	Asynchronous mode	Internal clock/SCK pin functions as clock output*2				
		Clocked synchronous mode	Internal clock/SCK pin functions as serial clock output				
1	0	Asynchronous mode	External clock/SCK pin functions as clock input*3				
		Clocked synchronous mode	External clock/SCK pin functions as serial clock input				
	1	Asynchronous mode	External clock/SCK pin functions as clock input*3				
		Clocked synchronous mode	External clock/SCK pin functions as serial clock input				

Notes: *1 Initial value

^{*2} Outputs a clock of the same frequency as the bit rate.

^{*3} Inputs a clock with a frequency 16 times the bit rate.

13.2.7 Serial Status Register (SSR)

Bit	:	7	6	5	4	3	2	1	0
		TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT
Initial va	lue:	1	0	0	0	0	1	0	0
R/W	:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W

Note: Only 0 can be written, to clear the flag.

SSR is an 8-bit register containing status flags that indicate the operating status of the SCI, and multiprocessor bits.

SSR can be read or written to by the CPU at all times. However, 1 cannot be written to flags TDRE, RDRF, ORER, PER, and FER. Also note that in order to clear these flags they must be read as 1 beforehand. The TEND flag and MPB flag are read-only flags and cannot be modified.

SSR is initialized to H'84 by a reset, in standby mode, watch mode, subactive mode, and subsleep mode or module stop mode.

Bit 7—Transmit Data Register Empty (TDRE): Indicates that data has been transferred from TDR to TSR and the next serial data can be written to TDR.

Bit 7

TDRE	Description					
0	[Clearing conditions]					
	 When 0 is written to TDRE after reading TDRE = 1 					
	When the DTC is activated by a TXI interrupt and writes data	to TDR				
1	[Setting conditions]	(Initial value)				
	 When the TE bit in SCR is 0 					
	When data is transferred from TDR to TSR and data can be violated to the second s	written to TDR				

Bit 6—Receive Data Register Full (RDRF): Indicates that the received data is stored in RDR.

Bit 6

RDRF	Description
0	[Clearing conditions] (Initial value)
	 When 0 is written to RDRF after reading RDRF = 1
	 When the DTC is activated by an RXI interrupt and reads data from RDR
1	[Setting condition]
	When serial reception ends normally and receive data is transferred from RSR to RDR
Note:	RDR and the RDRF flag are not affected and retain their previous values when an error is
	detected during reception or when the RE bit in SCR is cleared to 0.
	If reception of the next data is completed while the RDRF flag is still set to 1, an overrun

Bit 5—Overrun Error (ORER): Indicates that an overrun error occurred during reception, causing abnormal termination.

error will occur and the receive data will be lost.

Bit 5

Dit 3	
ORER	Description
0	[Clearing condition] (Initial value)*1
	When 0 is written to ORER after reading ORER = 1
1	[Setting condition]
	When the next serial reception is completed while RDRF = 1*2
Notes: *	1 The ORER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.

*2 The receive data prior to the overrun error is retained in RDR, and the data received subsequently is lost. Also, subsequent serial reception cannot be continued while the ORER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.

Bit 4—Framing Error (FER): Indicates that a framing error occurred during reception in asynchronous mode, causing abnormal termination.

Bit 4

FER	Description	
0	[Clearing condition]	(Initial value)*1
	When 0 is written to FER after reading FER = 1	
1	[Setting condition]	
	When the SCI checks whether the stop bit at the end of the rec reception ends, and the stop bit is 0 $^{\ast^2}$	eive data when
Notes:	*1 The FER flag is not affected and retains its previous state when cleared to 0.	the RE bit in SCR is
	*2 In 2-stop-bit mode, only the first stop bit is checked for a value of is not checked. If a framing error occurs, the receive data is tran RDRF flag is not set. Also, subsequent serial reception cannot be FER flag is set to 1. In clocked synchronous mode, serial transmoontinued, either.	sferred to RDR but the se continued while the

Bit 3—Parity Error (PER): Indicates that a parity error occurred during reception using parity addition in asynchronous mode, causing abnormal termination.

Bit 3

PER	 Description	
0	[Clearing condition]	(Initial value)*1
	When 0 is written to PER after reading PER = 1	
1	[Setting condition] When, in reception, the number of 1 bits in the receive data plumatch the parity setting (even or odd) specified by the O/E bit is	. ,

Notes: *1 The PER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.

^{*2} If a parity error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Also, subsequent serial reception cannot be continued while the PER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.

Bit 2—Transmit End (TEND): Indicates that there is no valid data in TDR when the last bit of the transmit character is sent, and transmission has been ended.

The TEND flag is read-only and cannot be modified.

Bit 2

TEND	Description								
0	[Clearing conditions]								
	 When 0 is written to TDRE after reading TDRE = 1 								
	 When the DTC is activated by a TXI interrupt and writes data to TDR 								
1	[Setting conditions]	(Initial value)							
	When the TE bit in SCR is 0								
	• When TDRE = 1 at transmission of the last bit of a 1-byte s	erial transmit character							

Bit 1—Multiprocessor Bit (MPB): When reception is performed using multiprocessor format in asynchronous mode, MPB stores the multiprocessor bit in the receive data.

MPB is a read-only bit, and cannot be modified.

Bit 1

МРВ	Description	
0	[Clearing condition] When data with a 0 multiprocessor bit is received	(Initial value)*
1	[Setting condition] When data with a 1 multiprocessor bit is received	

Note: * Retains its previous state when the RE bit in SCR is cleared to 0 with multiprocessor format.

Bit 0—Multiprocessor Bit Transfer (MPBT): When transmission is performed using multiprocessor format in asynchronous mode, MPBT stores the multiprocessor bit to be added to the transmit data.

The MPBT bit setting is invalid when multiprocessor format is not used, when not transmitting, and in clocked synchronous mode.

Bit 0

MPBT	 Description	
0	Data with a 0 multiprocessor bit is transmitted	(Initial value)
1	Data with a 1 multiprocessor bit is transmitted	

13.2.8 Bit Rate Register (BRR)

Bit	:	7	6	5	4	3	2	1	0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

BRR is an 8-bit register that sets the serial transfer bit rate in accordance with the baud rate generator operating clock selected by bits CKS1 and CKS0 in SMR.

BRR can be read or written to by the CPU at all times.

BRR is initialized to H'FF by a reset and in hardware standby mode. It retains its previous state in module stop mode, software standby mode, watch mode, subactive mode, and subsleep mode.

As baud rate generator control is performed independently for each channel, different values can be set for each channel.

Table 13-3 shows sample BRR settings in asynchronous mode, and table 13-4 shows sample BRR settings in clocked synchronous mode.

Table 13-3 BRR Settings for Various Bit Rates (Asynchronous Mode)

	ø = 2 MHz			Ø	ø = 2.097152 MHz			ø = 2.4576 MHz			ø = 3 MHz		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	1	141	0.03	1	148	-0.04	1	174	-0.26	1	212	0.03	
150	1	103	0.16	1	108	0.21	1	127	0.00	1	155	0.16	
300	0	207	0.16	0	217	0.21	0	255	0.00	1	77	0.16	
600	0	103	0.16	0	108	0.21	0	127	0.00	0	155	0.16	
1200	0	51	0.16	0	54	-0.70	0	63	0.00	0	77	0.16	
2400	0	25	0.16	0	26	1.14	0	31	0.00	0	38	0.16	
4800	0	12	0.16	0	13	-2.48	0	15	0.00	0	19	-2.34	
9600	_	_	_	0	6	-2.48	0	7	0.00	0	9	-2.34	
19200	_	_	_	_	_	_	0	3	0.00	0	4	-2.34	
31250	0	1	0.00		<u> </u>	_		_	_	0	2	0.00	
38400	_	_	_	_	_	_	0	1	0.00	_	_	_	

	ø = 3.6864 MHz			ø = 4 MHz			ø = 4.9152 MHz			ø = 5 MHz		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	64	0.70	2	70	0.03	2	86	0.31	2	88	-0.25
150	1	191	0.00	1	207	0.16	1	255	0.00	2	64	0.16
300	1	95	0.00	1	103	0.16	1	127	0.00	1	129	0.16
600	0	191	0.00	0	207	0.16	0	255	0.00	1	64	0.16
1200	0	95	0.00	0	103	0.16	0	127	0.00	0	129	0.16
2400	0	47	0.00	0	51	0.16	0	63	0.00	0	64	0.16
4800	0	23	0.00	0	25	0.16	0	31	0.00	0	32	-1.36
9600	0	11	0.00	0	12	0.16	0	15	0.00	0	15	1.73
19200	0	5	0.00	_	_	_	0	7	0.00	0	7	1.73
31250	_	_	_	0	3	0.00	0	4	-1.70	0	4	0.00
38400	0	2	0.00	_	_	_	0	3	0.00	0	3	1.73

	ø = 6 MHz				ø = 6.144 MHz			Ø = 7.3728 MHz			ø = 8 MHz		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
110	2	106	-0.44	2	108	0.08	2	130	-0.07	2	141	0.03	
150	2	77	0.16	2	79	0.00	2	95	0.00	2	103	0.16	
300	1	155	0.16	1	159	0.00	1	191	0.00	1	207	0.16	
600	1	77	0.16	1	79	0.00	1	95	0.00	1	103	0.16	
1200	0	155	0.16	0	159	0.00	0	191	0.00	0	207	0.16	
2400	0	77	0.16	0	79	0.00	0	95	0.00	0	103	0.16	
4800	0	38	0.16	0	39	0.00	0	47	0.00	0	51	0.16	
9600	0	19	-2.34	0	19	0.00	0	23	0.00	0	25	0.16	
19200	0	9	-2.34	0	9	0.00	0	11	0.00	0	12	0.16	
31250	0	5	0.00	0	5	2.40	_	_	_	0	7	0.00	
38400	0	4	-2.34	0	4	0.00	0	5	0.00		_	_	

	ø = 9.8304 MHz				ø = 10 MHz			ø = 12 N	1Hz	ø = 12.288 MHz		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	174	-0.26	2	177	-0.25	2	212	0.03	2	217	0.08
150	2	127	0.00	2	129	0.16	2	155	0.16	2	159	0.00
300	1	255	0.00	2	64	0.16	2	77	0.16	2	79	0.00
600	1	127	0.00	1	129	0.16	1	155	0.16	1	159	0.00
1200	0	255	0.00	1	64	0.16	1	77	0.16	1	79	0.00
2400	0	127	0.00	0	129	0.16	0	155	0.16	0	159	0.00
4800	0	63	0.00	0	64	0.16	0	77	0.16	0	79	0.00
9600	0	31	0.00	0	32	-1.36	0	38	0.16	0	39	0.00
19200	0	15	0.00	0	15	1.73	0	19	-2.34	0	19	0.00
31250	0	9	-1.70	0	9	0.00	0	11	0.00	0	11	2.40
38400	0	7	0.00	0	7	1.73	0	9	-2.34	0	9	0.00

Table 13-4 BRR Settings for Various Bit Rates (Clocked Synchronous Mode)

Bit Rate	Ø	ø = 2 MHz		ø = 4 MHz		ø = 6 MHz		ø = 8 MHz		ø = 10 MHz	
(bit/s)	n	N	n	N	n	N	n	N	n	N	
110	3	70	_	_							
250	2	124	2	249			3	124	_	_	
500	1	249	2	124			2	249	_	_	
1 k	1	124	1	249			2	124	_	_	
2.5 k	0	199	1	99	1	149	1	199	1	249	
5 k	0	99	0	199	1	74	1	99	1	124	
10 k	0	49	0	99	0	149	0	199	0	249	
25 k	0	19	0	39	0	59	0	79	0	99	
50 k	0	9	0	19	0	29	0	39	0	49	
100 k	0	4	0	9	0	14	0	19	0	24	
250 k	0	1	0	3	0	5	0	7	0	9	
500 k	0	0*	0	1	0	2	0	3	0	4	
1 M		*	0	0*			0	1			
2.5 M									0	0*	
5 M		••						••			

Note: As far as possible, the setting should be made so that the error is no more than 1%.

Legend

Blank : Cannot be set.

— : Can be set, but there will be a degree of error.

* : Continuous transfer is not possible.

The BRR setting is found from the following formulas.

Asynchronous mode:

$$N = \frac{\emptyset}{64 \times 2^{2n-1} \times B} \times 10^6 - 1$$

Clocked synchronous mode:

$$N = \frac{\emptyset}{8 \times 2^{2n-1} \times B} \times 10^6 - 1$$

Where B: Bit rate (bit/s)

N: BRR setting for band rate generator $(0 \le N \le 255)$

ø: Operating frequency (MHz)

n: Baud rate generator input clock (n=0 to 3) (See the table below for the relation between n and the clock.)

		SMR Setting					
n	Clock	CKS1	CKS0				
0	Ø	0	0				
1	ø/4	0	1				
2	ø/16	1	0				
3	ø/64	1	1				

The bit rate error in asynchronous mode is found from the following formula:

Error (%) = {
$$\frac{\emptyset \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1} \times 100$$

Table 13-5 shows the maximum bit rate for each frequency in asynchronous mode. Tables 13-6 and 13-7 show the maximum bit rates with external clock input.

Table 13-5 Maximum Bit Rate for Each Frequency (Asynchronous Mode)

ø (MHz)	Maximum Bit Rate (bit/s)	n	N	
2	62500	0	0	
2.097152	65536	0	0	
2.4576	76800	0	0	
3	93750	0	0	
3.6864	115200	0	0	
4	125000	0	0	
4.9152	153600	0	0	
5	156250	0	0	
6	187500	0	0	
6.144	192000	0	0	
7.3728	230400	0	0	
8	250000	0	0	
9.8304	307200	0	0	
10	312500	0	0	
12	375000	0	0	
12.288	384000	0	0	

Table 13-6 Maximum Bit Rate with External Clock Input (Asynchronous Mode)

ø (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)
2	0.5000	31250
2.097152	0.5243	32768
2.4576	0.6144	38400
3	0.7500	46875
3.6864	0.9216	57600
4	1.0000	62500
4.9152	1.2288	76800
5	1.2500	78125
6	1.5000	93750
6.144	1.5360	96000
7.3728	1.8432	115200
8	2.0000	125000
9.8304	2.4576	153600
10	2.5000	156250
12	3.0000	187500
12.288	3.0720	192000

Table 13-7 Maximum Bit Rate with External Clock Input (Clocked Synchronous Mode)

ø (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)		
2	0.3333	333333.3		
4	0.6667	666666.7		
6	1.0000	1000000.0		
8	1.3333	1333333.3		
10	1.6667	1666666.7		
12	2.0000	2000000.0		

13.2.9 Smart Card Mode Register (SCMR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	SDIR	SINV	_	SMIF
Initial value	:	1	1	1	1	0	0	1	0
R/W	:	_	_	_	_	R/W	R/W	_	R/W

SCMR selects LSB-first or MSB-first by means of bit SDIR. Except in the case of asynchronous mode 7-bit data, LSB-first or MSB-first can be selected regardless of the serial communication mode. The descriptions in this chapter refer to LSB-first transfer.

For details of the other bits in SCMR, see section 14.2.1, Smart Card Mode Register (SCMR).

SCMR is initialized to HF2 by a reset and in hardware standby mode. It retains its previous state in module stop mode, software standby mode, watch mode, subactive mode, and subsleep mode.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 1.

Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.

This bit is valid when 8-bit data is used as the transmit/receive format.

Bit 3

SDIR	Description	
0	TDR contents are transmitted LSB-first	(Initial value)
	Receive data is stored in RDR LSB-first	
1	TDR contents are transmitted MSB-first	
	Receive data is stored in RDR MSB-first	

Bit 2—Smart Card Data Invert (SINV): Specifies inversion of the data logic level. The SINV bit does not affect the logic level of the parity bit(s): parity bit inversion requires inversion of the O/\overline{E} bit in SMR.

Bit 2

SINV	Description	
0	TDR contents are transmitted without modification Receive data is stored in RDR without modification	(Initial value)
1	TDR contents are inverted before being transmitted Receive data is stored in RDR in inverted form	

Bit 1—Reserved: This bit cannot be modified and is always read as 1.

Bit 0—Smart Card Interface Mode Select (SMIF): When the smart card interface operates as a normal SCI, 0 should be written in this bit.

Bit 0

SMIF	 Description	
0	Operates as a normal SCI (Smart Card interface function is disabled)	(Initial value)
1	Smart Card interface function is enabled	

13.2.10 Module Stop Control Registers B and C (MSTPCRB, MSTPCRC)

MSTPCRB

Bit	:	7	6	5	4	3	2	1	0
		MSTPB7	мѕтрв6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	МЅТРВО
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRC

Bit	:	7	6	5	4	3	2	1	0
		MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRB and MSTPCRC are 8-bit readable/writable registers that perform module stop mode control.

When one of bits MSTPB7 to MSTPB5 or MSTPC7 is set to 1, SCI0, SCI1, SCI2, or SCI3, respectively, stops operation at the end of the bus cycle, and enters module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCRB and MSTPCRC are each initialized to H'FF by a reset and in hardware standby mode. They are not initialized in software standby mode.

Module Stop Control Register B (MSTPCRB)

Bit 7—Module Stop (MSTPB7): Specifies the SCI0 module stop mode.

Bit 7

MSTPB7	Description	
0	SCI0 module stop mode is cleared	_
1	SCI0 module stop mode is set	(Initial value)

Bit 6—Module Stop (MSTPB6): Specifies the SCI1 module stop mode.

Bit 6

MSTPB6	Description	
0	SCI1 module stop mode is cleared	_
1	SCI1 module stop mode is set	(Initial value)

Bit 5—Module Stop (MSTPB5): Specifies the SCI2 module stop mode.

Bit 5

MSTPB5		
0	SCI2 module stop mode is cleared	_
1	SCI2 module stop mode is set	(Initial value)

Module Stop Control Register C (MSTPCRC)

Bit 7—Module Stop (MSTPC7): Specifies the SCI3 module stop mode.

Bit 7

MSTPC7	Description	
0	SCI3 module stop mode is cleared	
1	SCI3 module stop mode is set	(Initial value)

13.3 Operation

13.3.1 Overview

The SCI can carry out serial communication in two modes: asynchronous mode in which synchronization is achieved character by character, and clocked synchronous mode in which synchronization is achieved with clock pulses.

Selection of asynchronous or clocked synchronous mode and the transmission format is made using SMR as shown in table 13-8. The SCI clock is determined by a combination of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR, as shown in table 13-9.

Asynchronous Mode

- Data length: Choice of 7 or 8 bits
- Choice of parity addition, multiprocessor bit addition, and addition of 1 or 2 stop bits (the combination of these parameters determines the transfer format and character length)
- Detection of framing, parity, and overrun errors, and breaks, during reception
- Choice of internal or external clock as SCI clock source
 - When internal clock is selected:
 - The SCI operates on the baud rate generator clock and a clock with the same frequency as the bit rate can be output
 - When external clock is selected:
 - A clock with a frequency of 16 times the bit rate must be input (the on-chip baud rate generator is not used)

Clocked Synchronous Mode

- Transfer format: Fixed 8-bit data
- Detection of overrun errors during reception
- Choice of internal or external clock as SCI clock source
 - When internal clock is selected:
 - The SCI operates on the baud rate generator clock and a serial clock is output off-chip
 - When external clock is selected:
 - The on-chip baud rate generator is not used, and the SCI operates on the input serial clock

Table 13-8 SMR Settings and Serial Transfer Format Selection

SMR Settings					_	SCI Transfer Format			
Bit 7	Bit 6	Bit 2	Bit 5	Bit 3	_ _ Mode	Data Length	Multi Processor Bit	Parity Bit	Stop Bit Length
0	0	0	0	0	Asynchronous	8-bit data	No	No	1 bit
				1	mode				2 bits
			1	0	_			Yes	1 bit
				1	_				2 bits
	1	_	0	0	_	7-bit data	_	No	1 bit
				1	_				2 bits
			1	0	_			Yes	1 bit
				1	_				2 bits
	0	1	_	0	Asynchronous	8-bit data	Yes	No	1 bit
			_	1	mode (multi- processor				2 bits
	1	_	_	0	format)	7-bit data			1 bit
			_	1	_				2 bits
1	_	_	_	_	Clocked synchronous mode	8-bit data	No	_	None

Table 13-9 SMR and SCR Settings and SCI Clock Source Selection

SMR	SCR	Setting		SCI Transmit/Receive Clock		
Bit 7	Bit 1	Bit 0 CKE0	_	Clock	SCK Pin Function	
C/A	CKE1		Mode	Source		
0	0	0	Asynchronous	Internal	SCI does not use SCK pin	
		1	mode		Outputs clock with same frequency as brate	
	1	0	_	External	Inputs clock with frequency of 16 times	
		1			the bit rate	
1	0	0	Clocked	Internal	Outputs serial clock	
		1	synchronous mode			
	1	0		External	Inputs serial clock	
		1	_			

13.3.2 Operation in Asynchronous Mode

In asynchronous mode, characters are sent or received, each preceded by a start bit indicating the start of communication and stop bits indicating the end of communication. Serial communication is thus carried out with synchronization established on a character-by-character basis.

Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer.

Figure 13-2 shows the general format for asynchronous serial communication.

In asynchronous serial communication, the transmission line is usually held in the mark state (high level). The SCI monitors the transmission line, and when it goes to the space state (low level), recognizes a start bit and starts serial communication.

One serial communication character consists of a start bit (low level), followed by data (in LSB-first order), a parity bit (high or low level), and finally stop bits (high level).

In asynchronous mode, the SCI performs synchronization at the falling edge of the start bit in reception. The SCI samples the data on the 8th pulse of a clock with a frequency of 16 times the length of one bit, so that the transfer data is latched at the center of each bit.

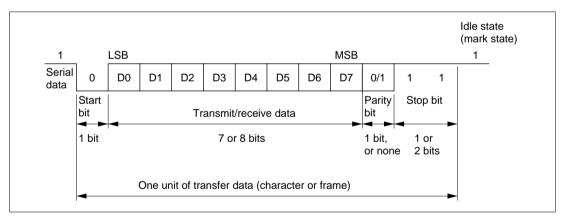


Figure 13-2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits)

Data Transfer Format: Table 13-10 shows the data transfer formats that can be used in asynchronous mode. Any of 12 transfer formats can be selected according to the SMR setting.

Table 13-10 Serial Transfer Formats (Asynchronous Mode)

	SMR S	Settings		Serial Transfer Format and Frame Length		
CHR	PE	MP	STOP	1 2 3 4 5 6 7 8 9 10 11 12		
0	0	0	0	S 8-bit data STOP		
0	0	0	1	S 8-bit data STOP STOP		
0	1	0	0	S 8-bit data P STOP		
0	1	0	1	S 8-bit data P STOP STOP		
1	0	0	0	S 7-bit data STOP		
1	0	0	1	S 7-bit data STOP STOP		
1	1	0	0	S 7-bit data P STOP		
1	1	0	1	S 7-bit data P STOP STOP		
0	1	1	0	S 8-bit data MPB STOP		
0	_	1	1	S 8-bit data MPB STOP STOP		
1	_	1	0	S 7-bit data MPB STOP		
1	_	1	1	S 7-bit data MPB STOP STOP		

Legend

S : Start bit STOP : Stop bit P : Parity bit

MPB : Multiprocessor bit

Clock: Either an internal clock generated by the on-chip baud rate generator or an external clock input at the SCK pin can be selected as the SCI's serial clock, according to the setting of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR. For details of SCI clock source selection, see table 13-9.

When an external clock is input at the SCK pin, the clock frequency should be 16 times the bit rate used.

When the SCI is operated on an internal clock, the clock can be output from the SCK pin. The frequency of the clock output in this case is equal to the bit rate, and the phase is such that the rising edge of the clock is in the middle of the transmit data, as shown in figure 13-3.

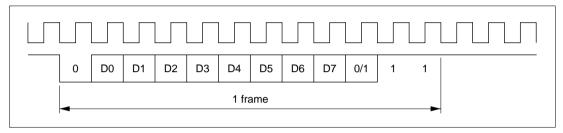


Figure 13-3 Relation between Output Clock and Transfer Data Phase (Asynchronous Mode)

Data Transfer Operations:

• SCI initialization (asynchronous mode)

Before transmitting and receiving data, you should first clear the TE and RE bits in SCR to 0, then initialize the SCI as described below.

When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1 and TSR is initialized. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR.

When an external clock is used the clock should not be stopped during operation, including initialization, since operation is uncertain.

Figure 13-4 shows a sample SCI initialization flowchart.

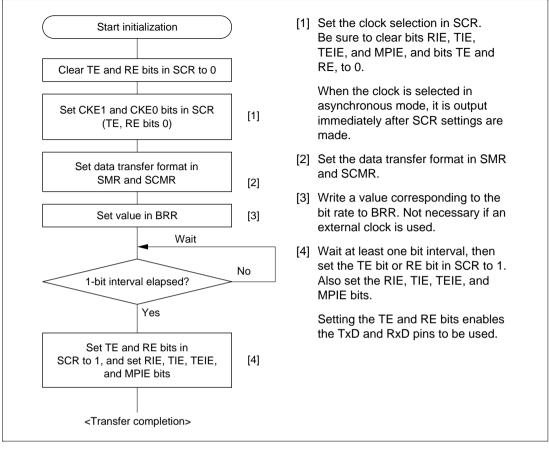


Figure 13-4 Sample SCI Initialization Flowchart

Serial data transmission (asynchronous mode)
 Figure 13-5 shows a sample flowchart for serial transmission.
 The following procedure should be used for serial data transmission.

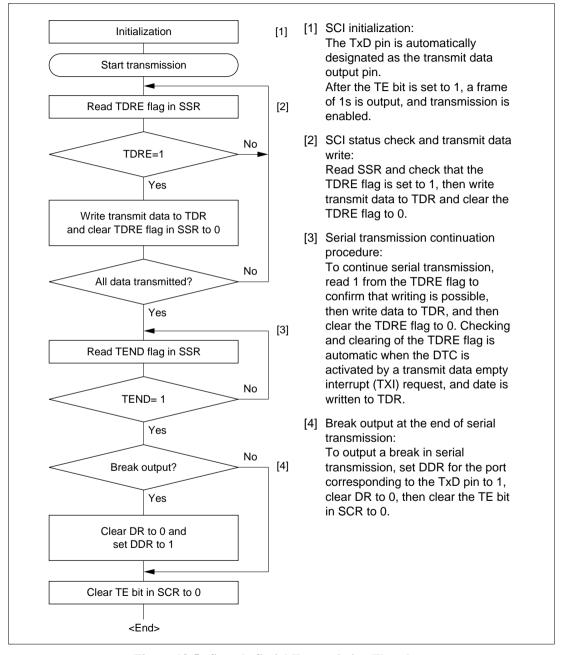


Figure 13-5 Sample Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.

- [1] The SCI monitors the TDRE flag in SSR, and if is 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- [2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission.

If the TIE bit is set to 1 at this time, a transmit data empty interrupt (TXI) is generated. The serial transmit data is sent from the TxD pin in the following order.

[a] Start bit:

One 0-bit is output.

[b] Transmit data:

8-bit or 7-bit data is output in LSB-first order.

[c] Parity bit or multiprocessor bit:

One parity bit (even or odd parity), or one multiprocessor bit is output.

A format in which neither a parity bit nor a multiprocessor bit is output can also be selected.

[d] Stop bit(s):

One or two 1-bits (stop bits) are output.

[e] Mark state:

1 is output continuously until the start bit that starts the next transmission is sent.

[3] The SCI checks the TDRE flag at the timing for sending the stop bit.

If the TDRE flag is cleared to 0, the data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started.

If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the "mark state" is entered in which 1 is output continuously. If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated.

Figure 13-6 shows an example of the operation for transmission in asynchronous mode.



Figure 13-6 Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit)

Serial data reception (asynchronous mode)
 Figure 13-7 shows a sample flowchart for serial reception.
 The following procedure should be used for serial data reception.

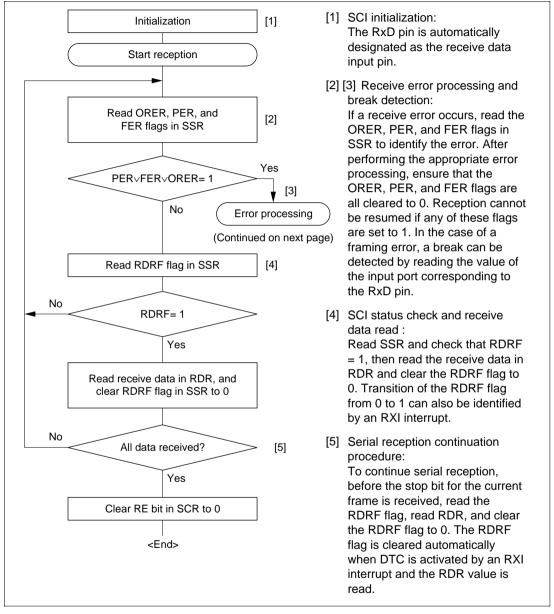


Figure 13-7 Sample Serial Reception Data Flowchart

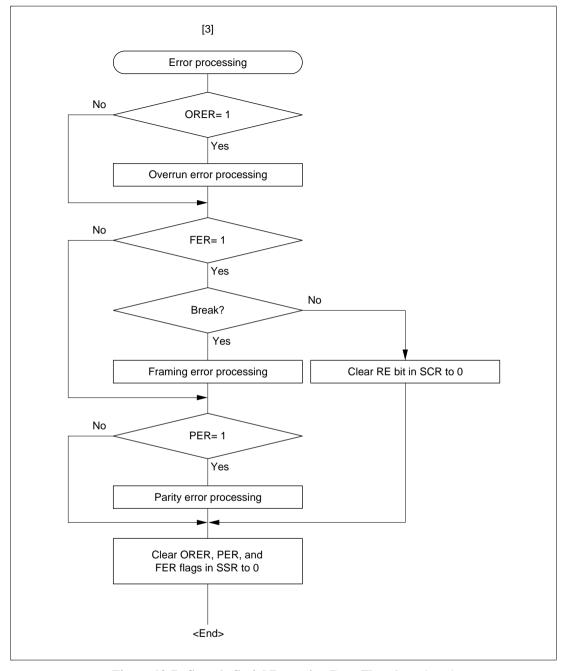


Figure 13-7 Sample Serial Reception Data Flowchart (cont)

In serial reception, the SCI operates as described below.

- [1] The SCI monitors the transmission line, and if a 0 stop bit is detected, performs internal synchronization and starts reception.
- [2] The received data is stored in RSR in LSB-to-MSB order.
- [3] The parity bit and stop bit are received.

After receiving these bits, the SCI carries out the following checks.

[a] Parity check:

The SCI checks whether the number of 1 bits in the receive data agrees with the parity (even or odd) set in the O/\overline{E} bit in SMR.

[b] Stop bit check:

The SCI checks whether the stop bit is 1.

If there are two stop bits, only the first is checked.

[c] Status check:

The SCI checks whether the RDRF flag is 0, indicating that the receive data can be transferred from RSR to RDR.

If all the above checks are passed, the RDRF flag is set to 1, and the receive data is stored in RDR.

If a receive error* is detected in the error check, the operation is as shown in table 13-11.

- Note: * Subsequent receive operations cannot be performed when a receive error has occurred. Also note that the RDRF flag is not set to 1 in reception, and so the error flags must be cleared to 0.
- [4] If the RIE bit in SCR is set to 1 when the RDRF flag changes to 1, a receive data full interrupt (RXI) request is generated.

Also, if the RIE bit in SCR is set to 1 when the ORER, PER, or FER flag changes to 1, a receive error interrupt (ERI) request is generated.

Table 13-11 Receive Errors and Conditions for Occurrence

Receive Error	Abbreviation	Occurrence Condition	Data Transfer	
Overrun error	ORER	When the next data reception is completed while the RDRF flag in SSR is set to 1	Receive data is not transferred from RSR to RDR.	
Framing error	FER	When the stop bit is 0	Receive data is transferred from RSR to RDR.	
Parity error	PER	When the received data differs from the parity (even or odd) set in SMR	Receive data is transferred from RSR to RDR.	

Figure 13-8 shows an example of the operation for reception in asynchronous mode.

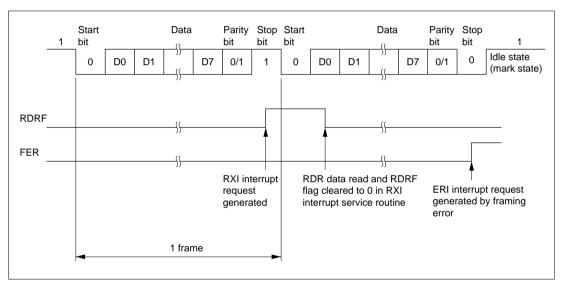


Figure 13-8 Example of SCI Operation in Reception (Example with 8-Bit Data, Parity, One Stop Bit)

13.3.3 Multiprocessor Communication Function

The multiprocessor communication function performs serial communication using the multiprocessor format, in which a multiprocessor bit is added to the transfer data, in asynchronous mode. Use of this function enables data transfer to be performed among a number of processors sharing transmission lines.

When multiprocessor communication is carried out, each receiving station is addressed by a unique ID code.

The serial communication cycle consists of two component cycles: an ID transmission cycle which specifies the receiving station , and a data transmission cycle. The multiprocessor bit is used to differentiate between the ID transmission cycle and the data transmission cycle.

The transmitting station first sends the ID of the receiving station with which it wants to perform serial communication as data with a 1 multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added.

The receiving station skips the data until data with a 1 multiprocessor bit is sent.

When data with a 1 multiprocessor bit is received, the receiving station compares that data with its own ID. The station whose ID matches then receives the data sent next. Stations whose ID does not match continue to skip the data until data with a 1 multiprocessor bit is again received. In this way, data communication is carried out among a number of processors.

Figure 13-9 shows an example of inter-processor communication using the multiprocessor format.

Data Transfer Format: There are four data transfer formats.

When the multiprocessor format is specified, the parity bit specification is invalid.

For details, see table 13-10.

Clock: See the section on asynchronous mode.

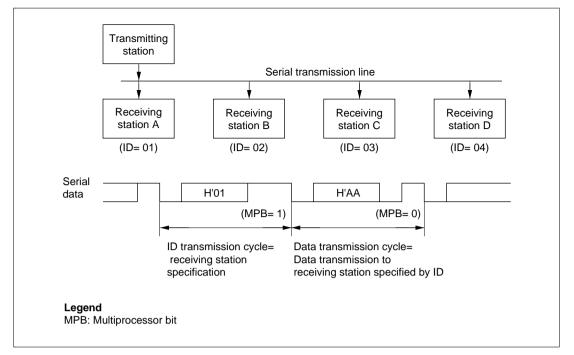


Figure 13-9 Example of Inter-Processor Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A)

Data Transfer Operations:

Multiprocessor serial data transmission
 Figure 13-10 shows a sample flowchart for multiprocessor serial data transmission.
 The following procedure should be used for multiprocessor serial data transmission.

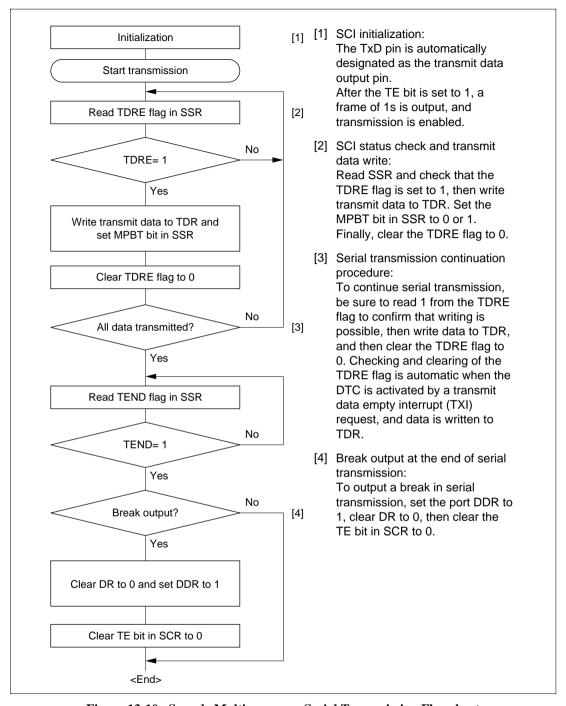


Figure 13-10 Sample Multiprocessor Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.

- [1] The SCI monitors the TDRE flag in SSR, and if is 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- [2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission.

If the TIE bit in SCR is set to 1 at this time, a transmit data empty interrupt (TXI) is generated. The serial transmit data is sent from the TxD pin in the following order.

[a] Start bit:

One 0-bit is output.

[b] Transmit data:

8-bit or 7-bit data is output in LSB-first order.

[c] Multiprocessor bit

One multiprocessor bit (MPBT value) is output.

[d] Stop bit(s):

One or two 1-bits (stop bits) are output.

[e] Mark state:

1 is output continuously until the start bit that starts the next transmission is sent.

[3] The SCI checks the TDRE flag at the timing for sending the stop bit.

If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started.

If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the mark state is entered in which 1 is output continuously. If the TEIE bit in SCR is set to 1 at this time, a transmission end interrupt (TEI) request is generated.

Figure 13-11 shows an example of SCI operation for transmission using the multiprocessor format.

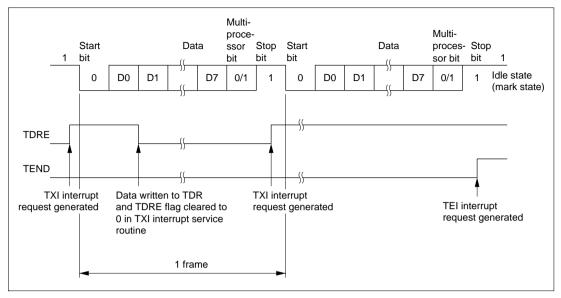


Figure 13-11 Example of SCI Operation in Transmission (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

• Multiprocessor serial data reception

Figure 13-12 shows a sample flowchart for multiprocessor serial reception.

The following procedure should be used for multiprocessor serial data reception.

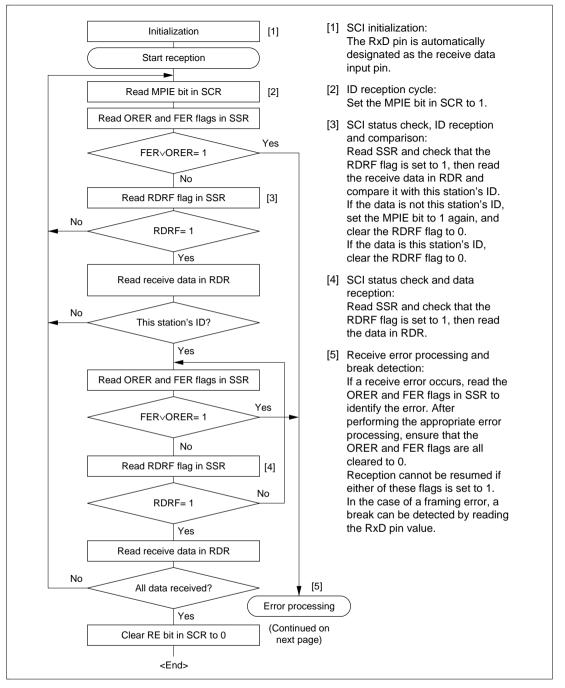


Figure 13-12 Sample Multiprocessor Serial Reception Flowchart

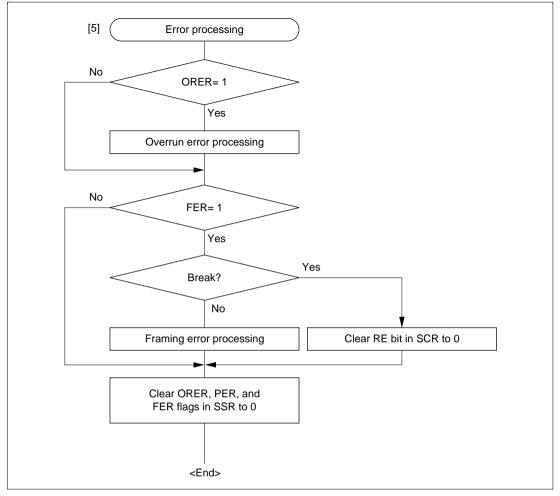


Figure 13-12 Sample Multiprocessor Serial Reception Flowchart (cont)

Figure 13-13 shows an example of SCI operation for multiprocessor format reception.

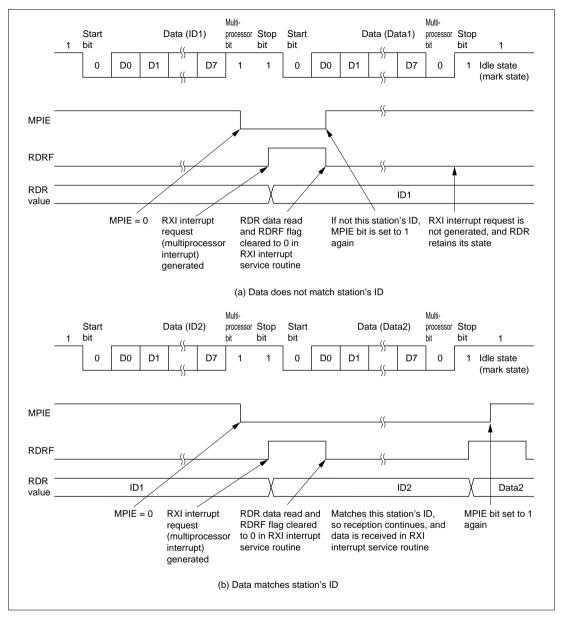


Figure 13-13 Example of SCI Operation in Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

13.3.4 Operation in Clocked Synchronous Mode

In clocked synchronous mode, data is transmitted or received in synchronization with clock pulses, making it suitable for high-speed serial communication.

Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communication by use of a common clock. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transfer.

Figure 13-14 shows the general format for clocked synchronous serial communication.

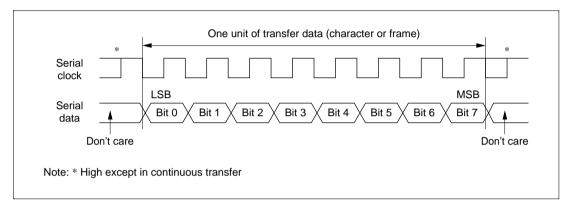


Figure 13-14 Data Format in Synchronous Communication

In clocked synchronous serial communication, data on the transmission line is output from one falling edge of the serial clock to the next. Data confirmation is guaranteed at the rising edge of the serial clock.

In clocked serial communication, one character consists of data output starting with the LSB and ending with the MSB. After the MSB is output, the transmission line holds the MSB state.

In clocked synchronous mode, the SCI receives data in synchronization with the rising edge of the serial clock.

Data Transfer Format: A fixed 8-bit data format is used.

No parity or multiprocessor bits are added.

Clock: Either an internal clock generated by the on-chip baud rate generator or an external serial clock input at the SCK pin can be selected, according to the setting of the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR. For details of SCI clock source selection, see table 13-9.

When the SCI is operated on an internal clock, the serial clock is output from the SCK pin.

Eight serial clock pulses are output in the transfer of one character, and when no transfer is performed the clock is fixed high. When only receive operations are performed, however, the serial clock is output until an overrun error occurs or the RE bit is cleared to 0. If you want to perform receive operations in units of one character, you should select an external clock as the clock source.

Data Transfer Operations:

• SCI initialization (clocked synchronous mode)

Before transmitting and receiving data, you should first clear the TE and RE bits in SCR to 0, then initialize the SCI as described below.

When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change using the following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1 and TSR is initialized. Note that clearing the RE bit to 0 does not change the contents of the RDRF, PER, FER, and ORER flags, or the contents of RDR.

Figure 13-15 shows a sample SCI initialization flowchart.

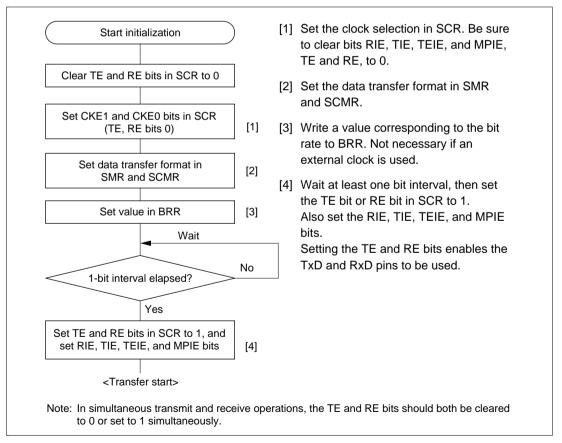


Figure 13-15 Sample SCI Initialization Flowchart

Serial data transmission (clocked synchronous mode)
 Figure 13-16 shows a sample flowchart for serial transmission.
 The following procedure should be used for serial data transmission.

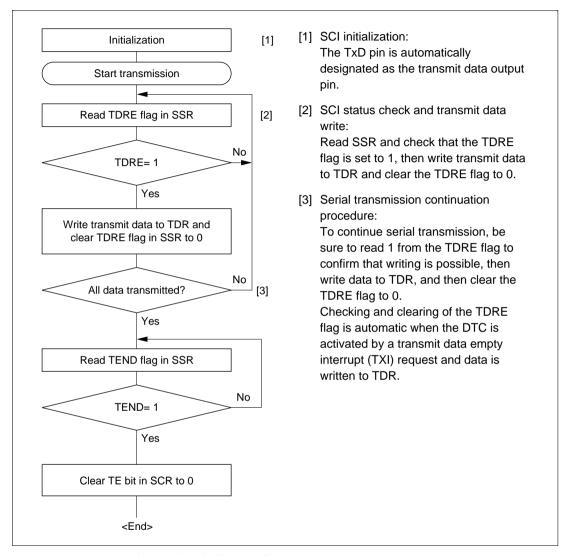


Figure 13-16 Sample Serial Transmission Flowchart

In serial transmission, the SCI operates as described below.

- [1] The SCI monitors the TDRE flag in SSR, and if is 0, recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- [2] After transferring data from TDR to TSR, the SCI sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR is set to 1 at this time, a transmit data empty interrupt (TXI) is generated.

When clock output mode has been set, the SCI outputs 8 serial clock pulses. When use of an external clock has been specified, data is output synchronized with the input clock.

The serial transmit data is sent from the TxD pin starting with the LSB (bit 0) and ending with the MSB (bit 7).

[3] The SCI checks the TDRE flag at the timing for sending the MSB (bit 7).

If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial transmission of the next frame is started.

If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, the MSB (bit 7) is sent, and the TxD pin maintains its state.

If the TEIE bit in SCR is set to 1 at this time, a TEI interrupt request is generated.

[4] After completion of serial transmission, the SCK pin is fixed.

Figure 13-17 shows an example of SCI operation in transmission.

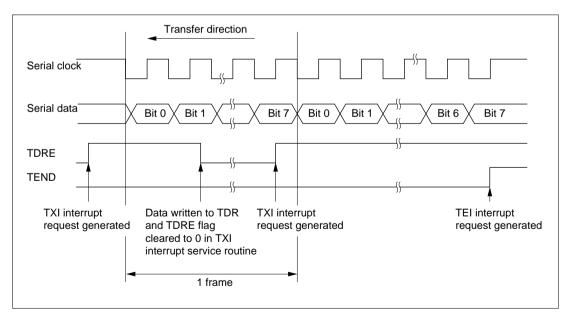


Figure 13-17 Example of SCI Operation in Transmission

• Serial data reception (clocked synchronous mode)

Figure 13-18 shows a sample flowchart for serial reception.

The following procedure should be used for serial data reception.

When changing the operating mode from asynchronous to clocked synchronous, be sure to check that the ORER, PER, and FER flags are all cleared to 0.

The RDRF flag will not be set if the FER or PER flag is set to 1, and neither transmit nor receive operations will be possible.

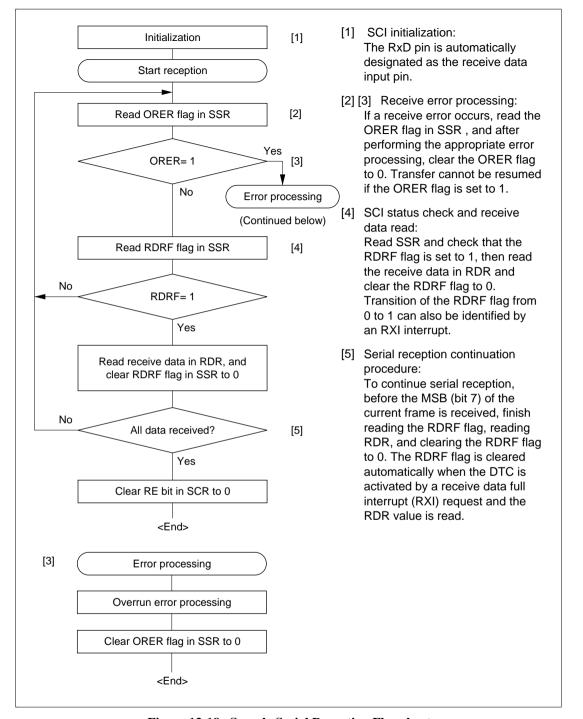


Figure 13-18 Sample Serial Reception Flowchart

In serial reception, the SCI operates as described below.

- [1] The SCI performs internal initialization in synchronization with serial clock input or output.
- [2] The received data is stored in RSR in LSB-to-MSB order.

After reception, the SCI checks whether the RDRF flag is 0 and the receive data can be transferred from RSR to RDR.

If this check is passed, the RDRF flag is set to 1, and the receive data is stored in RDR. If a receive error is detected in the error check, the operation is as shown in table 13-11.

Neither transmit nor receive operations can be performed subsequently when a receive error has been found in the error check.

[3] If the RIE bit in SCR is set to 1 when the RDRF flag changes to 1, a receive data full interrupt (RXI) request is generated.

Also, if the RIE bit in SCR is set to 1 when the ORER flag changes to 1, a receive error interrupt (ERI) request is generated.

Figure 13-19 shows an example of SCI operation in reception.

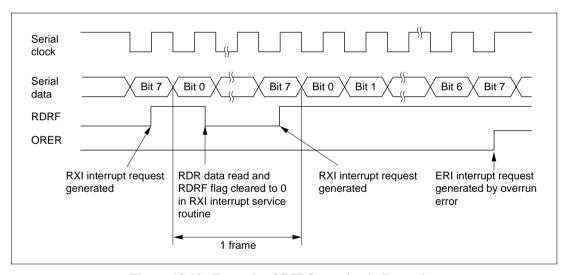


Figure 13-19 Example of SCI Operation in Reception

Simultaneous serial data transmission and reception (clocked synchronous mode)
 Figure 13-20 shows a sample flowchart for simultaneous serial transmit and receive operations.
 The following procedure should be used for simultaneous serial data transmit and receive operations.



Figure 13-20 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations

13.4 SCI Interrupts

The SCI has four interrupt sources: the transmit-end interrupt (TEI) request, receive-error interrupt (ERI) request, receive-data-full interrupt (RXI) request, and transmit-data-empty interrupt (TXI) request. Table 13-12 shows the interrupt sources and their relative priorities. Individual interrupt sources can be enabled or disabled with the TIE, RIE, and TEIE bits in the SCR. Each kind of interrupt request is sent to the interrupt controller independently.

When the TDRE flag in SSR is set to 1, a TXI interrupt request is generated. When the TEND flag in SSR is set to 1, a TEI interrupt request is generated. A TXI interrupt can activate the DTC to perform data transfer. The TDRE flag is cleared to 0 automatically when data transfer is performed by the DTC. The DTC cannot be activated by a TEI interrupt request.

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated. When the ORER, PER, or FER flag in SSR is set to 1, an ERI interrupt request is generated. An RXI interrupt can activate the DTC to perform data transfer. The RDRF flag is cleared to 0 automatically when data transfer is performed by the DTC. The DTC cannot be activated by an ERI interrupt request.

Table 13-12 SCI Interrupt Sources

Channel	Interrupt Source	Description	DTC Activation	Priority*
0	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	High •
	RXI	Interrupt due to receive data full state (RDRF)	Possible	
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	
	TEI	Interrupt due to transmission end (TEND)	Not possible	
1	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	-
	RXI	Interrupt due to receive data full state (RDRF)	Possible	
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	
	TEI	Interrupt due to transmission end (TEND)	Not possible	
2	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	-
	RXI	Interrupt due to receive data full state (RDRF)	Possible	
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	-
	TEI	Interrupt due to transmission end (TEND)	Not possible	
3	ERI	Interrupt due to receive error (ORER, FER, or PER)	Not possible	-
	RXI	Interrupt due to receive data full state (RDRF)	Possible	-
	TXI	Interrupt due to transmit data empty state (TDRE)	Possible	
	TEI	Interrupt due to transmittion end (TEND)	Not possible	Low

Note: * This table shows the initial state immediately after a reset. Relative priorities among channels can be changed by means of the interrupt controller.

A TEI interrupt is requested when the TEND flag is set to 1 while the TEIE bit is set to 1. The TEND flag is cleared at the same time as the TDRE flag. Consequently, if a TEI interrupt and a TXI interrupt are requested simultaneously, the TXI interrupt may have priority for acceptance, with the result that the TDRE and TEND flags are cleared. Note that the TEI interrupt will not be accepted in this case.

13.5 Usage Notes

The following points should be noted when using the SCI.

Relation between Writes to TDR and the TDRE Flag

The TDRE flag in SSR is a status flag that indicates that transmit data has been transferred from TDR to TSR. When the SCI transfers data from TDR to TSR, the TDRE flag is set to 1.

Data can be written to TDR regardless of the state of the TDRE flag. However, if new data is written to TDR when the TDRE flag is cleared to 0, the data stored in TDR will be lost since it has not yet been transferred to TSR. It is therefore essential to check that the TDRE flag is set to 1 before writing transmit data to TDR.

Operation when Multiple Receive Errors Occur Simultaneously

If a number of receive errors occur at the same time, the state of the status flags in SSR is as shown in table 13-13. If there is an overrun error, data is not transferred from RSR to RDR, and the receive data is lost.

Table 13-13 State of SSR Status Flags and Transfer of Receive Data

	SSR St	atus Fla	gs	Receive Data Transfer	Receive Error Status	
RDRF	ORER	FER	PER	RSR to RDR		
1	1	0	0	Х	Overrun error	
0	0	1	0	0	Framing error	
0	0	0	1	0	Parity error	
1	1	1	0	X	Overrun error + framing error	
1	1	0	1	Х	Overrun error + parity error	
0	0	1	1	0	Framing error + parity error	
1	1	1	1	X	Overrun error + framing error + parity error	

O: Receive data is transferred from RSR to RDR.

X: Receive data is not transferred from RSR to RDR.

Break Detection and Processing (Asynchronous Mode Only): When framing error (FER) detection is performed, a break can be detected by reading the RxD pin value directly. In a break, the input from the RxD pin becomes all 0s, and so the FER flag is set, and the parity error flag (PER) may also be set.

Note that, since the SCI continues the receive operation after receiving a break, even if the FER flag is cleared to 0, it will be set to 1 again.

Sending a Break (**Asynchronous Mode Only**): The TxD pin has a dual function as an I/O port whose direction (input or output) is determined by DR and DDR. This can be used to send a break.

Between serial transmission initialization and setting of the TE bit to 1, the mark state is replaced by the value of DR (the pin does not function as the TxD pin until the TE bit is set to 1). Consequently, DDR and DR for the port corresponding to the TxD pin are first set to 1.

To send a break during serial transmission, first clear DR to 0, then clear the TE bit to 0.

When the TE bit is cleared to 0, the transmitter is initialized regardless of the current transmission state, the TxD pin becomes an I/O port, and 0 is output from the TxD pin.

Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only):

Transmission cannot be started when a receive error flag (ORER, PER, or FER) is set to 1, even if the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission.

Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared to 0.

Receive Data Sampling Timing and Reception Margin in Asynchronous Mode:

In asynchronous mode, the SCI operates on a basic clock with a frequency of 16 times the transfer rate.

In reception, the SCI samples the falling edge of the start bit using the basic clock, and performs internal synchronization. Receive data is latched internally at the rising edge of the 8th pulse of the basic clock. This is illustrated in figure 13-21.

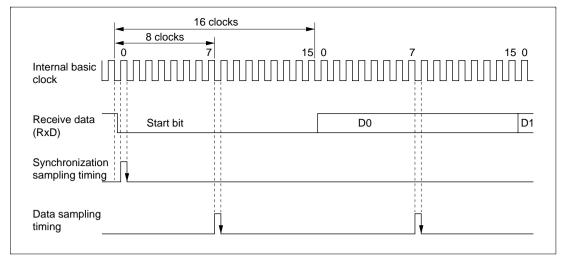


Figure 13-21 Receive Data Sampling Timing in Asynchronous Mode

Thus the reception margin in asynchronous mode is given by formula (1) below.

$$M = | (0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F) | \times 100\%$$

... Formula (1)

Where M: Reception margin (%)

N: Ratio of bit rate to clock (N = 16)

D : Clock duty (D = 0 to 1.0) L : Frame length (L = 9 to 12)

F : Absolute value of clock rate deviation

Assuming values of F=0 and D=0.5 in formula (1), a reception margin of 46.875% is given by formula (2) below.

When D = 0.5 and F = 0,

$$M = (0.5 - \frac{1}{2 \times 16}) \times 100\%$$

However, this is only the computed value, and a margin of 20% to 30% should be allowed in system design.

Restrictions on Use of DTC

- When an external clock source is used as the serial clock, the transmit clock should not be input until at least 5 ø clock cycles after TDR is updated by the DTC. Misoperation may occur if the transmit clock is input within 4 ø clocks after TDR is updated. (Figure 13-22)
- When RDR is read by the DTC, be sure to set the activation source to the relevant SCI reception end interrupt (RXI).

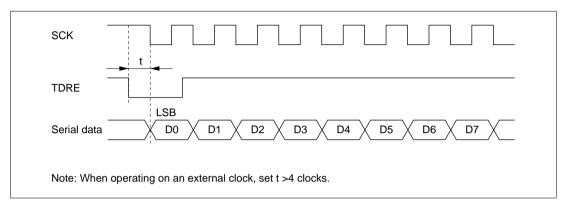


Figure 13-22 Example of Clocked Synchronous Transmission by DTC

Operation in Case of Mode Transition

Transmission

Operation should be stopped (by clearing TE, TIE, and TEIE to 0) before making a module stop mode, software standby mode, watch mode, subactive mode, or subsleep mode transition. TSR, TDR, and SSR are reset. The output pin states in module stop mode, software standby mode, watch mode, subactive mode, or subsleep mode depend on the port settings, and becomes high-level output after the relevant mode is cleared. If a transition is made during transmission, the data being transmitted will be undefined. When transmitting without changing the transmit mode after the relevant mode is cleared, transmission can be started by setting TE to 1 again, and performing the following sequence: SSR read \rightarrow TDR write \rightarrow TDRE clearance. To transmit with a different transmit mode after clearing the relevant mode, the procedure must be started again from initialization. Figure 13-23 shows a sample flowchart for mode transition during transmission. Port pin states are shown in figures 13-24 and 13-25. Operation should also be stopped (by clearing TE, TIE, and TEIE to 0) before making a transition from transmission by DTC transfer to module stop mode, software standby mode, watch mode, subactive mode, or subsleep mode transition. To perform transmission with the DTC after the relevant mode is cleared, setting TE and TIE to 1 will set the TXI flag and start DTC transmission.

Reception

Receive operation should be stopped (by clearing RE to 0) before making a module stop mode, software standby mode, watch mode, subactive mode, or subsleep mode transition. RSR, RDR, and SSR are reset. If a transition is made without stopping operation, the data being received will be invalid.

To continue receiving without changing the reception mode after the relevant mode is cleared, set RE to 1 before starting reception. To receive with a different receive mode, the procedure must be started again from initialization.

Figure 13-26 shows a sample flowchart for mode transition during reception.

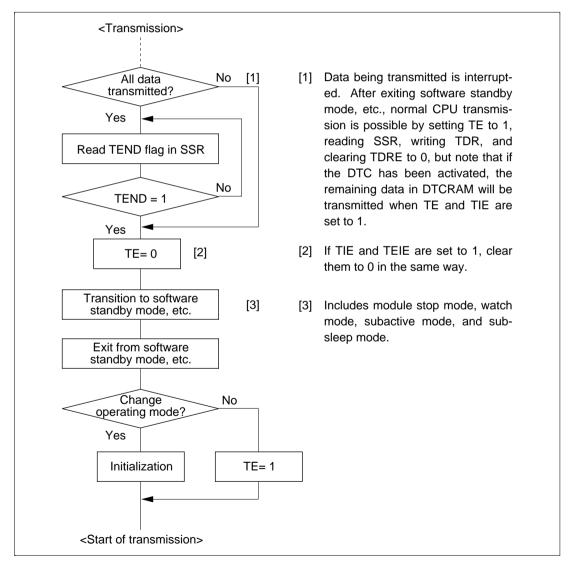


Figure 13-23 Sample Flowchart for Mode Transition during Transmission

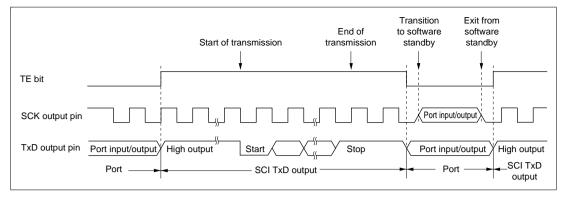


Figure 13-24 Asynchronous Transmission Using Internal Clock

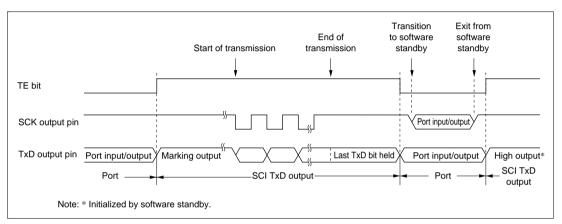


Figure 13-25 Synchronous Transmission Using Internal Clock

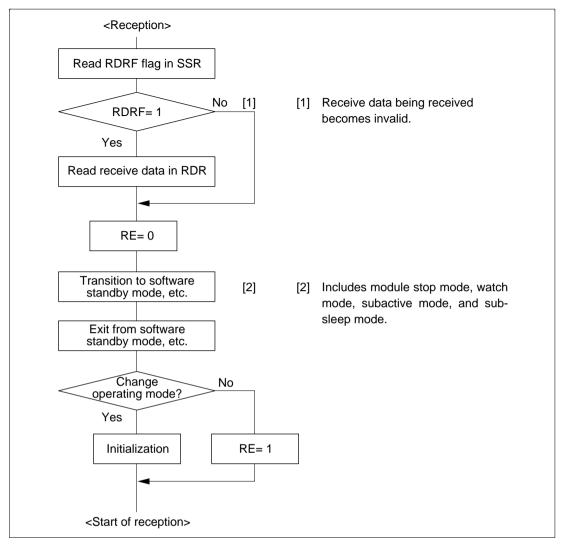


Figure 13-26 Sample Flowchart for Mode Transition during Reception

Switching from SCK Pin Function to Port Pin Function:

- Problem in Operation: When switching the SCK pin function to the output port function (high-level output) by making the following settings while DDR = 1, DR = 1, C/A = 1, CKE1 = 0, CKE0 = 0, and TE = 1 (synchronous mode), low-level output occurs for one half-cycle.
- 1. End of serial data transmission
- 2. TE bit = 0
- 3. C/\overline{A} bit = 0 ... switchover to port output
- 4. Occurrence of low-level output (see figure 13-27)

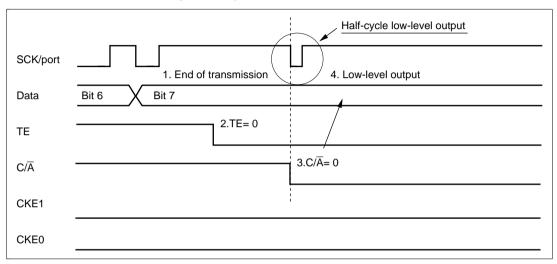


Figure 13-27 Operation when Switching from SCK Pin Function to Port Pin Function

• Sample Procedure for Avoiding Low-Level Output: As this sample procedure temporarily places the SCK pin in the input state, the SCK/port pin should be pulled up beforehand with an external circuit.

With DDR = 1, DR = 1, C/\overline{A} = 1, CKE1 = 0, CKE0 = 0, and TE = 1, make the following settings in the order shown.

- 1. End of serial data transmission
- 2. TE bit = 0
- 3. CKE1 bit = 1
- 4. C/\overline{A} bit = 0 ... switchover to port output
- 5. CKE1 bit = 0

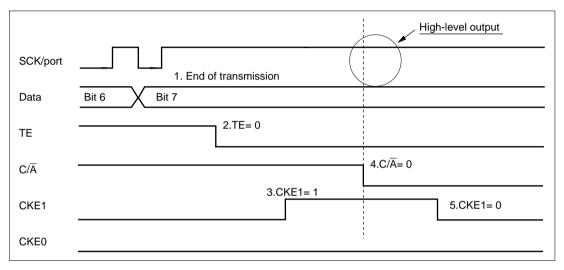


Figure 13-28 Operation when Switching from SCK Pin Function to Port Pin Function (Example of Preventing Low-Level Output)

Section 14 Smart Card Interface

14.1 Overview

SCI supports an IC card (Smart Card) interface conforming to ISO/IEC 7816-3 (Identification Card) as a serial communication interface extension function.

Switching between the normal serial communication interface and the Smart Card interface is carried out by means of a register setting.

14.1.1 Features

Features of the Smart Card interface supported by the H8S/2238 Series are as follows.

- Asynchronous mode
 - Data length: 8 bits
 - Parity bit generation and checking
 - Transmission of error signal (parity error) in receive mode
 - Error signal detection and automatic data retransmission in transmit mode
 - Direct convention and inverse convention both supported
- On-chip baud rate generator allows any bit rate to be selected
- Three interrupt sources
 - Three interrupt sources (transmit data empty, receive data full, and transmit/receive error) that can issue requests independently
 - The transmit data empty interrupt and receive data full interrupt can activate the data transfer controller (DTC) to execute data transfer

14.1.2 Block Diagram

Figure 14-1 shows a block diagram of the Smart Card interface.

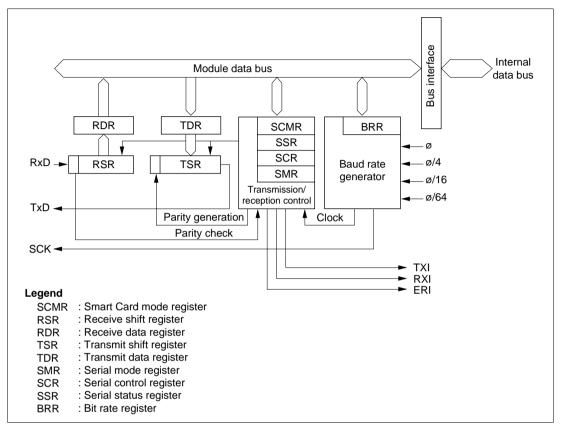


Figure 14-1 Block Diagram of Smart Card Interface

14.1.3 Pin Configuration

Table 14-1 shows the Smart Card interface pin configuration.

Table 14-1 Smart Card Interface Pins

Channel	Pin Name	Symbol	I/O	Function
0	Serial clock pin 0	SCK0	I/O	SCI0 clock input/output
	Receive data pin 0	RxD0	Input	SCI0 receive data input
	Transmit data pin 0	TxD0	Output	SCI0 transmit data output
1	Serial clock pin 1	SCK1	I/O	SCI1 clock input/output
	Receive data pin 1	RxD1	Input	SCI1 receive data input
	Transmit data pin 1	TxD1	Output	SCI1 transmit data output
2	Serial clock pin 2	SCK2	I/O	SCI2 clock input/output
	Receive data pin 2	RxD2	Input	SCI2 receive data input
	Transmit data pin 2	TxD2	Output	SCI2 transmit data output
3	Serial clock pin 3	SCK3	I/O	SCI3 clock input/output
	Receive data pin 3	RxD3	Input	SCI3 receive data input
	Transmit data pin 3	TxD3	Output	SCI3 transmit data output

14.1.4 Register Configuration

Table 14-2 shows the registers used by the Smart Card interface. Details of SMR, BRR, SCR, TDR, RDR, and MSTPCR are the same as for the normal SCI function: see the register descriptions in section 13, Serial Communication Interface.

Table 14-2 Smart Card Interface Registers

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
0	Serial mode register 0	SMR0	R/W	H'00	H'FF78*3
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79* ³
	Serial control register 0	SCR0	R/W	H'00	H'FF7A* ³
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B*3
	Serial status register 0	SSR0	R/(W)*2	H'84	H'FF7C*3
	Receive data register 0	RDR0	R	H'00	H'FF7D*3
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E*3
1	Serial mode register 1	SMR1	R/W	H'00	H'FF80*3
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81* ³
	Serial control register 1	SCR1	R/W	H'00	H'FF82* ³
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83* ³
	Serial status register 1	SSR1	R/(W)*2	H'84	H'FF84* ³
	Receive data register 1	RDR1	R	H'00	H'FF85* ³
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86* ³
2	Serial mode register 2	SMR2	R/W	H'00	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	H'00	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	R/(W)*2	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'F2	H'FF8E

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
3	Serial mode register 3	SMR3	R/W	H'00	H'FDD0
	Bit rate register 3	BRR3	R/W	H'FF	H'FDD1
	Serial control register 3	SCR3	R/W	H'00	H'FDD2
	Transmit data register 3	TDR3	R/W	H'FF	H'FDD3
	Serial status register 3	SSR3	R/(W)*2	H'84	H'FDD4
	Receive data register 3	RDR3	R	H'00	H'FDD5
	Smart card mode register 3	SCMR3	R/W	H'F2	H'FDD6
Common	Module stop control register B	MSTPCRB	R/W	H'FF	H'FDE9
	Module stop control register C	MSTPCRC	R/W	H'FF	H'FDEA

Notes: *1 Lower 16 bits of the address.

^{*2} Can only be written with 0 for flag clearing.

^{*3} Channel 0/channel 1 registers are allocated to the same addresses as IIC0/IIC1 registers. The IICE bit in serial control register X (SCRX) selects the respective registers.

14.2 Register Descriptions

Registers added with the Smart Card interface and bits for which the function changes are described here.

14.2.1 Smart Card Mode Register (SCMR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	SDIR	SINV	_	SMIF
Initial value	:	1	1	1	1	0	0	1	0
R/W	:	_	_	_	_	R/W	R/W	_	R/W

SCMR is an 8-bit readable/writable register that selects the Smart Card interface function.

SCMR is initialized to HF2 by a reset and in hardware standby mode. It retains its previous state in module stop mode, software standby mode, watch mode, subactive mode, and subsleep mode.

Bits 7 to 4—Reserved: These bits cannot be modified and are always read as 1.

Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.

Bit 3

SDIR	Description	
0	TDR contents are transmitted LSB-first	(Initial value)
	Receive data is stored in RDR LSB-first	
1	TDR contents are transmitted MSB-first	
	Receive data is stored in RDR MSB-first	

Bit 2—Smart Card Data Invert (SINV): Specifies inversion of the data logic level. This function is used together with the SDIR bit for communication with an inverse convention card. The SINV bit does not affect the logic level of the parity bit. For parity-related setting procedures, see section 14.3.4, Register Settings.

Bit 2

SINV	Description	
0	TDR contents are transmitted as they are	(Initial value)
	Receive data is stored as it is in RDR	
1	TDR contents are inverted before being transmitted	
	Receive data is stored in inverted form in RDR	

Bit 1—Reserved: This bit cannot be modified and is always read as 1.

Bit 0—Smart Card Interface Mode Select (SMIF): Enables or disables the Smart Card interface function.

Bit 0

SMIF	Description	
0	Smart Card interface function is disabled	(Initial value)
1	Smart Card interface function is enabled	

14.2.2 Serial Status Register (SSR)

Bit	:	7	6	5	4	3	2	1	0
		TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT
Initial value	:	1	0	0	0	0	1	0	0
R/W	:	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W

Note: * Only 0 can be written, to clear these flags.

Bit 4 of SSR has a different function in Smart Card interface mode. Coupled with this, the setting conditions for bit 2, TEND, are also different.

Bits 7 to 5—Operate in the same way as for the normal SCI. For details, see section 13.2.7, Serial Status Register (SSR).

Bit 4—Error Signal Status (ERS): In Smart Card interface mode, bit 4 indicates the status of the error signal sent back from the receiving end in transmission. Framing errors are not detected in Smart Card interface mode.

Bit 4

ERS	 Description	
0	Normal reception, with no error signal	
	[Clearing conditions]	(Initial value)
	 Upon reset, and in standby mode or module stop mode 	
	 When 0 is written to ERS after reading ERS = 1 	
1	Error signal sent from receiver indicating detection of parity error	
	[Setting condition]	
	When the low level of the error signal is sampled	

Note: Clearing the TE bit in SCR to 0 does not affect the ERS flag, which retains its previous state.

Bits 3 to 0—Operate in the same way as for the normal SCI. For details, see section 13.2.7, Serial Status Register (SSR).

However, the setting conditions for the TEND bit, are as shown below.

Bit 2	
TEND	Description
0	Transmission is in progress
	[Clearing conditions] (Initial value)
	 When 0 is written to TDRE after reading TDRE = 1
	 When the DTC is activated by a TXI interrupt and write data to TDR
1	Transmission has ended
	[Setting conditions]
	 Upon reset, and in standby mode or module stop mode
	 When the TE bit in SCR is 0 and the ERS bit is also 0
	• When TDRE = 1 and ERS = 0 (normal transmission) 2.5 etu after transmission of a
	1-byte serial character when GM = 0 and BLK = 0
	• When TDRE = 1 and ERS = 0 (normal transmission) 1.0 etu after transmission of a
	1-byte serial character when GM = 0 and BLK = 1

GM = 1 and BLK = 0
 When TDRE = 1, 1.0 etu after transmission of a 1-byte serial character when

• When TDRE = 1, 1.5 etu after transmission of a 1-byte serial character when

 When TDRE = 1, 1.0 etu after transmission of a 1-byte serial character when GM = 1 and BLK = 1

Note: etu: Elementary Time Unit (time for transfer of 1 bit)

14.2.3 Serial Mode Register (SMR)

Bit	:	7	6	5	4	3	2	1	0
		GM	BLK	PE	O/Ē	BCP1	BCP0	CKS1	CKS0
Initial value	:	0	0	0	0	0	0	0	0
Set value*	:	GM	BLK	1	O/Ē	BCP1	BCP0	CKS1	CKS0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: *When the smart card interface is used, be sure to make the 1 setting shown for bit 5.

The function of bits 7, 6, 3, and 2 of SMR changes in Smart Card interface mode.

Bit 7—GSM Mode (GM): Sets the smart card interface function to GSM mode.

This bit is cleared to 0 when the normal smart card interface is used. In GSM mode, this bit is set to 1, the timing of setting of the TEND flag that indicates transmission completion is advanced and clock output control mode addition is performed. The contents of the clock output control mode addition are specified by bits 1 and 0 of the serial control register (SCR).

Bit 7	
GM	Description
0	Normal smart card interface mode operation (Initial value)
	 TEND flag generation 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit
	Clock output ON/OFF control only
1	GSM mode smart card interface mode operation
	 TEND flag generation 11.0 etu after beginning of start bit
	 High/low fixing control possible in addition to clock output ON/OFF control (set by SCR)

Note: etu: Elementary time unit (time for transfer of 1 bit)

Bit 6—Block Transfer Mode (BLK): Selects block transfer mode.

Bit 6

BLK Description

Normal Smart Card interface mode operation

Error signal transmission/detection and automatic data retransmission performed

TXI interrupt generated by TEND flag

TEND flag set 12.5 etu after start of transmission (11.0 etu in GSM mode)

Block transfer mode operation

Error signal transmission/detection and automatic data retransmission not performed

TXI interrupt generated by TDRE flag

TEND flag set 11.5 etu after start of transmission (11.0 etu in GSM mode)

Bits 3 and 2—Basic Clock Pulse 1 and 2 (BCP1, BCP0): These bits specify the number of basic clock periods in a 1-bit transfer interval on the Smart Card interface.

Bit 3	Bit 2		
BCP1	ВСР0	 Description	
0	0	32 clock periods	(Initial value)
	1	64 clock periods	
1	0	372 clock periods	
	1	256 clock periods	

Bits 5, 4, 1, and 0: Operate in the same way as for the normal SCI. For details, see section 13.2.5, serial mode register (SMR).

14.2.4 Serial Control Register (SCR)

Bit	:	7	6	5	4	3	2	1	0
		TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

In smart card interface mode, the function of bits 1 and 0 of SCR changes when bit 7 of the serial mode register (SMR) is set to 1.

Bits 7 to 2—Operate in the same way as for the normal SCI.

For details, see section 13.2.6, Serial Control Register (SCR).

Bits 1 and 0—Clock Enable 1 and 0 (CKE1, CKE0): These bits are used to select the SCI clock source and enable or disable clock output from the SCK pin.

In smart card interface mode, in addition to the normal switching between clock output enabling and disabling, the clock output can be specified as to be fixed high or low.

SCMR	SMR	SC	R Setting					
SMIF	C/A, GM	CKE1	CKE0	SCK Pin Function				
0	See the SC	CI .						
1	0	0	0	Operates as port I/O pin				
1	0	0	1	Outputs clock as SCK output pin				
1	1	0	0	Operates as SCK output pin, with output fixed low				
1	1	0	1	Outputs clock as SCK output pin				
1	1	1	0	Operates as SCK output pin, with output fixed high				
1	1	1	1	Outputs clock as SCK output pin				

14.3 Operation

14.3.1 Overview

The main functions of the Smart Card interface are as follows.

- One frame consists of 8-bit data plus a parity bit.
- In transmission, a guard time of at least 2 etu (elementary time units: the time for transfer of one bit), or 1 etu in block transfer mode, is provided between the end of the parity bit and the start of the next frame.
- If a parity error is detected during reception, a low error signal level is output for a1 etu period 10.5 etu after the start bit (except in block transfer mode).
- If the error signal is sampled during transmission, the same data is transmitted automatically after the elapse of 2 etu or longer. (except in block transfer mode)
- Only asynchronous communication is supported; there is no clocked synchronous communication function.

14.3.2 Pin Connections

Figure 14-2 shows a schematic diagram of Smart Card interface related pin connections.

In communication with an IC card, since both transmission and reception are carried out on a single data transmission line, the TxD pin and RxD pin should be connected with the LSI pin. The data transmission line should be pulled up to the $V_{\rm CC}$ power supply with a resistor.

When the clock generated on the Smart Card interface is used by an IC card, the SCK pin output is input to the CLK pin of the IC card. No connection is needed if the IC card uses an internal clock.

LSI port output is used as the reset signal.

Other pins must normally be connected to the power supply or ground.

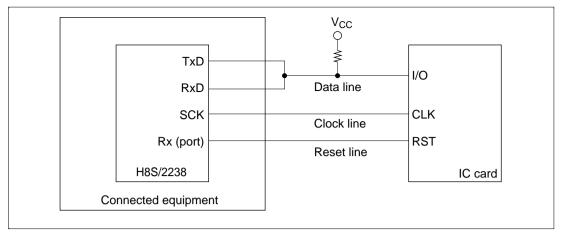


Figure 14-2 Schematic Diagram of Smart Card Interface Pin Connections

Note: If an IC card is not connected, and the TE and RE bits are both set to 1, closed transmission/reception is possible, enabling self-diagnosis to be carried out.

14.3.3 Data Format

(1) Normal Transfer Mode

Figure 14-3 shows the normal Smart Card interface data format. In reception in this mode, a parity check is carried out on each frame, and if an error is detected an error signal is sent back to the transmitting end, and retransmission of the data is requested. If an error signal is sampled during transmission, the same data is retransmitted.

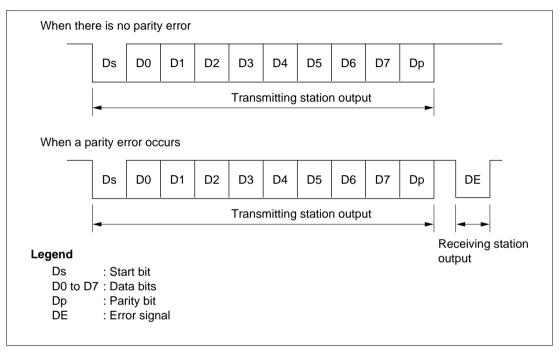


Figure 14-3 Normal Smart Card Interface Data Format

The operation sequence is as follows.

- [1] When the data line is not in use it is in the high-impedance state, and is fixed high with a pull-up resistor.
- [2] The transmitting station starts transfer of one frame of data. The data frame starts with a start bit (Ds, low-level), followed by 8 data bits (D0 to D7) and a parity bit (Dp).
- [3] With the Smart Card interface, the data line then returns to the high-impedance state. The data line is pulled high with a pull-up resistor.
- [4] The receiving station carries out a parity check.
 - If there is no parity error and the data is received normally, the receiving station waits for reception of the next data.
 - If a parity error occurs, however, the receiving station outputs an error signal (DE, low-level) to request retransmission of the data. After outputting the error signal for the prescribed length of time, the receiving station places the signal line in the high-impedance state again. The signal line is pulled high again by a pull-up resistor.
- [5] If the transmitting station does not receive an error signal, it proceeds to transmit the next data frame.
 - If it does receive an error signal, however, it returns to step [2] and retransmits the erroneous data.

(2) Block Transfer Mode

The operation sequence in block transfer mode is as follows.

- [1] When the data line in not in use it is in the high-impedance state, and is fixed high with a pull-up resistor.
- [2] The transmitting station starts transfer of one frame of data. The data frame starts with a start bit (Ds, low-level), followed by 8 data bits (D0 to D7) and a parity bit (Dp).
- [3] With the Smart Card interface, the data line then returns to the high-impedance state. The data line is pulled high with a pull-up resistor.
- [4] After reception, a parity error check is carried out, but an error signal is not output even if an error has occurred. When an error occurs reception cannot be continued, so the error flag should be cleared to 0 before the parity bit of the next frame is received.
- [5] The transmitting station proceeds to transmit the next data frame.

14.3.4 Register Settings

Table 14-3 shows a bit map of the registers used by the smart card interface.

Bits indicated as 0 or 1 must be set to the value shown. The setting of other bits is described below

Table 14-3 Smart Card Interface Register Settings

	Bit								
Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SMR	GM	BLK	1	O/E	BCP1	BCP0	CKS1	CKS0	
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0	
SCR	TIE	RIE	TE	RE	0	0	CKE1*	CKE0	
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	
SSR	TDRE	RDRF	ORER	ERS	PER	TEND	0	0	
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0	
SCMR					SDIR	SINV		SMIF	

^{-:} Unused bit.

SMR Setting: The GM bit is cleared to 0 in normal smart card interface mode, and set to 1 in GSM mode. The O/\overline{E} bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

Bits CKS1 and CKS0 select the clock source of the on-chip baud rate generator. Bits BCP1 and BCP0 select the number of basic clock periods in a 1-bit transfer interval. For details, see section 14.3.5, Clock.

The BLK bit is cleared to 0 in normal smart card interface mode, and set to 1 in block transfer mode.

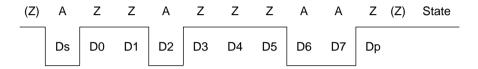
BRR Setting: BRR is used to set the bit rate. See section 14.3.5, Clock, for the method of calculating the value to be set.

SCR Setting: The function of the TIE, RIE, TE, and RE bits is the same as for the normal SCI. For details, see section 13, Serial Communication Interface.

Bits CKE1 and CKE0 specify the clock output. When the GM bit in SMR is cleared to 0, set these bits to B'00 if a clock is not to be output, or to B'01 if a clock is to be output. When the GM bit in SMR is set to 1, clock output is performed. The clock output can also be fixed high or low.

^{*:} The CKE1 bit must be cleared to 0 when the GM bit in SMR is cleared to 0.

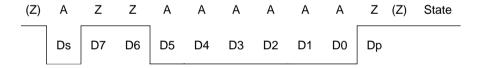
Smart Card Mode Register (SCMR) Setting:


The SDIR bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SINV bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SMIF bit is set to 1 in the case of the Smart Card interface.

Examples of register settings and the waveform of the start character are shown below for the two types of IC card (direct convention and inverse convention).


• Direct convention (SDIR = SINV = $O/\overline{E} = 0$)

With the direct convention type, the logic 1 level corresponds to state Z and the logic 0 level to state A, and transfer is performed in LSB-first order. The start character data above is H'3B.

The parity bit is 1 since even parity is stipulated for the Smart Card.

• Inverse convention (SDIR = SINV = $O/\overline{E} = 1$)

With the inverse convention type, the logic 1 level corresponds to state A and the logic 0 level to state Z, and transfer is performed in MSB-first order. The start character data above is H'3F.

The parity bit is 0, corresponding to state Z, since even parity is stipulated for the Smart Card.

With the H8S/2238 Series, inversion specified by the SINV bit applies only to the data bits, D7 to D0. For parity bit inversion, the O/\overline{E} bit in SMR is set to odd parity mode (the same applies to both transmission and reception).

14.3.5 Clock

Only an internal clock generated by the on-chip baud rate generator can be used as the transmit/receive clock for the smart card interface. The bit rate is set with BRR and the CKS1, CKS0, BCP1 and BCP0 bits in SMR. The formula for calculating the bit rate is as shown below. Table 14-5 shows some sample bit rates.

If clock output is selected by setting CKE0 to 1, a clock is output from the SCK pin. The clock frequency is determined by the bit rate and the setting of bits BCP1 and BCP0.

$$B = \frac{\emptyset}{S \times 2^{2n+1} \times (N+1)} \times 10^{6}$$

Where: $N = \text{Value set in BRR } (0 \le N \le 255)$

B = Bit rate (bit/s)

 ϕ = Operating frequency (MHz)

n = See table 14-4

S = Number of internal clocks in 1-bit period, set by BCP1 and BCP0

Table 14-4 Correspondence between n and CKS1, CKS0

n	CKS1	CKS0
0	0	0
1	_	1
2	1	0
3	-	1

Table 14-5 Examples of Bit Rate B (bit/s) for Various BRR Settings (When n = 0 and S = 372)

3136

5.00 7.00 7.1424 10.00 10.714 13.00 Ν 0 6720 9409 9600 13441 14400 17473 1 3360 4704 4800 6720 7200 8737

3200

ø (MHz)

4480

4800

5824

Note: Bit rates are rounded to the nearest whole number.

2240

2

The method of calculating the value to be set in the bit rate register (BRR) from the operating frequency and bit rate, on the other hand, is shown below. N is an integer, $0 \le N \le 255$, and the smaller error is specified.

$$N = \frac{\emptyset}{S \times 2^{2n+1} \times B} \times 10^6 - 1$$

Table 14-6 Examples of BRR Settings for Bit Rate B (bit/s) (When n = 0 and S = 372)

						Ø	(MHz)				
		5.00		7.00		7.1424		10.00		10.7136		13.00
bit/s	N	Error	N	Error	N	Error	N	Error	N	Error	N	Error
6720	0	0.00	1	30	1	28.75	1	0.01	1	7.14	2	13.33
9600					0	0.00	1	30	1	25	1	8.99

Note: A blank means no setting is available.

Table 14-7 Maximum Bit Rate at Various Frequencies (Smart Card Interface Mode) (when S = 372)

ø (MHz)	Maximum Bit Rate (bit/s)	N	n	
5.00	6720	0	0	
7.00	9409	0	0	
7.1424	9600	0	0	
10.00	13441	0	0	
10.7136	14400	0	0	
13.00	17473	0	0	

The bit rate error is given by the following formula:

Error (%) = (
$$\frac{\emptyset}{S \times 2^{2n+1} \times B \times (N+1)} \times 10^6 - 1) \times 100$$

14.3.6 Data Transfer Operations

Initialization: Before transmitting and receiving data, initialize the SCI as described below. Initialization is also necessary when switching from transmit mode to receive mode, or vice versa.

- [1] Clear the TE and RE bits in SCR to 0.
- [2] Clear the error flags ERS, PER, and ORER in SSR to 0.
- [3] Set the GM, BLK, O/\overline{E} , BCP1, BCP0, CKS1, CKS0 bits in SMR. Set the PE bit to 1.
- [4] Set the SMIF, SDIR, and SINV bits in SCMR.

 When the SMIF bit is set to 1, the TxD and RxD pins are both switched from ports to SCI pins, and are placed in the high-impedance state.
- [5] Set the value corresponding to the bit rate in BRR.
- [6] Set the CKE0 and CKE1 bits in SCR. Clear the TIE, RIE, TE, RE, MPIE, TEIE and CKE1 bits to 0.
 - If the CKE0 bit is set to 1, the clock is output from the SCK pin.
- [7] Wait at least one bit interval, then set the TIE, RIE, TE, and RE bits in SCR. Do not set the TE bit and RE bit at the same time, except for self-diagnosis.

Serial Data Transmission (except in block transfer mode): As data transmission in smart card mode involves error signal sampling and retransmission processing, the processing procedure is different from that for the normal SCI. Figure 14-4 shows a flowchart for transmitting, and figure 14-5 shows the relation between a transmit operation and the internal registers.

- [1] Perform Smart Card interface mode initialization as described above in Initialization.
- [2] Check that the ERS error flag in SSR is cleared to 0.
- [3] Repeat steps [2] and [3] until it can be confirmed that the TEND flag in SSR is set to 1.
- [4] Write the transmit data to TDR, clear the TDRE flag to 0, and perform the transmit operation. The TEND flag is cleared to 0.
- [5] When transmitting data continuously, go back to step [2].
- [6] To end transmission, clear the TE bit to 0.

With the above processing, interrupt servicing or data transfer by the DTC is possible.

If transmission ends and the TEND flag is set to 1 while the TIE bit is set to 1 and interrupt requests are enabled, a transmit data empty interrupt (TXI) request will be generated. If an error occurs in transmission and the ERS flag is set to 1 while the RIE bit is set to 1 and interrupt requests are enabled, a transfer error interrupt (ERI) request will be generated.

The timing for setting the TEND flag depends on the value of the GM bit in SMR. The TEND flag set timing is shown in figure 14-6.

If the DTC is activated by a TXI request, the number of bytes set in the DTC can be transmitted automatically, including automatic retransmission.

For details, see Interrupt Operation (Except Block Transfer Mode) and Data Transfer Operation by DTC below.

Note: For block transfer mode, see section 13.3.2, Operation in Asynchronous Mode.

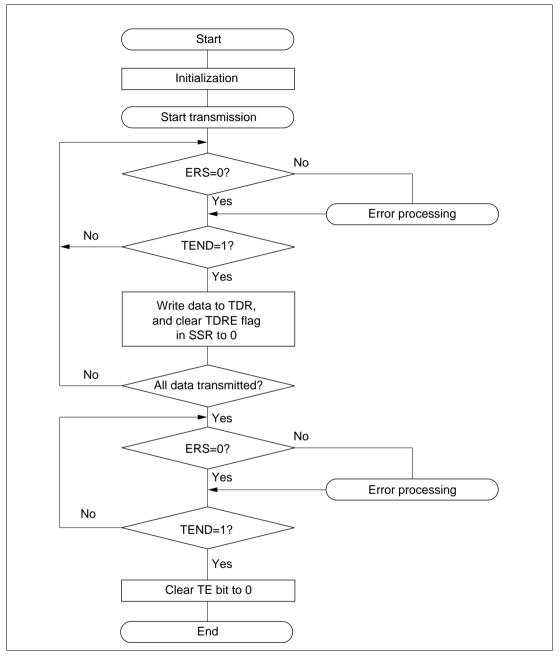


Figure 14-4 Example of Transmission Processing Flow

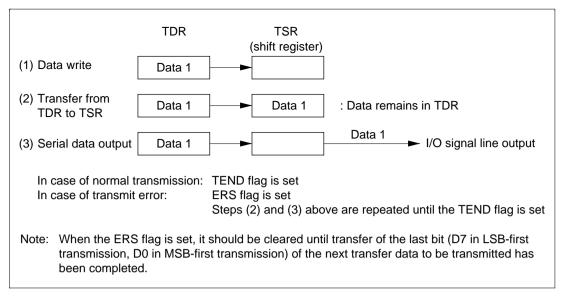


Figure 14-5 Relation Between Transmit Operation and Internal Registers

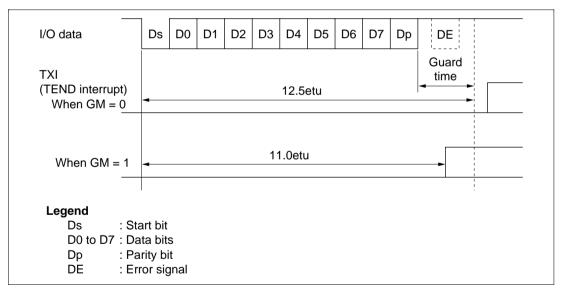


Figure 14-6 TEND Flag Generation Timing in Transmission Operation

Serial Data Reception: Data reception in Smart Card mode uses the same processing procedure as for the normal SCI. Figure 14-7 shows an example of the transmission processing flow.

- [1] Perform Smart Card interface mode initialization as described above in Initialization.
- [2] Check that the ORER flag and PER flag in SSR are cleared to 0. If either is set, perform the appropriate receive error processing, then clear both the ORER and the PER flag to 0.
- [3] Repeat steps [2] and [3] until it can be confirmed that the RDRF flag is set to 1.
- [4] Read the receive data from RDR.
- [5] When receiving data continuously, clear the RDRF flag to 0 and go back to step [2].
- [6] To end reception, clear the RE bit to 0.

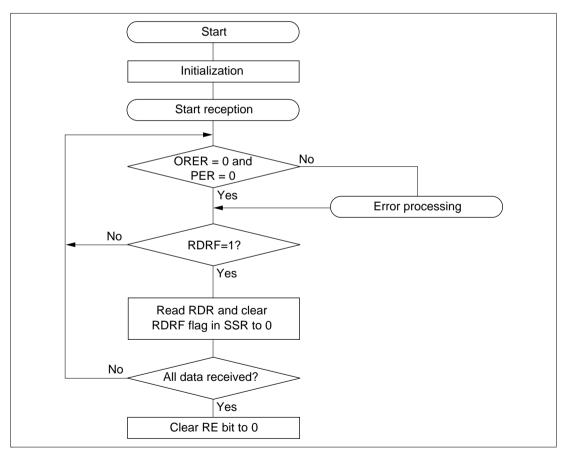


Figure 14-7 Example of Reception Processing Flow

With the above processing, interrupt servicing or data transfer by the DTC is possible.

If reception ends and the RDRF flag is set to 1 while the RIE bit is set to 1 and interrupt requests are enabled, a receive data full interrupt (RXI) request will be generated. If an error occurs in reception and either the ORER flag or the PER flag is set to 1, a transfer error interrupt (ERI) request will be generated.

If the DTC is activated by an RXI request, the receive data in which the error occurred is skipped, and only the number of bytes of receive data set in the DTC are transferred.

For details, see Interrupt Operation and Data Transfer Operation by DTC below.

If a parity error occurs during reception and the PER is set to 1, the received data is still transferred to RDR, and therefore this data can be read.

Note: For block transfer mode, see section 13.3.2, Operation in Asynchronous Mode.

Mode Switching Operation: When switching from receive mode to transmit mode, first confirm that the receive operation has been completed, then start from initialization, clearing RE bit to 0 and setting TE bit to 1. The RDRF flag or the PER and ORER flags can be used to check that the receive operation has been completed.

When switching from transmit mode to receive mode, first confirm that the transmit operation has been completed, then start from initialization, clearing TE bit to 0 and setting RE bit to 1. The TEND flag can be used to check that the transmit operation has been completed.

Fixing Clock Output Level: When the GM bit in SMR is set to 1, the clock output level can be fixed with bits CKE1 and CKE0 in SCR. At this time, the minimum clock pulse width can be made the specified width.

Figure 14-8 shows the timing for fixing the clock output level. In this example, GM is set to 1, CKE1 is cleared to 0, and the CKE0 bit is controlled.

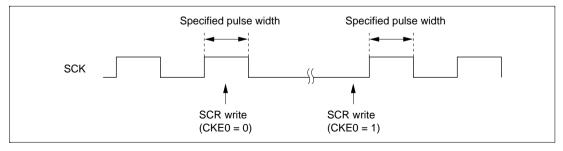


Figure 14-8 Timing for Fixing Clock Output Level

Interrupt Operation (Except Block Transfer Mode): There are three interrupt sources in smart card interface mode: transmit data empty interrupt (TXI) requests, transfer error interrupt (ERI)

requests, and receive data full interrupt (RXI) requests. The transmit end interrupt (TEI) request is not used in this mode.

When the TEND flag in SSR is set to 1, a TXI interrupt request is generated.

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated.

When any of flags ORER, PER, and ERS in SSR is set to 1, an ERI interrupt request is generated. The relationship between the operating states and interrupt sources is shown in table 14-8.

Note: For block transfer mode, see section 13.4, SCI Interrupts.

Table 14-8 Smart Card Mode Operating States and Interrupt Sources

Operating State		Flag	Flag Enable Bit Inte		DTC Activation
Transmit Normal Mode operation		TEND	TIE	TXI	Possible
	Error	ERS	RIE	ERI	Not possible
Receive Mode	Normal operation	RDRF	RIE	RXI	Possible
	Error	PER, ORER	RIE	ERI	Not possible

Data Transfer Operation by DTC: In smart card mode, as with the normal SCI, transfer can be carried out using the DTC. In a transmit operation, the TDRE flag is also set to 1 at the same time as the TEND flag in SSR, and a TXI interrupt is generated. If the TXI request is designated beforehand as a DTC activation source, the DTC will be activated by the TXI request, and transfer of the transmit data will be carried out. The TDRE and TEND flags are automatically cleared to 0 when data transfer is performed by the DTC. In the event of an error, the SCI retransmits the same data automatically. During this period, TEND remains cleared to 0 and the DTC is not activated. Therefore, the SCI and DTC will automatically transmit the specified number of bytes, including retransmission in the event of an error. However, the ERS flag is not cleared automatically when an error occurs, and so the RIE bit should be set to 1 beforehand so that an ERI request will be generated in the event of an error, and the ERS flag will be cleared.

When performing transfer using the DTC, it is essential to set and enable the DTC before carrying out SCI setting. For details of the DTC setting procedures, see section 8, Data Transfer Controller (DTC).

In a receive operation, an RXI interrupt request is generated when the RDRF flag in SSR is set to 1. If the RXI request is designated beforehand as a DTC activation source, the DTC will be activated by the RXI request, and transfer of the receive data will be carried out. The RDRF flag is cleared to 0 automatically when data transfer is performed by the DTC. If an error occurs, an error flag is set but the RDRF flag is not. Consequently, the DTC is not activated, but instead, an ERI interrupt request is sent to the CPU. Therefore, the error flag should be cleared.

Note: For block transfer mode, see section 13.4, SCI Interrupts.

14.3.7 Operation in GSM Mode

Switching the Mode: When switching between smart card interface mode and software standby mode, the following switching procedure should be followed in order to maintain the clock duty.

- · When changing from smart card interface mode to software standby mode
- [1] Set the data register (DR) and data direction register (DDR) corresponding to the SCK pin to the value for the fixed output state in software standby mode.
- [2] Write 0 to the TE bit and RE bit in the serial control register (SCR) to halt transmit/receive operation. At the same time, set the CKE1 bit to the value for the fixed output state in software standby mode.
- [3] Write 0 to the CKE0 bit in SCR to halt the clock.
- [4] Wait for one serial clock period.

 During this interval, clock output is fixed at the specified level, with the duty preserved.
- [5] Make the transition to the software standby state.
- When returning to smart card interface mode from software standby mode
- [6] Exit the software standby state.
- [7] Write 1 to the CKE0 bit in SCR and output the clock. Signal generation is started with the normal duty.

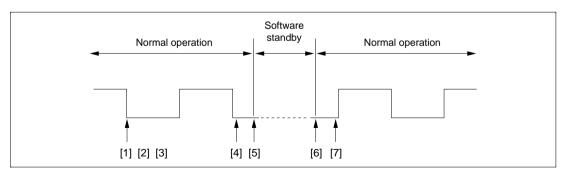


Figure 14-9 Clock Halt and Restart Procedure

Powering On: To secure the clock duty from power-on, the following switching procedure should be followed.

- [1] The initial state is port input and high impedance. Use a pull-up resistor or pull-down resistor to fix the potential.
- [2] Fix the SCK pin to the specified output level with the CKE1 bit in SCR.
- [3] Set SMR and SCMR, and switch to smart card mode operation.
- [4] Set the CKE0 bit in SCR to 1 to start clock output.

14.3.8 Operation in Block Transfer Mode

Operation in block transfer mode is the same as in SCI asynchronous mode, except for the following points. For details, see section 13.3.2, Operation in Asynchronous Mode.

(1) Data Format

The data format is 8 bits with parity. There is no stop bit, but there is a 2-bit (1-bit or more in reception) error guard time.

Also, except during transmission (with start bit, data bits, and parity bit), the transmission pins go to the high-impedance state, so the signal lines must be fixed high with a pull-up resistor.

(2) Transmit/Receive Clock

Only an internal clock generated by the on-chip baud rate generator can be used as the transmit/receive clock. The number of basic clock periods in a 1-bit transfer interval can be set to 32, 64, 372, or 256 with bits BCP1 and BCP0. For details, see section 14.3.5, Clock.

(3) ERS (FER) Flag

As with the normal Smart Card interface, the ERS flag indicates the error signal status, but since error signal transmission and reception is not performed, this flag is always cleared to 0.

14.4 Usage Notes

The following points should be noted when using the SCI as a Smart Card interface.

Receive Data Sampling Timing and Reception Margin in Smart Card Interface Mode: In Smart Card interface mode, the SCI operates on a basic clock with a frequency of 32, 64, 372, or 256 times the transfer rate (as determined by bits BCP1 and BCP0).

In reception, the SCI samples the falling edge of the start bit using the basic clock, and performs internal synchronization. Receive data is latched internally at the rising edge of the 16th, 32nd, 186th, or 128th pulse of the basic clock. Figure 14-10 shows the receive data sampling timing when using a clock of 372 times the transfer rate.

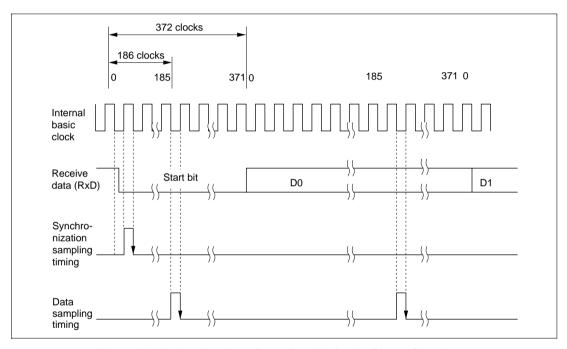


Figure 14-10 Receive Data Sampling Timing in Smart Card Mode (Using Clock of 372 Times the Transfer Rate)

Thus the reception margin in asynchronous mode is given by the following formula.

Formula for reception margin in smart card interface mode

$$M = \left| (0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{\left| D - 0.5 \right|}{N} (1 + F) \right| \times 100\%$$

Where M: Reception margin (%)

N: Ratio of bit rate to clock (N = 32, 64, 372, and 256)

D: Clock duty (D = 0 to 1.0)

L: Frame length (L = 10)

F: Absolute value of clock frequency deviation

Assuming values of F = 0, D = 0.5 and N = 372 in the above formula, the reception margin formula is as follows.

When D = 0.5 and F = 0,
M =
$$(0.5 - 1/2 \times 372) \times 100\%$$

= 49.866%

Retransfer Operations (Except Block Transfer Mode): Retransfer operations are performed by the SCI in receive mode and transmit mode as described below.

- Retransfer operation when SCI is in receive mode
 Figure 14-11 illustrates the retransfer operation when the SCI is in receive mode.
- [1] If an error is found when the received parity bit is checked, the PER bit in SSR is automatically set to 1. If the RIE bit in SCR is enabled at this time, an ERI interrupt request is generated. The PER bit in SSR should be kept cleared to 0 until the next parity bit is sampled.
- [2] The RDRF bit in SSR is not set for a frame in which an error has occurred.
- [3] If no error is found when the received parity bit is checked, the PER bit in SSR is not set to 1.
- [4] If no error is found when the received parity bit is checked, the receive operation is judged to have been completed normally, and the RDRF flag in SSR is automatically set to 1. If the RIE bit in SCR is enabled at this time, an RXI interrupt request is generated.
 - If DTC data transfer by an RXI source is enabled, the contents of RDR can be read automatically. When the RDR data is read by the DTC, the RDRF flag is automatically cleared to 0.
- [5] When a normal frame is received, the pin retains the high-impedance state at the timing for error signal transmission.

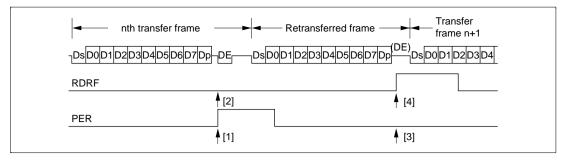


Figure 14-11 Retransfer Operation in SCI Receive Mode

- Retransfer operation when SCI is in transmit mode Figure 14-12 illustrates the retransfer operation when the SCI is in transmit mode.
- [6] If an error signal is sent back from the receiving end after transmission of one frame is completed, the ERS bit in SSR is set to 1. If the RIE bit in SCR is enabled at this time, an ERI interrupt request is generated. The ERS bit in SSR should be kept cleared to 0 until the next parity bit is sampled.
- [7] The TEND bit in SSR is not set for a frame for which an error signal indicating an abnormality is received.
- [8] If an error signal is not sent back from the receiving end, the ERS bit in SSR is not set.
- [9] If an error signal is not sent back from the receiving end, transmission of one frame, including a retransfer, is judged to have been completed, and the TEND bit in SSR is set to 1. If the TIE bit in SCR is enabled at this time, a TXI interrupt request is generated.

