Features

- Wide Power Supply Range, 3.0 VDC to 5.5 VDC
- Compatible with JEDEC Standard AT27C1024
- Low Power CMOS Operation

100 $\,\mu\text{A}$ max. Standby

33 mW max. Active at 1 MHz for V_{CC} = 3.3 VDC 165 mW max. Active at 5 MHz for V_{CC} = 5.5 VDC

- Read Access Time 250 ns
- Wide Selection of JEDEC Standard Packages including OTP 40-Lead, 600-mil Cerdip and OTP Plastic DIP 44-Pad LCC and OTP PLCC
- High Reliability CMOS Technology 2000 V ESD Protection 200 mA Latchup Immunity
- Rapid Programming 100 μs/word (typical)
- Rapid Programming 100 μs/w
 Two-line Control
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Commercial and Industrial Temperature Ranges

1 Megabit (64K x 16) Low Voltage UV Erasable CMOS

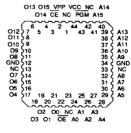
EPROM

Description

The AT27LV1024 chip is a low-power, low voltage 1,048,576-bit Ultraviolet Erasable and Electrically Programmable Read Only Memory (EPROM) organized 64K x 16. It requires only one power supply in the range of 3.0 to 5.5 VDC in normal read mode operation. Any word can be accessed in less than 250 ns, eliminating the need for speed reducing WAIT states. The by-16 organization makes these parts ideal for high-performance 16- and 32-bit microprocessor systems.

With a typical power draw of only 20 mW at 1 MHz and VCC at 3.3 VDC, the AT27LV1024 will draw less than one-fifth the power of a standard 5-V EPROM. Standby mode supply current is typically less than $10\,\mu\text{A}$.

Pin Configurations


Pin Name	Function						
A0-A15	Addresses						
O0-O15	Outputs						
CE	Chip Enable						
ŌĒ	Output Enable						
PGM	Program Strobe						
NC	No Connect						

Note: Both GND pins must be connected.

CDIP, PDIP Top View

PLCC, LCC, JLCC Top View

Note: PLCC Package Pins 1 and 23 are DON'T CONNECT.

4-79

1074177 0005317 14T ■

Description (Continued)

The AT27LV1024 comes in a choice of industry standard JEDEC-approved packages including; 40-pin DIP in ceramic or one time programmable (OTP) plastic, and 44-pad ceramic leadless chip carrier (LCC), or OTP plastic J-leaded chip carrier (PLCC). All devices feature two line control $(\overline{CE}, \overline{OE})$ to give designers the flexibility to prevent bus contention.

With high density 64K word storage capability, the AT27LV1024 allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Atmel's 27LV1024 has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 μ s/word. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

Erasure Characteristics

The entire memory array of the AT27LV1024 is erased (all outputs read as VoH) after exposure to ultraviolet light at a wavelength of 2537Å. Complete erasure is assured after a minimum of 20 minutes exposure using 12,000 µW/cm² intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15 W-sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPROM which will be subjected to continuous fluorescent indoor lighting or sunlight.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C	ĺ
Storage Temperature65°C to +150°C	
Voltage on Any Pin with Respect to Ground2.0 V to +7.0 V ⁽¹⁾	
Voltage on A9 with Respect to Ground2.0 V to +14.0 V ⁽¹⁾	
VPP Supply Voltage with Respect to Ground2.0 V to +14.0 V ⁽¹⁾	
integrated UV Erase Dose7258 W•sec/cm ²	

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

Minimum voltage is -0.6 V dc which may undershoot to -2.0 V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC+}0.75 V dc which may be exceeded if certain precautions are observed (consult application notes) and which may overshoot to +7.0 V for pulses of less than 20 ns.

Operating Modes

Mode \ Pin	CE	ŌĒ	PGM	Ai	Vpp	Vcc	Outputs
Read	VIL	VIL	X ⁽¹⁾	Ai	X	Vcc	Dout
Output Disable	X	ViH	Х	X	X