If data transfer by the DTC by means of the TXI source is enabled, the next data can be written to TDR automatically. When data is written to TDR by the DTC, the TDRE bit is automatically cleared to 0.

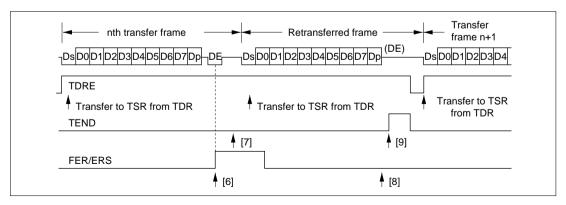


Figure 14-12 Retransfer Operation in SCI Transmit Mode

Section 15 I²C Bus Interface [Option]

A two-channel I²C bus interface is available as an option in the H8S/2238 Series. The I²C bus interface is not available for the H8S/2238 Series. Observe the following notes when using this option.

1. For mask-ROM versions, a W is added to the part number in products in which this optional function is used.

Examples: HD6432238BWTE

2. The product number is identical for F-ZTAT versions. However, be sure to inform your Hitachi sales representative if you will be using this option.

15.1 Overview

A two-channel I^2C bus interface is available for the H8S/2238 Series as an option. The I^2C bus interface conforms to and provides a subset of the Philips I^2C bus (inter-IC bus) interface functions. The register configuration that controls the I^2C bus differs partly from the Philips configuration, however.

Each I²C bus interface channel uses only one data line (SDA) and one clock line (SCL) to transfer data, saving board and connector space.

15.1.1 Features

- Selection of addressing format or non-addressing format
 - I²C bus format: addressing format with acknowledge bit, for master/slave operation
 - Serial format: non-addressing format without acknowledge bit, for master operation only
- Conforms to Philips I²C bus interface (I²C bus format)
- Two ways of setting slave address (I²C bus format)
- Start and stop conditions generated automatically in master mode (I²C bus format)
- Selection of acknowledge output levels when receiving (I²C bus format)
- Automatic loading of acknowledge bit when transmitting (I²C bus format)
- Wait function in master mode (I²C bus format)
 A wait can be inserted by driving the SCL pin low after data transfer, excluding acknowledgement. The wait can be cleared by clearing the interrupt flag.

- Wait function in slave mode (I²C bus format)
 A wait request can be generated by driving the SCL pin low after data transfer, excluding acknowledgement. The wait request is cleared when the next transfer becomes possible.
- Three interrupt sources
 - Data transfer end (including transmission mode transition with I²C bus format and address reception after loss of master arbitration)
 - Address match: when any slave address matches or the general call address is received in slave receive mode (I²C bus format)
 - Stop condition detection
- Selection of 16 internal clocks (in master mode)
- Direct bus drive (with SCL and SDA pins)
 - Two pins—P35/SCL0 and P34/SDA0—(normally NMOS push-pull outputs) function as NMOS open-drain outputs when the bus drive function is selected.
 - Two pins—P33/SCL1 and P32/SDA1—(normally CMOS pins) function as NMOS-only outputs when the bus drive function is selected.

15.1.2 Block Diagram

Figure 15-1 shows a block diagram of the I²C bus interface.

Figure 15-2 shows an example of I/O pin connections to external circuits. Channel 0 I/O pins are NMOS open drains, and it is possible to apply voltages in excess of the power supply (V_{CC}) voltage for this LSI. Set the upper limit of voltage applied to the power supply (V_{CC}) power supply range + 0.3 V, i.e. 5.8 V (3.9 V). Channel 1 I/O pins are driven solely by NMOS, so in terms of appearance they carry out the same operations as an NMOS open drain. However, the voltage which can be applied to the I/O pins depends on the voltage of the power supply (V_{CC}) of this LSI.

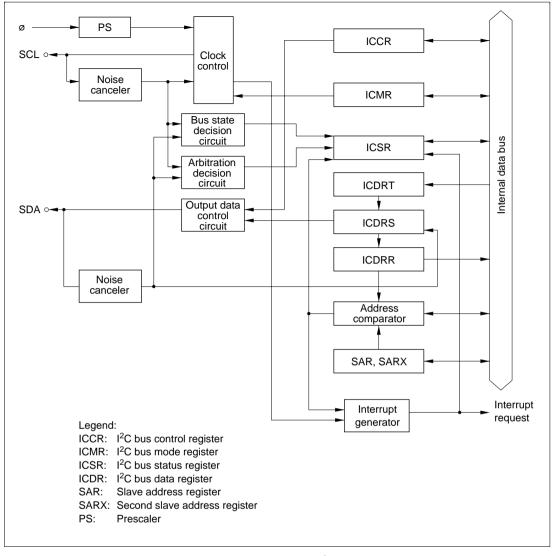


Figure 15-1 Block Diagram of I²C Bus Interface

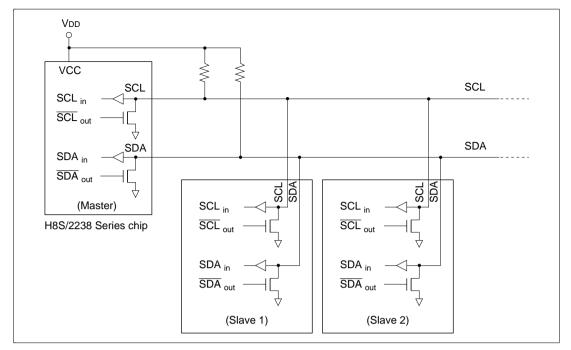


Figure 15-2 I²C Bus Interface Connections (Example: H8S/2238 Series Chip as Master)

15.1.3 Input/Output Pins

Table 15-1 summarizes the input/output pins used by the I²C bus interface.

Table 15-1 I²C Bus Interface Pins

Channel	Name	Abbreviation	I/O	Function
0	Serial clock	SCL0	I/O	IIC0 serial clock input/output
	Serial data	SDA0	I/O	IIC0 serial data input/output
1	Serial clock	SCL1	I/O	IIC1 serial clock input/output
	Serial data	SDA1	I/O	IIC1 serial data input/output

Note: In the text, the channel subscript is omitted, and only SCL and SDA are used.

15.1.4 Register Configuration

Table 15-2 summarizes the registers of the I²C bus interface.

Table 15-2 Register Configuration

Channel	Name	Abbreviation	R/W	Initial Value	Address*1
0	I ² C bus control register	ICCR0	R/W	H'01	H'FF78* ³
	I ² C bus status register	ICSR0	R/W	H'00	H'FF79*3
	I ² C bus data register	ICDR0	R/W		H'FF7E*2, *3
	I ² C bus mode register	ICMR0	R/W	H'00	H'FF7F* ^{2,} * ³
	Slave address register	SAR0	R/W	H'00	H'FF7F*2, *3
	Second slave address register	SARX0	R/W	H'01	H'FF7E* ^{2,} * ³
1	I ² C bus control register	ICCR1	R/W	H'01	H'FF80*3
	I ² C bus status register	ICSR1	R/W	H'00	H'FF81* ³
	I ² C bus data register	ICDR1	R/W		H'FF86*2, *3
	I ² C bus mode register	ICMR1	R/W	H'00	H'FF87* ^{2,} * ³
	Slave address register	SAR1	R/W	H'00	H'FF87* ^{2,} * ³
	Second slave address register	SARX1	R/W	H'01	H'FF86* ^{2,} * ³
Common	Serial control register X	SCRX	R/W	H'00	H'FDB4
	DDC switch register	DDCSWR	R/W	H'0F	H'FDB5
	Module stop control register B	MSTPCRB	R/W	H'FF	H'FDE9

Notes: *1 Lower 16 bits of the address.

^{*2} The register that can be written or read depends on the ICE bit in the I²C bus control register. The slave address register can be accessed when ICE = 0, and the I²C bus mode register can be accessed when ICE = 1.

^{*3} The I²C bus interface registers are assigned to the same addresses as other registers. Register selection is performed by means of the IICE bit in the serial control register X (SCRX).

15.2 Register Descriptions

15.2.1 I²C Bus Data Register (ICDR)

Bit 7 6 5 2 1 0 4 3 ICDR7 ICDR5 ICDR4 ICDR3 ICDR2 ICDR0 ICDR6 ICDR1

Initial value : — — — — — — — — —

R/W : R/W R/W R/W R/W R/W R/W R/W

• ICDRR

7 6 5 4 3 2 1 0 Bit ICDRR7 ICDRR6 ICDRR5 ICDRR2 ICDRR3 ICDRR0 ICDRR4 ICDRR1

ICDRS

Bit 7 6 5 4 3 2 1 0 ICDRS7 ICDRS6 ICDRS5 ICDRS4 ICDRS3 ICDRS2 ICDRS1 ICDRS0 Initial value R/W

• ICDRT

Bit 7 6 5 4 3 2 1 0 ICDRT7 ICDRT6 ICDRT4 ICDRT2 ICDRT5 ICDRT3 ICDRT1 ICDRT0 Initial value R/W W W W W W W W W

• TDRE, RDRF (internal flags)

Bit : — — — TDRE RDRF

Initial value : 0 0

R/W : — —

ICDR is an 8-bit readable/writable register that is used as a transmit data register when transmitting and a receive data register when receiving. ICDR is divided internally into a shift register (ICDRS), receive buffer (ICDRR), and transmit buffer (ICDRT). ICDRS cannot be read or written by the CPU, ICDRR is read-only, and ICDRT is write-only. Data transfers among the three registers are performed automatically in coordination with changes in the bus state, and affect the status of internal flags such as TDRE and RDRF.

In transmit mode, after 1-frame data is transmitted or received by the shift register (ICDRS), if the transmit buffer (ICDRT) contains data to be transmitted next (TDRE flag is 0), data is automatically transferred to the shift register.

In receive mode, after 1-frame data is transmitted or received by the shift register, if the receive buffer (ICDRR) contains no previous data (RDRF flag is 0), data is automatically transferred from the shift register to the receive buffer.

If the number of bits in a frame, excluding the acknowledge bit, is less than 8, transmit data and receive data are stored differently. Transmit data should be written justified toward the MSB side when MLS = 0, and toward the LSB side when MLS = 1. Receive data bits read from the LSB side should be treated as valid when MLS = 0, and bits read from the MSB side when MLS = 1.

ICDR is assigned to the same address as SARX, and can be written and read only when the ICE bit is set to 1 in ICCR.

The value of ICDR is undefined after a reset.

The TDRE and RDRF flags are set and cleared under the conditions shown below. Setting the TDRE and RDRF flags affects the status of the interrupt flags.

TDRE	Description								
0	The next transmit data is in ICDR (ICDRT), or transmission cannot (Initial value) be started								
	[Clearing conditions]								
	• When transmit data is written in ICDR (ICDRT) in transmit mode (TRS = 1)								
	 When a stop condition is detected in the bus line state after a stop condition is issued with the I²C bus format or serial format selected 								
	 When a stop condition is detected with the I²C bus format selected In receive mode (TRS = 0) 								
	(A 0 write to TRS during transfer is valid after reception of a frame containing an acknowledge bit)								
1	The next transmit data can be written in ICDR (ICDRT)								
	[Setting conditions]								
	 In transmit mode (TRS = 1), when a start condition is detected in the bus line state after a start condition is issued in master mode with the I²C bus format or serial format selected 								
	When data is transferred from ICDRT to ICDRS								
	(Data transfer from ICDRT to ICDRS when TRS = 1 and TDRE = 0, and ICDRS is empty)								
	 When a switch is made from receive mode (TRS = 0) to transmit mode (TRS = 1) after detection of a start condition 								

RDRF	Description						
0	The data in ICDR (ICDRR) is invalid	(Initial value)					
	[Clearing condition]						
	When ICDR (ICDRR) receive data is read in receive mode						
1	The ICDR (ICDRR) receive data can be read						
	[Setting condition]						
	When data is transferred from ICDRS to ICDRR						
	(Data transfer from ICDRS to ICDRR in case of normal termination with TRS = 0 and RDRF = 0)						

15.2.2 Slave Address Register (SAR)

Bit	:	7	6	5	4	3	2	1	0
		SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W						

SAR is an 8-bit readable/writable register that stores the slave address and selects the communication format. When the chip is in slave mode (and the addressing format is selected), if the upper 7 bits of SAR match the upper 7 bits of the first frame received after a start condition, the chip operates as the slave device specified by the master device. SAR is assigned to the same address as ICMR, and can be written and read only when the ICE bit is cleared to 0 in ICCR.

SAR is initialized to H'00 by a reset and in hardware standby mode.

Bits 7 to 1—Slave Address (SVA6 to SVA0): Set a unique address in bits SVA6 to SVA0, differing from the addresses of other slave devices connected to the I²C bus.

Bit 0—Format Select (FS): Used together with the FSX bit in SARX to select the communication format.

- I²C bus format: addressing format with acknowledge bit
- Synchronous serial format: non-addressing format without acknowledge bit, for master mode only

The FS bit also specifies whether or not SAR slave address recognition is performed in slave mode.

SAR Bit 0	SARX Bit 0		
FS	FSX	Operating Mode	
0	0	I ² C bus format	
		 SAR and SARX slave addresses recognized 	
	1	I ² C bus format	(Initial value)
		 SAR slave address recognized 	
		 SARX slave address ignored 	
1	0	I ² C bus format	
		 SAR slave address ignored 	
		 SARX slave address recognized 	
	1	Synchronous serial format	
		 SAR and SARX slave addresses ignored 	

15.2.3 Second Slave Address Register (SARX)

Bit	:	7	6	5	4	3	2	1	0
		SVAX6	SVAX5	SVAX4	SVAX3	SVAX2	SVAX1	SVAX0	FSX
Initial value	:	0	0	0	0	0	0	0	1
R/W	:	R/W	R/W						

SARX is an 8-bit readable/writable register that stores the second slave address and selects the communication format. When the chip is in slave mode (and the addressing format is selected), if the upper 7 bits of SARX match the upper 7 bits of the first frame received after a start condition, the chip operates as the slave device specified by the master device. SARX is assigned to the same address as ICDR, and can be written and read only when the ICE bit is cleared to 0 in ICCR.

SARX is initialized to H'01 by a reset and in hardware standby mode.

Bits 7 to 1—Second Slave Address (SVAX6 to SVAX0): Set a unique address in bits SVAX6 to SVAX0, differing from the addresses of other slave devices connected to the I²C bus.

Bit 0—Format Select X (FSX): Used together with the FS bit in SAR to select the communication format.

- I²C bus format: addressing format with acknowledge bit
- Synchronous serial format: non-addressing format without acknowledge bit, for master mode only

The FSX bit also specifies whether or not SARX slave address recognition is performed in slave mode. For details, see the description of the FS bit in SAR.

15.2.4 I²C Bus Mode Register (ICMR)

Bit	:	7	6	5	4	3	2	1	0
		MLS	WAIT	CKS2	CKS1	CKS0	BC2	BC1	BC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ICMR is an 8-bit readable/writable register that selects whether the MSB or LSB is transferred first, performs master mode wait control, and selects the master mode transfer clock frequency and the transfer bit count. ICMR is assigned to the same address as SAR. ICMR can be written and read only when the ICE bit is set to 1 in ICCR.

ICMR is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—MSB-First/LSB-First Select (MLS): Selects whether data is transferred MSB-first or LSB-first.

If the number of bits in a frame, excluding the acknowledge bit, is less than 8, transmit data and receive data are stored differently. Transmit data should be written justified toward the MSB side when MLS = 0, and toward the LSB side when MLS = 1. Receive data bits read from the LSB side should be treated as valid when MLS = 0, and bits read from the MSB side when MLS = 1.

Do not set this bit to 1 when the I²C bus format is used.

Bit 7

MLS	Description	
0	MSB-first	(Initial value)
1	LSB-first	

Bit 6—Wait Insertion Bit (WAIT): Selects whether to insert a wait between the transfer of data and the acknowledge bit, in master mode with the I²C bus format. When WAIT is set to 1, after the fall of the clock for the final data bit, the IRIC flag is set to 1 in ICCR, and a wait state begins (with SCL at the low level). When the IRIC flag is cleared to 0 in ICCR, the wait ends and the acknowledge bit is transferred. If WAIT is cleared to 0, data and acknowledge bits are transferred consecutively with no wait inserted.

The IRIC flag in ICCR is set to 1 on completion of the acknowledge bit transfer, regardless of the WAIT setting.

The setting of this bit is invalid in slave mode.

Bit 6

WAIT	Description	
0	Data and acknowledge bits transferred consecutively	(Initial value)
1	Wait inserted between data and acknowledge bits	

Bits 5 to 3—Serial Clock Select (CKS2 to CKS0): These bits, together with the IICX1 (channel 1) or IICX0 (channel 0) bit in the SCRX register, select the serial clock frequency in master mode. They should be set according to the required transfer rate.

SCRX Bit 5 or 6	Bit 5	Bit 4	Bit 3			Transfer Ra	ate
IICX	CKS2	CKS1	CKS0	— Clock	ø = 5 MHz	ø = 8 MHz	ø = 10 MHz
0	0	0	0	ø/28	179 kHz	286 kHz	357 kHz
			1	ø/40	125 kHz	200 kHz	250 kHz
		1	0	ø/48	104 kHz	167 kHz	208 kHz
			1	ø/64	78.1 kHz	125 kHz	156 kHz
	1	0	0	ø/80	62.5 kHz	100 kHz	125 kHz
			1	ø/100	50.0 kHz	80.0 kHz	100 kHz
		1	0	ø/112	44.6 kHz	71.4 kHz	89.3 kHz
			1	ø/128	39.1 kHz	62.5 kHz	78.1 kHz
1	0	0	0	ø/56	89.3 kHz	143 kHz	179 kHz
			1	ø/80	62.5 kHz	100 kHz	125 kHz
		1	0	ø/96	52.1 kHz	83.3 kHz	104 kHz
			1	ø/128	39.1 kHz	62.5 kHz	78.1 kHz
	1	0	0	ø/160	31.3 kHz	50.0 kHz	62.5 kHz
			1	ø/200	25.0 kHz	40.0 kHz	50.0 kHz
		1	0	ø/224	22.3 kHz	35.7 kHz	44.6 kHz
			1	ø/256	19.5 kHz	31.3 kHz	39.1 kHz

Bits 2 to 0—Bit Counter (BC2 to BC0): Bits BC2 to BC0 specify the number of bits to be transferred next. With the I²C bus format (when the FS bit in SAR or the FSX bit in SARX is 0), the data is transferred with one addition acknowledge bit. Bit BC2 to BC0 settings should be made during an interval between transfer frames. If bits BC2 to BC0 are set to a value other than 000, the setting should be made while the SCL line is low..

The bit counter is initialized to 000 by a reset and when a start condition is detected. The value returns to 000 at the end of a data transfer, including the acknowledge bit.

Bit 2	Bit 1	Bit 0	Bits	/Frame	
BC2	BC1	BC0	Synchronous Serial Format	I ² C Bus Format	
0	0	0	8	9	(Initial value)
		1	1	2	
	1	0	2	3	
		1	3	4	
1	0	0	4	5	
		1	5	6	
	1	0	6	7	
		1	7	8	

15.2.5 I²C Bus Control Register (ICCR)

Bit	:	7	6	5	4	3	2	1	0
		ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP
Initial value	:	0	0	0	0	0	0	0	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/(W)*	W
Natar * Oalir	^	بهاست مما من		41 41					

Note: * Only 0 can be written, to clear the flag.

ICCR is an 8-bit readable/writable register that enables or disables the I²C bus interface, enables or disables interrupts, selects master or slave mode and transmission or reception, enables or disables acknowledgement, confirms the I²C bus interface bus status, issues start/stop conditions, and performs interrupt flag confirmation.

ICCR is initialized to H'01 by a reset and in hardware standby mode.

Bit 7—I²C Bus Interface Enable (ICE): Selects whether or not the I²C bus interface is to be used. When ICE is set to 1, port pins function as SCL and SDA input/output pins and transfer operations are enabled. When ICE is cleared to 0, the I²C bus interface module is halted and its internal states are cleared.

The SAR and SARX registers can be accessed when ICE is 0. The ICMR and ICDR registers can be accessed when ICE is 1.

Bit 7

ICE	Description	
0	I ² C bus interface module disabled, with SCL and SDA signal pins set to port function	(Initial value)
	I ² C bus interface module internal states cleared	
	SAR and SARX can be accessed	
1	I ² C bus interface module enabled for transfer operations (pins SCL the bus)	and SCA are driving
	ICMR and ICDR can be accessed	

Bit 6—I²C Bus Interface Interrupt Enable (IEIC): Enables or disables interrupts from the I²C bus interface to the CPU.

Bit 6

IEIC	Description	
0	Interrupts disabled	(Initial value)
1	Interrupts enabled	

Bit 5—Master/Slave Select (MST)

Bit 4—Transmit/Receive Select (TRS)

MST selects whether the I²C bus interface operates in master mode or slave mode.

TRS selects whether the I²C bus interface operates in transmit mode or receive mode.

In master mode with the I^2C bus format, when arbitration is lost, MST and TRS are both reset by hardware, causing a transition to slave receive mode. In slave receive mode with the addressing format (FS = 0 or FSX = 0), hardware automatically selects transmit or receive mode according to the R/W bit in the first frame after a start condition.

Modification of the TRS bit during transfer is deferred until transfer of the frame containing the acknowledge bit is completed, and the changeover is made after completion of the transfer.

MST and TRS select the operating mode as follows.

Bit 5	Bit 4		
MST	TRS	Operating Mode	
0	0	Slave receive mode	(Initial value)
	1	Slave transmit mode	
1	0	Master receive mode	
	1	Master transmit mode	

Bit 5

MST	Description						
0	Slave mode	(Initial value)					
	[Clearing conditions]						
	1. When 0 is written by software						
	 When bus arbitration is lost after transmission is started in I²C bus format master mode 						
1	Master mode						
	[Setting conditions]						
	 When 1 is written by software (in cases other than clearing condition When 1 is written in MST after reading MST = 0 (in case of clearing 	,					

Bit 4

TRS	Description						
0	Receive mode (Initial value)						
	[Clearing conditions]						
	 When 0 is written by software (in cases other than setting condition 3) 						
	When 0 is written in TRS after reading TRS = 1 (in case of clearing condition 3)						
	 When bus arbitration is lost after transmission is started in I²C bus format master mode 						
1	Transmit mode						
	[Setting conditions]						
	1. When 1 is written by software (in cases other than clearing condition 3)						
	2. When 1 is written in TRS after reading TRS = 0 (in case of clearing condition 3)						
	3. When a 1 is received as the R/W bit of the first frame in I^2C bus format slave mode						

Bit 3—Acknowledge Bit Judgement Selection (ACKE): Specifies whether the value of the acknowledge bit returned from the receiving device when using the I²C bus format is to be ignored and continuous transfer is performed, or transfer is to be aborted and error handling, etc., performed if the acknowledge bit is 1. When the ACKE bit is 0, the value of the received acknowledge bit is not indicated by the ACKB bit, which is always 0.

In the H8S/2238 Series, the DTC can be used to perform continuous transfer. The DTC is activated when the IRTR interrupt flag is set to 1 (IRTR is one of two interrupt flags, the other being IRIC). When the ACKE bit is 0, the TDRE, IRIC, and IRTR flags are set on completion of data transmission, regardless of the value of the acknowledge bit. When the ACKE bit is 1, the TDRE, IRIC, and IRTR flags are set on completion of data transmission when the acknowledge bit is 0, and the IRIC flag alone is set on completion of data transmission when the acknowledge bit is 1.

When the DTC is activated, the TDRE, IRIC, and IRTR flags are cleared to 0 after the specified number of data transfers have been executed. Consequently, interrupts are not generated during continuous data transfer, but if data transmission is completed with a 1 acknowledge bit when the ACKE bit is set to 1, the DTC is not activated and an interrupt is generated, if enabled.

Depending on the receiving device, the acknowledge bit may be significant, in indicating completion of processing of the received data, for instance, or may be fixed at 1 and have no significance.

Bit 3

ACKE	Description	
0	The value of the acknowledge bit is ignored, and continuous transfer is performed	(Initial value)
1	If the acknowledge bit is 1, continuous transfer is interrupted	

Bit 2—Bus Busy (BBSY): The BBSY flag can be read to check whether the I²C bus (SCL, SDA) is busy or free. In master mode, this bit is also used to issue start and stop conditions.

A high-to-low transition of SDA while SCL is high is recognized as a start condition, setting BBSY to 1. A low-to-high transition of SDA while SCL is high is recognized as a stop condition, clearing BBSY to 0.

To issue a start condition, use a MOV instruction to write 1 in BBSY and 0 in SCP. A retransmit start condition is issued in the same way. To issue a stop condition, use a MOV instruction to write 0 in BBSY and 0 in SCP. It is not possible to write to BBSY in slave mode; the I²C bus interface must be set to master transmit mode before issuing a start condition. MST and TRS should both be set to 1 before writing 1 in BBSY and 0 in SCP.

Bit 2

BBSY	Description	
0	Bus is free	(Initial value)
	[Clearing condition]	
	When a stop condition is detected	
1	Bus is busy	
	[Setting condition]	
	When a start condition is detected	

Bit 1—I²C Bus Interface Interrupt Request Flag (IRIC): Indicates that the I²C bus interface has issued an interrupt request to the CPU. IRIC is set to 1 at the end of a data transfer, when a slave address or general call address is detected in slave receive mode, when bus arbitration is lost in master transmit mode, and when a stop condition is detected. IRIC is set at different times depending on the FS bit in SAR and the WAIT bit in ICMR. See section 15.3.6, IRIC Setting Timing and SCL Control. The conditions under which IRIC is set also differ depending on the setting of the ACKE bit in ICCR.

IRIC is cleared by reading IRIC after it has been set to 1, then writing 0 in IRIC.

When the DTC is used, IRIC is cleared automatically and transfer can be performed continuously without CPU intervention.

Bit 1	
IRIC	 Description
0	Waiting for transfer, or transfer in progress (Initial value)
	[Clearing conditions]
	1. When 0 is written in IRIC after reading IRIC = 1
	2. When ICDR is written or read by the DTC
	(When the TDRE or RDRF flag is cleared to 0)
	(This is not always a clearing condition; see the description of DTC operation for details)
1	Interrupt requested
	[Setting conditions]
	 I²C bus format master mode
	 When a start condition is detected in the bus line state after a start condition is issued
	(when the TDRE flag is set to 1 because of first frame transmission)
	2. When a wait is inserted between the data and acknowledge bit when WAIT = 1
	3. At the end of data transfer
	(at the rise of the 9th transmit/receive clock pulse, or at the fall of the 8th transmit/receive clock pulse when using wait insertion)
	 When a slave address is received after bus arbitration is lost (when the AL flag is set to 1)
	When 1 is received as the acknowledge bit when the ACKE bit is 1 (when the ACKB bit is set to 1)
	I ² C bus format slave mode
	 When the slave address (SVA, SVAX) matches (when the AAS and AASX flags are set to 1)
	and at the end of data transfer up to the subsequent retransmission start condition or stop condition detection (when the TDRE or RDRF flag is set to 1)
	 When the general call address is detected (when FS = 0 and the ADZ flag is set to 1)
	and at the end of data transfer up to the subsequent retransmission start condition or stop condition detection (when the TDRE or RDRF flag is set to 1)
	When 1 is received as the acknowledge bit when the ACKE bit is 1 (when the ACKB bit is set to 1)
	 When a stop condition is detected (when the STOP or ESTP flag is set to 1)
	Synchronous serial format
	 At the end of data transfer (when the TDRE or RDRF flag is set to 1)
	2. When a start condition is detected with serial format selected

When any other condition arises in which the TDRE or RDRF flag is set to 1

When, with the I²C bus format selected, IRIC is set to 1 and an interrupt is generated, other flags must be checked in order to identify the source that set IRIC to 1. Although each source has a corresponding flag, caution is needed at the end of a transfer.

When the TDRE or RDRF internal flag is set, the readable IRTR flag may or may not be set. The IRTR flag (the DTC start request flag) is not set at the end of a data transfer up to detection of a retransmission start condition or stop condition after a slave address (SVA) or general call address match in I²C bus format slave mode.

Even when the IRIC flag and IRTR flag are set, the TDRE or RDRF internal flag may not be set. The IRIC and IRTR flags are not cleared at the end of the specified number of transfers in continuous transfer using the DTC. The TDRE or RDRF flag is cleared, however, since the specified number of ICDR reads or writes have been completed.

Table 15-3 shows the relationship between the flags and the transfer states.

Table 15-3 Flags and Transfer States

MST	TRS	BBSY	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	State
1/0	1/0	0	0	0	0	0	0	0	0	0	Idle state (flag clearing required)
1	1	0	0	0	0	0	0	0	0	0	Start condition issuance
1	1	1	0	0	1	0	0	0	0	0	Start condition established
1	1/0	1	0	0	0	0	0	0	0	0/1	Master mode wait
1	1/0	1	0	0	1	0	0	0	0	0/1	Master mode transmit/receive end
0	0	1	0	0	0	1/0	1	1/0	1/0	0	Arbitration lost
0	0	1	0	0	0	0	0	1	0	0	SAR match by first frame in slave mode
0	0	1	0	0	0	0	0	1	1	0	General call address match
0	0	1	0	0	0	1	0	0	0	0	SARX match
0	1/0	1	0	0	0	0	0	0	0	0/1	Slave mode transmit/receive end (except after SARX match)
0	1/0	1	0	0	1	1	0	0	0	0	Slave mode
0	1	1	0	0	0	1	0	0	0	1	transmit/receive end (after SARX match)
0	1/0	0	1/0	1/0	0	0	0	0	0	0/1	Stop condition detected

Bit 0—Start Condition/Stop Condition Prohibit (SCP): Controls the issuing of start and stop conditions in master mode. To issue a start condition, write 1 in BBSY and 0 in SCP. A retransmit start condition is issued in the same way. To issue a stop condition, write 0 in BBSY and 0 in SCP. This bit is always read as 1. If 1 is written, the data is not stored.

Bit 0

SCP	Description	
0	Writing 0 issues a start or stop condition, in combination	n with the BBSY flag
1	Reading always returns a value of 1	(Initial value)
	Writing is ignored	

15.2.6 I²C Bus Status Register (ICSR)

Bit	:	7	6	5	4	3	2	1	0
		ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/W						
N	_								

Note: * Only 0 can be written, to clear the flag.

ICSR is an 8-bit readable/writable register that performs flag confirmation and acknowledge confirmation and control.

ICSR is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—Error Stop Condition Detection Flag (ESTP): Indicates that a stop condition has been detected during frame transfer in I²C bus format slave mode.

Bit 7

ESTP	Description					
0	No error stop condition	(Initial value)				
	[Clearing conditions]					
	1. When 0 is written in ESTP after reading ESTP = 1					
	2. When the IRIC flag is cleared to 0					
1	In I ² C bus format slave mode					
	Error stop condition detected					
	[Setting condition]					
	When a stop condition is detected during frame transfer					
	In other modes					
	No meaning					

Bit 6—Normal Stop Condition Detection Flag (STOP): Indicates that a stop condition has been detected after completion of frame transfer in I²C bus format slave mode.

Bit 6

STOP	Description				
0	No normal stop condition (Initial value)				
	[Clearing conditions]				
	1. When 0 is written in STOP after reading STOP = 1				
	2. When the IRIC flag is cleared to 0				
1	In I ² C bus format slave mode				
	Normal stop condition detected				
	[Setting condition]				
	When a stop condition is detected after completion of frame transfer				
	In other modes				
	No meaning				

Bit 5—I²C Bus Interface Continuous Transmission/Reception Interrupt Request Flag

(IRTR): Indicates that the I²C bus interface has issued an interrupt request to the CPU, and the source is completion of reception/transmission of one frame in continuous transmission/reception for which DTC activation is possible. When the IRTR flag is set to 1, the IRIC flag is also set to 1 at the same time.

IRTR flag setting is performed when the TDRE or RDRF flag is set to 1. IRTR is cleared by reading IRTR after it has been set to 1, then writing 0 in IRTR. IRTR is also cleared automatically when the IRIC flag is cleared to 0.

Bit 5

IRTR	 Description					
0	Waiting for transfer, or transfer in progress	(Initial value)				
	[Clearing conditions]					
	1. When 0 is written in IRTR after reading IRTR = 1					
	2. When the IRIC flag is cleared to 0					
1	Continuous transfer state					
	[Setting conditions]					
	 In I²C bus interface slave mode 					
	When the TDRE or RDRF flag is set to 1 when AASX = 1					
	 In other modes 					
	When the TDRE or RDRF flag is set to 1					

Bit 4—Second Slave Address Recognition Flag (AASX): In I²C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition matches bits SVAX6 to SVAX0 in SARX.

AASX is cleared by reading AASX after it has been set to 1, then writing 0 in AASX. AASX is also cleared automatically when a start condition is detected.

Bit 4

AASX	 Description	
0	Second slave address not recognized	(Initial value)
	[Clearing conditions]	
	1. When 0 is written in AASX after reading AASX = 1	
	2. When a start condition is detected	
	3. In master mode	
1	Second slave address recognized	
	[Setting condition]	
	When the second slave address is detected in slave receive mode and	IFSX = 0

Bit 3—Arbitration Lost (AL): This flag indicates that arbitration was lost in master mode. The I^2C bus interface monitors the bus. When two or more master devices attempt to seize the bus at nearly the same time, if the I^2C bus interface detects data differing from the data it sent, it sets AL to 1 to indicate that the bus has been taken by another master.

AL is cleared by reading AL after it has been set to 1, then writing 0 in AL. In addition, AL is reset automatically by write access to ICDR in transmit mode, or read access to ICDR in receive mode.

Bit 3

AL	Description					
0	Bus arbitration won (Initial value)					
	[Clearing conditions]					
	1. When ICDR data is written (transmit mode) or read (receive mode)					
	2. When 0 is written in AL after reading AL = 1					
1	Arbitration lost					
	[Setting conditions]					
	 If the internal SDA and SDA pin disagree at the rise of SCL in master transmit mode 					
	2. If the internal SCL line is high at the fall of SCL in master transmit mode					

Bit 2—Slave Address Recognition Flag (AAS): In I²C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition matches bits SVA6 to SVA0 in SAR, or if the general call address (H'00) is detected.

AAS is cleared by reading AAS after it has been set to 1, then writing 0 in AAS. In addition, AAS is reset automatically by write access to ICDR in transmit mode, or read access to ICDR in receive mode.

Bit 2

AAS	Description					
0	Slave address or general call address not recognized (Initial value)					
	[Clearing conditions]					
	1. When ICDR data is written (transmit mode) or read (receive r	mode)				
	2. When 0 is written in AAS after reading AAS = 1					
	3. In master mode					
1	Slave address or general call address recognized					
	[Setting condition]					
	When the slave address or general call address is detected in sla $FS = 0$	ave receive mode and				

Bit 1—General Call Address Recognition Flag (ADZ): In I²C bus format slave receive mode, this flag is set to 1 if the first frame following a start condition is the general call address (H'00).

ADZ is cleared by reading ADZ after it has been set to 1, then writing 0 in ADZ. In addition, ADZ is reset automatically by write access to ICDR in transmit mode, or read access to ICDR in receive mode.

Bit 1

ADZ	Description					
0	General call address not recognized (Initial					
	[Clearing conditions]					
	1. When ICDR data is written (transmit mode) or read (receive n	node)				
	2. When 0 is written in ADZ after reading ADZ = 1					
	3. In master mode					
1	General call address recognized	"				
	[Setting condition]					
	When the general call address is detected in slave receive mode $(FSX = 0 \text{ or } FS = 0)$	and				

Bit 0—Acknowledge Bit (ACKB): Stores acknowledge data. In transmit mode, after the receiving device receives data, it returns acknowledge data, and this data is loaded into ACKB. In receive mode, after data has been received, the acknowledge data set in this bit is sent to the transmitting device.

When this bit is read, in transmission (when TRS = 1), the value loaded from the bus line (returned by the receiving device) is read. In reception (when TRS = 0), the value set by internal software is read.

Bit 0

ACKB	 Description	
0	Receive mode: 0 is output at acknowledge output timing	(Initial value)
	Transmit mode: Indicates that the receiving device has acknowled is 0)	edged the data (signal
1	Receive mode: 1 is output at acknowledge output timing	
	Transmit mode: Indicates that the receiving device has not acknowledge (signal is 1)	owledged the data

15.2.7 Serial Control Register X (SCRX)

Bit	:	7	6	5	4	3	2	1	0
		_	IICX1	IICX0	IICE	FLSHE	_	_	
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SCRX is an 8-bit readable/writable register that controls register access, the I²C interface operating mode (when the on-chip IIC option is included), and on-chip flash memory control (F-ZTAT versions). If a module controlled by SCRX is not used, do not write 1 to the corresponding bit.

SCRX is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—Reserved: Only 0 may be written to this bit.

Bit 6—I²C Transfer Select 1 (IICX1): This bit, together with bits CKS2 to CKS0 in ICMR of IIC1, selects the transfer rate in master mode. For details, see section 15.2.4, I²C Bus Mode Register (ICMR).

Bit 5—I²C **Transfer Select 0 (IICX0):** This bit, together with bits CKS2 to CKS0 in ICMR of IIC0, selects the transfer rate in master mode. For details, see section 15.2.4, I²C Bus Mode Register (ICMR).

Bit 4—I²C **Master Enable (IICE):** Controls CPU access to the I²C bus interface data and control registers (ICCR, ICSR, ICDR/SARX, ICMR/SAR).

Bit 4

IICE	Description	
0	CPU access to I ² C bus interface data and control registers is disabled	(Initial value)
1	CPU access to I ² C bus interface data and control registers is enabled	

Bit 3—Flash Memory Control Register Enable (FLSHE): Controls the operation of the flash memory in F-ZTAT versions. For details, see section 19, ROM.

Bits 2 to 0—Reserved: Only 0 may be written to these bits.

15.2.8 DDC Switch Register (DDCSWR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	CLR3	CLR2	CLR1	CLR0
Initial value	:	0	0	0	0	1	1	1	1
R/W	:	R/(W)*1	R/(W)*1	R/(W)*1	R/(W)*1	W* ²	W* ²	W^{*2}	W* ²

Notes: *1 Only 0 can be written, to clear the flag.

DDCSWR is an 8-bit readable/writable register that is used to initialize the IIC.

DDCSWR is initialized to H'0F by a reset and in hardware standby mode.

Bits 7 to 4—Reserved: Should always be written with 0.

Bits 3 to 0—IIC Clear 3 to 0 (CLR3 to CLR0): These bits control initialization of the internal state of IIC0 and IIC1.

These bits can only be written to; if read they will always return a value of 1.

When a write operation is performed on these bits, a clear signal is generated for the internal latch circuit of the corresponding module(s), and the internal state of the IIC module(s) is initialized.

The write data for these bits is not retained. To perform IIC clearance, bits CLR3 to CLR0 must be written to simultaneously using an MOV instruction. Do not use a bit manipulation instruction such as BCLR.

When clearing is required again, all the bits must be written to in accordance with the setting.

^{*2} Always read as 1.

Bit 3	Bit 2	Bit 1	Bit 0		
CLR3	CLR2	CLR1	CLR0	Description	
0	0	_	_	Setting prohibited	
	1	0	0	Setting prohibited	
			1	IIC0 internal latch cleared	
		1	0	IIC1 internal latch cleared	
			1	IIC0 and IIC1 internal latches of	cleared
1				Invalid setting	(Initial value)

15.2.9 Module Stop Control Register B (MSTPCRB)

Bit	:	7	6	5	4	3	2	1	0
		MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTPB0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRB is an 8-bit readable/writable register that perform module stop mode control.

When the MSTPB4 or MSTPB3 bit is set to 1, operation of the corresponding IIC channel is halted at the end of the bus cycle, and a transition is made to module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCRB is initialized to H'FF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 4—Module Stop (MSTPB4): Specifies IIC channel 0 module stop mode.

Bit 4

MSTPB4	Description			
0	IIC channel 0 module stop mode is cleared			
1	IIC channel 0 module stop mode is set	(Initial value)		

Bit 3—Module Stop (MSTPB3): Specifies IIC channel 1 module stop mode.

Bit 3

MSTPB3	Description	
0	IIC channel 1 module stop mode is cleared	
1	IIC channel 1 module stop mode is set	(Initial value)

15.3 Operation

15.3.1 I²C Bus Data Format

The I²C bus interface has serial and I²C bus formats.

The I²C bus formats are addressing formats with an acknowledge bit. These are shown in figures 15-3 (a) and (b). The first frame following a start condition always consists of 8 bits.

The serial format is a non-addressing format with no acknowledge bit. Although issuance of start and stop conditions is necessary, this format can be used as a synchronous serial format. This is shown in figure 15-4.

Figure 15-5 shows the I²C bus timing.

The symbols used in figures 15-3 to 15-5 are explained in table 15-4.

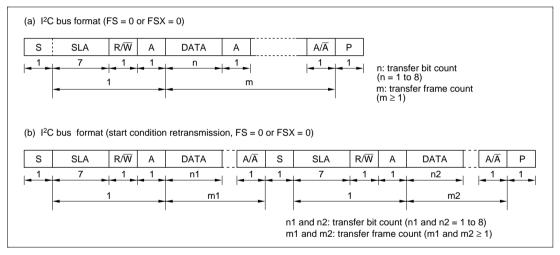


Figure 15-3 I²C Bus Data Formats (I²C Bus Formats)

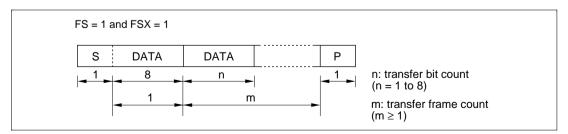


Figure 15-4 I²C Bus Data Format (Serial Format)

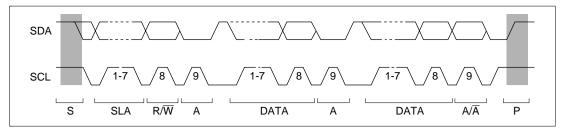


Figure 15-5 I²C Bus Timing

Table 15-4 I²C Bus Data Format Symbols

Legend

Start condition. The master device drives SDA from high to low while SCL is high			
Slave address, by which the master device selects a slave device			
Indicates the direction of data transfer: from the slave device to the master device when R/\overline{W} is 1, or from the master device to the slave device when R/\overline{W} is 0			
Acknowledge. The receiving device (the slave in master transmit mode, or the master in master receive mode) drives SDA low to acknowledge a transfer			
Transferred data. The bit length is set by bits BC2 to BC0 in ICMR. The MSB-first or LSB-first format is selected by bit MLS in ICMR			
Stop condition. The master device drives SDA from low to high while SCL is high			

15.3.2 Master Transmit Operation

In I²C bus format master transmit mode, the master device outputs the transmit clock and transmit data, and the slave device returns an acknowledge signal. The transmission procedure and operations synchronized with the ICDR writing are described below.

- 1. Set the ICE bit in ICCR to 1. Set bits MLS, WAIT, and CKS2 to CKS0 in ICMR, and bit IICX in SCRX, according to the operating mode.
- 2. Read the BBSY flag in ICCR to confirm that the bus is free.
- 3. Set bits MST and TRS to 1 in ICCR to select master transmit mode.
- 4. Write 1 to BBSY and 0 to SCP. This changes SDA from high to low when SCL is high, and generates the start condition.
- 5. Then IRIC and IRTR flags are set to 1. If the IEIC bit in ICCR has been set to 1, an interrupt request is sent to the CPU.
- 6. Write the data (slave address + R/W) to ICDR. After executing an instruction to issue a start condition, data must be written to ICDR after the start condition is generated. If writing is performed before the start condition is generated, data may be output incorrectly. With the I²C bus format (when the FS bit in SAR or the FSX bit in SARX is 0), the first frame data following the start condition indicates the 7-bit slave address and transmit/receive direction. As

indicating the end of the transfer, and so the IRIC flag is cleared to 0. After writing ICDR, clear IRIC continuously not to execute other interrupt handling routine. If one frame of data has been transmitted before the IRIC clearing, it can not be determine the end of transmission. The master device sequentially sends the transmission clock and the data written to ICDR using the timing shown in figure 15-6. The selected slave device (i.e. the slave device with the matching slave address) drives SDA low at the 9th transmit clock pulse and returns an acknowledge signal.

- 7. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of the 9th transmit clock pulse. After one frame has been transmitted SCL is automatically fixed low in synchronization with the internal clock until the next transmit data is written.
- 8. Read the ACKB bit in ICSR to confirm that ACKB is cleared to 0. When the slave device has not acknowledged (ACKB bit is 1), operate the step [12] to end transmission, and retry the transmit operation.
- 9. Write the transmit data to ICDR. As indicating the end of the transfer, and so the IRIC flag is cleared to 0. Perform the ICDR write and the IRIC flag clearing sequentially, just as in point 6 in this flowchart. Transmission of the next frame is performed in synchronization with the internal clock.
- 10. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of the 9th transmit clock pulse. After one frame has been transmitted SCL is automatically fixed low in synchronization with the internal clock until the next transmit data is written.
- 11. Read the ACKB bit in ICSR. Confirm that the slave device has been acknowledged (ACKB bit is 0). When there is data to be transmitted, go to the step [9] to continue next transmission. When the slave device has not acknowledged (ACKB bit is set to 1), operate the step [12] to end transmission.
- 12. Clear the IRIC flag to 0. And write 0 to BBSY and SCP in ICCR. This changes SDA from low to high when SCL is high, and generates the stop condition.

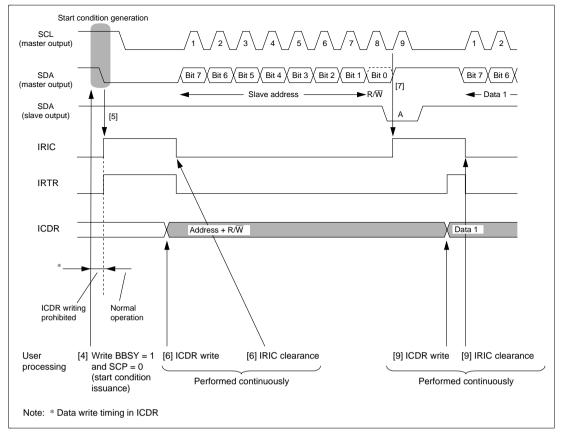


Figure 15-6 Master Transmit Mode Operation Timing Example (MLS = WAIT = 0)

15.3.3 Master Receive Operation

In master receive mode, the master device outputs the receive clock, receives data, and returns an acknowledge signal. The slave device transmits data. Since the data buffer of the I²C bus interface module is configured by ICDRR and ICDRS, continuous reception is enabled. However, if the receive end processing of the last data is delayed, conflict occurs between an instruction to issue a stop condition and SCL clock output to receive the next data. Therefore a phenomenon in which extra clocks are generated or the SDA line output is fixed at low, etc. may occur. In the I²C system, when the last data in the master device is received, the switch control of the acknowledge bit is necessary so as not to return an acknowledge signal. The switch timing for the ACKB bit in ICSR must be controlled. The wait function can be used to prevent these things. The reception procedure and operations with the wait function synchronized with the ICDR read operation to receive data in sequence are shown below.

1. Clear the TRS bit in ICCR to 0 to switch from transmit mode to receive mode, and set the WAIT bit in ICMR to 1. Also clear the ACKB bit in ICSR to 0 (acknowledge data setting).

- 2. When ICDR is read (dummy data read), reception is started, and the receive clock is output, and data received, in synchronization with the internal clock. In order to detect wait operation, set the IRIC flag in ICCR must be cleared to 0. After reading ICDR, clear IRIC continuously not to execute other interrupt handling routine. If one frame of data has been received before the IRIC clearing, it cannot be determine the end of reception.
- 3. The IRIC flag is set to 1 at the fall of the 8th receive clock pulse. If the IEIC bit in ICCR has been set to 1, an interrupt request is sent to the CPU. SCL is automatically fixed low in synchronization with the internal clock until the IRIC flag clearing. If the first frame is the last receive data, execute step [10] to halt reception.
- 4. Clear the IRIC flag to release from the wait state. The master device outputs the 9th clock and drives SDA low at the 9th receive clock pulse to return an acknowledge signal.
- 5. When one frame of data has been received, the IRIC flag in ICCR and the IRTR flag in ICSR are set to 1 at the rise of the 9th receive clock pulse. The master device outputs SCL clock to receive next data.
- 6. Read ICDR.
- 7. Clear the IRIC flag to detect next wait operation. Data reception process from [5] to [7] should be executed during one byte reception period after IRIC flag clearing in [4] or [9] to release wait status.
- 8. The IRIC flags set to 1 at the fall of 8th receive clock pulse. SCL is automatically fixed low in synchronization with the internal clock until the IRIC flag clearing. If this frame is the last receive data, execute step [10] to halt reception.
- 9. Clear the IRIC flag in ICCR to cancel wait operation. The master device drives SDA low at the 9th receive clock pulse and returns an acknowledge signal.

Data can be received continuously by repeating step [5] to [9].

- 10. Set the ACKB bit in ICSR to 1 so as to return "No acknowledge" data. Also set the TRS bit in ICCR to 1 to switch from receive mode to transmit mode.
- 11. Clear IRIC flag to 0 to release from the wait state.
- 12. When one frame of data has been received, the IRIC flag is set to 1 at the rise of the 9th receive clock pulse.
- 13. Clear the WAIT bit to 0 to switch from wait mode to no wait mode. Read ICDR and clear the IRIC flag to 0. Clearing of the IRIC flag should be after the WAIT = 0. (If the WAIT bit is cleared to 0 after clearing the IRIC flag and then an instruction to issue a stop condition is executed, the stop condition cannot be issued because the output level of the SDA line is fixed as low.)
- 14. Clear the BBSY bit and SCP bit to 0. This changes SDA from low to high when SCL is high, and generates the stop condition.

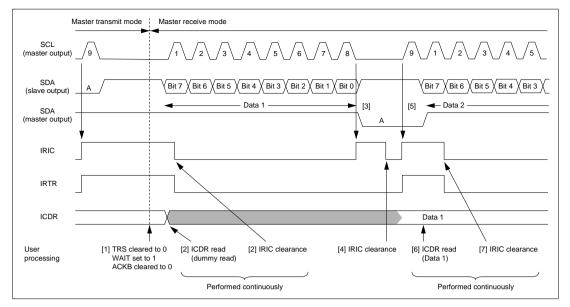


Figure 15-7 Master Receive Mode Operation Timing Example (MLS = ACKB = 0, WAIT = 1)

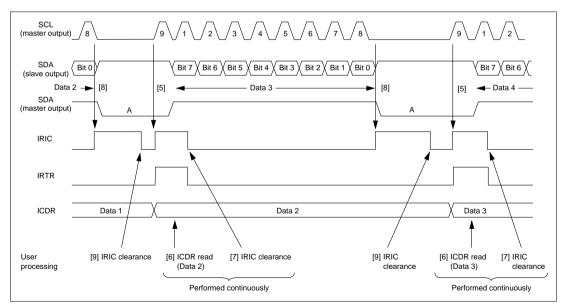


Figure 15-8 Master Receive Mode Operation Timing Example (MLS = ACKB = 0, WAIT = 1)

15.3.4 Slave Receive Operation

In slave receive mode, the master device outputs the transmit clock and transmit data, and the slave device returns an acknowledge signal. The reception procedure and operations in slave receive mode are described below.

- (1) Set the ICE bit in ICCR to 1. Set the MLS bit in ICMR and the MST and TRS bits in ICCR according to the operating mode.
- (2) When the start condition output by the master device is detected, the BBSY flag in ICCR is set to 1.
- (3) When the slave address matches in the first frame following the start condition, the device operates as the slave device specified by the master device. If the 8th data bit (R/\overline{W}) is 0, the TRS bit in ICCR remains cleared to 0, and slave receive operation is performed.
- (4) At the 9th clock pulse of the receive frame, the slave device drives SDA low and returns an acknowledge signal. At the same time, the IRIC flag in ICCR is set to 1. If the IEIC bit in ICCR has been set to 1, an interrupt request is sent to the CPU. If the RDRF internal flag has been cleared to 0, it is set to 1, and the receive operation continues. If the RDRF internal flag has been set to 1, the slave device drives SCL low from the fall of the receive clock until data is read into ICDR.
- (5) Read ICDR and clear the IRIC flag in ICCR to 0. The RDRF flag is cleared to 0.

Receive operations can be performed continuously by repeating steps (4) and (5). When SDA is changed from low to high when SCL is high, and the stop condition is detected, the BBSY flag in ICCR is cleared to 0.

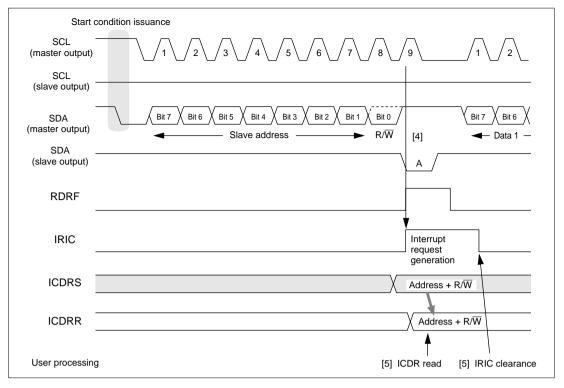


Figure 15-9 Example of Slave Receive Mode Operation Timing (1) $(MLS = ACKB = 0) \label{eq:mass}$

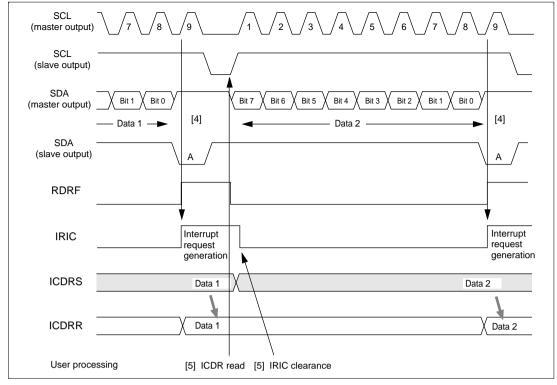


Figure 15-10 Example of Slave Receive Mode Operation Timing (2) (MLS = ACKB = 0)

15.3.5 Slave Transmit Operation

In slave transmit mode, the slave device outputs the transmit data, while the master device outputs the receive clock and returns an acknowledge signal. The transmission procedure and operations in slave transmit mode are described below.

- (1) Set the ICE bit in ICCR to 1. Set the MLS bit in ICMR and the MST and TRS bits in ICCR according to the operating mode.
- (2) When the slave address matches in the first frame following detection of the start condition, the slave device drives SDA low at the 9th clock pulse and returns an acknowledge signal. At the same time, the IRIC flag in ICCR is set to 1. If the IEIC bit in ICCR has been set to 1, an interrupt request is sent to the CPU. If the 8th data bit (R/W) is 1, the TRS bit in ICCR is set to 1, and the mode changes to slave transmit mode automatically. The TDRE flag is set to 1. The slave device drives SCL low from the fall of the transmit clock until ICDR data is written.
- (3) After clearing the IRIC flag to 0, write data to ICDR. The TDRE internal flag is cleared to 0. The written data is transferred to ICDRS, and the TDRE internal flag and the IRIC and IRTR flags are set to 1 again. After clearing the IRIC flag to 0, write the next data to ICDR. The

- slave device sequentially sends the data written into ICDR in accordance with the clock output by the master device at the timing shown in figure 15-11.
- (4) When one frame of data has been transmitted, the IRIC flag in ICCR is set to 1 at the rise of the 9th transmit clock pulse. If the TDRE internal flag has been set to 1, this slave device drives SCL low from the fall of the transmit clock until data is written to ICDR. The master device drives SDA low at the 9th clock pulse, and returns an acknowledge signal. As this acknowledge signal is stored in the ACKB bit in ICSR, this bit can be used to determine whether the transfer operation was performed normally. When the TDRE internal flag is 0, the data written into ICDR is transferred to ICDRS, transmission is started, and the TDRE internal flag and the IRIC and IRTR flags are set to 1 again.
- (5) To continue transmission, clear the IRIC flag to 0, then write the next data to be transmitted into ICDR. The TDRE flag is cleared to 0.

Transmit operations can be performed continuously by repeating steps (4) and (5). To end transmission, write H'FF to ICDR to release SDA on the slave side. When SDA is changed from low to high when SCL is high, and the stop condition is detected, the BBSY flag in ICCR is cleared to 0.

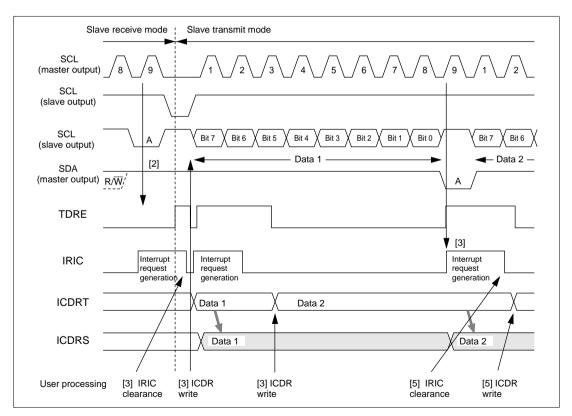


Figure 15-11 Example of Slave Transmit Mode Operation Timing (MLS = 0)

15.3.6 IRIC Setting Timing and SCL Control

The interrupt request flag (IRIC) is set at different times depending on the WAIT bit in ICMR, the FS bit in SAR, and the FSX bit in SARX. If the TDRE or RDRF internal flag is set to 1, SCL is automatically held low after one frame has been transferred; this timing is synchronized with the internal clock. Figure 15-12 shows the IRIC set timing and SCL control.

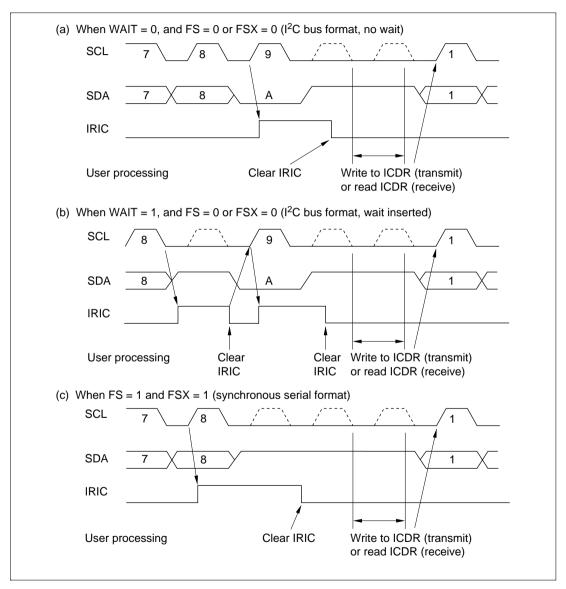


Figure 15-12 IRIC Setting Timing and SCL Control

15.3.7 Operation Using the DTC

The I^2C bus format provides for selection of the slave device and transfer direction by means of the slave address and the R/\overline{W} bit, confirmation of reception with the acknowledge bit, indication of the last frame, and so on. Therefore, continuous data transfer using the DTC must be carried out in conjunction with CPU processing by means of interrupts.

Table 15-5 shows some examples of processing using the DTC. These examples assume that the number of transfer data bytes is known in slave mode.

Table 15-5 Examples of Operation Using the DTC

Item	Master Transmit Mode	Master Receive Mode	Slave Transmit Mode	Slave Receive Mode	
Slave address + R/W bit transmission/ reception	Transmission by DTC (ICDR write)	Transmission by CPU (ICDR write)	Reception by CPU (ICDR read)	Reception by CPU (ICDR read)	
Dummy data read		Processing by CPU (ICDR read)		_	
Actual data transmission/ reception	Transmission by DTC (ICDR write)	Reception by DTC (ICDR read)	Transmission by DTC (ICDR write)	Reception by DTC (ICDR read)	
Dummy data (H'FF) write			Processing by DTC (ICDR write)	_	
Last frame processing	Not necessary	Reception by CPU (ICDR read)	Not necessary	Reception by CPU (ICDR read)	
Transfer request processing after last frame	1st time: Clearing by CPU 2nd time: End	Not necessary	Automatic clearing on detection of end condition during	Not necessary	
processing	condition issuance by CPU		transmission of dummy data (H'FF)		
Setting of number of DTC transfer data frames	Transmission: Actual data count + 1 (+1 equivalent to slave address + R/W bits)	Reception: Actual data count	Transmission: Actual data count + 1 (+1 equivalent to dummy data (H'FF))	Reception: Actual data count	

15.3.8 Noise Canceler

The logic levels at the SCL and SDA pins are routed through noise cancelers before being latched internally. Figure 15-13 shows a block diagram of the noise canceler circuit.

The noise canceler consists of two cascaded latches and a match detector. The SCL (or SDA) input signal is sampled on the system clock, but is not passed forward to the next circuit unless the outputs of both latches agree. If they do not agree, the previous value is held.

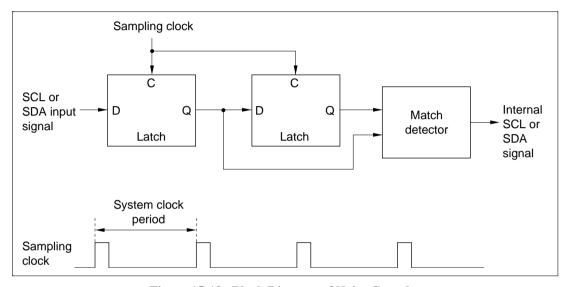


Figure 15-13 Block Diagram of Noise Canceler

15.3.9 Sample Flowcharts

Figures 15-14 to 15-17 show sample flowcharts for using the I²C bus interface in each mode.

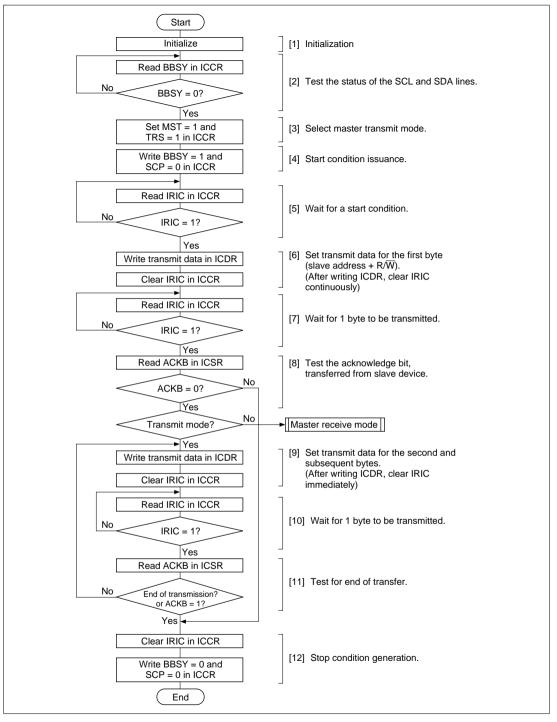


Figure 15-14 Flowchart for Master Transmit Mode (Example)

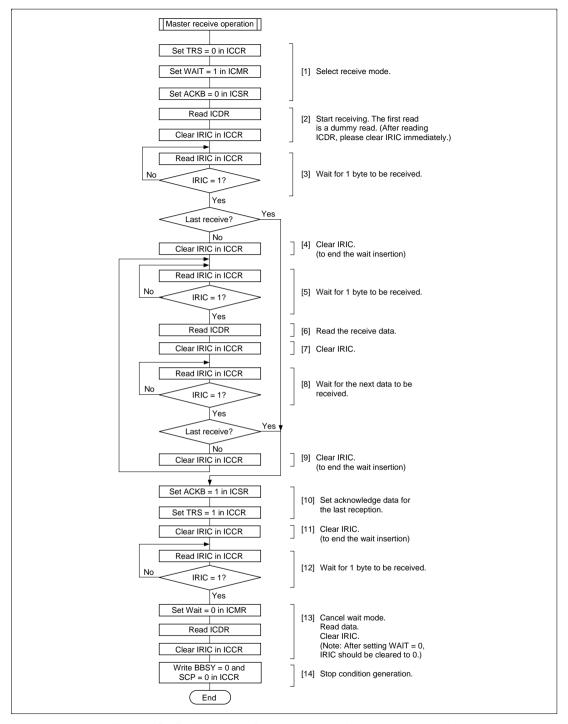


Figure 15-15 Flowchart for Master Receive Mode (Example)

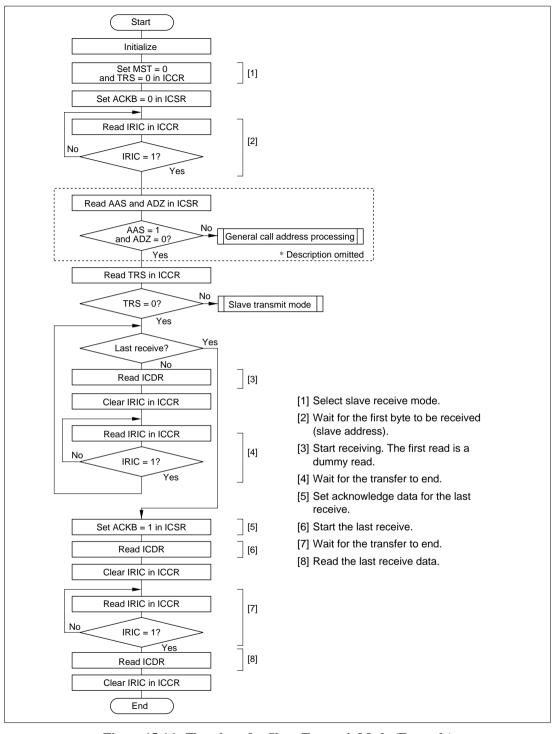


Figure 15-16 Flowchart for Slave Transmit Mode (Example)

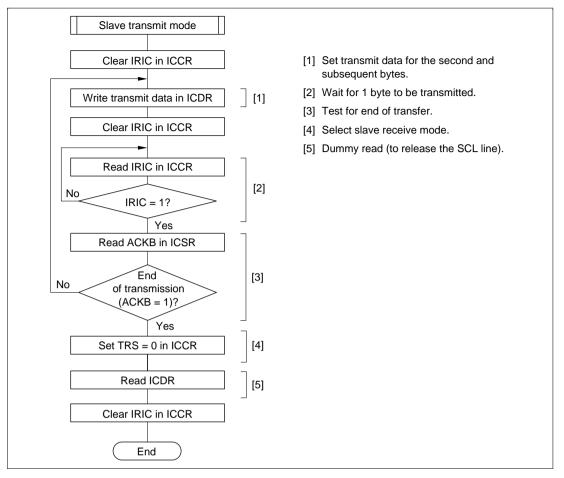


Figure 15-17 Flowchart for Slave Receive Mode (Example)

15.3.10 Initialization of Internal State

The IIC has a function for forcible initialization of its internal state if a deadlock occurs during communication.

Initialization is executed in accordance with the setting of bits CLR3 to CLR0 in the DDCSWR register. For details see section 15.2.8, DDC Switch Register (DDCSWR).

Scope of Initialization: The initialization executed by this function covers the following items:

- TDRE and RDRF internal flags
- Transmit/receive sequencer and internal operating clock counter
- Internal latches for retaining the output state of the SCL and SDA pins (wait, clock, data output, etc.)

The following items are not initialized:

- Actual register values (ICDR, SAR, SARX, ICMR, ICCR, ICSR, DDCSWR, STCR)
- Internal latches used to retain register read information for setting/clearing flags in the ICMR, ICCR, ICSR, and DDCSWR registers
- The value of the ICMR register bit counter (BC2 to BC0)
- Generated interrupt sources (interrupt sources transferred to the interrupt controller)

Notes on Initialization:

- Interrupt flags and interrupt sources are not cleared, and so flag clearing measures must be taken as necessary.
- Basically, other register flags are not cleared either, and so flag clearing measures must be taken as necessary.
- The write data for bits CLR3 to CLR0 is not retained. To perform IIC clearance, bits CLR3 to CLR0 must be written to simultaneously using an MOV instruction. Do not use a bit manipulation instruction such as BCLR. Similarly, when clearing is required again, all the bits must be written to simultaneously in accordance with the setting.
- If a flag clearing setting is made during transmission/reception, the IIC module will stop transmitting/receiving at that point and the SCL and SDA pins will be released. When transmission/reception is started again, register initialization, etc., must be carried out as necessary to enable correct communication as a system.

The value of the BBSY bit cannot be modified directly by this module clear function, but since the stop condition pin waveform is generated according to the state and release timing of the SCL and SDA pins, the BBSY bit may be cleared as a result. Similarly, state switching of other bits and flags may also have an effect.

To prevent problems caused by these factors, the following procedure should be used when initializing the IIC state.

- Execute initialization of the internal state according to the setting of bits CLR3 to CLR0 or bit ICE.
- 2. Execute a stop condition issuance instruction (write 0 to BBSY and SCP) to clear the BBST bit to 0, and wait for two transfer rate clock cycles.
- Re-execute initialization of the internal state according to the setting of bits CLR3 to CLR0 or bit ICE.
- 4. Initialize (re-set) the IIC registers.

15.4 Usage Notes

- In master mode, if an instruction to generate a start condition is immediately followed by an instruction to generate a stop condition, neither condition will be output correctly. To output consecutive start and stop conditions, after issuing the instruction that generates the start condition, read the relevant ports, check that SCL and SDA are both low, then issue the instruction that generates the stop condition. Note that SCL may not yet have gone low when BBSY is cleared to 0.
- Either of the following two conditions will start the next transfer. Pay attention to these conditions when reading or writing to ICDR.
 - Write access to ICDR when ICE = 1 and TRS = 1 (including automatic transfer from ICDRT to ICDRS)
 - Read access to ICDR when ICE = 1 and TRS = 0 (including automatic transfer from ICDRS to ICDRR)
- Table 15-6 shows the timing of SCL and SDA output in synchronization with the internal clock. Timings on the bus are determined by the rise and fall times of signals affected by the bus load capacitance, series resistance, and parallel resistance.

Table 15-6 I²C Bus Timing (SCL and SDA Output)

Item	Symbol	Output Timing	Unit	Notes
SCL output cycle time	t _{sclo}	$28t_{cyc}$ to $256t_{cyc}$	ns	Figure 23-25
SCL output high pulse width	t _{SCLHO}	0.5t _{SCLO}	ns	(reference)
SCL output low pulse width	t _{SCLLO}	0.5t _{SCLO}	ns	-
SDA output bus free time	t _{BUFO}	0.5t _{SCLO} - 1t _{cyc}	ns	-
Start condition output hold time	t _{STAHO}	$0.5t_{SCLO} - 1t_{cyc}$	ns	-
Retransmission start condition output setup time	t _{STASO}	1t _{SCLO}	ns	-
Stop condition output setup time	t _{STOSO}	0.5t _{SCLO} + 2t _{cyc}	ns	-
Data output setup time (master)	t _{SDASO}	$1t_{\text{SCLLO}} - 3t_{\text{cyc}}$	ns	-
Data output setup time (slave)	_	$1t_{\text{SCLL}} - 3t_{\text{cyc}}$		
Data output hold time	t _{SDAHO}	3t _{cyc}	ns	-

SCL and SDA input is sampled in synchronization with the internal clock. The AC timing
therefore depends on the system clock cycle t_{cyc}, as shown in table 23-9 in section 23,
Electrical Characteristics. Note that the I²C bus interface AC timing specifications will not be
met with a system clock frequency of less than 5 MHz.

• The I²C bus interface specification for the SCL rise time t_{sr} is under 1000 ns (300 ns for high-speed mode). In master mode, the I²C bus interface monitors the SCL line and synchronizes one bit at a time during communication. If t_{sr} (the time for SCL to go from low to V_{IH}) exceeds the time determined by the input clock of the I²C bus interface, the high period of SCL is extended. The SCL rise time is determined by the pull-up resistance and load capacitance of the SCL line. To insure proper operation at the set transfer rate, adjust the pull-up resistance and load capacitance so that the SCL rise time does not exceed the values given in the table below.

Table 15-7 Permissible SCL Rise Time (t_{SR}) Values

				Time Indicat	ion	
IICX	t _{cyc} Indicatio	on	I ² C Bus Specification (Max.)	ø = 5 MHz	ø = 8 MHz	ø = 10 MHz
0	7.5t _{cyc}	Normal mode	1000 ns	1000 ns	937 ns	750 ns
		High-speed mode	300 ns	300 ns	300 ns	300 ns
1	17.5t _{cyc}	Normal mode	1000 ns	1000 ns	1000 ns	1000 ns
		High-speed mode	300 ns	300 ns	300 ns	300 ns

• The I²C bus interface specifications for the SCL and SDA rise and fall times are under 1000 ns and 300 ns. The I²C bus interface SCL and SDA output timing is prescribed by t_{Scyc} and t_{cyc}, as shown in table 15-6. However, because of the rise and fall times, the I²C bus interface specifications may not be satisfied at the maximum transfer rate. Table 15-8 shows output timing calculations for different operating frequencies, including the worst-case influence of rise and fall times. The values in the above table will vary depending on the settings of the IICX0 bit and bits CKS0 to CKS2. Depending on the frequency it may not be possible to achieve the maximum transfer rate; therefore, whether or not the I²C bus interface specifications are met must be determined in accordance with the actual setting conditions.

 t_{BUFO} fails to meet the I^2C bus interface specifications at any frequency. The solution is either (a) to provide coding to secure the necessary interval (approximately 1 μ s) between issuance of a stop condition and issuance of a start condition, or (b) to select devices whose input timing permits this output timing for use as slave devices connected to the I^2C bus.

 t_{SCLLO} in high-speed mode and t_{STASO} in standard mode fail to satisfy the I^2C bus interface specifications for worst-case calculations of t_{Sr}/t_{Sf} . Possible solutions that should be investigated include (a) adjusting the rise and fall times by means of a pull-up resistor and capacitive load, (b) reducing the transfer rate to meet the specifications, or (c) selecting devices whose input timing permits this output timing for use as slave devices connected to the I^2C bus.

Table 15-8 I²C Bus Timing (with Maximum Influence of t_{sr}/t_{sr})

Time Indication (at Maximum Transfer Rate) [ns]

			-				=
Item	t _{cyc} Indication		t _{sr} /t _{sr} Influence (Max.)	I ² C Bus Specifi- cation (Min.)	ø = 5 MHz	ø = 8 MHz	ø = 10 MHz
t _{SCLHO}	$0.5t_{SCLO}$ ($-t_{Sr}$)	Standard mode	-1000	4000	4000	4000	4000
		High-speed mode	-300	600	950	950	950
t _{SCLLO}	0.5t _{SCLO} (-t _{Sf})	Standard mode	-250	4700	4750	4750	4750
		High-speed mode	-250	1300	1000*1	1000*1	1000*1
t _{BUFO}	$0.5t_{\text{SCLO}} - 1t_{\text{cyc}}$	Standard mode	-1000	4700	3800* ¹	3875* ¹	3900*1
	$(-t_{Sr})$	High-speed mode	-300	1300	750* ¹	825* ¹	850*1
t _{STAHO}	$0.5t_{\text{SCLO}} - 1t_{\text{cyc}}$	Standard mode	-250	4000	4550	4625	4650
	$(-t_{Sf})$	High-speed mode	-250	600	800	875	900
t _{STASO}	1t _{SCLO} (-t _{Sr})	Standard mode	-1000	4700	9000	9000	9000
		High-speed mode	-300	600	2200	2200	2200
t _{stoso}	0.5t _{SCLO} + 2t _{cyc}	Standard mode	-1000	4000	4400	4250	4200
	$(-t_{Sr})$	High-speed mode	-300	600	1350	1200	1150
t _{SDASO}	$1t_{\text{SCLLO}}^{*2} - 3t_{\text{cyc}}$	Standard mode	-1000	250	3100	3325	3400
(master)	$(-t_{Sr})$	High-speed mode	-300	100	400	625	700
t _{SDASO}	1t _{scll} *2 - 3t _{cyc}	Standard mode	-1000	250	3100	3325	3400
(slave)	(-t _{Sr})	High-speed mode	-300	100	400	625	700
t _{SDAHO}	3t _{cyc}	Standard mode	0	0	600	375	300
		High-speed mode	0	0	600	375	300

Notes: *1 The following measures should be taken in order to meet the I²C bus interface specification: (a) secure a start/stop condition issuance interval; (b) adjust the rise and fall times by means of a pull-up resistor and capacitive load; (c) reduce the transfer rate; (d) select slave devices whose input timing permits this output timing.

The values in the above table will vary depending on the settings of the IICX bit and bits CKS0 to CKS2. Depending on the frequency it may not be possible to achieve the maximum transfer rate; therefore, whether or not the I^2C bus interface specifications are met must be determined in accordance with the actual setting conditions.

*2 Calculated using the I²C bus specification values (standard mode: 4700 ns min.; high-speed mode: 1300 ns min.).

• Note on ICDR Read at End of Master Reception

To halt reception at the end of a receive operation in master receive mode, set the TRS bit in ICDR to 1 and write 0 to BBSY and SCP in ICCR. This changes SDA from low to high when SCL is high, and generates the stop condition. After this, receive data can be read by means of an ICDR read, but if data remains in the buffer the ICDRS receive data will not be transferred to ICDR, and so it will not be possible to read the second byte of data.

If it is necessary to read the second byte of data, issue the stop condition in master receive mode (i.e. with the TRS bit cleared to 0). When reading the receive data, first confirm that the BBSY bit in the ICCR register is cleared to 0, the stop condition has been generated, and the bus has been released, then read the ICDR register with TRS cleared to 0.

Note that if the receive data (ICDR data) is read in the interval between execution of the instruction for issuance of the stop condition (writing of 0 to BBSY and SCP in ICCR) and the actual generation of the stop condition, the clock may not be output correctly in subsequent master transmission.

Clearing of the MST bit after completion of master transmission/reception, or other modifications of IIC control bits to change the transmit/receive operating mode or settings, must be carried out during interval (a) in figure 15-18 (after confirming that the BBSY bit has been cleared to 0 in the ICCR register).

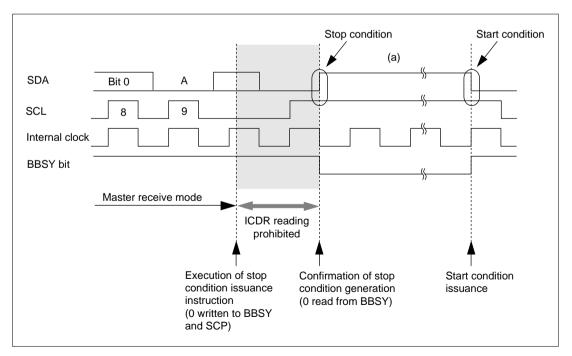


Figure 15-18 Points for Attention Concerning Reading of Master Receive Data

• Notes on Start Condition Issuance for Retransmission

Depending on the timing combination of the retransmission start condition issuance and execution of the transfer instruction for the next byte, it may not be possible to issue the retransmission start condition or perform data transmission after retransmission start condition issuance. Therefore, after the retransmission start condition is issued and the start condition is generated, write transmit data to ICDR. Figure 15-19 shows the timing of start condition issuance for retransmission, and the timing for subsequently writing data to ICDR, together with the corresponding flowchart.

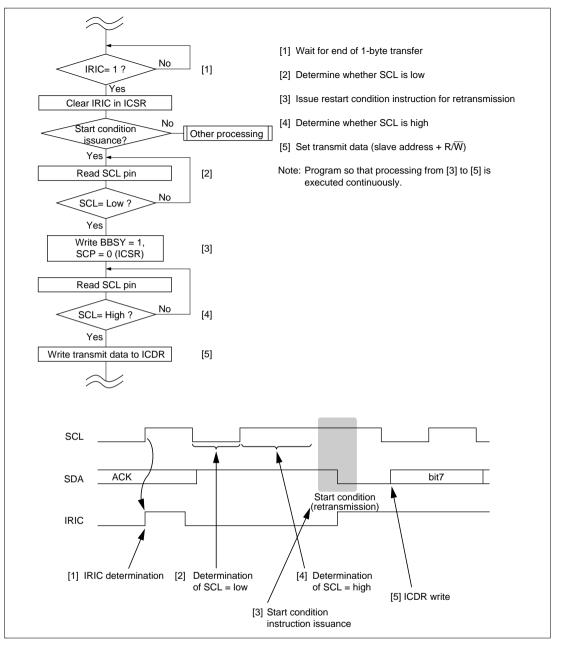


Figure 15-19 Flowchart and Timing of Start Condition Instruction Issuance for Retransmission

Notes on I²C Bus Interface Stop Condition Instruction Issuance

If the rise time of the 9th SCL acknowledge exceeds the specification because the bus load capacitance is large, or if there is a slave device of the type that drives SCL low to effect a wait, issue the stop condition instruction after reading SCL and determining it to be low, as shown below.

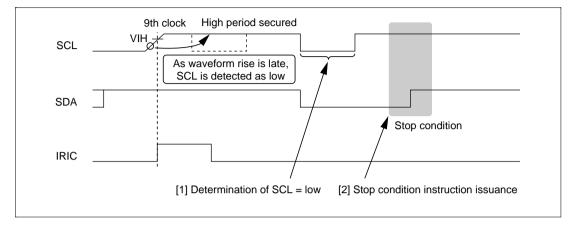


Figure 15-20 Timing of Stop Condition Issuance

Section 16 A/D Converter

16.1 Overview

The H8S/2238 Series incorporates a successive approximation type 10-bit A/D converter that allows up to eight analog input channels to be selected.

16.1.1 Features

A/D converter features are listed below

- 10-bit resolution
- Eight input channels
- Settable analog conversion voltage range
 - Conversion of analog voltages with the reference voltage pin (V_{ref}) as the analog reference voltage
- High-speed conversion
 - Minimum conversion time: 9.9 µs per channel (at 13 MHz operation)
- Choice of single mode or scan mode
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels
- Four data registers
 - Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Three kinds of conversion start
 - Choice of software or timer conversion start trigger (TPU or 8-bit timer), or ADTRG pin
- A/D conversion end interrupt generation
 - A/D conversion end interrupt (ADI) request can be generated at the end of A/D conversion
- Module stop mode can be set
 - As the initial setting, A/D converter operation is halted. Register access is enabled by exiting module stop mode.

16.1.2 Block Diagram

Figure 16-1 shows a block diagram of the A/D converter.

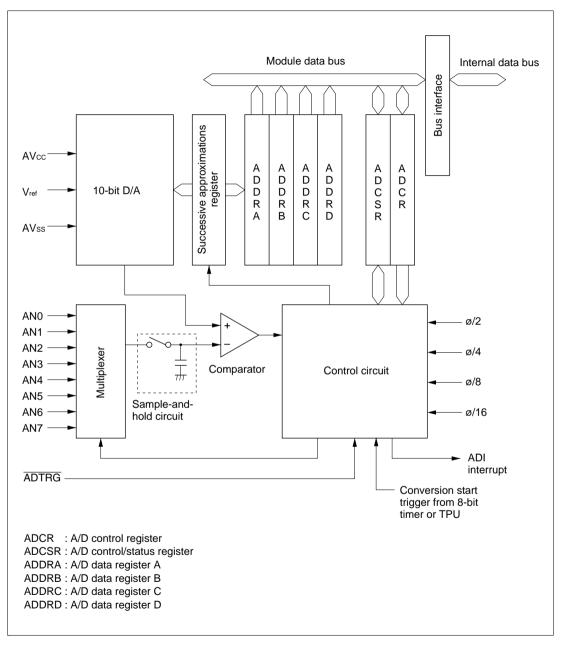


Figure 16-1 Block Diagram of A/D Converter

16.1.3 Pin Configuration

Table 16-1 summarizes the input pins used by the A/D converter.

The AVcc and AVss pins are the power supply pins for the analog block in the A/D converter. The Vref pin is the A/D conversion reference voltage pin.

The eight analog input pins are divided into two groups: group 0 (AN0 to AN3), and group 1 (AN4 to AN7).

Table 16-1 A/D Converter Pins

Pin Name	Symbol	I/O	Function
Analog power supply pin	AVcc	Input	Analog block power supply
Analog ground pin	AVss	Input	Analog block ground and reference voltage
Reference voltage pin	Vref	Input	A/D conversion reference voltage
Analog input pin 0	AN0	Input	Group 0 analog inputs
Analog input pin 1	AN1	Input	
Analog input pin 2	AN2	Input	
Analog input pin 3	AN3	Input	
Analog input pin 4	AN4	Input	Group 1 analog inputs
Analog input pin 5	AN5	Input	
Analog input pin 6	AN6	Input	
Analog input pin 7	AN7	Input	
A/D external trigger input pin	ADTRG	Input	External trigger input for starting A/D conversion

16.1.4 Register Configuration

Table 16-2 summarizes the registers of the A/D converter.

Table 16-2 A/D Converter Registers

Name	Abbreviation	R/W	Initial Value	Address*1
A/D data register AH	ADDRAH	R	H'00	H'FF90
A/D data register AL	ADDRAL	R	H'00	H'FF91
A/D data register BH	ADDRBH	R	H'00	H'FF92
A/D data register BL	ADDRBL	R	H'00	H'FF93
A/D data register CH	ADDRCH	R	H'00	H'FF94
A/D data register CL	ADDRCL	R	H'00	H'FF95
A/D data register DH	ADDRDH	R	H'00	H'FF96
A/D data register DL	ADDRDL	R	H'00	H'FF97
A/D control/status register	ADCSR	R/(W)*2	H'00	H'FF98
A/D control register	ADCR	R/W	H'33	H'FF99
Module stop control register A	MSTPCRA	R/W	H'3F	H'FDE8

Notes: *1 Lower 16 bits of the address.

^{*2} Bit 7 can only be written with 0 for flag clearing.

16.2 Register Descriptions

16.2.1 A/D Data Registers A to D (ADDRA to ADDRD)

Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	_	_	_	_	_	
Initial value	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W	:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

There are four 16-bit read-only ADDR registers, ADDRA to ADDRD, used to store the results of A/D conversion.

The 10-bit data resulting from A/D conversion is transferred to the ADDR register for the selected channel and stored there. The upper 8 bits of the converted data are transferred to the upper byte (bits 15 to 8) of ADDR, and the lower 2 bits are transferred to the lower byte (bits 7 and 6) and stored. Bits 5 to 0 are always read as 0.

The correspondence between the analog input channels and ADDR registers is shown in table 16-3.

ADDR can always be read by the CPU. The upper byte can be read directly, but for the lower byte, data transfer is performed via a temporary register (TEMP). For details, see section 16.3, Interface to Bus Master.

The ADDR registers are initialized to H'0000 by a reset, and in standby mode or module stop mode.

Table 16-3 Analog Input Channels and Corresponding ADDR Registers

Analog Input Channel

Group 0	Group 1	A/D Data Register
AN0	AN4	ADDRA
AN1	AN5	ADDRB
AN2	AN6	ADDRC
AN3	AN7	ADDRD

16.2.2 A/D Control/Status Register (ADCSR)

5 4 2 1 0 Bit 7 6 3 ADF ADIE **ADST** SCAN CH2 CH1 CH0 0 0 0 0 0 Initial value: 0 0 0 R/(W)* R/W : R/W R/W R/W R/W R/W R/W R/W

Note: * Only 0 can be written to bit 7, to clear this flag.

ADCSR is an 8-bit readable/writable register that controls A/D conversion operations.

ADCSR is initialized to H'00 by a reset, and in hardware standby mode or module stop mode.

Bit 7—A/D End Flag (ADF): Status flag that indicates the end of A/D conversion.

Bit 7

ADF	Description						
0	[Clearing conditions] (Initial value						
	 When 0 is written to the ADF flag after reading ADF = 1 						
	 When the DTC is activated by an ADI interrupt and ADDR is read 						
1	[Setting conditions]						
	Single mode: When A/D conversion ends						
	Scan mode: When A/D conversion ends on all specified channels						

Bit 6—A/D Interrupt Enable (ADIE): Selects enabling or disabling of interrupt (ADI) requests at the end of A/D conversion.

Bit 6

ADIE	 Description	
0	A/D conversion end interrupt (ADI) request disabled	(Initial value)
1	A/D conversion end interrupt (ADI) request enabled	

Bit 5—A/D Start (ADST): Selects starting or stopping on A/D conversion. Holds a value of 1 during A/D conversion.

The ADST bit can be set to 1 by software, a timer conversion start trigger, or the A/D external trigger input pin (\overline{ADTRG}) .

Bit 5

ADST	De	escription		
0	•	A/D conversi	on stopped	(Initial value)
1	•	Single mode:	A/D conversion is started. Cleared to 0 automatically conversion on the specified channel ends	when
	•	Scan mode:	A/D conversion is started. Conversion continues sequence selected channels until ADST is cleared to 0 by softwar a transition to standby mode or module stop mode.	•

Bit 4—Scan Mode (SCAN): Selects single mode or scan mode as the A/D conversion operating mode. See section 16.4, Operation, for single mode and scan mode operation. Only set the SCAN bit while conversion is stopped.

Bit 4

SCAN	 Description	
0	Single mode	(Initial value)
1	Scan mode	

Bit 3—Reserved: 0 should be written to this bit.

Bits 2 to 0—Channel Select 2 to 0 (CH2 to CH0): Together with the SCAN bit, these bits select the analog input channels.

Only set the input channel while conversion is stopped (ADST = 0).

Group Selection	Channel Selection		Description				
CH2	CH1 CH0		Single Mode (SCAN = 0)	Scan Mode (SCAN = 1)			
0	0	0	AN0 (Initial value)	AN0			
		1	AN1	ANO, AN1			
	1	0	AN2	AN0 to AN2			
		1	AN3	AN0 to AN3			
1	0	0	AN4	AN4			
		1	AN5	AN4, AN5			
	1	0	AN6	AN4 to AN6			
		1	AN7	AN4 to AN7			

16.2.3 A/D Control Register (ADCR)

Bit	:	7	6	5	4	3	2	1	0
		TRGS1	TRGS0	_	_	CKS1	CKS0	_	_
Initial value	:	0	0	1	1	0	0	1	1
R/W	:	R/W	R/W	_		R/W	R/W		

ADCR is an 8-bit readable/writable register that enables or disables external triggering of A/D conversion operations and sets the A/D conversion time.

ADCR is initialized to H'33 by a reset, and in standby mode or module stop mode.

Bits 7 and 6—Timer Trigger Select 1 and 0 (TRGS1, TRGS0): Select enabling or disabling of the start of A/D conversion by a trigger signal. Only set bits TRGS1 and TRGS0 while conversion is stopped (ADST = 0).

Bit 7	Bit 6					
TRGS1	TRGS0	Description				
0	0	A/D conversion start by software is enabled	(Initial value)			
	1	A/D conversion start by TPU conversion start trigger is	enabled			
1	0	A/D conversion start by 8-bit timer conversion start trig	ger is enabled			
	1	A/D conversion start by external trigger pin (ADTRG) is enabled				

Bits 5, 4, 1 and 0—Reserved: These bits cannot be modified and are always read as 1.

Bits 3 and 2—Clock Select 1 and 0 (CKS1, CKS0): These bits select the A/D conversion time. The conversion time should be changed only when ADST = 0. The conversion time setting should exceed the conversion times shown in sections 23.2.4 and 23.3.4, A/D Conversion Characteristics.

Bit 3	Bit 2		
CKS1	CKS0	 Description	
0	0	Conversion time = 530 states (max.)	(Initial value)
	1	Conversion time = 260 states (max.)	
1	0	Conversion time = 134 states (max.)	
	1	Conversion time = 68 states (max.)	

16.2.4 Module Stop Control Register A (MSTPCRA)

Bit	:	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	:	0	0	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRA is an 8-bit readable/writable register that performs module stop mode control.

When the MSTPA1 bit in MSTPCR is set to 1, A/D converter operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCRA is initialized to H'3F by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 1—Module Stop (MSTPA1): Specifies the A/D converter module stop mode.

Bit 1

MSTPA1	 Description	
0	A/D converter module stop mode cleared	_
1	A/D converter module stop mode set	(Initial value)

16.3 Interface to Bus Master

ADDRA to ADDRD are 16-bit registers, and the data bus to the bus master is 8 bits wide. Therefore, in accesses by the bus master, the upper byte is accessed directly, but the lower byte is accessed via a temporary register (TEMP).

A data read from ADDR is performed as follows. When the upper byte is read, the upper byte value is transferred to the CPU and the lower byte value is transferred to TEMP. Next, when the lower byte is read, the TEMP contents are transferred to the CPU.

When reading ADDR. always read the upper byte before the lower byte. It is possible to read only the upper byte, but if only the lower byte is read, incorrect data may be obtained.

Figure 16-2 shows the data flow for ADDR access.

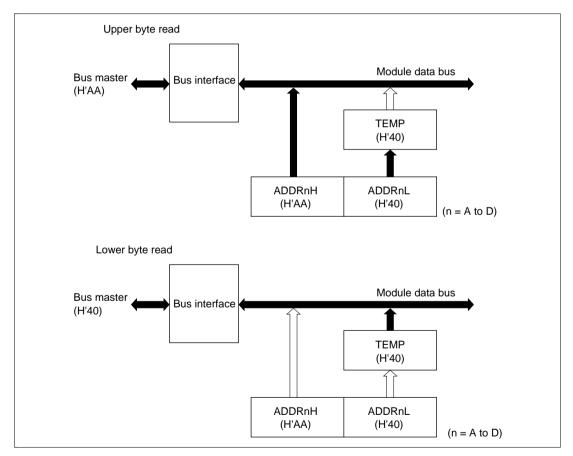


Figure 16-2 ADDR Access Operation (Reading H'AA40)

16.4 Operation

The A/D converter operates by successive approximation with 10-bit resolution. It has two operating modes: single mode and scan mode.

16.4.1 Single Mode (SCAN = 0)

Single mode is selected when A/D conversion is to be performed on a single channel only. A/D conversion is started when the ADST bit is set to 1, according to the software or external trigger input. The ADST bit remains set to 1 during A/D conversion, and is automatically cleared to 0 when conversion ends.

On completion of conversion, the ADF flag is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated. The ADF flag is cleared by writing 0 after reading ADCSR.

When the operating mode or analog input channel must be changed during analog conversion, to prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. After making the necessary changes, set the ADST bit to 1 to start A/D conversion again. The ADST bit can be set at the same time as the operating mode or input channel is changed.

Typical operations when channel 1 (AN1) is selected in single mode are described next. Figure 16-3 shows a timing diagram for this example.

- [1] Single mode is selected (SCAN = 0), input channel AN1 is selected (CH2 = 0, CH1 = 0, CH0 = 1), the A/D interrupt is enabled (ADIE = 1), and A/D conversion is started (ADST = 1).
- [2] When A/D conversion is completed, the result is transferred to ADDRB. At the same time the ADF flag is set to 1, the ADST bit is cleared to 0, and the A/D converter becomes idle.
- [3] Since ADF = 1 and ADIE = 1, an ADI interrupt is requested.
- [4] The A/D interrupt handling routine starts.
- [5] The routine reads ADCSR, then writes 0 to the ADF flag.
- [6] The routine reads and processes the connection result (ADDRB).
- [7] Execution of the A/D interrupt handling routine ends. After that, if the ADST bit is set to 1, A/D conversion starts again and steps [2] to [7] are repeated.

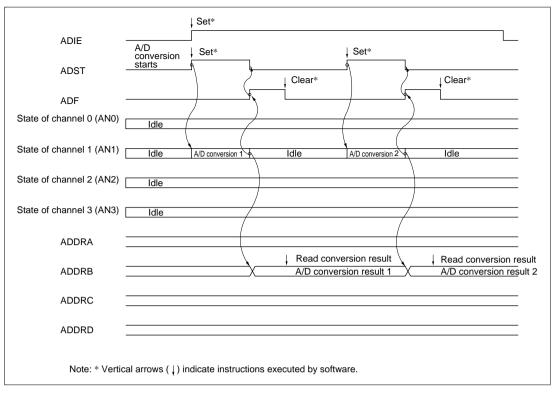


Figure 16-3 Example of A/D Converter Operation (Single Mode, Channel 1 Selected)

16.4.2 Scan Mode (SCAN = 1)

Scan mode is useful for monitoring analog inputs in a group of one or more channels. When the ADST bit is set to 1 by a software, timer or external trigger input, A/D conversion starts on the first channel in the group (AN0). When two or more channels are selected, after conversion of the first channel ends, conversion of the second channel (AN1) starts immediately. A/D conversion continues cyclically on the selected channels until the ADST bit is cleared to 0. The conversion results are transferred for storage into the ADDR registers corresponding to the channels.

When the operating mode or analog input channel must be changed during analog conversion, to prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. After making the necessary changes, set the ADST bit to 1 to start A/D conversion again from the first channel (AN0). The ADST bit can be set at the same time as the operating mode or input channel is changed.

Typical operations when three channels (AN0 to AN2) are selected in scan mode are described next. Figure 16-4 shows a timing diagram for this example.

- [1] Scan mode is selected (SCAN = 1), scan group 0 is selected (CH2 = 0), analog input channels AN0 to AN2 are selected (CH1 = 1, CH0 = 0), and A/D conversion is started (ADST = 1)
- [2] When A/D conversion of the first channel (AN0) is completed, the result is transferred to ADDRA. Next, conversion of the second channel (AN1) starts automatically.
- [3] Conversion proceeds in the same way through the third channel (AN2).
- [4] When conversion of all the selected channels (AN0 to AN2) is completed, the ADF flag is set to 1 and conversion of the first channel (AN0) starts again. If the ADIE bit is set to 1 at this time, an ADI interrupt is requested after A/D conversion ends.
- [5] Steps [2] to [4] are repeated as long as the ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops. After that, if the ADST bit is set to 1, A/D conversion starts again from the first channel (AN0).

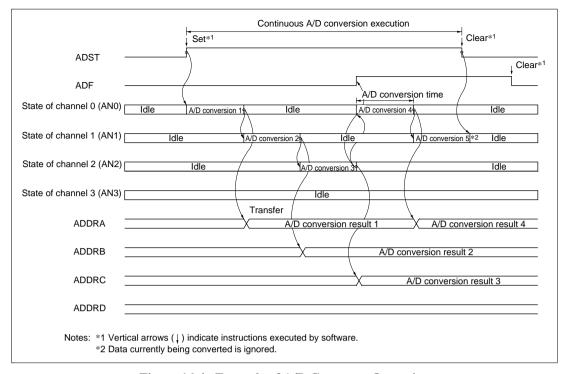


Figure 16-4 Example of A/D Converter Operation (Scan Mode, Channels AN0 to AN2 Selected)

16.4.3 Input Sampling and A/D Conversion Time

The A/D converter has a built-in sample-and-hold circuit. The A/D converter samples the analog input at a time t_D after the ADST bit is set to 1, then starts conversion. Figure 16-5 shows the A/D conversion timing. Table 16-4 indicates the A/D conversion time.

As indicated in figure 16-5, the A/D conversion time includes t_D and the input sampling time. The length of t_D varies depending on the timing of the write access to ADCSR. The total conversion time therefore varies within the ranges indicated in table 16-4.

In scan mode, the values given in table 16-4 apply to the first conversion time. The values given in table 16-5 apply to the second and subsequent conversions.

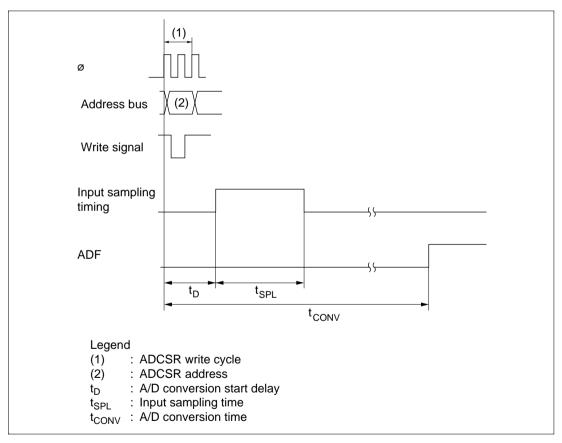


Figure 16-5 A/D Conversion Timing

Table 16-4 A/D Conversion Time (Single Mode)

		CKS1 = 0			CKS1 = 1								
		С	KS0	= 0	С	KS0	= 1	С	KS0	= 0	С	KS0	
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
A/D conversion start delay	t _D	18	_	33	10	_	17	6	_	9	4	_	5
Input sampling time	t _{SPL}	_	127	_	_	63	_	_	31	_	_	15	_
A/D conversion time	t _{CONV}	515	_	530	259	_	266	131	_	134	67	_	68

Note: Values in the table are the number of states.

Table 16-5 A/D Conversion Time (Scan Mode)

CKS1	CKS0	Conversion Time (State)
0	0	512 (Fixed)
	1	256 (Fixed)
1	0	128 (Fixed)
	1	64 (Fixed)

16.4.4 External Trigger Input Timing

A/D conversion can be externally triggered. When the TRGS1 and TRGS0 bits are both set to 1 in ADCR, external trigger input is enabled at the ADTRG pin. A falling edge at the ADTRG pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in both single and scan modes, are the same as if the ADST bit has been set to 1 by software. Figure 16-6 shows the timing.

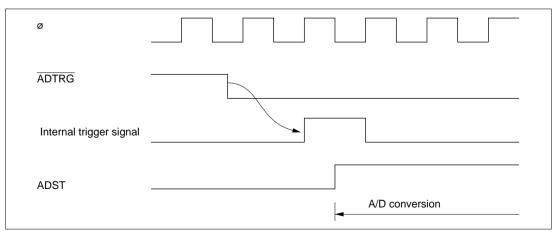


Figure 16-6 External Trigger Input Timing

16.5 Interrupts

The A/D converter generates an A/D conversion end interrupt (ADI) at the end of A/D conversion. ADI interrupt requests can be enabled or disabled by means of the ADIE bit in ADCSR.

The DTC can be activated by an ADI interrupt. Having the converted data read by the DTC in response to an ADI interrupt enables continuous conversion to be achieved without imposing a load on software.

The A/D converter interrupt source is shown in table 16-6.

Table 16-6 A/D Converter Interrupt Source

Interrupt Source	Description	DTC Activation
ADI	Interrupt due to end of conversion	Possible

16.6 Usage Notes

The following points should be noted when using the A/D converter.

Setting Range of Analog Power Supply and Other Pins:

(1) Analog input voltage range

The voltage applied to analog input pin ANn during A/D conversion should be in the range $AVss \le ANn \le Vref$.

- (2) Relation between AVcc, AVss and Vcc, Vss
 - As the relationship between AVcc, AVss and Vcc, Vss, set AVss = Vss. If the A/D converter is not used, the AVCC and AVSS pins must on no account be left open.
- (3) Vref input range

The analog reference voltage input at the Vref pin set in the range $Vref \le AVcc$.

If conditions (1), (2), and (3) above are not met, the reliability of the device may be adversely affected.

Notes on Board Design: In board design, digital circuitry and analog circuitry should be as mutually isolated as possible, and layout in which digital circuit signal lines and analog circuit signal lines cross or are in close proximity should be avoided as far as possible. Failure to do so may result in incorrect operation of the analog circuitry due to inductance, adversely affecting A/D conversion values.

Also, digital circuitry must be isolated from the analog input signals (AN0 to AN7), analog reference power supply (Vref), and analog power supply (AVcc) by the analog ground (AVss). Also, the analog ground (AVss) should be connected at one point to a stable digital ground (Vss) on the board.

Notes on Noise Countermeasures: A protection circuit connected to prevent damage due to an abnormal voltage such as an excessive surge at the analog input pins (AN0 to AN7) and analog reference power supply (Vref) should be connected between AVcc and AVss as shown in figure 16-7.

Also, the bypass capacitors connected to AVcc and Vref and the filter capacitor connected to AN0 to AN7 must be connected to AVss.

If a filter capacitor is connected as shown in figure 16-7, the input currents at the analog input pins (AN0 to AN7) are averaged, and so an error may arise. Also, when A/D conversion is performed frequently, as in scan mode, if the current charged and discharged by the capacitance of the sample-and-hold circuit in the A/D converter exceeds the current input via the input impedance (R_{in}), an error will arise in the analog input pin voltage. Careful consideration is therefore required when deciding the circuit constants.

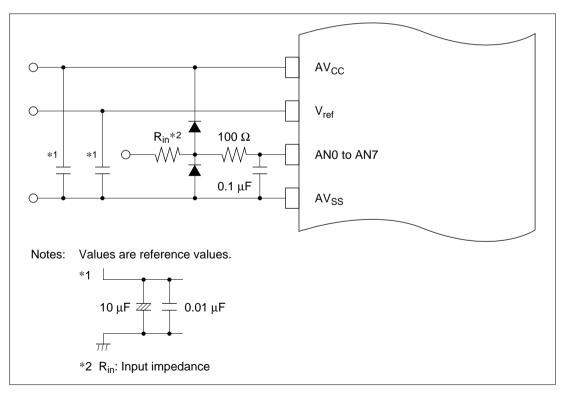


Figure 16-7 Example of Analog Input Protection Circuit

Table 16-7 Analog Pin Specifications

Item	Min	Max	Unit
Analog input capacitance	_	20	pF
Permissible signal source impedance		5*	kΩ

Note: * When $V_{cc} = 2.7 \text{ V}$ to 5.5 V

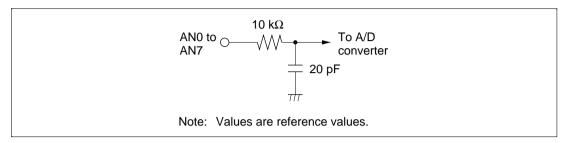


Figure 16-8 Analog Input Pin Equivalent Circuit

A/D Conversion Precision Definitions: H8S/2238 Series A/D conversion precision definitions are given below.

Resolution

The number of A/D converter digital output codes

Offset error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from the minimum voltage value B'0000000000 (H'000) to B'000000001 (H'001) (see figure 16-10).

Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from B'1111111110 (H'3FE) to B'1111111111 (H'3FF) (see figure 16-10).

Quantization error

The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 16-9).

Nonlinearity error

The error with respect to the ideal A/D conversion characteristic between the zero voltage and the full-scale voltage. Does not include the offset error, full-scale error, or quantization error.

Absolute precision

The deviation between the digital value and the analog input value. Includes the offset error, full-scale error, quantization error, and nonlinearity error.

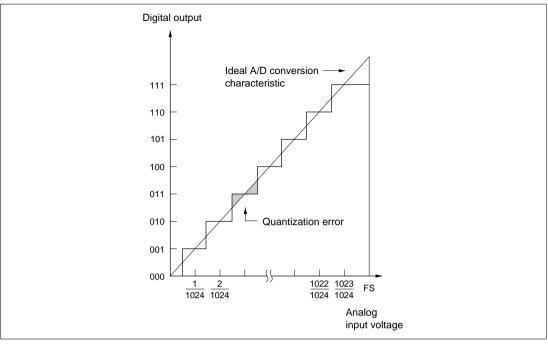


Figure 16-9 A/D Conversion Precision Definitions (1)

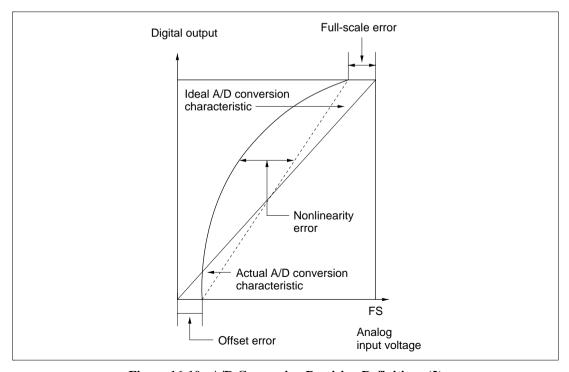


Figure 16-10 A/D Conversion Precision Definitions (2)

Permissible Signal Source Impedance: H8S/2238 Series analog input is designed so that conversion precision is guaranteed for an input signal for which the signal source impedance is $5 \text{ k}\Omega$ or less. This specification is provided to enable the A/D converter's sample-and-hold circuit input capacitance to be charged within the sampling time; if the sensor output impedance exceeds $5 \text{ k}\Omega$, charging may be insufficient and it may not be possible to guarantee the A/D conversion precision.

However, if a large capacitance is provided externally, the input load will essentially comprise only the internal input resistance of $10 \text{ k}\Omega$, and the signal source impedance is ignored.

However, since a low-pass filter effect is obtained in this case, it may not be possible to follow an analog signal with a large differential coefficient (e.g., 5 mV/µs or greater).

When converting a high-speed analog signal, a low-impedance buffer should be inserted.

Influences on Absolute Precision: Adding capacitance results in coupling with GND, and therefore noise in GND may adversely affect absolute precision. Be sure to make the connection to an electrically stable GND such as AV_{SS} .

Care is also required to insure that filter circuits do not communicate with digital signals on the mounting board, so acting as antennas.

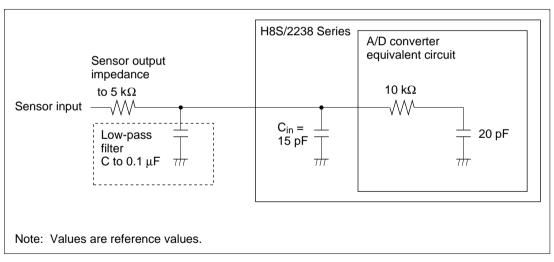


Figure 16-11 Example of Analog Input Circuit

Section 17 D/A Converter

17.1 Overview

The H8S/2238 Series includes a two-channel D/A converter.

17.1.1 Features

D/A converter features are listed below

- 8-bit resolution
- Two output channels
- Maximum conversion time of 10 µs (with 20 pF load)
- Output voltage of 0 V to V_{ref}
- D/A output hold function in software standby mode
- Module stop mode can be set
 - As the initial setting, D/A converter operation is halted. Register access is enabled by exiting module stop mode.

17.1.2 Block Diagram

Figure 17-1 shows a block diagram of the D/A converter.

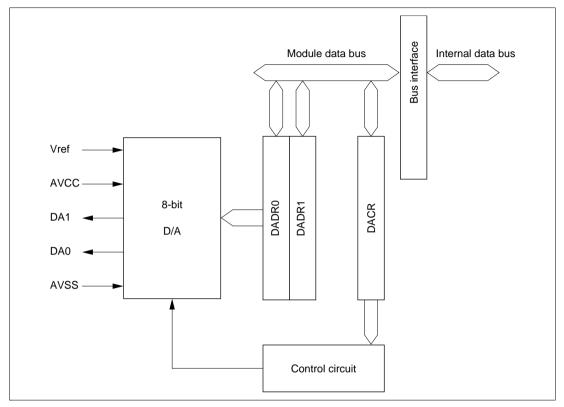


Figure 17-1 Block Diagram of D/A Converter

17.1.3 Pin Configuration

Table 17-1 summarizes the input and output pins of the D/A converter.

Table 17-1 Pin Configuration

Pin Name	Symbol	I/O	Function
Analog power pin	AVCC	Input	Analog power source
Analog ground pin	AVSS	Input	Analog ground and reference voltage
Analog output pin 0	DA0	Output	Channel 0 analog output
Analog output pin 1	DA1	Output	Channel 1 analog output
Reference voltage pin	Vref	Input	Analog reference voltage

17.1.4 Register Configuration

Table 17-2 summarizes the registers of the D/A converter.

Table 17-2 D/A Converter Registers

Name	Abbreviation	R/W	Initial Value	Address*
D/A data register 0	DADR0	R/W	H'00	H'FDAC
D/A data register 1	DADR1	R/W	H'00	H'FDAD
D/A control register	DACR	R/W	H'1F	H'FDAE
Module stop control register C	MSTPCRC	R/W	H'FF	H'FDEA

Note: * Lower 16 bits of the address.

17.2 Register Descriptions

17.2.1 D/A Data Registers 0 and 1 (DADR0, DADR1)

Bit	:	7	6	5	4	3	2	1	0
Initial va	lue:	0	0	0	0	0	0	0	0
R/W	:	R/W							

D/A data registers 0 and 1 (DADR0 and DADR1) are 8-bit readable/writable registers that store data for conversion.

Whenever output is enabled, the value in the D/A data register is converted and output from the analog output pin.

DADR0 and DADR1 are each initialized to H'00 by a reset and in hardware standby mode.

17.2.2 D/A Control Register (DACR)

Bit	:	7	6	5	4	3	2	1	0	
		DAOE1	DAOE0	DAE	_	_	_	_	_	
Initial va	alue:	0	0	0	1	1	1	1	1	_
R/W	:	R/W	R/W	R/W	_	_	_	_	_	

DACR is an 8-bit readable/writable register that controls the operation of the D/A converter.

DACR is initialized to H'1F by a reset and in hardware standby mode.

Bit 7—D/A Output Enable 1 (DAOE1): Controls D/A conversion and analog output.

Bit 7

DAOE1	 Description	
0	Analog output DA1 is disabled	(Initial value)
1	Channel 1 D/A conversion is enabled; analog output DA1 is enabled	

Bit 6—D/A Output Enable 0 (DAOE0): Controls D/A conversion and analog output.

Bit 6

DAOE0	Description	
0	Analog output DA0 is disabled	(Initial value)
1	Channel 0 D/A conversion is enabled; analog output DA0 is enabled	

Bit 5—D/A Enable (DAE): The DAOE0 and DAOE1 bits both control D/A conversion. When the DAE bit is cleared to 0, the channel 0 and 1 D/A conversions are controlled independently. When the DAE bit is set to 1, the channel 0 and 1 D/A conversions are controlled together.

Output of resultant conversions is always controlled independently by the DAOE0 and DAOE1 bits.

Bit 7	Bit 6	Bit 5	
DAOE1	DAOE0	DAE	Description
0	0	*	Channel 0 and 1 D/A conversions disabled
	1	0	Channel 0 D/A conversion enabled Channel 1 D/A conversion disabled
		1	Channel 0 and 1 D/A conversions enabled
1	0	0	Channel 0 D/A conversion disabled Channel 1 D/A conversion enabled
		1	Channel 0 and 1 D/A conversions enabled
	1	*	Channel 0 and 1 D/A conversions enabled

*: Don't care

If the H8S/2238 Series enters software standby mode when D/A conversion is enabled, the D/A output is held and the analog power current is the same as during D/A conversion. When it is necessary to reduce the analog power current in software standby mode, clear the DAOE0, DAOE1, and DAE bits to 0 to disable D/A output.

Bits 4 to 0—Reserved: These bits cannot be modified and are always read as 1.

17.2.3 Module Stop Control Register C (MSTPCRC)

Bit	:	7	6	5	4	3	2	1	0
		MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRC is an 8-bit readable/writable register that performs module stop mode control.

When the MSTPC5 bit in MSTPCR is set to 1, D/A converter operation stops at the end of the bus cycle and a transition is made to module stop mode. Registers cannot be read or written to in module stop mode. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'FF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 5—Module Stop (MSTPC5): Specifies the D/A converter module stop mode.

Bit 5

MSTPC5	Description	
0	D/A converter module stop mode cleared	
1	D/A converter module stop mode set	(Initial value)

17.3 Operation

The D/A converter includes D/A conversion circuits for two channels, each of which can operate independently.

D/A conversion is performed continuously while enabled by DACR. If either DADR0 or DADR1 is written to, the new data is immediately converted. The conversion result is output by setting the corresponding DAOE0 or DAOE1 bit to 1.

The operation example described in this section concerns D/A conversion on channel 0. Figure 17-2 shows the timing of this operation.

- [1] Write the conversion data to DADR0.
- [2] Set the DAOE0 bit in DACR to 1. D/A conversion is started and the DA0 pin becomes an output pin. The conversion result is output after the conversion time has elapsed. The output value is expressed by the following formula:

$$\frac{\text{DADR contents}}{256} \times V_{\text{ref}}$$

The conversion results are output continuously until DADR0 is written to again or the DAOE0 bit is cleared to 0.

- [3] If DADR0 is written to again, the new data is immediately converted. The new conversion result is output after the conversion time has elapsed.
- [4] If the DAOE0 bit is cleared to 0, the DA0 pin becomes an input pin.



Figure 17-2 Example of D/A Converter Operation

17.4 Usage Notes

Analog Current in Software Standby Mode: In a D/A conversion permit status, when the LSI enters software standby mode, the D/A output is held, and the analog power supply current becomes the same as that in D/A conversion. When it is necessary to reduce the analog power supply current in software standby mode, clear the DAOE0, DAOE1 and DAE bits to 0 to prohibit D/A output.

Module Stop Mode Setting: The module stop control register can be used to set D/A converter operation prohibit/permit. The initial setting prohibits D/A converter operation. By canceling module stop mode, the register can be accessed. For details, see section 21, Power-Down Modes.

Section 18 RAM

18.1 Overview

The H8S/2238 has 16 kbytes of on-chip high-speed static RAM, and the H8S/2236 has 8 kbytes. The RAM is connected to the CPU by a 16-bit data bus, enabling one-state access by the CPU to both byte data and word data. This makes it possible to perform fast word data transfer.

The on-chip RAM can be enabled or disabled by means of the RAM enable bit (RAME) in the system control register (SYSCR).

18.1.1 Block Diagram

Figure 18-1 shows a block diagram of the on-chip RAM.

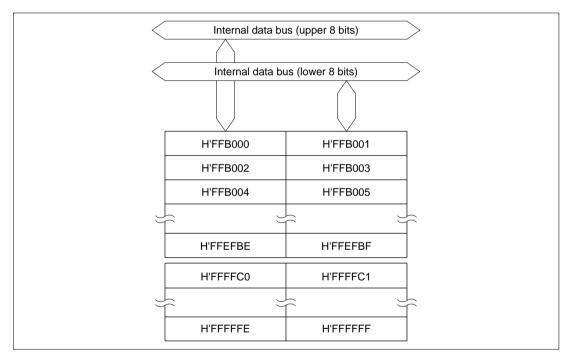


Figure 18-1 Block Diagram of RAM (H8S/2238)

18.1.2 Register Configuration

The on-chip RAM is controlled by SYSCR. Table 18-1 shows the address and initial value of SYSCR.

Table 18-1 RAM Register

Name	Abbreviation	R/W	Initial Value	Address*
System control register	SYSCR	R/W	H'01	H'FDE5

Note: * Lower 16 bits of the address.

18.2 Register Descriptions

18.2.1 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
		_		INTM1	INTM0	NMIEG	MRESE	_	RAME
Initial valu	ıe:	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	R/W	_	R/W

The on-chip RAM is enabled or disabled by the RAME bit in SYSCR. For details of other bits in SYSCR, see section 3.2.2, System Control Register (SYSCR).

Bit 0—RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized when the reset state is released. It is not initialized in software standby mode.

Bit 0

RAME	Description	
0	On-chip RAM is disabled	_
1	On-chip RAM is enabled	(Initial value)

Note: When the DTC is used, the RAME bit must be set to 1.

18.3 Operation

When the RAME bit is set to 1, accesses to addresses H'FFB000 to H'FFEFBF and H'FFFFC0 to H'FFFFFF in the H8S/2238, and to addresses H'FFD000 to H'FFEFBF and H'FFFFC0 to H'FFFFFF in the H8S/2236 are directed to the on-chip RAM. When the RAME bit is cleared to 0, the off-chip address space is accessed.

Since the on-chip RAM is connected to the CPU by an internal 16-bit data bus, it can be written to and read in byte or word units. Each type of access can be performed in one state.

Even addresses use the upper 8 bits, and odd addresses use the lower 8 bits. Word data must start at an even address.

18.4 Usage Note

DTC register information can be located in addresses H'FFEBC0 to H'FFEFBF. When the DTC is used, the RAME bit must not be cleared to 0.

Section 19 ROM

19.1 Overview

The H8S/2238 has 256 kbytes of on-chip ROM (flash memory or mask ROM), and the H8S/2236 has 128 kbytes. The ROM is connected to the CPU by a 16-bit data bus. The CPU accesses both byte data and word data in one state, making possible rapid instruction fetches and high-speed processing.

The on-chip ROM is enabled or disabled by setting the mode pins (MD2, MD1, and MD0).

The flash memory versions can be erased and programmed on-board as well as with a PROM programmer.

19.1.1 Block Diagram

Figure 19-1 shows a block diagram of the on-chip ROM.

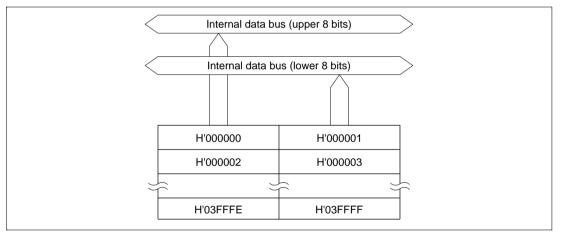


Figure 19-1 Block Diagram of ROM (H8S/2238)

19.1.2 Register Configuration

This LSI's on-chip ROM is controlled by the mode pins. The register configuration is shown in table 19-1.

Table 19-1 ROM Register

Name	Abbreviation	R/W	Initial Value	Address*
Mode control register	MDCR	R/W	Undefined	H'FDE7

Note: * Lower 16 bits of the address.

19.2 Register Descriptions

19.2.1 Mode Control Register (MDCR)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	_	MDS2	MDS1	MDS0
Initial value	:	1	0	0	0	0	*	*	*
R/W	:	_	_	_	_	_	R	R	R

Note: * Determined by pins MD2 to MD0.

MDCR is an 8-bit read-only register that indicates the current operating mode of the H8S/2238.

Bit 7—Reserved: This bit cannot be modified and is always read as 1.

Bits 6 to 3—Reserved: These bits cannot be modified and are always read as 0.

Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDS0): These bits indicate the input levels at pins MD2 to MD0 (the current operating mode). Bits MDS2 to MDS0 correspond to pins MD2 to MD0. MDS2 to MDS0 are read-only bits, and cannot be written to. The mode pin (MD2 to MD0) input levels are latched into these bits when MDCR is read. These latches are canceled by a power-on reset, but are retained after a manual reset.

19.3 Operation

The on-chip ROM is connected to the CPU by a 16-bit data bus, and both byte and word data can be accessed in one state. Even addresses are connected to the upper 8 bits, and odd addresses to the lower 8 bits. Word data must start at an even address.

The on-chip ROM is enabled and disabled by setting the mode pins (MD2, MD1, and MD0). These settings are shown in table 19-2.

Table 19-2 Operating Modes and ROM Area (F-ZTAT version and Mask ROM version)

			Mod	le Pin			
Operating	g Mode	FWE	MD2	MD1	MD0	On-Chip ROM	
Mode 0	_	0	0	0	0	_	
Mode 1	-				1	-	
Mode 2	-			1	0	-	
Mode 3	-				1	-	
Mode 4	Advanced expanded mode with on-chip ROM disabled	-	1	0	0	Disabled	
Mode 5	Advanced expanded mode with on-chip ROM disabled	-			1	-	
Mode 6	Advanced expanded mode with on-chip ROM enabled	-		1	0	Enabled (256 kbytes)*1	
Mode 7	Advanced single-chip mode	=			1	Enabled (256 kbytes)*1	
Mode 8	_	1	0	0	0		
Mode 9	-				1	-	
Mode 10	Boot mode (advanced expanded mode with on-chip ROM enabled)*1	-		1	0	Enabled (256 kbytes)*2	
Mode 11	Boot mode (advanced single-chip mode)*2	=			1	Enabled (256 kbytes)*2	
Mode 12	_	_	1	0	0	_	
Mode 13	-				1	-	
Mode 14	User program mode (advanced expanded mode with on-chip ROM enabled)*1			1	0	Enabled (256 kbytes)*1	
Mode 15	User program mode (advanced single-chip mode)*2	-			1	Enabled (256 kbytes)*1	

Notes: *1 Apart from the fact that flash memory can be erased and programmed, operation is the same as in advanced expanded mode with on-chip ROM enabled.

^{*2} Apart from the fact that flash memory can be erased and programmed, operation is the same as in advanced single-chip mode.

19.4 Overview of Flash Memory

19.4.1 Features

The H8S/2238 has 256 kbytes of on-chip flash memory. The features of the flash memory are summarized below.

- Four flash memory operating modes
 - Program mode
 - Erase mode
 - Program-verify mode
 - Erase-verify mode
- Programming/erase methods

The flash memory is programmed 128 bytes at a time. Block erase (in single-block units) can be performed. To erase multiple blocks, each block must be erased in turn. Block erasing can be performed as required on 4 kbytes, 32 kbytes, and 64 kbytes blocks.

• Programming/erase times

The flash memory programming time is 10 ms (typ.) for simultaneous 128-byte programming, equivalent to 78 µs (typ.) per byte, and the erase time is 100 ms (typ.).

Reprogramming capability

The flash memory can be reprogrammed up to 100 times.

• On-board programming modes

There are two modes in which flash memory can be programmed/erased/verified on-board:

- Boot mode
- User program mode
- Automatic bit rate adjustment

With data transfer in boot mode, the LSI's bit rate can be automatically adjusted to match the transfer bit rate of the host.

• Flash memory emulation in RAM

Flash memory programming can be emulated in real time by overlapping a part of RAM onto flash memory.

Protect modes

There are three protect modes, hardware, software, and error protection, which allow protected status to be designated for flash memory program/erase/verify operations.

• Programmer mode

Flash memory can be programmed/erased in programmer mode, using a PROM programmer, as well as in on-board programming mode.

19.4.2 Block Diagram

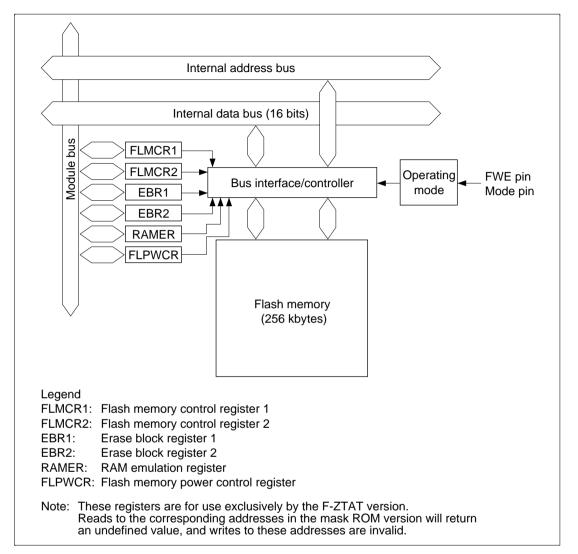
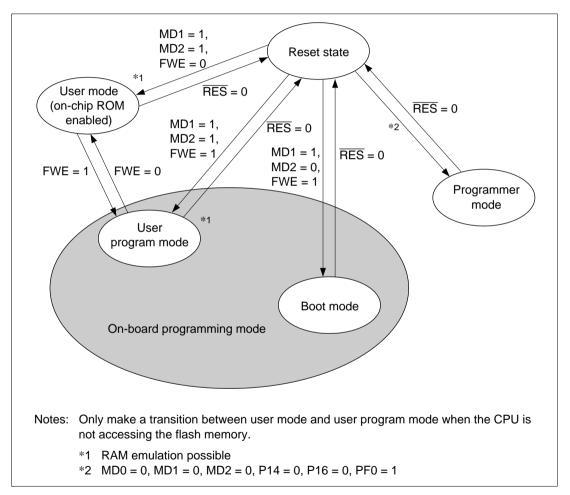


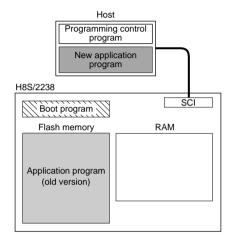
Figure 19-2 Block Diagram of Flash Memory

19.4.3 Mode Transitions

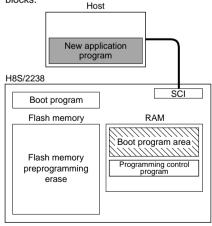
When the mode pins and the FWE pin are set in the reset state and a reset-start is executed, the microcomputer enters an operating mode as shown in figure 19-3. In user mode, flash memory can be read but not programmed or erased. Transitions between user mode and user program mode should only be made when the CPU is not accessing the flash memory.

The boot, user program and programmer modes are provided as modes to write and erase the flash memory.

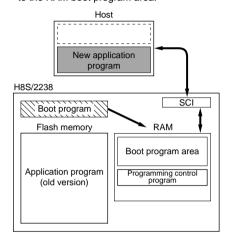


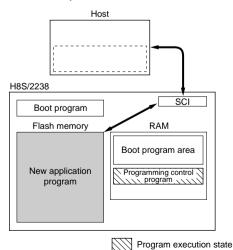

Figure 19-3 Flash Memory State Transitions

19.4.4 On-Board Programming Modes

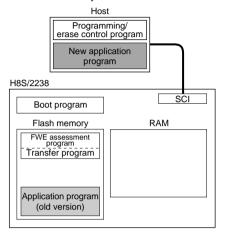

Boot Mode

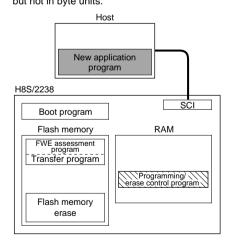
1. Initial state


The old program version or data remains written in the flash memory. The user should prepare the programming control program and new application program beforehand in the host.

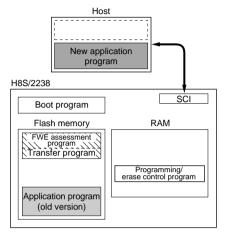

Flash memory initialization
 The erase program in the boot program area (in RAM) is executed, and the flash memory is initialized (to H'FF). In boot mode, total flash memory erasure is performed, without regard to blocks.

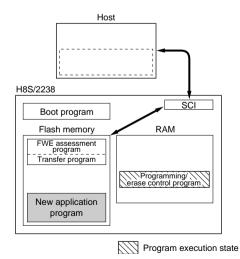
Programming control program transfer
 When boot mode is entered, the boot program in
 the H8S/2238 (originally incorporated in the chip)
 is started and the programming control program
 in the host is transferred to RAM via SCI
 communication. The boot program required for
 flash memory erasing is automatically transferred
 to the RAM boot program area.


Writing new application program
 The programming control program transferred from the host to RAM is executed, and the new application program in the host is written into the flash memory.

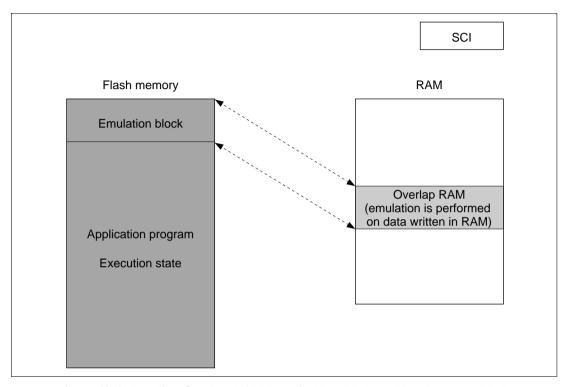

User Program Mode

1. Initial state


The FWE assessment program that confirms that user program mode has been entered, and the program that will transfer the programming/erase control program from flash memory to on-chip RAM should be written into the flash memory by the user beforehand. The programming/erase control program should be prepared in the host or in the flash memory.


Flash memory initialization
 The programming/erase program in RAM is executed, and the flash memory is initialized (to H'FF). Erasing can be performed in block units, but not in byte units.

 Programming/erase control program transfer When user program mode is entered, user software confirms this fact, executes transfer program in the flash memory, and transfers the programming/erase control program to RAM.



Writing new application program
 Next, the new application program in the host is
 written into the erased flash memory blocks. Do
 not write to unerased blocks.

19.4.5 Flash Memory Emulation in RAM

Emulation should be performed in user mode or user program mode. When the emulation block set in RAMER is accessed while the emulation function is being executed, data written in the overlap RAM is read.

 $Figure\ 19\text{-}4\quad Reading\ Overlap\ RAM\ Data\ in\ User\ Mode\ or\ User\ Program\ Mode$

When overlap RAM data is confirmed, the RAMS bit is cleared, RAM overlap is released, and writes should actually be performed to the flash memory.

When the programming control program is transferred to RAM, ensure that the transfer destination and the overlap RAM do not overlap, as this will cause data in the overlap RAM to be rewritten.

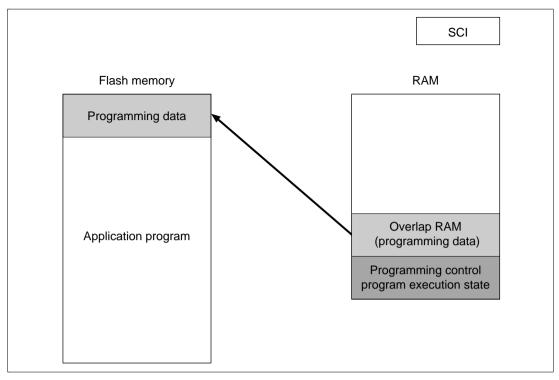


Figure 19-5 Writing Overlap RAM Data in User Program Mode

19.4.6 Differences between Boot Mode and User Program Mode

Table 19-3 Differences between Boot Mode and User Program Mode

	Boot Mode	User Program Mode	
Total erase	Yes	Yes	
Block erase	No	Yes	
Programming control program*	(2)	(1) (2) (3)	_

⁽¹⁾ Erase/erase-verify

Note: *To be provided by the user, in accordance with the recommended algorithm.

⁽²⁾ Program/program-verify

⁽³⁾ Emulation

19.4.7 Block Configuration

The flash memory is divided into three 64 kbytes blocks, one 32 kbytes block, and eight 4 kbytes blocks.

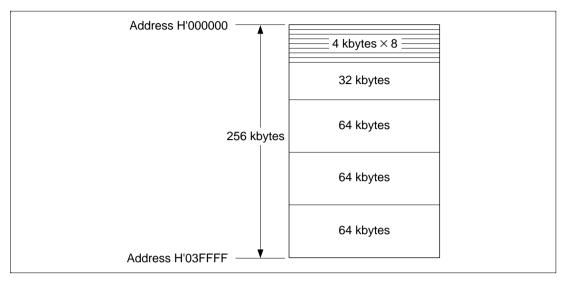


Figure 19-6 Flash Memory Block Configuration

19.5 Pin Configuration

The flash memory is controlled by means of the pins shown in table 19-4.

Table 19-4 Pin Configuration

Abbreviation	I/O	Function
RES	Input	Reset
FWE	Input	Flash memory program/erase protection by hardware
MD2	Input	Sets LSI operating mode
MD1	Input	Sets LSI operating mode
MD0	Input	Sets LSI operating mode
PF0	Input	Sets LSI operating mode when MD2 = MD1 = MD0 =0
P16	Input	Sets LSI operating mode when MD2 = MD1 = MD0 =0
P14	Input	Sets LSI operating mode when MD2 = MD1 = MD0 =0
TxD2	Output	Serial transmit data output
RxD2	Input	Serial receive data input
	RES FWE MD2 MD1 MD0 PF0 P16 P14 TxD2	RES Input FWE Input MD2 Input MD1 Input MD0 Input PF0 Input P16 Input P14 Input TxD2 Output

19.6 Register Configuration

The registers used to control the on-chip flash memory when enabled are shown in table 19-5. In order to access these registers, the FLSHE bit in SCRX must be set to 1 (except for RAMER, SCRX).

Table 19-5 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address*1
Flash memory control register 1	FLMCR1*5	R/W*2	H'00*3	H'FFA8
Flash memory control register 2	FLMCR2*5	R*2	H'00	H'FFA9
Erase block register 1	EBR1 ^{*⁵}	R/W*2	H'00*4	H'FFAA
Erase block register 2	EBR2*5	R/W*2	H'00*4	H'FFAB
RAM emulation register	RAMER*5	R/W	H'00	H'FEDB
Flash memory power control register	FLPWCR*5	R/W	H'00	H'FFAC
Serial control register X	SCRX	R/W	H'00	H'FDB4

Notes: *1 Lower 16 bits of the address.

- *3 When a high level is input to the FWE pin, the initial value is H'80.
- *4 When a low level is input to the FWE pin, or if a high level is input and the SWE1 bit in FLMCR1 is not set, these registers are initialized to H'00.
- *5 FLMCR1, FLMCR2, EBR1, EBR2, RAMER, and FLPWCR are 8-bit registers.

 Only byte access can be used on these registers, with the access requiring two states.

 These registers are for use exclusively by the F-ZTAT version. Reads to the corresponding addresses in the mask ROM version will return an undefined value, and writes to these addresses are invalid.

^{*2} To access these registers, set the FLSHE bit to 1 in serial control register X. Even if FLSHE is set to 1, if the chip is in a mode in which the on-chip flash memory is disabled, a read will return H'00 and writes are invalid. Writes are also invalid when the FWE bit in FLMCR1 is not set to 1.

19.7 Register Descriptions

19.7.1 Flash Memory Control Register 1 (FLMCR1)

Bit	:	7	6	5	4	3	2	1	0
		FWE	SWE1	ESU1	PSU1	EV1	PV1	E1	P1
Initial value	:	*	0	0	0	0	0	0	0
R/W	:	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Determined by the state of the FWE pin.

FLMCR1 is an 8-bit register used for flash memory operating mode control. Program-verify mode or erase-verify mode for addresses H'00000 to H'3FFFF is entered by setting SWE1 bit to 1 when FWE = 1, then setting the PV1 or EV1 bit. Program mode for addresses H'00000 to H'3FFFF is entered by setting SWE1 bit to 1 when FWE = 1, then setting the PSU1 bit, and finally setting the P1 bit. Erase mode for addresses H'00000 to H'3FFFF is entered by setting SWE1 bit to 1 when FWE = 1, then setting the ESU1 bit, and finally setting the E1 bit. FLMCR1 is initialized by a power-on reset, and in hardware standby mode and software standby mode. Its initial value is H'80 when a high level is input to the FWE pin, and H'00 when a low level is input. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

Writes are enabled only in the following cases: Writes to bit SWE1 of FLMCR1 enabled when FWE = 1, to bits ESU1, PSU1, EV1, and PV1 when FWE = 1 and SWE1 = 1, to bit E1 when FWE = 1, SWE1 = 1 and ESU1 = 1, and to bit P1 when FWE = 1, SWE1 = 1, and ESU1 = 1.

Bit 7—Flash Write Enable Bit (FWE): Sets hardware protection against flash memory programming/erasing.

Bit 7

FWE	Description
0	When a low level is input to the FWE pin (hardware-protected state)
1	When a high level is input to the FWE pin

Bit 6—Software Write Enable Bit 1 (SWE1): Enables or disables flash memory programming and erasing. Set this bit when setting bits 5 to 0, bits 7 to 0 of EBR1, and bits 3 to 0 of EBR2.

Bit 6

SWE1	Description	
0	Writes disabled	(Initial value)
1	Writes enabled	
	[Setting condition]	
	When FWE = 1	

Bit 5—Erase Setup Bit 1 (ESU1): Prepares for a transition to erase mode. Set this bit to 1 before setting the E1 bit in FLMCR1 to 1. Do not set the SWE1, PSU1, EV1, PV1, E1, or P1 bit at the same time.

Bit 5

ESU1	Description	
0	Erase setup cleared	(Initial value)
1	Erase setup	
	[Setting condition]	
	When FWE = 1 and SWE1 = 1	

Bit 4—Program Setup Bit 1 (PSU1): Prepares for a transition to program mode. Set this bit to 1 before setting the P1 bit in FLMCR1 to 1. Do not set the SWE1, ESU1, EV1, PV1, E1, or P1 bit at the same time.

Bit 4

PSU1	Description	
0	Program setup cleared	(Initial value)
1	Program setup	
	[Setting condition]	
	When FWE = 1 and SWE1 = 1	

Bit 3—Erase-Verify 1 (EV1): Selects erase-verify mode transition or clearing. Do not set the SWE1, ESU1, PSU1, PV1, E1, or P1 bit at the same time.

Bit 3

EV1	 Description	
0	Erase-verify mode cleared	(Initial value)
1	Transition to erase-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE1 = 1	

Bit 2—Program-Verify 1 (PV1): Selects program-verify mode transition or clearing. Do not set the SWE1, ESU1, PSU1, EV1, E1, or P1 bit at the same time.

Bit 2

PV1	Description	
0	Program-verify mode cleared	(Initial value)
1	Transition to program-verify mode	
	[Setting condition]	
	When FWE = 1 and SWE1 = 1	

Bit 1—Erase 1 (E1): Selects erase mode transition or clearing. Do not set the SWE1, ESU1, PSU1, EV1, PV1, or P1 bit at the same time.

Bit 1

E1	Description	
0	Erase mode cleared	(Initial value)
1	Transition to erase mode	
	[Setting condition]	
	When FWE = 1, SWE1 = 1, and ESU1 = 1	

Bit 0—Program 1 (P1): Selects program mode transition or clearing. Do not set the SWE1, PSU1, ESU1, EV1, PV1, or E1 bit at the same time.

Bit 0

P1	Description	
0	Program mode cleared	(Initial value)
1	Transition to program mode	
	[Setting condition]	
	When FWE = 1, SWE1 = 1, and PSU1 = 1	

19.7.2 Flash Memory Control Register 2 (FLMCR2)

Bit	:	7	6	5	4	3	2	1	0
		FLER	_	_	_	_	_	_	_
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R	R	R	R	R	R	R	R

Note: FLMCR2 is a read-only register, and should not be written to.

FLMCR2 is an 8-bit register used for flash memory operating mode control. FLMCR2 is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode. When on-chip flash memory is disabled, a read will return H'00.

Bit 7—Flash Memory Error (FLER): Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.

Bit 7

FLER	Description						
0	Flash memory is operating normally (I						
	Flash memory program/erase protection (error protection) is disabled	i					
	[Clearing condition]						
	Power-on reset or hardware standby mode						
1	An error has occurred during flash memory programming/erasing						
	Flash memory program/erase protection (error protection) is enabled						
	[Setting condition]						
	See 19.10.3 Error Protection						

Bits 6 to 0—Reserved: These bits always read 0.

19.7.3 Erase Block Register 1 (EBR1)

Bit	:	7	6	5	4	3	2	1	0
		EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W							

EBR1 is an 8-bit register that specifies the flash memory erase area block by block. EBR1 is initialized to H'00 by a power-on reset, in hardware standby mode and software standby mode, when a low level is input to the FWE pin, and when a high level is input to the FWE pin and the SWE1 bit in FLMCR1 is not set. When a bit in EBR1 is set to 1, the corresponding block can be erased. Other blocks are erase-protected. Only one of the bits of EBR1 and EBR2 combined can be set. Do not set more than one bit, as this will cause all the bits in both EBR1 and EBR2 to be automatically cleared to 0. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory block configuration is shown in table 19-6.

19.7.4 Erase Block Register 2 (EBR2)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	EB11	EB10	EB9	EB8
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

EBR2 is an 8-bit register that specifies the flash memory erase area block by block. EBR2 is initialized to H'00 by a power-on reset, in hardware standby mode and software standby mode, when a low level is input to the FWE pin. Bit 0 will be initialized to 0 if bit SWE1 of FLMCR1 is not set, even though a high level is input to pin FWE. When a bit in EBR2 is set to 1, the corresponding block can be erased. Other blocks are erase-protected. Only one of the bits of EBR1 and EBR2 combined can be set. Do not set more than one bit, as this will cause all the bits in both EBR1 and EBR2 to be automatically cleared to 0. Bits 7 to 4 are reserved and must only be written with 0. When on-chip flash memory is disabled, a read will return H'00, and writes are invalid.

The flash memory block configuration is shown in table 19-6.

Table 19-6 Flash Memory Erase Blocks

Block (Size)	Addresses
EB0 (4 kbytes)	H'000000-H'000FFF
EB1 (4 kbytes)	H'001000-H'001FFF
EB2 (4 kbytes)	H'002000-H'002FFF
EB3 (4 kbytes)	H'003000-H'003FFF
EB4 (4 kbytes)	H'004000-H'004FFF
EB5 (4 kbytes)	H'005000-H'005FFF
EB6 (4 kbytes)	H'006000-H'006FFF
EB7 (4 kbytes)	H'007000-H'007FFF
EB8 (32 kbytes)	H'008000-H'00FFFF
EB9 (64 kbytes)	H'010000-H'01FFFF
EB10 (64 kbytes)	H'020000-H'02FFFF
EB11 (64 kbytes)	H'030000-H'03FFFF

19.7.5 RAM Emulation Register (RAMER)

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	RAMS	RAM2	RAM1	RAM0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R	R	R	R/W	R/W	R/W	R/W	R/W

RAMER specifies the area of flash memory to be overlapped with part of RAM when emulating real-time flash memory programming. RAMER initialized to H'00 by a power-on reset and in hardware standby mode. It is not initialized by a manual reset and in software standby mode. RAMER settings should be made in user mode or user program mode.

Flash memory area divisions are shown in table 19-7. To ensure correct operation of the emulation function, the ROM for which RAM emulation is performed should not be accessed immediately after this register has been modified. Normal execution of an access immediately after register modification is not guaranteed.

Bits 7 to 5—Reserved: These bits always read 0.

Bit 4—Reserved: Only 0 may be written to these bits.

Bit 3—RAM Select (RAMS): Specifies selection or non-selection of flash memory emulation in RAM. When RAMS = 1, all flash memory block are program/erase-protected.

Bit 3

RAMS	Description	
0	Emulation not selected	(Initial value)
	Program/erase-protection of all flash memory blocks is disabled	
1	Emulation selected	
	Program/erase-protection of all flash memory blocks is enabled	

Bits 2 to 0—Flash Memory Area Selection: These bits are used together with bit 3 to select the flash memory area to be overlapped with RAM. (See table 19-7.)

Table 19-7 Flash Memory Area Divisions

Addresses	Block Name	RAMS	RAM1	RAM1	RAM0
H'FFD000-H'FFDFFF	RAM area 4 kbytes	0	*	*	*
H'000000-H'000FFF	EB0 (4 kbytes)	1	0	0	0
H'001000-H'001FFF	EB1 (4 kbytes)	1	0	0	1
H'002000-H'002FFF	EB2 (4 kbytes)	1	0	1	0
H'003000-H'003FFF	EB3 (4 kbytes)	1	0	1	1
H'004000-H'004FFF	EB4 (4 kbytes)	1	1	0	0
H'005000-H'005FFF	EB5 (4 kbytes)	1	1	0	1
H'006000-H'006FFF	EB6 (4 kbytes)	1	1	1	0
H'007000-H'007FFF	EB7 (4 kbytes)	1	1	1	1

^{*:} Don't care

19.7.6 Flash Memory Power Control Register (FLPWCR)

Bit:	7	6	5	4	3	2	1	0
	PDWND	_		_	_	_		_
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R	R	R	R	R	R	R

FLPWCR enables or disables a transition to the flash memory power-down mode when the LSI switches to subactive mode.

FLPWCR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

Bit 7—Power-Down Disable (PDWND): Enables or disables a transition to the flash memory power-down mode when the LSI switches to subactive mode.

Bit 7

PDWND	Description	
0	Transition to flash memory power-down mode enabled	(Initial value)
1	Transition to flash memory power-down mode disabled	

Note: PDWND is valid only when the LSI is in subactive mode or subsleep mode, and is invalid in other modes.

Bits 6 to 0—Reserved: These bits always read 0.

19.7.7 Serial Control Register X (SCRX)

Bit	:	7	6	5	4	3	2	1	0
		_	IICX1	IICX0	IICE	FLSHE	_	_	_
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SCRX is an 8-bit readable/writable register that performs register access control, IIC operating mode control (when the IIC option is provided), and on-chip flash memory control (including the F-ZTAT version). If a module controlled by SCRX is not used, the corresponding bit must not be set to 1.

SCRX is initialized to H'00 by a reset and in hardware standby mode.

Bit 7—Reserved: Only 0 may be written to this bit.

Bits 6 and 5—I²C Transfer Rate Select 1 and 0 (IICX1, IICX0): These bits, together with bits CKS2 to CKS0 in ICMR, select the transfer rate in master mode. For details of the transfer rate, see section 15.2.4, I²C Bus Mode Register (ICMR).

Bit 4—I²C **Master Enable (IICE):** Controls access to the I²C bus interface data registers and control registers (ICCR, ICSR, ICDR/SARX, ICMR/SAR). For details, see section 15, I²C Bus Interface.

Bit 3—Flash Memory Control Register Enable (FLSHE): Controls CPU access to the flash memory control registers (FLMCR1, FLMCR2, EBR1, and EBR2). Setting the FLSHE bit to 1 enables read/write access to the flash memory control registers. If FLSHE is cleared to 0, the flash memory control registers are deselected. In this case, the flash memory control register contents are retained.

Bit 3

FLSHE		
0	Flash control registers deselected in area H'FFFFA8 to H'FFFFAC	(Initial value)
1	Flash control registers selected in area H'FFFFA8 to H'FFFFAC	

Bits 2 to 0—Reserved: Only 0 may be written to these bits.

19.8 On-Board Programming Modes

When pins are set to on-board programming mode and a reset-start is executed, a transition is made to the on-board programming state in which program/erase/verify operations can be performed on the on-chip flash memory. There are two on-board programming modes: boot mode and user program mode. The pin settings for transition to each of these modes are shown in table 19-8. For a diagram of the transitions to the various flash memory modes, see figure 19-3.

Table 19-8 Setting On-Board Programming Modes

Mode		FWE	MD2	MD1	MD0	
Boot mode	Expanded mode	1	0	1	0	
	Single-chip mode		0	1	1	
User program mode	Expanded mode	1	1	1	0	
	Single-chip mode		1	1	1	

19.8.1 Boot Mode

When boot mode is used, the flash memory programming control program must be prepared in the host beforehand. The SCI channel to be used is set to asynchronous mode.

When a reset-start is executed after the LSI's pins have been set to boot mode, the boot program built into the LSI is started and the programming control program prepared in the host is serially transmitted to the LSI via the SCI. In the LSI, the programming control program received via the SCI is written into the programming control program area in on-chip RAM. After the transfer is completed, control branches to the start address of the programming control program area and the programming control program execution state is entered (flash memory programming is performed). If a memory cell does not operate normally and cannot be erased, one H'FF byte is transmitted as an erase error indication, and the erase operation and subsequent operations are halted. When a transition is made to boot mode, or from boot mode to another mode, mode switching must be carried out by means of \overline{RES} input. The states of ports with multiplexed address functions and bus control output signals $(\overline{AS}, \overline{RD}, \overline{WR})$ change during the switchover period (while a low level is being input at the \overline{RES} pin), and therefore these pins should not be used for output signals during this period.

The transferred programming control program must therefore include coding that follows the programming algorithm given later.

The system configuration in boot mode is shown in figure 19-7, and the boot mode execution procedure in figure 19-8.

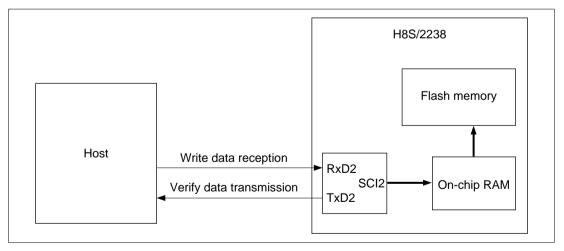


Figure 19-7 System Configuration in Boot Mode

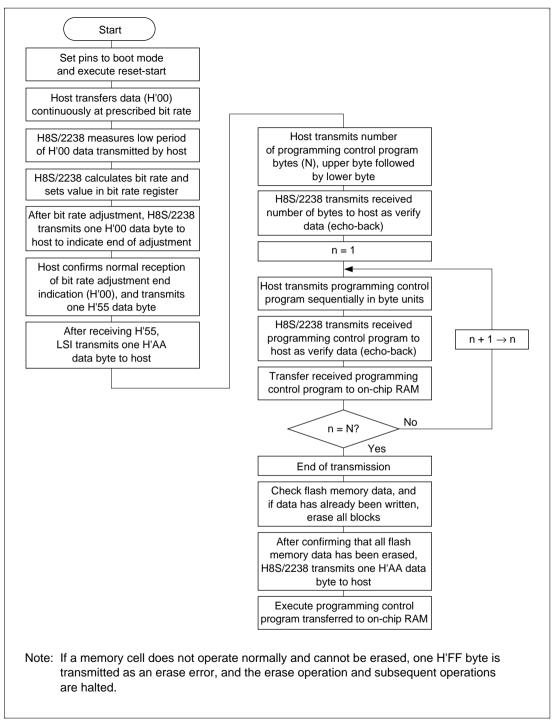
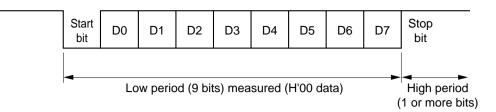



Figure 19-8 Boot Mode Execution Procedure

Automatic SCI Bit Rate Adjustment

When boot mode is initiated, the LSI measures the low period of the asynchronous SCI communication data (H'00) transmitted continuously from the host. The SCI transmit/receive format should be set as follows: 8-bit data, 1 stop bit, no parity. The LSI calculates the bit rate of the transmission from the host from the measured low period, and transmits one H'00 byte to the host to indicate the end of bit rate adjustment. The host should confirm that this adjustment end indication (H'00) has been received normally, and transmit one H'55 byte to the LSI. If reception cannot be performed normally, initiate boot mode again (reset), and repeat the above operations. Depending on the host's transmission bit rate and the LSI's system clock frequency, there will be a discrepancy between the bit rates of the host and the LSI. Set the host transfer bit rate at 4,800, 9,600, or 19,200 bps to operate the SCI properly.

Table 19-9 shows host transfer bit rates and system clock frequencies for which automatic adjustment of the LSI bit rate is possible. The boot program should be executed within this system clock range.

Table 19-9 System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate is Possible

Host Bit Rate	System Clock Frequency for Which Automatic Adjustment of LSI Bit Rate is Possible
4,800 bps	2 MHz to 13.5 MHz
9,600 bps	4 MHz to 13.5 MHz
19,200 bps	8 MHz to 13.5 MHz

On-Chip RAM Area Divisions in Boot Mode: In boot mode, the RAM area is divided into an area used by the boot program and an area to which the programming control program is transferred via the SCI, as shown in figure 19-9. The boot program area cannot be used until the execution state in boot mode switches to the programming control program transferred from the host.

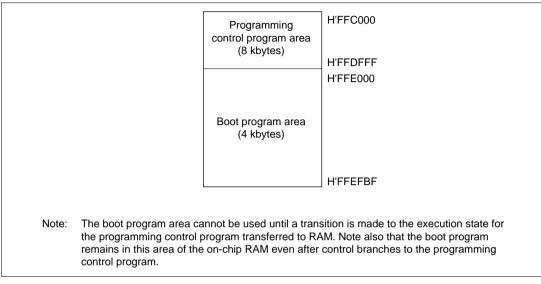


Figure 19-9 RAM Areas in Boot Mode

Notes on Use of Boot Mode:

- When the chip comes out of reset in boot mode, it measures the low-level period of the input at the SCI's RxD2 pin. The reset should end with RxD2 high. After the reset ends, it takes approximately 100 states before the chip is ready to measure the low-level period of the RxD2 pin.
- In boot mode, if any data has been programmed into the flash memory (if all data is not 1), all
 flash memory blocks are erased. Boot mode is for use when user program mode is unavailable,
 such as the first time on-board programming is performed, or if the program activated in user
 program mode is accidentally erased.
- Interrupts cannot be used while the flash memory is being programmed or erased.
- The RxD2 and TxD2 pins should be pulled up on the board.
- Before branching to the programming control program (RAM area H'FFC000), the chip terminates transmit and receive operations by the on-chip SCI (channel 2) (by clearing the RE and TE bits in SCR to 0), but the adjusted bit rate value remains set in BRR. The transmit data output pin, TxD2, goes to the high-level output state (PA1DDR = 1, PA1DR = 1).

The contents of the CPU's internal general registers are undefined at this time, so these registers must be initialized immediately after branching to the programming control program. In particular, since the stack pointer (SP) is used implicitly in subroutine calls, etc., a stack area must be specified for use by the programming control program.

Initial settings must also be made for all other on-chip registers.

- Boot mode can be entered by making the pin settings shown in table 19-8 and executing a
 reset-start.
 - Boot mode can be cleared by driving the reset pin low, waiting at least 20 states, then setting the FWE pin and mode pins, and executing reset release*1. Boot mode can also be cleared by a WDT overflow reset.
 - Do not change the mode pin input levels in boot mode, and do not drive the FWE pin low while the boot program is being executed or while flash memory is being programmed or erased*².
- If the mode pin input levels are changed (for example, from low to high) during a reset, the state of ports with multiplexed address functions and bus control output pins (AS, RD, HWR) will change according to the change in the microcomputer's operating mode*³.
 - Therefore, care must be taken to make pin settings to prevent these pins from becoming output signal pins during a reset, or to prevent collision with signals outside the microcomputer.
- Notes: *1 Mode pin and FWE pin input must satisfy the mode programming setup time ($t_{MDS} = 200 \text{ ns}$) with respect to the reset release timing.
 - *2 For further information on FWE application and disconnection, see section 19.15, Flash Memory Programming and Erasing Precautions.
 - *3 See appendix D, Pin States.

19.8.2 User Program Mode

When set to user program mode, the chip can program and erase its flash memory by executing a user program/erase control program. Therefore, on-board reprogramming of the on-chip flash memory can be carried out by providing on-board means of FWE control and supply of programming data, and storing a program/erase control program in part of the program area as necessary.

To select user program mode, select a mode that enables the on-chip flash memory (mode 6 or 7), and apply a high level to the FWE pin. In this mode, on-chip supporting modules other than flash memory operate as they normally would in modes 6 and 7.

The flash memory itself cannot be read while the SWE1 bit is set to 1 to perform programming or erasing, so the control program that performs programming and erasing should be run in on-chip RAM or external memory.

Figure 19-10 shows the procedure for executing the program/erase control program when transferred to on-chip RAM.

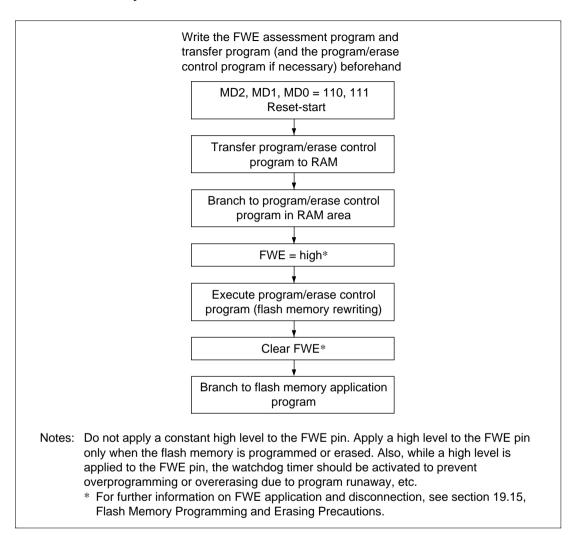


Figure 19-10 User Program Mode Execution Procedure

19.9 Programming/Erasing Flash Memory

A software method, using the CPU, is employed to program and erase flash memory in the onboard programming modes. There are four flash memory operating modes: program mode, erase mode, program-verify mode, and erase-verify mode. Transitions to these modes are made by setting the PSU1, ESU1, P1, E1, PV1, and EV1 bits in FLMCR1 for addresses H'000000 to H'03FFFF.

The flash memory cannot be read while it is being written or erased. Install the program to control flash memory programming and erasing (programming control program) in the on-chip RAM, in external memory, and execute the program from there.

- Notes: 1. Operation is not guaranteed if bits SWE1, ESU1, PSU1, EV1, PV1, E1, and P1 of FLMCR1 are set/reset by a program in flash memory in the corresponding address areas.
 - 2. When programming or erasing, set FWE to 1 (programming/erasing will not be executed if FWE = 0).
 - 3. Programming should be performed in the erased state. Do not perform additional programming on previously programmed addresses.

19.9.1 Program Mode

Follow the procedure shown in the program/program-verify flowchart in figure 19-10 to write data or programs to flash memory. Performing program operations according to this flowchart will enable data or programs to be written to flash memory without subjecting the device to voltage stress or sacrificing program data reliability. Programming should be carried out 128 bytes at a time.

For the wait times (t_{sswe} , t_{spsu} , t_{sp10} , t_{sp30} , t_{sp200} , t_{cp} , t_{cpsu} , t_{spv} , t_{spv} , t_{cpv} , t_{cswe}) after bits are set or cleared in flash memory control register 1 (FLMCR1) and the maximum number of programming operations (N), see section 23.2.6 or 23.3.6, Flash Memory Characteristics.

Following the elapse of (t_{sswe}) µs or more after the SWE1 bit is set to 1 in flash memory control register 1 (FLMCR1), 128-byte data is stored in the program data area and reprogram data area, and the 128-byte data in the program data area in RAM is written consecutively to the write addresses. The lower 8 bits of the first address written to must be H'00 or H'80. 128 consecutive byte data transfers are performed. The program address and program data are latched in the flash memory. A 128-byte data transfer must be performed even if writing fewer than 128 bytes; in this case, H'FF data must be written to the extra addresses.

Next, the watchdog timer is set to prevent overprogramming in the event of program runaway, etc. Set a value greater than $(t_{spsu} + t_{sp200} + t_{cp} + t_{cpsu})$ µs as the WDT overflow period. After this, preparation for program mode (program setup) is carried out by setting the PSU1 bit in FLMCR1, and after the elapse of (t_{spsu}) µs or more, the operating mode is switched to program mode by 630

HITACHI

setting the P1 bit in FLMCR1. The time during which the P1 bit is set is the flash memory programming time. Set the programming time according to the table in the programming flowchart.

19.9.2 Program-Verify Mode

In program-verify mode, the data written in program mode is read to check whether it has been correctly written in the flash memory.

After the elapse of a given programming time, the programming mode is exited (the P1 bit in FLMCR1 is cleared, then the PSU1 bit is cleared at least (t_{cp}) μs later). The watchdog timer is cleared after the elapse of (t_{cpsu}) μs or more, and the operating mode is switched to program-verify mode by setting the PV1 bit in FLMCR1. Before reading in program-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (t_{spv}) μs or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (t_{spvr}) μs after the dummy write before performing this read operation. Next, the originally written data is compared with the verify data, and reprogram data is computed (see figure 19-11) and transferred to the reprogram data area. After 128 bytes of data have been verified, exit program-verify mode, wait for at least (t_{cpv}) μs , then clear the SWE1 bit in FLMCR1 to 0. If reprogramming is necessary, set program mode again, and repeat the program/program-verify sequence as before. However, ensure that the program/program-verify sequence is not repeated more than (N) times on the same bits.

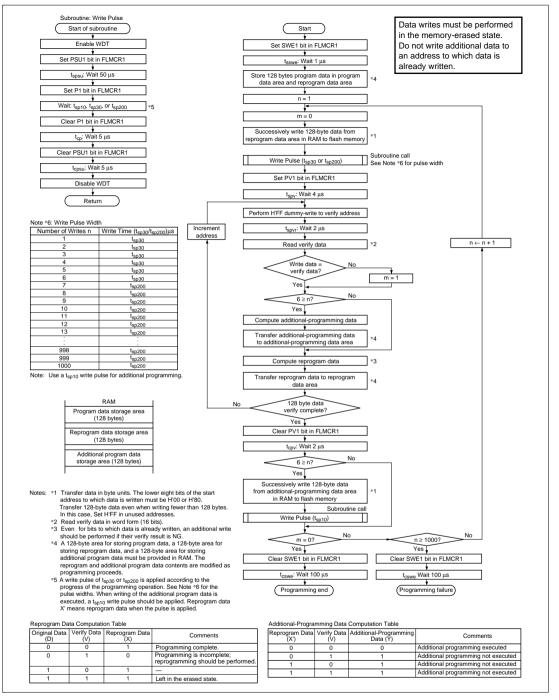


Figure 19-11 Program/Program-Verify Flowchart

19.9.3 Erase Mode

Flash memory erasing should be performed block by block following the procedure shown in the erase/erase-verify flowchart (single-block erase) shown in figure 19-12.

For the wait times (t_{sswe} , t_{sesu} , t_{se} , t_{ce} , t_{cesu} , t_{sev} , t_{sevr} , t_{cev} , t_{cswe}) after bits are set or cleared in flash memory control register 1 (FLMCR1) and the maximum number of erase operations (N), see 23.2.6 or 23.3.6, Flash Memory Characteristics.

To perform data or program erasure, make a 1-bit setting for the flash memory area to be erased in erase block register 1 or 2 (EBR1 or EBR2) at least (t_{sswe}) μs after setting the SWE1 bit to 1 in flash memory control register 1 (FLMCR1). Next, set up the watchdog timer to prevent overerasing in the event of program runaway, etc. Set a value greater than $(t_{sesu} + t_{se} + t_{ce} + t_{cesu})$ ms as the WDT overflow period. After this, preparation for erase mode (erase setup) is carried out by setting the ESU1 bit in FLMCR1, and after the elapse of (t_{sesu}) μs or more, the operating mode is switched to erase mode by setting the E1 bit in FLMCR1. The time during which the E1 bit is set is the flash memory erase time. Ensure that the erase time does not exceed (t_{se}) ms.

Note: With flash memory erasing, prewriting (setting all data in the memory to be erased to 0) is not necessary before starting the erase procedure.

19.9.4 Erase-Verify Mode

In erase-verify mode, data is read after memory has been erased to check whether it has been correctly erased.

After the elapse of the erase time, erase mode is exited (the E1 bit in FLMCR1 is cleared to 0, then the ESU1 bit is cleared to 0 at least (t_{ce}) μs later), the watchdog timer is cleared after the elapse of (t_{cesu}) μs or more, and the operating mode is switched to erase-verify mode by setting the EV1 bit in FLMCR1. Before reading in erase-verify mode, a dummy write of H'FF data should be made to the addresses to be read. The dummy write should be executed after the elapse of (t_{sev}) μs or more. When the flash memory is read in this state (verify data is read in 16-bit units), the data at the latched address is read. Wait at least (t_{sevr}) μs after the dummy write before performing this read operation. If the read data has been erased (all 1), execute a dummy write to the next address, and perform an erase-verify. If the read data has not been erased, set erase mode again and repeat the erase/erase-verify sequence as before. However, ensure that the erase/erase-verify sequence is not repeated more than (N) times. When verification is completed, exit erase-verify mode, and wait for at least (t_{cev}) μs . If erasure has been completed on all the erase blocks, clear the SWE1 bit in FLMCR1. If there are any unerased blocks, make a 1-bit setting for the flash memory block to be erased, and repeat the erase/erase-verify sequence as before.

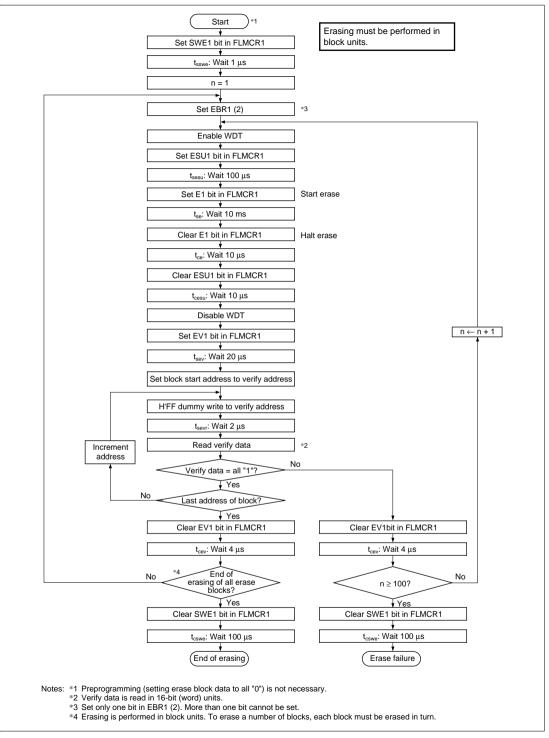


Figure 19-12 Erase/Erase-Verify Flowchart

19.10 Protection

There are three kinds of flash memory program/erase protection: hardware protection, software protection, and error protection.

19.10.1 Hardware Protection

Hardware protection refers to a state in which programming/erasing of flash memory is forcibly disabled or aborted. Hardware protection is reset by settings in flash memory control register 1 (FLMCR1), flash memory control register 2 (FLMCR2), erase block register 1 (EBR1), and erase block register 2 (EBR2). The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained in the error-protected state. (See table 19-10.)

Table 19-10 Hardware Protection

		Fu	nctions
Item	Description	Program	Erase
FWE pin protection	 When a low level is input to the FWE pin, FLMCR1, FLMCR2, (except bit FLER) EBR1, and EBR2 are initialized, and the program/erase-protected state is entered. 	Yes	Yes
Reset/standby protection	 In a power-on reset (including a WDT power-on reset) and in standby mode, FLMCR1, FLMCR2, EBR1, and EBR2 are initialized, and the program/erase-protected state is entered. In a reset via the RES pin, the reset state is not entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of a reset during operation, hold the RES pin low for the RES pulse width specified in the AC Characteristics section. 	Yes	Yes

19.10.2 Software Protection

Software protection can be implemented by setting the SWE1 bit in FLMCR1, erase block register 1 (EBR1), erase block register 2 (EBR2), and the RAMS bit in the RAM emulation register (RAMER). When software protection is in effect, setting the P1 or E1 bit in flash memory control register 1 (FLMCR1), does not cause a transition to program mode or erase mode. (See table 19-11.)

Table 19-11 Software Protection

		Fur	nctions
Item	Description	Program	Erase
SWE bit protection	Setting bit SWE1 in FLMCR1 to 0 will place area H'000000 to H'03FFFF in the program/erase-protected state. (Execute the program in the on-chip RAM, external memory)	Yes	Yes
Block specification protection	 Erase protection can be set for individual blocks by settings in erase block register 1 (EBR1) and erase block register 2 (EBR2). Setting EBR1 and EBR2 to H'00 places all blocks in the erase-protected state. 	_	Yes
Emulation protection	Setting the RAMS bit to 1 in the RAM emulation register (RAMER) places all blocks in the program/erase-protected state.	Yes	Yes

19.10.3 Error Protection

In error protection, an error is detected when H8S/2238 runaway occurs during flash memory programming/erasing, or operation is not performed in accordance with the program/erase algorithm, and the program/erase operation is aborted. Aborting the program/erase operation prevents damage to the flash memory due to overprogramming or overerasing.

If the H8S/2238 malfunctions during flash memory programming/erasing, the FLER bit is set to 1 in FLMCR2 and the error protection state is entered. The FLMCR1, FLMCR2, EBR1, and EBR2 settings are retained, but program mode or erase mode is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-entered by re-setting the P1 or E1 bit. However, PV1 and EV1 bit setting is enabled, and a transition can be made to verify mode.

FLER bit setting conditions are as follows:

- 1. When the flash memory of the relevant address area is read during programming/erasing (including vector read and instruction fetch)
- 2. Immediately after exception handling (excluding a reset) during programming/erasing
- 3. When a SLEEP instruction (including software standby) is executed during programming/erasing
- 4. When the CPU releases the bus to the DTC during programming/erasing.

Error protection is released only by a power-on reset and in hardware standby mode.

Figure 19-13 shows the flash memory state transition diagram.

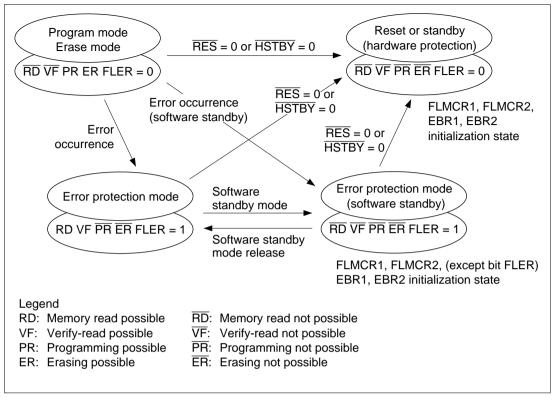


Figure 19-13 Flash Memory State Transitions

19.11 Flash Memory Emulation in RAM

Making a setting in the RAM emulation register (RAMER) enables part of RAM to be overlapped onto the flash memory area so that data to be written to flash memory can be emulated in RAM in real time. After the RAMER setting has been made, accesses can be made from the flash memory area or the RAM area overlapping flash memory. Emulation can be performed in user mode and user program mode. Figure 19-14 shows an example of emulation of real-time flash memory programming.

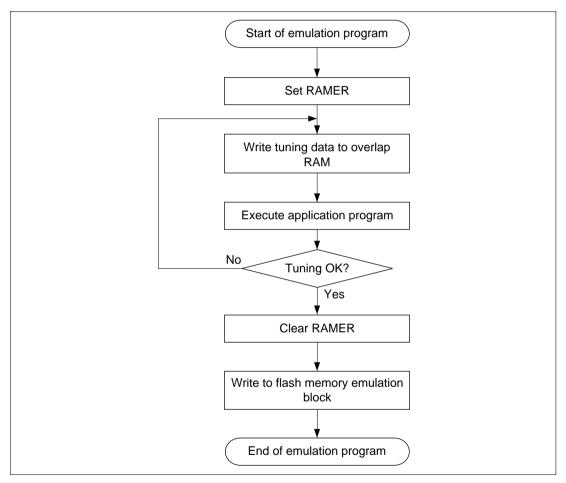


Figure 19-14 Flowchart for Flash Memory Emulation in RAM

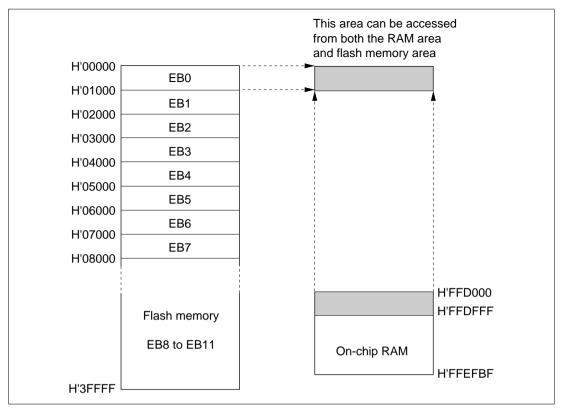


Figure 19-15 Example of RAM Overlap Operation

Example in which Flash Memory Block Area EB0 is Overlapped

- 1. Set bits RAMS, RAM2 to RAM0 in RAMER to 1, 0, 0, 0, to overlap part of RAM onto the area (EB0) for which real-time programming is required.
- 2. Real-time programming is performed using the overlapping RAM.
- 3. After the program data has been confirmed, the RAMS bit is cleared, releasing RAM overlap.
- 4. The data written in the overlapping RAM is written into the flash memory space (EB0).
- Notes: 1. When the RAMS bit is set to 1, program/erase protection is enabled for all blocks regardless of the value of RAM2 to RAM0 (emulation protection). In this state, setting the P1 or E1 bit in flash memory control register 1 (FLMCR1), will not cause a transition to program mode or erase mode. When actually programming or erasing a flash memory area, the RAMS bit should be cleared to 0.
 - 2. A RAM area cannot be erased by execution of software in accordance with the erase algorithm while flash memory emulation in RAM is being used.
 - 3. Block area EB0 contains the vector table. When performing RAM emulation, the vector table is needed in the overlap RAM.

19.12 Interrupt Handling when Programming/Erasing Flash Memory

All interrupts, including NMI interrupt is disabled when flash memory is being programmed or erased (when the P1 or E1 bit is set in FLMCR1), and while the boot program is executing in boot mode*¹, to give priority to the program or erase operation. There are three reasons for this:

- 1. Interrupt during programming or erasing might cause a violation of the programming or erasing algorithm, with the result that normal operation could not be assured.
- 2. In the interrupt exception handling sequence during programming or erasing, the vector would not be read correctly*², possibly resulting in MCU runaway.
- 3. If interrupt occurred during boot program execution, it would not be possible to execute the normal boot mode sequence.

For these reasons, in on-board programming mode alone there are conditions for disabling interrupt, as an exception to the general rule. However, this provision does not guarantee normal erasing and programming or MCU operation. All requests, including NMI interrupt, must therefore be restricted inside and outside the MCU when programming or erasing flash memory. NMI interrupt is also disabled in the error-protection state while the P1 or E1 bit remains set in FLMCR1.

Notes: *1 Interrupt requests must be disabled inside and outside the MCU until the programming control program has completed programming.

- *2 The vector may not be read correctly in this case for the following two reasons:
 - If flash memory is read while being programmed or erased (while the P1 or E1 bit is set in FLMCR1), correct read data will not be obtained (undetermined values will be returned).
 - If the interrupt entry in the vector table has not been programmed yet, interrupt exception handling will not be executed correctly.

19.13 Flash Memory Programmer Mode

Programs and data can be written and erased in programmer mode as well as in the on-board programming modes. In programmer mode, flash memory read mode, auto-program mode, auto-erase mode, and status read mode are supported. In auto-program mode, auto-erase mode, and status read mode, a status polling procedure is used, and in status read mode, detailed internal signals are output after execution of an auto-program or auto-erase operation.

In programmer mode, set the mode pins to programmer mode (see table 19-12) and input a 12 MHz input clock.

Table 19-12 shows the pin settings for programmer mode. For the pin names in programmer mode, see section 1.3.2, Pin Functions in Each Operating Mode.

Table 19-12 Programmer Mode Pin Settings

Pin Names	Settings
Mode pins: MD2, MD1, MD0	Low level input to MD2, MD1, and MD0.
Mode setting pins: PF0, P16, P14	High level input to PF0, low level input to P16 and P14
FWE pin	High level input (in auto-program and auto-erase modes)
RES pin	Power-on reset circuit
XTAL, EXTAL pins	Oscillator circuit

19.13.1 Socket Adapter Pin Correspondence Diagram

Connect the socket adapter to the chip as shown in figure 19-17. This will enable conversion to a 40-pin arrangement. The on-chip ROM memory map is shown in figure 19-16, and the socket adapter pin correspondence diagram in figure 19-17.

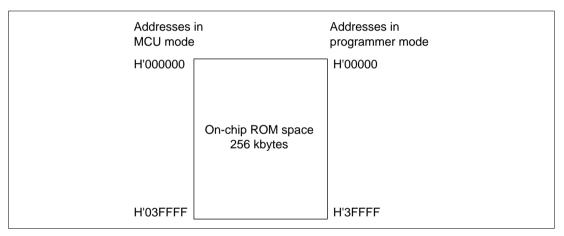


Figure 19-16 On-Chip ROM Memory Map

Pin	8S/2238 Series		Socket Adapter	HN27C4096HG (40 Pins)	
FP-100B, TFP-100B, TFP-100G	FP-100A	Pin Name	(Conversion to 40-Pin Arrangement)	Pin No.	Pin Name
13	16	A0		21	A0
15	18	A1		22	A1
16	19	A2		23	A2
17	20	A3		24	A3
18	21	A4		25	A4
19	22	A5		26	A5
20	23	A6		27	A6
21	24	A7		28	A7
22	25	A8		29	A8
23	26	A9		31	A9
24	27	A10		32	A10
25	28	A11		33	A11
26	29	A12		34	A12
27	30	A13	1	35	A13
28	31	A14		36	A14
29	32	A15		37	A15
30	33	A16		38	A16
31	34	A17		39	A17
32	35	A18		10	A18
4	7	D0		19	I/O0
5	8	D1		18	I/O1
6	9	D2		17	I/O2
7	10	D3		16	I/O3
8	11	D4		15	1/04
9	12	D5		14	I/O5
10	13	D6		13	1/06
11	14	D7		12	1/07
3	6	CE		2	CE
1	4	ŌĒ		20	ŌĒ
2	5	WE		3	WE
66	69	FWE		4	FWE
12, 53, 54, 58, 60,	2, 15, 56, 57, 61,			1,40	V _{CC}
61, 62, 75, 99	63, 64, 65, 78	V _{cc}		11,30	V _{SS}
14, 38, 40, 42, 55, 56,	3, 17, 41, 43, 45, 58,	.,		5,6,7	NC
64, 67, 100	59, 67, 70	V _{SS}		8	A20
59	62	RES	Power-on reset circuit	9	A19
63	66	XTAL		Legend	
65	68	EXTAL	Oscillator circuit		sh write enable
Other than the above	Other than the above	NC (OPEN)		CE: Chi	ta input/output dress input ip enable tput enable ite enable

Figure 19-17 Socket Adapter Pin Correspondence Diagram

19.13.2 Programmer Mode Operation

Table 19-13 shows how the different operating modes are set when using programmer mode, and table 19-14 lists the commands used in programmer mode. Details of each mode are given below.

Memory Read Mode

Memory read mode supports byte reads.

• Auto-Program Mode

Auto-program mode supports programming of 128 bytes at a time. Status polling is used to confirm the end of auto-programming.

Auto-Erase Mode

Auto-erase mode supports automatic erasing of the entire flash memory. Status polling is used to confirm the end of auto-programming.

Status Read Mode

Status polling is used for auto-programming and auto-erasing, and normal termination can be confirmed by reading the I/O6 signal. In status read mode, error information is output if an error occurs.

Table 19-13 Settings for Various Operating Modes In Programmer Mode

	Pin Names						
Mode	FWE	CE	ŌĒ	WE	I/O7- I/O0	A18-A0	
Read	H or L	L	L	Н	Data output	Ain	
Output disable	H or L	L	Н	Н	Hi-z	X	
Command write	H or L	L	Н	L	Data input	*Ain	
Chip disable	H or L	Н	X	X	Hi-z	X	

Notes: 1. Chip disable is not a standby state; internally, it is an operation state.

^{2.} For command writes in auto-program and auto-erase modes, input a high level to the FWE pin.

^{*}Ain indicates that there is also address input in auto-program mode.

Table 19-14 Programmer Mode Commands

	Number		1st Cycle		2nd Cycle		•
Command Name	of Cycles	Mode	Address	Data	Mode	Address	Data
Memory read mode	1 + n	Write	Х	H'00	Read	RA	Dout
Auto-program mode	129	Write	X	H'40	Write	WA	Din
Auto-erase mode	2	Write	Х	H'20	Write	Х	H'20
Status read mode	2	Write	X	H'71	Write	X	H'71

- Notes: 1. In auto-program mode, 129 cycles are required for command writing by a simultaneous 128-byte write.
 - 2. In memory read mode, the number of cycles depends on the number of address write cycles (n).

19.13.3 Memory Read Mode

- After completion of auto-program/auto-erase/status read operations, a transition is made to the command wait state. When reading memory contents, a transition to memory read mode must first be made with a command write, after which the memory contents are read.
- 2. In memory read mode, command writes can be performed in the same way as in the command wait state.
- 3. Once memory read mode has been entered, consecutive reads can be performed.
- 4. After powering on, memory read mode is entered.

Table 19-15 AC Characteristics in Transition to Memory Read Mode (Conditions: V_{CC} = 3.3 V ±0.3 V, V_{SS} = 0 V, T_a = 25°C ±5°C)

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t_{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
WE rise time	t _r	_	30	ns	
WE fall time	t _f	_	30	ns	

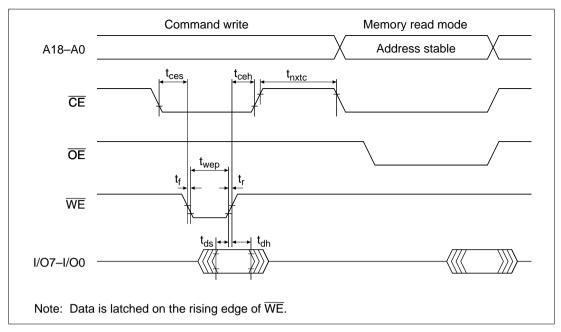


Figure 19-18 Timing Waveforms for Memory Read after Memory Write

Table 19-16 AC Characteristics in Transition from Memory Read Mode to Another Mode (Conditions: $V_{CC}=3.3~V~\pm0.3~V, V_{SS}=0~V, T_a=25^{\circ}C~\pm5^{\circ}C)$

Item	Symbol	Min	Max	Unit
Command write cycle	t _{nxtc}	20	_	μs
CE hold time	t _{ceh}	0	_	ns
CE setup time	t _{ces}	0	_	ns
Data hold time	t _{dh}	50	_	ns
Data setup time	t _{ds}	50	_	ns
Write pulse width	t _{wep}	70	_	ns
WE rise time	t _r	_	30	ns
WE fall time	t _f	_	30	ns

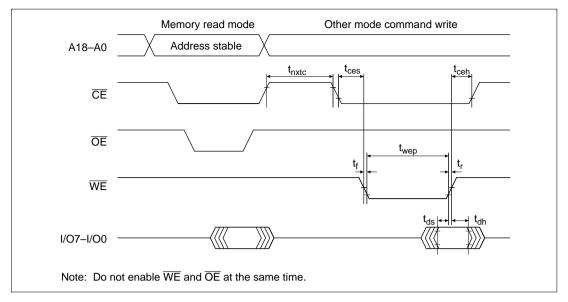


Figure 19-19 Timing Waveforms in Transition from Memory Read Mode to Another Mode

Table 19-17 AC Characteristics in Memory Read Mode (Conditions: V_{CC} = 3.3 V ±0.3 V, V_{SS} = 0 V, T_a = 25°C ±5°C)

Item	Symbol	Min	Max	Unit	
Access time	t _{acc}	_	20	μs	
CE output delay time	t _{ce}	_	150	ns	
OE output delay time	t _{oe}		150	ns	
Output disable delay time	t _{df}		100	ns	
Data output hold time	t _{oh}	5	_	ns	

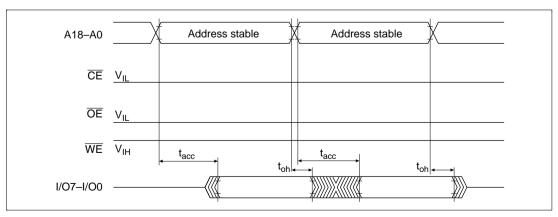


Figure 19-20 \overline{CE} and \overline{OE} Enable State Read Timing Waveforms

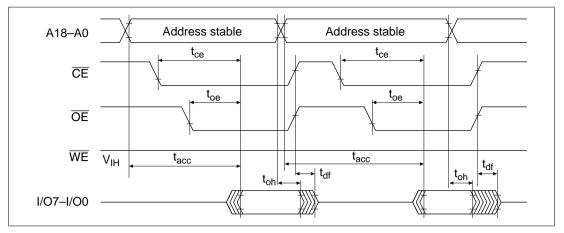


Figure 19-21 \overline{CE} and \overline{OE} Clock System Read Timing Waveforms

19.13.4 Auto-Program Mode

- 1. In auto-program mode, 128 bytes are programmed simultaneously. This should be carried out by executing 128 consecutive byte transfers.
- 2. A 128-byte data transfer is necessary even when programming fewer than 128 bytes. In this case, H'FF data must be written to the extra addresses.
- 3. The lower 7 bits of the transfer address must be low. If a value other than an effective address is input, processing will switch to a memory write operation but a write error will be flagged.
- 4. Memory address transfer is performed in the second cycle (figure 19-21). Do not perform transfer after the third cycle.
- 5. Do not perform a command write during a programming operation.
- Perform one auto-program operation for a 128-byte block for each address. Two or more
 additional programming operations cannot be performed on a previously programmed address
 block.
- 7. Confirm normal end of auto-programming by checking I/O6. Alternatively, status read mode can also be used for this purpose (I/O7 status polling uses the auto-program operation end decision pin).
- 8. Status polling I/O6 and I/O7 pin information is retained until the next command write. As long as the next command write has not been performed, reading is possible by enabling $\overline{\text{CE}}$ and $\overline{\text{OE}}$.

Table 19-18 AC Characteristics in Auto-Program Mode (Conditions: V_{CC} = 3.3 V ± 0.3 V, V_{SS} = 0 V, T_a = 25°C ± 5 °C)

Item	Symbol	Min	Max	Unit	
Command write cycle	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	<u> </u>	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
Status polling start time	t _{wsts}	1	<u> </u>	ms	
Status polling access time	t _{spa}	_	150	ns	
Address setup time	t _{as}	0	_	ns	
Address hold time	t _{ah}	60	<u> </u>	ns	
Memory write time	t _{write}	1	3000	ms	
Write setup time	t _{pns}	100		ns	
Write end setup time	t _{pnh}	100	_	ns	
WE rise time	t _r	_	30	ns	
WE fall time	t _f		30	ns	

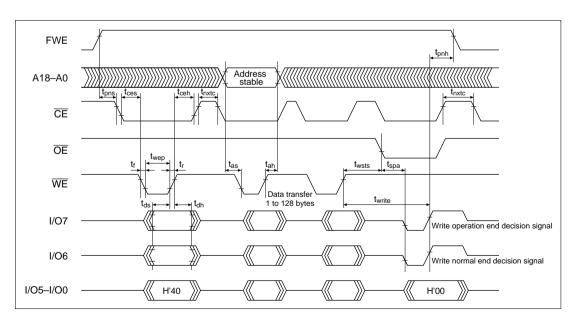


Figure 19-22 Auto-Program Mode Timing Waveforms

19.13.5 Auto-Erase Mode

- 1. Auto-erase mode supports only entire memory erasing.
- 2. Do not perform a command write during auto-erasing.
- 3. Confirm normal end of auto-erasing by checking I/O6. Alternatively, status read mode can also be used for this purpose (I/O7 status polling uses the auto-erase operation end decision pin).
- 4. Status polling I/O6 and I/O7 pin information is retained until the next command write. As long as the next command write has not been performed, reading is possible by enabling $\overline{\text{CE}}$ and $\overline{\text{OE}}$.

Table 19-19 AC Characteristics in Auto-Erase Mode (Conditions: V_{CC} = 3.3 V ±3.0 V, V_{SS} = 0 V, T_a = 25°C ±5°C)

Item	Symbol	Min	Max	Unit
Command write cycle	t _{nxtc}	20	_	μs
CE hold time	t _{ceh}	0		ns
CE setup time	t _{ces}	0	_	ns
Data hold time	t _{dh}	50	_	ns
Data setup time	t _{ds}	50	<u> </u>	ns
Write pulse width	t _{wep}	70	_	ns
Status polling start time	t _{ests}	1	_	ms
Status polling access time	t _{spa}		150	ns
Memory erase time	t _{erase}	100	40000	ms
Erase setup time	t _{ens}	100	_	ns
Erase end setup time	t _{enh}	100		ns
WE rise time	t,		30	ns
WE fall time	t _f	_	30	ns

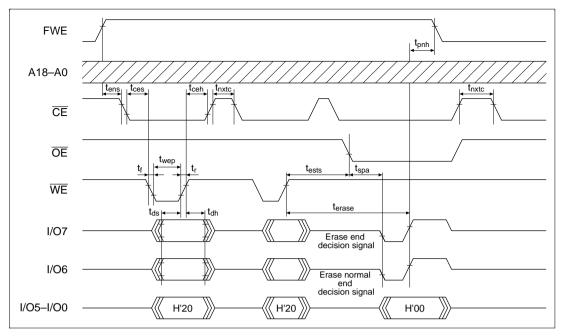


Figure 19-23 Auto-Erase Mode Timing Waveforms

19.13.6 Status Read Mode

- 1. Status read mode is provided to identify the kind of abnormal end. Use this mode when an abnormal end occurs in auto-program mode or auto-erase mode.
- 2. The return code is retained until a command write other than a status read mode command write is executed.

Table 19-20 AC Characteristics in Status Read Mode (Conditions: V_{CC} = 3.3 V ±0.3 V, V_{SS} = 0 V, T_a = 25°C ±5°C)

Item	Symbol	Min	Max	Unit	
Read time after command write	t _{nxtc}	20	_	μs	
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
OE output delay time	t _{oe}	_	150	ns	
Disable delay time	t _{df}	_	100	ns	
CE output delay time	t _{ce}	_	150	ns	
WE rise time	t _r		30	ns	
WE fall time	t _f	_	30	ns	

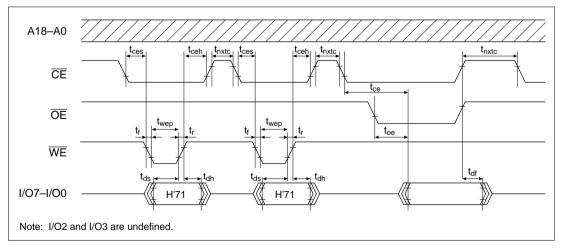


Figure 19-24 Status Read Mode Timing Waveforms

Table 19-21 Status Read Mode Return Commands

1/07	I/O6	I/O5	I/O4	1/03	1/02	I/O1	I/O0
Normal end decision	Command error	Program- ming error	Erase error	_	_	Program- ming or erase count exceeded	Effective address error
0	0	0	0	0	0	0	0
Normal end: 0	Command error: 1	Program- ming	Erasing error: 1	_	_	Count exceeded: 1	
Abnormal	Otherwise: 0)		Otherwise: 0	Otherwise: 0
	Normal end decision 0 Normal end: 0	Normal end error decision 0 0 Normal Command error 0 Command end: 0 error: 1 Abnormal Otherwise: 0	Normal end error Programming error decision 0 0 0 0 Normal Command error: 1 Programming error ming error Otherwise: 0 error: 1	Normal end error ming error Erase error 0 0 0 0 0 Normal Command Program- error 0 Program- Erasing error: 1 Abnormal Otherwise: 0 Otherwise: 0	Normal end error ming error Erase error 0 0 0 0 0 0 0 Normal Command error: 1 Erase error Programming error Erasing — error: 1 Abnormal Otherwise: 0 Otherwise: 0	Normal end error ming error error O O O O O O O O O O O O O O O O O O O	Normal Command error ming error error error error ming or erase count exceeded O O O O O O O O Normal Command Program- Erasing — Count end: 0 error: 1 ming error: 1 exceeded: 1 Abnormal Otherwise: 0 error: 1 Otherwise: 0

Note: I/O2 and I/O3 are undefined.

19.13.7 Status Polling

- 1. The I/O7 status polling flag indicates the operating status in auto-program/auto-erase mode.
- 2. The I/O6 status polling flag indicates a normal or abnormal end in auto-program/auto-erase mode.

Table 19-22 Status Polling Output Truth Table

Pin Name	During Internal Operation	Abnormal End	_	Normal End
1/07	0	1	0	1
I/O6	0	0	1	1
I/O0–I/O5	0	0	0	0

19.13.8 Programmer Mode Transition Time

Commands cannot be accepted during the oscillation stabilization period or the programmer mode setup period. After the programmer mode setup time, a transition is made to memory read mode.

Table 19-23 Stipulated Transition Times to Command Wait State

Item	Symbol	Min	Max	Unit	
Standby release (oscillation stabilization time)	t _{osc1}	30	_	ms	
Programmer mode setup time	t _{bmv}	10	<u> </u>	ms	
V _{CC} hold time	t _{dwn}	0	_	ms	

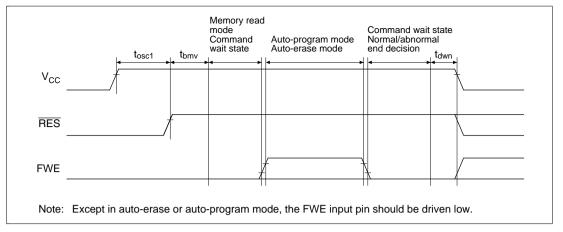


Figure 19-25 Oscillation Stabilization Time, Boot Program Transfer Time, and Power-Down Sequence

19.13.9 Notes on Memory Programming

- 1. When programming addresses which have previously been programmed, carry out autoerasing before auto-programming.
- 2. When performing programming using programmer mode on a chip that has been programmed/erased in an on-board programming mode, auto-erasing is recommended before carrying out auto-programming.
- Notes: 1. The flash memory is initially in the erased state when the device is shipped by Hitachi. For other chips for which the erasure history is unknown, it is recommended that autoerasing be executed to check and supplement the initialization (erase) level.
 - Auto-programming should be performed once only on the same address block.
 Additional programming cannot be performed on previously programmed address blocks.

19.14 Flash Memory and Power-Down States

In addition to its normal operating state, the flash memory has power-down states in which power consumption is reduced by halting part or all of the internal power supply circuitry.

There are three flash memory operating states:

- (1) Normal operating mode: The flash memory can be read and written to.
- (2) Power-down mode: Part of the power supply circuitry is halted, and the flash memory can be read only when the LSI is operating on the subclock.
- (3) Standby mode: All flash memory circuits are halted, and the flash memory cannot be read or written to.

States (2) and (3) are flash memory power-down states. Table 19-24 shows the correspondence between the operating states of the LSI and the flash memory.

Table 19-24 Flash Memory Operating States

LSI Operating State	Flash Memory Operating State
High-speed mode	Normal mode (read/write)
Medium-speed mode	
Sleep mode	
Subactive mode	When PDWND = 0: Power-down mode (read-only)
Subsleep mode	When PDWND = 1: Normal mode (read-only)
Watch mode	Standby mode
Software standby mode	
Hardware standby mode	

Note: PDWND is valid only when the LSI is in subactive mode or subsleep mode, and is invalid in other modes.

19.14.1 Note on Power-Down States

When the flash memory is in a power-down state, part or all of the internal power supply circuitry is halted. Therefore, a power supply circuit stabilization period must be provided when returning to normal operation. When the flash memory returns to its normal operating state from a power-down state, bits STS2 to STS0 in SBYCR must be set to provide a wait time of at least $100 \, \mu s$ (power supply stabilization time), even if an oscillation stabilization period is not necessary.

19.15 Flash Memory Programming and Erasing Precautions

Precautions concerning the use of on-board programming mode, the RAM emulation function, and PROM mode are summarized below.

Use the specified voltages and timing for programming and erasing

Applied voltages in excess of the rating can permanently damage the device. Use a PROM programmer that supports the Hitachi microcomputer device type with 256-kbyte on-chip flash memory (FZTAT256V3A).

Do not select the HN27C4096 setting for the PROM programmer, and only use the specified socket adapter. Failure to observe these points may result in damage to the device.

Powering on and off (See figures 19-26 to 19-28)

Do not apply a high level to the FWE pin until V_{CC} has stabilized. Also, drive the FWE pin low before turning off V_{CC} .

When applying or disconnecting $V_{\rm CC}$ power, fix the FWE pin low and place the flash memory in the hardware protection state.

The power-on and power-off timing requirements should also be satisfied in the event of a power failure and subsequent recovery.

FWE application/disconnection (See figures 19-26 to 19-28)

FWE application should be carried out when MCU operation is in a stable condition. If MCU operation is not stable, fix the FWE pin low and set the protection state.

The following points must be observed concerning FWE application and disconnection to prevent unintentional programming or erasing of flash memory:

- Apply FWE when the V_{CC} voltage has stabilized within its rated voltage range.
- In boot mode, apply and disconnect FWE during a reset.
- In user program mode, FWE can be switched between high and low level regardless of the reset state. FWE input can also be switched during execution of a program in flash memory.
- Do not apply FWE if program runaway has occurred.
- Disconnect FWE only when the SWE1, ESU1, PSU1, EV1, PV1, P1, and E1 bits in FLMCR1 are cleared.

Make sure that the SWE1, ESU1, PSU1, EV1, PV1, P1, and E1 bits are not set by mistake when applying or disconnecting FWE.

Do not apply a constant high level to the FWE pin

Apply a high level to the FWE pin only when programming or erasing flash memory. A system configuration in which a high level is constantly applied to the FWE pin should be avoided. Also, while a high level is applied to the FWE pin, the watchdog timer should be activated to prevent overprogramming or overerasing due to program runaway, etc.

Use the recommended algorithm when programming and erasing flash memory

The recommended algorithm enables programming and erasing to be carried out without subjecting the device to voltage stress or sacrificing program data reliability. When setting the P1 or E1 bit in FLMCR1, the watchdog timer should be set beforehand as a precaution against program runaway, etc.

Do not set or clear the SWE1 bit during execution of a program in flash memory

Wait for at least 100 µs after clearing the SWE1 bit before executing a program or reading data in flash memory. When the SWE1 bit is set, data in flash memory can be rewritten, but access flash memory only for verify operations (verification during programming/erasing). Also, do not clear the SWE1 bit during programming, erasing, or verifying.

Similarly, when using emulation by RAM with a high level applied to the FWE pin, the SWE1 bit should be cleared before executing a program or reading data in flash memory. However, read/write accesses can be performed in the RAM area overlapping the flash memory space regardless of whether the SWE1 bit is set or cleared.

Do not use interrupts while flash memory is being programmed or erased

All interrupt requests, including NMI, should be disabled during FWE application to give priority to program/erase operations.

Do not perform additional programming. Erase the memory before reprogramming $% \left(\mathbf{r}\right) =\left(\mathbf{r}\right)$

In on-board programming, perform only one programming operation on a 128-byte programming unit block. In programmer mode, too, perform only one programming operation on a 128-byte programming unit block. Programming should be carried out with the entire programming unit block erased.

Before programming, check that the chip is correctly mounted in the PROM programmer

Overcurrent damage to the device can result if the index marks on the PROM programmer socket, socket adapter, and chip are not correctly aligned.

Do not touch the socket adapter or chip during programming

Touching either of these can cause contact faults and write errors.

The reset state must be entered after powering on

Apply the reset signal for at least 100 µs during the oscillation setting period.

When a reset is applied during operation, this should be done while the SWE1 pin is low.

Wait at least 100 µs after clearing the SWE1 bit before applying the reset.

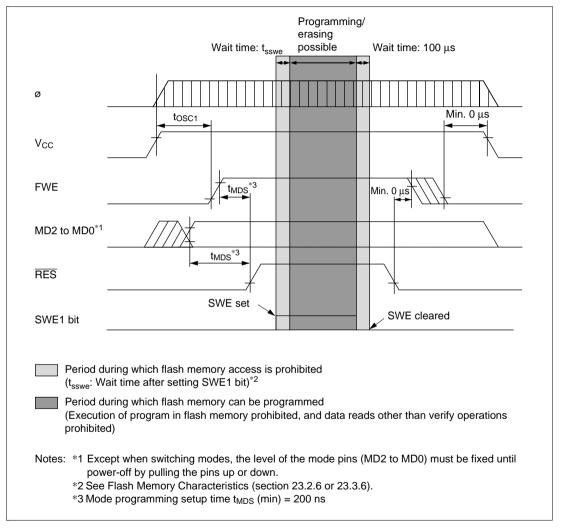


Figure 19-26 Power-On/Off Timing (Boot Mode)

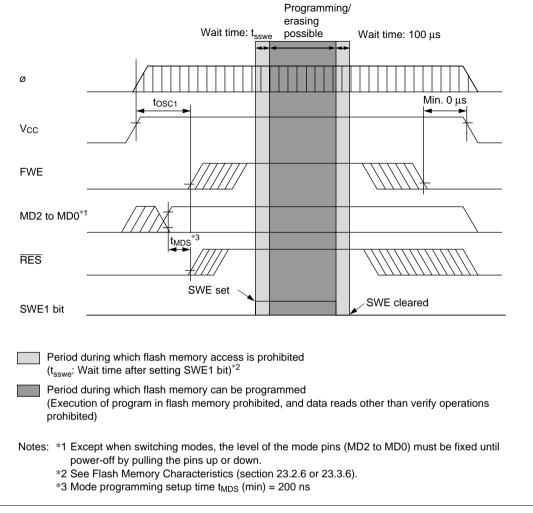


Figure 19-27 Power-On/Off Timing (User Program Mode)

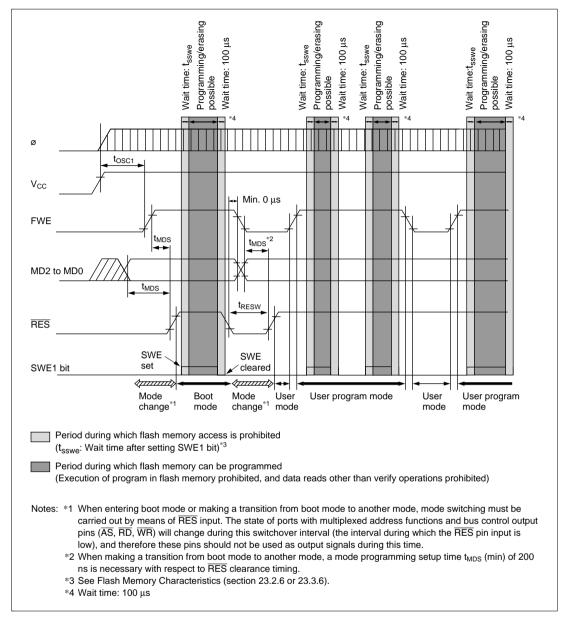


Figure 19-28 Mode Transition Timing (Example: Boot Mode → User Mode ↔ User Program Mode)

19.16 Note on Switching from F-ZTAT Version to Mask ROM Version

The mask ROM version does not have the internal registers for flash memory control that are provided in the F-ZTAT version. Table 19-25 lists the registers that are present in the F-ZTAT version but not in the mask ROM version. If a register listed in table 19-25 is read in the mask ROM version, an undefined value will be returned. Therefore, if application software developed on the F-ZTAT version is switched to a mask ROM version product, it must be modified to ensure that the registers in table 19-25 have no effect.

Table 19-25 Registers Present in F-ZTAT Version but Absent in Mask ROM Version

Register	Abbreviation	Address	
Flash memory control register 1	FLMCR1	H'FFA8	
Flash memory control register 2	FLMCR2	H'FFA9	
Erase block register 1	EBR1	H'FFAA	
Erase block register 2	EBR2	H'FFAB	
RAM emulation register	RAMER	H'FEDB	
Flash memory power control register	FLPWCR	H'FFAC	
Serial control register (bit 3 only)	SCRX	H'FDB4	

Section 20 Clock Pulse Generator

20.1 Overview

The H8S/2238 Series has a built-in clock pulse generator (CPG) that generates the system clock (\emptyset) , the bus master clock, and internal clocks.

The clock pulse generator consists of a system clock oscillator, duty adjustment circuit, clock selection circuit, medium-speed clock divider, bus master clock selection circuit, subclock oscillator, and waveform shaping circuit.

20.1.1 Block Diagram

Figure 20-1 shows a block diagram of the clock pulse generator.

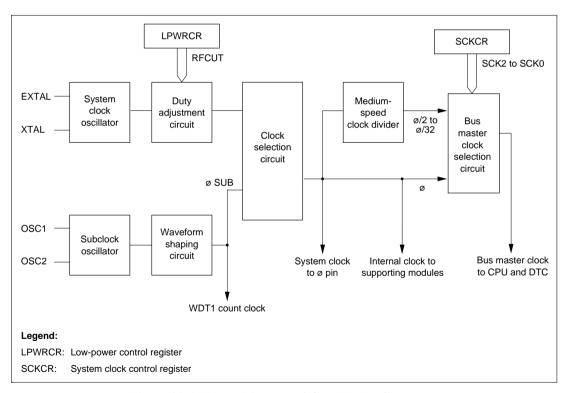


Figure 20-1 Block Diagram of Clock Pulse Generator

20.1.2 Register Configuration

The clock pulse generator is controlled by SCKCR and LPWRCR. Table 20-1 shows the register configuration.

Table 20-1 Clock Pulse Generator Register

Name	Abbreviation	R/W	Initial Value	Address*
System clock control register	SCKCR	R/W	H'00	H'FDE6
Low-power control register	LPWRCR	R/W	H'00	H'FDEC

Note: * Lower 16 bits of the address.

20.2 Register Descriptions

20.2.1 System Clock Control Register (SCKCR)

Bit	:	7	6	5	4	3	2	1	0	
		PSTOP	_	_	_	_	SCK2	SCK1	SCK0	
Initial va	alue:	0	0	0	0	0	0	0	0	
R/W	:	R/W	R/W	_	_	R/W	R/W	R/W	R/W	

SCKCR is an 8-bit readable/writable register that performs ø clock output control and medium-speed mode control.

SCKCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—ø Clock Output Disable (PSTOP): Controls ø output.

Bit 7		Descr	ription		
PSTOP	High-Speed Mode, Medium-Speed Mode, Subactive Mode	Sleep Mode Subsleep Mode	Software Standby Mode, Watch Mode, Hardware Sta Direct Transition Mode		
0	ø output (initial value)	ø output	Fixed high	High impedance	
1	Fixed high	Fixed high	Fixed high	High impedance	

Bit 6—Reserved: This bit can be read or written to, but only 0 should be written.

Bits 5 and 4—Reserved: These bits cannot be modified and are always read as 0.

Bit 3—Reserved: This bit can be read or written to, but only 0 should be written.

Bits 2 to 0—System Clock Select 2 to 0 (SCK2 to SCK0): These bits select the bus master clock used in high-speed mode and medium-speed mode. In the case of transition to subactive mode or watch mode, bits SCK2 to SCK0 should all be cleared to 0.

Bit 2	Bit 1	Bit 0		
SCK2	SCK1	SCK0	 Description	
0	0	0	Bus master is in high-speed mode	(Initial value)
		1	Medium-speed clock is ø/2	
	1	0	Medium-speed clock is ø/4	
		1	Medium-speed clock is ø/8	
1	0	0	Medium-speed clock is ø/16	
		1	Medium-speed clock is ø/32	
	1	_	_	

20.2.2 Low-Power Control Register (LPWRCR)

Bit	:	7	6	5	4	3	2	1	0
		DTON	LSON	NESEL	SUBSTP	RFCUT	_	STC1	STC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

LPWRCR is an 8-bit readable/writable register that performs power-down mode control. LPWRCR is initialized to H'00 by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

Bit 7—Direct-Transfer On Flag (DTON): Specifies whether a direct transition is made between high-speed mode or medium-speed mode and subactive mode when making a power-down transition by executing a SLEEP instruction. The operating mode to which the transition is made after SLEEP instruction execution is determined by a combination of other control bits.

Bit 7	
DTON	Description
0	 When a SLEEP instruction is executed in high-speed mode or medium-speed mode, a transition is made to sleep mode, software standby mode, or watch mode When a SLEEP instruction is executed in subactive mode, a transition is made to subsleep mode or watch mode
1	 When a SLEEP instruction is executed in high-speed mode or medium-speed mode, a transition is made directly to subactive mode*, or a transition is made to sleep mode or sofware standby mode When a SLEEP instruction is executed in subactive mode, a transition is made

Note: * In the case of a transition to watch mode or subactive mode, high-speed mode must be set.

directly to high-speed mode, or a transition is made to subsleep mode

Bit 6—Low-Speed On Flag (LSON): Determines the operating mode in combination with other control bits when making a power-down transition by executing a SLEEP instruction. Also controls whether a transition is made to high-speed mode or medium-speed mode, or to subactive mode, when watch mode is cleared.

Bit	6

LSON	 Description
0	When a SLEEP instruction is executed in high-speed mode or medium-speed mode, a transition is made to sleep mode, software standby mode, or watch mode
	 When a SLEEP instruction is executed in subactive mode, a transition is made to watch mode*, or directly to high-speed mode
	After watch mode is cleared, a transition is made to high-speed mode
	(Initial value)
1	When a SLEEP instruction is executed in high-speed mode, a transition is made to watch mode or subactive mode
	 When a SLEEP instruction is executed in subactive mode, a transition is made to subsleep mode or watch mode
	After watch mode is cleared, a transition is made to subactive mode

Note: * In the case of a transition to watch mode or subactive mode, high-speed mode must be set.

Bit 5—Noise Elimination Sampling Frequency Select (NESEL): Selects the frequency at which the subclock (\emptyset SUB) generated by the subclock oscillator is sampled with the clock (\emptyset) generated by the system clock oscillator. When $\emptyset = 5$ MHz or higher, this bit should be cleared to 0. When $\emptyset = 2.1$ MHz or lower, this bit should be set to 1. When $\emptyset = 2.1$ MHz to 5 MHz, any value can be set.

Bit 5

NESEL	 Description	
0	Sampling at ø divided by 32	(Initial value)
1	Sampling at ø divided by 4	

Bit 4—Subclock Oscillator Control (SUBSTP): Controls operation and stopping of the subclock oscillator.

Bit 4

SUBSTP		
0	Subclock oscillator operates	(Initial value)
1	Subclock oscillator is stopped	

Note: When the subclock is not used, this bit should be set to 1.

Bit 3—Built-in Feedback Resistor Control (RFCUT): Selects whether the oscillator's built-in feedback resistor and duty adjustment circuit are used with external clock input. Do not access this bit when a crystal oscillator is used.

After this bit is set when using external clock input, a transition should intially be made to software standby mode, watch mode, or subactive mode. Switching between use and non-use of the oscillator's built-in feedback resistor and duty adjustment circuit is performed when the transition is made to software standby mode, watch mode, or subactive mode.

Bit 3

RFCUT	Description	
0	System clock oscillator's built-in feedback resistor and duty adjustment circuit are used (Initial value)
1	System clock oscillator's built-in feedback resistor and duty adjustment cir used	cuit are not

Bit 2—Reserved: This bit can be read or written to, but should only be written with 0.

Bits 1 and 0—Frequency Multiplication Factor (STC1, STC0): The STC bits specify the frequency multiplication factor of the PLL circuit incorporated into the evaluation chip. The specified frequency multiplication factor is valid after a transition to software standby mode, watch mode, or subactive mode.

With the H8S/2238 Series, STC1 and STC0 must both be set to 1. After a reset, STC1 and STC0 are both cleared to 0, and so must be set to 1.

Bit 1	Bit 0		
STC1	STC0	 Description	
0	0	x1	(Initial value)
	1	x2 (Setting prohibited)	
1	0	x4 (Setting prohibited)	
	1	PLL is bypassed	

20.3 System Clock Oscillator

Clock pulses can be supplied by connecting a crystal resonator, or by input of an external clock.

20.3.1 Connecting a Crystal Resonator

Circuit Configuration: A crystal resonator can be connected as shown in the example in figure 20-2. Select the damping resistance R_d according to table 20-2. An AT-cut parallel-resonance crystal should be used.

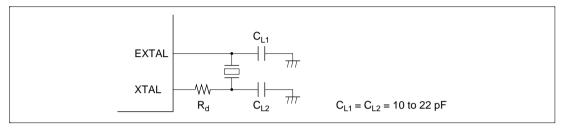


Figure 20-2 Connection of Crystal Resonator (Example)

Table 20-2 Damping Resistance Value

Frequency (MHz)	2	4	6	8	10	12
$R_{d}(\Omega)$	1 k	500	300	200	100	0

Crystal Resonator: Figure 20-3 shows the equivalent circuit of the crystal resonator. Use a crystal resonator that has the characteristics shown in table 20-3 and the same resonance frequency as the system clock (\emptyset).

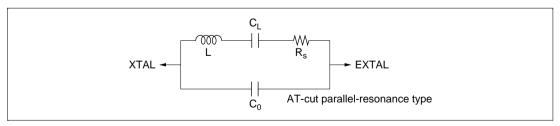


Figure 20-3 Crystal Resonator Equivalent Circuit

Table 20-3 Crystal Resonator Parameters

Frequency (MHz)	2	4	6	8	10	12
$R_s \max (\Omega)$	500	120	100	80	60	60
C ₀ max (pF)	7	7	7	7	7	7

Note on Board Design: When a crystal resonator is connected, the following points should be noted:

Other signal lines should be routed away from the oscillator circuit to prevent induction from interfering with correct oscillation. See figure 20-4.

When designing the board, place the crystal resonator and its load capacitors as close as possible to the XTAL and EXTAL pins.

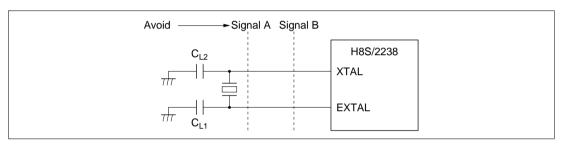


Figure 20-4 Example of Incorrect Board Design

20.3.2 External Clock Input

Circuit Configuration: An external clock signal can be input as shown in the examples in figure 20-5. If the XTAL pin is left open, make sure that stray capacitance is no more than 10 pF.

In example (b), make sure that the external clock is held high in standby mode, subactive mode, subsleep mode, and watch mode.

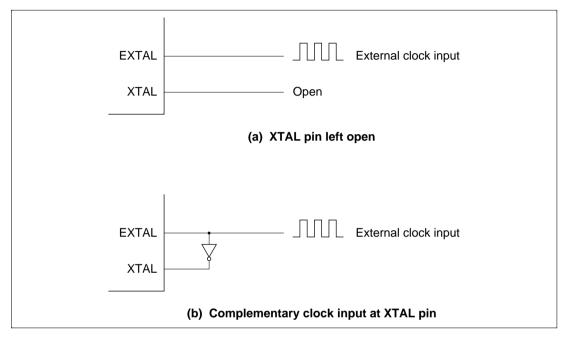


Figure 20-5 External Clock Input (Examples)

External Clock: The external clock signal should have the same frequency as the system clock (\emptyset) .

Table 20-4 and figure 20-6 show the input conditions for the external clock.

Table 20-4 External Clock Input Conditions

F-ZTAT and Mas	k ROM Versions
V_{cc} = 2.7 V to 5.5 V	V _{cc} = 2.2 V to 3.6 V

		- 66		- 66			
Item	Symbol	Min	Max	Min	Max	Unit	Conditions
External clock input low pulse width	t _{EXL}	30	_	65	_	ns	Figure 20-6
External clock input high pulse width	t _{EXH}	30	_	65	_	ns	_
External clock rise time	t _{EXr}	_	7		15	ns	_
External clock fall time	t _{EXf}	_	7		15	ns	_
Clock low pulse	t _{CL}	0.4	0.6	0.35	0.65	t _{cyc}	ø ≥ 5 MHz Figure 23-5
width level		80		70	<u>—</u>	ns	ø < 5 MHz
Clock high pulse	t _{CH}	0.4	0.6	0.35	0.65	t _{cyc}	ø ≥ 5 MHz
width level		80		70		ns	ø < 5 MHz

The external clock input conditions when the duty adjustment circuit is not used are shown in table 20-5 and figure 20-6. When the duty adjustment circuit is not used, the ø output waveform depends on the external clock input waveform, and so no restrictions apply.

Table 20-5 External Clock Input Conditions when Duty Adjustment Circuit is not Used

F-7TAT and Mask ROM Versions

		1 -2	.IAI allu ivias	ok ivoivi	VEISIONS		
		V _{cc} = 2	2.7 V to 5.5 V	V _{cc} = 2	2.2 V to 3.6 \	,	
Item	Symbol	Min	Max	Min	Max	Unit	Test Conditions
External clock input low pulse width	t _{EXL}	37	_	80	_	ns	Figure 20-6
External clock input high pulse width	t _{EXH}	37		80	<u> </u>	ns	_
External clock rise time	t _{EXr}	_	7		15	ns	_
External clock fall time	t _{EXf}	_	7	_	15	ns	_

Note: When duty adjustment circuit is not used, the maximum frequency decreases according to the input waveform. (Example: When $t_{\text{EXL}} = t_{\text{EXH}} = 50 \text{ ns}$, and $t_{\text{EXr}} = t_{\text{EXI}} = 10 \text{ ns}$, clock cycle time = 120 ns; therefore, maximum operating frequency = 8.3 MHz)

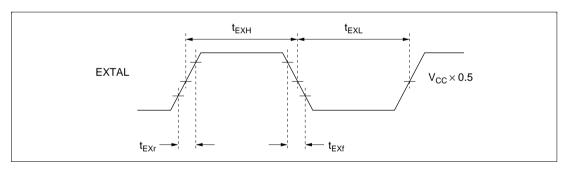


Figure 20-6 External Clock Input Timing

(3) Note on Switchover of External Clock

When two or more external clocks (e.g. 10 MHz and 2 MHz) are used as the system clock, switchover of the input clock should be carried out in software standby mode.

An example of an external clock switching circuit is shown in figure 20-7, and an example of the external clock switchover timing in figure 20-8.

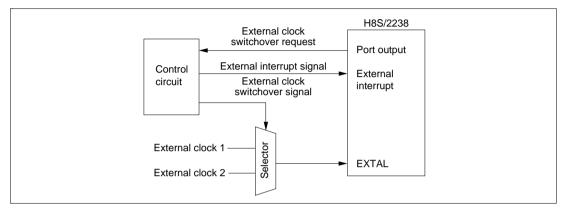


Figure 20-7 Example of External Clock Switching Circuit

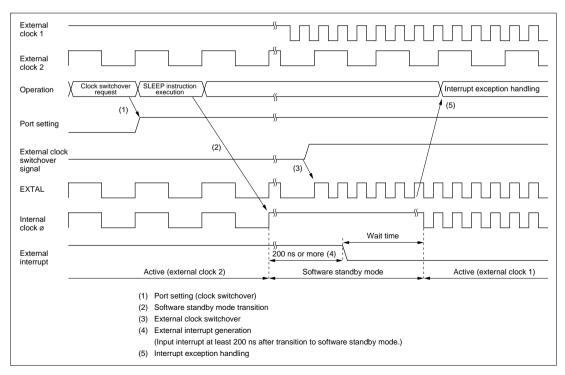


Figure 20-8 Example of External Clock Switchover Timing

20.4 Duty Adjustment Circuit

When the oscillator frequency is 5 MHz or higher, the duty adjustment circuit adjusts the duty cycle of the clock signal from the oscillator to generate the system clock (\emptyset).

20.5 Medium-Speed Clock Divider

The medium-speed clock divider divides the system clock to generate $\emptyset/2$, $\emptyset/4$, $\emptyset/8$, $\emptyset/16$, and $\emptyset/32$.

20.6 Bus Master Clock Selection Circuit

The bus master clock selection circuit selects the system clock (\emptyset) or one of the medium-speed clocks (\emptyset /2, \emptyset /4, or \emptyset /8, \emptyset /16, and \emptyset /32) to be supplied to the bus master, according to the settings of the SCK2 to SCK0 bits in SCKCR.

20.7 Subclock Oscillator

(1) Method of Connecting 32.768 kHz Crystal Resonator

To supply a clock to the subclock oscillator, a 32.768 kHz crystal resonator should be connected as shown in figure 20-9. Cautions concerning the connection are as noted in section 20.3.1, Notes on Board Design.

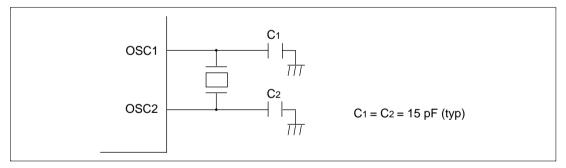


Figure 20-9 Example of Connection of 32.768 kHz Crystal Resonator

Figure 20-10 shows an equivalent circuit for the 32.768 kHz crystal resonator.

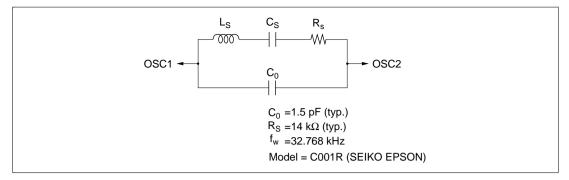


Figure 20-10 32.768 kHz Crystal Resonator Equivalent Circuit

(2) Pin Handling When Subclock Is Not Needed

When the subclock is not needed, connect the OSC1 pin to GND (Vss) and leave the OSC2 pin open as shown in figure 20-11, and the SUBSTP bit of LPWRCR should be set to 1.

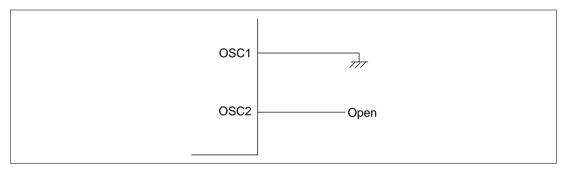


Figure 20-11 Pin Handling When Subclock Is Not Needed

20.8 Subclock Waveform Shaping Circuit

To eliminate noise in the subclock input from the OSC1 pin, the signal is sampled using a clock scaled from the ø clock. The sampling frequency is set with the NESEL bit in LPWRCR. For details, see section 20.2.2, Low-Power Control Register (LPWRCR).

Sampling is not performed in subactive mode, subsleep mode, or watch mode.

20.9 Note on Crystal Resonator

Since various characteristics related to the crystal resonator are closely linked to the user's board design, thorough evaluation is necessary on the user's part, for both the mask versions, and F-ZTAT versions, using the resonator connection examples shown in this section as a guide. As the resonator circuit ratings will depend on the floating capacitance of the resonator and the mounting circuit, the ratings should be determined in consultation with the resonator manufacturer. The design must ensure that a voltage exceeding the maximum rating is not applied to the oscillator pin.

Section 21 Power-Down Modes

21.1 Overview

In addition to the normal program execution state, the H8S/2238 Series has power-down modes in which operation of the CPU and oscillator is halted and power dissipation is reduced. Low-power operation can be achieved by individually controlling the CPU, on-chip supporting modules, and so on.

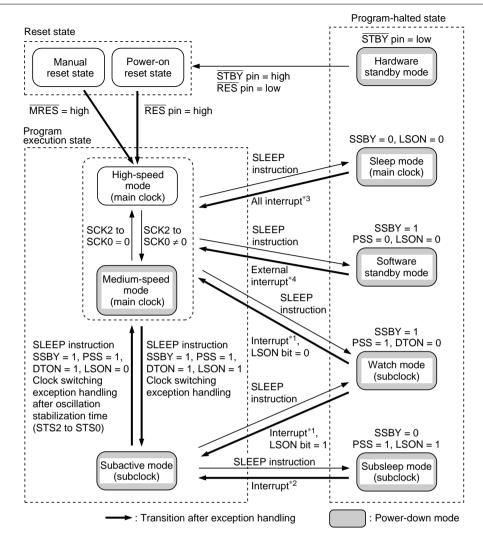
The H8S/2238 Series operating modes are as follows:

- (1) High-speed mode
- (2) Medium-speed mode
- (3) Subactive mode
- (4) Sleep mode
- (5) Subsleep mode
- (6) Watch mode
- (7) Module stop mode
- (8) Software standby mode
- (9) Hardware standby mode

Of these, (2) to (9) are power-down modes. Sleep mode and subsleep mode are CPU modes, medium-speed mode is a CPU and bus master mode, subactive mode is a CPU, bus master, and on-chip supporting module mode, and module stop mode is an on-chip supporting module mode (including bus masters other than the CPU). Certain combinations of these modes can be set.

After a reset, the MCU is in high-speed mode.

Table 21-1 shows the internal chip states in each mode, and table 21-2 shows the conditions for transition to the various modes. Figure 21-1 shows a mode transition diagram.


Table 21-1 H8S/2238 Series Internal States in Each Mode

Function		High- Speed	Medium- Speed	Sleep	Module Stop	Watch	Subactive	Subsleep	Software Standby	Hardware Standby
System clo oscillator	ock	Function- ing	Function- ing	Function- ing	Function- ing	Halted	Halted	Halted	Halted	Halted
Subclock o	scillator	Function- ing/halted	Function- ing/halted	Function- ing/halted	Function- ing/halted	Function- ing	Function- ing	Function- ing	Function- ing/Halted	Halted
CPU operation	Instruc- tions	Function- ing	Medium- speed	Halted	Function- ing	Halted	Subclock operation	Halted	Halted	Halted
	Registers			Retained		Retained		Retained	Retained	Undefined
RAM		Function- ing	Function- ing	Function- ing (DTC)	Function- ing	Retained	Function- ing	Retained	Retained	Retained
I/O		Function- ing	Function- ing	Function- ing	Function- ing	Retained	Function- ing	Retained	Retained	High impedance
External interrupts		Function- ing	Function- ing	Function- ing	Function- ing	Function- ing	Function- ing	Function- ing	Function- ing	Halted
On-chip supporting module	PBC	Function- ing	Medium- speed	Function- ing	Function- ing/halted (retained)	Halted (retained)	Subclock operation	Halted (retained)	Halted (retained)	Halted (reset)
operation	DTC						Halted (retained)	-		
	WDT1		Function- ing	-	Function- ing	Subclock operation	Subclock operation	Subclock operation		
	WDT0					Halted	-			
	TMR				Functio- ing/halted	(retained)				
	TPU				(retained)		Halted	Halted		
	SCI	•					(retained)	(retained)		
	I ² C									
	D/A									
	A/D				Function- ing/halted (reset)	Halted (reset)	Halted (reset)	Halted (reset)	Halted (reset)	-

Notes: 1. "Halted (retained)" means that internal register values are retained. The internal state is operation suspended.

- 2. "Halted (reset)" means that internal register values and internal states are initialized.
- 3. In module stop mode, only modules for which a stop setting has been made are halted (reset or retained).
- 4. When a stop setting has been made, the subclock oscillator is halted.

: Operating state

Notes: *1 NMI, IRQ0 to IRQ7, and WDT1 interrupts

- *2 NMI, IRQ0 to IRQ7, WDT0 interrupts, WDT1 interrupt, TMR0 to TMR3 interrupt
- *3 All interrupts
- *4 NMI, IRQ0 to IRQ7
- When a transition is made between modes by means of an interrupt, transition cannot be made on interrupt source generation alone. Ensure that interrupt handling is performed after accepting the interrupt request.
- From any <u>state</u> except hardware standby mode, a transition to the power-on reset state occurs
 whenever RES goes low. From any state except hardware standby mode and the power-on reset
 state, a transition to the manual reset state occurs whenever MRES goes low.
- From any state, a transition to hardware standby mode occurs when STBY goes low.
- When a transition is made to watch mode or subactive mode, high-speed mode must be set.

Figure 21-1 Mode Transitions

Table 21-2 Power-Down Mode Transition Conditions

Control Bit States at Time of Transition

State before Transition	SSBY	PSS	LSON	DTON	State after Transition by SLEEP Instruction	State after Return by Interrupt
High-speed/ medium-speed	0	*	0	*	Sleep	High-speed/ medium-speed
	0	*	1	*		_
	1	0	0	*	Software standby	High-speed/ medium-speed
	1	0	1	*	_	_
	1	1	0	0	Watch	High-speed
	1	1	1	0	Watch	Subactive
	1	1	0	1	_	_
	1	1	1	1	Subactive	
Subactive	0	0	*	*	_	_
	0	1	0	*	_	_
	0	1	1	*	Subsleep	Subactive
	1	0	*	*	_	_
	1	1	0	0	Watch	High-speed
	1	1	1	0	Watch	Subactive
	1	1	0	1	High-speed	_
	1	1	1	1	_	_

*: Don't care

—: Don't set.

21.1.1 Register Configuration

The power-down modes are controlled by the SBYCR, SCKCR, LPWRCR, TCSR (WDT1), and MSTPCR registers. Table 21-3 summarizes these registers.

Table 21-3 Power-Down Mode Registers

Name	Abbreviation	R/W	Initial Value	Address*
Standby control register	SBYCR	R/W	H'08	H'FDE4
System clock control register	SCKCR	R/W	H'00	H'FDE6
Low-power control register	LPWRCR	R/W	H'00	H'FDEC
Timer control/status register (WDT1)	TCSR	R/W	H'00	H'FFA2
Module stop control register	MSTPCRA	R/W	H'3F	H'FDE8
	MSTPCRB	R/W	H'FF	H'FDE9
	MSTPCRC	R/W	H'FF	H'FDEA

Note: * Lower 16 bits of the address.

21.2 Register Descriptions

21.2.1 Standby Control Register (SBYCR)

Bit	:	7	6	5	4	3	2	1	0
	ĺ	SSBY	STS2	STS1	STS0	OPE	_	_	_
Initial value	:	0	0	0	0	1	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	_	_	_

SBYCR is an 8-bit readable/writable register that performs power-down mode control.

SBYCR is initialized to H'08 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Software Standby (SSBY): Determines the operating mode, in combination with other control bits, when a power-down mode transition is made by executing a SLEEP instruction. The SSBY setting is not changed by a mode transition due to an interrupt, etc.

Bit 7

SSBY	Description	
0	Transition to sleep mode after execution of SLEEP instruction in high-speed mode or medium-speed mode	(Initial value)
	Transition to subsleep mode after execution of SLEEP instruction in subactive mode	
1	Transition to software standby mode, subactive mode, or watch mode after of SLEEP instruction in high-speed mode or medium-speed mode	er execution
	Transition to watch mode or high-speed mode after execution of SLEEP is subactive mode	nstruction in

Bits 6 to 4—Standby Timer Select 2 to 0 (STS2 to STS0): These bits select the time the MCU waits for the clock to stabilize when software standby mode, watch mode, or subactive mode is cleared and a transition is made to high-speed mode or medium-speed mode by means of a specific interrupt or instruction. With crystal oscillation, refer to table 21-5 and make a selection according to the operating frequency so that the standby time is at least 8 ms (the oscillation stabilization time). With an external clock, any selection* can be made.

Note: * In the F-ZTAT version, a 16-state wait time cannot be used with an external clock. Use 8192 states or more.

Bit 6	Bit 5	Bit 4		
STS2	STS1	STS0	Description	
0	0	0	Standby time = 8192 states	(Initial value)
		1	Standby time = 16384 states	
	1	0	Standby time = 32768 states	
		1	Standby time = 65536 states	
1	0	0	Standby time = 131072 states	
		1	Standby time = 262144 states	
	1	0	Reserved	
		1	Standby time = 16 states*	

Note: * Not used on the F-ZTAT version.

Bit 2 to 0—Reserved: These bits cannot be modified and is always read as 0.

Bit 3—Output Port Enable (OPE): Specifies whether the address bus and bus control signals (\overline{CSO} to $\overline{CS7}$, \overline{AS} , \overline{RD} , \overline{HWR} , and \overline{LWR}) retain their output state or go to the high-impedance state in software standby mode and watch mode, and in a direct transition.

Bit 3

OPE	 Description
0	In software standby mode, watch mode, and in a direct transition, address bus and bus control signals are high-impedance
1	In software standby mode, watch mode, and in a direct transition, address bus and bus control signals retain their output state (Initial value)

21.2.2 System Clock Control Register (SCKCR)

Bit	:	7	6	5	4	3	2	1	0
		PSTOP	_	_	_	_	SCK2	SCK1	SCK0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	_	_	R/W	R/W	R/W	R/W

SCKCR is an 8-bit readable/writable register that performs ø clock output control and medium-speed mode control.

SCKCR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—ø Clock Output Disable (PSTOP): Controls ø output.

Bit 7 Description

PSTOP	High-Speed Mode, Medium-Speed Mode, Subactive Mode	Sleep Mode, Subsleep Mode	Software Standby Mode, Watch Mode, Direct Transition	Hardware Standby Mode
0	ø output (Initial value)	ø output	Fixed high	High impedance
1	Fixed high	Fixed high	Fixed high	High impedance

Bit 6—Reserved: This bit can be read or written to, but should only be written with 0.

Bits 5 and 4—Reserved: These bits cannot be modified and are always read as 0.

Bit 3—Reserved: This bit can be read or written to, but should only be written with 0.

Bits 2 to 0—System Clock Select 2 to 0 (SCK2 to SCK0): These bits select the clock for the bus master in high-speed mode and medium-speed mode. When operating the device after a transition to subactive mode or watch mode, bits SCK2 to SCK0 should all be cleared to 0.

Bit 2	Bit 1	Bit 0		
SCK2	SCK1	SCK0	 Description	
0	0	0	Bus master is in high-speed mode	(Initial value)
		1	Medium-speed clock is ø/2	
	1	0	Medium-speed clock is ø/4	
		1	Medium-speed clock is ø/8	
1	0	0	Medium-speed clock is ø/16	
		1	Medium-speed clock is ø/32	
	1		_	

21.2.3 Low-Power Control Register (LPWRCR)

Bit	:	7	6	5	4	3	2	1	0
		DTON	LSON	NESEL	SUBSTP	RFCUT	_	STC1	STC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

LPWRCR is an 8-bit readable/writable register that performs power-down mode control.

LPWRCR is initialized to H'00 by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode. Only bits 7 to 4 are described here; for details of the other bits, see section 20.2.2, Low-Power Control Register (LPWRCR).

Bit 7—Direct-Transfer On Flag (DTON): Specifies whether a direct transition is made between high-speed mode, medium-speed mode, and subactive mode when making a power-down transition by executing a SLEEP instruction. The operating mode to which the transition is made after SLEEP instruction execution is determined by a combination of other control bits.

Bit 7	
DTON	Description
0	When a SLEEP instruction is executed in high-speed mode or medium-speed mode, a transition is made to sleep mode, software standby mode, or watch mode*
	When a SLEEP instruction is executed in subactive mode, a transition is made to subsleep mode or watch mode (Initial value)
1	When a SLEEP instruction is executed in high-speed mode or medium-speed mode, a transition is made directly to subactive mode*, or a transition is made to sleep mode or software standby mode
	When a SLEEP instruction is executed in subactive mode, a transition is made directly to high-speed mode, or a transition is made to subsleep mode

Note: * When a transition is made to watch mode or subactive mode, high-speed mode must be set.

Bit 6—Low-Speed On Flag (LSON): Determines the operating mode in combination with other control bits when making a power-down transition by executing a SLEEP instruction. Also controls whether a transition is made to high-speed mode or medium-speed mode, or to subactive mode when watch mode is cleared.

Bit 6

LSON	Description
0	When a SLEEP instruction is executed in high-speed mode or medium-speed mode, a transition is made to sleep mode, software standby mode, or watch mode*
	When a SLEEP instruction is executed in subactive mode, a transition is made to watch mode, or directly to high-speed mode
	After watch mode is cleared, a transition is made to high-speed mode (Initial value
1	When a SLEEP instruction is executed in high-speed mode a transition is made to watch mode or subactive mode*
	When a SLEEP instruction is executed in subactive mode, a transition is made to subsleep mode or watch mode
	After watch mode is cleared, a transition is made to subactive mode

Note: * When a transition is made to watch mode or subactive mode, high-speed mode must be set.

Bit 5—Noise Elimination Sampling Frequency Select (NESEL): Selects the frequency at which the subclock (ϕ SUB) generated by the subclock oscillator is sampled with the clock (ϕ) generated by the system clock oscillator. When $\phi = 5$ MHz or higher, clear this bit to 0. When $\phi = 2.1$ MHz or lower, this bit should be set to 1. When $\phi = 2.1$ MHz to 5 MHz, any value can be set.

Bit 5

NESEL	 Description	
0	Sampling at ø divided by 32	(Initial value)
1	Sampling at ø divided by 4	

Bit 4—Subclock Oscillator Control (SUBSTP): Controls operation and stopping of the subclock oscillator.

Bit 4

SUBSTP		
0	Subclock oscillator operates	(Initial value)
1	Subclock oscillator is stopped	

Note: When the subclock is not used, this bit should be set to 1.

21.2.4 Timer Control/Status Register (TCSR)

WDT1 TCSR

Bit	:	7	6	5	4	3	2	1	0
		OVF	WT/ IT	TME	PSS	RST/NMI	CKS2	CKS1	CKS0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Only 0 can be written in bit 7, to clear the flag.

TCSR is an 8-bit readable/writable register that performs selection of the WDT1 TCNT input clock, mode, etc.

Only bit 4 is described here. For details of the other bits, see section 12.2.2, Timer Control/Status Register (TCSR).

TCSR is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 4—Prescaler Select (PSS): Selects the WDT1 TCNT input clock.

This bit also controls the operation in a power-down mode transition. The operating mode to which a transition is made after execution of a SLEEP instruction is determined in combination with other control bits.

For details, see the description of Clock Select 2 to 0 in section 12.2.2, Timer Control/Status Register (TCSR).

Bit 4	
PSS	Description
0	TCNT counts ø-based prescaler (PSM) divided clock pulses
	When a SLEEP instruction is executed in high-speed mode or medium-speed mode, a transition is made to sleep mode or software standby mode (Initial value)
1	TCNT counts øSUB-based prescaler (PSS) divided clock pulses
	When a SLEEP instruction is executed in high-speed mode or medium-speed mode, a transition is made to sleep mode, watch mode*, or subactive mode*
	When a SLEEP instruction is executed in subactive mode, a transition is made to

Note: * When a transition is made to watch mode or subactive mode, high-speed mode must be set.

subsleep mode, watch mode, or high-speed mode

21.2.5 Module Stop Control Register (MSTPCR)

MSTPCRA

Bit	:	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	:	0	0	1	1	1	1	1	1
R/W	:	R/W							
MSTPCRB									
Bit	:	7	6	5	4	3	2	1	0
		MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTPB0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							
MSTPCRC									
Bit	:	7	6	5	4	3	2	1	0
		MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

MSTPCRA, MSTPCRB, and MSTPCRC are 8-bit readable/writable registers that perform module stop mode control.

MSTPCRA is initialized to H'3F by a reset and in hardware standby mode. MSTPCRB and MSTPCRC are initialized to H'FF. They are not initialized in software standby mode.

MSTPCRA, MSTPCRB, and MSTPCRC Bits 7 to 0—Module Stop (MSTPA7 to MSTPA0, MSTPB7 to MSTPB0, and MSTPC7 to MSTPC0): These bits specify module stop mode. See table 21-4 for the method of selecting on-chip supporting modules.

MSTPCRA, MSTPCRB, and MSTPCRC Bits 7 to 0

MSTPA7 to MSTPA0, MSTPB7 to MSTPB0, and MSTPC7 to MSTPC0	Description				
0	Module stop mode is cleared (Initial value of MSTPA7, MSTPA6)				
1	Module stop mode is set (Initial value of except MSTPA7 to MSTPA6)				

21.3 Medium-Speed Mode

When the SCK2 to SCK0 bits in SCKCR are set to 1 in high-speed mode, the operating mode changes to medium-speed mode at the end of the bus cycle. In medium-speed mode, the CPU operates on the operating clock ($\emptyset/2$, $\emptyset/4$, $\emptyset/8$, $\emptyset/16$, or $\emptyset/32$) specified by the SCK2 to SCK0 bits. The bus master other than the CPU (the DTC) also operates in medium-speed mode. On-chip supporting modules other than the bus masters always operate on the high-speed clock (\emptyset).

In medium-speed mode, a bus access is executed in the specified number of states with respect to the bus master operating clock. For example, if $\emptyset/4$ is selected as the operating clock, on-chip memory is accessed in 4 states, and internal I/O registers in 8 states.

Medium-speed mode is cleared by clearing all of bits SCK2 to SCK0 to 0. A transition is made to high-speed mode and medium-speed mode is cleared at the end of the current bus cycle.

If a SLEEP instruction is executed when the SSBY bit in SBYCR and the LSON bit in LPWRCR are cleared to 0, a transition is made to sleep mode. When sleep mode is cleared by an interrupt, medium-speed mode is restored.

If a SLEEP instruction is executed when the SSBY bit in SBYCR is set to 1, and the LSON bit in LPWRCR and the PSS bit in TCSR (WDT1) are both cleared to 0, a transition is made to software standby mode. When software standby mode is cleared by an external interrupt, medium-speed mode is restored.

When the \overline{RES} pin and \overline{MRES} pin is driven low, a transition is made to the reset state, and medium-speed mode is cleared. The same applies in the case of a reset caused by overflow of the watchdog timer.

When the \overline{STBY} pin is driven low, a transition is made to hardware standby mode.

Figure 21-2 shows the timing for transition to and clearance of medium-speed mode.

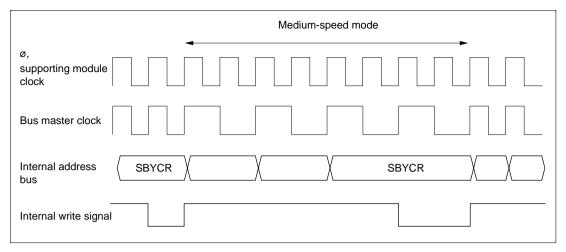


Figure 21-2 Medium-Speed Mode Transition and Clearance Timing

21.4 Sleep Mode

21.4.1 Sleep Mode

If a SLEEP instruction is executed when the SSBY bit in SBYCR and the LSON bit in LPWRCR are both cleared to 0, the CPU enters sleep mode. In sleep mode, CPU operation stops but the contents of the CPU's internal registers are retained. Other supporting modules do not stop.

21.4.2 Clearing Sleep Mode

Sleep mode is cleared by all interrupts, or with the RES pin, MRES pin or STBY pin.

Clearing with an Interrupt: When an interrupt request signal is input, sleep mode is cleared and interrupt exception handling is started. Sleep mode will not be cleared if interrupts are disabled, or if interrupts other than NMI have been masked by the CPU.

Clearing with the \overline{RES} Pin and \overline{MRES} Pin: When the \overline{RES} pin and \overline{MRES} pin is driven low, the reset state is entered. When the \overline{RES} pin and \overline{MRES} pin is driven high after the prescribed reset input period, the CPU begins reset exception handling.

Clearing with the \overline{STBY} Pin: When the \overline{STBY} pin is driven low, a transition is made to hardware standby mode.

21.5 Module Stop Mode

21.5.1 Module Stop Mode

Module stop mode can be set for individual on-chip supporting modules.

When the corresponding MSTP bit in MSTPCR is set to 1, module operation stops at the end of the bus cycle and a transition is made to module stop mode. The CPU continues operating independently.

Table 21-4 shows MSTP bits and the corresponding on-chip supporting modules.

When the corresponding MSTP bit is cleared to 0, module stop mode is cleared and the module starts operating again at the end of the bus cycle. In module stop mode, the internal states of modules other than the A/D converter are retained.

After reset release, all modules other than the DTC are in module stop mode.

When an on-chip supporting module is in module stop mode, read/write access to its registers is disabled.

When a transition is made to sleep mode with all modules stopped (MSTPCR = H'FFFFF), the bus controller and I/O ports also stop operating, enabling current dissipation to be further reduced.

Table 21-4 MSTP Bits and Corresponding On-Chip Supporting Modules

Register	Bit	Module
MSTPCRA	MSTPA7	_*
	MSTPA6	Data transfer controller (DTC)
	MSTPA5	16-bit timer pulse unit (TPU)
	MSTPA4	8-bit timers (TMR0, TMR1)
	MSTPA3	_*
	MSTPA2	_*
	MSTPA1	A/D converter
	MSTPA0	8-bit timers (TMR2, TMR3)
MSTPCRB	MSTPB7	Serial communication interface 0 (SCI0)
	MSTPB6	Serial communication interface 1 (SCI1)
	MSTPB5	Serial communication interface 2 (SCI2)
	MSTPB4	I ² C bus interface 0 (IIC0) [Option]
	MSTPB3	I ² C bus interface 1 (IIC1) [Option]
	MSTPB2	_*
	MSTPB1	_*
	MSTPB0	_*
MSTPCRC	MSTPC7	Serial communication interface 3 (SCI3)
	MSTPC6	_*
	MSTPC5	D/A converter
	MSTPC4	PC break controller (PBC)
	MSTPC3	_*
	MSTPC2	_*
	MSTPC1	_*
	MSTPC0	_*

Note: * Reserved.

21.5.2 Usage Note

DTC Module Stop Mode: Depending on the operating status of the DTC, the MSTPA6 bit may not be set to 1. Setting of the DTC module stop mode should be carried out only when the DTC is not activated.

For details, see section 8, Data Transfer Controller (DTC).

On-Chip Supporting Module Interrupts: Relevant interrupt operations cannot be performed in module stop mode. Consequently, if module stop mode is entered when an interrupt has been

requested, it will not be possible to clear the CPU interrupt source or DTC activation source. Interrupts should therefore be disabled before setting module stop mode.

Writing to MSTPCR: MSTPCR should be written to only by the CPU.

21.6 Software Standby Mode

21.6.1 Software Standby Mode

If a SLEEP instruction is executed when the SSBY bit in SBYCR is set to 1, the LSON bit in LPWRCR is cleared to 0, and the PSS bit in TCSR (WDT1) is cleared to 0, software standby mode is entered. In this mode, the CPU, on-chip supporting modules, and the main oscillator stop. However, the contents of the CPU's internal registers, RAM data, and the states of on-chip supporting module other than the A/D converter, and of the I/O ports, are retained. The address bus and bus control signals are placed in the high-impedance state.

In this mode the oscillator stops, and therefore power dissipation is significantly reduced.

21.6.2 Clearing Software Standby Mode

Software standby mode is cleared by an external interrupt (NMI pin, or pins $\overline{IRQ0}$ to $\overline{IRQ7}$), or by means of the \overline{RES} pin, \overline{MRES} pin or \overline{STBY} pin.

Clearing with an Interrupt: When an NMI or IRQ0 to IRQ7 interrupt request signal is input, clock oscillation starts, and after the elapse of the time set in bits STS2 to STS0 in SYSCR, stable clocks are supplied to the entire H8S/2238 Series chip, software standby mode is cleared, and interrupt exception handling is started.

When software standby mode is cleared with an IRQ0 to IRQ7 interrupt, set the corresponding enable bit to 1 and ensure that an interrupt of higher priority than interrupts IRQ0 to IRQ7 is not generated. Software standby mode cannot be cleared if the interrupt has been masked by the CPU side or has been designated as a DTC activation source.

Clearing with the \overline{RES} Pin and \overline{MRES} Pin: When the \overline{RES} pin and \overline{MRES} pin are driven low, clock oscillation is started. At the same time as clock oscillation starts, clocks are supplied to the entire H8S/2238 Series chip. Note that the \overline{RES} pin and \overline{MRES} pin must be held low until clock oscillation stabilizes. When the \overline{RES} pin and \overline{MRES} pin go high, the CPU begins reset exception handling.

Clearing with the \overline{STBY} Pin: When the \overline{STBY} pin is driven low, a transition is made to hardware standby mode.

21.6.3 Setting Oscillation Stabilization Time after Clearing Software Standby Mode

Bits STS2 to STS0 in SBYCR should be set as described below.

Using a Crystal Oscillator: Set bits STS2 to STS0 so that the standby time is at least 8 ms (the oscillation stabilization time).

Table 21-5 shows the standby times for different operating frequencies and settings of bits STS2 to STS0.

Table 21-5 Oscillation Stabilization Time Settings

STS2	STS1	STS0	Standby Time	13 MHz	10 MHz	8 MHz	6 MHz	4 MHz	2 MHz	Unit
0	0	0	8192 states	0.6	0.8	1.0	1.3	2.0	4.1	ms
		1	16384 states	1.3	1.6	2.0	2.7	4.1	8.2	
	1	0	32768 states	2.5	3.3	4.1	5.5	8.2	16.4	
		1	65536 states	5.0	6.6	8.2	10.9	16.4	32.8	
1	0	0	131072 states	10.1	13.1	16.4	21.8	32.8	65.5	
		1	262144 states	20.2	26.2	32.8	43.6	65.6	131.2	
	1	0	Reserved	_	_	_	_	_	_	_
		1	16 states	1.2	1.6	2.0	1.7	4.0	8.0	μs

: Recommended time setting

Using an External Clock: Any value can be set. Normally, use of the minimum time is recommended.

Note: A 16-state standby time cannot be used in the F-ZTAT version; a standby time of 8192 states or longer should be used.

21.6.4 Software Standby Mode Application Example

Figure 21-3 shows an example in which a transition is made to software standby mode at the falling edge on the NMI pin, and software standby mode is cleared at the rising edge on the NMI pin.

In this example, an NMI interrupt is accepted with the NMIEG bit in SYSCR cleared to 0 (falling edge specification), then the NMIEG bit is set to 1 (rising edge specification), the SSBY bit is set to 1, and a SLEEP instruction is executed, causing a transition to software standby mode.

Software standby mode is then cleared at the rising edge on the NMI pin.

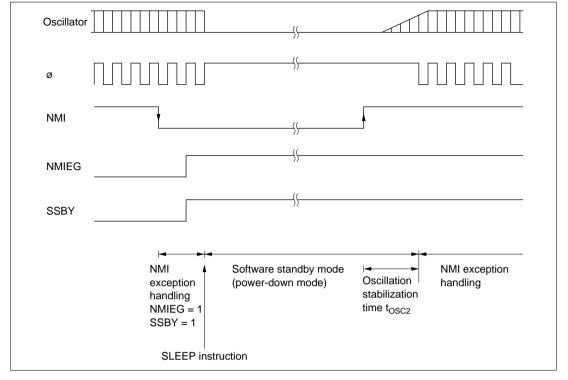


Figure 21-3 Software Standby Mode Application Example

21.6.5 Usage Notes

I/O Port States: In software standby mode, I/O port states are retained. If the OPE bit is set to 1, the address bus and bus control signal output is also retained. Therefore, there is no reduction in current dissipation for the output current when a high-level signal is output.

Current Dissipation During the Oscillation Stabilization Wait Period: Current dissipation increases during the oscillation stabilization wait period.

21.7 Hardware Standby Mode

21.7.1 Hardware Standby Mode

When the STBY pin is driven low, a transition is made to hardware standby mode from any mode.

In hardware standby mode, all functions enter the reset state and stop operation, resulting in a significant reduction in power dissipation. As long as the prescribed voltage is supplied, on-chip RAM data is retained. I/O ports are set to the high-impedance state.

In order to retain on-chip RAM data, the RAME bit in SYSCR should be cleared to 0 before driving the \overline{STBY} pin low.

Do not change the state of the mode pins (MD2 to MD0) while the H8S/2238 Series is in hardware standby mode.

Hardware standby mode is cleared by means of the \overline{STBY} pin and the \overline{RES} pin. When the \overline{STBY} pin is driven high while the \overline{RES} pin is low, the reset state is set and clock oscillation is started. Ensure that the \overline{RES} pin is held low until the clock oscillation stabilizes (at least t_{OSCI} —the oscillation stabilization time—when using a crystal oscillator). When the \overline{RES} pin is subsequently driven high, a transition is made to the program execution state via the reset exception handling state.

21.7.2 Hardware Standby Mode Timing

Figure 21-4 shows an example of hardware standby mode timing.

When the \overline{STBY} pin is driven low after the \overline{RES} pin has been driven low, a transition is made to hardware standby mode. Hardware standby mode is cleared by driving the \overline{STBY} pin high, waiting for the oscillation stabilization time, then changing the \overline{RES} pin from low to high.

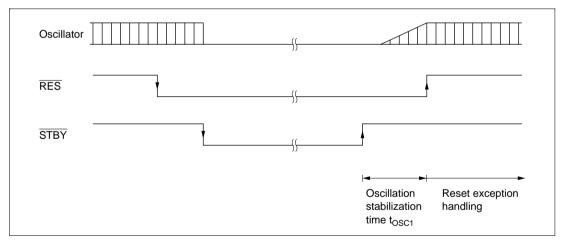


Figure 21-4 Hardware Standby Mode Timing (Example)

21.8 Watch Mode

21.8.1 Watch Mode

If a SLEEP instruction is executed in high-speed mode or subactive mode when the SSBY in SBYCR is set to 1, the DTON bit in LPWRCR is cleared to 0, and the PSS bit in TCSR (WDT1) is set to 1, the CPU makes a transition to watch mode.

In this mode, the CPU, all on-chip supporting modules except WDT1, and the main oscillator stop. The contents of CPU internal registers and on-chip RAM, and the states of the on-chip supporting functions (except the A/D converter) and I/O ports, are retained. The address bus and bus control signals go to the high-impedance state. When a transition is made to watch mode, bits SCK2 to SCK0 in SCKCR must all be cleared to 0.

21.8.2 Clearing Watch Mode

Watch mode is cleared by an interrupt (WOVI1 interrupt, NMI pin, or pins $\overline{IRQ0}$ to $\overline{IRQ7}$), or by means of the \overline{RES} pin, \overline{MRES} pin or \overline{STBY} pin.

Clearing with an Interrupt: When an interrupt request signal is input, watch mode is cleared and a transition is made to high-speed mode or medium-speed mode if the LSON bit in LPWRCR is cleared to 0, or to subactive mode if the LSON bit is set to 1. When making a transition to high-speed mode, after the elapse of the time set in bits STS2 to STS0 in SBYCR, stable clocks are supplied to the entire chip, and interrupt exception handling is started.

Watch mode cannot be cleared with an IRQ0 to IRQ7 interrupt if the corresponding enable bit has been cleared to 0, or with an on-chip supporting module interrupt if acceptance of the relevant interrupt has been disabled by the interrupt enable register or masked by the CPU.

See section 21.6.3, Setting Oscillation Stabilization Time after Clearing Software Standby Mode, for the oscillation stabilization time setting when making a transition from watch mode to high-speed mode.

Clearing with the \overline{RES} Pin and \overline{MRES} Pin: See "Clearing with the \overline{RES} Pin, \overline{MRES} Pin" in section 21.6.2, Clearing Software Standby Mode.

Clearing with the \overline{STBY} Pin: When the \overline{STBY} pin is driven low, a transition is made to hardware standby mode.

21.8.3 Usage Notes

I/O Port States: In watch mode, I/O port states are retained. If the OPE bit is set to 1, address bus and bus control signal output is also retained. Therefore, there is no reduction in current dissipation for the output current when a high-level signal is output.

Current Dissipation during the Oscillation Stabilization Wait Period: Current dissipation increases during the oscillation stabilization wait period.

21.9 Subsleep Mode

21.9.1 Subsleep Mode

If a SLEEP instruction is executed in subactive mode when the SSBY in SBYCR is cleared to 0, the LSON bit in LPWRCR is set to 1, and the PSS bit in TCSR (WDT1) is set to 1, the CPU makes a transition to subsleep mode.

In this mode, the CPU, all on-chip supporting modules except TMR0 to TMR3, WDT0, and WDT1, and the main oscillator stop. The contents of CPU internal registers and on-chip RAM, and the states of the on-chip supporting functions (except the A/D converter) and I/O ports, are retained.

21.9.2 Clearing Subsleep Mode

Subsleep mode is cleared by an interrupt (on-chip supporting module interrupt, NMI pin, or pin $\overline{IRQ0}$ to $\overline{IRQ7}$), or by means of the \overline{RES} pin, \overline{MRES} pin, or \overline{STBY} pin.

Clearing with an Interrupt: When an interrupt request signal is input, subsleep mode is cleared and interrupt exception handling is started. Subsleep mode cannot be cleared with an IRQ0 to IRQ7 interrupt if the corresponding enable bit has been cleared to 0, or with an on-chip supporting module interrupt if acceptance of the relevant interrupt has been disabled by the interrupt enable register or masked by the CPU.

Clearing with the \overline{RES} Pin and \overline{MRES} Pin: See "Clearing with the \overline{RES} Pin, \overline{MRES} Pin" in section 21.6.2, Clearing Software Standby Mode.

Clearing with the \overline{STBY} Pin: When the \overline{STBY} pin is driven low, a transition is made to hardware standby mode

21.10 Subactive Mode

21.10.1 Subactive Mode

If a SLEEP instruction is executed in high-speed mode when the SSBY bit in SBYCR, the DTON bit in LPWRCR, and the PSS bit in TCSR (WDT1) are all set to 1, the CPU makes a transition to subactive mode. When an interrupt is generated in watch mode, if the LSON bit in LPWRCR is set to 1, a transition is made to subactive mode. When an interrupt is generated in subsleep mode, a transition is made to subactive mode.

In subactive mode, the CPU performs sequential program execution at low speed on the subclock. In this mode, all on-chip supporting modules except PBC, TMR0 to TMR3, WDT0, and WDT1, and the main oscillator stop.

When operating the device in subactive mode, bits SCK2 to SCK0 in SBYCR must all be cleared to 0.

21.10.2 Clearing Subactive Mode

Subsleep mode is cleared by a SLEEP instruction, or by means of the \overline{RES} pin, \overline{MRES} pin, or \overline{STBY} pin.

Clearing with a SLEEP Instruction: When a SLEEP instruction is executed while the SSBY bit in SBYCR is set to 1, the DTON bit in LPWRCR is cleared to 0, and the PSS bit in TCSR (WDT1) is set to 1, subactive mode is cleared and a transition is made to watch mode. When a SLEEP instruction is executed while the SSBY bit in SBYCR is cleared to 0, the LSON bit in LPWRCR is set to 1, and the PSS bit in TCSR (WDT1) is set to 1, a transition is made to subsleep mode. When a SLEEP instruction is executed while the SSBY bit in SBYCR is set to 1, the DTON bit is set to 1 and the LSON bit is cleared to 0 in LPWRCR, and the PSS bit in TCSR (WDT1) is set to 1, a transition is made directly to high-speed mode (SCK0 to SCK2 all 0).

Fort details of direct transition, see section 21.11, Direct Transition.

Clearing with the \overline{RES} Pin and \overline{MRES} Pin: See "Clearing with the \overline{RES} Pin or \overline{MRES} Pin" in section 21.6.2, Clearing Software Standby Mode.

Clearing with the \overline{STBY} Pin: When the \overline{STBY} pin is driven low, a transition is made to hardware standby mode

21.11 Direct Transition

21.11.1 Overview of Direct Transition

There are three operating modes in which the CPU executes programs: high-speed mode, medium-speed mode, and subactive mode. A transition between high-speed mode and subactive mode without halting the program is called a direct transition. A direct transition can be carried out by setting the DTON bit in LPWRCR to 1 and executing a SLEEP instruction. After the transition, direct transition interrupt exception handling is started.

Direct Transition from High-Speed Mode to Subactive Mode: If a SLEEP instruction is executed in high-speed mode while the SSBY bit in SBYCR, the LSON bit and DTON bit in LPWRCR, and the PSS bit in TSCR (WDT1) are all set to 1, a transition is made to subactive mode.

Direct Transition from Subactive Mode to High-Speed Mode: If a SLEEP instruction is executed in subactive mode while the SSBY bit in SBYCR is set to 1, the LSON bit is cleared to 0 and the DTON bit is set to 1 in LPWRCR, and the PSS bit in TSCR (WDT1) is set to 1, after the elapse of the time set in bits STS2 to STS0 in SBYCR, a transition is made to directly to high-speed mode.

21.12 Ø Clock Output Disabling Function

Output of the ø clock can be controlled by means of the PSTOP bit in SCKCR and the corresponding DDR bit. When the PSTOP bit is set to 1, the ø clock is stopped at the end of the bus cycle, and ø output goes high. Ø clock output is enabled when PSTOP bit is cleared to 0. When DDR for the corresponding port is cleared to 0, ø clock output is disabled and input port mode is set. Table 21-6 shows the state of the ø pin in each processing mode.

Table 21-6 Ø Pin State in Each Processing Mode

DDR	0	1	1
PSTOP	_	0	1
Hardware standby mode	High Impedance	High Impedance	High Impedance
Software standby mode, watch mode, direct transition	High Impedance	Fixed high	Fixed high
Sleep mode, subsleep mode	High Impedance	ø output	Fixed high
High-speed mode, medium-speed mode, subactive mode	High Impedance	ø output	Fixed high

21.13 Usage Notes

21.13.1 I/O Port Status

In software standby mode and watch mode, the I/O port status is held. Therefore, when the output is at high level, the amount of power consumed by the output cannot be reduced.

21.13.2 Power Consumed during Oscillation Stabilization Standby

The power consumption increases in oscillation stabilization standby mode.

21.13.3 DTC Module Stop

Depending on the DTC operating condition, the MSTPA6 bit may not be set to 1. Set DTC module stop mode while their startup is prohibited.

For details, see section 8, Data Transfer Controller (DTC).

21.13.4 Interrupt by Internal Peripheral Module

• Module stop mode

Module stop mode prohibits interrupt operations. Therefore, when a module stop is activated while an interrupt demand is issued, CPU interrupt factors or DTC startup factors cannot be cleared.

Be sure to disable interrupt for individual modules before activating module stop mode.

Sub-active mode/watch mode

The internal peripheral modules (DTC, TPU, and IIC) that stop operation in sub-active mode cannot clear interrupt instructions in sub-active mode. Therefore, if sub-active mode is entered while an interrupt instruction is issued, CPU interrupt factors cannot be cleared.

Be sure to disable interrupt for individual modules before executing a SLEEP instruction to enter sub-active mode/watch mode.

21.13.5 MSTPCR Write

Use only the CPU to write to MSTPCR.

21.13.6 Sub-active Mode/Watch Mode Transition and DTC Module Stop

To enter sub-active mode/watch mode, set the module stop (write 1 in the MSTPA6 bit) in the DTC. After confirming the reading of "1" by the MSTPA6 bit, change the mode. After the mode changes from sub-active mode to active mode, cancel the module stop.

If a DTC startup factor is generated in sub-active mode, the DTC starts after active mode is entered and module stop is canceled.

Section 22 Power Supply Circuit

22.1 Overview

The H8S/2238B Series incorporates an internal power supply step-down circuit. Use of this circuit enables the internal power supply to be fixed at a constant level of approximately 3.0 V, independently of the voltage of the power supply connected to the external $V_{\rm cc}$ pin. As a result, the current consumed when an external power supply is used at 3.0 V or above can be held down to virtually the same low level as when used at approximately 3.0 V. If the external power supply is 3.0 V or below, the internal voltage will be practically the same as the external voltage.

The H8S/2238R does not have an on-chip internal power supply voltage step-down circuit.

An external power supply should be connected to the V_{CC} and CV_{CC} pins.

22.2 Power Supply Connection for H8S/2238B (Internal Power Supply Step-Down Circuit On-Chip)

Connect the external power supply to the V_{cc} pin, and connect a capacitance of approximately 0.1 μF between CV $_{\text{cc}}$ and V_{ss} , as shown in figure 22-1. The internal step-down circuit is made effective simply by adding this external circuit.

- Notes: 1. In the external circuit interface, the external power supply voltage connected to V_{cc} and the GND potential connected to V_{ss} are the reference levels. For example, for port input/output levels, the V_{cc} level is the reference for the high level, and the V_{ss} level is that for the low level.
 - 2. The A/D converter and D/A converter analog power supply are not affected by internal step-down processing.

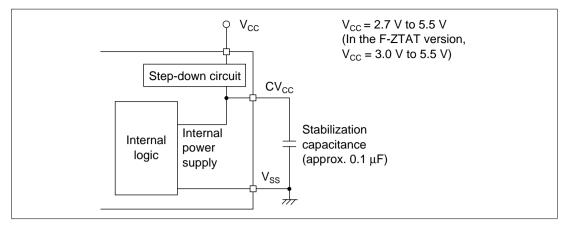


Figure 22-1 Power Supply Connection for H8S/2238B (Internal Power Supply Step-Down Circuit On-Chip)

22.3 Power Supply Connection for H8S/2238R (No Internal Power Supply Step-Down Circuit)

The H8S/2238R does not have an on-chip internal power supply voltage step-down circuit. Connect the external power supply to the $V_{\rm cc}$ pin and $CV_{\rm cc}$ pin, as shown in figure 22-2. The external power supply is then input directly to the internal power supply.

Note: The permissible range for the power supply voltage is 2.2 V to 3.6 V (in the F-ZTAT version, 2.7 V to 3.6 V). Operation cannot be guaranteed if a voltage outside this range (less than 2.2 V or more than 3.6 V) is input.

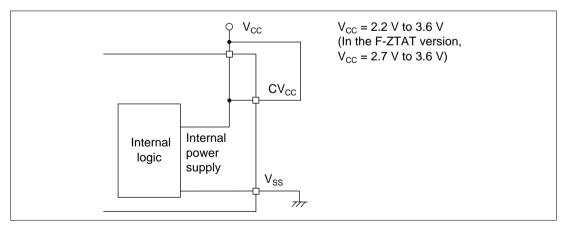


Figure 22-2 Power Supply Connection for H8S/2238R (No Internal Power Supply Step-Down Circuit)

Section 23 Electrical Characteristics

23.1 Power Supply Voltage and Operating Frequency Range

Power supply voltage and operating frequency ranges (shaded areas) are shown for the 5 V version H8S/2238B in figure 23-1, and for the 3 V version H8S/2238R in figure 23-2.

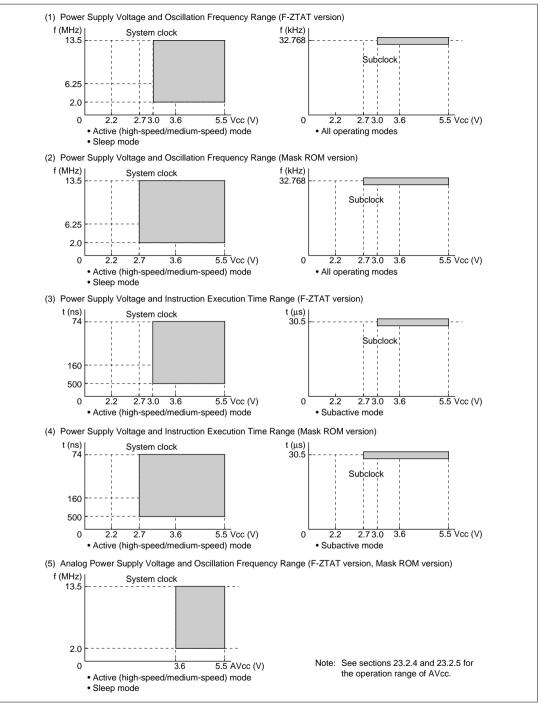


Figure 23-1 Power Supply Voltage and Operating Ranges (5 V Version H8S/2238B)

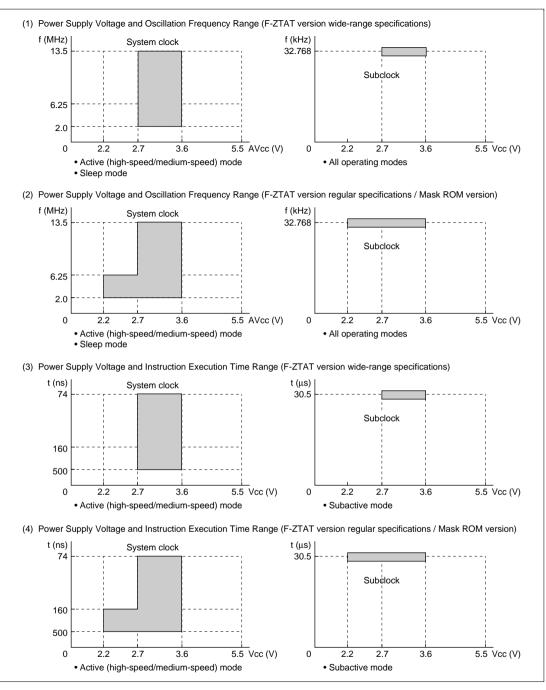


Figure 23-2 Power Supply Voltage and Operating Ranges (3 V Version H8S/2238R)

23.2 Electrical Characteristics of 5 V Version H8S/2238B

23.2.1 Absolute Maximum Ratings

Table 23-1 lists the absolute maximum ratings.

Table 23-1 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage	V _{CC}	-0.3 to +7.0	V
	CV _{cc}	-0.3 to +4.3	V
Input voltage (except ports 4 and 9)	V _{in}	-0.3 to V _{cc} +0.3	V
Input voltage (ports 4 and 9)	V _{in}	-0.3 to AV _{cc} +0.3	V
Reference voltage	V_{ref}	-0.3 to AV _{cc} +0.3	V
Analog power supply voltage	AV _{CC}	-0.3 to +7.0	V
Analog input voltage	V _{AN}	-0.3 to AV _{cc} +0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75*	°C
		Wide-range specifications: -40 to +85*	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum rating are exceeded.

Note: * The operating temperature ranges for flash memory programming/erasing are $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$.

23.2.2 DC Characteristics

Table 23-2 lists the DC characteristics. Table 23-3 lists the permissible output currents.

Table 23-2 DC Characteristics (1)

Conditions

F-ZTAT version: $V_{CC} = 3.0 \text{ V}$ to 5.5 V, $AV_{CC} = 3.6 \text{ V}$ to 5.5 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} ,

 $V_{SS} = AV_{SS} = 0 \text{ V}, T_a = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)},$

 $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)*¹

Mask ROM version: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $AV_{CC} = 3.6 \text{ V}$ to 5.5 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} ,

 $V_{SS} = AV_{SS} = 0 \text{ V}, T_a = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)},$

 $T_a = -40^{\circ}C$ to $+85^{\circ}C$ (wide-range specifications)*1

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt	IRQ7 to IRQ0	V _T	$V_{cc} \times 0.2$	_	_	V	
trigger input		V _T ⁺	_	_	$V_{cc} \times 0.8$	V	_
voltage		$V_T^+ - V_T^-$	$V_{cc} \times 0.05$	_		V	$V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
			$V_{CC} \times 0.04$	_		V	$V_{CC} = 2.7 \text{ V to } 4.0 \text{ V}$
Input high voltage	RES, STBY, NMI, MD2 to MD0, FWE	V _{IH}	$V_{cc} \times 0.9$		V _{CC} + 0.3	V	
	EXTAL	-	$V_{cc} \times 0.8$	_	V _{cc} + 0.3	V	
	Ports 1, 3, 7, A to G						
	Ports 4 and 9	-	$V_{\rm CC} \times 0.8$	_	AV _{cc} + 0.3	3 V	_
Input low voltage	RES, STBY, MD2 to MD0, FWE	V _{IL}	-0.3	_	$V_{cc} \times 0.1$	V	
	NMI, EXTAL, Ports 1, 3, 4, 7, 9, A to G	-	-0.3		$V_{cc} \times 0.2$	V	-
Output high voltage	All output pins except P34	V _{OH}	V _{CC} - 0.5	_		V	I _{OH} = -200 μA
	and P35*3		V _{cc} – 1.0	_		V	$I_{OH} = -1 \text{ mA}$
	P34 to P35 ^{*2}	-	V _{CC} - 2.7	_		V	$I_{OH} = -100 \mu A,$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$
Output low	All output	V _{OL}	_	_	0.4	V	I _{OL} = 0.4 mA
voltage	pins ^{*3}				0.4	V	I _{OL} = 0.8 mA

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage	RES	I _{in}	_	_	1.0	μΑ	V _{in} =
current	STBY, NMI, MD2 to MD0, FWE	_	_		1.0	μA	$^-$ 0.5 to V _{cc} $-$ 0.5 V
	Ports 4, 9	_	_		1.0	μA	$V_{in} = 0.5 \text{ to } AV_{CC} - 0.5 \text{ V}$
Three-state leakage current (off state)	Ports 1, 3, 7, A to G	I _{TSI}	_		1.0	μА	$V_{in} = 0.5 \text{ to } V_{CC} - 0.5 \text{ V}$
Input pull-up MOS current	Ports A to E	-I _P	10	_	300	μA	$V_{in} = 0 V$

Notes: *1 If the A/D and D/A converters are not used, do not leave the AVCC, Vref , and AVSS pins open. Apply a voltage between 2.0 V and 5.5 V to the AV $_{\text{CC}}$ and V $_{\text{ref}}$ pins by connecting them to V $_{\text{CC}}$, for instance. Set V $_{\text{ref}} \le \text{AV}_{\text{CC}}$.

*2 P35/SCK1/SCL0 and P34/SDA0 are NMOS push-pull outputs.

In order to output a high level from SCL0 and SDA0 (ICE = 1), a pull-up resistance must be connected externally.

The high level of P35/SCK1 and P34 (ICE = 0) is driven by NMOS.

In order to output a high level at $V_{\rm CC}$ = 4.5 V or below, a pull-up resistance must be connected externally.

*3 This is the case when IICS = 0 and ICE = 0. Low-level output when the bus drive function is selected will be determined on Bus Drive Characteristics, table 23-4.

Table 23-2 DC Characteristics (2)

Conditions

F-ZTAT version: $V_{CC} = 3.0 \text{ V}$ to 5.5 V, $AV_{CC} = 3.6 \text{ V}$ to 5.5 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} ,

 $V_{SS} = AV_{SS} = 0 \text{ V}, T_a = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)},$

 $T_a = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \text{ (wide-range specifications)}^{*1}$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Input	RES	C _{in}	_	_	30	pF	$V_{in} = 0 V$
capacitance	NMI	_	_		30	pF	f = 1 MHz
	P32 to P35	_	_	_	20	pF	T _a = 25°C
	All input pins except the above		_	_	15	pF	
Current dissipation*2	Normal operation	I _{CC} * ⁴		23 V _{CC} = 3.0 V	40 ' V _{CC} = 5.5 \	mA V	f = 13.5 MHz
	Sleep mode	-	_	18 V _{CC} = 3.0 V	30 ' V _{CC} = 5.5 \	mA V	f = 13.5 MHz
	All modules stopped	_	_	13	_	mA	f = 13.5 MHz, $V_{cc} = 3.0 \text{ V}$ (reference values)
	Medium- speed mode (ø/32)	_	_	13	_	mA	f = 13.5 MHz, $V_{CC} = 3.0 \text{ V}$ (reference values)
	Subactive mode	-	_	80	180	μΑ	Using 32.768 kHz crystal resonator $V_{CC} = 3.0 \text{ V}$
	Subsleep mode	_	_	60	130	μΑ	Using 32.768 kHz crystal resonator $V_{CC} = 3.0 \text{ V}$
	Watch mode	_	_	8	40	μΑ	Using 32.768 kHz crystal resonator $V_{CC} = 3.0 \text{ V}$
	Standby mode*3	-	_	1.0 V _{CC} = 3.0 V	10 ' V _{CC} = 5.5 \	μA V	T _a ≤50°C not using 32.768 kHz
			_		50 V _{CC} = 5.5 V		50°C < T _a not using 32.768 kHz
Analog power supply current	During A/D and D/A conversion	Al _{cc}	_	0.3	1.5	mA	
	Idle	_	_	0.01	5.0	μA	_

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Reference current	During A/D and D/A conversion	Al _{cc}	_	1.3	3.5	mA	
	Idle		_	0.01	5.0	μΑ	
RAM standby v	oltage	V_{RAM}	2.0		_	V	

Notes: *1 If the A/D and D/A converters are not used, do not leave the AV_{cc} , V_{ref} , and AV_{ss} pins open. Apply a voltage between 2.0 V and 5.5 V to the AV_{cc} and V_{ref} pins by connecting them to V_{cc} , for instance. Set $V_{ref} \le AV_{cc}$.

- *2 Current dissipation values are for V_{IH} min = V_{CC} 0.5 V, V_{IL} max = 0.5 V with all output pins unloaded and the on-chip pull-up resistors in the off state.
- *3 The values are for $V_{RAM} \le V_{CC} < 3.0 \text{ V}$, $V_{IH} \text{ min} = V_{CC} \times 0.9$, and $V_{IL} \text{ max} = 0.3 \text{ V}$.
- *4 I_{cc} depends on V_{cc} and f as follows:

 I_{CC} max = 2.0 (mA) + 0.7 (mA/V) \times V_{CC} + 1.4 (mA/MHz) \times f +0.20 (mA/(MHz·V)) \times V_{CC} \times f (normal operation)

 I_{cc} max = 1.5 (mA) + 0.6 (mA/V) \times V_{cc} + 1.1 (mA/MHz) \times f +0.15 (mA/(MHz·V)) \times V_{cc} \times f (sleep mode)

Table 23-2 DC Characteristics (3)

Conditions

Mask ROM version: $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}$, $AV_{CC} = 3.6 \text{ V to } 5.5 \text{ V}$, $V_{ref} = 3.0 \text{ V to } AV_{CC}$, $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20 ^{\circ}\text{C}$ to $+75 ^{\circ}\text{C}$ (regular specifications),

 $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)*¹

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Input	RES	C _{in}	_	_	30	pF	V _{in} = 0 V
capacitance	NMI		_	_	30	pF	f = 1 MHz
	P32 to P35		_	_	20	pF	⁻ T _a = 25°C
	All input pins except the above		_		15	pF	_
Current dissipation*2	Normal operation	I _{CC} * ⁴	_	22 V _{CC} = 3.0 V	40 V _{CC} = 5.5 V	mA	f = 13.5 MHz
	Sleep mode		_	16 V _{CC} = 3.0 V	30 V _{CC} = 5.5 V	mA	f = 13.5 MHz
	All modules stopped		_	13	_	mA	f = 13.5 MHz, $V_{CC} = 3.0 \text{ V}$ (reference values)
	Medium-speed mode (ø/32)		_	13		mA	f = 13.5 MHz, $V_{cc} = 3.0 \text{ V}$ (reference values)
	Subactive mode		_	60	180	μA	Using 32.768 kHz crystal resonator V _{cc} = 3.0 V
	Subsleep mode		_	35	100	μA	Using 32.768 kHz crystal resonator V _{cc} = 3.0 V
	Watch mode		_	8	40	μA	Using 32.768 kHz crystal resonator V _{CC} = 3.0 V
	Standby mode*3		_	0.5 V _{CC} = 3.0 V	10 V _{CC} = 5.5 V	μΑ	$T_a \le 50$ °C not using 32.768 kHz
			_	_	50 V _{CC} = 5.5 V		50°C < T _a not using 32.768 kHz
Analog power supply current		Al _{cc}	_	0.3	1.5	mA	
	Idle		_	0.01	5.0	μA	_

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Reference current	During A/D and D/A conversion	Al _{cc}	_	1.3	3.5	mA	
	Idle		_	0.01	5.0	μΑ	
RAM standby	voltage	V _{RAM}	2.0			V	

Notes: *1 If the A/D and D/A converters are not used, do not leave the AV_{cc} , V_{ref} , and AV_{ss} pins open. Apply a voltage between 2.0 V and 5.5 V to the AV_{cc} and V_{ref} pins by connecting them to V_{cc} , for instance. Set $V_{ref} \le AV_{cc}$.

- *2 Current dissipation values are for V_{IH} min = V_{CC} 0.5 V, V_{IL} max = 0.5 V with all output pins unloaded and the on-chip pull-up resistors in the off state.
- *3 The values are for $V_{RAM} \le V_{CC} < 2.7 \text{ V}$, $V_{IH} \text{ min} = V_{CC} \times 0.9$, and $V_{IL} \text{ max} = 0.3 \text{ V}$.
- *4 I_{cc} depends on V_{cc} and f as follows:

 I_{cc} max = 2.0 (mA) + 0.7 (mA/V) \times V_{cc} + 1.4 (mA/MHz) \times f + 0.20 (mA/(MHz \cdot V)) \times V_{cc} \times f (normal mode)

 I_{CC} max = 1.5 (mA) + 0.6 (mA/V) \times V $_{\text{CC}}$ + 1.1 (mA/MHz) \times f + 0.15 (mA/(MHz · V)) \times V $_{\text{CC}}$ \times f (sleep mode)

Table 23-3 Permissible Output Currents

Conditions

F-ZTAT version: $V_{CC} = 3.0 \text{ V}$ to 5.5 V, $AV_{CC} = 3.6 \text{ V}$ to 5.5 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} ,

 $V_{SS} = AV_{SS} = 0 \text{ V}, T_a = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)},$

 $T_a = -40$ °C to +85°C (wide-range specifications)*¹

Mask ROM version: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $AV_{CC} = 3.6 \text{ V}$ to 5.5 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC}

 $V_{SS} = AV_{SS} = 0 \text{ V}, T_a = -20^{\circ}\text{C to } +75^{\circ}\text{C (regular specifications)},$

 $T_a = -40$ °C to +85°C (wide-range specifications)*¹

Item		Symbol	Min	Тур	Max	Unit
Permissible output low current (per pin)	SCL1 and SCL0, SDA1 and SDA0	I _{OL}	_	_	10	mA
	All output pins except the above	_	_		1.0	
Permissible output low current (total)	Total of all output pins	\sum I _{OL}			60	mA
Permissible output high current (per pin)	All output pins	-I _{OH}			1.0	mA
Permissible output high current (total)	Total of all output pins	$\sum -I_{OH}$			30	mA

Note: To protect chip reliability, do not exceed the output current values in table 23-3.

Table 23-4 Bus Drive Characteristics

Conditions

F-ZTAT version: $V_{CC} = 3.0 \text{ V to } 5.5 \text{ V}, \text{ AV}_{CC} = 3.6 \text{ V to } 5.5 \text{ V}, \text{ V}_{ref} = 3.0 \text{ V to AV}_{CC}$

 $V_{SS} = AV_{SS} = 0 \text{ V}, T_a = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)},$

 $T_a = -40$ °C to +85°C (wide-range specifications)*

Mask ROM version: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $AV_{CC} = 3.6 \text{ V}$ to 5.5 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} ,

 $V_{SS} = AV_{SS} = 0 \text{ V}, T_a = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)},$

 $T_a = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \text{ (wide-range specifications)*}$

Applicable Pins: SCL1 and SCL0, SDA1 and SDA0

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt trigger	V_{T}^{-}	$V_{\text{CC}} \times 0.3$	_	_	V	$V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}$
input voltage	V _T ⁺		_	$V_{cc} \times 0.7$	_	$V_{\rm CC}$ = 2.7 V to 5.5 V
	$V_T^+ - V_T^-$	0.4	_	_		V _{CC} = 4.0 V to 5.5 V
		$V_{cc} \times 0.05$			_	V _{CC} = 2.7 V to 4.0 V
Input high voltage	V _{IH}	$V_{cc} \times 0.7$		V _{cc} + 0.5	V	V _{CC} = 2.7 V to 5.5 V
Input low voltage	V _{IL}	-0.5	_	$V_{cc} \times 0.3$	V	V _{CC} = 2.7 V to 5.5 V
Output low voltage	· V _{OL}			0.5	V	$I_{OL} = 8 \text{ mA},$ $V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}$
		_		0.4	_	$I_{OL} = 3 \text{ mA}$
Input capacitance	C _{in}	_	_	20	pF	V _{in} = 0 V, f = 1 MHz, T _a = 25°C
Three-state leakage current (off state)	I _{TSI}	_	_	1.0	μΑ	$V_{in} = 0.5 \text{ to } V_{CC} - 0.5 \text{ V}$
SCL, SDA output fall time	t _{Of}	20 + 0.1 Cb		250	ns	$V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}$

Note: * If the A/D and D/A converters are not used, do not leave the AV_{CC} , V_{ref} , and AV_{SS} pins open. Apply a voltage between 2.0 V and 5.5 V to the AV_{CC} and V_{ref} pins by connecting them to V_{CC} , for instance. Set $V_{ref} \le AV_{CC}$.

23.2.3 AC Characteristics

Figure 23-3 show, the test conditions for the AC characteristics.

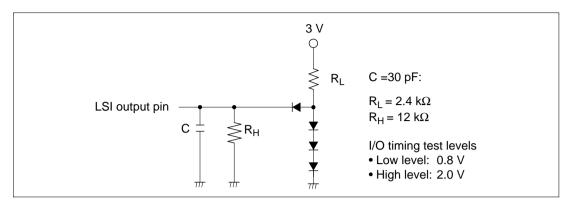


Figure 23-3 Output Load Circuit

Clock Timing

Table 23-5 lists the clock timing

Table 23-5 Clock Timing

Condition A (F-ZTAT version):

 $V_{\rm CC}=3.0~V$ to 5.5 V, $AV_{\rm CC}=3.6~V$ to 5.5 V, $V_{\rm ref}=3.0~V$ to $AV_{\rm CC},$ $V_{\rm SS}=AV_{\rm SS}=0~V,~\emptyset=32.768~kHz,~2~MHz$ to 13.5 MHz, $T_{\rm a}=-20^{\circ}C$ to +75°C (regular specifications), $T_{\rm a}=-40^{\circ}C$ to +85°C (wide-range specifications)

Condition B (Mask ROM version):

$$\begin{split} &V_{CC}=2.7~V~to~5.5~V,~AV_{CC}=3.6~V~to~5.5~V,~V_{ref}=3.0~V~to~AV_{CC},\\ &V_{SS}=AV_{SS}=0~V,~\phi=32.768~kHz,~2~MHz~to~13.5~MHz,~T_a=-20^{\circ}C~to~+75^{\circ}C~(regular~specifications), \end{split}$$

 $T_a = -40$ °C to +85°C (wide-range specifications)

		Co	nditions A		Test	
Item	Symbol	Min	Тур	Max	Unit	Conditions
Clock cycle time	t _{cyc}	74	_	500	ns	Figure 23-5
Clock high pulse width	t _{CH}	25		_	ns	_
Clock low pulse width	t _{CL}	25	_	_	ns	_
Clock rise time	t _{Cr}			10	ns	_
Clock fall time	t _{Cf}	_	_	10	ns	
Reset oscillation stabilization time reset (crystal)	t _{osc1}	20	_	_	ms	Figure 23-6
Software oscillation stabilization time software standby (crystal)	t _{osc2}	8	_	_	ms	Figure 21-3
External clock output stabilization delay time	t _{DEXT}	500	_	_	μs	Figure 23-6
Subclock oscillation stabilization time	t _{osc3}		_	2	S	
Subclock oscillator frequency	f _{SUB}	_	32.768	_	kHz	
Subclock (ø _{SUB}) cycle time	t _{SUB}	_	30.5	_	μs	

Control Signal Timing

Table 23-6 lists the control signal timing.

Table 23-6 Control Signal Timing

Condition A (F-ZTAT version):

 $V_{\rm CC}=3.0~V$ to 5.5 V, $AV_{\rm CC}=3.6~V$ to 5.5 V, $V_{\rm ref}=3.0~V$ to $AV_{\rm CC},$ $V_{\rm SS}=AV_{\rm SS}=0~V,~\emptyset=32.768~kHz,~2~MHz$ to 13.5 MHz, $T_{\rm a}=-20^{\circ}C$ to +75°C (regular specifications), $T_{\rm a}=-40^{\circ}C$ to +85°C (wide-range specifications)

Condition B (Mask ROM version):

 $V_{CC}=2.7~V$ to 5.5 V, $AV_{CC}=3.6~V$ to 5.5 V, $V_{ref}=3.0~V$ to $AV_{CC},$ $V_{SS}=AV_{SS}=0~V,$ $\emptyset=32.768~kHz,$ 2 MHz to 13.5 MHz, $T_a=-20^{\circ}C$ to +75°C (regular specifications), $T_a=-40^{\circ}C$ to +85°C (wide-range specifications)

Conditions A and I				3		
Item	Symbol	Min	Max	Unit	Test Conditions	
RES setup time	t_{RESS}	250	_	ns	Figure 23-7	
RES pulse width	t_{RESW}	20	_	t _{cyc}		
MRES setup time	t _{MRESS}	250		ns		
MRES pulse width	t _{MRESW}	20		t _{cyc}		
NMI setup time	t _{NMIS}	250	_	ns	Figure 23-8	
NMI hold time	t _{NMIH}	10				
NMI pulse width (exiting software standby mode)	t _{NMIW}	200	_	ns		
ĪRQ setup time	t _{IRQS}	250		ns		
ĪRQ hold time	t _{IRQH}	10	_	ns		
IRQ pulse width (exiting software standby mode)	t _{IRQW}	200	_	ns	_	

Bus Timing

Table 23-7 lists the bus timing.

Table 23-7 Bus Timing

Condition A (F-ZTAT version):

$$V_{CC}=3.0~V$$
 to 5.5 V, $AV_{CC}=3.6~V$ to 5.5 V, $V_{ref}=3.0~V$ to AV_{CC} , $V_{SS}=AV_{SS}=0~V$, $\phi=2~MHz$ to 13.5 MHz, $T_a=-20^{\circ}C$ to $+75^{\circ}C$ (regular specifications), $T_a=-40^{\circ}C$ to $+85^{\circ}C$ (wide-range specifications)

Condition B (Mask ROM version):

$$V_{CC}=2.7$$
 V to 5.5 V, $AV_{CC}=3.6$ V to 5.5 V, $V_{ref}=3.0$ V to AV_{CC} , $V_{SS}=AV_{SS}=0$ V, $\emptyset=2$ MHz to 13.5 MHz, $T_a=-20^{\circ}C$ to $+75^{\circ}C$ (regular specifications), $T_a=-40^{\circ}C$ to $+85^{\circ}C$ (wide-range specifications)

Conditions A and B

Item	Symbol	Min	Max	Unit	Test Conditions
Address delay time	t _{AD}	_	50	ns	Figure 23-9 to
Address setup time	t _{AS}	$0.5 \times t_{\text{cyc}} - 30$	_	ns	Figure 23-13
Address hold time	t _{AH}	$0.5 \times t_{\text{cyc}} - 15$	_	ns	_
CS delay time	t _{CSD}		50	ns	_
AS delay time	t _{ASD}		50	ns	_
RD delay time 1	t _{RSD1}		50	ns	_
RD delay time 2	t _{RSD2}	_	50	ns	_
Read data setup time	t _{RDS}	30	_	ns	_
Read data hold time	t _{RDH}	0	_	ns	_
Read data access time 1	t _{ACC1}	_	$1.0 \times t_{\text{cyc}} - 65$	ns	_
Read data access time 2	t _{ACC2}		$1.5 \times t_{\text{cyc}} - 65$	ns	_
Read data access time 3	t _{ACC3}		$2.0 \times t_{\text{cyc}} - 65$	ns	_
Read data access time 4	t _{ACC4}	_	$2.5 \times t_{\text{cyc}} - 65$	ns	_
Read data access time 5	t _{ACC5}	_	$3.0 \times t_{\text{cyc}} - 65$	ns	_

Conditions A and B

Item	Symbol	Min	Max	Unit	Test Conditions
WR delay time 1	t _{WRD1}	_	50	ns	Figure 23-9
WR delay time 2	t _{WRD2}	_	50	ns	Figure 23-10
WR pulse width 1	t _{wsw1}	$1.0 \times t_{\text{cyc}} - 30$	_	ns	_
WR pulse width 2	t _{wsw2}	$1.5 \times t_{\text{cyc}} - 30$	_	ns	_
Write data delay time	t_{WDD}	_	70	ns	
Write data setup time	t _{wds}	$0.5 \times t_{\text{cyc}} - 37$	_	ns	
Write data hold time	t_{WDH}	$0.5 \times t_{\text{cyc}} - 15$	_	ns	
WAIT setup time	t _{wrs}	50	_	ns	Figure 23-11
WAIT hold time	t _{wth}	10	_	ns	_
BREQ setup time	t _{BRQS}	50	_	ns	Figure 23-14
BACK delay time	t _{BACD}	_	50	ns	_
Bus-floating time	$t_{\scriptscriptstyle BZD}$	_	80	ns	

Timing of On-Chip Supporting Modules

Table 23-8 shows the timing of on-chip supporting modules, and table 23-9 shows the I²C bus timing.

Table 23-8 Timing of On-Chip Supporting Modules

Condition A (F-ZTAT version):

 $V_{CC}=3.0~V$ to 5.5 V, $AV_{CC}=3.6~V$ to 5.5 V, $V_{ref}=3.0~V$ to $AV_{CC},$ $V_{SS}=AV_{SS}=0~V,~\emptyset=32.768~kHz,~2~MHz$ to 13.5 MHz, $T_a=-20^{\circ}C$ to +75°C (regular specifications), $T_a=-40^{\circ}C$ to +85°C (wide-range specifications)

Condition B (Mask ROM version):

 $V_{\rm CC}=2.7$ V to 5.5 V, $AV_{\rm CC}=3.6$ V to 5.5 V, $V_{\rm ref}=3.0$ V to $AV_{\rm CC},$ $V_{\rm SS}=AV_{\rm SS}=0$ V, $\emptyset=32.768$ kHz, 2 MHz to 13.5 MHz, $T_{\rm a}=-20^{\circ}{\rm C}$ to +75°C (regular specifications), $T_{\rm a}=-40^{\circ}{\rm C}$ to +85°C (wide-range specifications)

				Conditions A and B			
Item			Symbol	Min	Max	Unit	Test Conditions
I/O port*	Output data o	delay time	t _{PWD}	_	100	ns	Figure 23-15
	Input data se	tup time	t _{PRS}	50			
	Input data ho	ld time	t _{PRH}	50			
TPU	Timer output	delay time	t _{TOCD}	_	100	ns	Figure 23-16
	Timer input s	etup time	t _{TICS}	40	_		
	Timer clock in	nput setup time	t _{TCKS}	40	_	ns	Figure 23-17
	Timer clock	Single edge	t _{TCKWH}	1.5		t _{cyc}	
	pulse width	Both edges	t _{TCKWL}	2.5	_		
TMR	Timer output	delay time	t_{TMOD}	_	100	ns	Figure 23-18
	Timer reset in	nput setup time	t _{TMRS}	50		ns	Figure 23-20
	Timer clock in	nput setup time	t _{TMCS}	50	<u>—</u>	ns	Figure 23-19
	Timer clock	Single edge	t_{TMCWH}	1.5	_	t _{cyc}	_
	pulse width	Both edges	t _{TMCWL}	2.5	_		

				Condi	tions A and B			
Item			Symbol	Min	Max	Unit	Test Conditions	
WDT1	BUZZ output	delay time	t _{BUZD}	_	100	ns	Figure 23-21	
SCI*	Input clock	Asynchronous	t _{Scyc}	4	_	t _{cyc}	Figure 23-22	
	cycle	Synchronous		6	_			
	Input clock p	ulse width	t _{sckw}	0.4	0.6	t _{Scyc}	_	
	Input clock ri	se	t _{SCKr}	_	1.5	t _{cyc}	_	
	Input clock fa	all	t _{SCKf}	_	1.5			
	Transmit dat delay time	a	t _{TXD}	_	100	ns	Figure 23-23	
	Receive data	•	t _{RXS}	75		ns	_	
	Receive data		t _{RXH}	75		ns	_	
A/D converter	Trigger input	setup time	t _{TRGS}	40		ns	Figure 23-24	

Note: *The high level of P35/SCK1 and P34 is driven by NMOS. In order to output a high level at $V_{\rm cc}$ = 4.5 V or below, a pull-up resistance must be connected externally.

Table 23-9 I²C Bus Timing

Conditions

F-ZTAT version: $V_{CC} = 3.0$ to 5.5 V, $V_{SS} = 0$ V, $\emptyset = 5$ MHz to maximum operating frequency,

 $T_a = -20^{\circ}C$ to $+75^{\circ}C$

Mask ROM version: $V_{CC} = 2.7$ to 5.5 V, $V_{SS} = 0$ V, $\emptyset = 5$ MHz to maximum operating frequency,

 $T_a = -20^{\circ}C$ to $+75^{\circ}C$

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Notes
SCL input cycle time	t _{SCL}	12t _{cyc}	_	_	ns		Figure 23-25
SCL input high pulse width	t _{SCLH}	3t _{cyc}	_		ns		_
SCL input low pulse width	t _{SCLL}	5t _{cyc}	_	_	ns		_
SCL, SDA input rise time	t _{Sr}		_	7.5t _{cyc} *	ns		_
SCL, SDA input fall time	t _{Sf}	_	_	300	ns		_
SCL, SDA input spike pulse elimination time	t _{SP}	_	_	1t _{cyc}	ns		_
SDA input bus free time	t _{BUF}	5t _{cyc}	_	_	ns		
Start condition input hold time	t _{stah}	3t _{cyc}	_	_	ns		
Retransmission start condition input setup time	t _{STAS}	3t _{cyc}	_	_	ns		_
Stop condition input setup time	t _{stos}	3t _{cyc}			ns		_
Data input setup time	t _{SDAS}	0.5t _{cyc}			ns		_
Data input hold time	t _{SDAH}	0	_		ns		_
SCL, SDA capacitive load	Сь	_	_	400	pF		_

Note: *7.5t_{cyc} and 17.5t_{cyc} can be set according to the clock selected for use by the I²C module. For details, see section 15.4, Usage Notes.

23.2.4 A/D Conversion Characteristics

A/D converter characteristics for the F-ZTAT and mask ROM versions are shown in table 23-10.

Table 23-10 A/D Conversion Characteristics (F-ZTAT and mask ROM versions)

Condition: $V_{CC} = 3.0 \text{ V}$ to 5.5 V, $AV_{CC} = 3.6 \text{ V}$ to 5.5 V, $V_{ref} = 3.6 \text{ V}$ to AV_{CC} ,

 $V_{SS} = AV_{SS} = 0 \text{ V}, \ \emptyset = 2 \text{ MHz to } 13.5 \text{ MHz}, \ T_a = -20^{\circ}\text{C to } +75^{\circ}\text{C} \text{ (regular)}$

specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

		Cond	ition	
Item	Min	Тур	Max	Unit
Resolution	10	10	10	bit
Conversion time	9.6		_	μs
Analog input capacitance			20	pF
Permissible signal-source impedance			5	kΩ
Nonlinearity error			±6.0	LSB
Offset error	_	_	±4.0	LSB
Full-scale error			±4.0	LSB
Quantization			±0.5	LSB
Absolute accuracy	_	_	±8.0	LSB

23.2.5 D/A Conversion Characteristics

Table 23-11 lists the D/A conversion characteristics.

Table 23-11 D/A Conversion Characteristics (F-ZTAT and mask ROM versions)

Condition: $V_{CC} = 3.0 \text{ V}$ to 5.5 V, $AV_{CC} = 3.6 \text{ V}$ to 5.5 V, $V_{ref} = 3.6 \text{ V}$ to AV_{CC} ,

 $V_{SS} = AV_{SS} = 0 \text{ V}, \emptyset = 2 \text{ MHz to } 13.5 \text{ MHz}, T_a = -20^{\circ}\text{C to } +75^{\circ}\text{C}$ (regular

specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Condition
Condition

Item	Min	Тур	Max	Unit	Test Conditions
Resolution	8	8	8	bit	
Conversion time			10	μs	20-pF capacitive load
Absolute accuracy	_	±2.0	±3.0	LSB	2-MΩ resistive load
	_	_	±2.0	LSB	4-MΩ resistive load

23.2.6 Flash Memory Characteristics

Table 23-12 Flash Memory Characteristics

Conditions: $V_{CC} = 3.0 \text{ V}$ to 5.5 V, $AV_{CC} = 3.0 \text{ V}$ to 5.5 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 4.0 \text{ V}$

0 V, $T_a = -20$ °C to +75°C (program/erase operating temperature range; regular specifications), $T_a = -20$ °C to +75°C (program/erase operating temperature range;

wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Programming	time* ^{1, *2, *4}	t _P	_	10	200	ms/ 128 bytes	
Erase time*1, *	3, *5	t _E	_	100	1200	ms/block	
Rewrite times		N _{WEC}	_	_	100	Times	
Programming	Wait time after SWE1 bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after PSU1 bit setting*1	t _{spsu}	50	50	_	μs	
	Wait time after P1 bit setting*1, *4	t _{sp10}	8	10	12	μs	
		t _{sp30}	28	30	32	μs	1 ≤ n ≤ 6
		t _{sp200}	198	200	202	μs	7 ≤ n ≤ 1000
	Wait time after P1 bit clearing*1	t _{cp}	5	5	_	μs	
	Wait time after PSU1 bit clearing*1	t _{cpsu}	5	5	_	μs	
	Wait time after PV1 bit setting*1	t _{spv}	4	4	_	μs	
	Wait time after H'FF dummy write*1	t _{spvr}	2	2	_	μs	
	Wait time after PV1 bit clearing*1	t _{cpv}	2	2	_	μs	
	Wait time after SWE1 bit clearing	t _{cswe}	100	100	_	μs	
	Maximum number of programming	N1	_	_	6*4	Times	
	operations *1, *4	N2	_	_	994*4		
Erasing	Wait time after SWE1 bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after ESU1 bit setting*1	t _{sesu}	100	100	_	μs	
	Wait time after E1 bit setting*1, *5	t _{se}	10	10	100	ms	
	Wait time after E1 bit clearing*1	t _{ce}	10	10	_	μs	
	Wait time after ESU1 bit clearing*1	t _{cesu}	10	10	_	μs	
	Wait time after EV1 bit setting*1	t _{sev}	20	20	_	μs	
	Wait time after H'FF dummy write*1	t _{sevr}	2	2	_	μs	
	Wait time after EV1 bit clearing*1	t _{cev}	4	4	_	μs	
	Wait time after SWE1 bit clearing	t _{cswe}	100	100	_	μs	
	Maximum number of erases*1, *5	N	_	_	100	Times	

Notes: *1 Follow the program/erase algorithms when making the time settings.

^{*2} Programming time per 128 bytes. (Indicates the total time during which the P1 bit is set in flash memory control register 1 (FLMCR1). Does not include the program-verify time.)

- *3 Time to erase one block. (Indicates the time during which the E1 bit is set in FLMCR1. Does not include the erase-verify time.)
- *4 Maximum programming time $(t_p(max) = Wait time after P1 bit setting (t_{sp}) x maximum number of writes (N)) <math>(t_{sp30} + t_{sp10}) \times 6 + (t_{sp200}) \times 994$
- *5 For the maximum erase time ($t_E(max)$), the following relationship applies between the wait time after E1 bit setting (z) and the maximum number of erases (N):

 $t_{E}(max)$ = Wait time after E1 bit setting $(t_{se}) \times maximum$ number of erases (N)

23.3 Electrical Characteristics of 3 V Version H8S/2238R

23.3.1 Absolute Maximum Ratings

Table 23-13 lists the absolute maximum ratings.

Table 23-13 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage	V _{cc}	-0.3 to +4.3	V
	CV _{cc}	-0.3 to +4.3	V
Input voltage (except ports 4 and 9)	V _{in}	-0.3 to V _{cc} +0.3	V
Input voltage (ports 4 and 9)	V _{in}	-0.3 to AV _{cc} +0.3	V
Reference power supply voltage	V_{ref}	-0.3 to AV _{cc} +0.3	V
Analog power supply voltage	AV _{cc}	-0.3 to +4.3	V
Analog input voltage	V_{AN}	-0.3 to AV _{cc} +0.3	V
Operating temperature	T _{opr}	Regular specifications: –20 to +75*1	°C
		Wide-range specifications: -40 to +85*2	°C
Storage temperature	T _{sta}	-55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum ratings are exceeded.

Notes: *1 The operating temperature ranges for flash memory programming/erasing are $T_a = -20^{\circ}\text{C}$ to +75°C if the operating voltage is Vcc = 2.7 to 3.6 V when reading and

 $T_a = -20$ °C to +50°C if the operating voltage is Vcc = 2.2 to 3.6 V when reading

23.3.2 DC Characteristics

DC characteristics are shown in table 23-14, permissible output currents in table 23-15, and bus drive characteristics in table 23-16.

^{*2} The operating temperature range for flash memory programming/erasing is Ta = -40°C to +85°C.

Table 23-14 DC Characteristics (1)

Condition A (F-ZTAT version):

 $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ AV}_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ V}_{ref} = 2.7 \text{ V to AV}_{CC},$ $V_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ T}_a = -20^{\circ}\text{C to } +75^{\circ}\text{C (regular specifications)},$ $T_a = -40^{\circ}\text{C to } +85^{\circ}\text{C (wide-range specifications)}*^1$

Condition B (F-ZTAT version):

$$V_{CC}=2.2~V~to~3.6~V,~AV_{CC}=2.7~V~to~3.6~V,~V_{ref}=2.7~V~to~AV_{CC},\\ V_{SS}=AV_{SS}=0~V,~T_a=-20^{\circ}C~to~+75^{\circ}C$$

Condition C (Mask ROM version):

 $V_{CC} = 2.2 \text{ V to } 3.6 \text{ V}, \text{ AV}_{CC} = 2.2 \text{ V to } 3.6 \text{ V}, \text{ V}_{ref} = 2.2 \text{ V to AV}_{CC},$ $V_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ T}_{a} = -20^{\circ}\text{C to } +75^{\circ}\text{C (regular specifications)},$ $T_{a} = -40^{\circ}\text{C to } +85^{\circ}\text{C (wide-range specifications)}*^{1}$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt	IRQ0 to IRQ7	VT ⁻	$V_{\text{CC}} \times 0.2$	_	_	V	
trigger input		VT*	_	_	$V_{cc} \times 0.8$	V	_
voltage		$\overline{VT^+ - VT^-}$	$V_{\text{CC}} \times 0.05$	_		V	_
Input high voltage	RES, STBY, NMI, MD2 to MD0, FWE	V _{IH}	$V_{cc} \times 0.9$		V _{cc} + 0.3	V	
	EXTAL, Ports 1, 3, 7, A to G	_	$V_{CC} \times 0.8$	_	V _{cc} + 0.3	V	_
	Ports 4 and 9	_	$V_{CC} \times 0.8$	_	AV _{cc} + 0.3	V	_
Input low voltage	RES, STBY, MD2 to MD0, FWE	V _{IL}	-0.3		$V_{cc} \times 0.1$	V	
	NMI, EXTAL, ports 1, 3, 4, 7, 9, A to G	_	-0.3	_	$V_{\text{CC}} \times 0.2$	V	
Output high	All output pins	V _{OH}	V _{cc} - 0.5	_		V	$I_{OH} = -200 \mu A$
voltage	except P34 to P35*4		V _{CC} - 1.0	_	_	V	$I_{OH} = -1 \text{ mA}^{*2}$
	P34 to P35*3		V _{CC} - 2.0	_	_	V	I _{OH} = 100 μA (reference value)
Output low	All output pins*4	V _{OL}		_	0.4	V	I _{OL} = 0.4 mA
voltage					0.4	V	$I_{OL} = 0.8 \text{ mA}^{*2}$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage	RES	I _{in}	_	_	1.0	μΑ	$V_{in} = 0.2 \text{ to}$
current	STBY, NMI, MD2 to MD0, FWE	_	_		1.0	μΑ	V _{cc} – 0.2 V
	Ports 4 and 9	_	_		1.0	μΑ	$V_{in} = 0.2 \text{ to}$ AV _{CC} - 0.2 V
Three-state leakage current (off state)	Ports 1, 3, 7, A to G	I _{TSI}	_	_	1.0	μА	$V_{in} = 0.2 \text{ to} $ $V_{CC} - 0.2 \text{ V}$
Input pull-up MOS current	Ports A to E	-I _P	10	_	300	μΑ	V _{in} = 0 V

Notes: *1 If the A/D and D/A converters are not used, do not leave the AV_{cc}, V_{ref} , and AV_{ss} pins open. Apply a voltage between 2.0 V and 3.6 V to the AV_{cc} and V_{ref} pins by connecting them to V_{cc}, for instance. Set $V_{ref} \le AV_{cc}$.

- *2 $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}.$
- *3 P35/SCK1/SCL0 and P34/SDA0 are NMOS push-pull outputs.

In order to output a high level from SCL0 and SDA0 (ICE = 1), a pull-up resistance must be connected externally.

The high level of P35/SCK1 and P34 (ICE = 0) is driven by NMOS. In order to output a high level from P35/SCK1 and P34, a pull-up resistance must be connected externally.

*4 This is the case when IICS = 0 and ICE = 0. Low-level output when the bus drive function is selected will be determined on Bus Drive Characteristics, table 23-16.

Table 23-14 DC Characteristics (2)

Condition A (F-ZTAT version):

 $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ AV}_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ V}_{ref} = 2.7 \text{ V to AV}_{CC}, \text{ V}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ T}_a = -20^{\circ}\text{C to } +75^{\circ}\text{C (regular specifications)}, \text{ T}_a = -40^{\circ}\text{C to } +85^{\circ}\text{C (wide-range specifications)}*^{1}$

Condition B (F-ZTAT version):

 $V_{CC} = 2.2 \text{ V}$ to 3.6 V, $AV_{CC} = 2.2 \text{ V}$ to 3.6 V, $V_{ref} = 2.2 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Input	RES	C _{in}	_	_	30	pF	$V_{in} = 0 V$
capacitance	NMI	=	_	_	30	pF	f = 1 MHz
	P32 to P35	-	_		20	pF	
	All input pins except the above	-	_	_	15	pF	_
Current dissipation*2	Normal operation	I _{CC} * ⁴	_	20 V _{cc} = 3.0 V	37 V _{CC} = 3.6 V	mA	f = 13.5 MHz
	Sleep mode	_	_	15 V _{CC} = 3.0 V	29 V _{CC} = 3.6 V	mA	f = 13.5 MHz
	All modules stopped	-	_	15	_	mA	f = 13.5 MHz, $V_{cc} = 3.0 \text{ V}$ (reference values)
	Medium-speed mode (ø/32)		_	13	_	mA	f = 13.5 MHz, $V_{CC} = 3.0 \text{ V}$ (reference values)
	Subactive mode	-		70	180	μA	Using 32.768 kHz crystal resonator V _{cc} = 3.0 V
	Subsleep mode	-	_	50	130	μA	Using 32.768 kHz crystal resonator V _{cc} = 3.0 V
	Watch mode	-	_	8	40	μΑ	Using 32.768 kHz crystal resonator V _{cc} = 3.0 V
	Standby mode*	3		1.0 V _{CC} = 3.0 V	10 V _{CC} = 3.6 V	μA	T _a ≤ 50°C not using 32.768 kHz
				_	50 V _{CC} = 3.6 V		50°C < T _a not using 32.768 kHz

							Test Conditions
Item		Symbol	Min	Тур	Max	Unit	
Analog power	During A/D and D/A conversion	Al _{cc}	_	0.5	1.5	mA	
supply voltage	Idle	_	_	0.01	5.0	μΑ	_
Reference power	During A/D and D/A conversion	Al _{cc}	_	1.3	2.5	mA	
supply voltage	Idle	_	_	0.01	5.0	μΑ	_
RAM standb	y voltage	V_{RAM}	2.0	_	_	V	

Notes: *1 If the A/D and D/A converters are not used, do not leave the AV_{cc}, V_{ref}, and AV_{ss} pins open. Apply a voltage between 2.0 V and 3.6 V to the AV_{cc} and V_{ref} pins by connecting them to V_{cc}, for instance. Set V_{ref} \leq AV_{cc}.

- *2 Current dissipation values are for $V_{IH\,min} = V_{CC} 0.2$ V and $V_{IL\,max} = 0.2$ V with all output pins unloaded and all MOS input pull-ups in the off state.
- *3 The values are for $V_{RAM} \le V_{CC} < 2.2 \text{ V}$, $V_{IH} \min = V_{CC} 0.2$, and $V_{IL} \max = 0.2 \text{ V}$.
- *4 I_{cc} depends on V_{cc} and f as follows:

 I_{cc} max = 1.0 (mA) + 0.74 (mA/(MHz·V)) \times V_{cc} \times f (normal operation)

 I_{cc} max = 1.0 (mA) + 0.58 (mA/(MHz·V)) \times V_{cc} \times f (sleep mode)

Table 23-14 DC Characteristics (3)

Condition (Mask ROM version):

 V_{CC} = 2.2 V to 3.6 V, AV_{CC} = 2.2 V to 3.6 V, V_{ref} = 2.2 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, T_a = -20°C to +75°C (regular specifications), T_a = -40°C to +85°C (wide-range specifications)*¹

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Input	RES	C _{in}	_	_	30	pF	V _{in} = 0 V
capacitance	NMI	_	_	_	30	pF	f = 1 MHz
	P32 to P35	_	_	_	20	pF	
	All input pins except the above	_	_	_	15	pF	_
Current dissipation*2	Normal operation	I _{CC} *4		20 V _{CC} = 3.0 V	37 V _{CC} = 3.6 V	mA	f = 13.5 MHz
			_	10 V _{cc} = 3.0 V	18 V _{CC} = 3.6 V	mA	f = 6.25 MHz
	Sleep mode		_	15 V _{CC} = 3.0 V	29 V _{CC} = 3.6 V	mA	f = 13.5 MHz
			_	7.5 $V_{CC} = 3.0 \text{ V}$	14 V _{CC} = 3.6 V	mA	f = 6.25 MHz
	All modules stopped		_	15	_	mA	f = 13.5 MHz, $V_{cc} = 3.0 \text{ V}$ (reference value)
	Medium-speed mode (ø/32)		_	13	_	mA	$f = 13.5 \text{ MHz},$ $V_{cc} = 3.0 \text{ V}$ (reference value)
	Subactive mode		_	45	180	μΑ	32.768 kHz crystal resonator used, V _{cc} = 3.0 V
	Subsleep mode		_	30	100	μΑ	32.768 kHz crystal resonator used, V _{CC} = 3.0 V
	Watch mode	_	_	8	40	μA	32.768 kHz crystal resonator used, V _{cc} = 3.0 V

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Current dissipation*2	Standby mode*3	I _{CC} * ⁴	_	$V_{cc} = 3.0 \text{ V}$	$V_{CC} = 3.6 \text{ V}$	μA ,	T _a ≤ 50°C, 32.768 kHz not used
			_	_	$V_{CC} = 3.6 \text{ V}$	- '	50°C < T _a , 32.768 kHz not used
Analog power	During A/D and D/A conversion	Al _{cc}	_	0.5	1.5	mA	
supply voltage	Idle		_	0.01	5.0	μΑ	_
Reference power	During A/D and D/A conversion	Al _{cc}		1.3	2.5	mA	
supply voltage	Idle	_	_	0.01	5.0	μΑ	_
RAM standb	y voltage	V _{RAM}	2.0			V	

Notes: *1 If the A/D and D/A converters are not used, do not leave the AV_{cc}, V_{ref}, and AV_{ss} pins open. Apply a voltage between 2.0 V and 3.6 V to the AV_{cc} and V_{ref} pins by connecting them to V_{cc}, for instance. Set V_{ref} \leq AV_{cc}.

$$I_{cc}$$
 max = 1.0 (mA) + 0.74 (mA/(MHz·V)) × V_{cc} × f (normal operation)

 I_{cc} max = 1.0 (mA) + 0.58 (mA/(MHz·V)) × V_{cc} × f (sleep mode)

^{*2} Current dissipation values are for $V_{IH\,min} = V_{CC} - 0.2$ V and $V_{IL\,max} = 0.2$ V with all output pins unloaded and all MOS input pull-ups in the off state.

^{*3} The values are for $V_{RAM} \le V_{CC} < 2.2 \text{ V}$, $V_{IH} \min = V_{CC} - 0.2$, and $V_{IL} \max = 0.2 \text{ V}$.

^{*4} I_{cc} depends on V_{cc} and f as follows:

Table 23-15 Permissible Output Currents

Condition A (F-ZTAT version):

 $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ AV}_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ V}_{ref} = 2.7 \text{ V to AV}_{CC},$ $V_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ T}_a = -20^{\circ}\text{C to } +75^{\circ}\text{C (regular specifications)},$ $T_a = -40^{\circ}\text{C to } +85^{\circ}\text{C (wide-range specifications)}$

Condition B (F-ZTAT version):

$$V_{CC}$$
 = 2.2 V to 3.6 V, AV_{CC} = 2.7 V to 3.6 V, V_{ref} = 2.7 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, T_a = -20°C to +75°C (regular specifications)

Condition C (Mask ROM version):

$$V_{CC} = 2.2 \text{ V to } 3.6 \text{ V}, \text{ AV}_{CC} = 2.2 \text{ V to } 3.6 \text{ V}, \text{ V}_{ref} = 2.2 \text{ V to AV}_{CC},$$

 $V_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{ T}_a = -20^{\circ}\text{C to } +75^{\circ}\text{C (regular specifications)},$
 $T_a = -40^{\circ}\text{C to } +85^{\circ}\text{C (wide-range specifications)}$

Item			Symbol	Min	Тур	Max	Unit
Permissible output low current (per pin)	SCL1 and SCL0, SDA1 and SCL0	V _{cc} = 2.7 V to 3.6 V	I _{OL}	_	_	10	mA
	All output pins except the	$V_{cc} = 2.2 \text{ V}$ to 3.6 V	_	_		0.5	_
	above	$V_{cc} = 2.7 \text{ V}$ to 3.6 V	_	_		1.0	_
Permissible output low current (total)	Total of all output pins	$V_{cc} = 2.2 \text{ V}$ to 3.6 V	ΣI_{OL}			30	mA
		$V_{cc} = 2.7 \text{ V}$ to 3.6 V	_	_		60	_
Permissible output high current (per pin)	All output pins	$V_{cc} = 2.2 \text{ V}$ to 3.6 V	-I _{OH}			0.5	mA
		$V_{cc} = 2.7 \text{ V}$ to 3.6 V	_	_		1.0	_
Permissible output high current (total)	Total of all output pins	$V_{cc} = 2.2 \text{ V}$ to 3.6 V	Σ - I_{OH}	_		15	mA
		$V_{cc} = 2.7 \text{ V}$ to 3.6 V		_	_	30	_

Note: To protect chip reliability, do not exceed the output current values in table 23-15.

Table 23-16 Bus Drive Characteristics

Condition: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} ,

 $V_{SS} = AV_{SS} = 0 \text{ V}, T_a = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)},$

 $T_a = -40^{\circ}C$ to $+85^{\circ}C$ (wide-range specifications)*

Applicable Pins: SCL1 and SCL0, SDA1 and SDA0

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt trigger	V _T	$V_{\text{CC}} \times 0.3$	_	_	V	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$
input voltage	V _T ⁺		_	$V_{cc} \times 0.7$	_	$V_{\rm CC}$ = 2.7 V to 3.6 V
	$V_T^+ - V_T^-$	$V_{cc} \times 0.05$	_		_	$V_{\rm CC}$ = 2.7 V to 3.6 V
Input high voltage	V _{IH}	$V_{cc} \times 0.7$	_	V _{cc} + 0.5	V	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$
Input low voltage	V _{IL}	-0.5	_	$V_{\rm CC} \times 0.3$	V	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$
Output low voltage	V _{OL}		_	0.5	V	$I_{OL} = 6 \text{ mA},$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$
		_	_	0.4		I _{OL} = 3 mA
Input capacitance	C _{in}	_	_	20	pF	V _{in} = 0 V, f = 1 MHz, T _a = 25°C
Three-state leakage current (off state)	I _{TSI}	_		1.0	μA	$V_{in} = 0.5 \text{ to } V_{cc} - 0.5 \text{ V}$
SCL, SDA output fall time	t _{Of}	20 + 0.1 Cb	_	250	ns	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$

Note: * If the A/D and D/A converters are not used, do not leave the AV_{CC} , V_{ref} , and AV_{SS} pins open. Apply a voltage between 2.0 V and 3.6 V to the AV_{CC} and V_{ref} pins by connecting them to V_{CC} , for instance. Set $V_{ref} \le AV_{CC}$.

23.3.3 AC Characteristics

Figure 23-4 shows the AC test conditions.

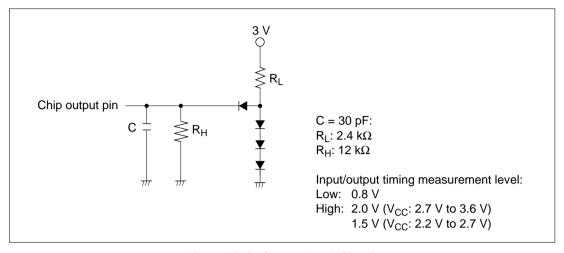


Figure 23-4 Output Load Circuit

Clock Timing

Table 23-17 shows the clock timing.

Table 23-17 Clock Timing

Condition A (F-ZTAT version, Mask ROM version):

 $V_{CC} = 2.7$ V to 3.6 V, $AV_{CC} = 2.7$ V to 3.6 V, $V_{ref} = 2.7$ V to AV_{CC} , $V_{SS} = AV_{SS} = 0$ V, $\emptyset = 32.768$ kHz, 2 MHz to 13.5 MHz, $T_a = -20^{\circ}$ C to +75°C (regular specifications), $T_a = -40^{\circ}$ C to +85°C (wide-range specifications)

Condition B (F-ZTAT version):

$$V_{CC}$$
 = 2.2 V to 3.6 V, AV_{CC} = 2.2 V to 3.6 V, V_{ref} = 2.2 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, \emptyset = 32.768 kHz, 2 MHz to 6.25 MHz, T_a = -20°C to +75°C (regular specifications)

Condition C (Mask ROM version):

$$V_{CC}$$
 = 2.2 V to 3.6 V, AV_{CC} = 2.2 V to 3.6 V, V_{ref} = 2.2 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, \emptyset = 32.768 kHz, 2 MHz to 6.25 MHz, T_a = -20°C to +75°C (regular specifications), T_a = -40°C to +85°C (wide-range specifications)

Condition A		Co	nditions	B, C		Test			
Item	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Clock cycle time	t _{cyc}	74	_	500	160	_	500	ns	Figure 23-5
Clock pulse high width	t _{CH}	25			50	_	_	ns	-
Clock pulse low width	t _{CL}	25			50	_		ns	-
Clock rise time	t _{Cr}	_	_	10	_	_	25	ns	_
Clock fall time	t _{Cf}	_	_	10	_	_	25	ns	-
Reset oscillation stabilization time (crystal)	t _{osc1}	20			40			ms	Figure 23-6
Software standby oscillation stabilization time (crystal)	t _{osc2}	8	_		16	_		ms	Figure 21-3
External clock output stabilization delay time	t _{DEXT}	500	_	_	1000	_	_	μs	Figure 23-6
Subclock oscillation stabilization time	t _{osc3}	_	_	2	_	_	4	S	
Subclock oscillator frequency	f _{SUB}	_	32.768	_	_	32.768		kHz	
Subclock (Ø _{SUB}) cycle time	t _{SUB}	_	30.5	_	_	30.5	_	μs	

Control Signal Timing

Table 23-18 shows the control signal timing.

Table 23-18 Control Signal

Condition A (F-ZTAT version, Mask ROM version):

 $V_{CC}=2.7$ V to 3.6 V, $AV_{CC}=2.7$ V to 3.6 V, $V_{ref}=2.7$ V to AV_{CC} , $V_{SS}=AV_{SS}=0$ V, $\emptyset=32.768$ kHz, 2 MHz to 13.5 MHz, $T_a=-20^{\circ}C$ to $+75^{\circ}C$ (regular specifications), $T_a=-40^{\circ}C$ to $+85^{\circ}C$ (wide-range specifications)

Condition B (F-ZTAT version):

 $V_{CC} = 2.2 \text{ V}$ to 3.6 V, $AV_{CC} = 2.2 \text{ V}$ to 3.6 V, $V_{ref} = 2.2 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\emptyset = 32.768 \text{ kHz}$, 2 MHz to 6.25 MHz, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications)

Condition C (Mask ROM version):

 $V_{CC} = 2.2 \text{ V to } 3.6 \text{ V}, \text{ AV}_{CC} = 2.2 \text{ V to } 3.6 \text{ V}, \text{ V}_{ref} = 2.2 \text{ V to AV}_{CC}, \text{ V}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \emptyset = 32.768 \text{ kHz}, 2 \text{ MHz to } 6.25 \text{ MHz}, \text{ T}_a = -20^{\circ}\text{C to } +75^{\circ}\text{C}$ (regular specifications), $\text{T}_a = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ (wide-range specifications)

		Condition A		Condi	tions B, (Test
Item	Symbol	Min	Max	Min	Max	Unit	Conditions
RES setup time	t _{RESS}	250	_	350	_	ns	Figure 23-7
RES pulse width	t _{RESW}	20	_	20		t _{cyc}	_
MRES setup time	t _{MRESS}	250	_	350		ns	
MRES pulse width	t_{MRESW}	20	_	20	_	$t_{\rm cyc}$	
NMI setup time	t _{NMIS}	250	_	350		ns	Figure 23-8
NMI hold time	t _{NMIH}	10	_	10	_	_	
NMI pulse width (in recovery from software standby mode)	t _{NMIW}	200	_	300	_	_	
IRQ setup time	t _{IRQS}	250	_	350	_	ns	_
IRQ hold time	t _{IRQH}	10	_	10		_	
ĪRQ pulse width (in recovery from software standby mode)	t _{IRQW}	200		300			

Bus Timing

Table 23-19 shows the bus timing.

Table 23-19 Bus Timing

Condition A (F-ZTAT version, Mask ROM version):

 V_{CC} = 2.7 V to 3.6 V, AV_{CC} = 2.7 V to 3.6 V, V_{ref} = 2.7 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, \emptyset = 2 MHz to 13.5 MHz, T_a = -20°C to +75°C (regular specifications), T_a = -40°C to +85°C (wide-range specifications)

Condition B (F-ZTAT version):

 V_{CC} = 2.2 V to 3.6 V, AV_{CC} = 2.2 V to 3.6 V, V_{ref} = 2.2 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, \emptyset = 2 MHz to 6.25 MHz, T_a = –20°C to +75°C (regular specifications)

Condition C (Mask ROM version):

 V_{CC} = 2.2 V to 3.6 V, AV_{CC} = 2.2 V to 3.6 V, V_{ref} = 2.2 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, \emptyset = 2 MHz to 6.25 MHz, T_a = -20°C to +75°C (regular specifications), T_a = -40°C to +85°C (wide-range specifications)

		Cond	lition A	Conditions B, C			
Item	Symbol	Min	Max	Min	Max	Unit	Test Conditions
Address delay time	t _{AD}	_	50	_	90	ns	Figure 23-9 to
Address setup time	t _{AS}	$0.5 \times t_{\rm cyc} - 30$		$0.5 \times t_{\rm cyc} - 60$		ns	Figure 23-13
Address hold time	t _{AH}	$0.5 \times t_{\rm cyc} - 15$		$0.5 \times t_{\rm cyc} - 30$		ns	
CS delay time	t_{CSD}	_	50	_	90	ns	
AS delay time	t _{ASD}		50		90	ns	_
RD delay time 1	t _{RSD1}		50		90	ns	_
RD delay time 2	t _{RSD2}	_	50	_	90	ns	_
Read data setup time	t _{RDS}	30	_	50	_	ns	_
Read data hold time	t _{RDH}	0	_	0	_	ns	_
Read data access time 1	t _{ACC1}	_	$1.0 \times t_{\rm cyc} - 65$	_	$1.0 \times t_{\rm cyc} - 90$	ns	_
Read data access time 2	t _{ACC2}	_	$1.5 \times t_{\rm cyc} - 65$	_	$1.5 \times t_{\rm cyc} - 90$	ns	
Read data access time 3	t _{ACC3}	_	$2.0 \times t_{\rm cyc} - 65$	_	$2.0 \times t_{\rm cyc} - 90$	ns	_
Read data access time 4	t _{ACC4}	_	$2.5 \times t_{\rm cyc} - 65$	_	$2.5 \times \atop t_{cyc} - 90$	ns	_
Read data access time 5	t _{ACC5}		$3.0 \times t_{\text{cyc}} - 65$		$3.0 \times t_{\rm cyc} - 90$	ns	_

		Cond	Condition A Conditions B, C				
Item	Symbol	Min	Max	Min	Max	Unit	Test Conditions
WR delay time 1	t _{WRD1}	_	50	_	90	ns	Figure 23-9
WR delay time 2	t _{WRD2}	_	50	_	90	ns	Figure 23-10
WR pulse width 1	t _{wsw1}	1.0 × t _{cyc} - 30		1.0 × t _{cyc} - 60	_	ns	_
WR pulse width 2	t _{wsw2}	$1.5 \times t_{cyc} - 30$	_	$1.5 \times t_{\rm cyc} - 60$	_	ns	
Write data delay time	t _{wdd}	_	70	_	100	ns	_
Write data setup time	t _{wds}	0.5 × t _{cyc} - 37		$0.5 \times t_{\rm cyc} - 80$		ns	_
Write data hold time	t _{WDH}	0.5 × t _{cyc} – 15	_	0.5 × t _{cyc} - 60	_	ns	_
WAIT setup time	t _{WTS}	50	_	90	_	ns	Figure 23-11
WAIT hold time	t _{wth}	10	_	10	_	ns	_
BREQ setup time	t _{BRQS}	50	_	90	_	ns	Figure 23-14
BACK delay time	t _{BACD}	_	50		90	ns	_
Bus floating time	t _{BZD}		80		160	ns	_

Timing of On-Chip Supporting Modules

Table 23-20 shows the timing of the on-chip supporting modules, and table 23-21 shows the I²C bus Timing.

Table 23-20 Timing of On-Chip Supporting Modules

Condition A (F-ZTAT version, Mask ROM version):

$$V_{CC} = 2.7$$
 V to 3.6 V, $AV_{CC} = 2.7$ V to 3.6 V, $V_{ref} = 2.7$ V to AV_{CC} , $V_{SS} = AV_{SS} = 0$ V, $\emptyset = 32.768$ kHz, 2 MHz to 13.5 MHz, $T_a = -20^{\circ}$ C to +75°C (regular specifications), $T_a = -40^{\circ}$ C to +85°C (wide-range specifications)

Condition B (F-ZTAT version):

$$V_{CC}$$
 = 2.2 V to 3.6 V, AV_{CC} = 2.2 V to 3.6 V, V_{ref} = 2.2 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, \emptyset = 32.768 kHz, 2 MHz to 6.25 MHz, T_a = -20°C to +75°C (regular specifications)

Condition C (Mask ROM version):

$$V_{CC}=2.2$$
 V to 3.6 V, $AV_{CC}=2.2$ V to 3.6 V, $V_{ref}=2.2$ V to AV_{CC} , $V_{SS}=AV_{SS}=0$ V, $\emptyset=32.768$ kHz, 2 MHz to 6.25 MHz, $T_a=-20$ °C to +75°C (regular specifications), $T_a=-40$ °C to +85°C (wide-range specifications)

				Con	dition A	Condi	tions B, C		Test
Item			Symbol	Min	Max	Min	Max	Unit	Conditions
I/O ports*	Output data	delay time	t _{PWD}	_	100	_	150	ns	Figure 23-15
	Input data so	etup time	t _{PRS}	50	_	80	_	-	
	Input data h	old time	t _{PRH}	50	_	80	_	-	
TPU	Timer outpu	t delay time	t _{TOCD}	_	100	_	150	ns	Figure 23-16
	Timer input	setup time	t _{TICS}	40	_	60	_	-	
	Timer clock time	input setup	t _{TCKS}	40	_	60	_	ns	Figure 23-17
	Timer clock	Single-edge	t _{TCKWH}	1.5	_	1.5	_	t _{cyc}	
	pulse width	Both-edge	t _{TCKWL}	2.5	_	2.5	_	-	
TMR	Timer outpu	t delay time	t _{TMOD}	_	100	_	150	ns	Figure 23-18
	Timer reset time	input setup	t _{TMRS}	50	_	80		ns	Figure 23-20
	Timer clock time	input setup	t _{TMCS}	50	_	80	_	ns	Figure 23-19
	Timer clock	Single-edge	t _{TMCWH}	1.5	_	1.5		t _{cyc}	•
	pulse width	Both-edge	t _{TMCWL}	2.5	_	2.5	_		
WDT1	BUZZ outpu	t delay time	t _{BUZD}	_	100	_	150	ns	Figure 23-21

		Condition A Conditions B, C			Test				
Item			Symbol	Min	Max	Min	Max	Unit	Conditions
SCI*	Input clock cycle	Asynchro- nous	t _{Scyc}	4	_	4	_	t _{cyc}	Figure 23-22
		Synchro- nous	-	6		6		-	
	Input clock	pulse width	t _{sckw}	0.4	0.6	0.4	0.6	t _{scyc}	-
	Input clock	rise time	t _{SCKr}	_	1.5	_	1.5	t _{cyc}	-
	Input clock	fall time	t _{SCKf}	_	1.5	_	1.5	-	
	Transmit da	ata delay time	t _{TXD}	_	100	_	150	ns	Figure 23-23
	Receive da	ta setup time us)	t _{RXS}	75	_	150		ns	-
	Receive da	ta hold time us)	t _{RXH}	75	_	150		ns	-
A/D converter	Trigger inpu	ut setup time	t _{TRGS}	40	_	60		ns	Figure 23-24

Note: * The high level of P35/SCK1 and P34 is driven by NMOS. In order to output a high level, a pull-up resistance must be connected externally.

Table 23-21 I²C Bus Timing

Conditions: V_{CC} = 2.7 to 3.6 V, V_{SS} = 0 V, \emptyset = 5 MHz to maximum operating frequency, T_a = -20°C to +75°C

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Notes
SCL input cycle time	t _{SCL}	12t _{cyc}	_	_	ns		Figure 23-25
SCL input high pulse width	t _{SCLH}	3t _{cyc}	_	_	ns		_
SCL input low pulse width	t _{SCLL}	5t _{cyc}	_		ns		
SCL, SDA input rise time	t _{Sr}	_	_	7.5t _{cyc} *	ns		
SCL, SDA input fall time	t _{Sf}	_	_	300	ns		_
SCL, SDA input spike pulse elimination time	t _{SP}	_	_	1t _{cyc}	ns		_
SDA input bus free time	t _{BUF}	5t _{cyc}	_	_	ns		
Start condition input hold time	t _{STAH}	3t _{cyc}	_		ns		_
Retransmission start condition input setup time	t _{STAS}	3t _{cyc}	_	<u></u> -	ns		_
Stop condition input setup time	t _{stos}	3t _{cyc}	_	_	ns		_
Data input setup time	t _{SDAS}	0.5t _{cyc}	_	_	ns		_
Data input hold time	t _{sdah}	0	_	_	ns		_
SCL, SDA capacitive load	Сь	_		400	pF		_

Note: * 7.5t_{cyc} and 17.5t_{cyc} can be set according to the clock selected for use by the I²C module. For details, see section 15.4, Usage Notes.

23.3.4 A/D Conversion Characteristics

Table 23-22 shows the A/D conversion characteristics.

Table 23-22 A/D Conversion Characteristics

Condition A (Flash memory version, Mask ROM version):

$$V_{CC}$$
 = 2.7 V to 3.6 V, AV_{CC} = 2.7 V to 3.6 V, V_{ref} = 2.7 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, ϕ = 2 MHz to 13.5 MHz, T_a = -20°C to +75°C (regular specifications), T_a = -40°C to +85°C (wide-range specifications)

Condition B (F-ZTAT version):

$$V_{CC}$$
 = 2.2 V to 3.6 V, AV_{CC} = 2.2 V to 3.6 V, V_{ref} = 2.2 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, \emptyset = 2 MHz to 6.25 MHz, T_a = –20°C to +75°C (regular specifications)

Condition C (Mask ROM version):

$$V_{CC}=2.2$$
 V to 3.6 V, $AV_{CC}=2.2$ V to 3.6 V, $V_{ref}=2.2$ V to AV_{CC} , $V_{SS}=AV_{SS}=0$ V, $\emptyset=2$ MHz to 6.25 MHz, $T_a=-20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a=-40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

		Condition	n A		Condition	s B, C	
Item	Min	Тур	Max	Min	Тур	Max	Unit
Resolution	10	10	10	10	10	10	Bit
Conversion time	9.6	_	-	21.4	-	_	μs
Analog input capacitance	_	_	20	_	_	20	pF
Permissible signal source impedance	_	_	5	_	_	5	kΩ
Nonlinearity error	_	_	±6.0	_	_	±6.0	LSB
Offset error	<u> </u>		±4.0			±4.0	LSB
Full-scale error		_	±4.0			±4.0	LSB
Quantization error	_	_	±0.5	_		±0.5	LSB
Absolute accuracy		_	±8.0	_	_	±8.0	LSB

23.3.5 D/A Conversion Characteristics

Table 23-23 shows the D/A conversion characteristics.

Table 23-23 D/A Conversion Characteristics

Condition A (Flash memory version, Mask ROM version):

$$V_{CC}$$
 = 2.7 V to 3.6 V, AV_{CC} = 2.7 V to 3.6 V, V_{ref} = 2.7 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, \emptyset = 2 MHz to 13.5 MHz, T_a = -20°C to +75°C (regular specifications), T_a = -40°C to +85°C (wide-range specifications)

Condition B (F-ZTAT version):

$$V_{CC}=2.2$$
 V to 3.6 V, $AV_{CC}=2.2$ V to 3.6 V, $V_{ref}=2.2$ V to AV_{CC} , $V_{SS}=AV_{SS}=0$ V, $\emptyset=2$ MHz to 6.25 MHz, $T_a=-20^{\circ}$ C to +75°C (regular specifications)

Condition C (Mask ROM version):

$$V_{CC}$$
 = 2.2 V to 3.6 V, AV_{CC} = 2.2 V to 3.6 V, V_{ref} = 2.2 V to AV_{CC} , V_{SS} = AV_{SS} = 0 V, \emptyset = 2 MHz to 6.25 MHz, T_a = -20°C to +75°C (regular specifications), T_a = -40°C to +85°C (wide-range specifications)

		Condition	n A	C	ondition	s B, C		Test
Item	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Resolution	8	8	8	8	8	8	bit	
Conversion time	_		10		_	10	μs	20 pF capacitive load
Absolute accuracy	_	±2.0	±3.0		±3.0	±4.0	LSB	2 MΩ resistive load
	_	_	±2.0		_	±3.0	LSB	4 MΩ resistive load

23.3.6 Flash Memory Characteristics

Table 23-24 shows the flash memory characteristics.

Table 23-24 Flash Memory Characteristics

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $V_{CC} = 3.0 \text{ V}$ to 3.6 V (program/erase operating voltage range), $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (program/erase operating temperature range: regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (program/erase operating temperature range: wide-range specifications)

Condition B: $V_{CC} = 2.2 \text{ V}$ to 3.6 V, $AV_{CC} = 2.2 \text{ V}$ to 3.6 V, $V_{ref} = 2.2 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0$ V, $V_{CC} = 3.0 \text{ V}$ to 3.6 V (program/erase operating voltage range), $T_a = -20^{\circ}\text{C}$ to $+50^{\circ}\text{C}$ (program/erase operating temperature range: regular specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Programming	time* ^{1, *2, *4}	t _P	_	10	200	ms/ 128 bytes	
Erase time*1, *	3, *5	t _E	_	100	1200	ms/block	
Rewrite times		N _{WEC}	_	_	100	Times	
Programming	Wait time after SWE1 bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after PSU1 bit setting*1	t _{spsu}	50	50	_	μs	
	Wait time after P1 bit setting*1, *4	t _{sp10}	8	10	12	μs	"
		t _{sp30}	28	30	32	μs	1 ≤ n ≤ 6
		t _{sp200}	198	200	202	μs	7 ≤ n ≤ 1000
	Wait time after P1 bit clearing*1	t _{cp}	5	5	_	μs	,
	Wait time after PSU1 bit clearing*1	t _{cpsu}	5	5	_	μs	
	Wait time after PV1 bit setting*1	t _{spv}	4	4	_	μs	
	Wait time after H'FF dummy write*1	t _{spvr}	2	2	_	μs	
	Wait time after PV1 bit clearing*1	t _{cpv}	2	2	_	μs	
	Wait time after SWE1 bit clearing	t _{cswe}	100	100	_	μs	
	Maximum number of programming	N1	_	_	6*4	Times	
	operations *1, *4	N2	_	_	994*4		

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Erasing	Wait time after SWE1 bit setting*1	t _{sswe}	1	1	_	μs	
	Wait time after ESU1 bit setting*1	t _{sesu}	100	100	_	μs	
	Wait time after E1 bit setting*1, *5	t _{se}	10	10	100	ms	
	Wait time after E1 bit clearing*1	t _{ce}	10	10	_	μs	
	Wait time after ESU1 bit clearing*1	t _{cesu}	10	10	_	μs	
	Wait time after EV1 bit setting*1	t _{sev}	20	20	_	μs	
	Wait time after H'FF dummy write*1	t _{sevr}	2	2	_	μs	
	Wait time after EV1 bit clearing*1	t _{cev}	4	4	_	μs	
	Wait time after SWE1 bit clearing	t _{cswe}	100	100	_	μs	
	Maximum number of erases*1, *5	N	_	_	100	Times	

Notes: *1 Follow the program/erase algorithms when making the time settings.

- *2 Programming time per 128 bytes. (Indicates the total time during which the P1 bit is set in flash memory control register 1 (FLMCR1). Does not include the program-verify time.)
- *3 Time to erase one block. (Indicates the time during which the E1 bit is set in FLMCR1. Does not include the erase-verify time.)
- *4 Maximum programming time

 $(t_p(max) = Wait time after P1 bit setting (t_{sp}) \times maximum number of writes (N))$

$$(t_{sp30} + t_{sp10}) \times 6 + (t_{sp200}) \times 994$$

*5 For the maximum erase time (t_E(max)), the following relationship applies between the wait time after E1 bit setting (z) and the maximum number of erases (N):

 $t_E(max)$ = Wait time after E1 bit setting $(t_{se}) \times maximum$ number of erases (N)

23.4 Operational Timing

This section shows timing diagrams.

23.4.1 Clock Timing

Clock timing diagrams are shown below.

System Clock Timing

Figure 23-5 shows the system clock timing.

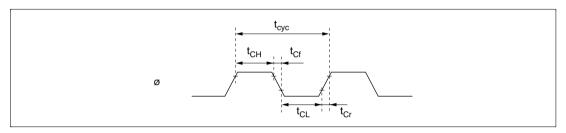


Figure 23-5 System Clock Timing

Oscillation Stabilization Timing

Figure 23-6 shows the oscillation stabilization timing.

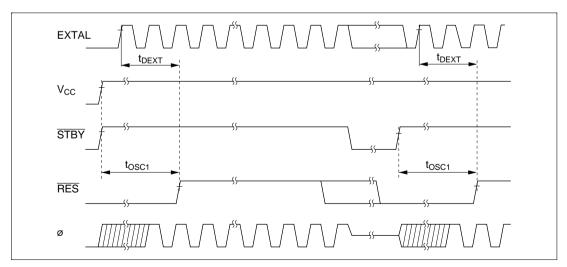


Figure 23-6 Oscillation Stabilization Timing

23.4.2 Control Signal Timing

Control signal timing diagrams are shown below.

Reset Input Timing

Figure 23-7 shows the reset input timing.

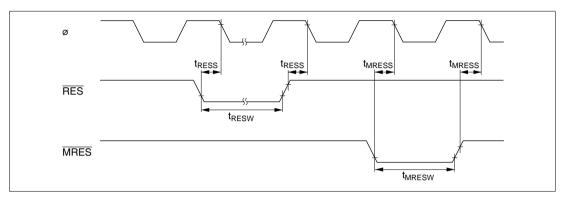


Figure 23-7 Reset Input Timing

Interrupt Input Timing

Figure 23-8 shows the timing of NMI and \overline{IRQ} interrupt input.

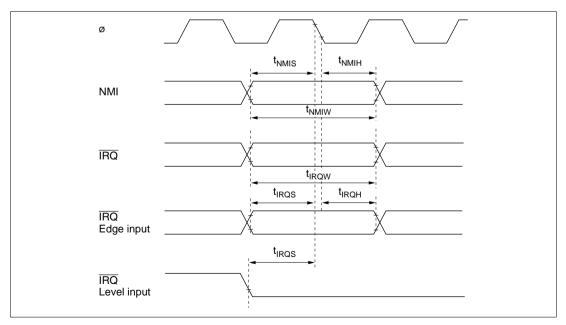


Figure 23-8 Interrupt Input Timing

23.4.3 Bus Timing

The following bus timing diagrams are shown here.

Basic Bus Timing: Two-State Access

Figure 23-9 shows the timing of external two-state access.

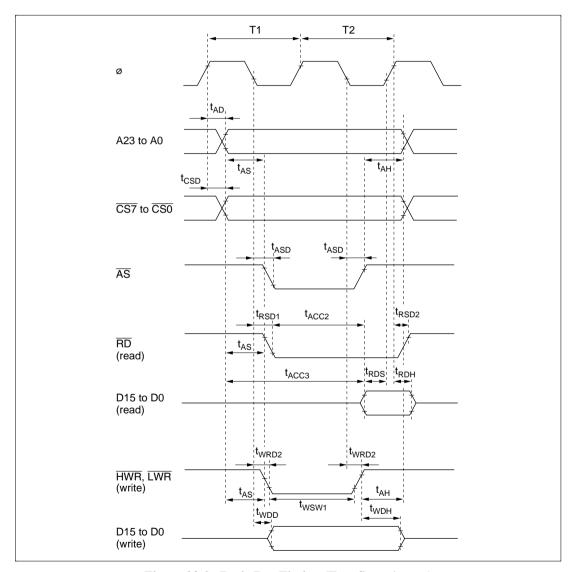


Figure 23-9 Basic Bus Timing (Two-State Access)

Figure 23-10 shows the timing of external three-state access.

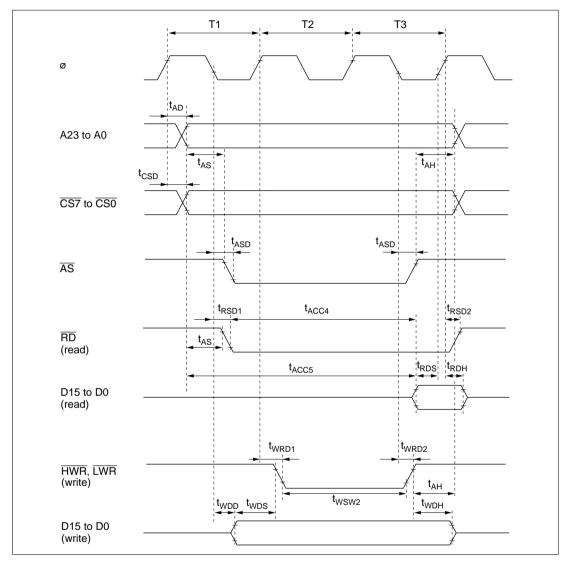


Figure 23-10 Basic Bus Timing (Three-State Access)

Basic Bus Timing: Three-State Access with One Wait

Figure 23-11 shows the timing of external three-state access with one wait inserted.

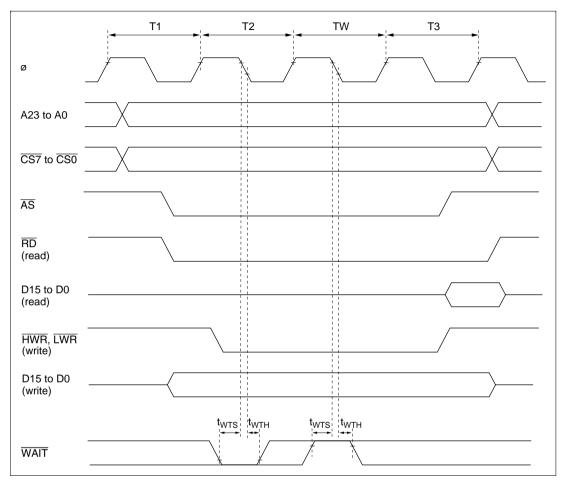


Figure 23-11 Basic Bus Timing (Three-State Access with One Wait State)

Burst ROM Access Timing: Two-State

Figure 23-12 shows the timing of burst ROM two-state access.

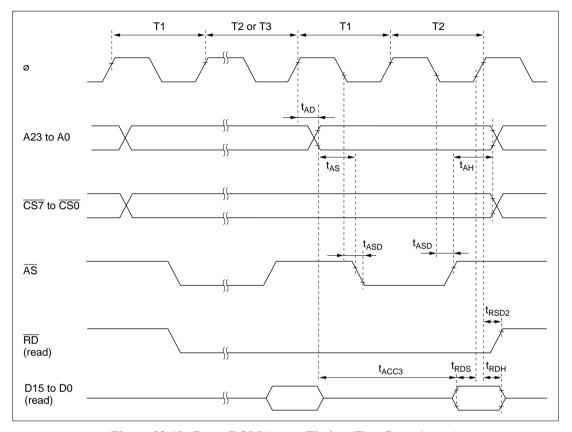


Figure 23-12 Burst ROM Access Timing (Two-State Access)

Burst ROM Access Timing: One-State

Figure 23-13 shows the timing of burst ROM one-state access.

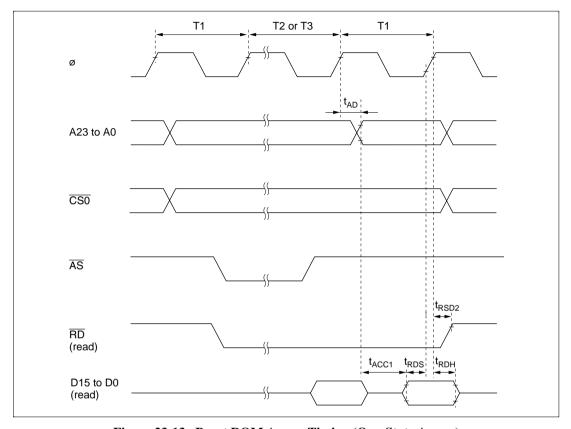


Figure 23-13 Burst ROM Access Timing (One-State Access)

External Bus Release Timing

Figure 23-14 shows the timing of external bus release.

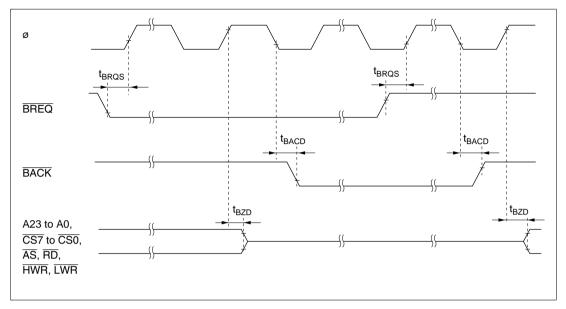


Figure 23-14 External Bus Release Timing

23.4.4 Timing of On-Chip Supporting Modules

Figures 23-15 to 23-25 show the timing of the on-chip supporting modules.

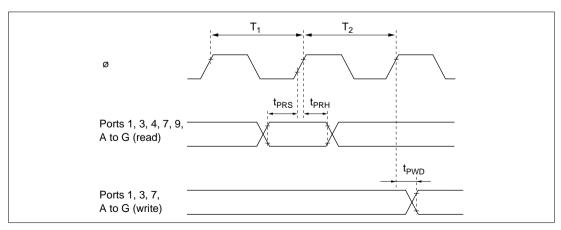


Figure 23-15 I/O Port Input/Output Timing

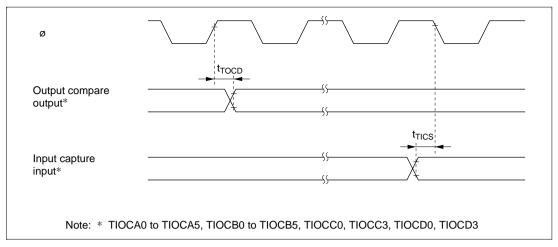


Figure 23-16 TPU Input/Output Timing

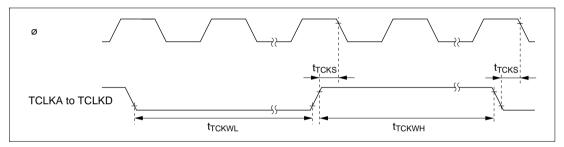


Figure 23-17 TPU Clock Input Timing

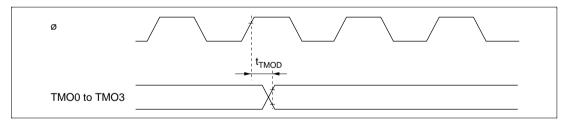


Figure 23-18 8-Bit Timer Output Timing

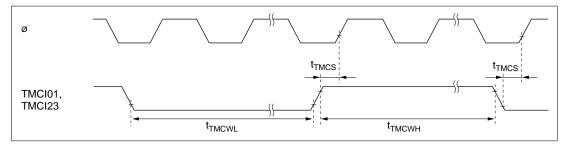


Figure 23-19 8-Bit Timer Clock Input Timing

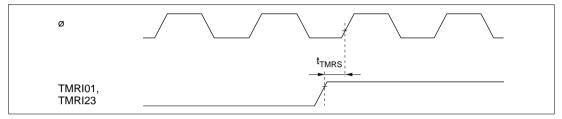


Figure 23-20 8-Bit Timer Reset Input Timing

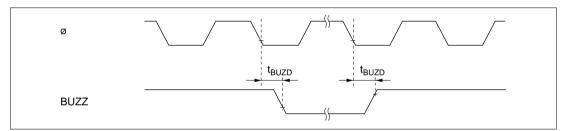


Figure 23-21 WDT1 Output Timing

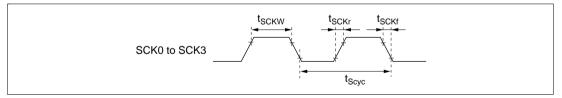


Figure 23-22 SCK Clock Input Timing

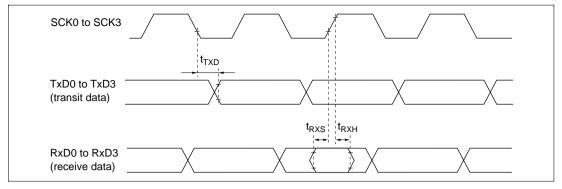


Figure 23-23 SCI Input/Output Timing (Clock Synchronous Mode)

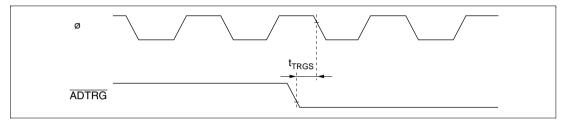


Figure 23-24 A/D Converter External Trigger Input Timing

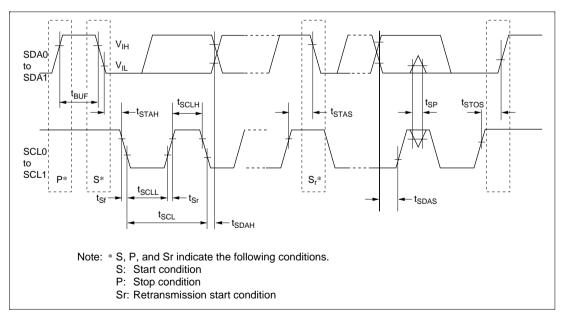


Figure 23-25 I²C Bus Inteface Input/Output Timing (Option)

23.5 Usage Note

Although both the F-ZTAT and mask ROM versions fully meet the electrical specifications listed in this manual, there may be differences in the actual values of the electrical characteristics, operating margins, noise margins, and so forth, due to differences in the fabrication process, the on-chip ROM, and the layout patterns.

If the F-ZTAT version is used to carry out system evaluation and testing, therefore, when switching to the mask ROM version the same evaluation and testing procedures should also be conducted on this version.

Appendix A Instruction Set

A.1 Instruction List

Operand Notation

Rd	General register (destination)*1
Rs	General register (source)*1
Rn	General register*1
ERn	General register (32-bit register)
MAC	Multiply-and-accumulate register (32-bit register)*2
(EAd)	Destination operand
(EAs)	Source operand
EXR	Extended control register
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Add
_	Subtract
×	Multiply
÷	Divide
^	Logical AND
<u></u>	Logical OR
\oplus	Logical exclusive OR
\rightarrow	Transfer from the operand on the left to the operand on the right, or transition from the state on the left to the state on the right
7	Logical NOT (logical complement)
() <>	Contents of operand
:8/:16/:24/:32	8-, 16-, 24-, or 32-bit length

Notes: *1 General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0 to R7, E0 to E7), and 32-bit registers (ER0 to ER7).

^{*2} The MAC register cannot be used in the H8S/2238 Series.

Condition Code Notation

Symbol

‡	Changes according to the result of instruction
*	Undetermined (no guaranteed value)
0	Always cleared to 0
1	Always set to 1
_	Not affected by execution of the instruction

Table A-1 Instruction Set

(1) Data Transfer Instructions

		_	nst	Addressing Mode/ Instruction Length (Bytes)	Addressing Mode/ ruction Length (By	Sinç Len	ĕ ŧ	ĕ ĕ	'tes	<u> </u>					
		erand Size		ия	l,ERn)	ERn/@ERn+	, e	()Ja'i	889		Condition Code	ģ	ဒို	de	No. of States*¹
	Mnemonic		XX#	®E gu			© 38		D 00	_	Operation I H N	z	7	ပ >	Advanced
MOV	MOV.B #xx:8,Rd	В	2							#	#xx:8→Rd8	\leftrightarrow	\leftrightarrow	- 0	1
	MOV.B Rs,Rd	В	- "	2						<u>"</u>	Rs8→Rd8	\leftrightarrow	\leftrightarrow	- 0	1
	MOV.B @ERs,Rd	В		2)	@ERs→Rd8	\leftrightarrow) 0	0 —	2
	MOV.B @(d:16,ERs),Rd	В			4					•	@(d:16,ERs)→Rd8	\leftrightarrow	\leftrightarrow	0	3
	MOV.B @(d:32,ERs),Rd	В			8					9	@(d:32,ERs)→Rd8	\leftrightarrow)	— 0	2
	MOV.B @ERs+,Rd	В				2				9	@ERs→Rd8,ERs32+1→ERs32	\leftrightarrow	→	— 0	3
	MOV.B @aa:8,Rd	В					2			9	@aa:8→Rd8	\leftrightarrow	→	0	2
	MOV.B @aa:16,Rd	В					4			9	@aa:16→Rd8	\leftrightarrow)	0	3
	MOV.B @aa:32,Rd	В					9)	@aa:32→Rd8	\leftrightarrow)	0 —	4
	MOV.B Rs, @ERd	В		2						<u> </u>	Rs8→@ERd	\leftrightarrow	→	- 0	2
	MOV.B Rs, @(d:16, ERd)	В			4					L.	Rs8→@(d:16,ERd) — — ↑	\leftrightarrow	\leftrightarrow	- 0	3
	MOV.B Rs, @(d:32, ERd)	В			8					ш.	Rs8→@(d:32,ERd)	\leftrightarrow)	— 0	5
	MOV.B Rs, @-ERd	В				7				ш	ERd32-1→ERd32,Rs8→@ERd — —	\leftrightarrow	\leftrightarrow	0	3
	MOV.B Rs, @aa:8	В					2			IL.	Rs8→@aa:8	\leftrightarrow	→	0	2
	MOV.B Rs, @aa:16	В					4			ш.	Rs8→@aa:16	\leftrightarrow)	0 —	3
	MOV.B Rs, @aa:32	В					9			ш.	Rs8→@aa:32	\leftrightarrow) 0	0 —	4
	MOV.W #xx:16,Rd	M	4							#	#xx:16→Rd16	\leftrightarrow) 	0 —	2
	MOV.W Rs,Rd	>	. 4	7						Ľ	Rs16→Rd16	\leftrightarrow	\leftrightarrow	0	1
	MOV.W @ERs,Rd	>		2	_					9	@ERs→Rd16	\leftrightarrow	\leftrightarrow	0	2

			Inst	Ad	dre	Addressing Mode/ Instruction Length (Bytes)	g N ngt	ode (B	ytes	<u>@</u>							
		erand Size		ua	ren) (Rn	ERn/@ERn+		(Ddʻr	999			ပိ	'n	ţi	Condition Code	<u>ө</u>	No. of States*1
	Mnemonic		XX#	uŊ Bu			@ 9	(@		_	Operation	_	I	z	> 2	ပ	Advanced
MOV	MOV.W @(d:16,ERs),Rd	3			4					É	@(d:16,ERs)→Rd16	İ	П	\leftrightarrow	0	I	3
	MOV.W @(d:32,ERs),Rd	>			∞						@(d:32,ERs)→Rd16	İ	Т	\leftrightarrow	0	I	5
	MOV.W @ERs+,Rd	3				7				<u> </u>	@ERs→Rd16,ERs32+2→ERs32	İ	Т	\leftrightarrow	0	Ι	က
	MOV.W @aa:16,Rd	3					4			_	@aa:16→Rd16	İ	П	\leftrightarrow	•	I	က
	MOV.W @aa:32,Rd	>					9			_	@aa:32→Rd16	İ	I	\leftrightarrow	0	I	4
	MOV.W Rs, @ERd	>			7					_	Rs16→@ERd	İ		\leftrightarrow	0 <i>↔</i>	I	2
	MOV.W Rs, @ (d:16,ERd)	8			4	_				_	Rs16→@(d:16,ERd)	İ	Т	\leftrightarrow	0 🗘	Ι	3
	MOV.W Rs, @ (d:32,ERd)	>			8					_	Rs16→@(d:32,ERd)	İ	Т	\leftrightarrow	0 \$	Ι	5
	MOV.W Rs, @-ERd	>				2				_	ERd32-2→ERd32,Rs16→@ERd	İ	Т	\leftrightarrow	0 \$		3
	MOV.W Rs, @aa:16	8					4			_	Rs16→@aa:16	İ	\Box	\leftrightarrow	0 \$		3
	MOV.W Rs, @aa:32	>					9			_	Rs16→@aa:32	İ	Т	\leftrightarrow	0 \$	Ι	4
	MOV.L #xx:32,ERd	٦	9							*	#xx:32→ERd32	İ	<u> </u>	\leftrightarrow	0 \$	Ι	3
	MOV.L ERS,ERd	_		2						_	ERs32→ERd32	İ	1	\leftrightarrow	0	I	-
	MOV.L @ERS,ERd	_		7	4						®ERs→ERd32	İ		\leftrightarrow	0 \$	I	4
	MOV.L @(d:16,ERs),ERd	Г			9					_	@(d:16,ERs)→ERd32	İ	Т	\leftrightarrow	0 \$	Ι	5
	MOV.L @(d:32,ERs),ERd	L			10	0				_	@(d:32,ERs)→ERd32	İ	\Box	\leftrightarrow	0 🗘		7
	MOV.L @ERs+,ERd	L				4				_	© ERs→ERd32,ERs32+4→ERs32	İ	$\overline{}$	\leftrightarrow	0	Ι	5
	MOV.L @aa:16,ERd	_					9				@aa:16→ERd32	İ	\exists	\leftrightarrow	o	I	5
	MOV.L @aa:32,ERd	Г					∞				@aa:32→ERd32	İ	\Box	\leftrightarrow	0	1	9

			Inst	Adc	Addressing Mode/ Instruction Length (Bytes)	sinç Len	gth g	By B	tes							
		erand Size		u ŊΞ	(d,ERn)	-ERn/@ERn+		(Ja,b)	@ 99		٥	Condition Code	ig.	Š	<u>0</u>	No. of States*1
	Mnemonic		wa CX#	@ I ⊌ U			@		<u>ത</u>	Operation		Ŧ	N Z	>	ပ	Advanced
MOV	MOV.L ERs,@ERd	Γ		4						ERs32→@ERd	Ī		\leftrightarrow	0	Ι	4
	MOV.L ERs,@(d:16,ERd)	_			9					ERs32→@(d:16,ERd)	Ī	Ī	\leftrightarrow	0	1	5
	MOV.L ERs, @(d:32, ERd)	_			10					ERs32→@(d:32,ERd)	-	Ĭ	\leftrightarrow	0	Ι	7
	MOV.L ERs,@-ERd	_				4				ERd32-4→ERd32,ERs32→@ERd	Ī	Ī	\leftrightarrow	0	1	5
	MOV.L ERs,@aa:16	_					9			ERs32→@aa:16	I	Ī	\leftrightarrow	0	1	5
	MOV.L ERs,@aa:32	_					8			ERs32→@aa:32	I	Ī	\leftrightarrow	0	1	9
POP	POP.W Rn	≥							7	@SP→Rn16,SP+2→SP	Ī	Ī	\leftrightarrow	0	Ι	ဇ
	POP.L ERn	٦							4	@SP→ERn32,SP+4→SP	-	Ī	\leftrightarrow	0	1	2
HSNA	PUSH.W Rn	8							2	SP-2→SP,Rn16→@SP	Ī	Ī	\leftrightarrow \leftrightarrow	0	Ι	3
	PUSH.L ERn	_							4	SP-4→SP,ERn32→@SP	Ī	1	\leftrightarrow	0	1	5
LDM	LDM @SP+,(ERm-ERn)	_							4	(@SP→ERn32,SP+4→SP)	I	Ė		1	I	7/9/11 [1]
										Repeated for each register restored						
MTS	STM (ERm-ERn),@-SP	٦							4	(SP-4→SP,ERn32→@SP)			1		1	7/9/11 [1]
										Repeated for each register saved	7					
MOVFPE	MOVFPE @aa:16,Rd	Car	Juot	pe r	sed	Ë	Je F	48S,	/223	Cannot be used in the H8S/2238 Series						[2]
MOVTPE	MOVTPE Rs,@aa:16	Car	not	pe r	sed	Ë.	Je F	48S,	/223	Cannot be used in the H8S/2238 Series						[2]

(2) Arithmetic Instructions

			lust	Ade truc	dres	Addressing Mode/ Instruction Length (Bytes)	gth	(B &	tes)							
		erand Size	,	иЯ	(nЯ∃,b	+uŊ∃@/uŊ∃		d,PC) aa	nne		Ö	ond	Condition Code	ပိ	de	No. of States*1
	Mnemonic		XX#	 		-@	60 (03		_	Operation	_	Ξ	z	7	ပ >	Advanced
ADD	ADD.B #xx:8,Rd	В	2							Rd8+#xx:8→Rd8		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	ADD.B Rs,Rd	В	. 1	2						Rd8+Rs8→Rd8	-	\leftrightarrow	\leftrightarrow	\leftrightarrow \leftrightarrow	\leftrightarrow	1
	ADD.W #xx:16,Rd	>	4							Rd16+#xx:16→Rd16	1	[3]	\leftrightarrow	\leftrightarrow	\leftrightarrow	2
	ADD.W Rs,Rd	>	<u> </u>	2				_		Rd16+Rs16→Rd16		[3]	\leftrightarrow	\leftrightarrow	\leftrightarrow	-
	ADD.L #xx:32,ERd	7	9							ERd32+#xx:32→ERd32	-	[4]	\leftrightarrow	\leftrightarrow	\leftrightarrow	3
	ADD.L ERs,ERd	٦	. 1	2						ERd32+ERs32→ERd32	-	[4]	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
ADDX	ADDX #xx:8,Rd	В	2							Rd8+#xx:8+C→Rd8	-	\leftrightarrow		0 (2)	\leftrightarrow	1
	ADDX Rs,Rd	В	1	2						Rd8+Rs8+C→Rd8	1	\leftrightarrow	\Rightarrow	0 (2)	\leftrightarrow	1
ADDS	ADDS #1,ERd	Г	. 1	2						ERd32+1→ERd32			İ	+		1
	ADDS #2,ERd	Г	- 1	2						ERd32+2→ERd32			İ	\perp		1
	ADDS #4,ERd	٦	. 1	2						ERd32+4→ERd32	-	Ī	İ	\pm		1
INC	INC.B Rd	В	- 1	2				\vdash		Rd8+1→Rd8		Τ	\leftrightarrow	\leftrightarrow		1
	INC.W #1,Rd	>	. 1	2						Rd16+1→Rd16		Τ	\leftrightarrow	\leftrightarrow	<u> </u>	1
	INC.W #2,Rd	8	. 1	2						Rd16+2→Rd16			\leftrightarrow	\	<u> </u>	1
	INC.L #1,ERd	L	, 1	2						ERd32+1→ERd32			\leftrightarrow	\updownarrow		1
	INC.L #2,ERd	_	•	2						ERd32+2→ERd32		Τ	\leftrightarrow	\leftrightarrow	<u> </u>	1
DAA	DAA Rd	В	- 1	7				-		Rd8 decimal adjust→Rd8		*	\leftrightarrow	*	\leftrightarrow	1
SUB	SUB.B Rs,Rd	В	- 1	7				-		Rd8-Rs8→Rd8	_	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	SUB.W #xx:16,Rd	3	4		_			\dashv		Rd16-#xx:16→Rd16	\dashv	· [3]		\leftrightarrow	$\leftrightarrow \longleftrightarrow$	2

			<u>s</u>	Addressing Mode/ Instruction Length (Bytes)	dre	ssin Le	Addressing Mode/ ruction Length (By	g (g)	ytes								
		eziS bna1e		ча.	ry (uya-fr	ERn/@ERn+		(Ja'r	999			ខិ	<u>a</u>	Condition Code	ဒိ	- e	No. of States*1
	Mnemonic		XX#	uŊ Bu			@ 9	(@(00	_	Operation	=	I	N	>	ပ	Advanced
SUB	SUB.W Rs,Rd	>		7						8	Rd16-Rs16→Rd16	1	[3]	\leftrightarrow	\leftrightarrow	\leftrightarrow	-
	SUB.L #xx:32,ERd	_	9							出	ERd32-#xx:32→ERd32	1	[4]	\leftrightarrow	\leftrightarrow	\leftrightarrow	ဗ
	SUB.L ERs,ERd	٦		7						出	ERd32-ERs32→ERd32	<u></u>	4	\leftrightarrow	\leftrightarrow	\leftrightarrow	٢
SUBX	SUBX #xx:8,Rd	В	7							R	Rd8-#xx:8-C→Rd8		\leftrightarrow	⊕	⊕ [5]	\leftrightarrow	٢
	SUBX Rs,Rd	В		2						Rc	Rd8-Rs8-C→Rd8		\leftrightarrow	\$ [5	(2] ♦	\leftrightarrow	1
SAUS	SUBS #1,ERd	٦		2						FF	ERd32-1→ERd32		-	l I			1
	SUBS #2,ERd	Г		2						EF	ERd32-2→ERd32		-	1		-	1
	SUBS #4,ERd	_		7						出	ERd32-4→ERd32		+	1	+	Ţ	_
DEC	DEC.B Rd	В		2						Rc	Rd8-1→Rd8	$^{+}$	1	\updownarrow \updownarrow	\leftrightarrow		1
	DEC.W #1,Rd	8		2						Rc	Rd16-1→Rd16		1	$\overset{\leftrightarrow}{\leftrightarrow}$	\leftrightarrow	Ι	1
	DEC.W #2,Rd	>		2						Rc	Rd16-2→Rd16		1	\leftrightarrow	\leftrightarrow		1
	DEC.L #1,ERd	_		2						EF	ERd32-1→ERd32		1	\leftrightarrow \leftrightarrow	\leftrightarrow	Ι	1
	DEC.L #2,ERd	Г		2						EF	ERd32-2→ERd32	\vdash	\ 7	\leftrightarrow \leftrightarrow	\leftrightarrow		1
DAS	DAS Rd	В		7						R	Rd8 decimal adjust→Rd8	1	*	\leftrightarrow	*	Ι	-
MULXU	MULXU.B Rs,Rd	В		2						Rd	Rd8×Rs8→Rd16 (unsigned multiplication)		1	I	1	Ţ	12
	MULXU.W RS,ERd	>		7						Ę K	Rd16×Rs16→ERd32 (unsigned multiplication)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	20
MULXS	MULXS.B Rs,Rd	В		4						8	Rd8×Rs8→Rd16 (signed multiplication)		1	\leftrightarrow	1		13
	MULXS.W Rs,ERd	>	-	4						R.	Rd16×Rs16→ERd32	1	1	\leftrightarrow \leftrightarrow		1	21
			\dashv	\dashv	\dashv	4		\dashv	\dashv	IS)	(signed multiplication)		\dashv	-			

			Inst	Addressing Mode/ Instruction Length (Bytes)	Ires	sing	Addressing Mode/ ruction Length (By	ge/	(Sé			
		erand Size	,	uЯ	d,ERn)	+u83@/u83		0,PC)		Condition Code	Code	No. of States*¹
	Mnemonic		XX#	®E Bu		-@	901 100 100		_	Operation I H N Z	ပ >	Advanced
DIVXU	DIVXU.B Rs,Rd	В	· · ·	2						Rd16÷Rs8→Rd16 (RdH: remainder, — [6] [7]]	12
										RdL: quotient) (unsigned division)		
	DIVXU.W Rs,ERd	≥	· · ·	7						ERd32÷Rs16→ERd32 (Ed: remainder, — [6] [7]	_ -	20
										Rd: quotient) (unsigned division)		
DIVXS	DIVXS.B Rs,Rd	В	4	4						Rd16÷Rs8→Rd16 (RdH: remainder, — [8] [7]	_ _ _	13
										RdL: quotient) (signed division)		
	DIVXS.W Rs,ERd	≥	4	4						ERd32÷Rs16→ERd32 (Ed: remainder, — — [8] [7]		21
										Rd: quotient) (signed division)		
CMP	CMP.B #xx:8,Rd	В	2							Rd8-#xx:8 — \updownarrow \updownarrow \updownarrow \updownarrow	\leftrightarrow	1
	CMP.B Rs,Rd	В	· V	2						Rd8-Rs8 $ \updownarrow$ \updownarrow \updownarrow	\leftrightarrow	1
	CMP.W #xx:16,Rd	3	4							Rd16-#xx:16 — [3] ↑ ↑	\leftrightarrow	2
	CMP.W Rs,Rd	≥	· · ·	7						Rd16-Rs16 $-$ [3] \updownarrow \updownarrow	\leftrightarrow	_
	CMP.L #xx:32,ERd	Ī	9							ERd32-#xx:32 $-$ [4] \updownarrow \updownarrow	\leftrightarrow	က
	CMP.L ERs,ERd	٦	· v	2						ERd32-ERs32 $-$ [4] \updownarrow \updownarrow	\leftrightarrow	1
NEG	NEG.B Rd	В	· N	2						0-Rd8→Rd8 — ↑ ↑ ↑ ↑	\leftrightarrow	1
	NEG.W Rd	>	· v	2						0-Rd16 \rightarrow Rd16 \rightarrow \updownarrow \updownarrow \updownarrow	\leftrightarrow	1
	NEG.L ERd	Γ	.4	2						0-ERd32 \rightarrow ERd32 $ \updownarrow$ \updownarrow \updownarrow	\leftrightarrow	1
EXTU	EXTU.W Rd	≥	· A	7						$0\rightarrow$ (cbit 15 to 8> of Rd16) $-$ 0 \updownarrow	0	1
	EXTU.L ERd	_	.,	7			-	-		0 \rightarrow (cbit 31 to 16> of ERd32) $ 0$ \updownarrow	0	1

			lnst	Ad truc	dre	ssin Le	Addressing Mode/ ruction Length (By	g (B)	Addressing Mode/ Instruction Length (Bytes)								
		erand Size	,	<u>~a:</u>	GERN)	d,ERn/@ERn+		() 4'b				Š	Condition Code	on O	δος		No. of States*¹
	Mnemonic		XX#	u Ŋ W		-@	@ 9	@ (0 0	_	Operation	н	z	7	N Z V C	၁	Advanced
EXTS	EXTS.W Rd	>		2						(<bit< td=""><td>(<bit 7=""> of Rd16)→</bit></td><td>İ</td><td>\leftrightarrow</td><td>\leftrightarrow</td><td>0</td><td>Т</td><td>1</td></bit<>	(<bit 7=""> of Rd16)→</bit>	İ	\leftrightarrow	\leftrightarrow	0	Т	1
										(<bit< td=""><td>(<bit 15="" 8="" to=""> of Rd16)</bit></td><td></td><td></td><td></td><td></td><td></td><td></td></bit<>	(<bit 15="" 8="" to=""> of Rd16)</bit>						
	EXTS.L ERd	٦		2						(<bit< td=""><td>(<bit 15=""> of ERd32)→</bit></td><td></td><td>\leftrightarrow</td><td>\leftrightarrow</td><td>0</td><td>Т</td><td>1</td></bit<>	(<bit 15=""> of ERd32)→</bit>		\leftrightarrow	\leftrightarrow	0	Т	1
										(<bit>bit</bit>	(<bit 16="" 31="" to=""> of ERd32)</bit>						
TAS	TAS @ERd *2	В		7	4					@ER	@ERd-0→CCR set, (1)→		<> 	\leftrightarrow	0	1	4
										(<bit< td=""><td>(<bit 7=""> of @ERd)</bit></td><td></td><td></td><td></td><td></td><td></td><td></td></bit<>	(<bit 7=""> of @ERd)</bit>						
MAC	MAC @ERn+, @ERm+	Ca	not	pe :	nse	.⊑ 7	the	H8S	3/22;	Cannot be used in the H8S/2238 Series							[2]
CLRMAC	CLRMAC																
LDMAC	LDMAC ERS,MACH	,															
	LDMAC ERS,MACL																
STMAC	STMAC MACH, ERd																
	STMAC MACL, ERd																

(3) Logical Instructions

Manegoric			t			l					ŀ			l			ľ	
Minemonic				<u>lus</u>	itruc	dare	ssii n Le	ا قر angt	Ad h (E	e/ 3yte	(Si							
Mnemonic B			erand Size	;	'u .								S	ndi	tion	ပိ	e e	No. of States* ¹
AND.B. #xxx8,Rd B 2 Rd8.4xx8.9-Rd8 - 1 \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - \$ 0 - 0 0 - 0 - 0		Mnemonic	odO								_	Operation	_			-		Advanced
AND.B Rs,Rd B 2 Rd8.AR88-Rd8 - 1 0 - AND.W #xx.16,Rd W 4 1 Rd16.ARx16-Rd16 - 1 0 - AND.L #xx.32,ERd L 6 Rd16.ARx16-Rd16 - 1 0 - AND.L #xx.32,ERd L 4 Rd8.Axx8-ARd8 - - 1 0 - OR.B #xx.8,Rd B 2 Rd16.Axx16-ARd8 - - 1 0 - OR.L #xx.32,ERd L 4 Rd16.Axx16-ARd16 - 1 0 - OR.L #xx.32,ERd L A Rd16.Axx16-ARd3 - 1 0 - OR.L #xx.32,ERd L A Rd36.Axx3-Ax32-ERd32 - 1 0 - OR.L #xx.32,ERd L A Rd36.Axx3-Ax32-ERd32 - 1 0 - OR.L #xx.32,ERd L A B B B C C C	AND	AND.B #xx:8,Rd	В	2								Rd8∧#xx:8→Rd8	<u> </u>	Ì			Ι	1
AND.W #xx;16,Rd W 4 Rd16./#xx;16.Hd		AND.B Rs,Rd	В		2							Rd8∧Rs8→Rd8		-			1	1
AND.W Rs,Rd W 2 Rd16.ARs16->Rd16		AND.W #xx:16,Rd	>	4								Rd16∧#xx:16→Rd16	T				1	2
AND.L #xx.32,ERd L 6 Rd32x,#xx.32→ERd32 ↑ ↑ ↑ 0 - AND.L ERS,ERd L 4 Rd8x,ER32→ERd32 ↑ ↑ ↑ 0 - OR.B #xx.8,Rd B 2 Rd8x,Rx.8→Rd8 ↑ ↑ ↑ 0 - OR.W #xx.16,Rd W 2 Rd8x,Rs.9→Rd8 ↑ ↑ ↑ 0 - OR.W #xx.16,Rd W 2 Rd16x,Rx.16→Rd16 ↑ ↑ ↑ 0 - OR.W Rs,Rd W 2 Rd16x,Rx.32→ERd32 ↑ ↑ ↑ 0 - OR.L #xx.32,ERd L 4 Rd8⊕xx.32→ERd32 ↑ ↑ ↑ 0 - OR.L ERS,ERd B 2 Rd8⊕xx.32→ERd32 ↑ ↑ ↑ 0 - XOR.B #xx.8,Rd B 2 Rd8⊕xx.32→ERd32 ↑ ↑ ↑ 0 - XOR.B #xx.8,Rd W 4 Rd16⊕xx.32→ERd32 ↑ ↑ ↑ 0 - XOR.W #xx.16,Rd W 4 Rd16⊕xx.32→ERd32 ↑ ↑ ↑ 0 - XOR.L #xx.32,ERd L 4 Rd16⊕xx.32→ERd32 ↑ ↑ ↑ ↑ 0 - XOR.L #xx.32,ERd L 4 Rd2 Rd32exx.32→ERd32 ↑ ↑ ↑ ↑ 0 - XOR.L #xx.32,ER		AND.W Rs,Rd	≥		2							Rd16∧Rs16→Rd16	\vdash	Η̈́			1	1
AND.L ERS,ERd L 4 ERd32AERS32→ERd32		AND.L #xx:32,ERd	٦	9								ERd32∧#xx:32→ERd32	$\dot{\top}$	Ì			Τ	3
OR.B #xxx.8,Rd B 2 Rd8v4xxx.8→Rd8		AND.L ERS,ERd	٦		4							ERd32∧ERs32→ERd32		Ī			Ι	2
OR.B Rs,Rd B 2 Rd8·Rs8→Rd8 ↑ ↑ ↑ 0 - OR.W #xx:16,Rd W 4 Rd16·/#xx.16→Rd16 ↑ ↑ ↑ 0 - OR.L #xx:32,ERd L 6 Rd16·/#xx:32→ERd32 ↑ ↑ ↑ 0 - OR.L Ers,ERd L 4 Rd36⊕Rs3→Rd8 ↑ ↑ ↑ 0 - XOR.B #xx:8,Rd B 2 Rd8⊕#xx:8→Rd8 ↑ ↑ ↑ 0 - XOR.B Rs,Rd B 2 Rd46⊕Rs3→Rd8 ↑ ↑ ↑ 0 - XOR.W #xx:16,Rd W 4 Rd16⊕#xx:16→Rd16 ↑ ↑ ↑ 0 - XOR.W #xx:16,Rd W 2 Rd16⊕#xx:16→Rd16 ↑ ↑ ↑ 0 - XOR.W Fs,Rd W 2 Rd16⊕Rx:16→Rd16 ↑ ↑ ↑ 0 - XOR.L Ers,ERd L 4 Rd16⊕Rx:16→Rd16 ↑ ↑ ↑ 0 - XOR.L Ers,ERd L 2 Rd16⊕Rx:32→ERd32 ↑ ↑ ↑ 0 - XOR.L Ers,ERd L 3 Rd16⊕Rx:32→ERd32 ↑ ↑ ↑ 0 - XOR.L Ers,ERd L 4 Rd2 Rd46⊕Rx:32→ERd32 ↑ ↑ ↑ 0 - XOR.L Ers,ERd L 4 Rd46⊕Rx:32→ERd32 ↑ ↑ ↑ 0 - ↑ ↑ ↑ 0 - NOT.B Rd L 2 Rd2 Rd46→Rd32 </td <td>OR</td> <td>OR.B #xx:8,Rd</td> <td>В</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Rd8∨#xx:8→Rd8</td> <td> </td> <td>Ī</td> <td></td> <td></td> <td>1</td> <td>1</td>	OR	OR.B #xx:8,Rd	В	2								Rd8∨#xx:8→Rd8		Ī			1	1
OR.W #xx:16,Rd W 4 Rd16~kxx:16¬Rd16 \$ \$ \$ 0 - OR.W Rs,Rd W 2 Rd16~Rs16→Rd16 \$ \$ \$ 0 - OR.L #xx:32,ERd L 4 ERd32~#xx:32→ERd32 \$ \$ \$ 0 - OR.L Ers,ERd L 4 Rd8⊕#xx:8→Rd8 \$ \$ 0 - XOR.B #xx:8,Rd B 2 Rd8⊕#xx:8→Rd8 \$ \$ 0 - XOR.B #xx:16,Rd W 4 Rd16⊕#xx:16→Rd16 \$ \$ 0 - XOR.W #xx:16,Rd W 2 Rd16⊕Rs16→Rd16 \$ \$ 0 - XOR.W #xx:32,ERd L 6 Rd16⊕Rs16→Rd16 \$ \$ 0 - XOR.L #xx:32,ERd L 6 Rd16⊕Rs16→Rd16 \$ \$ 0 - XOR.L #xx:32,ERd L 6 Rd16⊕Rs16→Rd16 \$ \$ 0 - XOR.L #xx:32,ERd L 6 Rd16⊕Rs16→Rd16 \$ \$ 0 - XOR.L #xx:32,ERd L 6 Rd16⊕Rs16→Rd32 \$ \$ 0 - XOR.L #xx:32,ERd L 7 Rd16→Rd32→ERd32 \$ \$ 0 - XOR.L ERs,ERd L 7 Rd16→Rd32→ERd32 \$ \$ 0 - XOR.L ERd32-Rd32 L - \$ \$ 0 - L 0 - XOR.L ERd32-Rd32 L - \$ \$ 0 - <td></td> <td>OR.B Rs,Rd</td> <td>В</td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Rd8∨Rs8→Rd8</td> <td>T</td> <td>T</td> <td></td> <td></td> <td>1</td> <td>1</td>		OR.B Rs,Rd	В		2							Rd8∨Rs8→Rd8	T	T			1	1
OR.W Rs,Rd W 2 Rd16√Rs16→Rd16 ↑ ↑ ↑ 0 - OR.L #xx:32,ERd L 6 P ERd32√#xx:32→ERd32 ↑ ↑ ↑ 0 - OR.L ERs,ERd L 4 Rd8⊕#xx:8→Rd8 ↑ ↑ ↑ 0 - ↑ XOR.B #xx:8,Rd W 2 Rd16⊕#xx:16→Rd16 ↑ ↑ ↑ 0 - ↑ XOR.W #xx:16,Rd W 2 Rd16⊕#xx:16→Rd16 ↑ ↑ ↑ 0 - ↑ 0 XOR.W #xx:32,ERd L 6 P ERd32⊕#xx:32→ERd32 ↑ ↑ ↑ 0 - ↑ 0 XOR.L #xx:32,ERd L 6 P Rd16⊕Rx:16→Rd16 ↑ ↑ ↑ 0 - 0 XOR.L #xx:32,ERd L 4 Rd16⊕Rx:32⊕ERd32 ↑ ↑ ↑ 0 - 0 0 XOR.L #xx:32,ERd L 4 Rd416⊕Rx:32⊕ERd32 ↑ ↑ ↑ 0 - 0 0 NOT.W Rd B 2 Rd416→Rd32 ↑ ↑ ↑ 0 - 0 0 NOT.W Rd W 2 Rd416→Rd32 ↑ ↑ ↑ 0 - 0 0 NOT.L #xd		OR.W #xx:16,Rd		4								Rd16∨#xx:16→Rd16	$\dot{\top}$	$\frac{1}{1}$			1	2
OR.L #xx.32,ERd L 6 ERd32√#xx.32→ERd32 ↑ ↑ 0 OR.L ERS,ERd L 4 ERd32√ERs32→ERd32 ↑ ↑ 0 XOR.B #xx.8,Rd B 2 Rd8⊕#xx.8→Rd8 ↑ ↑ 0 XOR.W #xx.16,Rd W 4 Rd16⊕#xx.16→Rd16 ↑ ↑ 0 XOR.W Rs,Rd W 2 Rd16⊕#xx.15→Rd16 ↑ ↑ 0 XOR.L #xx.32,ERd L 4 ERd32⊕#xx.32→ERd32 ↑ ↑ 0 XOR.L #xx.32,ERd L 4 ERd32⊕#xx.32→ERd32 ↑ ↑ 0 XOR.L #xx.32,ERd L 4 TRd8→Rd8 ↑ ↑ 0 XOR.L #xx.32,ERd L 4 TRd8→Rd8 ↑ ↑ 0 NOT.B Rd W 2 TRd8→Rd8 ↑ ↑ 0 NOT.W Rd W 2 TRd8→Rd8 ↑ ↑ 0 NOT.ERA L		OR.W Rs,Rd	>		2							Rd16∨Rs16→Rd16	$\dot{\top}$	Ť			Ι	1
ORL ERS,ERd L 4 ERd32√ERs32→ERd32 − − ↑ ↑ 0 − ↑ 0 − XOR.B #xx:8,Rd B 2 Rd8⊕#xx:8→Rd8 − − ↑ ↑ 0 − ↑ 0 − XOR.W Bs,Rd W 4 Rd16⊕#xx:16→Rd16 − − ↑ ↑ 0 − ↑ 0 − XOR.W Rs,Rd W 2 Rd16⊕Rs16→Rd16 − − ↑ ↑ 0 − ↑ 0 − XOR.L #xx:32,ERd L 6 ERd32⊕#xx:32→ERd32 − − ↑ ↑ ↑ 0 − ↑ 0 − XOR.L #xx:32,ERd L 4 ERd32⊕#xx:32→ERd32 − − ↑ ↑ ↑ 0 − ↑ 0 − XOR.L #xx:32,ERd L 4 ERd32⊕#xx:32→ERd32 − − ↑ ↑ ↑ 0 − ↑ 0 − XOR.L #xx:32,ERd L 4 ERd32⊕#xx:32→ERd32 − − ↑ ↑ ↑ 0 − ↑ 0 − NOT.B Rd W 2 ¬Rd16→Rd16 − − ↑ ↑ ↑ 0 − ↑ 0 − NOT.W Rd L 2 ¬Rd16→Rd16 − − ↑ ↑ ↑ 0 − ↑ 0 − NOT.L ERd L 2 ¬Rd16→Rd16 − − ↑ ↑ ↑ 0 − ↑ 0 −		OR.L #xx:32,ERd	٦	9								ERd32∨#xx:32→ERd32	$\dot{\top}$				Ι	3
XOR.B #xx.8,Rd B 2 Rd8⊕#xx:8→Rd8		OR.L ERS,ERd	_		4							ERd32∨ERs32→ERd32	$\frac{1}{1}$	Ì	_		Ι	2
XOR.B Rs,Rd B 2 Rd8⊕Rs8→Rd8 ↑ ↑ ↑ 0 XOR.W #xx:16,Rd W 4 Rd16⊕#xx:16→Rd16 ↑ ↑ ↑ 0 XOR.W Rs,Rd W 2 Rd16⊕#xx:32→ERd32 ↑ ↑ ↑ 0 XOR.L #xx:32,ERd L 4 ERd32⊕#xx:32→ERd32 ↑ ↑ ↑ 0 XOR.L Ers,ERd L 4 ERd32⊕#xx:32→ERd32 ↑ ↑ ↑ 0 NOT.B Rd B 2 Rd16→Rd16 ↑ ↑ ↑ 0 NOT.W Rd W 2 Rd16→Rd16 ↑ ↑ ↑ 0 NOT.L ERd L 2 ERd32→ERd32 ↑ ↑ ↑ 0	XOR	XOR.B #xx:8,Rd	В	7			-					Rd8⊕#xx:8→Rd8	+	_	_	_	Ι	1
XOR.W #xx:16,Rd W 4 Rd16⊕#xx:16→Rd16 ↑ ↑ ↑ 0 XOR.W Rs,Rd W 2 Rd16⊕Rs16→Rd16 ↑ ↑ ↑ 0 XOR.L #xx:32,ERd L 6 ERd32⊕#xx:32→ERd32 ↑ ↑ ↑ 0 XOR.L ERs,ERd L 4 ERd32⊕#xx:32→ERd32 ↑ ↑ ↑ 0 NOT.B Rd B 2 ¬Rd8→Rd8 ↑ ↑ ↑ 0 NOT.W Rd W 2 ¬Rd16→Rd16 ↑ ↑ ↑ 0 NOT.L ERd L 2 ¬ERd32→ERd32 ↑ ↑ ↑ 0		XOR.B Rs,Rd	Ф		7							Rd8⊕Rs8→Rd8	1	ì		-	Ι	1
XOR.W Rs,Rd W 2 Rd16⊕Rs16→Rd16 ↑ ↑ ↑ 0 - XOR.L #xx:32,ERd L 6 ERd32⊕#xx:32→ERd32 ↑ ↑ ↑ 0 - XOR.L ERs,ERd L 4 ERd32⊕ERs32→ERd32 ↑ ↑ ↑ 0 - NOT.B Rd B 2 ¬ Rd16→Rd16 ↑ ↑ ↑ 0 - NOT.W Rd W 2 ¬ ERd32→ERd32 ↑ ↑ ↑ 0 - NOT.L ERd L 2 ¬ ERd32→ERd32 ↑ ↑ ↑ 0 -		XOR.W #xx:16,Rd		4								Rd16⊕#xx:16→Rd16	$\frac{1}{1}$	Ť			Ι	2
XOR.L #xx.32,ERd L 6 ERd32⊕#xx.32→ERd32 ↑ ↑ 0 XOR.L ERS,ERd L 4 ERd32⊕ERx32→ERd32 ↑ ↑ 0 NOT.B Rd B 2 Rd16→Rd16 ↑ ↑ 0 NOT.W Rd W 2 Rd16→Rd16 ↑ ↑ 0 NOT.L ERd L 2 □ ↑ ↑ 0		XOR.W Rs,Rd	>		7							Rd16⊕Rs16→Rd16	$\dot{\top}$	Ť			Τ	1
XOR.L ERS,ERd L 4 P ERd32⊕ERs32→ERd32 ↑ ↑ ↑ 0 ↑ 0		XOR.L #xx:32,ERd	٦	9								ERd32⊕#xx:32→ERd32	†	Ì		_	I	3
NOT.B Rd B 2 $^{-1}$ Rd8 $^{-3}$ Rd8 $^{}$ $^{+-}$ $^{+-}$ $^{+-}$ $^{}$ $^{}$ $^{+-}$ $^{+-}$ $^{}$ $^{}$ $^{+-}$ $^{$		XOR.L ERs,ERd	٦		4							ERd32⊕ERs32→ERd32		Ī		_		2
W 2 \rightarrow Rd16 \rightarrow Rd16 \rightarrow C \uparrow 0 \rightarrow L \rightarrow C \uparrow 0 \rightarrow C \rightarrow	NOT	NOT.B Rd	В		7							¬ Rd8→Rd8	1	ì				1
$oxed{L} oxed{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		NOT.W Rd	≥	\exists	7							- Rd16→Rd16	+		_	-	Ι	1
		NOT.L ERd	٦		7		\dashv	=				¬ ERd32→ERd32			_		Ι	~

(4) Shift Instructions

			nst	Addressing Mode/ Instruction Length (Bytes)	dres ion	sinç Len	Addressing Mode/ ruction Length (By	g &	rtes								
		eziS bnere		Rn	(ugaʻr	+ug=@/ug=		(Jati	999			<u></u>	ndit	io	Condition Code		No. of States*1
	Mnemonic		#xx#	@E		- @	@ 9) (a)	 n an		Operation	=	z	N	>	ပ	Advanced
SHAL	SHAL.B Rd	В	2	_								H	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	-
	SHAL.B #2,Rd	В	7	<u> </u>						[\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	-
	SHAL.W Rd	>	7							<u> </u>	0		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	-
	SHAL.W #2,Rd	Μ	2							C MSB	T LSB		\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	-
	SHAL.L ERd	٦	2										→	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	SHAL.L #2,ERd		7										\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	7
SHAR	SHAR.B Rd	В	7										\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
	SHAR.B #2,Rd	В	7	۵.									\leftrightarrow	\leftrightarrow	0	\leftrightarrow	-
	SHAR.W Rd	M	2										\leftrightarrow	\leftrightarrow	0	\leftrightarrow	-
	SHAR.W #2,Rd	M	2							MSB	C C		\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
	SHAR.L ERd	7	2										\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
	SHAR.L #2,ERd		7										\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
SHLL	SHLL.B Rd	В	2										\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
	SHLL.B #2,Rd	В	2										\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
	SHLL.W Rd	8	7							<u> </u>	0		\leftrightarrow	\leftrightarrow	0	\leftrightarrow	1
	SHLL.W #2,Rd	>	7							C MSB	▼		\leftrightarrow	\leftrightarrow	0	\leftrightarrow	-
	SHLL.L ERd	_	7										\leftrightarrow	\leftrightarrow	0	\leftrightarrow	-
	SHLL.L #2,ERd	_	7	_									\leftrightarrow	\leftrightarrow	0	\leftrightarrow	-

			Inst	Addressing Mode/ Instruction Length (Bytes)	dres	sinç Len	Addressing Mode/ ruction Length (By	de/ (Byt	(se)				
		erand Size		นษา	(uЯ∃ʻr	ERn/@ERn+) 1,PC)	n=-		Condition Code		No. of States*¹
	Mnemonic		XX#	®E Bn		- @	6 6		_	Operation	N Z C		Advanced
SHLR	SHLR.B Rd	В	,,	7							0 0 0 − −	\leftrightarrow	_
	SHLR.B #2,Rd	В	. 1	2						-	0 0 0 − −	\leftrightarrow	-
	SHLR.W Rd	≥		7						4 0		\leftrightarrow	_
	SHLR.W #2,Rd	>	. 4	2						MSB ——— LSB C	↑ 0 ↑ 0 —	\leftrightarrow	1
	SHLR.L ERd	_	.,	7							0 0 0 − −	\leftrightarrow	_
	SHLR.L #2,ERd	_	.,	2							↑ 0	\leftrightarrow	1
ROTXL	ROTXL.B Rd	В		2							↑ 0	+	1
	ROTXL.B #2,Rd	В	. 1	2							0	\leftrightarrow	1
	ROTXL.W Rd	≥	.,	7							0↔+-	\leftrightarrow	_
	ROTXL.W #2,Rd	≥	.,	7						MSB C	0	\leftrightarrow	_
	ROTXL.L ERd	_	.,	2								\leftrightarrow	1
	ROTXL.L #2,ERd	٦		2							↑ 0		1
ROTXR	ROTXR.B Rd	В	. 1	2						-		\leftrightarrow	1
	ROTXR.B #2,Rd	В	. 4	2							↑ 0	\leftrightarrow	1
	ROTXR.W Rd	>	. 4	2							↑ 0		1
	ROTXR.W #2,Rd	>	. 4	2						MSB — LSB C	↑ 0		1
	ROTXR.L ERd	Г	. 4	2							0		1
	ROTXR.L #2,ERd	Г	- 1	7	_		\dashv				0 0 0	\leftrightarrow	1

			lnst	Add	res	Addressing Mode/ Instruction Length (Bytes)	Moc Tth (By de	(SE			
		erand Size		u N =	d,ERn)	-ERn/@ERn+	d,PC)	©99			Condition Code	No. of States*1
	Mnemonic		ιχ#	_) (0)		_	Operation	I H N Z V C	Advanced
ROTL	ROTL.B Rd	В	2									1
	ROTL.B #2,Rd	В	2									-
	ROTL.W Rd	>	7							•		-
	ROTL.W #2,Rd	8	2							C MSB - LSB		1
	ROTL.L ERd	_	2									1
	ROTL.L #2,ERd		2									F
ROTR	ROTR.B Rd	В	2									-
	ROTR.B #2,Rd	В	2									-
	ROTR.W Rd	>	2									-
	ROTR.W #2,Rd	>	7							MSB — LSB C		-
	ROTR.L ERd	_	7									-
	ROTR.L #2,ERd		2								\$ 0 \$ \$ − −	1

(5) Bit-Manipulation Instructions

			l lst	Truc	dres	Addressing Mode/ ruction Length (By	g Me	B de	Addressing Mode/ Instruction Length (Bytes)								
		erand Size			Rn (d,ERn)	+uЯ∃@/uЯ∃-	99	(J9, b)	BB @		,	ပိ	n dit	i.	Condition Code	Φ	No. of States*1
	Mnemonic		(X#	น ผู	-		@ S		_ (a)	Operation		=	I	N Z	>	ပ	Advanced
BSET	BSET #xx:3,Rd	В	``	2						(#xx:3 of Rd8)←1		i	$\frac{1}{1}$	_		Τ	1
	BSET #xx:3,@ERd	В		4						(#xx:3 of @ERd)←1		İ	<u> </u> 	<u> </u>		Ι	4
	BSET #xx:3,@aa:8	В					4			(#xx:3 of @aa:8)←1		İ		<u> </u>	-	Ι	4
	BSET #xx:3,@aa:16	В					9			(#xx:3 of @aa:16)←1		İ			-	Τ	5
	BSET #xx:3,@aa:32	В					8			(#xx:3 of @aa:32)←1		İ			-		9
	BSET Rn,Rd	В	- 1	7						(Rn8 of Rd8)←1		İ	<u> </u>	$\frac{\perp}{1}$		Ι	-
	BSET Rn,@ERd	В		4						(Rn8 of @ERd)←1		İ		<u> </u>	- -	Ι	4
	BSET Rn,@aa:8	В					4			(Rn8 of @aa:8)←1		İ			-	Τ	4
	BSET Rn,@aa:16	В					9			(Rn8 of @aa:16)←1		İ			-	Τ	5
	BSET Rn,@aa:32	В					8			(Rn8 of @aa:32)←1			\vdash		-		9
BCLR	BCLR #xx:3,Rd	В	` '	2						(#xx:3 of Rd8)←0		İ				Ι	1
	BCLR #xx:3,@ERd	В		4	_					(#xx:3 of @ERd)←0		Ħ	+	\perp		Т	4
	BCLR #xx:3,@aa:8	В					4			(#xx:3 of @aa:8)←0		İ			-	Т	4
	BCLR #xx:3,@aa:16	В					9			(#xx:3 of @aa:16)←0			\vdash	\perp	-	_	5
	BCLR #xx:3,@aa:32	В					8			(#xx:3 of @aa:32)←0		İ	$^{\perp}$	\perp	-	Т	9
	BCLR Rn,Rd	В		7						(Rn8 of Rd8)←0		ij	$^{+}$	$^{+}$		Т	1
	BCLR Rn,@ERd	В		4	_				\dashv	(Rn8 of @ERd)←0		ij	$^{+}$	$\frac{1}{1}$		П	4
	BCLR Rn,@aa:8	В					4			(Rn8 of @aa:8)←0		İ	1		-	Ι	4
	BCLR Rn,@aa:16	В					9			(Rn8 of @aa:16)←0		Ť	+	+	\perp	Τ	2

Mnemonic Operand Size BCLR Rn, @aa:32 B BNOT #xx:3, Rd B BNOT #xx:3, @aa:16 B BNOT #xx:3, @aa:36 B BNOT #xx:3, @aa:36 B BNOT Rn, @aa:36 B BNOT Rn, @aa:36 B BNOT Rn, @aa:36 B BNOT Rn, @aa:36 B BNOT Rn, @aa:36 B	əziS	nstr	Instruction Length (Bytes)	<u>o</u>	Len	gth	ruction Length (By	tes			
Mnemonic			u Ŋ:	d,ERn)	+uŊ∃@/uŊ∃	190	(Jate		Condition Code	Sode	No. of States*1
BCLR Rn, @aa:32 B BNOT #xx:3, @ERd B BNOT #xx:3, @aa:8 B BNOT #xx:3, @aa:16 B BNOT #xx:3, @aa:16 B BNOT Rn, @ERd B BNOT Rn, @ERd B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B					- @	6.0 (0.3		ത	Operation I H N Z V	v C	Advanced
BNOT #xx:3, @ERd B B B B B B B B B B B B B B B B B B B	В					8			(Rn8 of @aa:32)←0		9
BNOT #xx:3, @ERd B BNOT #xx:3, @aa:16 B BNOT #xx:3, @aa:16 B BNOT Rn, @ERd B BNOT Rn, @ERd B BNOT Rn, @aa:8 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B	В	2							(#xx:3 of Rd8)←[¬ (#xx:3 of Rd8)]		-
BNOT #xx:3, @aa:8 B BNOT #xx:3, @aa:16 B BNOT #xx:3, @aa:32 B BNOT Rn, @ Exd B BNOT Rn, @ Exd B BNOT Rn, @ aa:8 B BNOT Rn, @ aa:16 B BNOT Rn, @ aa:16 B BNOT Rn, @ aa:16 B	В		4						(#xx:3 of @ERd)←		4
BNOT #xx:3,@aa:8 B BNOT #xx:3,@aa:16 B BNOT Rn,Rd B 2 BNOT Rn,@ERd B BNOT Rn,@aa:8 B BNOT Rn,@aa:8 B BNOT Rn,@aa:16 B									[¬ (#xx:3 of @ERd)]		
BNOT #xx:3, @aa:16 B BNOT #xx:3, @aa:32 B BNOT Rn, @ERd B BNOT Rn, @aa:8 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B BNOT Rn, @aa:32 B	В					4			(#xx:3 of @aa:8)←		4
BNOT #xx:3,@aa:16 B BNOT #xx:3,@aa:32 B BNOT Rn,@ERd B BNOT Rn,@aa:8 B BNOT Rn,@aa:16 B BNOT Rn,@aa:16 B									[¬ (#xx:3 of @aa:8)]		
BNOT #xx:3, @aa:32 B BNOT Rn, Rd B 2 BNOT Rn, @aa:8 B BNOT Rn, @aa:16 B BNOT Rn, @aa:16 B	В					9			(#xx:3 of @aa:16)←		5
BNOT #xx:3,@aa:32 B BNOT Rn,Rd B 2 BNOT Rn,@aa:8 B BNOT Rn,@aa:16 B BNOT Rn,@aa:16 B BNOT Rn,@aa:32 B									[¬ (#xx:3 of @aa:16)]		
BNOT Rn, Rd B 2 BNOT Rn, @ERd B B BNOT Rn, @aa:8 B BNOT Rn, @aa:16 B BNOT Rn, @aa:32 B	В					8			(#xx:3 of @aa:32)←	1	9
BNOT Rn,Rd B 2 BNOT Rn,@aa:8 B B BNOT Rn,@aa:16 B B BNOT Rn,@aa:32 B									[¬ (#xx:3 of @aa:32)]		
BNOT Rn, @ERd B BNOT Rn, @aa:36 B BNOT Rn, @aa:16 B BNOT Rn, @aa:32 B	В	2							(Rn8 of Rd8)←[¬ (Rn8 of Rd8)] — — — —		1
BNOT Rn, @aa:8 B BNOT Rn, @aa:16 B BNOT Rn, @aa:32 B	В		4						(Rn8 of @ERd)←[- (Rn8 of @ERd)]		4
BNOT Rn,@aa:16 B	В					4			(Rn8 of @aa:8)←[- (Rn8 of @aa:8)]		4
BNOT Rn,@aa.32 B	В					9			(Rn8 of @aa:16)←		5
BNOT Rn,@aa:32 B									[¬ (Rn8 of @aa:16)]		
	В					8			(Rn8 of @aa:32)←	1	9
									[¬ (Rn8 of @aa:32)]		
	В	2							ا \$ \$		1
BTST #xx:3,@ERd B	В		4						¬ (#xx:3 of @ERd)→Z	 	3
BTST #xx:3,@aa:8 B	В					4			ר (#xx:3 of @aa:8)→Z	 	3
BTST #xx:3,@aa:16 B	В					9	-		ר (#xx:3 of @aa:16)→Z		4

			Inst	Addressing Mode/ Instruction Length (Bytes)	dres	Addressing Mode/ ruction Length (By	J Mo	de/ (By	tes)				
		erand Size		uЯ	(nЯ∃,t	+uŊ∃@/uŊ∃		JPC)	688	3	Condition Code	Code	No. of States*¹
	Mnemonic		XX#	®E gu		-@	@ 9		_	Operation	N H	ပ >	Advanced
BTST	BTST #xx:3,@aa:32	В					8	-		¬ (#xx:3 of @aa:32)→Z	<> 	1	5
	BTST Rn,Rd	В	•••	7						¬ (Rn8 of Rd8)→Z		1	-
	BTST Rn, @ERd	В		4						¬ (Rn8 of @ERd)→Z	↔ 	1	3
	BTST Rn, @aa:8	В					4			¬ (Rn8 of @aa:8)→Z		I	ဇ
	BTST Rn,@aa:16	В					9			¬ (Rn8 of @aa:16)→Z		1	4
	BTST Rn, @aa:32	В					ω			¬ (Rn8 of @aa:32)→Z		1	5
BLD	BLD #xx:3,Rd	В	•••	7						(#xx:3 of Rd8)→C	 	↔ 	-
	BLD #xx:3, @ERd	В		4						(#xx:3 of @ERd)→C		<>	3
	BLD #xx:3, @aa:8	В					4			(#xx:3 of @aa:8)→C		↔	3
	BLD #xx:3, @aa:16	В					9			(#xx:3 of @aa:16)→C		<→ 	4
	BLD #xx:3, @aa:32	В					8			(#xx:3 of @aa:32)→C	<u> </u>	↔	5
BILD	BILD #xx:3,Rd	В		2						¬ (#xx:3 of Rd8)→C	<u> </u> - -	↔	1
	BILD #xx:3,@ERd	В		4						¬ (#xx:3 of @ERd)→C	 	<>	3
	BILD #xx:3,@aa:8	В					4			¬ (#xx:3 of @aa:8)→С	 	<→ 	ဇ
	BILD #xx:3,@aa:16	В					9			¬ (#xx:3 of @aa:16)→C		↔	4
	BILD #xx:3,@aa:32	В					8			¬ (#xx:3 of @aa:32)→C		<>	5
BST	BST #xx:3,Rd	В	. 4	2						C→(#xx:3 of Rd8)	<u> </u> -	<u> </u>	1
	BST #xx:3, @ERd	В		4				_		C→(#xx:3 of @ERd)	 	1	4
	BST #xx:3, @aa:8	В					4			C→(#xx:3 of @aa:8)	 	1	4

			Inst	Addressing Mode/ Instruction Length (Bytes)	dres	sin	Addressing Mode/ ruction Length (By	g g	rtes							
		erand Size	,	u Ŋ:	u,ERn)	+u为3@/u为3		(Ja'p				nd <u>it</u>	ion	Condition Code	No. of States*1	es*
	Mnemonic		XX#	@Е Ви			6.0		തെ	Operation	-	I	N	ပ >	Advanced	þ
BST	BST #xx:3,@aa:16	В					9			C→(#xx:3 of @aa:16)					- 2	
	BST #xx:3,@aa:32	В					8			C→(#xx:3 of @aa:32)	Ī			1	9 -	
BIST	BIST #xx:3,Rd	В	(1	2						¬ C→(#xx:3 of Rd8)			1	1	-	
	BIST #xx:3,@ERd	В		4						¬ C→(#xx:3 of @ERd)				1	- 4	
	BIST #xx:3,@aa:8	В					4			¬ С→(#xx:3 of @aa:8)					- 4	
	BIST #xx:3,@aa:16	В					9			¬ С→(#xx:3 of @aa:16)		$^{+}$		1	- 2	
	BIST #xx:3,@aa:32	В					8			¬ C→(#xx:3 of @aa:32)	Ī		1	1	9	
BAND	BAND #xx:3,Rd	В	(1	2						C∧(#xx:3 of Rd8)→C	Ī			<>	1	
	BAND #xx:3, @ERd	В		4						C∧(#xx:3 of @ERd)→C			1	←	3	
	BAND #xx:3, @aa:8	В					4			C∧(#xx:3 of @aa:8)→C	İ	1	1	<>	3	
	BAND #xx:3,@aa:16	В					9			C∧(#xx:3 of @aa:16)→C		\vdash	_	↔	4	
	BAND #xx:3, @aa:32	В					8			C∧(#xx:3 of @aa:32)→C			-	↔	2	
BIAND	BIAND #xx:3,Rd	В	.,	2						C∧[¬ (#xx:3 of Rd8)]→C		$^{\perp}$	1	<>	1	
	BIAND #xx:3,@ERd	В		4						C∧[¬ (#xx:3 of @ERd)]→C	Ī			<>	3	
	BIAND #xx:3,@aa:8	В					4			C∧[¬ (#xx:3 of @aa:8)]→C			1	←	3	
	BIAND #xx:3,@aa:16	В					9			C∧[¬ (#xx:3 of @aa:16)]→C				←	4	
	BIAND #xx:3,@aa:32	В					8			C∧[¬ (#xx:3 of @aa:32)]→C		$\frac{\perp}{\perp}$		←	5	
BOR	BOR #xx:3,Rd	В	.,	2						C√(#xx:3 of Rd8)→C	Ī	$^{+}$		<>	1	
	BOR #xx:3, @ERd	В		4						C√(#xx:3 of @ERd)→C	İ	1		<>	3	

			Insti	Add	res	sing Len	Addressing Mode/ ruction Length (By	Addressing Mode/ Instruction Length (Bytes)	ŝ			
		erand Size		иЯ	(nA∃,b	+uN3@/uN3		J.PC)		Conditi	Condition Code	No. of States*1
	Mnemonic		#XX		@ (0		שני @9		_	Operation I H N	N Z	Advanced
BOR	BOR #xx:3,@aa:8	В					4			C√(#xx:3 of @aa:8)→C	<> 	8
	BOR #xx:3,@aa:16	В					9			C√(#xx:3 of @aa:16)→C — — —		4
	BOR #xx:3,@aa:32	В					- 00			C√(#xx:3 of @aa:32)→C	<> 	5
BIOR	BIOR #xx:3,Rd	В	7							C√[¬ (#xx:3 of Rd8)]→C	<> 	-
	BIOR #xx:3,@ERd	В		4						C√[¬ (#xx:3 of @ERd)]→C	<> 	ဇ
	BIOR #xx:3,@aa:8	В					4			C√[¬ (#xx:3 of @aa:8)]→C	<> 	က
	BIOR #xx:3,@aa:16	В					9			C√[¬ (#xx:3 of @aa:16)]→C	<> 	4
	BIOR #xx:3,@aa:32	В					- 8			C√[¬ (#xx:3 of @aa:32)]→C	<	5
BXOR	BXOR #xx:3,Rd	В	7							C⊕(#xx:3 of Rd8)→C	<> 	-
	BXOR #xx:3,@ERd	В		4						C⊕(#xx:3 of @ERd)→C	 	3
	BXOR #xx:3,@aa:8	В					4			C⊕(#xx:3 of @aa:8)→C	<> 	က
	BXOR #xx:3,@aa:16	В					9			C⊕(#xx:3 of @aa:16)→C	<> 	4
	BXOR #xx:3,@aa:32	В					- 00			C⊕(#xx:3 of @aa:32)→C	<> 	5
BIXOR	BIXOR #xx:3,Rd	В	7							C⊕[¬ (#xx:3 of Rd8)]→C	<> 	-
	BIXOR #xx:3,@ERd	В		4						C⊕[¬ (#xx:3 of @ERd)]→C	<> 	ဇ
	BIXOR #xx:3,@aa:8	В					4			C⊕[¬ (#xx:3 of @aa:8)]→C	→	3
	BIXOR #xx:3,@aa:16	В					9			C⊕[¬ (#xx:3 of @aa:16)]→C		4
	BIXOR #xx:3,@aa:32	В				\Box	- 8			C⊕[¬ (#xx:3 of @aa:32)]→C	→ — — —	5

(6) Branch Instructions

		_	, nstr	Addr	Addressing Mode/ Instruction Length (Bytes)	ng Me	de/ (By	tes)							
		əziS bn			N@ERn+			n	Operation		ပိ	ndit	Condition Code	ode	No. of States*1
	Mnemonic		HXX	@EBu	∃,b)@ Я∃_@	@ 99	q ,b)ത ടെത്ത	<u>—</u> © © 93		Branching Condition	_	z	7	ပ >	Advanced
Bcc	BRA d:8(BT d:8)						2		if condition is true then	Always	İ				2
	BRA d:16(BT d:16)	Τ					4		PC←PC+d		İ				3
	BRN d:8(BF d:8)	Τ					2		else next;	Never	İ	<u> </u>	-		2
	BRN d:16(BF d:16)	Τ					4				İ			1	3
	BHI d:8	\top					2			C~Z=0	İ	\perp			2
	BHI d:16	Т					4				Ė	+			3
	BLS d:8	Т					2			C∨Z=1	İ	<u> </u>			2
	BLS d:16	Τ					4				İ	<u> </u>			3
	BCC d:8(BHS d:8)	Τ					2			C=0	İ	\vdash			2
	BCC d:16(BHS d:16)	Τ					4				İ				3
	BCS d:8(BLO d:8)	Т					7			C=1	İ	<u> </u>	Ţ		2
	BCS d:16(BLO d:16)	Τ					4				İ	<u> </u>	-		3
	BNE d:8	T					7			Z=0	İ	1	İ	1	2
	BNE d:16	Ι					4				İ	<u> </u>	Ţ		ဧ
	BEQ d:8	Т					2			Z=1	İ	$\frac{\perp}{\perp}$		<u> </u>	2
	BEQ d:16	Τ					4				İ	<u> </u> 	Ī		3
	BVC d:8	Τ					2			V=0	İ			1	2
	BVC d:16	Т					4				İ	1		1	3

			 nst	Addressing Mode/ Instruction Length (Bytes)	dres ion	sinç Len	Addressing Mode/ ruction Length (By	de/ (Byt	tes)								
		əziS bu		ι		+uЯ∃@/u	,,,,		n	Operation		ပိ	ndi	tion	Condition Code	9	No. of States*¹
	Mnemonic		XX#	©EB≀ Rn	∃'p)@	@-EE	@99	A,b)@ s@@	_ _		Branching Condition	_		Z	> Z	ပ	Advanced
Bcc	BVS d:8	1						2			V=1	ΙĖ	H		\perp	Ţ	2
	BVS d:16	П					-	4				İ	Η̈́			Ţ	ဇ
	BPL d:8	П						2			0=N	İ	$\dot{\top}$		\perp		2
	BPL d:16	Т					_	4				İ	÷		<u> </u> 		3
	BMI d:8	Т						2			N=1	Τ̈́	Η̈́			Ţ	2
	BMI d:16	Τ					Ť	4				Ϊ́Τ	Ħ	H	+	Ţ	ဇ
	BGE d:8	$\overline{}$						2			N⊕V=0	<u> </u>	H				2
	BGE d:16	T					•	4				İ	Τ̈́	1	<u> </u> 	1	က
	BLT d:8	П						2			N⊕V=1	İ	÷	<u> </u>	$\frac{\perp}{\perp}$		2
	BLT d:16	T						4				İ	i	1			3
	BGT d:8	Т						2			Z~(N⊕V)=0	Ť	$\dot{\Box}$	\vdash		Ţ	2
	BGT d:16	Т					Ė	4				Ť	Η̈́		<u> </u>	I	3
	BLE d:8	-					-	7			Z~(N⊕V)=1	İ	÷	l	<u> </u>	Ţ	2
	BLE d:16	Ι						4				İ	i i	İ	1	1	3

		=	A	ddr	Addressing Mode/ Instruction Length (Bytes)	ng M	ode (B)	/tes							
		erand Size		uЯ	d,ERn) +nЯ∃@\nЯ∃-		d,PC)	B6 @			Co	nditic	S	Condition Code	No. of States*1
	Mnemonic	dO xx#	Вn	@ E	-@)@	@ @	@(0 0	Operation	on	_	Z	Z	v C	Advanced
AMC	JMP @ERn	-		2					PC←ERn			- -	<u> </u>		2
	JMP @aa:24					4			PC←aa:24			<u> </u>	1	1	ဗ
	JMP @@aa:8	_						2	PC←@aa:8				+		5
BSR	BSR d:8						7		PC→@-SP,PC←PC+d:8	C+d:8	1			1	4
	BSR d:16						4		PC→@-SP,PC←PC+d:16	C+d:16			1	1	5
JSR	JSR @ERn			7					PC→@-SP,PC←ERn	Rn	1	<u> </u>	i	1	4
	JSR @aa:24	1				4			PC→@-SP,PC←aa:24	a:24			-		5
	JSR @@aa:8	-						7	PC→@-SP,PC←@aa:8	gaa:8			Ī	<u> </u>	9
RTS	RTS								2 PC←@SP+		1	— —	1	1	5

(7) System Control Instructions

				Ade	dres	sing	Addressing Mode/	de/								
			Inst	truc	tion	Ler	Instruction Length (Bytes)	By.	(se	ı						
		erand Size		uЫ	(nA3,t	ERn/@ERn+) 1,PC)	nne		- 0	ond	Jit io	ŭ E	Condition Code	No. of States*1
	Mnemonic		XX#	®E ®u			@ 9 0		_	Operation	-	I	z	Z	ر د	Advanced
TRAPA	TRAPA #xx:2									PC→@-SP,CCR→@-SP,	1			1		[6] 8
										EXR→@-SP, <vector>→PC</vector>						
RTE	RTE									EXR←@SP+,CCR←@SP+,	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	[6] 9
										PC←@SP+						
SLEEP	SLEEP	Ι								Transition to power-down state				Ť		2
TDC	LDC #xx:8,CCR	В	2							#xx:8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\Rightarrow	1
	LDC #xx:8,EXR	В	4					-	_	#xx:8→EXR		-		i	1	2
	LDC Rs,CCR	В	• • •	7						Rs8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	LDC Rs,EXR	В	- 1	2						Rs8→EXR			Τ			1
	LDC @ERs,CCR	Λ		4						@ERs→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\$	3
	LDC @ERs,EXR	Ν		4						@ERs→EXR		-		i		3
	LDC @(d:16,ERs),CCR	8			9					@(d:16,ERs)→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	4
	LDC @(d:16,ERs),EXR	8			9					@(d:16,ERs)→EXR				İ	1	4
	LDC @(d:32,ERs),CCR	8			10					@(d:32,ERs)→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	9
	LDC @(d:32,ERs),EXR	8			10					@(d:32,ERs)→EXR						9
	LDC @ERs+,CCR	>				4				@ERs→CCR,ERs32+2→ERs32	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	4
	LDC @ERs+,EXR	>				4				@ERs→EXR,ERs32+2→ERs32			I	i	1	4
	LDC @aa:16,CCR	>					9			@aa:16→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	4
	LDC @aa:16,EXR	>					9			@aa:16→EXR			I	i	1	4
	LDC @aa:32,CCR	>					8			@aa:32→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow \leftrightarrow	5
	LDC @aa:32,EXR	>					8		-	@aa:32→EXR	1			i	1	5

			lust	Addressing Mode/ Instruction Length (Bytes)	dre	ssir 1 Le	Addressing Mode/ ruction Length (By) (B	Z te	S)							
		erand Size	,	ua:	иЯ ∃ ,b	-ERn/@ERn+		(Jq,b	999			Co	ndit	ijon	Condition Code	ge ge	No. of States* ¹
	Mnemonic		XX#	uy uy	_		@ @			_	Operation	_	I	N	>	င	Advanced
STC	STC CCR,Rd	В	-,	7							CCR→Rd8	1	I	l I	1	Ţ	٢
	STC EXR,Rd	В	- "	2							EXR→Rd8	1	1	1	1	Ţ	٢
	STC CCR,@ERd	8		7	4						CCR→@ERd		I	1			3
	STC EXR,@ERd	8		7	4						EXR→@ERd -		I	1			3
	STC CCR,@(d:16,ERd)	>			9						CCR→@(d:16,ERd)		I			_	4
	STC EXR,@(d:16,ERd)	≥			9						EXR→@(d:16,ERd)		1	1	1	Ţ	4
	STC CCR, @(d:32,ERd)	8			10	0					CCR→@(d:32,ERd)		1	1			9
	STC EXR,@(d:32,ERd)	8			10)					EXR→@(d:32,ERd)	_	1	1		-	9
	STC CCR,@-ERd	>				4					ERd32-2→ERd32,CCR→@ERd	\pm		1			4
	STC EXR,@-ERd	>				4					ERd32-2→ERd32,EXR→@ERd	$^{+}$	+	+	4	Τ	4
	STC CCR,@aa:16	≥					9				CCR→@aa:16	$^{+}$	+	1	+	Ţ	4
	STC EXR,@aa:16	>					9				EXR→@aa:16	+	<u> </u>	1		Ţ	4
	STC CCR,@aa:32	≥					∞				CCR→@aa:32	+	+	1	+	Ţ	5
	STC EXR,@aa:32	>					8				EXR→@aa:32	+		1	<u> </u>		5
ANDC	ANDC #xx:8,CCR	В	2								CCR^#xx:8→CCR	$\overset{\leftrightarrow}{\leftrightarrow}$	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	ANDC #xx:8,EXR	В	4								EXR^#xx:8→EXR	1		+	_	Ţ	2
ORC	ORC #xx:8,CCR	В	2								CCR∨#xx:8→CCR	$\overset{\Leftrightarrow}{\leftrightarrow}$	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	ORC #xx:8,EXR	В	4								EXR∨#xx:8→EXR	+		<u> </u>			2
XORC	XORC #xx:8,CCR	В	7								CCR⊕#xx:8→CCR	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	1
	XORC #xx:8,EXR	В	4								EXR⊕#xx:8→EXR	$^{+}$	\dashv	1		Ţ	2
NOP	NOP	I	\dashv	\dashv	\dashv	\dashv				7	PC←PC+2	\dagger	퓌	\pm	+	Π	-

(8) Block Transfer Instructions

			Addressing Mode/ Instruction Length (Bytes)	Adc	Ires	sing Len	Addressing Mode/ ruction Length (By	(By	rtes			
		erand Size	,	uЯ	d,ERn)	+uŊ∃@/uŊ∃		(Ja,h	999		Condition Code	No. of States*¹
	Mnemonic		wx#			-@	e @		 (a)	Operation	1 H N Z C	Advanced
EEPMOV	EEPMOV.B	1	_						\vdash	4 if R4L≠0		-4+2n *3
										Repeat @ER5→@ER6		
										ER5+1→ER5		
										ER6+1→ER6		
										R4L-1→R4L		
										Until R4L=0		
										else next;		
	EFPMOV.W	I							_	4 if R4≠0		-4+2n *3
										~		
										ER5+1→ER5		
										ER6+1→ER6		
										R4-1→R4		
										Until R4=0		
										else next;		

The number of states is the number of states required for execution when the instruction and its operands are located in on-chip memory. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction. ۲ * * Notes:

n is the initial value of R4L or R4.

Seven states for saving or restoring two registers, nine states for three registers, or eleven states for four registers.
 Cannot be used in the H8S/2238 Series.
 Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.
 Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.
 Retains its previous value when the result is zero; otherwise cleared to 0.
 Set to 1 when the divisor is negative; otherwise cleared to 0.
 Set to 1 when the divisor is zero; otherwise cleared to 0.
 Set to 1 when the quotient is negative; otherwise cleared to 0.
 One additional state is required for execution when EXR is valid.

A.2 Instruction Codes

Table A-2 shows the instruction codes.

10th byte 9th byte 8th byte 9 7th byte 6th byte Instruction Format MM 5th byte Σ Σ aps 0 ers 0 erd 4th byte 0 0 Σ 0 IMM 0 IMM Σ Σ disp disp 9 9 9 9 3rd byte 0 9 0 erd 0 erd 0 erd 0 erd 0 erd 1 ers 0 erd 5 5 5 Б 2nd byte 5 5 0 0 № ₹ MM ₹ disp O IMM 0 erd 4 0 S 0 S S 6 ည 9 S 9 ш က ω ⋖ ⋖ В ш М 5 ō 9 ပ ⋖ ω 5 ω 0 ш 9 6 9 ⋖ 9 ш ⋖ 0 ω 1st byte 0 2 ω 0 0 0 0 6 0 ш 9 0 0 9 9 2 4 В В ≥ ≥ _ _ _ _ В В В В ≥ ≥ _ В В В В В В В I I ١ BAND #xx:3, @aa:16 BAND #xx:3, @aa:32 BAND #xx:3, @aa:8 BAND #xx:3, @ERd BRA d:16 (BT d:16) BRN d:16 (BF d:16) ADD.L #xx:32,ERd AND.L #xx:32,ERd ADD.W #xx:16,Rd AND.W #xx:16,Rd Mnemonic ANDC #xx:8,CCR ANDC #xx:8,EXR BRA d:8 (BT d:8) BRN d:8 (BF d:8) AND.L ERS,ERd ADD.B #xx:8,Rd ADD.L ERS,ERd AND.B #xx:8,Rd BAND #xx:3,Rd ADDX #xx:8,Rd ADD.B Rs,Rd ADD.W Rs,Rd ADDS #1,ERd ADDS #2,ERd ADDS #4,ERd AND.B Rs,Rd AND.W Rs,Rd ADDX Rs,Rd Instruc-tion ADDS ANDC BAND ADDX ADD AND Bcc

Table A-2 Instruction Codes

Instruc-	Magazic	į						Instruction Format	n Format				
tion		Size		1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
Bcc	BHI d:8	I	4	2	dsib								
	BHI d:16	I	2	80	2 0	disp	d						
	BLS d:8	I	4	ဗ	dsip								
	BLS d:16	I	2	80	3 0	disp	d						
	BCC d:8 (BHS d:8)	I	4	4	dsip								
	BCC d:16 (BHS d:16)	١	2	8	4 0	dsib	d						
	BCS d:8 (BLO d:8)	١	4	2	dsip								
	BCS d:16 (BLO d:16)	I	2	80	5 0	disp	d						
	BNE d:8		4	9	dsip								
	BNE d:16	١	2	8	0 9	dsib	d						
	BEQ d:8	١	4	7	dsip								
	BEQ d:16	١	2	8	0 2	dsib	d						
	BVC d:8	I	4	80	dsip								
	BVC d:16	١	2	8	0 8	dsib	ds						
	BVS d:8	I	4	6	dsip								
	BVS d:16	1	2	8	0 6	disp	d						
	BPL d:8	١	4	٧	dsip								
	BPL d:16	1	2	8	0 Y	disp	d						
	BMI d:8		4	В	dsib								
	BMI d:16		2	8	B 0	disp	d						
	BGE d:8		4	၁	dsib								
	BGE d:16		2	8	C 0	disp	d						
	BLT d:8		4	٥	dsib								
	BLT d:16	ı	2	8	0 Q	disp	d						
	BGT d:8	I	4	ш	dsip								
	BGT d:16		2	8	E 0	disp	d						
	BLE d:8		4	ъ	dsib								
	BLE d:16		2	8	Р 0	disp	d						

Instruc-	N									Instru	Instruction Format	mat				
tion	Milelionic	Size	1st	1st byte	2nd byte	oyte	3rd byte	yte	4th byte	5th byte		6th byte	7th byte	8th byte	9th byte	10th byte
BCLR	BCLR #xx:3,Rd	В	7	2	ОІММ	Б										
	BCLR #xx:3,@ERd	В	7	D	0 erd	0	7	2	0 IMM 0							
	BCLR #xx:3,@aa:8	В	7	F	abs	Ş	7	2	0 IMM 0							
	BCLR #xx:3,@aa:16	В	9	Α	1	8		ak	abs		2 0 IMM	0 1				
	BCLR #xx:3,@aa:32	В	9	A	3	8				abs			7 2	0 MMI 0		
	BCLR Rn,Rd	В	9	2	Ľ	p										
	BCLR Rn,@ERd	В	7	۵	0 erd	0	9	2	u 0							
	BCLR Rn,@aa:8	В	7	ч	abs	ş	9	2	u 0							
	BCLR Rn,@aa:16	В	9	A	-	8		at	abs	9	2 rn	0				
	BCLR Rn,@aa:32	В	9	A	က	80				abs			6 2	0		
BIAND	BIAND #xx:3,Rd	В	7	9	1 IMM	Б										
	BIAND #xx:3,@ERd	В	7	ပ	0 erd	0	7	9	1 IMM 0							
	BIAND #xx:3,@aa:8	В	7	Ш	abs	, S	7	9	1 IMM 0							
	BIAND #xx:3,@aa:16	В	9	٨	-	0		at	abs) /	6 1 IMM	0				
	BIAND #xx:3,@aa:32	В	9	A	3	0				abs			9 /	1 IMM 0		
BILD	BILD #xx:3,Rd	В	2	7	1 IMM	Б										
	BILD #xx:3,@ERd	В	7	ပ	0 erd	0	7	7	1 IMM 0							
	BILD #xx:3,@aa:8	В	7	Е	abs	Ş	7	7	1 IMM 0							
	BILD #xx:3,@aa:16	В	9	Α	-	0		at	abs		7 1 IMM	0 1				
	BILD #xx:3,@aa:32	В	9	Α	3	0			,,	abs			7 7	1 IMM 0		
BIOR	BIOR #xx:3,Rd	В	7	4	1 IMM	Б										
	BIOR #xx:3,@ERd	В	7	ပ	0 erd	0	7	4	1 IMM 0							
	BIOR #xx:3, @aa:8	В	7	Е	abs	Ş	7	4	1 IMM 0							
	BIOR #xx:3,@aa:16	В	9	A	-	0		at	abs	, ,	4 1 IMM	0				
	BIOR #xx:3,@aa:32	В	9	Α	3	0				abs			7 4	1 IMM 0		

Instruc-	Mnemonic	ا							Inst	ruction	Instruction Format				
tion		azic	1st byte	yte	2nd byte	byte	3rd byte	4th byte	5th byte	yte	6th byte	7th byte	8th byte	9th byte	10th byte
BIST	BIST #xx:3,Rd	В	9	7	1 IMM	rd									
	BIST #xx:3,@ERd	В	7	D	0 erd	0	2 9	1 IMM 0							
	BIST #xx:3,@aa:8	В	7	Ь	aţ	abs	2 9	1 IMM 0							
	BIST #xx:3,@aa:16	В	9	А	1	8	abs	Sı	9	7 1	1 IMM 0				
	BIST #xx:3,@aa:32	В	9	А	3	8		a	abs			2 9	1 IMM 0		
BIXOR	BIXOR #xx:3,Rd	В	7	2	1 IMM	rd									
	BIXOR #xx:3,@ERd	В	7	С	0 erd	0	2 2	1 IMM 0							
	BIXOR #xx:3,@aa:8	В	7	Е	at	abs	2 2	1 IMM 0							
	BIXOR #xx:3,@aa:16	В	9	А	1	0	abs	Sı	7	5 1	1 IMM 0				
	BIXOR #xx:3,@aa:32	В	9	А	3	0		a	abs			2 2	1 IMM 0		
BLD	BLD #xx:3,Rd	В	7	7	имі о	rd									
	BLD #xx:3,@ERd	В	7	С	0 erd	0	7 7	о ммі о							
	BLD #xx:3,@aa:8	В	7	В	at	abs	7 7	0 IMMI 0							
	BLD #xx:3,@aa:16	В	9	А	1	0	abs	Sı	7	0 2	0 MMI 0				
	BLD #xx:3,@aa:32	В	9	А	3	0		a	abs			7 7	0 MMI 0		
BNOT	BNOT #xx:3,Rd	В	7	1	опми	rd									
	BNOT #xx:3,@ERd	В	7	D	0 erd	0	7 1	0 IMM 0							
	BNOT #xx:3,@aa:8	В	7	F	ak	abs	7 1	0 IMM 0							
	BNOT #xx:3,@aa:16	В	9	Α	1	8	abs	S	7	1 0	0 MMI 0				
	BNOT #xx:3,@aa:32	В	9	А	3	8		ä	abs			7 1	0 IMM 0		
	BNOT Rn,Rd	В	9	1	Ŀ	p.									
	BNOT Rn, @ERd	В	7	D	0 erd	0	6 1	rn 0							
	BNOT Rn, @aa:8	В	7	F	ak	abs	6 1	rn 0							
	BNOT Rn,@aa:16	В	9	А	1	8	abs	S	9	1	rn 0				
	BNOT Rn, @aa:32	В	9	Α	က	8		ซื	abs			6 1	rn 0		

01110		Ĺ								-	nstruction	Instruction Format				
tion	Mnemonic	Size		1st byte	2nd byte	yte	3rd byte	/te	4th byte	2	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
BOR	BOR #xx:3,Rd	В	7	4	О ІММ	ъ										
	BOR #xx:3,@ERd	В	2	C	0 erd	0	7	4 (о мміо							
	BOR #xx:3,@aa:8	В	7	В	abs		7	4	O IMMI O							
	BOR #xx:3,@aa:16	В	9	Α	1	0		abs	S	7	4	0 IMMI 0				
	BOR #xx:3,@aa:32	В	9	A	3	0				abs			7 4	0 MMI 0		
BSET	BSET #xx:3,Rd	В	2	0	о імм	rd										
	BSET #xx:3,@ERd	В	7	٥	0 erd	0		0	о мміо							
	BSET #xx:3,@aa:8	В	2	Ь	abs		7	0	O MMI O							
	BSET #xx:3,@aa:16	В	9	A	-	8		abs	S	7	0	0 MMI 0				
	BSET #xx:3,@aa:32	В	9	A	3	8				abs			7 0	0 IMM 0		
	BSET Rn,Rd	В	9	0	٤	p 2										
	BSET Rn,@ERd	В	7	D	0 erd	0	9	0	rn 0							
	BSET Rn,@aa:8	В	7	ь	abs	·^	9	0	u.							
	BSET Rn,@aa:16	В	9	A	1	8		abs	s	9	0	rn 0				
	BSET Rn,@aa:32	В	9	Α	3	8				abs			0 9	rn 0		
BSR	BSR d:8	Ī	2	2	dsib	C										
	BSR d:16	1	2	C	0	0		disp	d							
BST	BST #xx:3,Rd	В	9	7	имі о	ъ										
	BST #xx:3,@ERd	В	7	۵	0 erd	0	9	7	0 MMI 0							
	BST #xx:3,@aa:8	В	7	ш	aps	"	9	7	0 MMI 0							
	BST #xx:3,@aa:16	В	9	٨	-	8		abs	s	9	7	0 IMM 0				
	BST #xx:3,@aa:32	В	9	Α	3	8				abs			2 9	0 IMM 0		
BTST	BTST #xx:3,Rd	В	2	3	имі о	rg D										
	BTST #xx:3,@ERd	В	7	ပ	0 erd	0	7	₀	0 MMI 0							
	BTST #xx:3,@aa:8	В	7	ш	aps	,	7	<u>ی</u>	0 MMI 0							
	BTST #xx:3,@aa:16	В	9	∢	-	0		aps	s	7	ზ	0 IMMI 0				
	BTST #xx:3,@aa:32	В	9	4	က	0				aps			7 3	0 IMM 0		
	BTST Rn,Rd	В	9	3	٤	p										
	BTST Rn,@ERd	В	7	ပ	0 erd	0	9	က	rn 0							

Instruc-	Magazia	į								Instruct	Instruction Format				
tion		Size	1st	1st byte	2nd byte		3rd byte	4th byte	te	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
BTST	BTST Rn,@aa:8	В	7	Е	abs	9	3	Ŀ	0						
	BTST Rn,@aa:16	В	9	Α	1 0		at	abs		6 3	rn 0				
	BTST Rn,@aa:32	В	9	۷	3 0				abs			6 3	rn 0		
BXOR	BXOR #xx:3,Rd	В	7	2	0 IMM rd										
	BXOR #xx:3,@ERd	В	7	ပ	0 erd 0	7	2	ОІММ	0						
	BXOR #xx:3, @aa:8	В	7	ш	abs	7	2	о імм	0						
	BXOR #xx:3,@aa:16	В	9	Α	1 0		at	abs		2 2	0 IMM 0				
	BXOR #xx:3,@aa:32	В	9	٧	0 ε				abs			2 2	0 MMI 0		
CLRMAC	CLRMAC CLRMAC	Ι	Can	not be	Cannot be used in the H8S/2238 Series	H8S/22	38 Serie	S							
CMP	CMP.B #xx:8,Rd	В	Α	rd	MMI										
	CMP.B Rs,Rd	В	1	С	rs rd										
	CMP.W #xx:16,Rd	8	7	6	2 rd		Ĭ.	IMM							
	CMP.W Rs,Rd	Μ	1	۵	p. s.										
	CMP.L #xx:32,ERd	Г	7	Α	2 0 6	erd			IMM						
	CMP.L ERs,ERd	L	1	Ъ	1 ers 0 eı	erd									
DAA	DAA Rd	В	0	ч	0 rd										
DAS	DAS Rd	В	1	Ь	0 rd										
DEC	DEC.B Rd	В	1	Α	0 rd										
	DEC.W #1,Rd	8	1	В	5 rd										
	DEC.W #2,Rd	8	1	В	D										
	DEC.L #1,ERd	_	-	В	7 0 el	erd									
	DEC.L #2,ERd	L	1	В	F 0 el	erd									
DIVXS	DIVXS.B Rs,Rd	В	0	1	0 О	2	1	rs	rd						
	DIVXS.W Rs,ERd	8	0	1	D 0	2	3	rs 0	erd						
DIVXU	DIVXU.B Rs,Rd	В	2	1	rs rd										
	DIVXU.W Rs,ERd	×	2	3	rs 0 er	erd									
EEPMOV	EEPMOV EEPMOV.B	I	7	В	2 C	2	6	8	ъ						
	EEPMOV.W	1	7	В	D 4	2	<u></u>	∞	ш						

1										-	Instruction Format	n Forn)at				
tion	Mnemonic	Size		1st byte	2nd byte	byte	3rd byte		4th byte	5tl	5th byte	6th byte	oyte	7th byte	8th byte	9th byte	10th byte
EXTS	EXTS.W Rd	≥	-	7	_	2											
	EXTS.L ERd	Г	1	7	ш	0 erd											
EXTU	EXTU.W Rd	Μ	1	7	2	p											
	EXTU.L ERd	٦	1	7	7	0 erd											
INC	INC.B Rd	В	0	٧	0	Þ											
	INC.W #1,Rd	Μ	0	В	2	Þ											
	INC.W #2,Rd	Μ	0	В	۵	Þ											
	INC.L #1,ERd	L	0	В	7	0 erd											
	INC.L #2,ERd	٦	0	В	ш	0 erd											
JMP	JMP @ERn		2	6	0 ern	0											
	JMP @aa:24	I	2	∢			abs										
	JMP @@aa:8		5	В	abs	SC											
JSR	JSR @ERn	Ī	2	۵	0 ern	0											
	JSR @aa:24	I	2	В			abs										
	JSR @@aa:8		5	F	abs	SC											
LDC	LDC #xx:8,CCR	В	0	7	IMM	Σ											
	LDC #xx:8,EXR	В	0	1	4	-	0	7	IMM								
	LDC Rs,CCR	В	0	3	0	LS.											
	LDC Rs,EXR	В	0	3	-	LS.											
	LDC @ERs,CCR	≥	0	-	4	0	9	9 0	ers 0								
	LDC @ERs,EXR	≥	0	-	4	-	9	9 0	ers 0								
	LDC @(d:16,ERs),CCR	8	0	1	4	0	9	F 0 6	ers 0		qi	dsib					
	LDC @(d:16,ERs),EXR	8	0	1	4	-	9	F 0 6	ers 0		qi	dsip					
	LDC @(d:32,ERs),CCR	8	0	1	4	0	7	8 0 6	ers 0	9	В	2	0		diķ	disp	
	LDC @(d:32,ERs),EXR	>	0	1	4	-	7	8 0 6	ers 0	9	В	7	0		dị	disp	
	LDC @ERs+,CCR	8	0	1	4	0	9	D 0 e	ers 0								
	LDC @ERs+,EXR	>	0	1	4	-	9	D 0	ers 0								
	LDC @aa:16,CCR	8	0	1	4	0	9	В	0 0		al	abs					
	LDC @aa:16,EXR	>	0	-	4	-	9	В	0 0		a	abs					

Instruc-	Macmonia	[;									Instructio	Instruction Format				
tion		Size	1st l	st byte	2nd	2nd byte	3rd byte	byte	4th	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
ГРС	LDC @aa:32,CCR	Μ	0	-	4	0	9	В	7	0		at	abs			
	LDC @aa:32,EXR	8	0	-	4	-	9	В	2	0		at	abs			
ГРМ	LDM.L @SP+, (ERn-ERn+1)	٦	0	-	1	0	9	D	2	0 em+1						
	LDM.L @SP+, (ERn-ERn+2)	_	0	1	2	0	9	D	2	0 em+2						
	LDM.L @SP+, (ERn-ERn+3)	٦	0	,	3	0	9	D	7	0 em+3						
LDMAC	LDMAC LDMAC ERS,MACH	7	Can	not be	used ir	the H	3S/223	Cannot be used in the H8S/2238 Series	(0							
	LDMAC ERS,MACL	_														
MAC	MAC @ERn+,@ERm+	Ι														
MOV	MOV.B #xx:8,Rd	В	ш	rd	≧	IMM										
	MOV.B Rs,Rd	В	0	ပ	S	5										
	MOV.B @ERs,Rd	В	9	8	0 ers	5										
	MOV.B @(d:16,ERs),Rd	В	9	ш	0 ers	5		disp	3p							
	MOV.B @(d:32,ERs),Rd	В	7	8	0 ers	0	9	٧	7	5		dis	dsib			
	MOV.B @ERs+,Rd	В	9	С	0 ers	Б										
	MOV.B @aa:8,Rd	В	2	rd	a	abs										
	MOV.B @aa:16,Rd	В	9	Α	0	Б		abs	S							
	MOV.B @aa:32,Rd	В	9	Α	2	Б				abs	s					
	MOV.B Rs,@ERd	В	9	8	1 erd	LS.										
	MOV.B Rs, @(d:16,ERd)	В	9	Е	1 erd	LS.		disp	ds							
	MOV.B Rs, @(d:32,ERd)	В	7	8	0 erd	0	9	Α	Α	S.		diķ	disp			
	MOV.B Rs,@-ERd	В	9	ပ	1 erd	ត										
	MOV.B Rs,@aa:8	В	3	rs	a	abs										
	MOV.B Rs,@aa :16	В	9	Α	8	rs		abs	S							
	MOV.B Rs,@aa:32	В	9	Α	A	rs				abs	S					
	MOV.W #xx:16,Rd	8	7	6	0	Б		IMM	Σ							
	MOV.W Rs,Rd	≥	0	۵	ទ	Б										
	MOV.W @ERs,Rd	8	9	6	0 ers	Б										
	MOV.W @(d:16,ERs),Rd	≥	9	ш	0 ers	5		disp	уb							
	MOV.W @(d:32,ERs),Rd	≥	7	8	0 ers	0	9	В	7	5		dį	disp			

- Cirtain			L							Instruction Format	ion Fo	rmat				
tion	Mnemonic	Size		st byte	2nd byte	yte	3rd byte	ţe	4th byte	5th byte		6th byte	7th byte	8th byte	9th byte	10th byte
MOV	MOV.W @ERs+,Rd	≥	9	۵	0 ers	5										
	MOV.W @aa:16,Rd	W	9	В	0	rd		abs								
	MOV.W @aa:32,Rd	≥	9	Ф	7	5			B	abs						
	MOV.W Rs, @ERd	≥	9	6	1 erd	S.										
	MOV.W Rs, @(d:16,ERd)	M	9	ъ	1 erd	rs		disp								
	MOV.W Rs, @(d:32,ERd)	M	2	8	0 erd	0	9	В	A rs			dsib	d.			
	MOV.W Rs, @-ERd	M	9	۵	1 erd	rs										
	MOV.W Rs, @aa:16	≥	9	Ф	∞	S.		aps	,							
	MOV.W Rs,@aa:32	Μ	9	В	٧	rs			a	abs						
	MOV.L #xx:32,Rd	_	7	∢	0	0 erd			≧	IMM						
	MOV.L ERS,ERd	_	0	ш	1 ers	0 erd										
	MOV.L @ERS,ERd	_	0	-	0	0	9	6	0 ers 0 erd							
	MOV.L @(d:16,ERs),ERd	٦	0	-	0	0	9	Ь Р	0 ers 0 erd		disp					
	MOV.L @(d:32,ERs),ERd	٦	0	-	0	0	7	8	0 ers 0	9 9	2	0 erd		dis	disp	
	MOV.L @ERs+,ERd	٦	0	-	0	0	9	0 0	ers 0 erd							
	MOV.L @aa:16 ,ERd	٦	0	-	0	0	9	В	0 0 erd		abs					
	MOV.L @aa:32 ,ERd	Г	0	1	0	0	9	В	2 0 erd			abs	S			
	MOV.L ERs,@ERd	Г	0	1	0	0	9	9 1	1 erd 0 ers							
	MOV.L ERs, @ (d:16,ERd)	Г	0	1	0	0	9	F 1	1 erd 0 ers		disp					
	MOV.L ERS, @ (d:32, ERd)*1	_	0	-	0	0		8	0 erd 0	9 9	∢	0 ers		ë	disp	
	MOV.L ERs,@-ERd	Г	0	1	0	0	9	1	1 erd 0 ers							
	MOV.L ERs,@aa:16	_	0	-	0	0	9	В	8 0 ers		aps					
	MOV.L ERs,@aa:32	L	0	1	0	0	9	В	A 0 ers			abs	S			
MOVFPE	MOVFPE MOVFPE @aa:16,Rd	В	Can	not be	used in	the H8	Cannot be used in the H8S/2238 Series	Series								
MOVTPE	MOVTPE MOVTPE Rs,@aa:16	В														
MULXS	MULXS.B Rs,Rd	В	0	-	ပ	0	2	0	rs							
	MULXS.W Rs,ERd	≯	0	-	O	0	2	2	rs 0 erd							
MULXU	MULXU MULXU.B Rs,Rd	В	2	0	ত	Б										
	MULXU.W Rs,ERd	≥	2	7	<u>δ</u>	0 erd										

Instruc-	Mnemonic	į							Instruction Format	n Format				
tion		Size	1st l	1st byte	2nd	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
NEG	NEG.B Rd	В	-	7	8	D.								
	NEG.W Rd	8	-	7	6	5								
	NEG.L ERd	_	-	7	В	0 erd								
NOP	NOP	ı	0	0	0	0								
NOT	NOT.B Rd	В	-	7	0	5								
	NOT.W Rd	>	-	7	-	5								
	NOT.L ERd	_	-	7	3	0 erd								
OR	OR.B #xx:8,Rd	В	ပ	rd	≧	MMI								
	OR.B Rs,Rd	В	7	4	rs	Þ								
	OR.W #xx:16,Rd	M	7	6	4	5	IMM	M						
	OR.W Rs,Rd	M	9	4	rs	Þ								
	OR.L #xx:32,ERd	_	7	А	4	0 erd		MMI	M					
	OR.L ERS,ERd	_	0	-	ь	0	6 4	0 ers 0 erd						
ORC	ORC #xx:8,CCR	В	0	4	_≧	MMI								
	ORC #xx:8,EXR	В	0	1	4	1	0 4	IMM						
POP	POP.W Rn	Μ	9	D	2	٤								
	POP.L ERn	L	0	1	0	0	6 D	7 0 ern						
PUSH	PUSH.W Rn	W	9	D	Ь	E								
	PUSH.L ERn	L	0	1	0	0	6 D	F 0 ern						
ROTL	ROTL.B Rd	В	1	2	8	rd								
	ROTL.B #2, Rd	В	1	2	C	Б								
	ROTL.W Rd	×	1	2	6	Þ								
	ROTL.W #2, Rd	×	1	2	D	Þ								
	ROTL.L ERd	Г	1	2	В	0 erd								
	ROTL.L #2, ERd	_	-	2	ь	0 erd								

lnetriic.									Instruction Format	n Format				
tion	Mnemonic	Size		1st byte	2nd byte	yte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
ROTR	ROTR.B Rd	В	1	3	8	rd								
	ROTR.B #2, Rd	В	1	3	S	rd								
	ROTR.W Rd	W	1	3	6	ā								
	ROTR.W #2, Rd	W	1	3	О	rd								
	ROTR.L ERd	٦	1	3	а	0 erd								
	ROTR.L #2, ERd	٦	1	3	ч	0 erd								
ROTXL	ROTXL.B Rd	В	1	2	0	rd								
	ROTXL.B #2, Rd	В	1	2	4	ā								
	ROTXL.W Rd	W	1	2	-	ā								
	ROTXL.W #2, Rd	Μ	1	2	2	ā								
	ROTXL.L ERd	_	-	2	m	0 erd								
	ROTXL.L #2, ERd	٦	1	2) /	0 erd								
ROTXR	ROTXR.B Rd	В	1	3	0	p								
	ROTXR.B #2, Rd	В	1	3	4	Б								
	ROTXR.W Rd	×	1	3	-	ē								
	ROTXR.W #2, Rd	W	1	3	2	p								
	ROTXR.L ERd	Г	1	3	3	0 erd								
	ROTXR.L #2, ERd	L	1	3)	0 erd								
RTE	RTE	Ι	2	9	7	0								
RTS	RTS	Ι	2	4	7	0								
SHAL	SHAL.B Rd	В	1	0	8	rd								
	SHAL.B #2, Rd	В	1	0	ပ	Б								
	SHAL.W Rd	8	1	0	6	Б								
	SHAL.W #2, Rd	≯	-	0	Δ	Б								
	SHAL.L ERd	_	-	0	В	0 erd								
	SHAL.L #2, ERd	_	-	0	ш	0 erd								

Instruc-										=	Instruction Format	n Format	_				
tion	миешоше	Size	1st byte	yte	2nd byte	byte	3rd byte		4th byte	5th	5th byte	6th byte		7th byte	8th byte	9th byte	10th byte
SHAR	SHAR.B Rd	М	-	-	8	D.											
	SHAR.B #2, Rd	В	-	-	ပ	Þ											
	SHAR.W Rd	8	-	1	6	p											
	SHAR.W #2, Rd	8	-	1	۵	p											
	SHAR.L ERd	_	-	1	В	0 erd											
	SHAR.L #2, ERd	_	-	1	ш	0 erd											
SHLL	SHLL.B Rd	В	-	0	0	p											
	SHLL.B #2, Rd	В	-	0	4	p											
	SHLL.W Rd	>	-	0	-	5											
	SHLL.W #2, Rd	>	-	0	2	Þ											
	SHLL.L ERd	_	-	0	3	0 erd											
	SHLL.L #2, ERd	_	-	0	7	0 erd											
SHLR	SHLR.B Rd	В	-	1	0	p											
	SHLR.B #2, Rd	В	-	1	4	p											
	SHLR.W Rd	M	1	1	1	rd											
	SHLR.W #2, Rd	8	1	1	2	Þ											
	SHLR.L ERd	Г	1	1	3	0 erd											
	SHLR.L #2, ERd	Г	1	1	7	0 erd											
SLEEP	SLEEP	Ι	0	1	8	0											
STC	STC.B CCR,Rd	В	0	2	0	p											
	STC.B EXR,Rd	В	0	2	1	p											
	STC.W CCR,@ERd	M	0	1	4	0	9	9 1	1 erd 0								
	STC.W EXR,@ERd	8	0	1	4	1	9	9 1	erd 0								
	STC.W CCR, @ (d:16,ERd)	8	0	1	4	0	9	F 1	1 erd 0		disp	d.					
	STC.W EXR, @(d:16,ERd)	8	0	1	4	1	9	F 1	1 erd 0		disp	d.					
	STC.W CCR, @(d:32,ERd)	>	0	-	4	0	7	8	erd 0	9	Ф	Ψ	0		ō	disp	
	STC.W EXR, @(d:32, ERd)	>	0	-	4	-	7	8	erd 0	9	В	∢	0		ō	disp	
	STC.W CCR,@-ERd	>	0	-	4	0	9	7	1 erd 0								
	STC.W EXR,@-ERd	8	0	1	4	-	9	D 1	1 erd 0								

											towns 7 motherman	10.11.07				
Instruc-	Mnemonic	Size						ľ			ווופוו מכוור	II Ciliat				
tion			1st	1st byte	2nd byte	yte	3rd byte	yte	4th byte	yte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
STC	STC.W CCR,@aa:16	W	0	1	4	0	9	В	8	0	at	abs				
	STC.W EXR,@aa:16	W	0	1	4	1	9	В	8	0	at	abs				
	STC.W CCR,@aa:32	W	0	1	4	0	9	В	Α	0		abs	S			
	STC.W EXR,@aa:32	W	0	1	4	1	9	В	Α	0		abs	SC			
STM	STM.L(ERn-ERn+1), @-SP	٦	0	1	1	0	9	D	ч	0 ern						
	STM.L (ERn-ERn+2), @-SP	Γ	0	1	2	0	9	D	ч	0 ern						
	STM.L (ERn-ERn+3), @-SP	L	0	1	3	0	9	D	ч	0 ern						
STMAC	STMAC MACH,ERd	٦	Can	not be	Cannot be used in the H8S/2238 Series	the H8	\$/2238	Series								
	STMAC MACL,ERd	٦														
SUB	SUB.B Rs,Rd	В	1	8	LS.	D.										
	SUB.W #xx:16,Rd	M	7	9	3	ъ		IMM	>							
	SUB.W Rs,Rd	M	-	6		ā										
	SUB.L #xx:32,ERd	Γ	7	А	3 (0 erd				IMM	M					
	SUB.L ERS,ERd	L	1	А	1 ers 0 erd) erd										
SUBS	SUBS #1,ERd	٦	1	В	0	0 erd										
	SUBS #2,ERd	٦	1	В	8	0 erd										
	SUBS #4,ERd	L	1	В	6	0 erd										
SUBX	SUBX #xx:8,Rd	В	Ф	<u>p</u>	MM	5										
	SUBX Rs,Rd	В	-	Е	ភ	Þ										
TAS	TAS @ERd*2	В	0	1	ш	0	7	В	0 erd	ပ						
TRAPA	TRAPA #x:2	Ι	2	7	00:IMM	0										
XOR	XOR.B #xx:8,Rd	В	D	rd	MMI	>										
	XOR.B Rs,Rd	В	-	5	เร	p										
	XOR.W #xx:16,Rd	≯	7	6	2	Б		M	>							
	XOR.W Rs,Rd	8	9	5	ទ	Б										
	XOR.L #xx:32,ERd	_	7	Α	2	0 erd				IMM	M					
	XOR.L ERS,ERd	_	0	-	ш	0	9	2	0 ers 0 erd	0 erd						

Instruc-	Mnemonic	:					Instructio	Instruction Format				
tion		97IC	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	7th byte	8th byte	9th byte	10th byte
XORC	XORC #xx:8,CCR	В	0 5	MMI								
	XORC #xx:8,EXR	М	0	4	0	IMM						

Notes: *1Bit 7 of the 4th byte of the MOV.L ERs, @(d:32,ERd) instruction can be either 1 or 0.

*20nly register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

Legend

Absolute address (8, 16, 24, or 32 bits) Immediate data (2, 3, 8, 16, or 32 bits) M M abs:

Displacement (8, 16, or 32 bits)

Register field (4 bits specifying an 8-bit or 16-bit register. The symbols rs, rd, and rn correspond to operand symbols Rs, Rd, and Rn.) Register field (3 bits specifying an address register or 32-bit register. The symbols ers, erd, ern, and erm correspond to operand ers, erd, ern, erm: rs, rd, rn: disp:

symbols ERs, ERd, ERn, and ERm.)

The register fields specify general registers as follows.

Addres	Address Register				
32-Bit Register	egister	16-Bit	16-Bit Register	8-Bit	8-Bit Register
Register Field	General Register	Register Field	General Register	Register Field	General Register
000	ERO	0000	RO	0000	ROH
001	ER1	0001	R1	0001	R1H
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
111	ER7	0111	R7	0111	R7H
		1000	Е0	1000	ROL
		1001	Е1	1001	R1L
		•	•	•	•
		•	•	•	•
		•	•	•	•
		1111	E7	1111	R7L

A.3 Operation Code Map

Table A-3 shows the operation code map.

Table A-3 Operation Code Map (1)

		ш	Table A.3(2)	Table A.3(2)			BLE												
		ш	ADDX	SUBX			BGT	JSR		Table A.3(3)									
		٥	MOV	CMP			BLT		MOV	Tabl									
		O	W	C			BGE	BSR											
His 0. His 1.		В	Table A.3(2)	Table A.3(2)			BMI			EEPMOV									
ant bit of B ant bit of B		A	Table A.3(2)	Table A.3(2)			BPL	JMP	Table A.3(2)										
 Instruction when most significant bit of BH is 0. Instruction when most significant bit of BH is 1. 		6	٥	B			BVS		2	Table A.3(2)									
n when mo n when mo		8	ADD	SUB		<u>n</u>	BVC	Table A.3(2)	MOV	MOV	۵	×	Ы	XE 3X	~	ğ.	D	2	
Instruction		7	LDC	Table A.3(2)	Č		BEQ	TRAPA	BST BIST	BLD BILD	ADD	ADDX	CMP	SUBX	OR	XOR	AND	MOV	
\		9	ANDC	AND			BNE	RTE	AND	BAND									
OR XORC BCS BCS BCS BCS BCS BCS BCS BCS BCS BC																			
	H BL	3	LDC */	Table A.3(2)			BLS	DIVXU	H	200									
<u> </u>	A .	2	STC *I	Table A.3(2)			BH	MULXU	i c	BCLK									00,001
1st byte	T K	-	Table 8 A.3(2)	Table A.3(2)			BRN	DIVXU	Š	BNO									100
Instruction code		0	NOP	Table A.3(2)			BRA	MULXU	l c	BSE									
Instructik		4 4	0	-	2	က	4	2	9	7	∞	6	A	ш	၁	Ω	В	ш	1

Table A-3 Operation Code Map (2)

l byte	BL
2nd	ВН
st byte	AL
1st	АН

Instruction code

ш	Table A.3(3)		INC		SHAL	SHAR	ROTL	ROTR	EXTS		DEC		BLE			
ш	TAS												BGT			
٥	Table A.3(3)		INC						EXTS		DEC		BLT			
O	Table A.3(3)	۵		MOV	SHAL	SHAR	ROTL	ROTR		B		ΙΡ	BGE	MOVTPE*		
В		ADD		M					NEG	SUB		CMP	BMI			
∢	CLRMAC*												BPL	MOV		
6			ADDS		AL.	٩R	7	뀖	Ö		BS		BVS			
8	SLEEP		AD		SHAL	SHAR	ROTL	ROTR	NEG		SUBS		BVC	MOV		
7			INC		SHLL	SHLR	ROTXL	ROTXR	EXTU		DEC		BEQ			
9	MAC*												BNE		AND	AND
5			INC						EXTU		DEC		BCS		XOR	XOR
4	LDC				SHLL	SHLR	ROTXL	ROTXR					BCC	MOVFPE*	OR	OR
က	STM								NOT				BLS	Table A.3(4)	SUB	SUB
2	$\left[\left[\cdot \right] \right]$												BHI	MOV	CMP	CMP
-	LDM					LR	뉟	XR	TC				BRN	Table A.3(4)	ADD	ADD
0	MOV	INC	ADDS	DAA	SHLL	SHLR	ROTXL	ROTXR	NOT	DEC	SUBS	DAS	BRA	MOV	MOV	MOV
BH	01	0A	0B	0F	10	11	12	13	17	14	18	1F	28	6A	79	7A

Note: * Cannot be used in the H8S/2238 Series.

Table A-3 Operation Code Map (3)

byte	DL
4th l	품
3rd byte	귕
3rd	공
2nd byte	BL
2nd	H
st byte	AL
1st	AH

Instruction code

Instruction when most significant bit of DH is 0.
 Instruction when most significant bit of DH is 1.

Ь											
Е											
a											
0											
В											
٧											
6											
8											
2					BLD BILD	BST BIST			BLD BILD	BST BIST	
9			AND		BAND BIAND				BAND BIAND		
2			XOR		3XOR BIXO				SXOR BIXC		
4			OR		BOR BIO				BOR BIO		
ε		DIVXS		BTST	BTST			BTST	BTST		
2	MULXS					BCLR	BCLR			BCLR	BCLR
1		DIVXS				BNOT	BNOT			BNOT	BNOT
0	MULXS					BSET	BSET			BSET	BSET
AH AL BH BL CH	01C05	01D05	01F06	7Cr06 *1	7Cr07 *1	7Dr06 *1	7Dr07 *1	7Eaa6 *2	7Eaa7 *2	7Faa6 *2	7Faa7 *2

Notes: *1 r is the register specification field. *2 aa is the absolute address specification.

Table A-3 Operation Code Map (4)

		Instruction when most significant bit of FH is 0. Instruction when most significant bit of FH is 1.
yte	FL	
6th byte	표	
byte	EL	
5th byte	ЕН	
oyte	CL DH DL	
4th byte	Ы	
3rd byte	CL	
3rd	СН	
2nd byte	ТВ	
2nd	ВН	
1st byte	AL	
1st	АН	
Instruction code		

н				
Е				
D				
С				
В				
А				
6				
8				
7		BLD BILD	BST BIST	
9		BAND BIAND		
5		BOR BXOR BAND BLD BIOR BIXOR BIAND BILD		
4		BOR BIOR		
ε		200		
2				2 2 2 2
1			- C	
0			- L	- - - - - - - - - - - - - - - - - - -
ЕL АНАЦВНВЦСНСГОНОЦЕН	6A10aaaa6*	6A10aaaa7*	6A18aaaa6*	6A18aaaa7*

1				
	8th byte	H		
	8th I	НН		
	7th byte	ЭЭ		
	7th	B H		
	th byte	FL		
	6th	FH		
	5th byte	EL		
	5th	ЕН		
	2nd byte 3rd byte 4th byte	DL		
		DH		
		CL		
		СН		
		BL		
		ВН		
	st byte	AL		
	1st	АН		
	Instruction code			

- Instruction when most significant bit of HH is 0. - Instruction when most significant bit of HH is 1.

Ь				
Е				
Q				
2				
В				
А				
6				
8				
7		BLD BILD	BST BIST	
9		BAND BIAND		
2		BIOR BXOR BAND BLD BIOR BIXOR BILD		
4		BOR BIOR		
3	TOTO	0		
2			BCLR	
1			BNOT	
0			Taga	- DO
AHALBHBL FHFLGH	6A30aaaaaaaa6*	6A30aaaaaaa7*	6A38aaaaaaa6*	6A38aaaaaaa7*

Note: * aa is the absolute address specification.

A.4 Number of States Required for Instruction Execution

The tables in this section can be used to calculate the number of states required for instruction execution by the H8S/2000 CPU. Table A-5 indicates the number of instruction fetch, data read/write, and other cycles occurring in each instruction. Table A-4 indicates the number of states required for each cycle, depending on its size. The number of states required for execution of an instruction can be calculated from these two tables as follows:

Execution states =
$$I \times S_I + J \times S_J + K \times S_K + L \times S_L + M \times S_M + N \times S_N$$

Examples: Advanced mode, program code and stack located in external memory, on-chip supporting modules accessed in two states with 8-bit bus width, external devices accessed in three states with one wait state and 16-bit bus width.

1. BSET #0, @FFFFB3:8

From table A-5:

$$I = L = 2$$
, $J = K = M = N = 0$

From table A-4:

$$S_1 = 4$$
, $S_1 = 2$

Number of states required for execution = $2 \times 4 + 2 \times 2 = 12$

2. JSR @@30

From table A-5:

$$I = J = K = 2, L = M = N = 0$$

From table A-4:

$$S_I = S_I = S_K = 4$$

Number of states required for execution = $2 \times 4 + 2 \times 4 + 2 \times 4 = 24$

Table A-4 Number of States per Cycle

Accore	Conditions

	On-Chip Supporting		External Device					
			Module		8-Bit Bus		16-Bit Bus	
Cycle		On-Chip Memory		16-Bit Bus		3-State Access		
Instruction fetch	Sı	1	4	2	4	6 + 2m	2	3 + m
Branch address read	S _J	_						
Stack operation	S _K	_						
Byte data access	S _L	_	2	_	2	3 + m		
Word data access	S _M	_	4	_	4	6 + 2m	-	
Internal operation	S _N	1	1	1	1	1	1	1

m: Number of wait states inserted into external device access

Table A-5 Number of Cycles in Instruction Execution

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
ADD	ADD.B #xx:8,Rd	1					
	ADD.B Rs,Rd	1					
	ADD.W #xx:16,Rd	2					
	ADD.W Rs,Rd	1					
	ADD.L #xx:32,ERd	3					
	ADD.L ERs,ERd	1					
ADDS	ADDS #1/2/4,ERd	1					
ADDX	ADDX #xx:8,Rd	1					
	ADDX Rs,Rd	1					
AND	AND.B #xx:8,Rd	1			10		.,
	AND.B Rs,Rd	1					
	AND.W #xx:16,Rd	2					
	AND.W Rs,Rd	1					
	AND.L #xx:32,ERd	3					
	AND.L ERs,ERd	2					
ANDC	ANDC #xx:8,CCR	1		**	-11		
	ANDC #xx:8,EXR	2					
BAND	BAND #xx:3,Rd	1			16		
	BAND #xx:3,@ERd	2			1		
	BAND #xx:3,@aa:8	2			1		
	BAND #xx:3,@aa:16	3			1		
	BAND #xx:3,@aa:32	4			1		
Bcc	BRA d:8 (BT d:8)	2					
	BRN d:8 (BF d:8)	2					
	BHI d:8	2					
	BLS d:8	2					
	BCC d:8 (BHS d:8)	2					
	BCS d:8 (BLO d:8)	2					
	BNE d:8	2					
	BEQ d:8	2					
	BVC d:8	2					
	BVS d:8	2					
	BPL d:8	2					

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	Ī	J	K	L	М	N
Всс	BMI d:8	2					
	BGE d:8	2					
	BLT d:8	2					
	BGT d:8	2					
	BLE d:8	2					
	BRA d:16 (BT d:16)	2					1
	BRN d:16 (BF d:16)	2					1
	BHI d:16	2					1
	BLS d:16	2					1
	BCC d:16 (BHS d:16)	2					1
	BCS d:16 (BLO d:16)	2					1
	BNE d:16	2					1
	BEQ d:16	2					1
	BVC d:16	2					1
	BVS d:16	2					1
	BPL d:16	2					1
	BMI d:16	2					1
	BGE d:16	2					1
	BLT d:16	2					1
	BGT d:16	2					1
	BLE d:16	2					1
BCLR	BCLR #xx:3,Rd	1					
	BCLR #xx:3,@ERd	2			2		
	BCLR #xx:3,@aa:8	2			2		
	BCLR #xx:3,@aa:16	3			2		
	BCLR #xx:3,@aa:32	4			2		
	BCLR Rn,Rd	1					
	BCLR Rn,@ERd	2			2		
	BCLR Rn,@aa:8	2			2		
	BCLR Rn,@aa:16	3			2		
	BCLR Rn,@aa:32	4			2		

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	Ī	J	K	L	М	N
BIAND	BIAND #xx:3,Rd	1					
	BIAND #xx:3,@ERd	2			1		
	BIAND #xx:3,@aa:8	2			1		
	BIAND #xx:3,@aa:16	3			1		
	BIAND #xx:3,@aa:32	4			1		
BILD	BILD #xx:3,Rd	1					
	BILD #xx:3,@ERd	2			1		
	BILD #xx:3,@aa:8	2			1		
	BILD #xx:3,@aa:16	3			1		
	BILD #xx:3,@aa:32	4			1		
BIOR	BIOR #xx:8,Rd	1					
	BIOR #xx:8,@ERd	2			1		
	BIOR #xx:8,@aa:8	2			1		
	BIOR #xx:8,@aa:16	3			1		
	BIOR #xx:8,@aa:32	4			1		
BIST	BIST #xx:3,Rd	1					
	BIST #xx:3,@ERd	2			2		
	BIST #xx:3,@aa:8	2			2		
	BIST #xx:3,@aa:16	3			2		
	BIST #xx:3,@aa:32	4			2		
BIXOR	BIXOR #xx:3,Rd	1					
	BIXOR #xx:3,@ERd	2			1		
	BIXOR #xx:3,@aa:8	2			1		
	BIXOR #xx:3,@aa:16	3			1		
	BIXOR #xx:3,@aa:32	4			1		
BLD	BLD #xx:3,Rd	1					
	BLD #xx:3,@ERd	2			1		
	BLD #xx:3,@aa:8	2			1		
	BLD #xx:3,@aa:16	3			1		
	BLD #xx:3,@aa:32	4			1		

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
BNOT	BNOT #xx:3,Rd	1					
	BNOT #xx:3,@ERd	2			2		
	BNOT #xx:3,@aa:8	2			2		
	BNOT #xx:3,@aa:16	3			2		
	BNOT #xx:3,@aa:32	4			2		
	BNOT Rn,Rd	1					
	BNOT Rn,@ERd	2			2		
	BNOT Rn,@aa:8	2			2		
	BNOT Rn,@aa:16	3			2		
	BNOT Rn,@aa:32	4			2		
BOR	BOR #xx:3,Rd	1					
	BOR #xx:3,@ERd	2			1		
	BOR #xx:3,@aa:8	2			1		
	BOR #xx:3,@aa:16	3			1		
	BOR #xx:3,@aa:32	4			1		
BSET	BSET #xx:3,Rd	1					14
	BSET #xx:3,@ERd	2			2		
	BSET #xx:3,@aa:8	2			2		
	BSET #xx:3,@aa:16	3			2		
	BSET #xx:3,@aa:32	4			2		
	BSET Rn,Rd	1					
	BSET Rn,@ERd	2			2		
	BSET Rn,@aa:8	2			2		
	BSET Rn,@aa:16	3			2		
	BSET Rn,@aa:32	4			2		
BSR	BSR d:8	2		2			
	BSR d:16	2		2			1
BST	BST #xx:3,Rd	1					
	BST #xx:3,@ERd	2			2		
	BST #xx:3,@aa:8	2			2		
	BST #xx:3,@aa:16	3			2		
	BST #xx:3,@aa:32	4			2		

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
BTST	BTST #xx:3,Rd	1					
	BTST #xx:3,@ERd	2			1		
	BTST #xx:3,@aa:8	2			1		
	BTST #xx:3,@aa:16	3			1		
	BTST #xx:3,@aa:32	4			1		
	BTST Rn,Rd	1					
	BTST Rn,@ERd	2			1		
	BTST Rn,@aa:8	2			1		
	BTST Rn,@aa:16	3			1		
	BTST Rn,@aa:32	4			1		
BXOR	BXOR #xx:3,Rd	1					
	BXOR #xx:3,@ERd	2			1		
	BXOR #xx:3,@aa:8	2			1		
	BXOR #xx:3,@aa:16	3			1		
	BXOR #xx:3,@aa:32	4			1		
CLRMAC	CLRMAC	Cannot be u	sed in the F	18S/2238 Sei	ries		
CMP	CMP.B #xx:8,Rd	1					
	CMP.B Rs,Rd	1					
	CMP.W #xx:16,Rd	2					
	CMP.W Rs,Rd	1					
	CMP.L #xx:32,ERd	3					
	CMP.L ERs,ERd	1					
DAA	DAA Rd	1		1			
DAS	DAS Rd	1		1			
DEC	DEC.B Rd	1		1			
	DEC.W #1/2,Rd	1					
	DEC.L #1/2,ERd	1					
DIVXS	DIVXS.B Rs,Rd	2					11
	DIVXS.W Rs,ERd	2					19
DIVXU	DIVXU.B Rs,Rd	1					11
	DIVXU.W Rs,ERd	1					19

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
EEPMOV	EEPMOV.B	2			2n+2*2		
	EEPMOV.W	2			2n+2*2		
EXTS	EXTS.W Rd	1		•			
	EXTS.L ERd	1					
EXTU	EXTU.W Rd	1					
	EXTU.L ERd	1					
INC	INC.B Rd	1					
	INC.W #1/2,Rd	1					
	INC.L #1/2,ERd	1					
JMP	JMP @ERn	2					
	JMP @aa:24	2					1
	JMP @@aa:8	2	2				1
JSR	JSR @ERn	2		2			
	JSR @aa:24	2		2			1
	JSR @@aa:8	2	2	2			
LDC	LDC #xx:8,CCR	1		**			
	LDC #xx:8,EXR	2					
	LDC Rs,CCR	1					
	LDC Rs,EXR	1					
	LDC @ERs,CCR	2				1	
	LDC @ERs,EXR	2				1	
	LDC @(d:16,ERs),CCR	3				1	
	LDC @(d:16,ERs),EXR	3				1	
	LDC @(d:32,ERs),CCR	5				1	
	LDC @(d:32,ERs),EXR	5				1	
	LDC @ERs+,CCR	2				1	1
	LDC @ERs+,EXR	2				1	1
	LDC @aa:16,CCR	3				1	
	LDC @aa:16,EXR	3				1	
	LDC @aa:32,CCR	4				1	
	LDC @aa:32,EXR	4				1	

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
LDM	LDM.L @SP+, (ERn-ERn+1)	2		4			1
	LDM.L @SP+, (ERn-ERn+2)	2		6			1
	LDM.L @SP+, (ERn-ERn+3)	2		8			1
LDMAC	LDMAC ERs,MACH	Cannot be u	sed in the F	18S/2238 Ser	ries		
	LDMAC ERs,MACL						
MAC	MAC @ERn+,@ERm+	Cannot be u	sed in the H	18S/2238 Ser	ries		
MOV	MOV.B #xx:8,Rd	1					
	MOV.B Rs,Rd	1					
	MOV.B @ERs,Rd	1			1		
	MOV.B @(d:16,ERs),Rd	2			1		
	MOV.B @(d:32,ERs),Rd	4			1		
	MOV.B @ERs+,Rd	1			1		1
	MOV.B @aa:8,Rd	1			1		
	MOV.B @aa:16,Rd	2			1		
	MOV.B @aa:32,Rd	3			1		
	MOV.B Rs,@ERd	1			1		
	MOV.B Rs,@(d:16,ERd)	2			1		
	MOV.B Rs,@(d:32,ERd)	4			1		
	MOV.B Rs,@-ERd	1			1		1
	MOV.B Rs,@aa:8	1			1		
	MOV.B Rs,@aa:16	2			1		
	MOV.B Rs,@aa:32	3			1		
	MOV.W #xx:16,Rd	2					
	MOV.W Rs,Rd	1					
	MOV.W @ERs,Rd	1				1	
	MOV.W @(d:16,ERs),Rd	2				1	
	MOV.W @(d:32,ERs),Rd	4				1	
	MOV.W @ERs+,Rd	1				1	1
	MOV.W @aa:16,Rd	2				1	
	MOV.W @aa:32,Rd	3				1	
	MOV.W Rs,@ERd	1				1	

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
MOV	MOV.W Rs,@(d:16,ERd)	2				1	
	MOV.W Rs,@(d:32,ERd)	4				1	
	MOV.W Rs,@-ERd	1				1	1
	MOV.W Rs,@aa:16	2				1	
	MOV.W Rs,@aa:32	3				1	
	MOV.L #xx:32,ERd	3					
	MOV.L ERs,ERd	1					
	MOV.L @ERs,ERd	2				2	
	MOV.L @(d:16,ERs),ERd	3				2	
	MOV.L @(d:32,ERs),ERd	5				2	
	MOV.L @ERs+,ERd	2				2	1
	MOV.L @aa:16,ERd	3				2	
	MOV.L @aa:32,ERd	4				2	
	MOV.L ERs,@ERd	2				2	
	MOV.L ERs,@(d:16,ERd)	3				2	
	MOV.L ERs,@(d:32,ERd)	5				2	
	MOV.L ERs,@-ERd	2				2	1
	MOV.L ERs,@aa:16	3				2	
	MOV.L ERs,@aa:32	4				2	
MOVFPE	MOVFPE @:aa:16,Rd	Can not be u	used in the	H8S/2238 Se	ries		
MOVTPE	MOVTPE Rs,@:aa:16	_					
MULXS	MULXS.B Rs,Rd	2					11
	MULXS.W Rs,ERd	2					19
MULXU	MULXU.B Rs,Rd	1					11
	MULXU.W Rs,ERd	1					19
NEG	NEG.B Rd	1					
	NEG.W Rd	1					
	NEG.L ERd	1					
NOP	NOP	1					-11
NOT	NOT.B Rd	1					
	NOT.W Rd	1					
	NOT.L ERd	1					

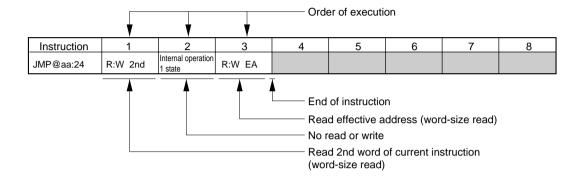
		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
OR	OR.B #xx:8,Rd	1					
	OR.B Rs,Rd	1					
	OR.W #xx:16,Rd	2					
	OR.W Rs,Rd	1					
	OR.L #xx:32,ERd	3					
	OR.L ERs,ERd	2					
ORC	ORC #xx:8,CCR	1					
	ORC #xx:8,EXR	2					
POP	POP.W Rn	1				1	1
	POP.L ERn	2				2	1
PUSH	PUSH.W Rn	1		11		1	1
	PUSH.L ERn	2				2	1
ROTL	ROTL.B Rd	1					
	ROTL.B #2,Rd	1					
	ROTL.W Rd	1					
	ROTL.W #2,Rd	1					
	ROTL.L ERd	1					
	ROTL.L #2,ERd	1					
ROTR	ROTR.B Rd	1		16			
	ROTR.B #2,Rd	1					
	ROTR.W Rd	1					
	ROTR.W #2,Rd	1					
	ROTR.L ERd	1					
	ROTR.L #2,ERd	1					
ROTXL	ROTXL.B Rd	1		-11			
	ROTXL.B #2,Rd	1					
	ROTXL.W Rd	1					
	ROTXL.W #2,Rd	1					
	ROTXL.L ERd	1					
	ROTXL.L #2,ERd	1					

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
ROTXR	ROTXR.B Rd	1					
	ROTXR.B #2,Rd	1					
	ROTXR.W Rd	1					
	ROTXR.W #2,Rd	1					
	ROTXR.L ERd	1					
	ROTXR.L #2,ERd	1					
RTE	RTE	2		2/3*1			1
RTS	RTS	2		2			1
SHAL	SHAL.B Rd	1					
	SHAL.B #2,Rd	1					
	SHAL.W Rd	1					
	SHAL.W #2,Rd	1					
	SHAL.L ERd	1					
	SHAL.L #2,ERd	1					
SHAR	SHAR.B Rd	1					
	SHAR.B #2,Rd	1					
	SHAR.W Rd	1					
	SHAR.W #2,Rd	1					
	SHAR.L ERd	1					
	SHAR.L #2,ERd	1					
SHLL	SHLL.B Rd	1			**		
	SHLL.B #2,Rd	1					
	SHLL.W Rd	1					
	SHLL.W #2,Rd	1					
	SHLL.L ERd	1					
	SHLL.L #2,ERd	1					
SHLR	SHLR.B Rd	1		"	••		•••
	SHLR.B #2,Rd	1					
	SHLR.W Rd	1					
	SHLR.W #2,Rd	1					
	SHLR.L ERd	1					
	SHLR.L #2,ERd	1					
SLEEP	SLEEP	1					1

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
STC	STC.B CCR,Rd	1					
	STC.B EXR,Rd	1					
	STC.W CCR,@ERd	2				1	
	STC.W EXR,@ERd	2				1	
	STC.W CCR,@(d:16,ERd)	3				1	
	STC.W EXR,@(d:16,ERd)	3				1	
	STC.W CCR,@(d:32,ERd)	5				1	
	STC.W EXR,@(d:32,ERd)	5				1	
	STC.W CCR,@-ERd	2				1	1
	STC.W EXR,@-ERd	2				1	1
	STC.W CCR,@aa:16	3				1	
	STC.W EXR,@aa:16	3				1	
	STC.W CCR,@aa:32	4				1	
	STC.W EXR,@aa:32	4				1	
STM	STM.L (ERn-ERn+1), @-SP	2		4			1
	STM.L (ERn-ERn+2), @-SP	2		6			1
	STM.L (ERn-ERn+3), @-SP	2		8			1
STMAC	STMAC MACH,ERd	Cannot be us	sed in the F	18S/2238 Ser	ies		
	STMAC MACL,ERd						
SUB	SUB.B Rs,Rd	1					
	SUB.W #xx:16,Rd	2					
	SUB.W Rs,Rd	1					
	SUB.L #xx:32,ERd	3					
	SUB.L ERs,ERd	1					
SUBS	SUBS #1/2/4,ERd	1					
SUBX	SUBX #xx:8,Rd	1					
	SUBX Rs,Rd	1					
TAS	TAS @ERd *3	2			2		
TRAPA	TRAPA #x:2	2	2	2/3*1	"		2

		Instruction Fetch	Branch Address Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic	I	J	K	L	М	N
XOR	XOR.B #xx:8,Rd	1					
	XOR.B Rs,Rd	1					
	XOR.W #xx:16,Rd	2					
	XOR.W Rs,Rd	1					
	XOR.L #xx:32,ERd	3					
	XOR.L ERs,ERd	2					
XORC	XORC #xx:8,CCR	1					
	XORC #xx:8,EXR	2					

Notes: *1 2 when EXR is invalid, 3 when EXR is valid.


^{*2} When n bytes of data are transferred.

^{*3} Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

A.5 Bus States During Instruction Execution

Table A-6 indicates the types of cycles that occur during instruction execution by the CPU. See table A-4 for the number of states per cycle.

How to Read the Table:

Legend

•		
R:B	Byte-size read	
R:W	Word-size read	
W:B	Byte-size write	
W:W	Word-size write	
:M	Transfer of the bus is not performed immediately after this cycle	
2nd	Address of 2nd word (3rd and 4th bytes)	
3rd	Address of 3rd word (5th and 6th bytes)	
4th	Address of 4th word (7th and 8th bytes)	
5th	Address of 5th word (9th and 10th bytes)	
NEXT	Address of next instruction	
EA	Effective address	
VEC	Vector address	

Figure A-1 shows timing waveforms for the address bus and the \overline{RD} , \overline{HWR} , and \overline{LWR} signals during execution of the above instruction with an 8-bit bus, using three-state access with no wait states.

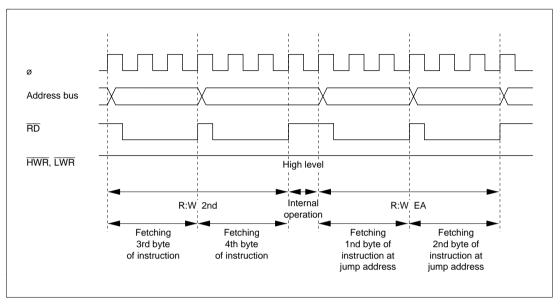


Figure A-1 Address Bus, \overline{RD} , \overline{HWR} , and \overline{LWR} Timing (8-Bit Bus, Three-State Access, No Wait States)

Table A-6 Instruction Execution Cycles

Inctrinction 1	-	2	٣		ч	ď	7	α	o
ADD R #xx-8 Rd	R-W NEXT	1				>			
ADD.B Rs.Rd	R:W NEXT								
ADD.W #xx:16,Rd	R:W 2nd	R:W NEXT							
ADD.W Rs,Rd	R:W NEXT								
ADD.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
ADD.L ERs,ERd	R:W NEXT								
ADDS #1/2/4,ERd	R:W NEXT								
ADDX #xx:8,Rd	R:W NEXT								
ADDX Rs,Rd	R:W NEXT								
AND.B #xx:8,Rd	R:W NEXT								
AND.B Rs,Rd	R:W NEXT								
AND.W #xx:16,Rd	R:W 2nd	R:W NEXT							
AND.W Rs,Rd	R:W NEXT								
AND.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
AND.L ERS,ERd	R:W 2nd	R:W NEXT							
ANDC #xx:8,CCR	R:W NEXT								
ANDC #xx:8,EXR	R:W 2nd	R:W NEXT							
BAND #xx:3,Rd	R:W NEXT								
BAND #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BAND #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BAND #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BAND #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BRA d:8 (BT d:8)	R:W NEXT	R:W EA							
BRN d:8 (BF d:8)	R:W NEXT	R:W EA							
BHI d:8	R:W NEXT	R:W EA							
BLS d:8	R:W NEXT	R:W EA							
BCC d:8 (BHS d:8)	R:W NEXT	R:W EA							
BCS d:8 (BLO d:8)	R:W NEXT	R:W EA							
BNE d:8	R:W NEXT	R:W EA							
BEQ d:8	R:W NEXT	R:W EA							
BVC d:8	R:W NEXT	R:W EA							
BVS d:8	R:W NEXT	R:W EA							
BPL d:8	R:W NEXT	R:W EA							
BMI d:8	R:W NEXT	R:W EA							
BGE d:8	R:W NEXT	R:W EA							
BLT d:8	R:W NEXT	R:W EA							
BGT d:8	R:W NEXT	R:W EA							

Instruction	~	2	3	4	5	9	7	8	6
BLE d:8	R:W NEXT	R:W EA							
BRA d:16 (BT d:16)	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BRN d:16 (BF d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BHI d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BLS d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BCC d:16 (BHS d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BCS d:16 (BLO d:16)	R:W 2nd	Internal operation, 1 state	R:W EA						
BNE d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BEQ d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BVC d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BVS d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BPL d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BMI d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BGE d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BLT d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BGT d:16	R:W 2nd	Internal operation, 1 state	R:W EA						
BLE d:16	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
BCLR #xx:3,Rd	R:W NEXT								
BCLR #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BCLR #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA	W.W				
DULN #XX.3, @ aa. 10	N.VV 2110	אייים אייר	A.D.IVI EA	R.VV.IVI INEA!	W.D EA				

Instruction	-	2	8	4	5	9	7	8	6
BCLR #xx:3, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BCLR Rn,Rd	R:W NEXT								
BCLR Rn, @ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BCLR Rn, @aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BCLR Rn, @aa:16	R:W 2nd	R:W 3rd	R:B:M EA	∷XT	W:B EA				
BCLR Rn, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BIAND #xx:3,Rd	R:W NEXT								
BIAND #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BIAND #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BIAND #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BIAND #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BILD #xx:3,Rd	R:W NEXT								
BILD #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BILD #xx:3, @aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BILD #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BILD #xx:3, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BIOR #xx:3,Rd	R:W NEXT								
BIOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BIOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BIOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BIOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BIST #xx:3,Rd	R:W NEXT								
BIST #xx:3, @ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BIST #xx:3, @aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BIST #xx:3, @aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BIST #xx:3, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BIXOR #xx:3,Rd	R:W NEXT								
BIXOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BIXOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BIXOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BIXOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BLD #xx:3,Rd	R:W NEXT								
BLD #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BLD #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BLD #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BLD #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BNOT #xx:3,Rd	R:W NEXT								

Instruction	-	2	8	4	2	9	7	8	6
BNOT #xx:3, @ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT #xx:3, @aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BNOT #xx:3, @aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BNOT #xx:3, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BNOT Rn,Rd	R:W NEXT								
BNOT Rn, @ ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BNOT Rn,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BNOT Rn,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA				
BNOT Rn,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BOR #xx:3,Rd	R:W NEXT								
BOR #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BOR #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BOR #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BOR #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BSET #xx:3,Rd	R:W NEXT								
BSET #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BSET #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BSET #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA				
BSET #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BSET Rn,Rd	R:W NEXT								
BSET Rn, @ERd	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BSET Rn,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT	W:B EA					
BSET Rn,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BSET Rn,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BSR d:8	R:W NEXT	R:W EA	W:W:M stack (H) W:W stack (L)	W:W stack (L)					
BSR d:16	R:W 2nd	Internal operation, R:W EA	R:W EA	W:W:M stack (H) W:W stack (L)	W:W stack (L)				
		1 state							
BST #xx:3,Rd	R:W NEXT								
BST #xx:3,@ERd	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BST #xx:3,@aa:8	R:W 2nd	R:B:M EA	R:W:M NEXT W:B EA	W:B EA					
BST #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B:M EA	R:W:M NEXT	W:B EA				
BST #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B:M EA	R:W:M NEXT	W:B EA			
BTST #xx:3,Rd	R:W NEXT								
BTST #xx:3,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						

Instruction	7	2	8	4	5	9	7	8	6
BTST #xx:3,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BTST #xx:3,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BTST #xx:3,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BTST Rn,Rd	R:W NEXT								
BTST Rn,@ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BTST Rn,@aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BTST Rn,@aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BTST Rn,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
BXOR #xx:3,Rd	R:W NEXT								
BXOR #xx:3, @ERd	R:W 2nd	R:B EA	R:W:M NEXT						
BXOR #xx:3, @aa:8	R:W 2nd	R:B EA	R:W:M NEXT						
BXOR #xx:3, @aa:16	R:W 2nd	R:W 3rd	R:B EA	R:W:M NEXT					
BXOR #xx:3, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:B EA	R:W:M NEXT				
CLRMAC	Cannot be use	Cannot be used in the H8S/2238 Series	238 Series						
CMP.B #xx:8,Rd	R:W NEXT								
CMP.B Rs,Rd	R:W NEXT								
CMP.W #xx:16,Rd	R:W 2nd	R:W NEXT							
CMP.W Rs,Rd	R:W NEXT								
CMP.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
CMP.L ERS,ERd	R:W NEXT								
DAA Rd	R:W NEXT								
DAS Rd	R:W NEXT								
DEC.B Rd	R:W NEXT								
DEC.W #1/2,Rd	R:W NEXT								
DEC.L #1/2,ERd	R:W NEXT								
DIVXS.B Rs,Rd	R:W 2nd	R:W NEXT	Internal operation, 11 states	tion, 11 states					
DIVXS.W RS,ERd	R:W 2nd	R:W NEXT	Internal operation, 19 states	tion, 19 states					
DIVXU.B Rs,Rd	R:W NEXT	Internal opera	Internal operation, 11 states						
DIVXU.W Rs,ERd	R:W NEXT	Internal opera	Internal operation, 19 states						
EEPMOV.B	R:W 2nd	R:B EAs*1	R:B EAd*1	R:B EAs*2	W:B EAd*2	R:W NEXT			
EEPMOV.W	R:W 2nd	R:B EAs*1	R:B EAd*1	R:B EAs*2	W:B EAd*2	R:W NEXT			
EXTS.W Rd	R:W NEXT			$ \leftarrow$ Repeated	Repeated n times $^{*2} \rightarrow$				
EXTS.L ERd	R:W NEXT								
EXTU.W Rd	R:W NEXT								
EXTU.L ERd	R:W NEXT								
INC.B Rd	R:W NEXT								

Instruction	1	2	3	4	5	9	7	8	6
INC.W #1/2,Rd	R:W NEXT								
INC.L #1/2,ERd	R:W NEXT								
JMP @ERn	R:W NEXT	R:W EA							
JMP @aa:24	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA						
JMP @@aa:8	R:W NEXT	R:W:M aa:8	R:W aa:8	Internal operation, 1 state	R:W EA				
JSR @ERn	R:W NEXT	R:W EA	W:W:M stack (H) W:W stack (L)	W:W stack (L)					
JSR @aa:24	R:W 2nd	Internal operation, R:W EA 1 state	R:W EA	W:W:M stack (H) W:W stack (L)	W:W stack (L)				
JSR @@aa:8	R:W NEXT	R:W:M aa:8	R:W aa:8	W:W:M stack (H) W:W stack (L)	W:W stack (L)	R:W EA			
LDC #xx:8,CCR	R:W NEXT								
LDC #xx:8,EXR	R:W 2nd	R:W NEXT							
LDC Rs,CCR	R:W NEXT								
LDC Rs,EXR	R:W NEXT								
LDC @ERs,CCR	R:W 2nd	R:W NEXT	R:W EA						
LDC @ERs,EXR	R:W 2nd	R:W NEXT	R:W EA						
LDC @(d:16,ERs),CCR	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA					
LDC @(d:16,ERs),EXR	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA					
LDC @(d:32,ERs),CCR	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	R:W EA			
LDC @(d:32,ERs),EXR	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	R:W EA			
LDC @ERs+,CCR	R:W 2nd	R:W NEXT	Internal operation, R:W EA 1 state	R:W EA					
LDC @ERs+,EXR	R:W 2nd	R:W NEXT	Internal operation, R:W EA	R:W EA					
			1 state						
LDC @aa:16,CCR	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA					
LDC @aa:16,EXR	R:W 2nd	R:W 3rd	R:W NEXT	R:W EA					
LDC @aa:32,CCR	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	R:W EA				
LDC @aa:32,EXR	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	R:W EA				
LDM.L @SP+, (ERn-FRn+1)	R:W 2nd	R:W:M NEXT	Internal operation,	R:W:M stack (H)*3	R:W stack (L)*3				
LDM.L @SP+,(ERn-ERn+2)	R:W 2nd	R:W NEXT	Internal operation,	Internal operation, R:W:M stack (H)*3 R:W stack (L)*3	R:W stack (L)*3				
			1 state						
LDM.L @SP+,(ERn-ERn+3)	R:W 2nd	R:W NEXT	Internal operation, 1 state	Internal operation, R:W:M stack (H) *3 R:W stack (L) *3 1 state	R:W stack (L)*3				
LDMAC ERS,MACH	Cannot be used	Cannot be used in the H8S/2238 Series	Series						

Cannot be used in the H8S/2238 Series	Instruction	-	2	8	4	22	9	 8	6
R:W NEXT R:W NEXT R:W NEXT R:B EA R:W Sand R:W 4th R:W NEXT R:W Sand R:W Wath R:W NEXT R:W NEXT R:B EA R:W NEXT R:W NEXT R:B EA R:W NEXT R:W SB EA R:W NEXT R:B EA R:W SB EA R:W NEXT R:B EA R:W SB EA R:W NEXT R:W NEXT R:W SB EA R:W NEXT R:W NEXT R:W SB EA R:W NEXT R:W NEXT R:W SD CA R:W NEXT R:W NEXT R:W SD CA R:W NEXT R:W NEXT R:W SD CA R:W NEXT R:W NEXT R:W SD CA R:W NEXT R:W NEXT R:W SD CA R:W NEXT R:W NEXT R:W SD CA R:W NEXT R:W NEXT R:W SD CA R:W NEXT R:W NEXT R:W SD CA R:W NEXT R:W NEXT R:W SD CA R:W NEXT R:W NEXT R:W SD CA R:W NEXT R:W NEXT R:W SD CA R:W NEX	AAC ERS, MACL	Cannot be used	d in the H8S/2238	Series					
R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W Sand R:W 4th R:W Sand R:W 4th R:W Sand R:W Wath R:W NEXT R:B EA R:W NEXT R:B EA R:W NEXT R:B EA R:W NEXT R:W NEXT R:W SB EA R:W NEXT R:W NEXT R:W BEA R:W NEXT R:W SB EA R:W NEXT R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA R:W NEXT R:W SB EA	C @ERn+, @ERm+								
R:W NEXT R:W NEXT R:B EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:W 4th R:W NEXT R:W NEXT Internal operation, R:B EA R:W NEXT R:B EA R:W NEXT R:W NEXT R:W NEXT R:B EA R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT W:B EA R:W NEXT R:W 2nd R:W NEXT W:B EA R:W NEXT R:W 2nd R:W NEXT W:B EA R:W NEXT R:W 2nd R:W NEXT W:B EA R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT <	V.B #xx:8,Rd	R:W NEXT							
R:W DexT R:B EA R:W 2nd R:W NeXT R:W 2nd R:W 4th R:W 2nd R:W 4th R:W 2nd R:W 4th R:W NEXT Internal operation, R:B EA R:W 2nd R:W NEXT R:W 3nd R:W NEXT	V.B Rs,Rd	R:W NEXT							
R:W 2nd R:W 2nd R:W 3rd R:B EA R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W NEXT Internal operation, R:B EA R:W MEXT R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:W 4th R:W NEXT R:W 2nd R:W NEXT R:W BEA R:W NEXT R:W 2nd R:W NEXT R:W BEA R:W NEXT R:W 2nd R:W NEXT R:W BEA R:W NEXT R:W 2nd R:W NEXT R:W Ath R:W NEXT R:W 2nd R:W NEXT R:W Ath R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R	V.B @ERs,Rd	R:W NEXT	R:B EA						
R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W NEXT Internal operation, R:B EA R:W NEXT R:B EA R:W 2nd R:W NEXT R:B EA R:B EA R:W 2nd R:W NEXT R:B EA R:B EA R:W 2nd R:W NEXT R:W BEA R:W NEXT R:W 2nd R:W NEXT R:W BEA R:W NEXT R:W 2nd R:W NEXT W:B EA R:W NEXT R:W 2nd R:W NEXT R:W BEA R:W NEXT R:W 2nd R:W NEXT R:W Ath R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W 3rd R:W Ath R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT	V.B @(d:16,ERs),Rd	R:W 2nd	R:W NEXT	R:B EA					
R:W NEXT Internal operation, R:B EA 1 state 1 state R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT W:B EA R:W 2nd R:W NEXT R:W BEA R:W 2nd R:W NEXT R:W EA R:W 2nd R:W NEXT R:W EA R:W 2nd R:W SW And R:W EA R:W 2nd R:W SW SW EA R:W NEXT R:W 2nd R:W NEXT R:W EA R:W 2nd R:W NEXT R:W EA R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W	V.B @(d:32,ERs),Rd	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	R:B EA			
R:W NEXT R:BEA R:W 2nd R:W NEXT R:BEA R:W 2nd R:W 3rd R:W NEXT R:BEA R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W 2nd R:W NEXT W:B EA R:W NEXT R:W 2nd R:W NEXT R:W BEA R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W Sid R:W 4th R:W NEXT R:W 2nd R:W 3rd R:W EA R:W NEXT R:W 2nd R:W 3rd R:W NEXT R:W EA R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W 3rd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:	V.B @ERs+,Rd	R:W NEXT	Internal operation,	R:B EA					
R:W DexT R:B EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W 3rd R:W NEXT R:B EA R:W 2nd R:W BEA R:W NEXT R:B EA R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W 2nd R:W 3rd R:W NEXT W:B EA R:W 2nd R:W NEXT W:B EA R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W 2nd R:W 3rd R:W EA R:W NEXT R:W 2nd R:W 3rd R:W EA R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W 3rd R:W NEXT R:W NEXT R:W 2nd R:W 3rd R:W NEXT R:W NEXT R:W 2nd R:W 3rd R:W NEXT R:W NEXT R:W 3rd R:W NEXT R:W NEXT R:W NEXT R:W 3rd R:W NEXT R:W NEXT R:W NEXT R:W 3rd R:W NEXT R:W NEX			1 state						
R:W 2nd R:W 2nd R:W 3rd R:W NEXT R:B EA R:W 2nd R:W 3rd R:W NEXT R:B EA R:W 2nd R:W NEXT W:B EA R:W NEXT R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W 2nd R:W BEA R:W NEXT R:W BEA R:W 2nd R:W NEXT R:W BEA R:W NEXT R:W 2nd R:W NEXT R:W Ath R:W NEXT R:W 2nd R:W NEXT R:W 4th R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT<	V.B @aa:8,Rd	R:W NEXT	R:B EA						
R:W 2nd R:W 3rd R:W NEXT R:B EA R:W 2nd R:W NEXT W:B EA R:W NEXT R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W 2nd R:W NEXT W:B EA R:W NEXT R:W 2nd R:W NEXT R:W BEA R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W Ath R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W N	V.B @aa:16,Rd	R:W 2nd	R:W NEXT	R:B EA					
R:W DexT W:B EA R:W 2nd R:W NEXT W:B EA R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W DexT Internal operation, W:B EA R:W NEXT R:W NEXT R:W 2nd R:W NEXT W:B EA R:W NEXT R:W NEXT R:W NEXT R:W BEA R:W NEXT R:W NEXT R:W NEXT R:W And R:W NEXT R:W Ath R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W 3rd R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W 3rd R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT <td>V.B @aa:32,Rd</td> <td>R:W 2nd</td> <td>R:W 3rd</td> <td>R:W NEXT</td> <td>R:B EA</td> <td></td> <td></td> <td></td> <td></td>	V.B @aa:32,Rd	R:W 2nd	R:W 3rd	R:W NEXT	R:B EA				
R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W 2nd R:W 3rd R:W 4th R:W NEXT 1 state 1 state R:W SEA R:W BEA R:W 2nd R:W NEXT W:B EA W:B EA R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W Ath R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W NEXT R:W N	V.B Rs,@ERd	R:W NEXT	W:B EA						
R:W 2nd R:W 3rd R:W 4th R:W NEXT 1 state 1 state 1 state R:W 2nd R:W BEA W:B EA R:W 2nd R:W NEXT W:B EA R:W 2nd R:W NEXT W:B EA R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W Ath R:W NEXT R:W 2nd R:W Sid R:W Ath R:W 2nd R:W NEXT R:W EA R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W 3rd R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT <	V.B Rs, @(d:16, ERd)	R:W 2nd	R:W NEXT	W:B EA					
R:W NEXT Internal operation, 1 state W:B EA R:W Znd R:W Sx Znd R:W NEXT R:W Znd R:W NEXT W:B EA R:W Znd R:W NEXT W:B EA R:W Znd R:W NEXT R:W EA R:W Znd R:W NEXT R:W NEXT R:W Znd R:W NEXT R:W EA R:W Znd R:W NEXT R:W NEXT R:W Znd R:W NEXT R:W NEXT R:W Znd R:W NEXT W:W EA R:W Znd R:W NEXT W:W EA R:W Znd R:W NEXT W:W EA R:W Znd R:W NEXT W:W EA R:W Znd R:W NEXT W:W EA R:W Znd R:W NEXT W:W EA R:W Znd R:W NEXT W:W EA R:W Znd R:W NEXT W:W EA R:W Znd R:W NEXT W:W EA R:W Znd R:W NEXT W:W EA	V.B Rs, @(d:32, ERd)	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	W:B EA			
1 state	V.B Rs, @-ERd	R:W NEXT	Internal operation,	W:B EA					
R:W DexT W:B EA R:W 2nd R:W NEXT W:B EA R:W 2nd R:W NEXT W:B EA R:W 2nd R:W NEXT W:B EA R:W 2nd R:W NEXT R:W EA R:W 2nd R:W 3nd R:W 4th R:W NEXT R:W 2nd R:W SW EA R:W EA R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT			1 state						
R:W 2nd R:W NEXT W:B EA R:W 2nd R:W 3rd R:W NEXT W:B EA R:W 2nd R:W NEXT R:W BEA R:W NEXT R:W MEXT R:W MEXT R:W 2nd R:W 3rd R:W EA R:W 2nd R:W NEXT R:W EA R:W 2nd R:W NEXT R:W EA R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA	V.B Rs,@aa:8	R:W NEXT	W:B EA						
R:W 2nd R:W 3rd R:W NEXT W:B EA R:W 2nd R:W NEXT W:B EA R:W NEXT R:W EA R:W EA R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W 2nd R:W NEXT R:W EA R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W 2nd R:W 3rd R:E 4th R:W NEXT R:W 2nd R:W 3rd R:E 4th R:W NEXT R:W 2nd R:W NEXT W:W EA R:W NEXT R:W 2nd R:W NEXT W:W EA R:W NEXT R:W 2nd R:W NEXT W:W EA R:W NEXT R:W 2nd R:W NEXT W:W EA R:W NEXT R:W 2nd R:W NEXT W:W EA R:W NEXT	V.B Rs,@aa:16	R:W 2nd	R:W NEXT	W:B EA					
R:W 2nd R:W NEXT R:W NEXT R:W EA R:W 2nd R:W NEXT R:W 2nd R:W 4th R:W 2nd R:W 4th R:W NEXT R:W EA R:W NEXT R:W EA R:W 2nd R:W NEXT R:W NEXT R:W NEXT R:W NEXT W:W EA R:W NEXT W:W EA R:W NEXT W:W EA R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W NEXT W:W EA R:W 2nd R:W NEXT R:W NEXT W:W EA R:W NEXT W:W EA R:W 2nd R:W NEXT R:W 2nd R:W NEXT	V.B Rs,@aa:32	R:W 2nd	R:W 3rd	R:W NEXT	W:B EA				
R:W NEXT R:W EA R:W 2nd R:W NEXT R:W 2nd R:W WEA R:W 2nd R:W 4th R:W 2nd R:W EA 1 state R:W EA R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W NEXT W:W EA R:W 2nd R:W NEXT R:W 3nd R:E 4th R:W 2nd R:W 3rd R:W 3nd R:E 4th R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W NEXT W:W EA	V.W #xx:16,Rd	R:W 2nd	R:W NEXT						
R:W DEXT R:W EA R:W 2nd R:W Srd R:W 4th R:W 2nd R:W 4th R:W NEXT R:W NEXT Internal operation, R:W EA R:W EA R:W 2nd R:W NEXT R:W EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W 3nd R:E 4th R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA	V.W Rs,Rd	R:W NEXT							
I. R:W 2nd R:W NEXT R:W 2nd R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W NEXT Internal operation, R:W EA R:W EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W 3rd R:E 4th R:W NEXT R:W 2nd R:W Sea R:W NEXT R:W NEXT R:W 2nd R:W NEXT W:W EA R:W NEXT R:W 2nd R:W NEXT W:W EA R:W NEXT R:W 2nd R:W NEXT W:W EA R:W NEXT	V.W @ERs,Rd	R:W NEXT	R:W EA						
R:W 2nd R:W 3rd R:W 4th R:W NEXT R:W NEXT Internal operation, R:W EA I state R:W 2nd R:W NEXT R:W EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:B EA R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W 3rd R:E 4th R:W 2nd R:W NEXT R:W NEXT R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA	V.W @(d:16,ERs),Rd	R:W 2nd	R:W NEXT	R:W EA					
R:W NEXT Internal operation, R:W EA 1 state 1 state R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT R:W 2nd R:W NEXT	/.W @(d:32,ERs),Rd	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	R:W EA			
R:W 2nd R:W NEXT R:W EA R:W 2nd R:W 3rd R:W NEXT R:B EA R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA R:W 2nd R:W 3rd R:E 4th R:W NEXT Internal operation, W:W EA R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA	/.W @ERs+, Rd	R:W NEXT	Internal operation,	R:W EA					
R:W 2nd R:W NEXT R:W EA R:W 2nd R:W 3rd R:W NEXT R:B EA R:W NEXT W:W EA W:W EA R:W NEXT R:W 2nd R:W 3rd R:E 4th R:W NEXT R:W NEXT Internal operation, W:W EA R:W NEXT R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA			1 state						
R:W 2nd R:W 3rd R:W NEXT R:B EA R:W NEXT W:W EA R:W NEXT R:W NEXT R:W 2nd R:W 3rd R:E 4th R:W NEXT R:W NEXT Internal operation, W:W EA R:W NEXT R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA	V.W @aa:16,Rd	R:W 2nd	R:W NEXT	R:W EA					
R:W Dad R:W Snd R:W NEXT W:W EA R:W 2nd R:W 3nd R:E 4th R:W NEXT R:W NEXT Internal operation, W:W EA I state R:W 2nd R:W NEXT W:W EA R:W 2nd R:W 3nd R:W NEXT	/.W @aa:32,Rd	R:W 2nd	R:W 3rd	R:W NEXT	R:B EA				
R:W 2nd R:W 2nd R:W 3rd R:E 4th R:W NEXT R:W NEXT Internal operation, W:W EA W:W EA R:W 2nd R:W NEXT W:W EA R:W 2nd R:W NEXT W:W EA	V.W Rs,@ERd	R:W NEXT	W:W EA						
R:W 2nd R:W 3rd R:E 4th R:W NEXT R:W NEXT Internal operation, W:W EA W:W EA R:W 2nd R:W NEXT W:W EA R:W 2nd R:W 3rd R:W NEXT	/.W Rs, @(d:16,ERd)	R:W 2nd	R:W NEXT	W:W EA					
R:W NEXT Internal operation, W:W EA 1 state 1 state R:W 2nd R:W NEXT W:W EA R:W 2nd R:W 3rd R:W NEXT	/.W Rs,@(d:32,ERd)	R:W 2nd	R:W 3rd	R:E 4th	R:W NEXT	W:W EA			
R:W 2nd R:W NEXT W:W EA R:W 2nd R:W 3rd R:W NEXT	/.W Rs,@-ERd	R:W NEXT	Internal operation, 1 state	W:W EA					
R:W 2nd R:W 3rd R:W NEXT	V.W Rs,@aa:16	R:W 2nd	R:W NEXT	W:W EA					
	V.W Rs,@aa:32	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA				

Instruction	7-	2	8	4	2	9	2	8	6
MOV.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
MOV.L ERS,ERd	R:W NEXT								
MOV.L @ERs,ERd	R:W 2nd	R:W:M NEXT	R:W:M EA	R:W EA+2					
MOV.L @(d:16,ERs),ERd	R:W 2nd	R:W:M 3rd	R:W NEXT	R:W:M EA	R:W EA+2				
MOV.L @(d:32,ERs),ERd	R:W 2nd	R:W:M 3rd	R:W:M 4th	R:W 5th	R:W NEXT	R:W:M EA	R:W EA+2		
MOV.L @ERs+,ERd	R:W 2nd	R:W:M NEXT	Internal operation, R:W:M EA	R:W:M EA	R:W EA+2				
			1 state						
MOV.L @aa:16,ERd	R:W 2nd	R:W:M 3rd	R:W NEXT	R:W:M EA	R:W EA+2				
MOV.L @aa:32,ERd	R:W 2nd	R:W:M 3rd	R:W 4th	R:W NEXT	R:W:M EA	R:W EA+2			
MOV.L ERs,@ERd	R:W 2nd	R:W:M NEXT	W:W:M EA	W:W EA+2					
MOV.L ERs,@(d:16,ERd)	R:W 2nd	R:W:M 3rd	R:W NEXT	W:W:M EA	W:W EA+2				
MOV.L ERs,@(d:32,ERd)	R:W 2nd	R:W:M 3rd	R:W:M 4th	R:W 5th	R:W NEXT	W:W:M EA	W:W EA+2		
MOV.L ERs,@-ERd	R:W 2nd	R:W:M NEXT	Internal operation, W:W:M EA	W:W:M EA	W:W EA+2				
			1 state						
MOV.L ERs,@aa:16	R:W 2nd	R:W:M 3rd	R:W NEXT	W:W:M EA	W:W EA+2				
MOV.L ERs,@aa:32	R:W 2nd	R:W:M 3rd	R:W 4th	R:W NEXT	W:W:M EA	W:W EA+2			
MOVFPE @aa:16,Rd	Cannot be use	Cannot be used in the H8S/2238 Series	38 Series						
MOVTPE Rs,@aa:16									
MULXS.B Rs,Rd	R:W 2nd	R:W NEXT	Internal operation, 11 states	ion, 11 states					
MULXS.W Rs, ERd	R:W 2nd	R:W NEXT	Internal operation, 19 states	ion, 19 states					
MULXU.B Rs,Rd	R:W NEXT	Internal operation, 11 states	on, 11 states						
MULXU.W Rs, ERd	R:W NEXT	Internal operation, 19 states	on, 19 states						
NEG.B Rd	R:W NEXT								
NEG.W Rd	R:W NEXT								
NEG.L ERd	R:W NEXT								
NOP	R:W NEXT								
NOT.B Rd	R:W NEXT								
NOT.W Rd	R:W NEXT								
NOT.L ERd	R:W NEXT								
OR.B #xx:8,Rd	R:W NEXT								
OR.B Rs,Rd	R:W NEXT								
OR.W #xx:16,Rd	R:W 2nd	R:W NEXT							
OR.W Rs,Rd	R:W NEXT								
OR.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
OR.L ERS,ERd	R:W 2nd	R:W NEXT							
ORC #xx:8,CCR	R:W NEXT								
ORC #xx:8,EXR	R:W 2nd	R:W NEXT							

doitoirteal	-	0	٣	_	Ľ	ď	7	α	o
POP.W Rn	R:W NEXT	Internal operation, R:W EA	R:W EA						
POP.L ERn	R:W 2nd	R:W:M NEXT	Internal operation, R:W:M EA 1 state	R:W:M EA	R:W EA+2				
PUSH.W Rn	R:W NEXT	Internal operation, W:W EA 1 state	W:W EA						
PUSH.L ERn	R:W 2nd	R:W:M NEXT	R:W:M NEXT Internal operation, W:W:M EA	W:W:M EA	W:W EA+2				
ROTL.B Rd	R:W NEXT								
ROTL.B #2,Rd	R:W NEXT								
ROTL.W Rd	R:W NEXT								
ROTL.W #2,Rd	R:W NEXT								
ROTL.L ERd	R:W NEXT								
ROTL.L #2,ERd	R:W NEXT								
ROTR.B Rd	R:W NEXT								
ROTR.B #2,Rd	R:W NEXT								
ROTR.W Rd	R:W NEXT								
ROTR.W #2,Rd	R:W NEXT								
ROTR.L ERd	R:W NEXT								
ROTR.L #2,ERd	R:W NEXT								
ROTXL.B Rd	R:W NEXT								
ROTXL.B #2,Rd	R:W NEXT								
ROTXL.W Rd	R:W NEXT								
ROTXL.W #2,Rd	R:W NEXT								
ROTXL.L ERd	R:W NEXT								
ROTXL.L #2,ERd	R:W NEXT								
ROTXR.B Rd	R:W NEXT								
ROTXR.B #2,Rd	R:W NEXT								
ROTXR.W Rd	R:W NEXT								
ROTXR.W #2,Rd	R:W NEXT								
ROTXR.L ERd	R:W NEXT								
ROTXR.L #2,ERd	R:W NEXT								
RTE	R:W NEXT	R:W stack (EXR)	R:W stack (H)	R:W stack (L)	Internal operation, 1 state	R:W*4			
RTS	R:W NEXT	R:W:M stack (H)	R:W stack (L)	Internal operation, R:W*4 1 state	R:W*4				
SHAL.B Rd	R:W NEXT								

Instruction	1	2	3	4	2	9	2	8	6
SHAL.B #2,Rd	R:W NEXT								
SHAL.W Rd	R:W NEXT								
SHAL.W #2,Rd	R:W NEXT								
SHAL.L ERd	R:W NEXT								
SHAL.L #2,ERd	R:W NEXT								
SHAR.B Rd	R:W NEXT								
SHAR.B #2,Rd	R:W NEXT								
SHAR.W Rd	R:W NEXT								
SHAR.W #2,Rd	R:W NEXT								
SHAR.L ERd	R:W NEXT								
SHAR.L #2,ERd	R:W NEXT								
SHLL.B Rd	R:W NEXT								
SHLL.B #2,Rd	R:W NEXT								
SHLL.W Rd	R:W NEXT								
SHLL.W #2,Rd	R:W NEXT								
SHLL.L ERd	R:W NEXT								
SHLL.L #2,ERd	R:W NEXT								
SHLR.B Rd	R:W NEXT								
SHLR.B #2,Rd	R:W NEXT								
SHLR.W Rd	R:W NEXT								
SHLR.W #2,Rd	R:W NEXT								
SHLR.L ERd	R:W NEXT								
SHLR.L #2,ERd	R:W NEXT								
SLEEP	R:W NEXT	Internal operation:M	,						
STC CCR,Rd	R:W NEXT								
STC EXR,Rd	R:W NEXT								
STC CCR,@ERd	R:W 2nd	R:W NEXT	W:W EA						
STC EXR, @ ERd	R:W 2nd	R:W NEXT	W:W EA						
STC CCR, @ (d:16,ERd)	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					
STC EXR, @(d:16, ERd)	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					
STC CCR, @(d:32, ERd)	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	W:W EA			
STC EXR, @(d:32, ERd)	R:W 2nd	R:W 3rd	R:W 4th	R:W 5th	R:W NEXT	W:W EA			
STC CCR, @-ERd	R:W 2nd	R:W NEXT	Internal operation, W:W EA	W:W EA					
			1 state						

Instruction	-	2	8	4	2	9	7	8	6
STC EXR, @-ERd	R:W 2nd	R:W NEXT	Internal operation, W:W EA	W:W EA					
			1 state						
STC CCR,@aa:16	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					
STC EXR, @aa:16	R:W 2nd	R:W 3rd	R:W NEXT	W:W EA					
STC CCR,@aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	W:W EA				
STC EXR, @aa:32	R:W 2nd	R:W 3rd	R:W 4th	R:W NEXT	W:W EA				
STM.L(ERn-ERn+1), @-SP	R:W 2nd	R:W:M NEXT	Internal operation,	Internal operation, W:W:M stack (H)*3 W:W stack (L)*3	W:W stack (L)*3				
			1 state						
STM.L(ERn-ERn+2),@-SP	R:W 2nd	R:W:M NEXT	Internal operation, 1 state	Internal operation, $\left \text{W:W:M stack (H)}^{*3}\right $ W:W stack (L) *3	W:W stack (L)*3				
STM.L(ERn-ERn+3), @-SP	R:W 2nd	R:W:M NEXT	Internal operation,	Internal operation, W:W:M stack (H)*3 W:W stack (L)*3	W:W stack (L)*3				
-			1 state						
STMAC MACH, ERd	Cannot be use	Cannot be used in the H8S/2238 Series	238 Series						
STMAC MACL, ERd									
SUB.B Rs,Rd	R:W NEXT								
SUB.W #xx:16,Rd	R:W 2nd	R:W NEXT							
SUB.W Rs,Rd	R:W NEXT								
SUB.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
SUB.L ERS,ERd	R:W NEXT								
SUBS #1/2/4,ERd	R:W NEXT								
SUBX #xx:8,Rd	R:W NEXT								
SUBX Rs,Rd	R:W NEXT								
TAS @ERd *5	R:W 2nd	R:W NEXT	R:B:M EA	W:B EA					
TRAPA #x:2	R:W NEXT	Internal operation, W:W stack (L) 1 state	W:W stack (L)	W:W stack (H)	W:W stack (EXR) R:W:M VEC	R:W:M VEC	R:W VEC+2	Internal operation, R:W*8 1 state	R:W* ⁸
XOR.B #xx8,Rd	R:W NEXT								
XOR.B Rs,Rd	R:W NEXT								
XOR.W #xx:16,Rd	R:W 2nd	R:W NEXT							
XOR.W Rs,Rd	R:W NEXT								
XOR.L #xx:32,ERd	R:W 2nd	R:W 3rd	R:W NEXT						
XOR.L ERS, ERd	R:W 2nd	R:W NEXT							
XORC #xx:8,CCR	R:W NEXT								
XORC #xx:8,EXR	R:W 2nd	R:W NEXT							
Reset exception	R:W:M VEC	R:W VEC+2	Internal operation, R:W*6	R:W*6					
handling			1 state						

Instruction	1	2	3	4	5	9	7	8	6
Interrupt exception	R:W*7	Internal operation,	W:W stack (L)	W:W stack (H)	W:W stack (EXR)	R:W:M VEC	R:W VEC+2	Internal operation,	R:W*8
handling		1 state						1 state	

Notes: *1 EAs is the contents of ER5. EAd is the contents of ER6.

EAs is the contents of ER5. EAd is the contents of ER6. Both registers are incremented by 1 after execution of the instruction, n is the initial value of R4L or R4. If n = 0, these bus cycles are not executed.

Repeated two times to save or restore two registers, three times for three registers, or four times for four registers.

*3 Repeated two times to sav*4 Start address after return.

Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

*5 Only register ER0, ER1, ER4,
*6 Start address of the program.
*7 Prefetch address, equal to tw.

Prefetch address, equal to two plus the PC value pushed onto the stack. In recovery from sleep mode or software standby mode the read operation is replaced by an internal operation.

*8 Start address of the interrupt-handling routine.

A.6 Condition Code Modification

*

Z'

C'

This section indicates the effect of each CPU instruction on the condition code. The notation used in the table is defined below.

Undetermined (no guaranteed value)

Z flag before instruction execution

C flag before instruction execution

Table A-7 Condition Code Modification

Instruction	н	N	Z	٧	С	Definition
ADD	1	1	‡	‡	1	$H = Sm-4 \cdot Dm-4 + Dm-4 \cdot \overline{Rm-4} + Sm-4 \cdot \overline{Rm-4}$
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						$V = Sm \cdot Dm \cdot \overline{Rm} + \overline{Sm} \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot Dm + Dm \cdot \overline{Rm} + Sm \cdot \overline{Rm}$
ADDS	_	_	_	_	_	
ADDX	‡	‡	\$	‡	‡	$H = Sm-4 \cdot Dm-4 + Dm-4 \cdot \overline{Rm-4} + Sm-4 \cdot \overline{Rm-4}$
						N = Rm
						$Z = Z' \cdot \overline{Rm} \cdot \cdots \overline{R0}$
						$V = Sm \cdot Dm \cdot \overline{Rm} + \overline{Sm} \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot Dm + Dm \cdot \overline{Rm} + Sm \cdot \overline{Rm}$
AND	_	‡	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
ANDC	\(\)	\	‡	‡	\(\)	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.
BAND		_	_	_	‡	$C = C' \cdot Dn$
Bcc	_	_	_	_	_	
BCLR	_	_		_	_	
BIAND	_	_	_	_	\$	$C = C' \cdot \overline{Dn}$
BILD	_	_	_	_	‡	$C = \overline{Dn}$
BIOR	_	_	_	_	‡	$C = C' + \overline{Dn}$
BIST	_	_	_	_	_	
BIXOR	_	_	_	_	‡	$C = C' \cdot Dn + \overline{C'} \cdot \overline{Dn}$
BLD	_	_	_	_	‡	C = Dn
BNOT	_	_	_	_	_	
BOR	_	_	—	_	‡	C = C' + Dn
BSET	_	_	_	_	_	
BSR	_	_	_	_	_	
BST	_		_	_	_	
BTST		_	\$	_	_	$Z = \overline{Dn}$
BXOR		_	_	_	‡	$C = C' \cdot \overline{Dn} + \overline{C'} \cdot Dn$
CLRMAC						Cannot be used in the H8S/2238 Series

Instruction	Н	N	Z	٧	С	Definition
CMP	‡	1	\$	‡	\$	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
DAA	*	‡	‡	*	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C: decimal arithmetic carry
DAS	*	‡	‡	*	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						C: decimal arithmetic borrow
DEC	_	1	‡	‡	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						$V = Dm \cdot \overline{Rm}$
DIVXS	_	‡	‡	_	_	$N = Sm \cdot \overline{Dm} + \overline{Sm} \cdot Dm$
						$Z = \overline{Sm} \cdot \overline{Sm-1} \cdot \dots \cdot \overline{S0}$
DIVXU	_	‡	‡		_	N = Sm
						$Z = \overline{Sm} \cdot \overline{Sm-1} \cdot \dots \cdot \overline{S0}$
EEPMOV	_	_	_	_	_	
EXTS	_	1	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \cdots \cdot \overline{R0}$
EXTU	_	0	\	0	_	$Z = \overline{Rm} \cdot \overline{Rm} - 1 \cdot \cdots \cdot \overline{R0}$
INC	_	‡	\^	‡	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						$V = \overline{Dm} \cdot Rm$
JMP	_	_	_	_	_	
JSR	_	_	_	_	_	
LDC	‡	1	\	‡	\$	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.
LDM	_	_	_	_	_	
LDMAC						Cannnot be used in the H8S/2238 Series
MAC						

Instruction	Н	N	Z	٧	С	Definition
MOV	_	\^	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
MOVFPE						Can not be used in the H8S/2238 Series
MOVTPE	_					
MULXS	_	‡	‡	_	_	N = R2m
						$Z = \overline{R2m} \cdot \overline{R2m-1} \cdot \cdots \cdot \overline{R0}$
MULXU	_	_	_	_	_	
NEG	‡	\^	‡	‡	‡	H = Dm-4 + Rm-4
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						$V = Dm \cdot Rm$
						C = Dm + Rm
NOP	_	_	_	_	_	
NOT	_	\	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
OR	_	‡	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
ORC	1	\	‡	‡	‡	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.
POP	_	\	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
PUSH	_	\	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
ROTL	_	\	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
ROTR	_	‡	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = D0 (1-bit shift) or $C = D1$ (2-bit shift)

Instruction	Н	N	z	٧	С	Definition
ROTXL	_		‡	0		N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
ROTXR	_	^	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = D0 (1-bit shift) or $C = D1$ (2-bit shift)
RTE	‡	\(\)	\$	\$	‡	Stores the corresponding bits of the result.
RTS	_	_	_	_		
SHAL			‡	‡	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						$V = \overline{Dm \cdot Dm - 1 + \overline{Dm} \cdot \overline{Dm - 1}} $ (1-bit shift)
						$V = \overline{Dm \cdot Dm - 1 \cdot Dm - 2 \cdot \overline{Dm} \cdot \overline{Dm - 1} \cdot \overline{Dm - 2}} $ (2-bit shift)
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
SHAR	_	‡	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = D0 (1-bit shift) or $C = D1$ (2-bit shift)
SHLL	_	‡	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						C = Dm (1-bit shift) or C = Dm-1 (2-bit shift)
SHLR	_	0	‡	0	‡	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \dots \cdot \overline{R0}$
						C = D0 (1-bit shift) or $C = D1$ (2-bit shift)
SLEEP	_	_	_	_	_	
STC	_	_	_	_	_	
STM	_	_	_	_	_	
STMAC			•			Cannot be used in the H8S/2238 Series

Instruction	н	N	Z	٧	С	Definition
SUB	‡	‡	‡	‡	\$	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
						N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
SUBS	_	_	_	_	_	
SUBX	‡	‡	‡	‡	\$	$H = Sm-4 \cdot \overline{Dm-4} + \overline{Dm-4} \cdot Rm-4 + Sm-4 \cdot Rm-4$
						N = Rm
						$Z = Z' \cdot \overline{Rm} \cdot \dots \cdot \overline{R0}$
						$V = \overline{Sm} \cdot Dm \cdot \overline{Rm} + Sm \cdot \overline{Dm} \cdot Rm$
						$C = Sm \cdot \overline{Dm} + \overline{Dm} \cdot Rm + Sm \cdot Rm$
TAS*	_	‡	‡	0	_	N = Dm
						$Z = \overline{Dm} \cdot \overline{Dm-1} \cdot \cdots \cdot \overline{D0}$
TRAPA	_	_	_	_	_	
XOR	_	‡	‡	0	_	N = Rm
						$Z = \overline{Rm} \cdot \overline{Rm-1} \cdot \cdots \cdot \overline{R0}$
XORC	‡	‡	‡	‡	‡	Stores the corresponding bits of the result.
						No flags change when the operand is EXR.

Note: * Only register ER0, ER1, ER4, or ER5 should be used when using the TAS instruction.

Appendix B Internal I/O Register

B.1 Addresses

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'EBC0	MRA	SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz	DTC	16/32*
to H'EFBF	SAR						_			_	bits
	MRB	CHNE	DISEL							_	
	DAR									_	
	CRA									_	
	CRB									 	
H'FDAC	DADR0									D/A converter	8 bits
H'FDAD	DADR1									_	
H'FDAE	DACR	DAOE1	DAOE0	DAE	_	_	_	_	_	_	
H'FDB4	SCRX	_	IICX1	IICX0	IICE	FLSHE	_	_	_	IIC, FLASH	8 bits
H'FDB5	DDCSWR	_	_	_	_	CLR3	CLR2	CLR1	CLR0	IIC	8 bits
H'FDC0	TCR2	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR2,TMR3	8 bits
H'FDC1	TCR3	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	_	
H'FDC2	TCSR2	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	_	
H'FDC3	TCSR3	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	_	
H'FDC4	TCORA2									_	8/16
H'FDC5	TCORA3									_	bits
H'FDC6	TCORB2			•			•			_	
H'FDC7	TCORB3									_	
H'FDC8	TCNT2									<u> </u>	
H'FDC9	TCNT3										

H'FDE5 SYSCR — INTM1 INTM0 NMIEG MRESE — RAME MCU H'FDE6 SCKCR PSTOP — — — SCK2 SCK1 SCK0 Clock put generator H'FDE7 MDCR — — — — MDS2 MDS1 MSD0 MCU H'FDE8 MSTPCRA MSTPA7 MSTPA6 MSTPA5 MSTPA4 MSTPA3 MSTPA2 MSTPA1 MSTPA0 Power-domain H'FDE9 MSTPCRB MSTPB7 MSTPB6 MSTPB5 MSTPB4 MSTPB3 MSTPB3 MSTPB4 MSTPB4 MSTPB4 MSTPB4 MSTPB4 MSTPC9 </th <th>wn 8 bits 8 bits se 8 bits 8 bits</th>	wn 8 bits 8 bits se 8 bits 8 bits
Hird Hird	wn 8 bits 8 bits se 8 bits 8 bits
Hirdux Scriptor Time Rie Te Re Mpie Teie CKE1 CKE0	8 bits se 8 bits
Hifdda SSR3 TDRE RDRF ORER FER PER TEND MPB MPBT	8 bits se 8 bits
Hifdday	8 bits se 8 bits
SSR3 TDRE RDRF ORER ERS PER TEND MPB MPBT	8 bits se 8 bits
Hifddo SCMR3	8 bits se 8 bits
Hifdde Schrift Hifde Seycr Seycr Seycr Seycr Seycr Seycr Seycr Seycr Seycr Hifde Seycr S	8 bits se 8 bits
Hifdea SBYCR SSBY STS2 STS1 STS0 OPE Power-dostate Properties	8 bits se 8 bits
H'FDE5 SYSCR — INTM1 INTM0 NMIEG MRESE — RAME MCU H'FDE6 SCKCR PSTOP — — — — SCK2 SCK1 SCK0 Clock put generator ge	8 bits se 8 bits
H'FDE6 SCKCR PSTOP — — — SCK2 SCK1 SCK0 Clock put generator generator H'FDE7 MDCR — — — — MDS2 MDS1 MSD0 MCU H'FDE8 MSTPCRA MSTPA7 MSTPA6 MSTPA5 MSTPA4 MSTPA3 MSTPA2 MSTPA1 MSTPA0 Power-do State H'FDE9 MSTPCRB MSTPB7 MSTPB6 MSTPB5 MSTPB4 MSTPB3 MSTPB2 MSTPB1 MSTPB0 State State MSTPC2 MSTPC1 MSTPC0 MSTPC0 MSTPC0 MSTPC0 MSTPC1 MSTPC0 MSTPC0 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC0 MSTPC1 MSTPC1 MSTPC0 MSTPC1 MSTPC1 MSTPC1 MSTPC1 MSTPC1 <	se 8 bits
Higher H	8 bits
HFDE8 MSTPCRA MSTPA7 MSTPA6 MSTPA5 MSTPA4 MSTPA3 MSTPA2 MSTPA1 MSTPA0 Power-dock of the p	
H'FDE9 MSTPCRB MSTPB7 MSTPB6 MSTPB5 MSTPB4 MSTPB3 MSTPB2 MSTPB1 MSTPB0 State H'FDEA MSTPCR MSTPC7 MSTPC6 MSTPC5 MSTPC4 MSTPC3 MSTPC2 MSTPC1 MSTPC0 MSTPC0 MSTPC0 MSTPC1 MSTPC0 MSTPC0 MSTPC0 MSTPC0 MSTPC0 MSTPC0 MSTPC1 MSTPC0 MSTC0 MSTC0 MSTC0 MSTC0 MSTC0 MSTC0 MSTC0 MSTC0	wn 8 hitc
HFDE9 MSTPCRB MSTPB7 MSTPB6 MSTPB6 MSTPB6 MSTPB6 MSTPB6 MSTPB6 MSTPB6 MSTPB6 MSTPB6 MSTPB6 MSTPB7 MSTPB6 MSTPB7 MSTPB6 MSTPC2 MSTPC2 MSTPC1 MSTPC1 MSTPC1 MSTPC1 MSTPC1 MSTPC1 MSTPC2 MSTPC1 MSTPC1 MSTPC1 MSTPC1 MSTPC2 MSTPC1 MSTPC1 MSTPC2 MSTPC1 MSTPC1 MSTPC2 MSTPC1 MSTPC2 MSTPC1 MSTPC1 MSTPC2 MSTPC1 MSTPC1 MSTPC1 MSTPC1 MSTPC1 MSTPC1 MSTC1 MSTC1 MSTC1 MSTC1	WII O DILO
H'FDEB PFCR — BUZZE — AE3 AE2 AE1 AE0 Bus control H'FDEC LPWRCR DTON LSON NESEL SUBSTP RFCUT — STC1 STC0 Power-do state H'FE00 BARA — — — — — — — — — PBC H'FE01 BAA23 BAA22 BAA21 BAA20 BAA19 BAA18 BAA17 BAA16 BAA16 BAA15 BAA11 BAA11 BAA10 BAA9 BAA8 BAA8 BAA1 BAA1 BAA0 BAA1 BAA1 BAA0 BAA1 BAA0 BAA1 BAA1 BAA0 BAA1	
H'FDEC LPWRCR DTON LSON NESEL SUBSTP RFCUT — STC1 STC0 Power-do state H'FE00 BARA —	
H'FE01 BAA23 BAA22 BAA21 BAA20 BAA19 BAA18 BAA17 BAA16 H'FE02 BAA15 BAA14 BAA13 BAA12 BAA11 BAA10 BAA9 BAA8 H'FE03 BAA7 BAA6 BAA5 BAA4 BAA3 BAA2 BAA1 BAA0 H'FE04 BARB — — — — — — — —	oller 8 bits
H'FE01 BAA23 BAA22 BAA21 BAA20 BAA19 BAA18 BAA17 BAA16 H'FE02 BAA15 BAA14 BAA13 BAA12 BAA11 BAA10 BAA9 BAA8 H'FE03 BAA7 BAA6 BAA5 BAA4 BAA3 BAA2 BAA1 BAA0 H'FE04 BARB — — — — — — —	wn 8 bits
H'FE02 BAA15 BAA14 BAA13 BAA12 BAA11 BAA10 BAA9 BAA8 H'FE03 BAA7 BAA6 BAA5 BAA4 BAA3 BAA2 BAA1 BAA0 H'FE04 BARB — — — — — — — —	16 bits
H'FE03 BAA7 BAA6 BAA5 BAA4 BAA3 BAA2 BAA1 BAA0 H'FE04 BARB — — — — — — —	
H'FE04 BARB — — — — — — — —	
H'FE05 BAB23 BAB22 BAB21 BAB20 BAB19 BAB18 BAB17 BAB16	
H'FE06 BAB15 BAB14 BAB13 BAB12 BAB11 BAB10 BAB9 BAB8	
H'FE07 BAB7 BAB6 BAB5 BAB4 BAB3 BAB2 BAB1 BAB0	
H'FE08 BCRA CMFA CDA BAMRA2 BAMRA1 BAMRA0 CSELA1 CSELA0 BIEA	8 bits
H'FE09 BCRB CMFB CDB BAMRB2 BAMRB1 BAMRB0 CSELB1 CSELB0 BIEB	
H'FE12 ISCRH IRQ7SCB IRQ7SCA IRQ6SCB IRQ6SCB IRQ5SCB IRQ4SCB IRQ4SCB IRQ4SCA Interrupt	8 bits
H'FE13 ISCRL IRQ3SCB IRQ3SCA IRQ2SCB IRQ2SCA IRQ1SCB IRQ0SCB IRQ0SCB IRQ0SCA controller	
H'FE14 IER IRQ7E IRQ6E IRQ5E IRQ4E IRQ3E IRQ2E IRQ1E IRQ0E	
H'FE15 ISR IRQ7F IRQ6F IRQ5F IRQ4F IRQ3F IRQ2F IRQ1F IRQ0F	
H'FE16 DTCER DTCE7 DTCE6 DTCE5 DTCE4 DTCE3 DTCE2 DTCE1 DTCE0 DTC to H'FE1E	8 bits
H'FE1F DTVECR SWDTE DTVEC6 DTVEC5 DTVEC4 DTVEC3 DTVEC2 DTVEC1 DTVEC0	

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FE30	P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	Port	8 bits
H'FE32	P3DDR	_	P36DDR	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR		
H'FE36	P7DDR	P77DDR	P76DDR	P75DDR	P74DDR	P73DDR	P72DDR	P71DDR	P70DDR		
H'FE39	PADDR	_	_	_	_	PA3DDR	PA2DDR	PA1DDR	PA0DDR	_	
H'FE3A	PBDDR	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR		
H'FE3B	PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR		
H'FE3C	PDDDR	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR	_	
H'FE3D	PEDDR	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR		
H'FE3E	PFDDR	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR		
H'FE3F	PGDDR	_	_	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR	_	
H'FE40	PAPCR	_	_	_	_	PA3PCR	PA2PCR	PA1PCR	PA0PCR		
H'FE41	PBPCR	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR		
H'FE42	PCPCR	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR		
H'FE43	PDPCR	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR		
H'FE44	PEPCR	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR		
H'FE46	P3ODR	_	P36ODR	P35ODR	P34ODR	P33ODR	P32ODR	P31ODR	P30ODR		
H'FE47	PAODR	_	_	_	_	PA3ODR	PA2ODR	PA10DR	PA0ODR		
H'FE80	TCR3	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU3	8 bits
H'FE81	TMDR3	_	_	BFB	BFA	MD3	MD2	MD1	MD0		
H'FE82	TIOR3H	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FE83	TIOR3L	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0		
H'FE84	TIER3	TTGE	_		TCIEV	TGIED	TGIEC	TGIEB	TGIEA		
H'FE85	TSR3	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA	_	
H'FE86	TCNT3										16 bits
H'FE87											
H'FE88	TGR3A									_	
H'FE89											
H'FE8A	TGR3B										
H'FE8B									7	_	
H'FE8C	TGR3C							,			
H'FE8D										-	
H'FE8E	TGR3D						-11		71	_	
H'FE8F											

Address	Register s Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FE90			CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU4	8 bits
H'FE91	TMDR4	_	_	_	_	MD3	MD2	MD1	MD0	_	
H'FE92	TIOR4	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FE94	TIER4	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_	
H'FE95	TSR4	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	_	
H'FE96	TCNT4									_	16 bits
H'FE97	_									_	
H'FE98	TGR4A									_	
H'FE99	_									_	
H'FE9A	TGR4B									_	
H'FE9B	_		17					"		_	
H'FEA0	TCR5		CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU5	8 bits
H'FEA1	TMDR5	_	_	_	_	MD3	MD2	MD1	MD0	_	
H'FEA2	TIOR5	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FEA4	TIER5	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_	
H'FEA5	TSR5	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	_	
H'FEA6	TCNT5									_	16 bits
H'FEA7	_									_	
H'FEA8	TGR5A									_	
H'FEA9	_										
H'FEAA	TGR5B										
H'FEAB	_										
H'FEB0	TSTR		_	CST5	CST4	CST3	CST2	CST1	CST0	TPU	8 bits
H'FEB1	TSYR	_	_	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0		
H'FEC0	IPRA	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	Interrupt	8 bits
H'FEC1	IPRB		IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	controller	
H'FEC2	IPRC	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FEC3	IPRD		IPR6	IPR5	IPR4		IPR2	IPR1	IPR0	_	
H'FEC4	IPRE		IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FEC5	IPRF	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FEC6	IPRG		IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0		
H'FEC7	IPRH		IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FEC8	IPRI	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FEC9	IPRJ	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FECA	IPRK		IPR6	IPR5	IPR4		IPR2	IPR1	IPR0	_	
H'FECB	IPRL	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_	
H'FECE	IPRO	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0		

Address	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
-	ABWCR	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	Bus controller	
H'FED1	ASTCR	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	_	
H'FED2	WCRH	W71	W70	W61	W60	W51	W50	W41	W40	-	
H'FED3	WCRL	W31	W30	W21	W20	W11	W10	W01	W00	-	
H'FED4	BCRH	ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	_	_	_	=	
H'FED5	BCRL	BRLE	_	_	_	_	_	_	WAITE	-	
H'FEDB	RAMER	_	_	_	_	RAMS	RAM2	RAM1	RAM0	FLASH	8 bits
H'FF00	P1DR	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR	Port	8 bits
H'FF02	P3DR	_	P36DR	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR	-	
H'FF06	P7DR	P77DR	P76DR	P75DR	P74DR	P73DR	P72DR	P71DR	P70DR	-	
H'FF09	PADR	_	_	_	_	PA3DR	PA2DR	PA1DR	PA0DR	=	
H'FF0A	PBDR	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR	-	
H'FF0B	PCDR	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR	-	
H'FF0C	PDDR	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR	-	
H'FF0D	PEDR	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR	-	
H'FF0E	PFDR	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR	-	
H'FF0F	PGDR	_	_	_	PG4DR	PG3DR	PG2DR	PG1DR	PG0DR	-	
H'FF10	TCR0	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU0	8 bits
H'FF11	TMDR0	_	_	BFB	BFA	MD3	MD2	MD1	MD0	_	
H'FF12	TIOR0H	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FF13	TIOR0L	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	_	
H'FF14	TIER0	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA	_	
H'FF15	TSR0				TCFV	TGFD	TGFC	TGFB	TGFA	_	
H'FF16	TCNT0									_	16 bits
H'FF17										=	
	TGR0A									-	
H'FF19	TOROR									-	
H'FF1A H'FF1B	TGR0B	-								-	
H'FF1C	TGROC									-	
H'FF1D							**			-	
-	TGR0D									_	
H'FF1F	-									-	

Address	Register s Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FF20	TCR1	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU1	8 bits
H'FF21	TMDR1	_	_	_	_	MD3	MD2	MD1	MD0	_	
H'FF22	TIOR1	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FF24	TIER1	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_	
H'FF25	TSR1	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	_	
H'FF26	TCNT1									_	16 bits
H'FF27	_				•					_	
H'FF28	TGR1A										
H'FF29											
H'FF2A	TGR1B										
H'FF2B											
H'FF30	TCR2		CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU2	8 bits
H'FF31	TMDR2					MD3	MD2	MD1	MD0	_	
H'FF32	TIOR2	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FF34	TIER2	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_	
H'FF35	TSR2	TCFD		TCFU	TCFV			TGFB	TGFA	_	
H'FF36	TCNT2				.,.					_	16 bits
H'FF37						41	-			_	
H'FF38	_TGR2A									_	
H'FF39		.,.			.,.					_	
H'FF3A	TGR2B					4				_	
H'FF3B											
H'FF68	TCR0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	_TMR0,TMR1	8 bits
H'FF69	TCR1	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	_	
H'FF6A	TCSR0	CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OS0	_	
H'FF6B	TCSR1	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	_	
H'FF6C	TCORA0									_	8/16
H'FF6D	TCORA1									_	bits
H'FF6E	TCORB0									_	
H'FF6F	TCORB1									_	
H'FF70	TCNT0									_	
H'FF71	TCNT1									••	
H'FF74	TCSR0	OVF	WT/ĪT	TME	_	_	CKS2	CKS1	CKS0	Watchdog	16 bits
H'FF75 (read)	TCNT0	11			-11		-11			timer 0	
H'FF77 (read)	RSTCSR	WOVF	RSTE	RSTS	_		_				

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FF78	SMR0	C/Ā	CHR	PE	O/Ē	STOP	MP	CKS1	CKS0	SCI0, smart card	8 bits
	SMR0	GM	BLK	PE	O/Ē	BCP1	BCP0	CKS1	CKS0	interface 0,	
	ICCR0	ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP	_	
H'FF79	BRR0									_	
	ICSR0	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	_	
H'FF7A	SCR0	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_	
H'FF7B	TDR0									_	
H'FF7C	SSR0	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	_	
	SSR0	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT		
H'FF7D	RDR0										
H'FF7E	SCMR0	_	_	_	_	SDIR	SINV	_	SMIF	_	
	ICDR0/ SARX0	ICDR7/ SVAX6	ICDR6/ SVAX5	ICDR5/ SVAX4	ICDR4/ SVAX3	ICDR3/ SVAX2	ICDR2/ SVAX1	ICDR1/ SVAX0	ICDR0/ FSX	_	
H'FF7F	ICMR0/ SAR0	MLS/ SVA6	WAIT/ SVA5	CKS2/ SVA4	CKS1/ SVA3	CKS0/ SVA2	BC2/ SVA1	BC1/ SVA0	BC0/ F5	_	
H'FF80	SMR1	C/Ā	CHR	PE	O/Ē	STOP	MP	CKS1	CKS0	SCI1, smart card	8 bits
	SMR1	GM	BLK	PE	O/Ē	BCP1	BCP0	CKS1	CKS0	interface 1, IIC1	
	ICCR1	ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP	_	
H'FF81	BRR1									_	
	ICSR1	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB	_	
H'FF82	SCR1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_	
H'FF83	TDR1									_	
H'FF84	SSR1	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT	_	
	SSR1	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT		
H'FF85	RDR1										
H'FF86	SCMR1	_	_	_	_	SDIR	SINV	_	SMIF	_	
	ICDR1/ SARX1	ICDR7/ SVAX6	ICDR6/ SVAX5	ICDR5/ SVAX4	ICDR4/ SVAX3	ICDR3/ SVAX2	ICDR2/ SVAX1	ICDR1/ SVAX0	ICDR0/ FSX		
H'FF87	ICMR1/ SAR1	MLS/ SVA6	WAIT/ SVA5	CKS2/ SVA4	CKS1/ SVA3	CKS0/ SVA2	BC2/ SVA1	BC1/ SVA0	BC0/ F5	_	
H'FF88	SMR2	C/Ā	CHR	PE	O/Ē	STOP	MP	CKS1	CKS0	SCI2,	8 bits
	SMR2	GM	BLK	PE	O/Ē	BCP1	BCP0	CKS1	CKS0	smart card interface 2	
H'FF89	BRR2										
H'FF8A	SCR2	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_	
H'FF8B	TDR2									_	
H'FF8C	SSR2	TDRE	RDRF	ORER	FER	PER	TEND	MPB	MPBT	_	
	SSR2	TDRE	RDRF	ORER	ERS	PER	TEND	MPB	MPBT	_	
H'FF8D		**	•	**		**	**			_	
H'FF8E		_				SDIR	SINV		SMIF	_	

Address	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FF90	ADDRAH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A/D converter	
H'FF91	ADDRAL	AD3	AD0	ADI	ADO	ADS	AD4	ADS	ADZ	- A/D conventer	o bits
H'FF92	ADDRAL	AD1	AD8	 AD7	AD6	 AD5	 AD4	AD3	 AD2	-	
H'FF93	ADDRBL	AD3 AD1	AD0	ADI	ADO	ADS	AD4	AD3	ADZ	-	
H'FF94		AD1	AD0						AD2	-	
H'FF95	ADDRCL	AD9 AD1	AD0	AD7 —	AD6	AD5	AD4	AD3	AD2	-	
										_	
H'FF96	ADDRDH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	_	
H'FF97	ADDRDL	ADT	ADIE	ADOT			-	-		_	
H'FF98	ADCSR	ADF	ADIE	ADST	SCAN		CH2	CH1	CH0	-	
H'FF99	ADCR	TRGS1	TRGS0			CKS1	CKS0				
	TCSR1	OVF	WT/IT	TME	PSS	RST/NMI	CKS2	CKS1	CKS0	Watchdog timer 1	16 bits
(read)	TCNT1									umeri	4
H'FFA8	FLMCR1	FWE	SWE1	ESU1	PSU1	EV1	PV1	E1	P1	FLASH	8 bits
H'FFA9	FLMCR2	FLER	_	_		_	_		_	_	
H'FFAA	EBR1	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0	_	
H'FFAB	EBR2	_	_	_	_	EB11	EB10	EB9	EB8		
H'FFAC	FLPWCR	PDWND	_	_	_	_	_	_	_		
H'FFB0	PORT1	P17	P16	P15	P14	P13	P12	P11	P10	Port	8 bits
H'FFB2	PORT3	_	P36	P35	P34	P33	P32	P31	P30	_	
H'FFB3	PORT4	P47	P46	P45	P44	P43	P42	P41	P40	_	
H'FFB6	PORT7	P77	P76	P75	P74	P73	P72	P71	P70	-	
H'FFB8	PORT9	P97	P96	_	_	_	_	_	_	=	
H'FFB9	PORTA	_	_	_	_	PA3	PA2	PA1	PA0	-	
H'FFBA	PORTB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	-	
H'FFBB	PORTC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	_	
H'FFBC	PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	-	
H'FFBD	PORTE	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	-	
H'FFBE	PORTF	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	_	
H'FFBF	PORTG	_	_	_	PG4	PG3	PG2	PG1	PG0	-	

Note: * Located in on-chip RAM. The bus width is 32 bits when the DTC accesses this area as register information, and 16 bits otherwise.

B.2 Functions

MRA—DTC M	ode Regis	ter A			H'EBC	0 to H'EF	BF	DTC
Bit :	7	6	5	4	3	2	1	0
	SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz
Initial value:	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined	Unde- fined
R/W :				_	_		_	
		De	0 (Mode Normal Repeat Block tra Howard and the second secon	Destination Source side mode mode ansfer mod	0 1 Mode Selec side is repeat a	eat area or b	transfer block area
		0		is fixed is incremen	ted after a	transfer		
			(by +	1 when Sz =	= 0; by +2 w	hen Sz = 1)	
			1 1	is decremer 1 when Sz =)	
	S	ource Add	ress Mode					
		0 — SAR 0 SAR (by -	R is fixed R is increme +1 when Sz R is decreme	nted after a = 0; by +2 ented after a = 0; by -2	when Sz =			

Specifies transfer data destination address

CRA—DTC	RA—DTC Transfer Count Register A H'EBC0 to H'EFBF															DTC
Bit :	_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value:		Unde-														
R/W :	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined
Γ/ / / .					_	_				_						_
	•			CR	AH			-	•			CR	RAL -			-
					Spe	cifies	the nu	ımber	of DT	C data	a tran	sfers				
CRB—DTC	Tran	Transfer Count Register B H'EBC0 to H'EFBF D'													DTC	
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial value:		Unde-														
R/W :	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined	fined
17,77																
				S	pecifi	es the	numl	oer of	DTC I	olock	data tı	ransfe	ers			
DADR0—D	/A Da	ta Re	giste	r 0					H'	FDA	$\overline{\mathbf{c}}$		•••			D/A
DADR1—D			_						H'	FDA	D					
D.,																
Bit	: _	7		6		5		4	;	3	2	: 	1		0	\neg
المثلاما بردادية								^	<u> </u>							
Initial value		0		0	r	0		0) ^^/	0		0		0 D/A	,
R/W	:	R/W		R/W	ŀ	R/W	K	:/W	K/	W	R/\	VV	R/\	v	R/W	1

Stores data for D/A conversion

Bit :	7	6	5	4	3	2	1	0
	DAOE1	DAOE0	DAE	_			_	_
Initial value:	0	0	0	1	1	1	1	1
R/W :	R/W	R/W	R/W	_	_	_	_	_
		D/A O	utput Enab	ole 0				
		0 Ar	nalog outpu	t DA0 is dis	abled			
		1 Ch	nannel 0 D/	A conversion	n is enable	d; analog o	utput DA0 is	s enabled

D/A Output Enable 1

0	Analog output DA1 is disabled
1	Channel 1 D/A conversion is enabled; analog output DA1 is enabled

D/A Conversion Control

DAOE1	DAOE0	DAE	Description
0	0	*	Channel 0 and 1 D/A conversions disabled
	1	0	Channel 0 D/A conversion enabled
			Channel 1 D/A conversion disabled
		1	Channel 0 and 1 D/A conversions enabled
1	0	0	Channel 0 D/A conversion disabled
			Channel 1 D/A conversion enabled
		1	Channel 0 and 1 D/A conversions enabled
	1	*	Channel 0 and 1 D/A conversions enabled

*: Don't care

I²C transfer rate select 1, 0

H'FDB5

IIC0 and IIC1 internal latches cleared

Bit	:	7	6	5	۷	ļ	3	2	1	0
		_	_	_	_	-	CLR3	CLR2	CLR1	CLR0
Initial valu	e:	0	0	0	()	1	1	1	1
R/W	:	R/(W)*1	R/(W)*1	R/(W)*1	R/(V	V)*1	W^{*2}	W*2	W^{*2}	W^{*2}
			IIC c	ear bits						
			CLR	3 CLR2	CLR1	CLR0	Descrip	tion		
			0	0	_	_	Setting	prohibited		
				1	0	0	Setting	prohibited		
						1	IIC0 inte	ernal latch o	leared	
					1	0	IIC1 inte	ernal latch o	leared	

1

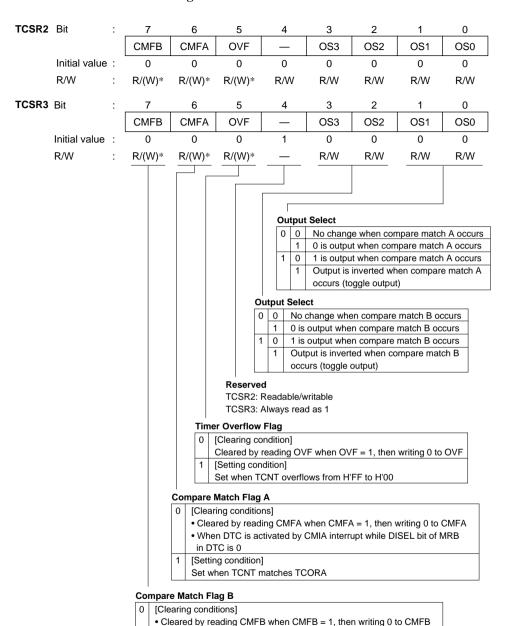
Invalid setting

Notes: *1 Only 0 can be written, to clear the flag.

1

*2 Always read as 1.

DDCSWR—DDC Switch Register


IIC

H'FDC0

TMR2

TCR2—Timer Control Register 2

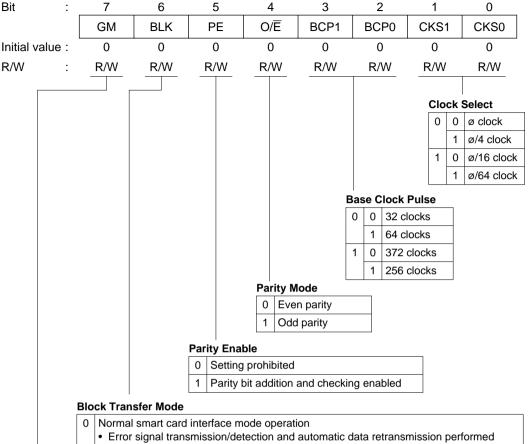
CMFB interrupt requests (CMIB) are enabled

Note: * Only 0 can be written to bits 7 to 5, to clear these flags.

• When DTC is activated by CMIB interrupt while DISEL bit of MRB in

Set when TCNT matches TCORB

DTC is 0
[Setting condition]


R/W

Bit	:	7	6	5	4	3	2	1	0
		C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0
Initial valu	e :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
								Clock	Select
								0 0	ø clock
								1	ø/4 clock
								1 0	ø/16 clock
								1	ø/64 clock
							Multiproces	sor Mode	
							0 Multipro	cessor func	tion disabled
							1 Multipro	cessor form	at selected
					Sto	p Bit Len	gth		
					0	1 stop bi	t		
				Parity Mo	1	2 stop bi	ts		
					parity*1]			
					parity*2	-			
					· · ·	n narity is	set narity hi	t addition is	performed in
				Notes.			the total nur		
									In reception,
							to see if the r plus the pa		er of 1-bits in
				*			et, parity bit		
							the total nur		
							lus the parity d to see if the		er of 1-bits in
			Parity Ena	hla			r plus the pa		
					and checki	na disable	d		
					and checki				
			,				n or odd pari	itv hit is add	ed to
			tra	ansmit data	a according t	o the ever	or odd parit	y mode sele	ection by the
							data is ched	cked to see	if it matches
		Character		e even or o	odd mode se	elected by	ine U/E bit.		
		0 8-bit d							
		1 7-bit d							
		1-1 * \				(b)(7) - 67	TDD :		

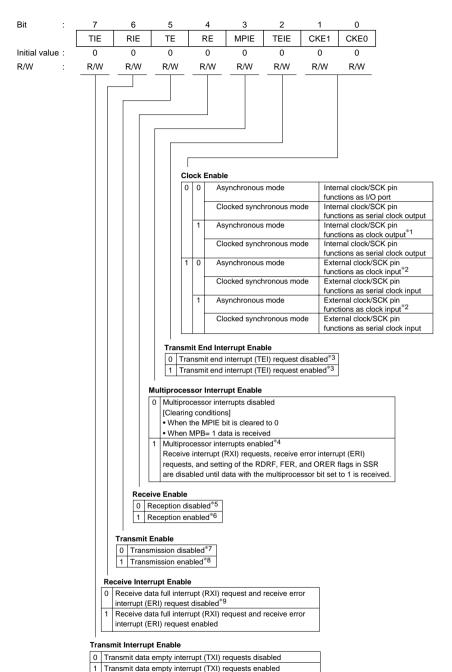
Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted, and it is not possible to choose between LSB-first or MSB-first transfer.

Selects Asynchronous Mode or Clocked Synchronous Mode

0	Asynchronous mode]
1	Clocked synchronous mode]

- TXI interrupt generated by TEND flag
- TEND flag set 12.5 etu after start of transmission (11.0 etu in GSM mode)
- 1 Block transfer mode operation
 - Error signal transmission/detection and automatic data retransmission not performed
 - TXI interrupt generated by TEND flag
 - TEND flag set 11.5 etu after start of transmission (11.0 etu in GSM mode)

GSM Mode

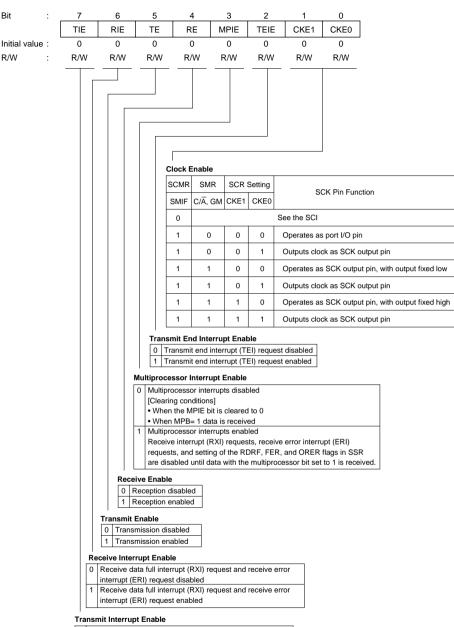

- 0 Normal smart card interface mode operation
 - TEND flag generation 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit
 - Clock output ON/OFF control only
- 1 GSM mode smart card interface mode operation
 - TEND flag generation 11.0 etu after beginning of start bit
 - High/low fixing control possible in addition to clock output ON/OFF control (set by SCR)

Note: etu: Elementary time unit (time for transfer of 1 bit)

Bit	:	7	6	5	4	3	2	1	0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W	R/W						

Sets the serial transfer bit rate

Note: For details, see section 13.2.8, Bit Rate Register (BRR).



Note: TXI cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or by clearing the TIE bit to 0.

Notes: *1 Outputs a clock of the same frequency as the bit rate.

- *2 Inputs a clock with a frequency 16 times the bit rate.
- *3 TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or by clearing the TEIE bit to 0.
- *4 Receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.
- *5 Clearing the RE bit to 0 does not affect the RDRF, FER, PER, and ORER flags, which retain their states.
- *6 Serial reception is started in this state when a start bit is detected in asynchronous mode or serial clock input is detected in clocked synchronous mode. SMR setting must be performed to decide the receive format before setting the RE bit to 1.
- *7 The TDRE flag in SSR is fixed at 1.
- *8 In this state, serial transmission is started when transmit data is written to TDR and the TDRE flag in SSR is cleared to 0. SMR setting must be performed to decide the transmit format before setting the TE bit to 1.
- *9 RXI and ERI cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0, or by clearing the RIE bit to 0.

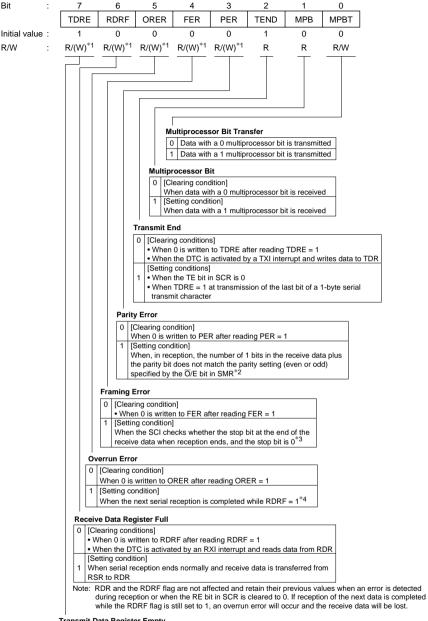
Bit

- 0 Transmit data empty interrupt (TXI) requests disabled
- Transmit data empty interrupt (TXI) requests enabled

TDR3_	-Transmit	Data	Register 3	
IDIO	TI GIIGIIII	Data	INCEISICE 5	

H'FDD3

SCI3,

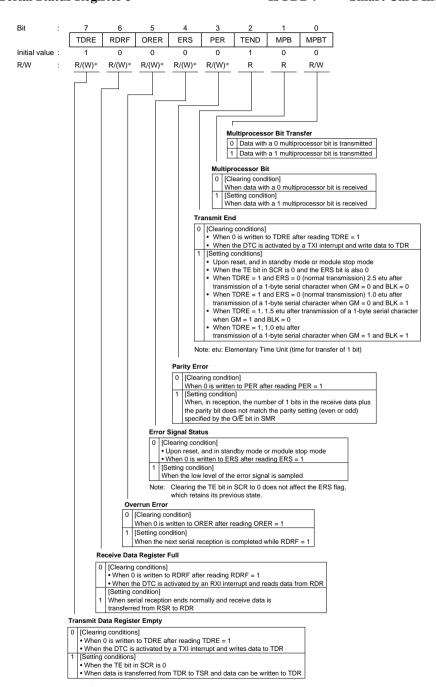

Smart Card Interface 3

Bit	:	7	6	5	4	3	2	1	0
Initial va	alue :	1	1	1	1	1	1	1	1
R/W	:	R/W	R/W						

Stores data for serial transmission

Bit

R/W



Transmit Data Register Empty

[Clearing conditions]
When 0 is written to TDRE after reading TDRE = 1
When the DTC is activated by a TXI interrupt and writes data to TDR
[Setting conditions]
When the TE bit in SCR is 0
When data is transferred from TDR to TSR and data can be written to TDR

Notes: *1 Only 0 can be written, to clear the flag.

- *2 The PER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0. Serial reception cannot be continued while the PER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
- *3 In 2-stop-bit mode, only the first stop bit is checked for a value of 1; the second stop bit is not checked. If a framing error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Serial reception cannot be continued while the FER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
- *4 The receive data prior to the overrun error is retained in RDR, and the data received subsequently is lost. Serial reception cannot be continued while the ORER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued either.

Note: * Only 0 can be written, to clear the flag.

			C					Sma	rt Card	Interface 3
Bit	:	7	6	5	4	3	3	2	1	0
Initial value	:	0	0	0	0	()	0	0	0
R/W	:	R	R	R	R	F	٦ ا	R	R	R
				;	Stores re	ceived se	rial data			
SCMR3—S	mar	t Card N	Iode Reg	ister 3		H'F	TDD6			SCI3,
			C					Sma	rt Card	Interface 3
Bit	: _	7	6	5	4	3	2	1		0
		_	_	_	_	SDIR	SINV	_	- SI	MIF
Initial value	: _	1	1	1	1	0	0	1		0
R/W	:	_	_	_	_	R/W	R/W	_	- R	:/W
								-		
						Smart Ca	ard Interfac	ce Mod	e Select	
						0 Sma	rt Card inte	rface fu	inction is o	disabled
						1 Sma	rt Card inte	rface fu	inction is	enabled
					Spec	ifies Inve	rsion of the	e Data I	Logic Lev	rel
							nts are tran			
					F	Receive da	ıta is stored	as it is	in RDŘ	
										transmitted
						keceive da	ta is stored	in inve	rtea form	IN KUK

RDR3—Receive Data Register 3

Selects the Serial/Parallel Conversion Format

H'FDD5

0	TDR contents are transmitted LSB-first
	Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first
	Receive data is stored in RDR MSB-first

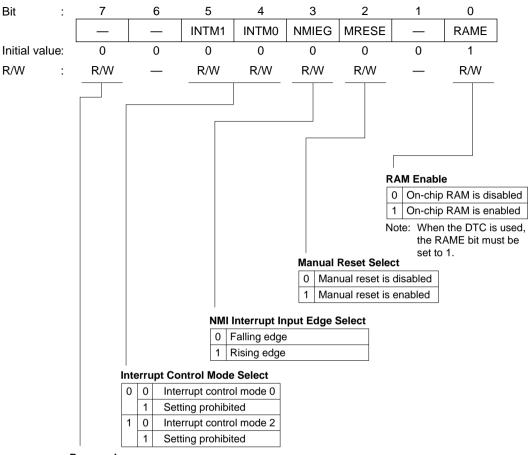
SCI3,

Bit :	7	6	5	4	3	2	1	0
	SSBY	STS2	STS1	STS0	OPE	_	_	_
Initial value:	0	0	0	0	1	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	_	_	_

Output Port Enable

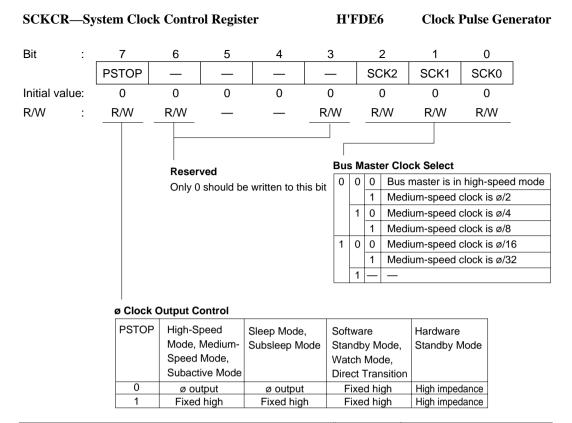
In software standby mode and watch mode, and in a direct transition, address bus and bus control signals are high-impedance
 In software standby mode and watch mode, and in a direct transition, address bus and bus control signals retain their output state

Standby Timer Select


	~,	
0	0	Standby time = 8192 states
	1	Standby time = 16384 states
1	0	Standby time = 32768 states
	1	Standby time = 65536 states
0	0	Standby time = 131072 states
	1	Standby time = 262144 states
1	0	Reserved
	1	Standby time = 16 states*
	0	1 1 0 1 0 0 1

Note: * Not used on the F-ZTAT version.

Software Standby


- Transition to sleep mode after execution of SLEEP instruction in high-speed mode or medium-speed mode
- Transition to subsleep mode after execution of SLEEP instruction in subactive mode
 Transition to software standby mode, subactive mode, or watch mode after execution of SLEEP instruction in high-speed mode or medium-speed mode

Transition to watch mode or high-speed mode after execution of SLEEP instruction in subactive mode

Reserved

Only 0 should be written to this bit

MDCR—Mode Control Register

H'FDE7

MCU

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	_	MDS2	MDS1	MDS0
Initial valu	ue:	1	0	0	0	0	*	*	*
R/W	:	_	_	_	_	_	R	R	R
							<u> </u>		

Current mode pin operating mode

Note: * Determined by pins MD2 to MD0.

MSTPCRA—Module Stop Control Register A	H'FDE8	Power-Down State
MSTPCRB—Module Stop Control Register B	H'FDE9	
MSTPCRC—Module Stop Control Register C	H'FDEA	

MSTPCRA

Bit	:	7	6	5	4	3	2	1	0
		MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0
Initial value	€:	0	0	1	1	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MSTPCRB

Bit	:	7	6	5	4	3	2	1	0
		MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTPB0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MSTPCRC

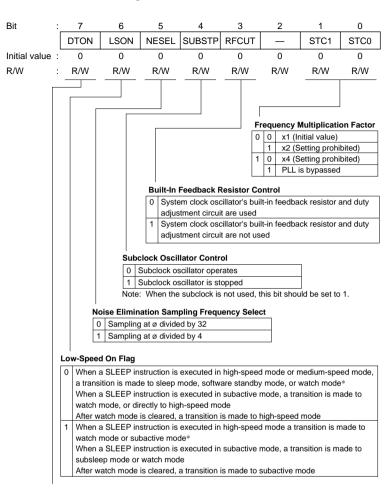
Bit	:	7	6	5	4	3	2	1	0
		MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0
Initial value	e :	1	1	1	1	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Specifies Module Stop Mode

0 Module stop mode is cleared1 Module stop mode is set

PFCR—Pin I	Fun	ction Co	ntrol Regi	ister		H'FDEE	3	Bus	Controller
Bit	:	7	6	5	4	3	2	1	0
		_	_	BUZZE	_	AE3	AE2	AE1	AE0
Modes 4 and	5		1	1					
Initial value	:	0	0	0	0	1	1	0	1
Modes 6 and	7								
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Only 0 sh to these b	ould be writ	ten	Reserve Only 0 s to this bi	hould be wr	itten		

Address Output Enable


_		_			
0	0	0	0	A8 to A23 output disabled	(Initial value)*1
			1	A8 output enabled; A9 to A23 output disabled	
		1	0	A8, A9 output enabled; A10 to A23 output disabled	
			1	A8 to A10 output enabled; A11 to A23 output disabled	
	1	0	0	A8 to A11 output enabled; A12 to A23 output disabled	
			1	A8 to A12 output enabled; A13 to A23 output disabled	
		1	0	A8 to A13 output enabled; A14 to A23 output disabled	
			1	A8 to A14 output enabled; A15 to A23 output disabled	
1	0	0	0	A8 to A15 output enabled; A16 to A23 output disabled	
			1	A8 to A16 output enabled; A17 to A23 output disabled	
		1	0	A8 to A17 output enabled; A18 to A23 output disabled	
			1	A8 to A18 output enabled; A19 to A23 output disabled	
	1	0	0	A8 to A19 output enabled; A20 to A23 output disabled	
			1	A8 to A20 output enabled; A21 to A23 output disabled	(Initial value)*2
		1	0	A8 to A21 output enabled; A22, A23 output disabled	
			1	A8 to A23 output enabled	

Notes: *1 In expanded mode with ROM, bits AE3 to AE0 are initialized to B'0000. In expanded mode with ROM, address pins A0 to A7 are made address outputs by setting the corresponding DDR bits to 1.

*2 In ROMless expanded mode, bits AE3 to AE0 are initialized to B'1101. In ROMless expanded mode, address pins A0 to A7 are always address outputs.

BUZZ Output Enable

	Functions as PF1 I/O pin
1	Functions as BUZZ output pin

Direct-Transfer On Flag

When a SLEEP instruction is executed in high-speed mode or medium-speed mode, a transition is made to sleep mode, software standby mode, or watch mode* When a SLEEP instruction is executed in subactive mode, a transition is made to subsleep mode or watch mode

When a SLEEP instruction is executed in high-speed mode or medium-speed mode, a transition is made directly to subactive mode*, or a transition is made to sleep mode or software standby mode

When a SLEEP instruction is executed in subactive mode, a transition is made

Note: * When a transition is made to watch mode or subactive mode, high-speed mode must be set.

directly to high-speed mode, or a transition is made to subsleep mode

BARA—Br BARB—Br					_								E00 E04							PBC
Bit :	31	•••	24	23	22	21	20	19	18	17	16		7	6	5	4	3	2	1	0
	_		_	BAA 23	BAA 22	BAA 21	BAA 20	BAA 19	BAA 18	BAA 17	BAA 16	•••	BAA 7	BAA 6	BAA 5	BAA 4	BAA 3	BAA 2	BAA 1	BAA 0
Initial value:	Unde- fined	• • • •	Unde fined		0	0	0	0	0	0	0	•••	0	0	0	0	0	0	0	0
R/W :	_	• • •	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•••	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	:	31	•••	24	23	22	21	20	19	18	17	16	•••	7	6	5	4	3	2	1	0
		_	•••	_	BAB 23	BAB 22		BAB 20	BAB 19	BAB 18	BAB 17	BAB 16	•••		BAB 6	BAB 5		BAB 3			BAB 0

These bits hold the channel A or B PC break address

- 0 PC break is performed when CPU is bus master
- PC break is performed when CPU or DTC is bus master

Condition Match Flag A

[Clearing condition] When 0 is written to CMFA after reading CMFA = 1 [Setting condition] When a condition set for channel A is satisfied

Note: * Only 0 can be written, to clear the flag.

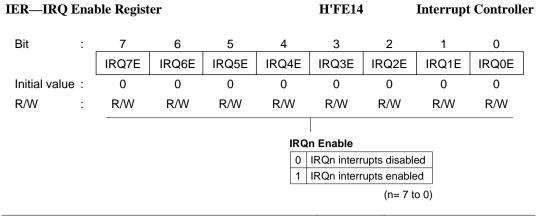
BCRB—Break Control Register B **PBC** H'FE09 Bit 7 6 5 3 2 1 0 **CMFB** CDB BAMRB2BAMRB1BAMRB0CSELB1 CSELB0 **BIEB** Initial value: 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W

The bit configuration is the same as for BCRA

ISCRH

Bit	:	15	14	13	12	11	10	9	8
		IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA
Initial va	ılue:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

IRQ7 to IRQ4 Sense Control


ISCRL

Bit	:	7	6	5	4	3	2	1	0
		IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA
Initial value	e:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

IRQ3 to IRQ0 Sense Control

IRQnSCB	IRQnSCA	Interrupt Request Generation
0	0	IRQn input low level
	1	Falling edge of IRQn input
1	0	Rising edge of IRQn input
	1	Both falling and rising edges of IRQn input

(n=7 to 0)

ISR—IRQ State	us Registe	er			H'FE1	5	Interrupt Controller		
Bit :	7	6	5	4	3	2	1	0	
	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F	
Initial value:	0	0	0	0	0	0	0	0	
R/W :	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	

Indicates the status of IRQ7 to IRQ0 interrupt requests

Note: * Only 0 can be written, to clear the flag.

Bit	:	7	6	5	4	3	2	1	0
		DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0
Initial value:		0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DTC Activation Enable

- 0 DTC activation by this interrupt is disabled
 - [Clearing conditions]
 - When the DISEL bit is 1 and the data transfer has ended
 - When the specified number of transfers have ended
- DTC activation by this interrupt is enabled
 [Holding condition]
 When the DISEL bit is 0 and the specified number of transfers have not ended

Correspondence between Interrupt Sources and DTCER

	Bit									
Register	7	6	5	4	3	2	1	0		
DTCERA	IRQ0	IRQ1	IRQ2	IRQ3	IRQ4	IRQ5	IRQ6	IRQ7		
DTCERB	_	ADI	TGI0A	TGI0B	TGI0C	TGI0D	TGI1A	TGI1B		
DTCERC	TGI2A	TGI2B	TGI3A	TGI3B	TGI3C	TGI3D	TGI4A	TGI4B		
DTCERD	_	_	TGI5A	TGI5B	CMIA0	CMIB0	CMIA1	CMIB1		
DTCERE	_	_	_	_	RXI0	TXI0	RXI1	TXI1		
DTCERF	RXI2	TXI2	CMIA2	CMIB2	CMIA3	CMIB3	IICI0	IICI1		
DTCERI	RXI3	TXI3	_	_	_	_	_	_		

Bit :	_	7	6	5	4	3	2	1	0
	;	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0
Initial value:	_	0	0	0	0	0	0	0	0
R/W :		R/(W)*1	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2	R/(W)*2
	-			Sets vec	tor numbe	er for DTC	software a	activation	

DTC Software Activation Enable

- 0 DTC software activation is disabled [Clearing conditions]
 - When the DISEL bit is 0 and the specified number of transfers have not ended
 - When 0 is written to the DISEL bit after a software-activated data transfer end interrupt (SWDTEND) request has been sent to the CPU
- 1 DTC software activation is enabled [Holding conditions]
 - When the DISEL bit is 1 and data transfer has ended
 - · When the specified number of transfers have ended
 - · During data transfer due to software activation

Notes: *1 Only 1 can be written to the SWDTE bit.

*2 Bits DTVEC6 to DTVEC0 can be written to when SWDTE = 0.

P1DDR—Port 1 Data Direction Register						Por	t 1			
Bit	:	7	6	5	4	3	2	1	0	
		P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	
Initial value	:	0	0	0	0	0	0	0	0	
R/W	:	W	W	W	W	W	W	W	W	

Specify input or output for the pins of port 1

Specify input or output for the pins of port B

Bit	:	7	6	5	4	3	2	1	0
		PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PCDDR—Port C Data Direction Register

Specify input or output for the pins of port C

H'FE3B

PDDDR—Port D Data Direction Register						H'FE3C			
Bit	:	7	6	5	4	3	2	1	0
		PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

Specify input or output for the pins of port D

PEDDR—Port E Data Direction Register						H'FE3		Port 1		
Bit	:	7	6	5	4	3	2	1	0	
		PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR	
Initial value	:	0	0	0	0	0	0	0	0	
R/W	:	W	W	W	W	W	W	W	W	

Specify input or output for the pins of port E

Port C

E

]	PFDDR—Port	t I	F Data Di	rection Re	egister		H'FE3E	2		Port 1	F
	Bit	:	7	6	5	4	3	2	1	0	
			PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR	
	Modes 4 to 6							,			
	Initial value	:	1	0	0	0	0	0	0	0	
	R/W	:	W	W	W	W	W	W	W	W	
	Mode 7										
	Initial value	:	0	0	0	0	0	0	0	0	
	R/W	:	W	W	W	W	W	W	W	W	

Specify input or output for the pins of port F

PGDDR—Port	t (3 Data Dii	rection Re	egister		H'FE3F			Port G
Bit	:	7	6	5	4	3	2	1	0
		_	_	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR
Modes 4 and 5									
Initial value	:	Undefined	Undefined	Undefined	1	0	0	0	0
R/W	:	_	_	_	W	W	W	W	W
Modes 6 and 7									
Initial value	:	Undefined	Undefined	Undefined	0	0	0	0	0
R/W	:	_	_	_	W	W	W	W	W
					_				

Specify input or output for the pins of port G

PAPCR—Port	A MOS I	Pull-Up C	ontrol Re	gister	H'FE4	Port A		
Bit :	7	6	5	4	3	2	1	0
	_	_	_	_	PA3PCR	PA2PCR	PA1PCR	PA0PCR
Initial value:	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W :	_	_	_	_	R/W	R/W	R/W	R/W
					Controls the			function by-bit basis
PBPCR—Port	B MOS P	Pull-Up C	ontrol Re	gister	H'FE4	1		Port B
Bit :	7	6	5	4	3	2	1	0
	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR
Initial value:	0	0	0	0	0	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		ir	Controls t		nput pull-u B on a bit		is	
PCPCR—Port	C MOS I	Pull-Up C	ontrol Re	gister	H'FE4	2		Port C
Bit :	. 7	6	5	4	3	2	1	0
	PC7PCR	PC6PCF	PC5PCR	PC4PCF	PC3PCR	PC2PCR	PC1PCR	PC0PCR
Initial value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		i	Controls ncorporate		input pull-ut C on a bit			
PDPCR—Port	D MOS I	Pull-Up C	ontrol Re	gister	H'FE4	3		Port D
Bit :	7	6	5	4	3	2	1	0
	PD7PCR	PD6PCF	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR
Initial value :	0	0	0	0	0	0	0	0

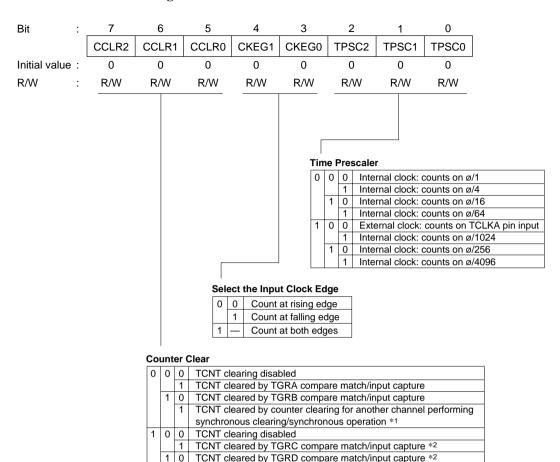
Controls the MOS input pull-up function incorporated into port D on a bit-by-bit basis

R/W

R/W

R/W

R/W


R/W

R/W

R/W

R/W

R/W

Notes: *1 Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

*2 When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.

synchronous clearing/synchronous operation *1

TCNT cleared by counter clearing for another channel performing

_											
Bit :	:	7	6	5	4		3		2	1	0
		_	_	BFB	BFA	М	ID3	}	MD2	MD1	MD0
Initial value	: '	1	1	0	0	•	0		0	0	0
R/W	:	_	_	R/W	R/W	R	/W	,	R/W	R/W	R/W
						Mo 0	0 1 *	0 1 1 *	1 Reser 0 PWM 1 PWM 0 Phase 1 Phase 1 Phase * — MD3 is a reshould alway Phase cour for channel	mode 1 mode 2 e counting me e counting me e counting me e counting me	node 2 node 3 node 4 :: Don't care In a write, it en with 0. cannot be s n this case,
					Buffe	r Opei	rati	on	A		
									es normally		
									GRC used t	ogether for	
						ouffer o	ppe	rati	on		

Buffer Operation B

0	TGRB operates normally
1	TGRB and TGRD used together for
	buffer operation

Bit	:	7	6	5	4	3	2	1	0
		IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TGR3A I/O Control

0	0	0	0	TGR3A is	Output disabled	
		•	1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
		ļ .	1	register	Catput	Toggle output at compare match
	1	0	<u>'</u>	register	Output disabled	roggie output at compare mater
		U	U		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
						Toggle output at compare match
1	0	0	0	TGR3A is	Capture input source	Input capture at rising edge
			1	input	is TIOCA3 pin	Input capture at falling edge
		1	*	capture		Input capture at both edges
	1	*	*	register	Capture input source	Input capture at TCNT4 count-up/
					is channel 4/count clock	count-down

*: Don't care

TGR3B I/O Control

0	0	0	0	TGR3B is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
			1	register		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
						Toggle output at compare match
1	0	0	0	TGR3B is	Capture input source	Input capture at rising edge
			1	input	is TIOCB3 pin	Input capture at falling edge
		1	*	capture		Input capture at both edges
	1	*	*	register	Capture input source	Input capture at TCNT4 count-up/
					is channel 4/count clock	count-down*1

*: Don't care

Note: *1 When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and Ø/1 is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.

Bit :	7	6	5	4	3	2	1	0
	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
Initial value :	0	0	0	0	0	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

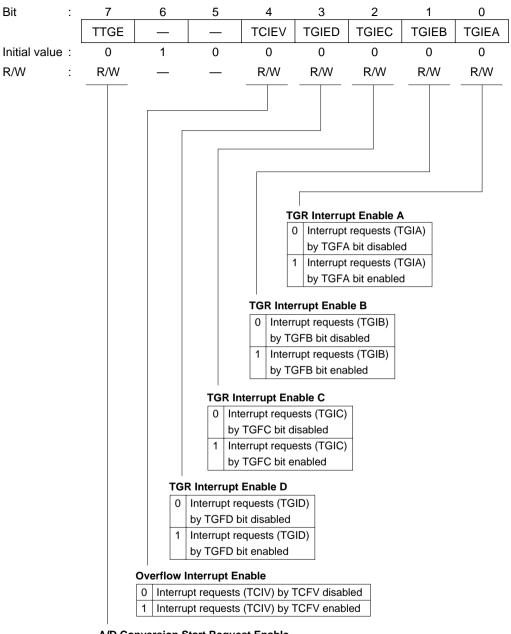
TGR3C I/O Control

0	0	0	0	TGR3C is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
			1	register		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
						Toggle output at compare match
1	0	0	0	TGR3C is	Capture input source	Input capture at rising edge
			1	input	isTIOCC3 pin	Input capture at falling edge
		1	*	capture		Input capture at both edges
	1	*	*	register	Capture input source	Input capture at TCNT4 count-up/
					is channel 4/count clock	count-down*1

*: Don't care

Note: *1 When the BFA bit in TMDR3 is set to 1 and TGR3C is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

TGR3D I/O Control


0	0	0	0	TGR3D is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
			1	register*2		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
						Toggle output at compare match
1	0	0	0	TGR3D is	Capture input source	Input capture at rising edge
			1	input	isTIOCD3 pin	Input capture at falling edge
		1	*	capture		Input capture at both edges
	1	*	*	register*2	Capture input source	Input capture at TCNT4 count-up/
					is channel 4/count clock	count-down*1

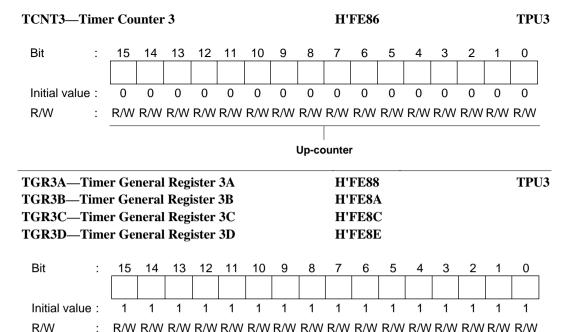
*: Don't care

Notes: *1 When bits TPSC2 to TPSC0 in TCR4 are set to B'000 and Ø/1 is used as the TCNT4 count clock, this setting is invalid and input capture is not generated.

*2 When the BFB bit in TMDR3 is set to 1 and TGR3D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

A/D Conversion Start Request Enable


- 0 A/D conversion start request generation disabled
- 1 A/D conversion start request generation enabled

Bit	:		7	6	5	4	3	2	1	0
			_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA
Initial value	:		1	1	0	0	0	0	0	0
R/W	:		_	_	_	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*
				apture/Outp		re Flag A				
			1 -	aring conditi nen DTC is a	-	, TGIΔ inter	runt while [OISEL hit of	MRR in DT	C is 0
				nen 0 is writt					WINCO III O I	0 13 0
				ting conditio						
				nen TCNT = nen TCNT va			•			•
				unctioning a				out capture	signal wille	IGKA
		[<u> </u>					
	اِ	npι	ıt Captu	re/Output C	Compare F	lag B				
				g conditions		ND 1. (L'IL DIO		D. DTO:	
				DTC is activ 0 is written t				L bit of MR	B in DTC is	; 0
		-		conditions]	0 101 2 41	tor rodding	1015-1			
		- 1		TCNT = TGI			-		_	I
				TCNT value			B by input o	apture sign	al while TG	RB
	L		is lunc	tioning as in	put capture	e register				
li li	nput	Са	pture/O	utput Comp	are Flag (;				
	1 -		aring cor	-						
				is activated vritten to TG				of MRB in	DTC is 0	
			ing cond		i C aitei ie	auing 101 (<i>5</i> = 1			
	1 -		•	T = TGRC w	hile TGRC	is functioni	ng as outpu	ut compare	register	
				T value is tra			input captu	re signal wh	ile TGRC	
L		IS TU	ınctionin	ng as input c	apture regi	ster				İ
Input	Сар	tur	e/Outpu	ıt Compare	Flag D					
1 1 -		_	conditio	-						
				ctivated by T en to TGFD a				IRB in DTC	IS U	
			ondition			g . O. D = 1	•			
				ΓGRD while		•	•			
				lue is transfe		RD by inpu	t capture si	gnal while T	GRD	
	is tul	ICTIO	orling as	input captu	re register					

Overflow Flag

٠.	oniow i lag
0	[Clearing condition]
	When 0 is written to TCFV after reading TCFV = 1
1	[Setting condition]
	When the TCNT value overflows (changes from H'FFFF to H'0000)

Note: * Can only be written with 0 for flag clearing.

R/W

Bit :	7	6	5		_	1	3	2	1	0
	<u>.</u>	CCLR1	CCLR0	C		EG1	CKEG0	TPSC2	TPSC1	TPSC0
Initial value:	0	0	0		(0	0	0	0
R/W :	_	R/W	R/W		R/	W	R/W	R/W	R/W	R/W
				_	,					
				Г						
]	Tim	ne F	Presc	aler			
				0	0		Internal cloc			
						-	Internal cloc			
					1		Internal cloc			
				1	_	_	Internal cloc			in in a set
				1	0	-	External clo			
					1		External clo			Jili iliput
					1		Counts on T			low
							Counts on 1	CN 15 Over	now/unden	low
			1	Not			setting is igr	nored when	channel 4 i	s in phase
					•	coun	ting mode.			
			Select the I	np	ut (Clock	k Edge			
			0 0 Cou	ınt a	at r	ising	edge			
							edge			
			1 — Cou	ınt a	at b	oth e	edges			
		1	Note: This s	sett	ting	is ig	nored when	channel 4 i	s in phase	
			count						•	
		Counter C	lear							
0 0 TCNT clearing of						oled				

0	0	TCNT clearing disabled
	1	TCNT cleared by TGRA compare match/input capture
1	0	TCNT cleared by TGRB compare match/input capture
	1	TCNT cleared by counter clearing for another channel
		performing synchronous clearing/synchronous operation*

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	MD3	MD2	MD1	MD0
Initial value	:	1	1	0	0	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W
						-			
						Mode			

- 1									
Мо	Mode								
0	0	0	0	Normal operation					
			1	Reserved					
		1	0	PWM mode 1					
			1	PWM mode 2					
	1	0	0	Phase counting mode 1					
			1	Phase counting mode 2					
		1	0	Phase counting mode 3					
			1	Phase counting mode 4					
1	*	*	*						

*: Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

Bit :	7	6	5	4	3	2	1	0
	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Initial value :	0	0	0	0	0	0	0	0

R/W : R/W R/W R/W R/W R/W R/W R/W

TGR4A I/O Control


0	0	0	0	TGR4A is	Output disabled					
			1	output	Initial output is 0	0 output at compare match				
		1	0	compare	output	1 output at compare match				
			1	register		Toggle output at compare match				
	1	0	0		Output disabled					
			1		Initial output is 1	0 output at compare match				
		1	0		output	1 output at compare match				
			1			Toggle output at compare match				
1	0	0	0	TGR4A is	Capture input source	Input capture at rising edge				
			1	input	isTIOCA4 pin	Input capture at falling edge				
		1	*	capture		Input capture at both edges				
	1	*	*	register	Capture input source is	Input capture at generation of TGR3A				
					TGR3A compare match/	compare match/input capture				
					input capture					

*: Don't care

TGR4B I/O Control

0	0	0	0	TGR4B is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
			1	register		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR4B is	Capture input source	Input capture at rising edge
			1	input	isTIOCB4 pin	Input capture at falling edge
		1	*	capture		Input capture at both edges
	1	*	*	register	Capture input source is	Input capture at generation of TGR3C
					TGR3C compare match/	compare match/input capture
					input capture	

*: Don't care

1 A/D conversion start request generation enabled

Bit	:	7	6	5	4	3	2	1	0
		TCFD	-	TCFU	TCFV	_	_	TGFB	TGFA
Initial value	:	1	1	0	0	0	0	0	0
R/W	:	R	_	R/(W)*	R/(W)*	_	_	R/(W)*	R/(W)*
			Input	Capture/Ou	ıtput Comi	oare Flag <i>A</i>			
			0 [C • \ • \ 1 [S • \	Clearing con When DTC In DTC is 0 When 0 is we Tetting cond When TCNT	ditions] is activated ritten to TG itions]	by TGIA in	terrupt whil	e DISEL bit A = 1 ng as outpu	
			• \	egister When TCNT while TGRA				input captur gister	e signal
		In	put Capture	e/Output Co	ompare Fla	ıg B			
		0	• When D in DTC is	s 0				bit of MRB	,
		1		is written to	IGFB atte	r reading i	GFB = 1		
			When To register When To	CNT = TGR	s transferre	d to TGRB	by input ca	utput compa	
		Overflow	Flan						
	0 [Clearing condition] When 0 is written to TCFV after reading TCFV = 1 1 [Setting condition] When the TCNT value overflows (changes from H'FFFF to H'0000)								
	_	ow Flag							
0		aring cond		Loftor =====	na TOTU	4			
1	[Set	ting condit	ten to TCFL tion] NT value un				H'FFFF)		

Count Direction Flag

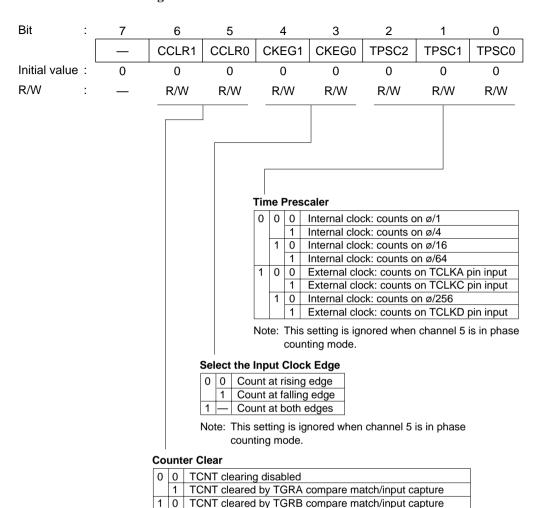
0	TCNT counts down
1	TCNT counts up

Note: * Can only be written with 0 for flag clearing.

 Bit

Initial value: R/W

Up/down-counter*


Note: * These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as up-counters.

TGR4A—Timer General Register 4A	H'FE98	TPU4
TGR4B—Timer General Register 4B	H'FE9A	

Bit

Initial value:

R/W

Note: * Synchronous operation setting is performed by setting

the SYNC bit in TSYR to 1.

TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*

Bit	:	7	6	5	4	3	2	1	0		
		_	_	_	_	MD3	MD2	MD1	MD0		
Initial value	:	1	1	0	0	0	0	0	0		
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W		
						-					
						Mode					
						0 0 0 Normal operation					

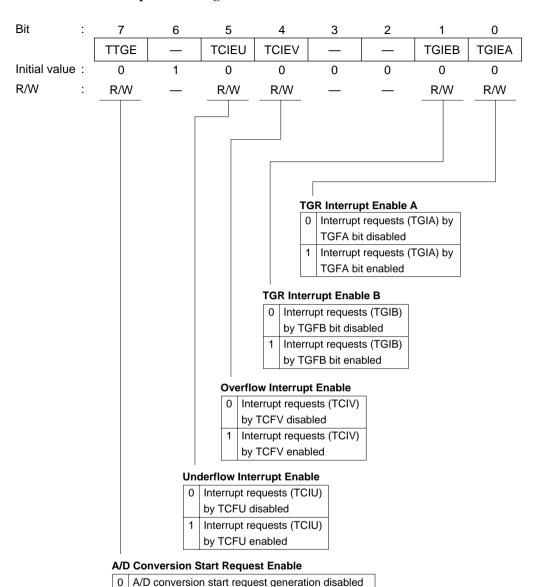
Мо	de			
0	0	0	0	Normal operation
			1	Reserved
		1	0	PWM mode 1
			1	PWM mode 2
	1	0	0	Phase counting mode 1
			1	Phase counting mode 2
		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	*	*	*	_
	•			

*: Don't care

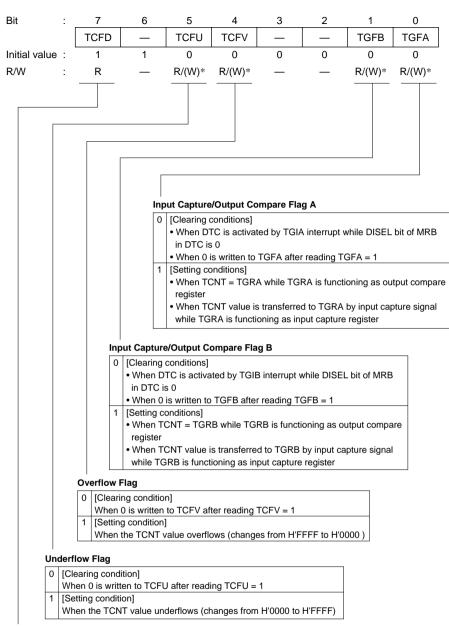
Note: MD3 is a reserved bit. In a write, it should always be written with 0.

Bit	:	7	6	5	4	3	2	1	0
		IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

TGR5A I/O Control


0	0	0	0	TGR5A is	Output disabled						
			1	output	Initial output is 0	0 output at compare match					
		1	0	compare	output	1 output at compare match					
			1	register		Toggle output at compare match					
	1	0	0		Output disabled						
			1		Initial output is 1	0 output at compare match					
		1	0		output	1 output at compare match					
			1			Toggle output at compare match					
1	*	0	0	TGR5A is	Capture input source	Input capture at rising edge					
			1	input capture	is TIOCA5 pin	Input capture at falling edge					
		1	*	register		Input capture at both edges					

^{*:} Don't care


TGR5B I/O Control

0	0	0	0	TGR5B is	Output disabled						
			1	output	Initial output is 0	0 output at compare match					
		1	0	compare	output	1 output at compare match					
			1	register		Toggle output at compare match					
	1	0	0		Output disabled						
			1		Initial output is 1	0 output at compare match					
		1	0		output	1 output at compare match					
			1			Toggle output at compare match					
1	*	0	0	TGR5B is	Capture input source	Input capture at rising edge					
			1	input capture	is TIOCB5 pin	Input capture at falling edge					
		1	*	register		Input capture at both edges					

^{*:} Don't care

1 A/D conversion start request generation enabled

Count Direction Flag

0 TCNT counts down
1 TCNT counts up

Note: * Can only be written with 0 for flag clearing.

Bit Initial value:

 $\mathsf{R/W} \qquad : \quad \mathsf{R/W} \; \mathsf{R/W}$

Up/down-counter*

Note: * These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as up-counters.

TGR5A— TGR5B—			H'FEA8 H'FEAA								TPU5						
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial val		•	1 R/W	•	•	•	•	•	•	•	•	•	1 ' R/W	'	1 R/W	1 R/W	1 R/W

TSTR—T	imer	Start Re	gister			TPU				
Bit	:	7	6	5	4	3	2	1	0	_
		_	_	CST5	CST4	CST3	CST2	CST1	CST0	
Initial valu	e :	0	0	0	0	0	0	0	0	-
R/W	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

Counter Start

TCNTn count operation is stoppedTCNTn performs count operation

(n=5 to 0)

Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value.

Bit	:	7	6	5	4	3	2	1	0
		_	_	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W
			-	Timer Sync	hro				
				0 TCNTn	operates in	dependentl	y (TCNT pr	esetting/cle	aring
				is unrela	ated to othe	r channels)			
				1 TCNTn	performs s	ynchronous	operation		
				TCNT s	ynchronous	s presetting/	/synchronou	us clearing	is possible
				•					

(n=5 to 0)

- Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1.
 - 2. To set synchronous clearing, in addition to the SYNC bit , the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.

IPRA—I	nterru	pt Priorit	y Register	r A		H'FEC	0	Interrupt	Controller
IPRB—I	nterru	pt Priorit	y Register	r B		H'FEC	1		
IPRC—I	nterru	pt Priorit	y Register	r C		H'FEC	2		
IPRD—I	nterru	pt Priorit	y Register	r D		H'FEC	3		
IPRE—I	nterru	pt Priorit	y Register	r E		H'FEC	4		
IPRF—I	nterru	- pt Priorit	y Register	r F		H'FEC	5		
IPRG—I	nterru	- pt Priorit	y Register	r G		H'FEC	6		
IPRH—I	nterru	pt Priorit	y Register	r H		H'FEC'	7		
IPRI —I	nterru	- pt Priorit	y Register	r I		H'FEC	8		
IPRJ —I	nterru	- pt Priorit	y Register	r J		H'FEC	9		
IPRK—I	nterru	pt Priorit	y Register	r K		H'FEC	A		
IPRL—I	nterru	- pt Priorit	y Register	r L		H'FEC			
IPRO—I	nterru	- pt Priorit	y Register	r O		H'FEC	E		
		_							
Bit	:	7	6	5	4	3	2	1	0
			IDD6	IDD <i>E</i>	IDD 4		IDD2	IDD4	IDDA

Bit :	7	6	5	4	3	2	1	0
	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0
Initial value:	0	1	1	1	0	1	1	1
R/W :	_	R/W	R/W	R/W	_	R/W	R/W	R/W

Set priority (levels 7 to 0) for interrupt sources

Correspondence between Interrupt Sources and IPR Settings

	Bits	·				
Register	DIIS					
rtogiotoi	6 to 4	2 to 0				
IPRA	IRQ0	IRQ1				
IPRB	IRQ2, IRQ3	IRQ4, IRQ5				
IPRC	IRQ6, IRQ7	DTC				
IPRD	Watchdog timer 0	_*				
IPRE	PC break	A/D converter, watchdog timer 1				
IPRF	TPU channel 0	TPU channel 1				
IPRG	TPU channel 2	TPU channel 3				
IPRH	TPU channel 4	TPU channel 5				
IPRI	8-bit timer channel 0	8-bit timer channel 1				
IPRJ	<u>-</u> *	SCI channel 0				
IPRK	SCI channel 1	SCI channel 2				
IPRL	8-bit timer channel 2, 3	IIC (option)				
IPRO	SCI channel 3	*				

Note: * Reserved bits. These bits cannot be modified and are always read as 1.

			Ü						
Bit	:	7	6	5	4	3	2	1	0
		ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0
Modes 5									
Initial val	lue :	1	1	1	1	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Mode 4									
Initial val	lue:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ABWCR—Bus Width Control Register

Area 7 to 0 Bus Width Control

O Area n is designated for 16-bit access1 Area n is designated for 8-bit access

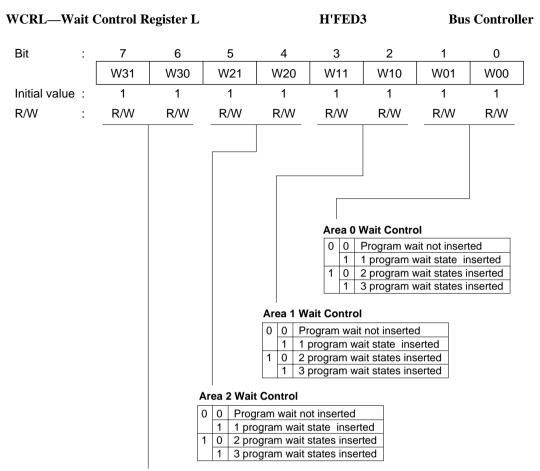
H'FED0

(n=7 to 0)

Bus Controller

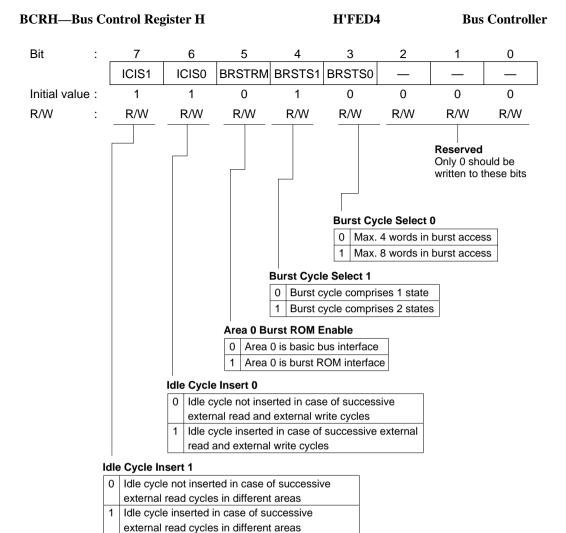
ASTCR-	-Acces	s State Co	ontrol Reg	gister		H'FED1			Bus Controller		
Bit	:	7	6	5	4	3	2	1	0		
		AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0		
Initial value:		1	1	1	1	1	1	1	1		
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

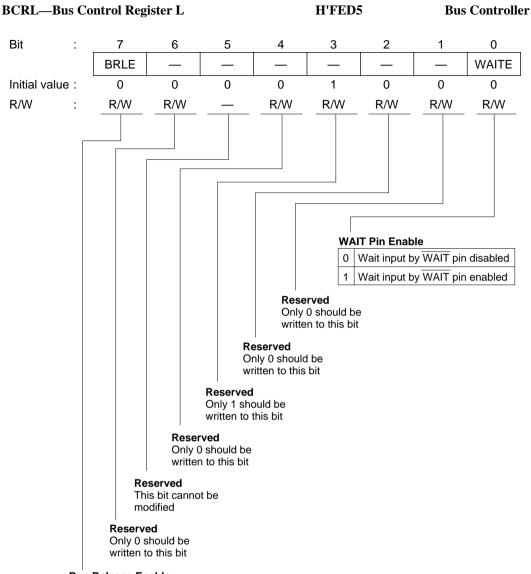
Area 7 to 0 Access State Control


0	Area n is designated for 2-state access
	Wait state insertion in area n external space is disabled
1	Area n is designated for 3-state access
	Wait state insertion in area n external space is enabled

(n=7 to 0)

WCRH—Wait Control Register H H'FED2 **Bus Controller** Bit 7 6 5 4 3 2 1 0 W70 W61 W41 W71 W60 W51 W50 W40 1 Initial value : 1 1 1 1 1 1 1 R/W R/W R/W R/W R/W R/W R/W R/W R/W Area 4 Wait Control Program wait not inserted 1 program wait state inserted 1 0 2 program wait states inserted 3 program wait states inserted Area 5 Wait Control Program wait not inserted 1 program wait state inserted 1 0 2 program wait states inserted 3 program wait states inserted **Area 6 Wait Control** 0 Program wait not inserted 1 program wait state inserted 1 2 program wait states inserted 3 program wait states inserted


Area 7 Wait Control


0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Area 3 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

Bus Release Enable

- 0 External bus release is disabled
- 1 External bus release is enabled

Bit :	7	•	6	5	4	3	2	1	0		
	_	-	_	_	_	RAMS	RAM2	RAM1	RAM0		
Initial value:	C)	0	0	0	0	0	0	0		
R/W :	F	!	R	R	R/W	R/W	R/W	R/W	R/W		
		Γ									
Flash Memory Ard Selection											
		RA	M Sele	ect							
0 Emulation not selected Program/erase-protection of all flash memory blocks is disabled											
		1	Emula	ation selec	cted						

P1DR—Port 1 Data Register

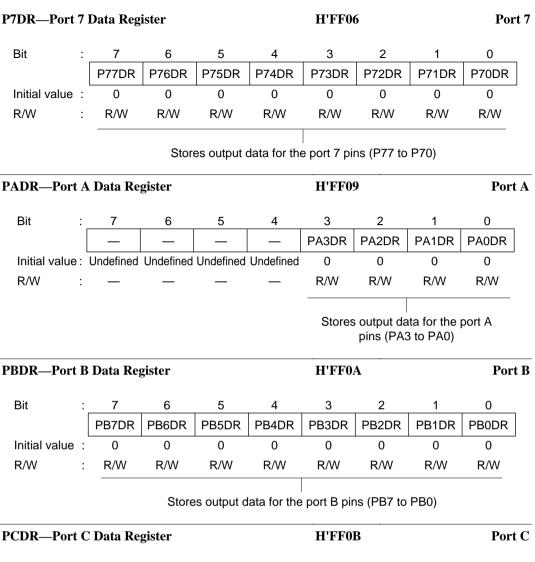
H'FF00

Program/erase-protection of all flash memory blocks is enabled

Port 1

Bit :	7	6	5	4	3	2	1	0
	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR
Initial value :	0	0	0	0	0	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Stores output data for the port 1 pins (P17 to P10)


P3DR—Port 3 Data Register

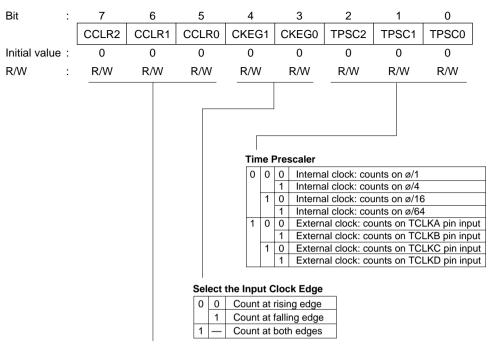
H'FF02

Port 3

Bit :	7	6	5	4	3	2	1	0
	-	P36DR	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR
Initial value:	Undefined	0	0	0	0	0	0	0
R/W :	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Stores output data for the port 3 pins (P36 to P30)

Bit :	7	6	5	4	3	2	1	0
	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR
Initial value:	0	0	0	0	0	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W


Stores output data for the port C pins (PC7 to PC0)

Bit	:	7	6	5	4	3	2	1	0
		PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Store	s output d	ata for the	port D pir	ns (PD7 to	PD0)	
PEDR—Port E Data Register					H'FF0D				Por
Bit	:	7	6	5	4	3	2	1	0
		PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Store	s output da	nta for the	port E pin	s (PE7 to	PE0)	
PFDR—Port	F	Data Reg		s output da	ata for the	port E pin		PE0)	Po
PFDR—Port Bit	F	Data Reg		s output da	ata for the			PE0)	Po :
	F :		ister	<u>.</u>		H'FF0E	Ε	,	0
	:	7	ister 6	5	4	H'FF0F	E 2	1	
Bit	:	7 PF7DR	ister 6 PF6DR	5 PF5DR	4 PF4DR	H'FF0 3 PF3DR	2 PF2DR	1 PF1DR	0 PF0DR
Bit Initial value	:	7 PF7DR 0	6 PF6DR 0 R/W	5 PF5DR 0	4 PF4DR 0 R/W	H'FF0H 3 PF3DR 0 R/W	2 PF2DR 0 R/W	1 PF1DR 0 R/W	0 PF0DR 0
Bit Initial value	: : : : : : : : : : : : : : : : : : : :	7 PF7DR 0 R/W	6 PF6DR 0 R/W	5 PF5DR 0 R/W	4 PF4DR 0 R/W	H'FF0H 3 PF3DR 0 R/W	2 PF2DR 0 R/W ns (PF7 to	1 PF1DR 0 R/W	0 PF0DR 0 R/W
Bit Initial value R/W PGDR—Port	: : : : : : : : : : : : : : : : : : : :	7 PF7DR 0 R/W	6 PF6DR 0 R/W	5 PF5DR 0 R/W	4 PF4DR 0 R/W	H'FF0H 3 PF3DR 0 R/W	2 PF2DR 0 R/W ns (PF7 to	1 PF1DR 0 R/W	0 PF0DR 0 R/W
Bit Initial value R/W PGDR—Port	: : :	7 PF7DR 0 R/W Data Reg	6 PF6DR 0 R/W Store	5 PF5DR 0 R/W	4 PF4DR 0 R/W	H'FF0H 3 PF3DR 0 R/W p port F pir	PF2DR 0 R/W ns (PF7 to	1 PF1DR 0 R/W PF0)	0 PFODR 0 R/W
Bit Initial value R/W PGDR—Port	: : :	7 PF7DR 0 R/W Data Reg	6 PF6DR 0 R/W Store	5 PF5DR 0 R/W es output c	4 PF4DR 0 R/W data for the	H'FF0H 3 PF3DR 0 R/W e port F pir H'FF0H	2 PF2DR 0 R/W ns (PF7 to	1 PF1DR 0 R/W PF0)	0 PFODR 0 R/W Por

H'FF0C

PDDR—Port D Data Register

Port D

Counter Clear

0	0	0	TCNT clearing disabled			
		1	TCNT cleared by TGRA compare match/input capture			
	1	0	TCNT cleared by TGRB compare match/input capture			
		1	TCNT cleared by counter clearing for another channel performing			
			synchronous clearing/synchronous operation *1			
1	0	0	TCNT clearing disabled			
		1	TCNT cleared by TGRC compare match/input capture *2			
	1	0	TCNT cleared by TGRD compare match/input capture *2			
		1	TCNT cleared by counter clearing for another channel performing			
			synchronous clearing/synchronous operation *1			

Notes: *1 Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

*2 When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.

Bit 7 6 5 4 3 2 1 0 BFB BFA MD0 MD3 MD2 MD1 Initial value : 1 1 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W

Modes

	_		-		
()	0	0	0	Normal operation
				1	Reserved
			1	0	PWM mode 1
				1	PWM mode 2
		1	0	0	Phase counting mode 1
				1	Phase counting mode 2
			1	0	Phase counting mode 3
				1	Phase counting mode 4
1		*	*	*	_

*: Don't care

Notes: 1. MD3 is a reserved bit. In a write, it should always be written with 0.

Phase counting mode cannot be set for channels 0 and 3. In this case, 0 should always be written to MD2.

Buffer Operation A

0	TGRA operates normally
1	TGRA and TGRC used together for
	buffer operation

Buffer Operation B

0	TGRB operates normally
1	TGRB and TGRD used together for
	buffer operation

Bit	:	7	6	5	4	3	2	1	0
		IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
Initial value	:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
								J	

TGR0A I/O Control

_						
0	0	0	0	TGR0A is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
			1	register		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR0A is	Capture input source	Input capture at rising edge
			1	input capture	is TIOCA0 pin	Input capture at falling edge
		1	*	register		Input capture at both edges
	1	*	*		Capture input source is	Input capture at TCNT1 count-
					channel 1/count clock	up/count-down

*: Don't care

TGR0B I/O Control

0	0	0	0	TGR0B is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
			1	register		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR0B is	Capture input source	Input capture at rising edge
			1	input capture	is TIOCB0 pin	Input capture at falling edge
		1	*	register		Input capture at both edges
	1	*	*		Capture input source is	Input capture at TCNT1 count-
					channel 1/count clock	up/count-down*1

*: Don't care

Note: *1 When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and Ø/1 is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.

Bit :	7	6	5	4	3	2	1	0
	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0
Initial value :	0	0	0	0	0	0	0	0
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

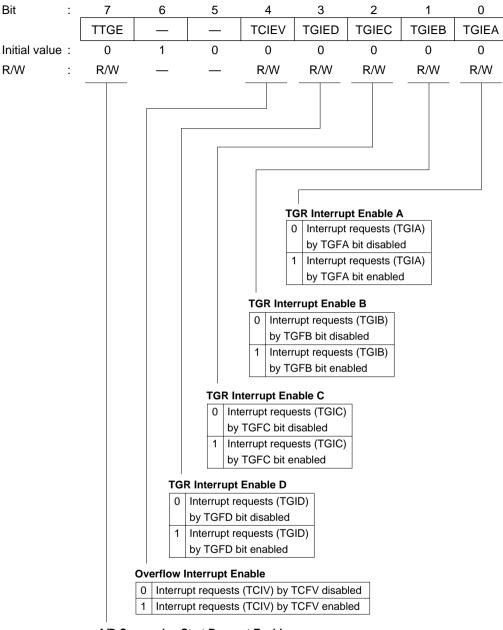
TGR0C I/O Control

0	0	0	0	TGR0C is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
			1	register*1		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR0C is	Capture input source	Input capture at rising edge
			1	input capture	is TIOCC0 pin	Input capture at falling edge
		1	*	register*1		Input capture at both edges
	1	*	*		Capture input source is	Input capture at TCNT1 count-
					channel 1/count clock	up/count-down

*: Don't care

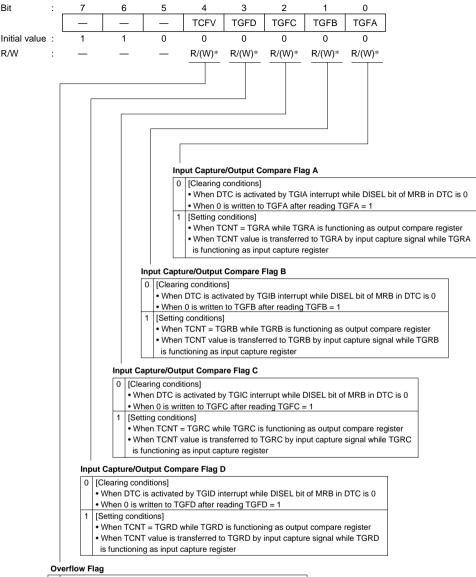
Note: *1 When the BFA bit in TMDR0 is set to 1 and TGR0C is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

TGR0D I/O Control


0	0	0	0	TGR0D is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
			1	register*2		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR0D is	Capture input source is	Input capture at rising edge
			1	input capture	TIOCD0 pin	Input capture at falling edge
		1	*	register*2		Input capture at both edges
	1	*	*		Capture input source is	Input capture at TCNT1 count-
					channel 1/count clock	up/count-down*1

*: Don't care

Notes: *1 When bits TPSC2 to TPSC0 in TCR1 are set to B'000 and Ø/1 is used as the TCNT1 count clock, this setting is invalid and input capture is not generated.


*2 When the BFB bit in TMDR0 is set to 1 and TGR0D is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

[Clearing condition]
 When 0 is written to TCFV after reading TCFV = 1
 [Setting condition]
 When the TCNT value overflows (changes from H'FFFF to H'0000)

Note: * Can only be written with 0 for flag clearing.

Up-counter

TGR0A—Timer General Register 0A	H'FF18	TPU0
TGR0B—Timer General Register 0B	H'FF1A	
TGR0C—Timer General Register 0C	H'FF1C	
TGR0D—Timer General Register 0D	H'FF1E	

Bit : 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Initial value:

R/W

Bit :	7	6	5		4	3	2	1	0
	_	CCLR1	CCLR0	(CKEG	1 CKEG0	TPSC2	TPSC1	TPSC0
Initial value:	0	0	0		0	0	0	0	0
R/W :	_	R/W	R/W		R/W	R/W	R/W	R/W	R/W
			7			scaler			
				0	0 0	Internal cloc			
					1 1	Internal clos			
					1 0	Internal cloc			
				1	0 0	External clo			oin innut
				•	1	External clo			
					1 0	Internal clos			om mpat
					1	Counts on 7			low
			'	No		s setting is igr unting mode.			
			Select the I	np	ut Clo	ck Edge			
						ig edge			
						ng edge			
			1 —* Cou	nt	at botl	n edges			
		1	Note: * Thi	is s	setting	is ignored wh	en channel	1 is in phas	e
			cou	unt	ing mo	de.		•	
		Counter C	loar						
				ر م	ioobla	ı]
			NT clearing			a A compare ma	tch/innut or	nturo	
						R compare ma			
			NT cleared	D)	, IGK	o compare ma	itor/iriput Ca	apiule	

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*

Bit	:	7	6	5	4	3	2	1	0
		_	_	_	_	MD3	MD2	MD1	MD0
Initial value	:	1	1	0	0	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W

Мо	Mode								
0	0	0	0	Normal operation					
			1	Reserved					
		1	0	PWM mode 1					
			1	PWM mode 2					
	1	0	0	Phase counting mode 1					
			1	Phase counting mode 2					
		1	0	Phase counting mode 3					
			1	Phase counting mode 4					
1	*	*	*	_					

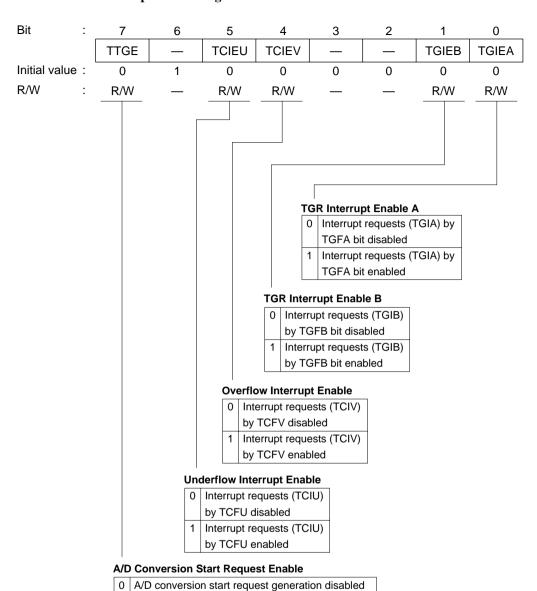
^{*:} Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

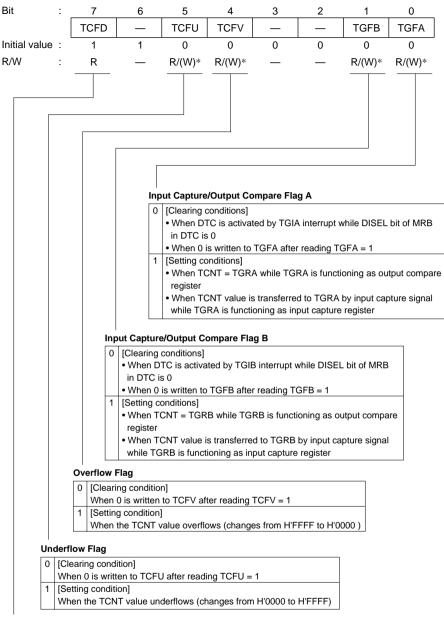
Bit	:	7	6	5	4	3	2	1	0
		IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0

Initial value : 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W

TGR1A I/O Control


0	0	0	0	TGR1A is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
			1	register		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR1A is	Capture input source	Input capture at rising edge
			1	input	is TIOCA1 pin	Input capture at falling edge
		1	*	capture		Input capture at both edges
	1	*	*	register	Capture input source is	Input capture at generation of
					TGR0A compare match/	channel 0/TGR0A compare match/
					input capture	input capture

*: Don't care


TGR1B I/O Control

0	0	0	0	TGR1B is	Output disabled	
			1	output	Initial output is 0	0 output at compare match
		1	0	compare	output	1 output at compare match
			1	register		Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR1B is	Capture input source	Input capture at rising edge
			1	input	is TIOCB1 pin	Input capture at falling edge
		1	*	capture		Input capture at both edges
	1	*	*	register	Capture input source is	Input capture at generation of
					TGR0C compare match/	TGR0C compare match/input
					input capture	capture

*: Don't care

A/D conversion start request generation enabled

Count Direction Flag

0 TCNT counts down
1 TCNT counts up

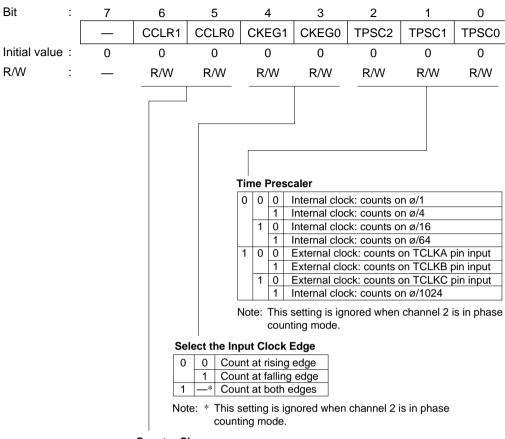
Note: * Can only be written with 0 for flag clearing.

TGR1A—Timer General Register 1A

TPU1

Bit Initial value:

 $\mathsf{R/W} \qquad \qquad : \quad \mathsf{R/W} \; \mathsf{R/$


Up/down-counter*

H'FF28

Note: * These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as up-counters.

TGR1B-	–Time	r Gei	neral	Regi	ister	1B				H ']	FF2A	1					
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Initial va	alue :	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

R/W

Counter Clear

0	0	TCNT clearing disabled
	1	TCNT cleared by TGRA compare match/input capture
1	0	TCNT cleared by TGRB compare match/input capture
	1	TCNT cleared by counter clearing for another channel
		performing synchronous clearing/synchronous operation*

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

Bit	:	7	6	5	4	3		2	1	0
		_	_	_	_	MD3	М	D2	MD1	MD0
Initial value	:	1	1	0	0	0)	0	0
R/W	:	_	_	_	_	R/W	R	W	R/W	R/W
						-				
						Mode				
						0 0	0 0	Nor	mal operati	on
							1	Res	served	

^{1 0} PWM mode 1
1 PWM mode 2
1 0 Phase counting mode 1
1 Phase counting mode 2
1 0 Phase counting mode 3
1 Phase counting mode 4

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

*

*

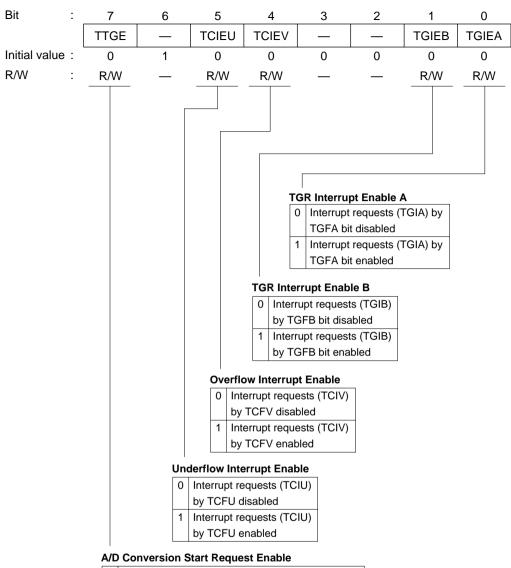
1

^{*:} Don't care

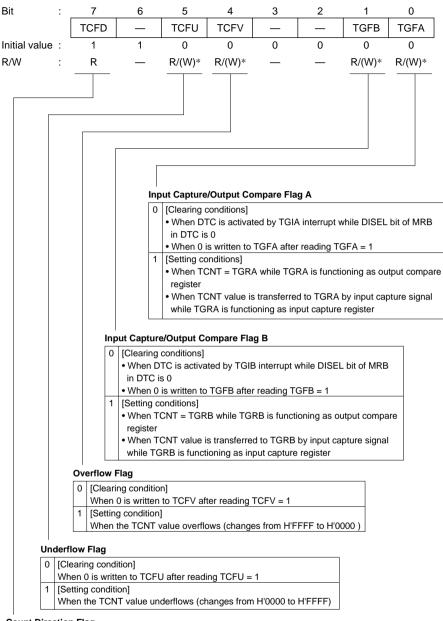
Bit 7 6 5 4 3 2 1 0 IOB3 IOB2 IOB1 IOB0 IOA3 IOA2 IOA1 IOA0

0 0 0 0 0 0 0 0 Initial value: R/W R/W R/W R/W R/W R/W R/W R/W R/W

TGR2A I/O Control


. •	NZA 70 OGILIOI									
0	0	0	0	TGR2A is	Output disabled					
			1	output	Initial output is 0	0 output at compare match				
		1	0	compare	output	1 output at compare match				
			1	register		Toggle output at compare match				
	1	0	0		Output disabled					
			1		Initial output is 1	0 output at compare match				
		1	0		output	1 output at compare match				
			1			Toggle output at compare match				
1	*	0	0	TGR2A is	Capture input source	Input capture at rising edge				
			1	input capture	is TIOCA2 pin	Input capture at falling edge				
		1	*	register		Input capture at both edges				

^{*:} Don't care


TGR2B I/O Control

0	0	0	0	TGR2B is	Output disabled			
			1	output	Initial output is 0	0 output at compare match		
		1	0	compare	output	1 output at compare match		
			1	register		Toggle output at compare match		
	1	0	0		Output disabled			
			1		Initial output is 1	0 output at compare match		
		1	0		output	1 output at compare match		
			1			Toggle output at compare match		
1	*	0	0	TGR2B is	Capture input source	Input capture at rising edge		
			1	input capture	is TIOCB2 pin	Input capture at falling edge		
		1	*	register		Input capture at both edges		

^{*:} Don't care

	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

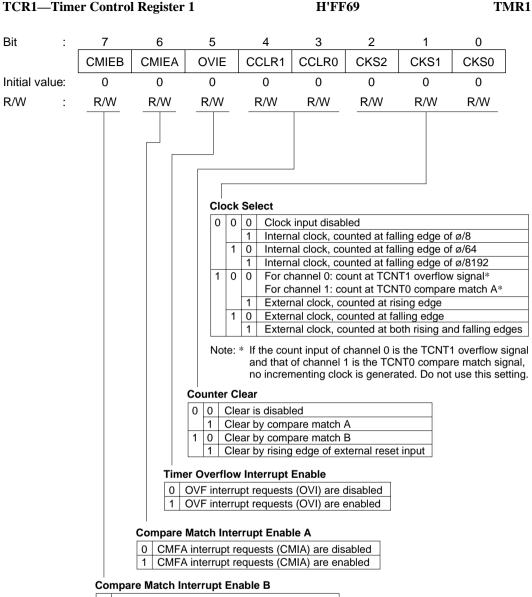
Count Direction Flag

0 TCNT counts down
1 TCNT counts up

Note: * Can only be written with 0 for flag clearing.

R/W

Bit Initial value:


Up/down-counter*

Note: * These counters can be used as up/down-counters only in phase counting mode or when counting overflow/underflow on another channel. In other cases they function as up-counters.

TGR2A—Timer General Register 2A	H'FF38	TPU2
TGR2B—Timer General Register 2B	H'FF3A	

Bit : 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Initial value:

H'FF68

0 CMFB interrupt requests (CMIB) are disabled

TCR0—Timer Control Register 0

CMFB interrupt requests (CMIB) are disabled
 CMFB interrupt requests (CMIB) are enabled

931

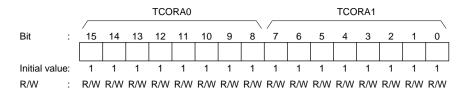
TMR0

TMR0

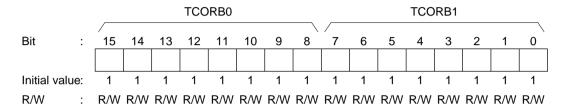
TMR1

Note: * Only 0 can be written to bits 7 to 5, to clear these flags.

Cleared by reading CMFB when CMFB = 1, then writing 0 to CMFB
 When DTC is activated by CMIB interrupt while DISEL bit of MRB in

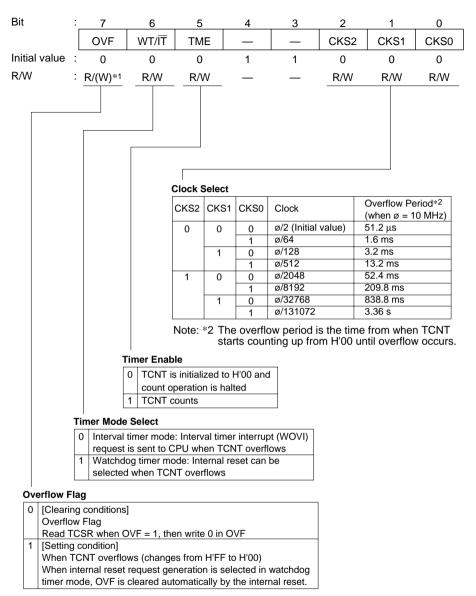

Compare Match Flag B

[Clearing conditions]

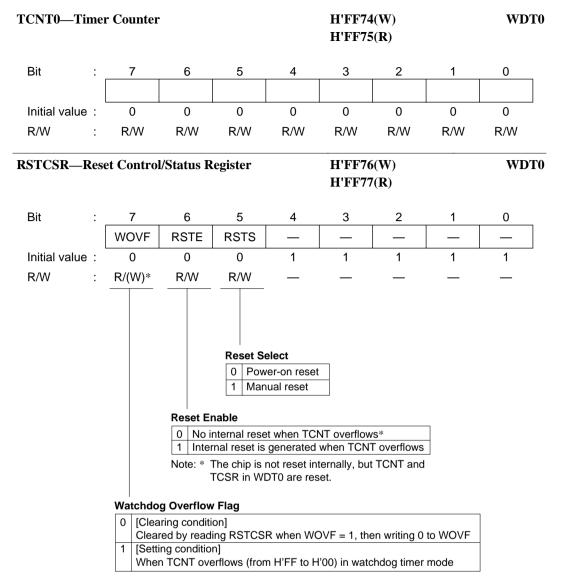

DTC is 0
[Setting condition]

Set when TCNT matches TCORB

H'FF6C H'FF6D TMR0 TMR1



TCORB0—Time Constant Register B0 TCORB1—Time Constant Register B1 H'FF6E H'FF6F TMR0 TMR1


TCNT0—Timer Counter 0 H'FF70 TMR0
TCNT1—Timer Counter 1 H'FF71 TMR1

			TCNT0						TCNT1									
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Initial value	9:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W	:	R/W W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W							

Note: *1 Only 0 can be written, to clear the flag.

TCSR is write-protected by a password to prevent accidental overwriting. For details see section 12.2.5. Notes on Register Access.

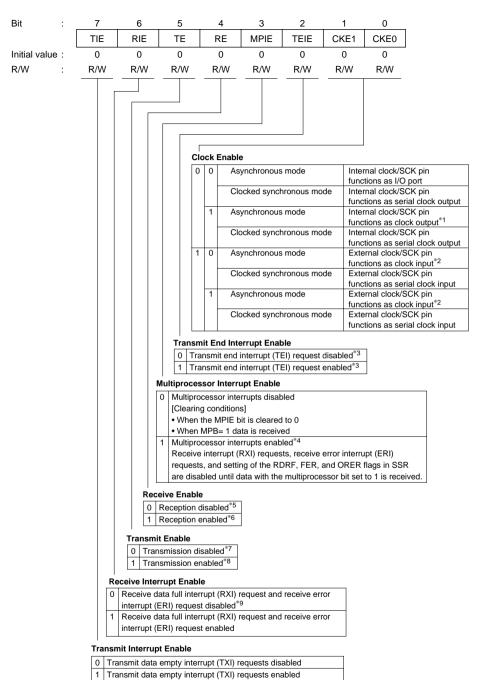
Note: * Only 0 can be written, to clear the flag.

RSTCSR is write-protected by a password to prevent accidental overwriting. For details see section 12.2.5, Notes on Register Access.

Bit	:	7	6	5	4	3	2	1	0				
		C/A	CHR	PE	O/E	STOP	MP	CKS1	CKS0				
Initial val	ue : ˈ	0	0	0	0	0	0	0	0				
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
								Clock	Select				
								0 0	ø clock				
								1	ø/4 clock				
								1 0	ø/16 clock				
								1	ø/64 clock				
						N	lultiprocess	sor Mode					
							0 Multiprod	cessor funct	ion disabled				
							1 Multiprod	essor form	at selected				
					Sto	p Bit Leng	jth						
					0	1 stop bit							
					. 1	2 stop bits	3						
				Parity Mode									
			0 Even parity*1										
			1 Odd parity*2										
			Notes: *1 When even parity is set, parity bit addition is performed in										
				transmission so that the total number of 1-bits in the transmit character plus the parity bit is even. In reception,									
			a check is performed to see if the total number of 1-bits in										
				the receive character plus the parity bit is even.									
			*2 When odd parity is set, parity bit addition is performed in transmission so that the total number of 1-bits in the										
			transmit character plus the parity bit is odd. In reception,										
			a check is performed to see if the total number of 1-bits in the receive character plus the parity bit is odd.										
			Parity Enable										
					and checki								
			1 Parity	bit addition	and checki	ng enabled	k						
					bit is set to								
					according the parity bit								
			th		odd mode se								
	C	haracter I			\neg								
		0 8-bit da	ıta										
	L	1 7-bit da	ıta*										

Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted, and it is not possible to choose between LSB-first or MSB-first transfer.

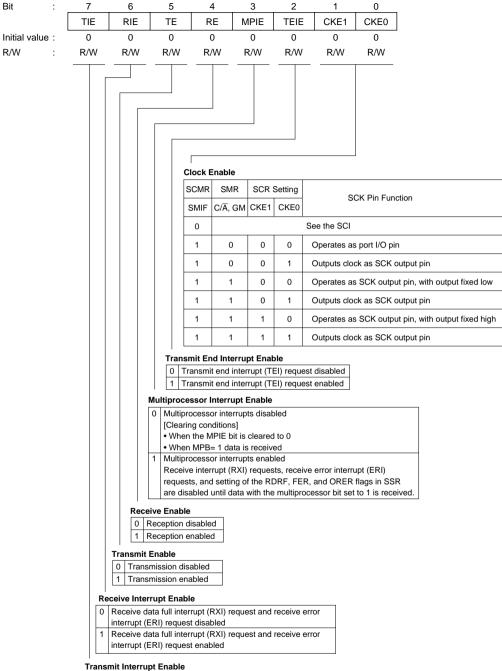
Selects Asynchronous Mode or Clocked Synchronous Mode


0	Asynchronous mode
1	Clocked synchronous mode

- Normal smart card interface mode operation
 - TEND flag generation 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit
 - Clock output ON/OFF control only
- 1 GSM mode smart card interface mode operation
 - TEND flag generation 11.0 etu after beginning of start bit
 - High/low fixing control possible in addition to clock output ON/OFF control (set by SCR)

Note: etu: Elementary time unit (time for transfer of 1 bit)

Bit :		7	6	5	4	3	2	1	0				
Initial value:		1	1	1	1	1	1	1	1				
R/W :		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Sets the serial transfer bit rate													


Note: For details, see section 13.2.8, Bit Rate Register (BRR)

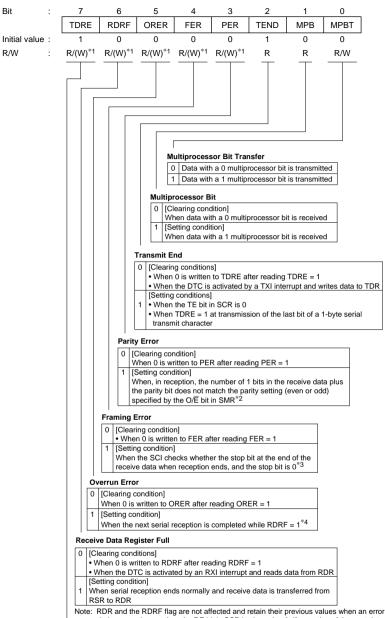
Note: TXI cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or by clearing the TIE bit to 0.

Notes: *1 Outputs a clock of the same frequency as the bit rate.

- *2 Inputs a clock with a frequency 16 times the bit rate.
- *3 TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or by clearing the TEIE bit to 0.
- *4 Receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.
- *5 Clearing the RE bit to 0 does not affect the RDRF, FER, PER, and ORER flags, which retain their states.
- *6 Serial reception is started in this state when a start bit is detected in asynchronous mode or serial clock input is detected in clocked synchronous mode. SMR setting must be performed to decide the receive format before setting the RE bit to 1.
- *7 The TDRE flag in SSR is fixed at 1.
- *8 In this state, serial transmission is started when transmit data is written to TDR and the TDRE flag in SSR is cleared to 0. SMR setting must be performed to decide the transmit format before setting the TE bit to 1.
- *9 RXI and ERI cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0, or by clearing the RIE bit to 0.

Transmit interrupt Enable

- 0 Transmit data empty interrupt (TXI) requests disabled
- 1 Transmit data empty interrupt (TXI) requests enabled

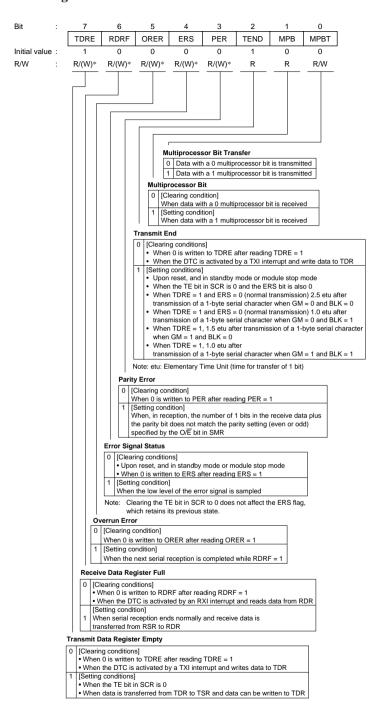

H'FF7B

SCI0,

Smart Card Interface 0

Bit	:	7	6	5	4	3	2	1	0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W	R/W						

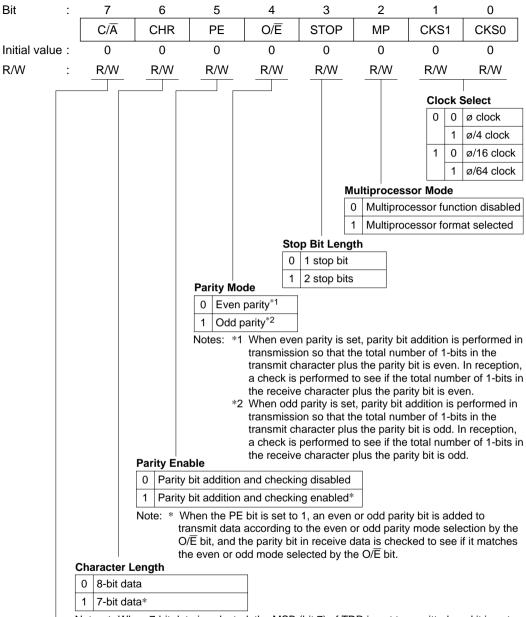
Stores data for serial transmission


Note: RDR and the RDRF flag are not affected and retain their previous values when an error is detected during reception or when the RE bit in SCR is cleared to 0. If reception of the next data is completed while the RDRF flag is still set to 1, an overrun error will occur and the receive data will be lost.

Transmit Data Register Empty

	[Clearing conditions]
	 When 0 is written to TDRE after reading TDRE = 1
	 When the DTC is activated by a TXI interrupt and writes data to TDR
1	[Setting conditions]
	When the TE bit in SCR is 0
	• When data is transferred from TDR to TSR and data can be written to TDR

Notes: *1 Only 0 can be written, to clear the flag.


- *2 The PER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0. Serial reception cannot be continued while the PER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
- *3 In 2-stop-bit mode, only the first stop bit is checked for a value of 1; the second stop bit is not checked. If a framing error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Serial reception cannot be continued while the FER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
- *4 The receive data prior to the overrun error is retained in RDR, and the data received subsequently is lost. Serial reception cannot be continued while the ORER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued either.

Note: * Only 0 can be written, to clear the flag.

RDR0—Receive	Data Reg	gister 0			H'FF7D		art Card	SCI0, Interface 0
Bit :	7	6	5	4	3	2	1	0
Initial value:	0	0	0	0	0	0	0	0
R/W :	R	R	R	R	R	R	R	R

				Stores re	eceived se	rial data			
SCMR0—Sma	art Card	Mode Re	gister 0		H'F	F7E			SCI0,
							Smart (Card Inte	erface 0
Bit :	7	6	5	4	3	2	1	0	_
	_	_	_	_	SDIR	SINV	_	SMIF	
Initial value:	1	1	1	1	0	0	1	0	_
R/W :	_	_	_	_	R/W	R/W	_	R/W	
				0 1 Selects th	0 Smai	rt Card inter rt Card inter sion of the nts are trans ta is stored nts are inverta is stored rta is stored	smitted as t as it is in R rted before in inverted version For	on is disable on is enable on is enable on is enable on the control of the contro	ed
					e data is st ontents are				
					e data is st				

Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted, and it is not possible to choose between LSB-first or MSB-first transfer.

Selects Asynchronous Mode or Clocked Synchronous Mode

0	Asynchronous mode]
1	Clocked synchronous mode]

• TEND flag set 11.5 etu after start of transmission (11.0 etu in GSM mode)

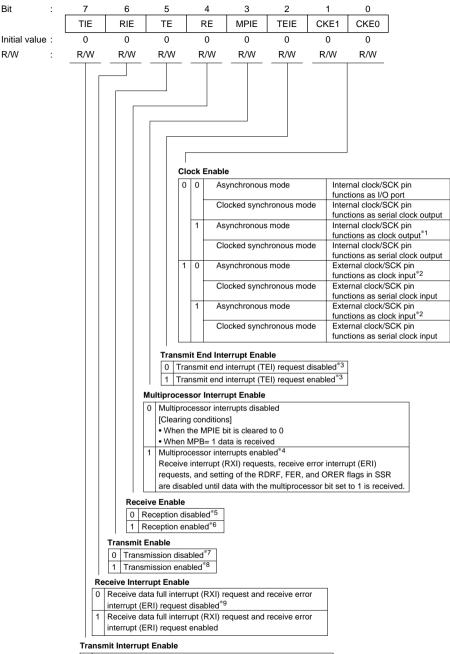
GSM Mode

- 0 Normal smart card interface mode operation
 - TEND flag generation 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit
 - Clock output ON/OFF control only
- 1 GSM mode smart card interface mode operation
 - TEND flag generation 11.0 etu after beginning of start bit
 - High/low fixing control possible in addition to clock output ON/OFF control (set by SCR)

Note: etu: Elementary time unit (time for transfer of 1 bit)

H'FF81

SCI1, Smart Card Interface 1

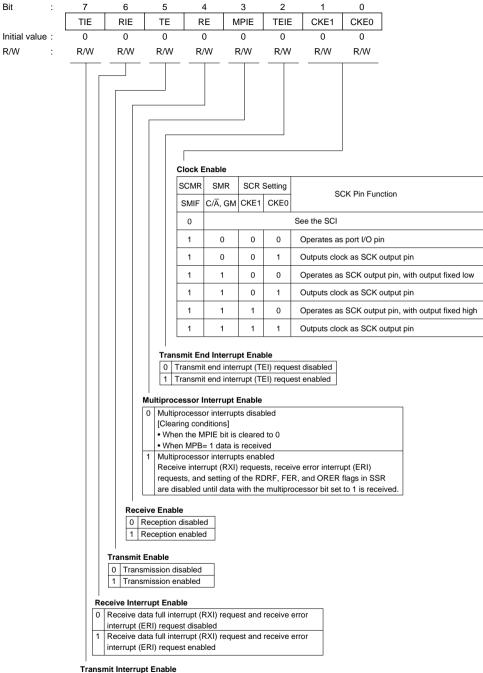

Bit	:	7	6	5	4	3	2	1	0
Initial value	: '	1	1	1	1	1	1	1	1
R/W	:	R/W	R/W						

Sets the serial transfer bit rate

Note: For details, see section 13.2.8, Bit Rate Register (BRR)

Bit

R/W



0 Transmit data empty interrupt (TXI) requests disabled Transmit data empty interrupt (TXI) requests enabled

Note: TXI cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or by clearing the TIE bit to 0.

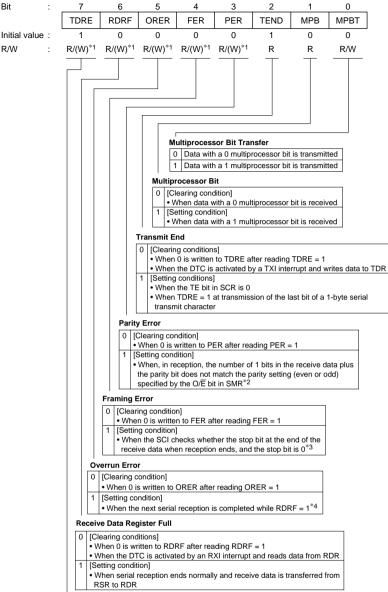
Notes: *1 Outputs a clock of the same frequency as the bit rate.

- *2 Inputs a clock with a frequency 16 times the bit rate.
- *3 TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or by clearing the TEIE bit to 0.
- *4 Receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.
- *5 Clearing the RE bit to 0 does not affect the RDRF, FER, PER, and ORER flags, which retain their states.
- *6 Serial reception is started in this state when a start bit is detected in asynchronous mode or serial clock input is detected in clocked synchronous mode. SMR setting must be performed to decide the receive format before setting the RE bit to 1.
- *7 The TDRE flag in SSR is fixed at 1.
- *8 In this state, serial transmission is started when transmit data is written to TDR and the TDRE flag in SSR is cleared to 0. SMR setting must be performed to decide the transmit format before setting the TE bit to 1.
- *9 RXI and ERI cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0, or by clearing the RIE bit to 0.

- 0 Transmit data empty interrupt (TXI) requests disabled
- 1 Transmit data empty interrupt (TXI) requests enabled

H'FF83

SCI1,

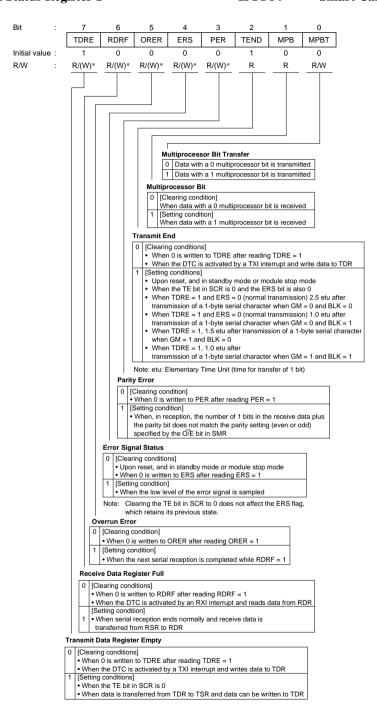

Smart Card Interface 1

Bit	:	7	6	5	4	3	2	1	0
Initial value:		1	1	1	1	1	1	1	1
R/W	:	R/W	R/W						

Stores data for serial transmission

Bit

R/W


Note: RDR and the RDRF flag are not affected and retain their previous values when an error is detected during reception or when the RE bit in SCR is cleared to 0. If reception of the next data is completed while the RDRF flag is still set to 1, an overrun error will occur and the receive data will be lost.

Transmit Data Register Empty

0	[Clearing conditions]
	When 0 is written to TDRE after reading TDRE = 1
	When the DTC is activated by a TXI interrupt and writes data to TDR
1	[Setting conditions]
	When the TE bit in SCR is 0
	When data is transferred from TDR to TSR and data can be written to TDR

Notes: *1 Only 0 can be written, to clear the flag.

- *2 The PER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0. Serial reception cannot be continued while the PER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
- *3 In 2-stop-bit mode, only the first stop bit is checked for a value of 1; the second stop bit is not checked. If a framing error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Serial reception cannot be continued while the FER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
- *4 The receive data prior to the overrun error is retained in RDR, and the data received subsequently is lost. Serial reception cannot be continued while the ORER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued either.

Note: * Only 0 can be written, to clear the flag.

MDINI MCCCIV	c Data Re	Sibili			11 1	1 00			
							Smart (Card In	terface 1
Bit :	7	6	5	4	3	2	2	1	0
Initial value:	0	0	0	0	0	()	0	0
R/W :	R	R	R	R	R	F	?	R	R
			s	Stores re	ceived se	rial data			
SCMR1—Sma	rt Card M	lode Regi	ster 1		H'F	F86			SCI1
							Smart (Card In	terface 1
Bit : _	7	6	5	4	3	2	1	0	
	-	_	_	_	SDIR	SINV	_	SMIF	
Initial value:	1	1	1	1	0	0	1	0	_
R/W :	_	_	_	_	R/W	R/W	_	R/W	
			_						_
							e Mode Se		1. 1
							face function		
					· joilla	t Gara into	1400 141104	on to onac	,,ou
					cifies Inver				
					TDR conter Receive dat				
					TDR conter				nsmitted
					Receive dat				
			0-	Janta th	e Serial/Pa	allal Carre	avalan Far		
			Se 0		ontents are			mat	
				1	e data is st		-		
			_	TDD			11000		

H'FF85

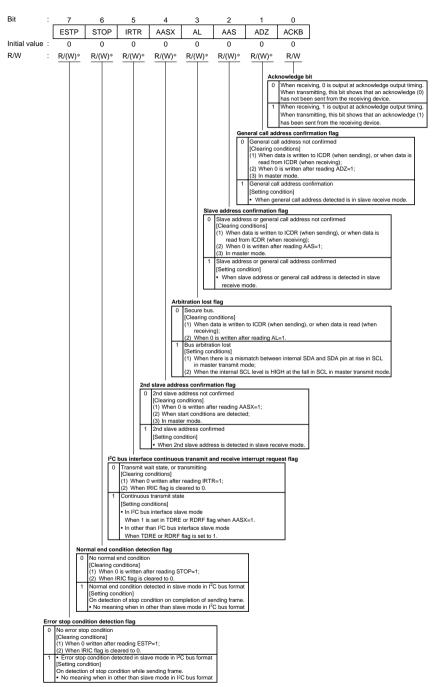
1 TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

RDR1—Receive Data Register 1

SCI1,

Note: * Only 0 can be written, to clear the flag.

ICMR and ICDR can be accessed


are driving the bus)

Note: For details, see section 15.2.5, I²C Bus Control Register (ICCR).

Master receive mode

Master transmit mode

1 0

Note: * Only 0 can be written to these bits (to clear these flags).

Bit :	7	6	5	4	3	2	1	0
	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0
Initial value:	_	_	_	_	_	_	_	_
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ICDRR								
Bit :	7	6	5	4	3	2	1	0
	ICDRR7	ICDRR6	ICDRR5	ICDRR4	ICDRR3	ICDRR2	ICDRR1	ICDRR0
Initial value:	_	_	_	_	_	_	_	_
R/W :	R	R	R	R	R	R	R	R
ICDRS								
Bit :	7	6	5	4	3	2	1	0
	ICDRS7	ICDRS6	ICDRS5	ICDRS4	ICDRS3	ICDRS2	ICDRS1	ICDRS0
Initial value:	_	_	_	_	_	_	_	
R/W :	_	_	_	_	_	_	_	_
ICDRT								
Bit :	7	6	5	4	3	2	1	0
	ICDRT7	ICDRT6	ICDRT5	ICDRT4	ICDRT3	ICDRT2	ICDRT1	ICDRT0
Initial value:	_	_	_	_	_	_	_	_
R/W :	W	W	W	W	W	W	W	W
TDRE, RDRF	(internal	flag)						
Bit :								
							TDRE	RDRF
Initial value:							0	0
R/W :							_	_
SARX0—2nd S	Slave Add	ress Regis	ter		H'FF71	E		IIC0
SARX1—2nd S	Slave Add	ress Regis	ster		H'FF86	5		IIC1
Bit :	7	6	5	4	3	2	1	0
	SVAX6	SVAX5	SVAX4	SVAX3	SVAX2	SVAX1	SVAX0	FSX
Initial value:	0	0	0	0	0	0	0	1

2nd slave address

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Format select X

R/W

R/W

IIC0 IIC1

Bit 7 6 5 4 3 2 1 0 MLS CKS2 WAIT CKS1 CKS0 BC2 BC1 BC0 Initial value: 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W

Bit counter

Bit 2	Bit 1	Bit 0	Bit/fr	ame
BC2	BC1	BC0	Clock sync	PC bus format
			serial format	
0	0	0	8	9
		1	1	2
	1	0	2	3
		1	3	4
1	0	0	4	5
		1	5	6
	1	0	6	7
		1	7	8

Transmit clock select

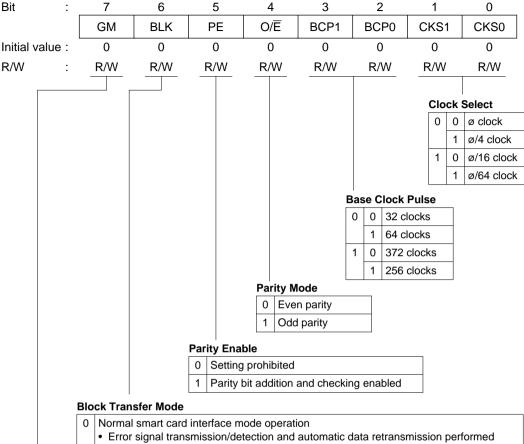
Irans	mit clo	ck sele	ct				
SCRX	Bit 5	Bit 4	Bit 3	Clock	-	Fransfer rate	1
bits							
5, 6							
IICX	CKS2	CKS1	CKS0		ø= 5 MHz	ø= 8 MHz	ø= 10 MHz
0	0	0	0	ø/28	179kHz	286 kHz	357 kHz
			1	ø/40	125kHz	200 kHz	250 kHz
		1	0	ø/48	104kHz	167 kHz	208 kHz
			1	ø/64	78.1kHz	125 kHz	156 kHz
	1	0	0	ø/80	62.5kHz	100 kHz	125 kHz
			1	ø/100	50.0kHz	80.0 kHz	100 kHz
		1	0	ø/112	44.6kHz	71.4 kHz	89.3 kHz
			1	ø/128	39.1kHz	62.5 kHz	78.1 kHz
1	0	0	0	ø/56	89.3kHz	143 kHz	179 kHz
			1	ø/80	62.5kHz	100 kHz	125 kHz
		1	0	ø/96	52.1kHz	83.3 kHz	104 kHz
			1	ø/128	39.1kHz	62.5 kHz	78.1 kHz
	1	0	0	ø/160	31.3kHz	50.0 kHz	62.5 kHz
			1	ø/200	25.0kHz	40.0 kHz	50.0 kHz
		1	0	ø/224	22.3kHz	35.7 kHz	44.6 kHz
			1	ø/256	19.5kHz	31.3 kHz	39.1 kHz

Wait insert bit

0 Send data followed by acknowledge bit.1 Insert wait between data and acknowledge bit.

MSB-first/LSB-first select

	0	MSB first									
ı	1	LSB first									

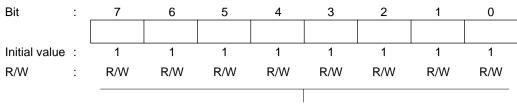

Bit :	7	6	5	4	3	2	1	0		
	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS		
Initial value:	0	0	0	0	0	0	0	0		
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
			Slave address Format select							
			SAR		av T					
			bit 0			On	erating mode	,		
			FS							
			0	0		I ² C bus format				
					• Ver	ify SAR and S	SARX slave a	ddresses.		
				1	I ² C b	us format				
						Verify SAR slave address.				
						ore SARX slav	ve address.			
			1	C	1	us format				
					"	ore SAR slave				
						Verify SARX slave address.				
				1		sync serial fo				
					• Igno	ore SAR and	SARX slave a	iddresses.		

Bit	:	7		6	5		4		3		2		1		0
		C/A	C	HR	PE		O/E	S	TOP		MF	•	СК	S1	CKS0
Initial valu	e:	0		0	0		0		0		0	•	C)	0
R/W	:	R/W	F	R/W	R/W		R/W	F	R/W		R/V	V	R/	W	R/W
													CI	ock :	Select
													C	0	ø clock
														1	ø/4 clock
													1	0	ø/16 clock
														1	ø/64 clock
									F	Vlul	ltipro	cesso	or Mo	ode	
										0	Mult	iproce	essor	func	tion disabled
										1	Mult	iproce	essor	form	at selected
							St	ор Ві	it Len	gth	1				
							0	1 s	top bit						
					Parity I	 Mod		2 s	top bit	S					
							arity*1	1							
							rity*2								
								_ n na	rity is	set	narit	v hit s	additi	on is	performed in
					140100.		transmiss								
															In reception,
							a cneck is the receiv								er of 1-bits in en.
															performed in
							transmiss								
															n reception, er of 1-bits in
			Par	∣ ity En	ahle	t	the receiv	e cha	aracte	r pl	us the	e parit	y bit	is od	d.
			0		bit additi	on a	nd check	ina di	sabled	1					
			1		bit additi										
					When the						r odd	parity	bit is	s add	ed to
				t	ransmit da	ata a	ccording	to the	even	or	odd p	arity	mode	e sele	ection by the
													ed to	see	if it matches
	С	haracter	Lena		he even o	1 000	a mode se	eiecte	u by t	пе	U/E (JIL.			
		0 8-bit d													
		1 7-bit d	data*												
				-hit da	ata is sele	cted	the MSF	R (hit	7) of T	'nR	is no	nt tran	smitt	ed a	nd it is not

Note: * When 7-bit data is selected, the MSB (bit 7) of TDR is not transmitted, and it is no possible to choose between LSB-first or MSB-first transfer.

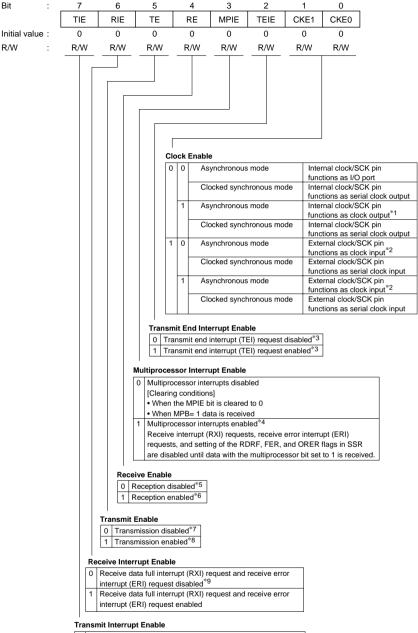
Selects Asynchronous Mode or Clocked Synchronous Mode

(0	Asynchronous mode
	1	Clocked synchronous mode


- TXI interrupt generated by TEND flag
- TEND flag set 12.5 etu after start of transmission (11.0 etu in GSM mode)
- 1 Block transfer mode operation
 - Error signal transmission/detection and automatic data retransmission not performed
 - TXI interrupt generated by TEND flag
 - TEND flag set 11.5 etu after start of transmission (11.0 etu in GSM mode)

GSM Mode

- 0 Normal smart card interface mode operation
 - TEND flag generation 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit
 - Clock output ON/OFF control only
- 1 GSM mode smart card interface mode operation
 - TEND flag generation 11.0 etu after beginning of start bit
 - High/low fixing control possible in addition to clock output ON/OFF control (set by SCR)


Note: etu: Elementary time unit (time for transfer of 1 bit)

Smart Card Interface 2

Sets the serial transfer bit rate

Note: For details, see section 13.2.8, Bit Rate Register (BRR)

0 Transmit data empty interrupt (TXI) requests disabled

1 Transmit data empty interrupt (TXI) requests enabled

Note: TXI cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or by clearing the TIE bit to 0.

Notes: *1 Outputs a clock of the same frequency as the bit rate.

- *2 Inputs a clock with a frequency 16 times the bit rate.
- *3 TEI cancellation can be performed by reading 1 from the TDRE flag in SSR, then clearing it to 0 and clearing the TEND flag to 0, or by clearing the TEIE bit to 0.
- *4 Receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and ORER flags in SSR, is not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is cleared to 0 automatically, and generation of RXI and ERI interrupts (when the TIE and RIE bits in SCR are set to 1) and FER and ORER flag setting is enabled.
- *5 Clearing the RE bit to 0 does not affect the RDRF, FER, PER, and ORER flags, which retain their states.
- *6 Serial reception is started in this state when a start bit is detected in asynchronous mode or serial clock input is detected in clocked synchronous mode. SMR setting must be performed to decide the receive format before setting the RE bit to 1.
- *7 The TDRE flag in SSR is fixed at 1.
- *8 In this state, serial transmission is started when transmit data is written to TDR and the TDRE flag in SSR is cleared to 0. SMR setting must be performed to decide the transmit format before setting the TE bit to 1.
- *9 RXI and ERI cancellation can be performed by reading 1 from the RDRF flag, or the FER, PER, or ORER flag, then clearing the flag to 0, or by clearing the RIE bit to 0.

Bit

R/W

Clock Enable

0.00				
SCMR	SMR	SCR Setting		SCK Pin Function
SMIF	C/A, GM	CKE1 CKE0		SCREITFUILLION
0				See the SCI
1	0	0	0	Operates as port I/O pin
1	0	0	1	Outputs clock as SCK output pin
1	1	0	0	Operates as SCK output pin, with output fixed low
1	1	0	1	Outputs clock as SCK output pin
1	1	1	0	Operates as SCK output pin, with output fixed high
1	1	1	1	Outputs clock as SCK output pin

Transmit End Interrupt Enable

- Transmit end interrupt (TEI) request disabled 1 Transmit end interrupt (TEI) request enabled
- Multiprocessor Interrupt Enable
- 0 Multiprocessor interrupts disabled
- [Clearing conditions]
 - When the MPIE bit is cleared to 0
 - When MPB= 1 data is received Multiprocessor interrupts enabled
 - Receive interrupt (RXI) requests, receive error interrupt (ERI) requests, and setting of the RDRF, FER, and ORER flags in SSR are disabled until data with the multiprocessor bit set to 1 is received.

Receive Enable

- 0 Reception disabled 1 Reception enabled
- **Transmit Enable**

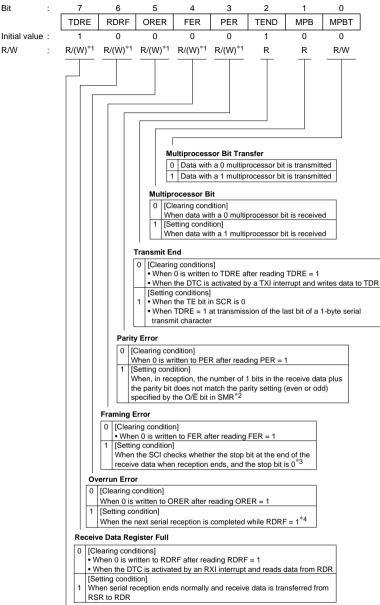
0 Transmission disabled 1 Transmission enabled

Receive Interrupt Enable

- 0 Receive data full interrupt (RXI) request and receive error interrupt (ERI) request disabled
- Receive data full interrupt (RXI) request and receive error interrupt (ERI) request enabled

Transmit Interrupt Enable

- 0 Transmit data empty interrupt (TXI) requests disabled
- Transmit data empty interrupt (TXI) requests enabled

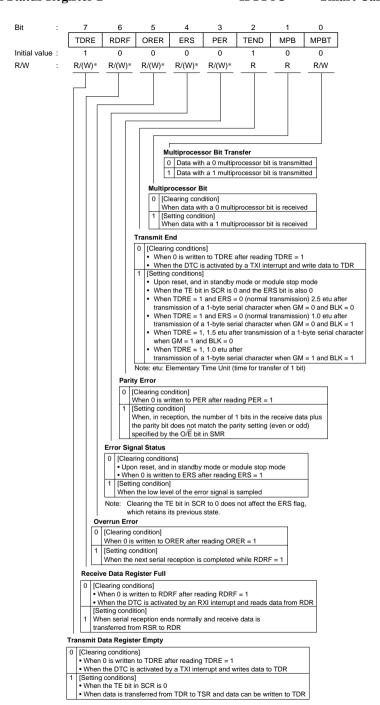

H'FF8B

SCI2,

Smart Card Interface 2

Bit	:	7	6	5	4	3	2	1	0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W	R/W						

Stores data for serial transmission


Note: RDR and the RDRF flag are not affected and retain their previous values when an error is detected during reception or when the RE bit in SCR is cleared to 0. If reception of the next data is completed while the RDRF flag is still set to 1, an overrun error will occur and the receive data will be lost.

Transmit Data Register Empty

	[Clearing conditions]
	When 0 is written to TDRE after reading TDRE = 1
	When the DTC is activated by a TXI interrupt and writes data to TDR
1	[Setting conditions]
	When the TE bit in SCR is 0
	When data is transferred from TDR to TSR and data can be written to TDR

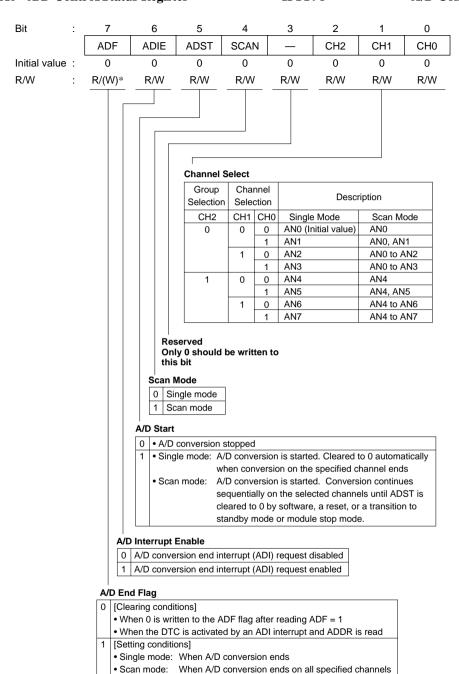
Notes: *1 Only 0 can be written, to clear the flag.

- *2 The PER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0. Serial reception cannot be continued while the PER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
- *3 In 2-stop-bit mode, only the first stop bit is checked for a value of 1; the second stop bit is not checked. If a framing error occurs, the receive data is transferred to RDR but the RDRF flag is not set. Serial reception cannot be continued while the FER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
- *4 The receive data prior to the overrun error is retained in RDR, and the data received subsequently is lost. Serial reception cannot be continued while the ORER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued either.

Note: * Only 0 can be written, to clear the flag.

							Smart	t Card 1	Interface 2
Bit :	7	6	5	4	3	2	2	1	0
Initial value:	0	0	0	0	0	, ()	0	0
R/W :	R	R	R	R	R		?	R	R
			Si	tores re	ceived ser	rial data			
SCMR2—Sma	rt Card	Mode Regis	ster 2		H'F	F8E			SCI2,
		9					Smart	t Card l	Interface 2
Bit :	7	6	5	4	3	2	1	0	
	_	_	_	_	SDIR	SINV	-	SM	IF
Initial value:	1	1	1	1	0	0	1	0	
R/W :	_	_	_	_	R/W	R/W	_	R/\	N
			_						
						rd Interfac			
						t Card inte			
					1 Smar	t Card inte	rface fund	tion is er	abled
				Spec	ifies Inver	sion of the	Data Lo	gic Leve	I
					DR conten				
					Receive dat				
					DR conten Receive dat				ransmitted
					COGIVE dat	13 310160	IIIVEILE	,	NDIN .
			Sel	ects the	Serial/Par	allel Conv	ersion F	ormat	
			0		ntents are				
				Receive	e data is st	ored in RD	R LSB-fire	st	

H'FF8D


 TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

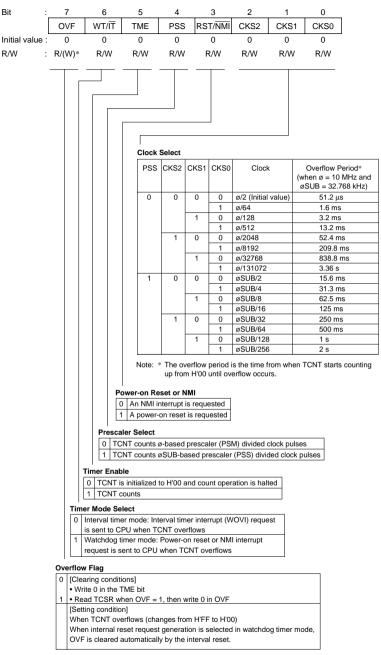
RDR2—Receive Data Register 2

ADDRAH—A	H'F	F90				A/D (Conv	erter									
ADDRAL —A	H'F	F91															
										F92							
ADDRBL —A/D Data Register BL										F93							
9										F94							
C										F95							
ADDRDH—A/D Data Register DH										F96							
ADDRDL —A	/D D	ata R	egist	er DI	L				H'F	F97							
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	_	_	_	-	_	_	
Initial value :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W :	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	

Store the results of A/D conversion

Analog Inp	ut Channel	A/D Data Register
Group 0	Group 1	A/D Data Register
AN0	AN4	ADDRA
AN1	AN5	ADDRB
AN2	AN6	ADDRC
ΔN3	ΔN7	ADDRD

Note: * Only 0 can be written, to clear this flag.


Bit :	7	6	5	4	;	3	2	1	0
	TRGS1	TRGS0	_	_	Ch	(S1	CKS0	_	_
Initial value:	0	0	1	1		0	0	1	1
R/W :	R/W	R/W	_	_	R	/W	R/W	_	_
				Clock					
				CKS1	CKS0			escription	
				0	0	Con	version tim	e = 530 sta	tes (max.)
					1	Cor	version tim	e = 260 sta	tes (max.)
				1	0	Con	version tim	e = 134 sta	tes (max.)
					1	Con	version tim	e = 68 state	es (max.)

Timer Trigger Select

		99
0	0	A/D conversion start by software is enabled
	1	A/D conversion start by TPU conversion start trigger is enabled
1	0	A/D conversion start by 8-bit timer conversion start trigger is enabled
	1	A/D conversion start by external trigger pin (ADTRG) is enabled

Bit

R/W

Note: * Only 0 can be written to clear the flag.

TCSR is write-protected by a password to prevent accidental overwriting. For details see section 12.2.5, Notes on Register Access.

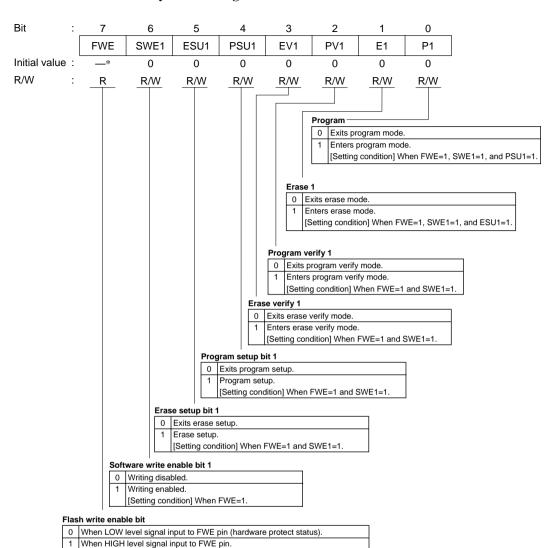
Bit	:	7	6	5	4	3	2	1	0
Initial value	:	0	0	0	0	0	0	0	0

R/W

R/W

R/W

R/W

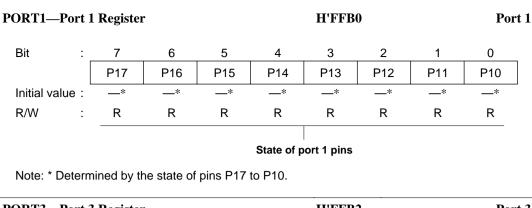

R/W

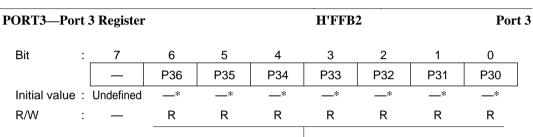
R/W

R/W

R/W

R/W




Note: * Determined by the state of pin FWE.

FLMCR2—Fla	sh Memo	ry Contro	l Register	r 2	H'FFA	9		FLAS	SH			
Bit :	7	6	5	4	3	2	1	0				
	FLER	_	_	_	_	_	_	_				
Initial value:	0	0	0	0	0	0	0	0	ı			
R/W :	_R_	R	R	R	R	R	R	R				
	Flash memo	rv error										
	0 Flash m Flash m [Clearin 1 Shows t Flash m	Flash memory operating normally. Flash memory protection against writing and erasing (error protection) is ignored. [Clearing condition] At a power-on reset and in hardware standby mode. Shows that an error has occurred when writing to or erasing flash memory. Flash memory protection against writing and erasing (error protection) is enabled. [Setting condition] See section 19.10.3, Error Protection.										
EBR1—Erase	Block Reg	ister 1			H'FFA	A	,,	FLAS	SH			
Bit :	7	6	5	4	3	2	1	0				
	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0				
Initial value:	0	0	0	0	0	0	0	0	ı			
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
EBR2—Erase	Block Reg	ister 2			H'FFA	В		FLAS	SH			
Bit :	7	6	5	4	3	2	1	0				
	_	_	_	_	EB11	EB10	EB9	EB8				
Initial value:	0	0	0	0	0	0	0	0	1			
R/W :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
FLPWCR—Fla	ash Memo	ry Power	Control 1	Register	H'FFA	C		FLAS	SH			
Bit :	7	6	5	4	3	2	1	0				
	PDWND	_	_	_	_	_	_	_				
Initial value:	0	0	0	0	0	0	0	0				
R/W :	R/W	R	R	R	R	R	R	R				
		wer down disable										

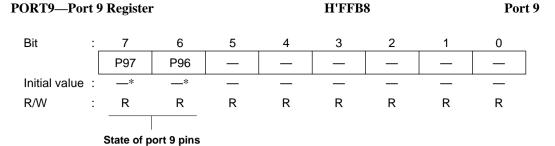
0	Transition to flash memory power-down mode enabled
1	Transition to flash memory power-down mode disabled

Note: PDWND is enabled in subactive mode or subsleep mode. It is disabled in other mode.

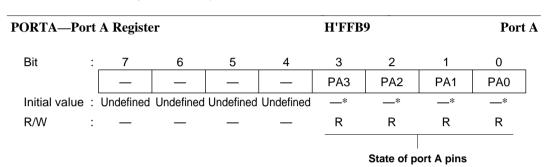
State of port 3 pins

Note: * Determined by the state of pins P36 to P30.

PORT4—Por	•t 4	Register	•			Poi	•t 4			
Bit	:	7	6	5	4	3	2	1	0	
		P47	P46	P45	P44	P43	P42	P41	P40	
Initial value	:	*	*	*	*	*	*	*	*	_
R/W	:	R	R	R	R	R	R	R	R	


State of port 4 pins

Note: * Determined by the state of pins P47 to P40.

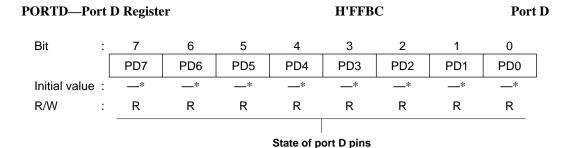

PORT7—I	Port 7	Register	•			H'FFB	6		Por	t 7
Bit	:	7	6	5	4	3	2	1	0	
		P77	P76	P75	P74	P73	P72	P71	P70	
Initial val	ue :	*	*	*	*	*	*	*	*	_
R/W	:	R	R	R	R	R	R	R	R	

State of port 7 pins

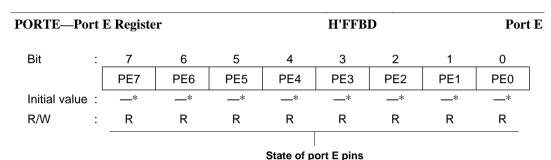
Note: * Determined by the state of pins P77 to P70.

Note: * Determined by the state of pins P97 and P96.

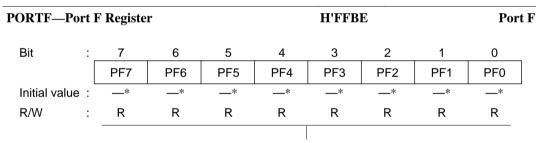
Note: * Determined by the state of pins PA3 to PA0.


PORTB—Port B Register					H'FFB	Port B			
Bit :	7	6	5	4	3	2	1	0	_
	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	
Initial value:	*	*	*	*	*	*	*	*	_
R/W :	R	R	R	R	R	R	R	R	

State of port B pins


Note: * Determined by the state of pins PB7 to PB0.

PORTC—Por	Registe	er		H'FFBB				Port C		
Bit	:	7	6	5	4	3	2	1	0	
		PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	
Initial value	: _	*	*	*	*	*	*	*	*	
R/W	:	R	R	R	R	R	R	R	R	
	_									
		State of port C pins								


Note: * Determined by the state of pins PC7 to PC0.

Note: * Determined by the state of pins PD7 to PD0.

Note: * Determined by the state of pins PE7 to PE0.

State of port F pins

Note: * Determined by the state of pins PF7 to PF0.

PORTG—Port G Register					H'FFBF				Port G	
Bit	:	7	6	5	4	3	2	1	0	
		_	_	_	PG4	PG3	PG2	PG1	PG0	
Initial val	lue :	Undefined	Undefined	Undefined	*	*	*	*	*	
R/W	:	_	_	_	R	R	R	R	R	
						Stat	e of port G	pins		

Note: * Determined by the state of pins PG4 to PG0.

Appendix C I/O Port Block Diagrams

C.1 Port 1 Block Diagrams

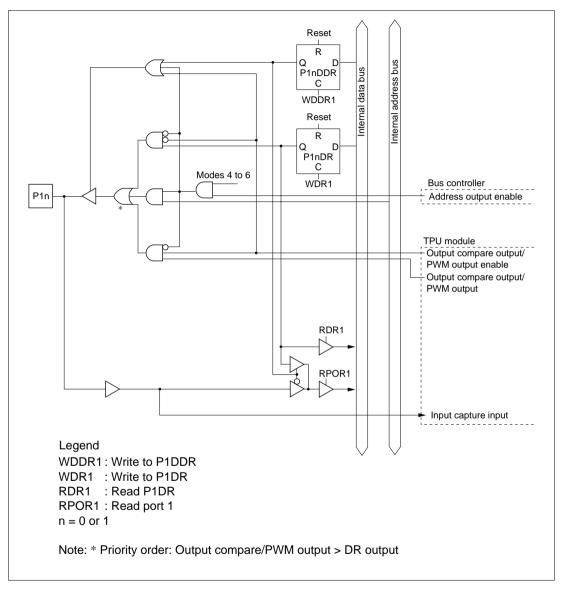


Figure C-1 (a) Port 1 Block Diagram (Pins P10 and P11)

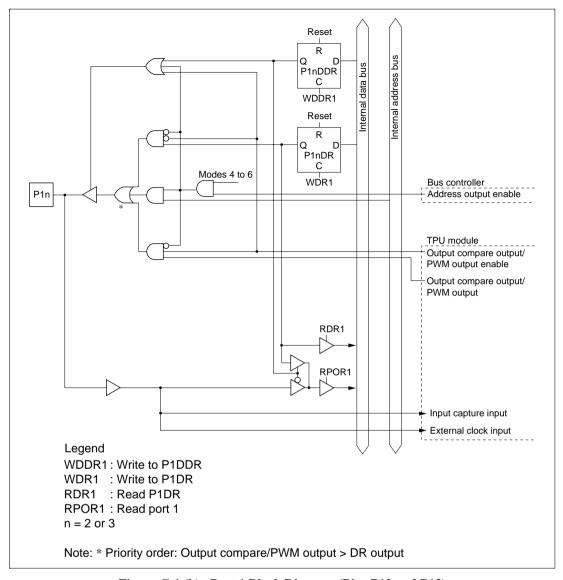


Figure C-1 (b) Port 1 Block Diagram (Pins P12 and P13)

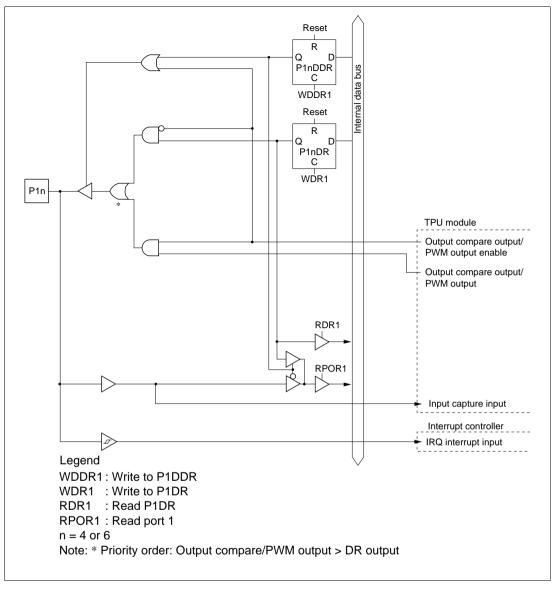


Figure C-1 (c) Port 1 Block Diagram (Pins P14 and P16)

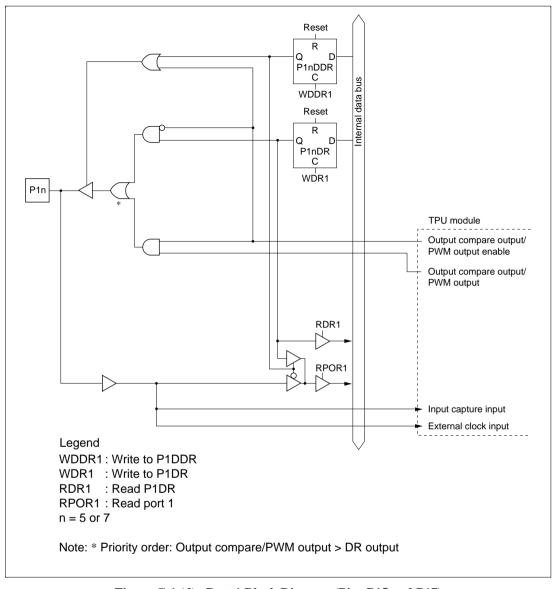


Figure C-1 (d) Port 1 Block Diagram (Pins P15 and P17)

C.2 Port 3 Block Diagrams

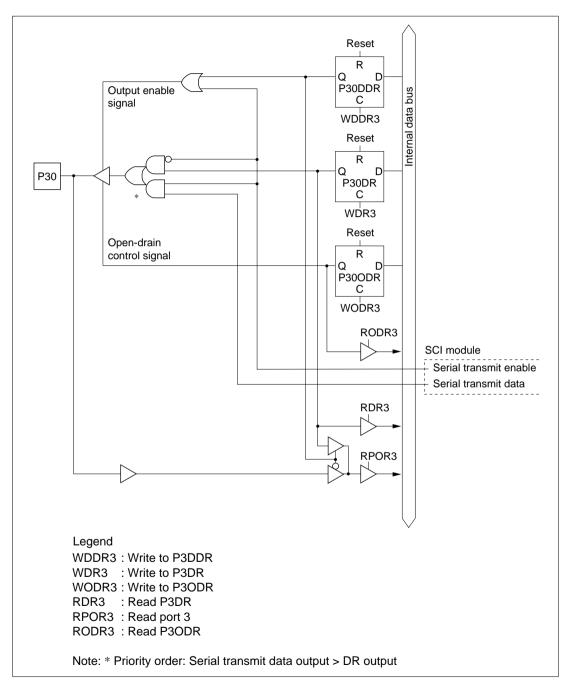


Figure C-2 (a) Port 3 Block Diagram (Pin P30)

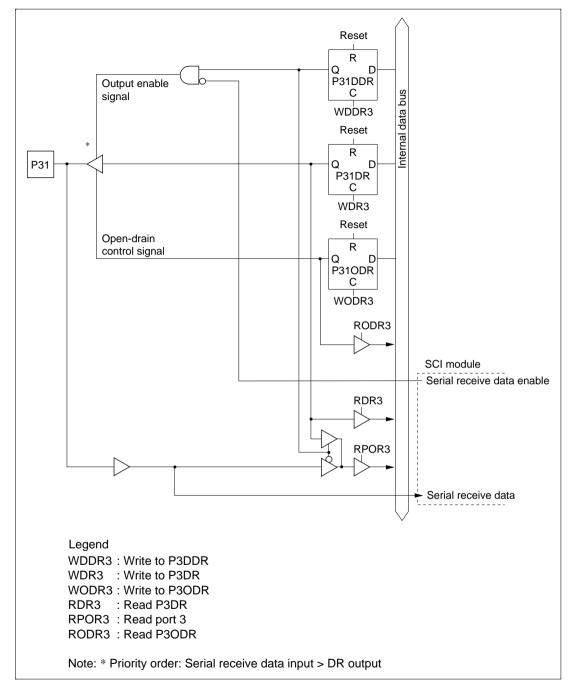


Figure C-2 (b) Port 3 Block Diagram (Pin P31)

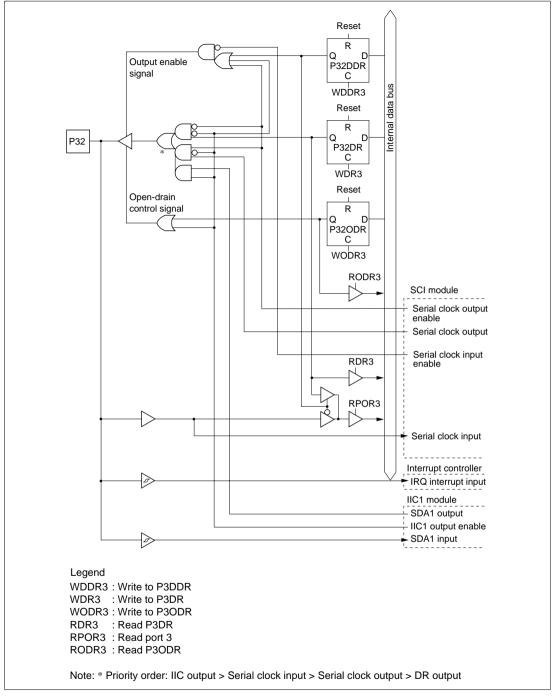


Figure C-2 (c) Port 3 Block Diagram (Pin P32)

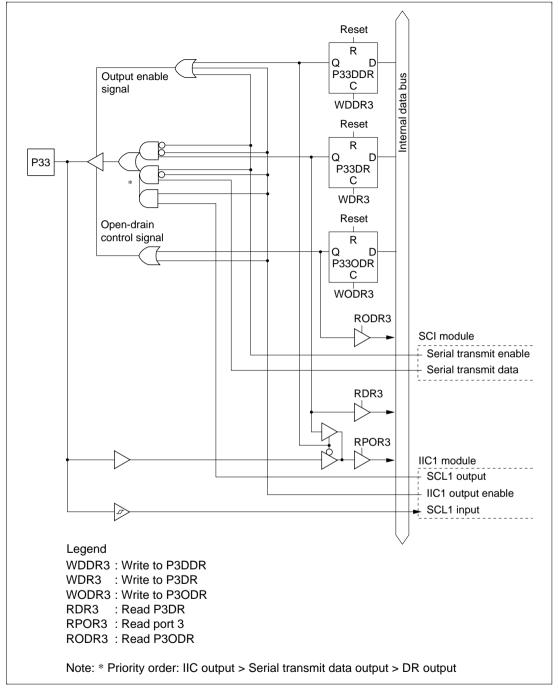


Figure C-2 (d) Port 3 Block Diagram (Pin P33)

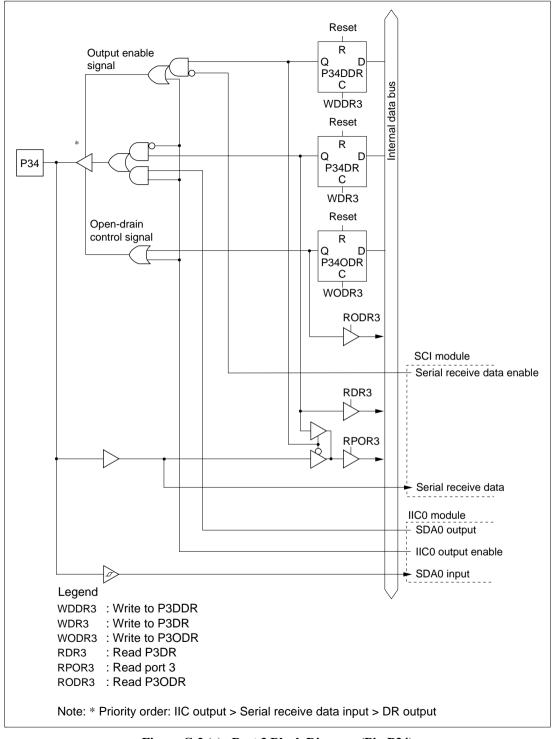


Figure C-2 (e) Port 3 Block Diagram (Pin P34)

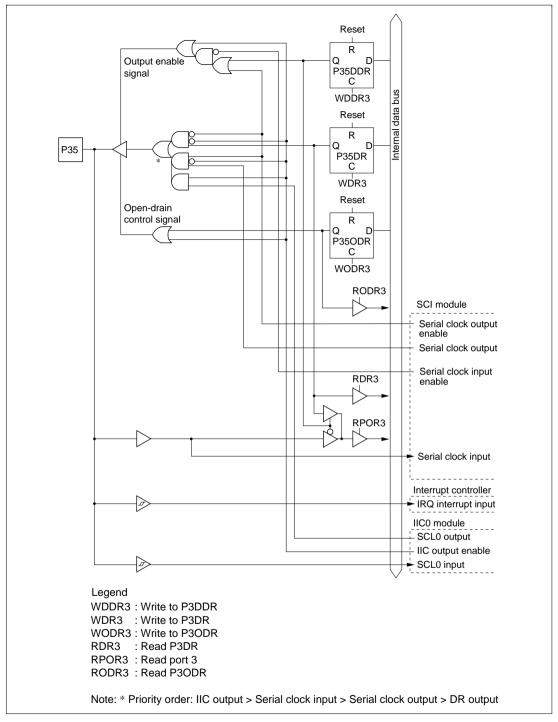


Figure C-2 (f) Port 3 Block Diagram (Pin P35)

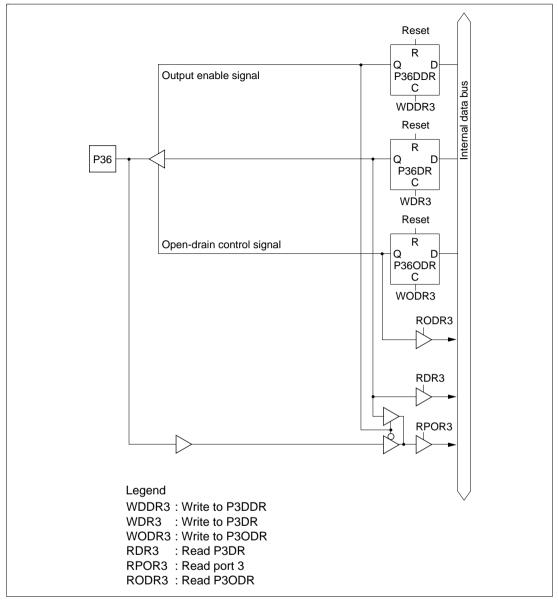


Figure C-2 (g) Port 3 Block Diagram (Pin P36)

C.3 Port 4 Block Diagram

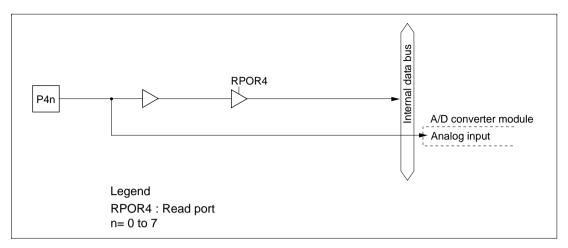


Figure C-3 Port 4 Block Diagram (Pins P40 to P47)

C.4 Port 7 Block Diagrams

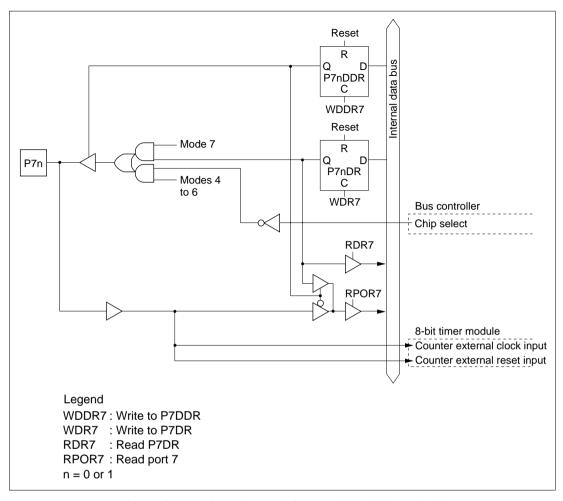


Figure C-4 (a) Port 7 Block Diagram (Pins P70 and P71)

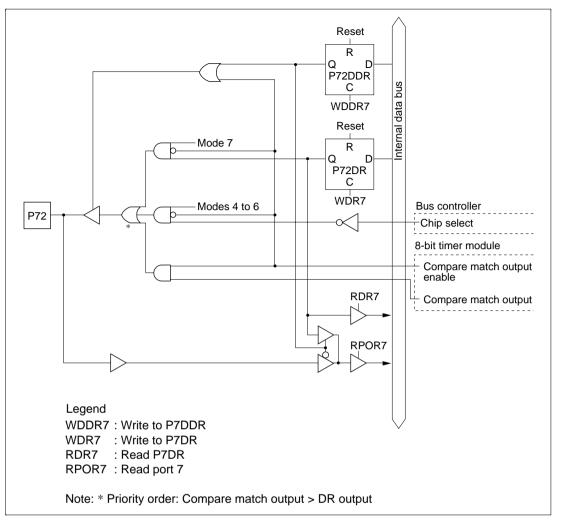


Figure C-4 (b) Port 7 Block Diagram (Pin P72)

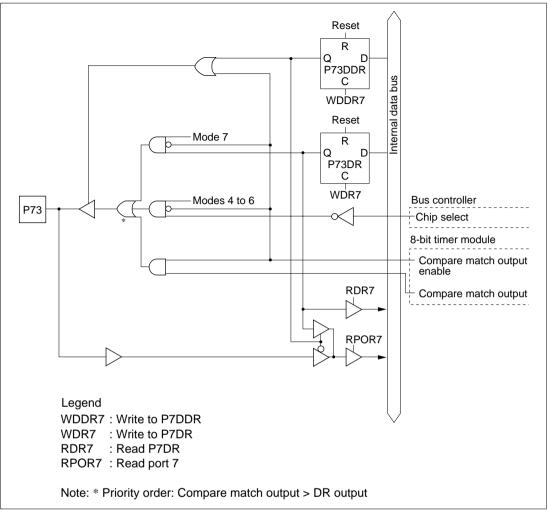
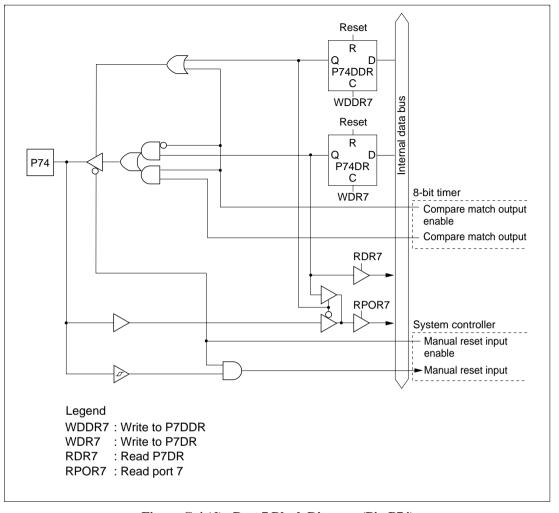



Figure C-4 (c) Port 7 Block Diagram (Pin P73)

Figure~C-4~(d)~~Port~7~Block~Diagram~(Pin~P74)

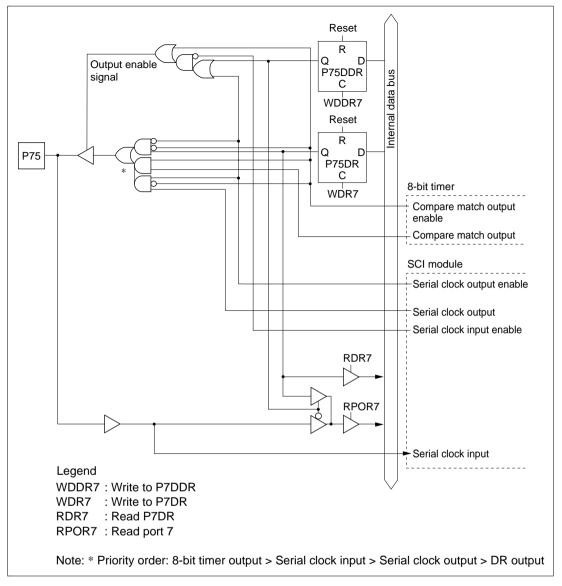


Figure C-4 (e) Port 7 Block Diagram (Pin P75)

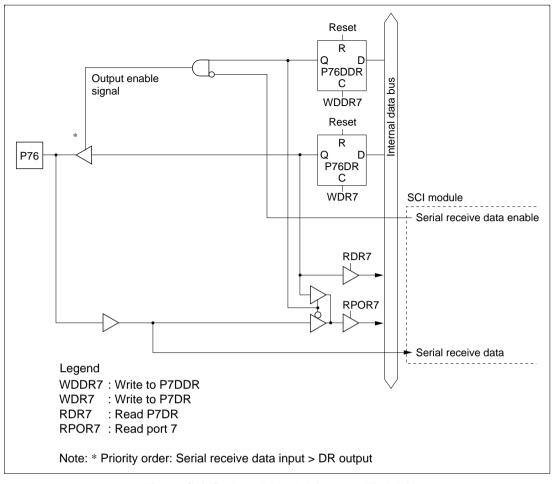


Figure C-4 (f) Port 7 Block Diagram (Pin P76)

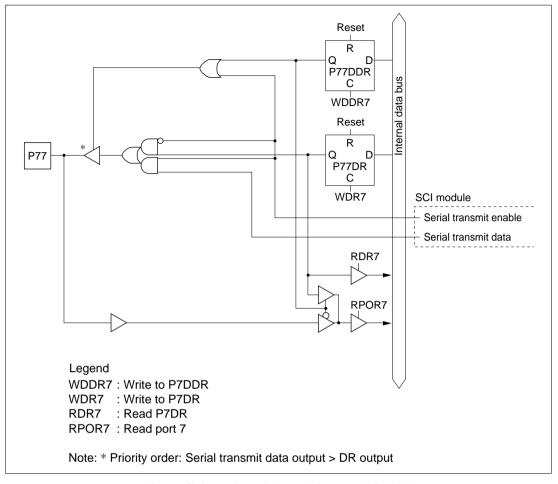


Figure C-4 (g) Port 7 Block Diagram (Pin P77)

C.5 Port 9 Block Diagram

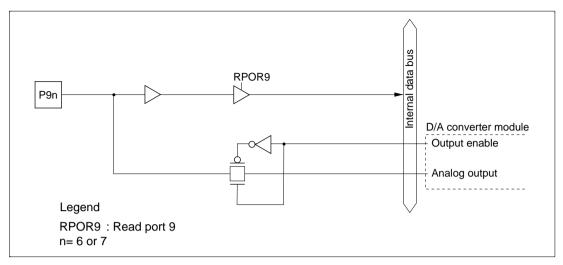


Figure C-5 Port 9 Block Diagram (Pins P96 and P97)

C.6 Port A Block Diagrams

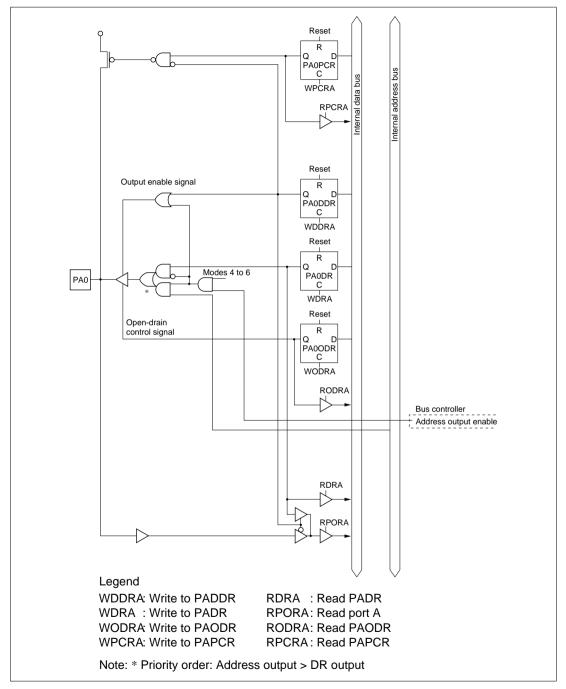


Figure C-6 (a) Port A Block Diagram (Pin PA0)

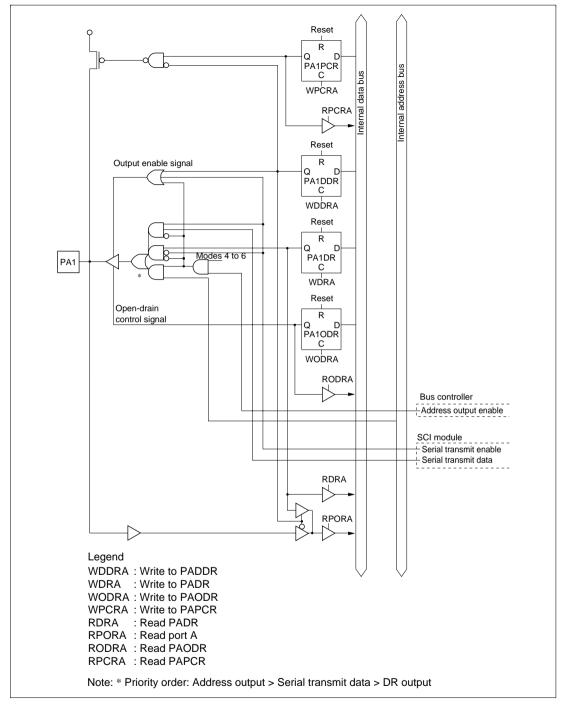


Figure C-6 (b) Port A Block Diagram (Pin PA1)

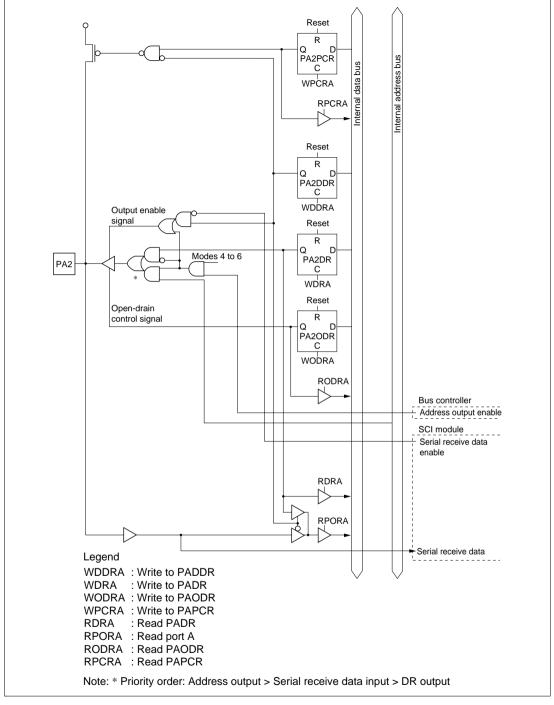


Figure C-6 (c) Port A Block Diagram (Pin PA2)

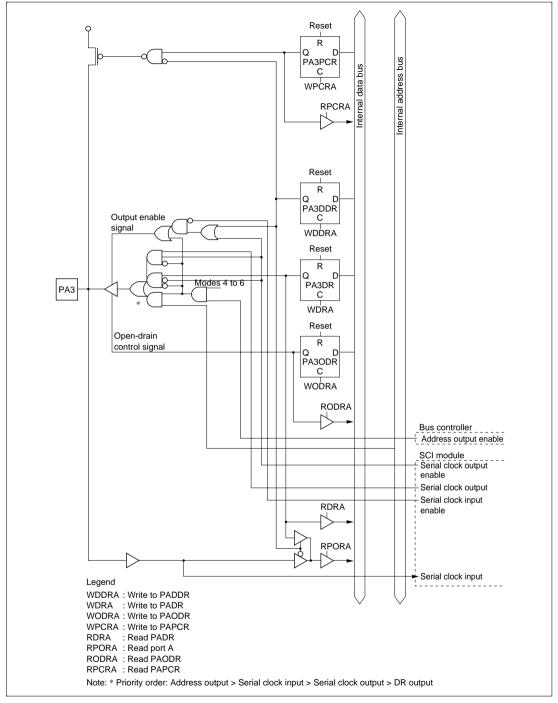


Figure C-6 (d) Port A Block Diagram (Pin PA3)

C.7 Port B Block Diagram

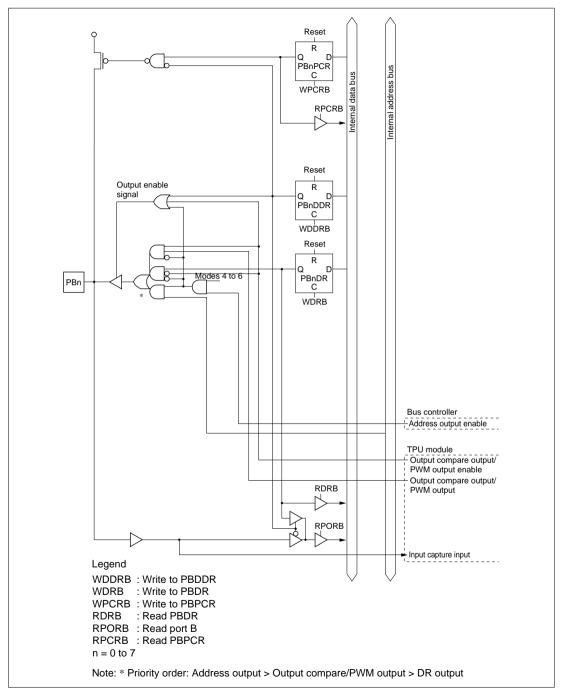
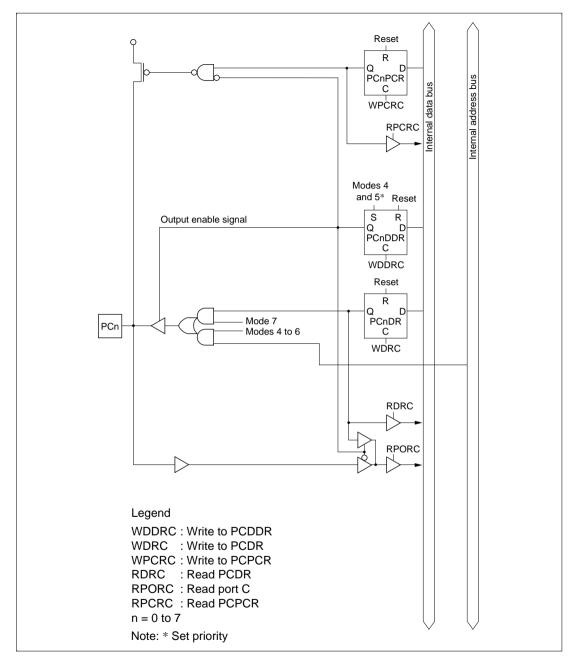



Figure C-7 Port B Block Diagram (Pins PB0 to PB7)

C.8 Port C Block Diagram

Figure~C-8~~Port~C~Block~Diagram~(Pins~PC0~to~PC7)

C.9 Port D Block Diagram

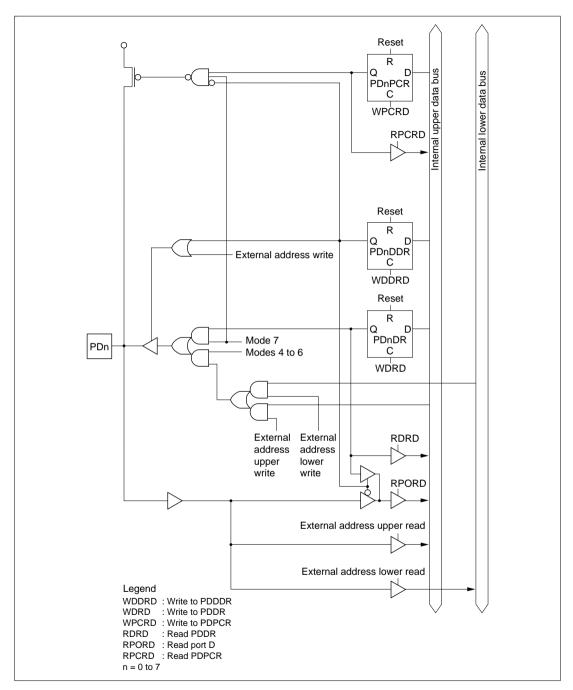


Figure C-9 Port D Block Diagram (Pins PD0 to PD7)

C.10 Port E Block Diagram

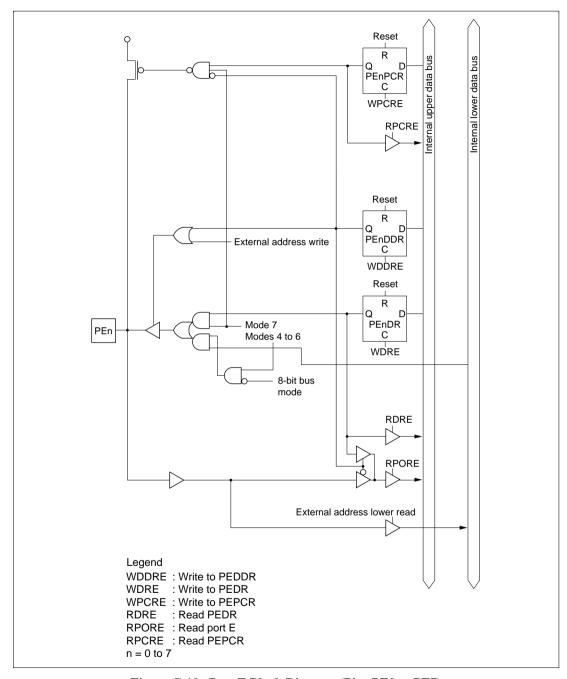


Figure C-10 Port E Block Diagram (Pins PE0 to PE7)

C.11 Port F Block Diagrams

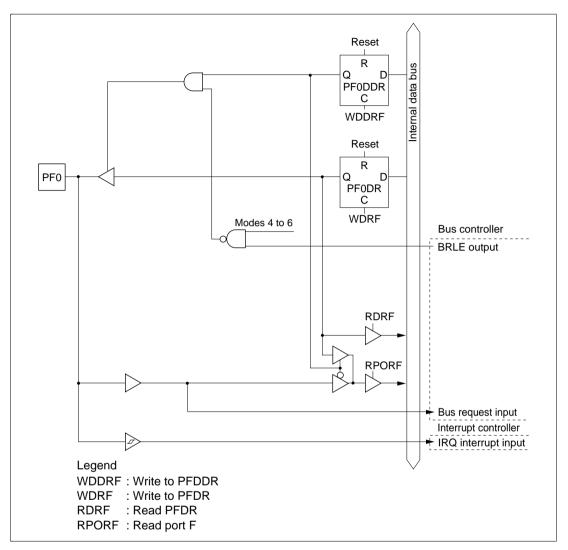


Figure C-11 (a) Port F Block Diagram (Pin PF0)

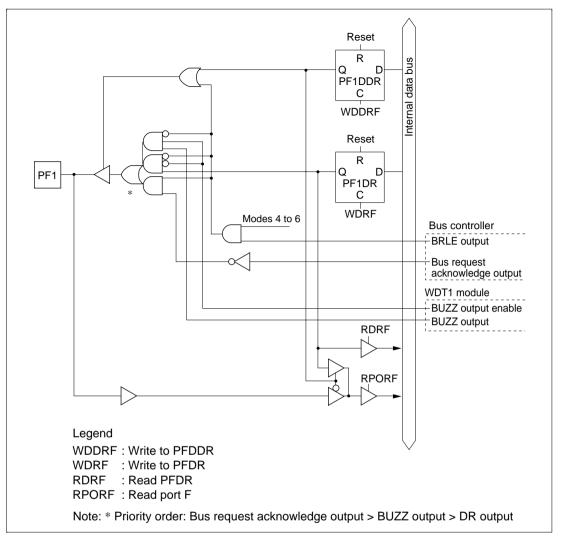


Figure C-11 (b) Port F Block Diagram (Pin PF1)

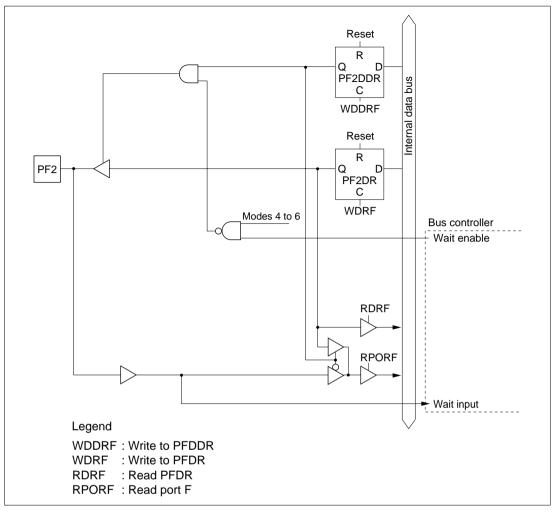


Figure C-11 (c) Port F Block Diagram (Pin PF2)



Figure C-11 (d) Port F Block Diagram (Pin PF3)

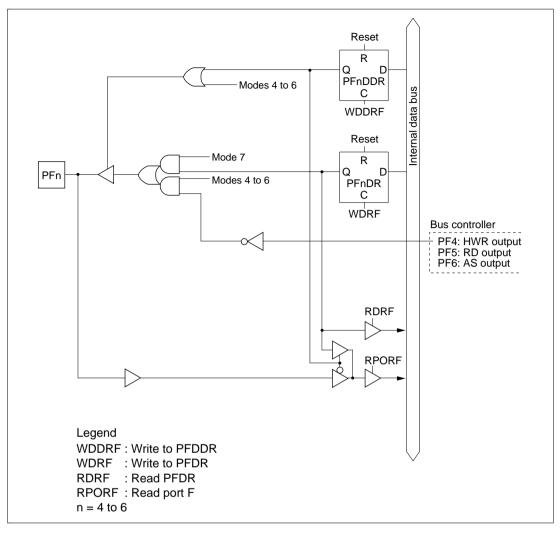


Figure C-11 (e) Port F Block Diagram (Pins PF4 to PF6)

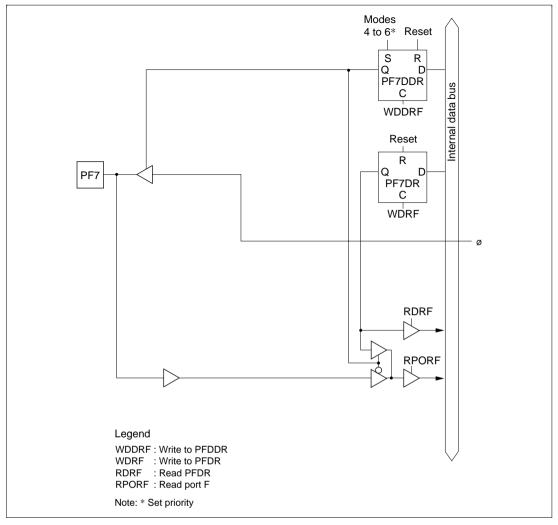


Figure C-11 (f) Port F Block Diagram (Pin PF7)

C.12 Port G Block Diagrams

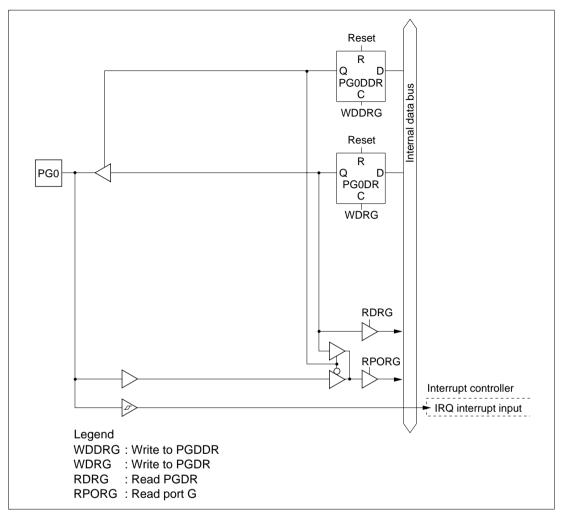
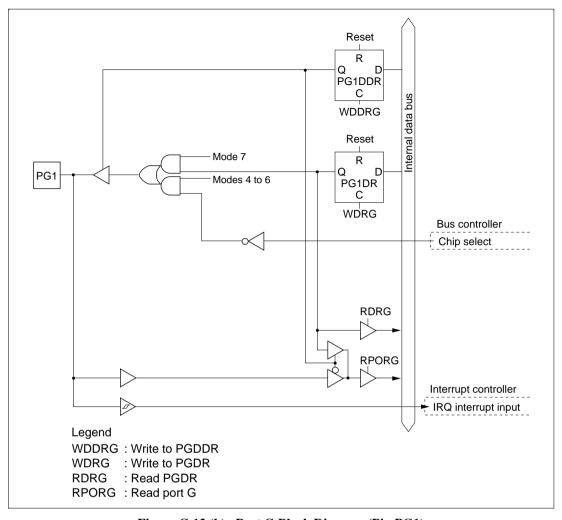



Figure C-12 (a) Port G Block Diagram (Pin PG0)

Figure~C-12~(b)~~Port~G~Block~Diagram~(Pin~PG1)

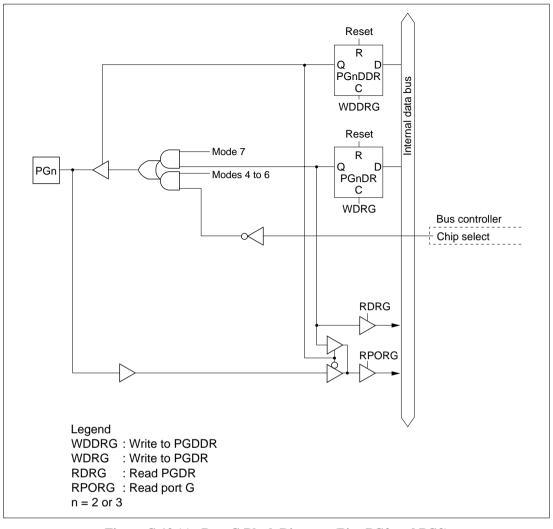


Figure C-12 (c) Port G Block Diagram (Pins PG2 and PG3)

Figure~C-12~(d)~~Port~G~Block~Diagram~(Pin~PG4)

Appendix D Pin States

D.1 Port States in Each Processing State

Table D-1 I/O Port States in Each Processing State

Port Name Pin Name		MCU Operating Mode	Power- On Reset	Manual Reset	Hardware Standby Mode	Software Standby Mode, Watch Mode	Bus- , Released State	Program Execution State, Sleep Mode, Subsleep Mode
P17 to P	14	4 to 7	Т	keep	Т	keep	keep	I/O port
P13/TIOCD0/TCLKB/A23 P12/TIOCC0/TCLKA/A22 P11/TIOCB0/A21		7	T	keep	Т	keep	keep	I/O port
	Address output selected by AEn bit	4 to 6	Т	keep	Т	[OPE= 0] T [OPE= 1] keep	Т	Address output
	Port selected	4 to 6	Т	keep	Т	keep	keep	I/O port
P10/TIO	CA0/A20	7	Т	keep	Т	keep	keep	I/O port
	Address output selected by AEn bit	4, 5 6	L T	keep	Т	[OPE= 0] T [OPE= 1] keep	Т	Address output
	Port selected	4 to 6	T*	keep	Т	keep	keep	I/O port
Port 3		4 to 7	Т	keep	T	keep	keep	I/O port
Port 4		4 to 7	Т	Т	Т	Т	Т	Input port
P77 to P	74	4 to 7	Т	keep	Т	keep	keep	I/O port
P73/TM0		7	Т	keep	Т	keep	keep	I/O port
P72/TMO0/CS6 P71/TMRI23/TMCI23/CS5 P70/TMRI01/TMCI01/CS4		4 to 6	Т	keep	Т	[DDR·OPE= 0] T [DDR·OPE= 1] H	Т	[DDR = 0] Input port [DDR = 1] CS7 to CS4
P97/DA1 P96/DA0		4 to 7	Т	T	Т	[DAOEn= 1] keep [DAOEn= 0] T	keep	Input port
Port A		7	Т	keep	Т	keep	keep	I/O port
	Address output selected by AEn bit	4, 5	L	keep	Т	[OPE= 0]	Т	Address output
		6	Т			T [OPE= 1] keep		
	Port selected	4 to 6	T*	keep	Т	keep	keep	I/O port

Port N Pin Na		MCU Operating Mode	Power- On Reset	Manual Reset	Hardware Standby Mode	Software Standby Mode Watch Mode	Bus- Released State	Program Execution State, Sleep Mode, Subsleep Mode
Port B		7	Т	keep	Т	keep	keep	I/O port
	Address output selected by	4, 5	L T	keep	Т	[OPE= 0] T	Т	Address output
	AEn bit	0	•			[OPE= 1] keep		
	Port selected	4 to 6	T*	keep	Т	keep	keep	I/O port
Port C		4, 5	L	keep	Т	[OPE= 0] T [OPE= 1] keep	Т	Address output
		6	Т	keep	Т	[DDR·OPE= 0] T [DDR·OPE= 1] keep	Т	[DDR = 0] Input port [DDR = 1] Address output
		7	Т	keep	Т	keep	keep	I/O port
Port D		4 to 6	Т	Т	Т	Т	Т	Data bus
		7	Т	keep	Т	keep	keep	I/O port
Port E	8-bit bus	4 to 6	Т	keep	Т	keep	keep	I/O port
	16-bit bus	4 to 6	Т	Т	Т	Т	Т	Data bus
		7	Т	keep	Т	keep	keep	I/O port
PF7/ø		4 to 6	Clock output	[[DDR = 0] Input port [DDR = 1] Clock output	Т	[DDR= 0] Input port [DDR= 1] H	[DDR= 0] Input port [DDR= 1] Clock output	[DDR= 0] Input port [DDR= 1] Clock output
		7	Т	keep	T	[DDR= 0] Input port [DDR= 1] H	[DDR= 0] Input port [DDR= 1] Clock output	[DDR= 0] Input port [DDR= 1] Clock output
PF6/AS, PF5/RD, PF4/HWR		4 to 6	Н	Н	Т	[OPE= 0] T [OPE= 1] H	Т	AS, RD, HWR
		7	Т	keep	Т	keep	keep	I/O port
PF3/L\	WR/ADTRG/	7	Т	keep	Т	keep	keep	I/O port
	8-bit bus	4 to 6	(Mode 4)	keep	Т	keep	keep	I/O port
	16-bit bus	4 to 6	H (Modes 5 and 6) T	Н	Т	[OPE= 0] T [OPE= 1] H	Т	LWR

Port Name Pin Name	MCU Operating Mode	Power- On Reset	Manual Reset	Hardware Standby Mode	Software Standby Mode Watch Mode	Bus- , Released State	Program Execution State, Sleep Mode, Subsleep Mode
PF2/WAIT	4 to 6	Т	keep	Т	[WAITE= 0] keep [WAITE= 1] T	[WAITE= 0] keep [WAITE= 1] T	[WAITE= 0] I/O port [WAITE= 1] WAIT
	7	Т	keep	Т	keep	keep	I/O port
PF1/BACK/BUZZ	4 to 6	Т	keep	Т	[BRLE= 0] keep [BRLE= 1] H	L	[BRLE= 0] I/O port [BRLE= 1] BACK
	7	Т	keep	Т	keep	keep	I/O port
PF0/BREQ/IRQ2	4 to 6	Т	keep	Т	[BRLE= 0] keep [BRLE= 1] T	Т	[BRLE= 0] I/O port [BRLE= 1] BREQ
	7	Т	keep	Т	keep	keep	I/O port
PG4/CS0	<u>4, 5</u> 6	Т	keep	Т	[DDR-OPE= 0] T [DDR-OPE= 1] H	Т	[DDR = 0] Input port [DDR = 1] CS0 (In sleep mode and subsleep mode: H)
	7	Т	keep	Т	keep	keep	I/O port
PG3/CS1 PG2/CS2 PG1/CS3/IRQ7	4 to 6	Т	keep	Т	[DDR·OPE= 0] T [DDR·OPE= 1] H	T	[DDR= 0] Input port [DDR= 1] CS1 to CS3
	7	Т	keep	Т	keep	keep	I/O port
PG0/ĪRQ6	4 to 7	Т	keep	Т	keep	keep	I/O port

Legend:

H: High level L: Low level

T: High impedance

keep: Input port becomes high-impedance, output port retains state

DDR Data direction register
OPE: Output port enable
WAITE: Wait input enable
BRLE: Bus release enable

Note: * L in modes 4 and 5 (address output)

Appendix E Timing of Transition to and Recovery from Hardware Standby Mode

Timing of Transition to Hardware Standby Mode

(1) To retain RAM contents with the RAME bit set to 1 in SYSCR, drive the RES signal low at least 10 states before the STBY signal goes low, as shown below. RES must remain low until STBY signal goes low (delay from STBY low to RES high: 0 ns or more).

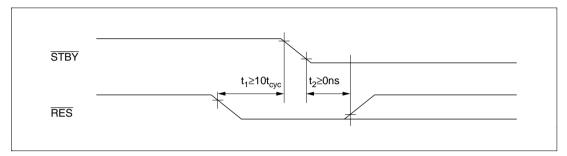


Figure E-1 Timing of Transition to Hardware Standby Mode

(2) To retain RAM contents with the RAME bit cleared to 0 in SYSCR, or when RAM contents do not need to be retained, RES does not have to be driven low as in (1).

Timing of Recovery from Hardware Standby Mode

Drive the \overline{RES} signal low approximately 100 ns or more before \overline{STBY} goes high to execute a power-on reset.

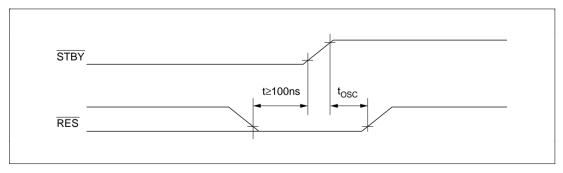


Figure E-2 Timing of Recovery from Hardware Standby Mode

Appendix F Product Code Lineup

Table F-1 H8S/2238 Series Product Code Lineup

Product Type		Product Code		Mark Code	Package	Notes
H8S/2238	Mask ROM version	5 V version	HD6432238B	HD6432238B(***)TE	100-pin TQFP (TFP-100B)	
				HD6432238B(***)TF	100-pin TQFP (TFP-100G)	_
				HD6432238B(***)F	100-pin QFP (FP-100A)	_
				HD6432238B(***)FA	100-pin QFP (FP-100B)	_
		Version with on-chip	HD6432238BW	HD6432238BW(***)TE	100-pin TQFP (TFP-100B)	_
		I ² C bus interface (5V version)		HD6432238BW(***)TF	100-pin TQFP (TFP-100G)	_
				HD6432238BW(***)F	100-pin QFP (FP-100A)	_
				HD6432238BW(***)FA	100-pin QFP (FP-100B)	_
		3 V version	HD6432238R	HD6432238R(***)TE	100-pin TQFP (TFP-100B)	
				HD6432238R(***)TF	100-pin TQFP (TFP-100G)	_
				HD6432238R(***)FA	100-pin QFP (FP-100B)	
				HD6432238R(***)BR	112-pin TFBGA (BP-112)	Planning
		Version with on-chip	HD6432238RW	HD6432238RW(***)TE	100-pin TQFP (TFP-100B)	
		I ² C bus interface (3V version)		HD6432238RW(***)TF	100-pin TQFP (TFP-100G)	_
				HD6432238RW(***)FA	100-pin QFP (FP-100B)	
				HD6432238RW(***)BR	112-pin TFBGA (BP-112)	Planning

Product Type		Product Code		Mark Code	Package	Notes
H8S/2238	F-ZTAT version	5 V version	HD64F2238B	HD64F2238BTE13	100-pin TQFP (TFP-100B)	
				HD64F2238BTF13	100-pin TQFP (TFP-100G)	_
				HD64F2238BF13	100-pin QFP (FP-100A)	_
				HD64F2238BFA13	100-pin QFP (FP-100B)	_
	F-ZTAT version	3 V version	HD64F2238R	HD64F2238RTE13	100-pin TQFP (TFP-100B)	
				HD64F2238RTF13	100-pin TQFP (TFP-100G)	_
				HD64F2238RFA13	100-pin QFP (FP-100B)	_
				HD64F2238RBR13	112-pin TFBGR (BP-112)	Planning
		2.2 V version	HD64F2238R	HD64F2238RTE6	100-pin TQFP (TFP-100B)	
				HD64F2238RTF6	100-pin TQFP (TFP-100G)	_
				HD64F2238RFA6	100-pin QFP (FP-100B)	_
				HD64F2238RBR6	112-pin TFBGA (BP-112)	Planning

Product T	ype	Product Code		Mark Code	Package	Notes
H8S/2236	Mask ROM versin	5 V version	HD6432236B	HD6432236B(***)TE	100-pin TQFP (TFP-100B)	
				HD6432236B(***)TF	100-pin TQFP (TFP-100G)	_
				HD6432236B(***)F	100-pin QFP (FP-100A)	_
				HD6432236B(***)FA	100-pin QFP (FP-100B)	_
		Version with on-chip	HD6432236BW	HD6432236BW(***)TE	100-pin TQFP (TFP-100B)	_
		I ² C bus interface (5 V version)		HD6432236BW(***)TF	100-pin TQFP (TFP-100G)	_
				HD6432236BW(***)F	100-pin QFP (FP-100A)	_
				HD6432236BW(***)FA	100-pin QFP (FP-100B)	
		3 V version	HD6432236R	HD6432236R(***)TE	100-pin TQFP (TFP-100B)	
				HD6432236R(***)TF	100-pin TQFP (TFP-100G)	
				HD6432236R(***)FA	100-pin QFP (FP-100B)	_
				HD6432236R(***)BR	112-pin TFBGA (BP-112)	Planning
		Version with on-chip	HD6432236RW	HD6432236RW(***)TE	100-pin TQFP (TFP-100B)	
		I ² C bus interface (3 V version)		HD6432236RW(***)TF	100-pin TQFP (TFP-100G)	_
				HD6432236RW(***)FA	100-pin QFP (FP-100B)	
				HD6432236RW(***)BR	112-pin TFBGA (BP-112)	Planning

Notes: (***) is the ROM code.

The F-ZTAT 5 V version is provided with an on-chip I^2C bus interface as standard. The above list includes products that are under development or in the planning stage. The status of individual products should be checked with a Hitachi Sales representative.

Appendix G Package Dimensions

Figures G-1 to G-4 show the H8S/2238 Series package dimensions.

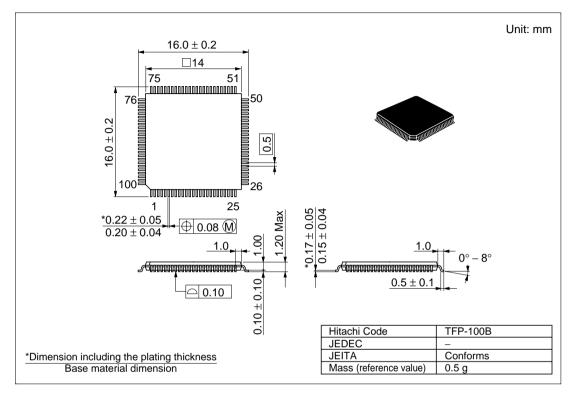


Figure G-1 TFP-100B Package Dimensions

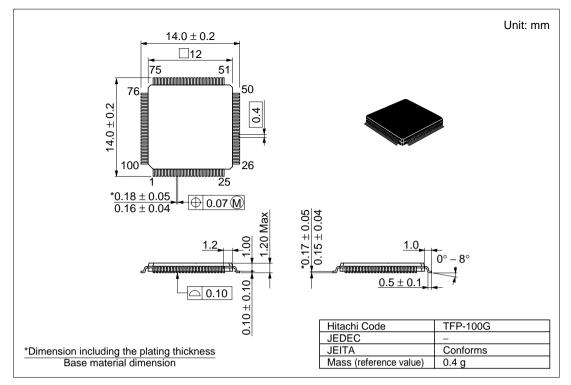


Figure G-2 TFP-100G Package Dimensions

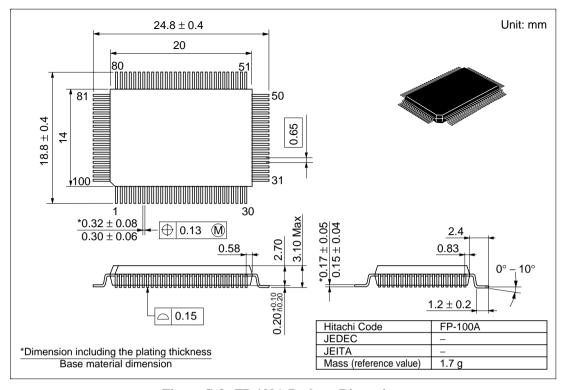


Figure G-3 FP-100A Package Dimensions

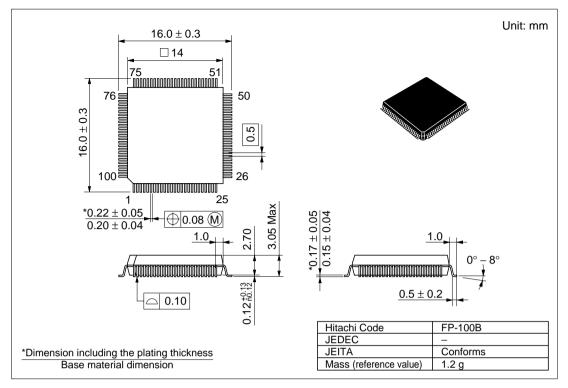


Figure G-4 FP-100B Package Dimensions

H8S/2238 Series, H8S/2238 F-ZTATTM Hardware Manual

Publication Date: 1st Edition, March 1999

3rd Edition, March 2002

Published by: Business Planning Division

Semiconductor & Integrated Circuits

Hitachi, Ltd.

Edited by: Technical Documentation Group

Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.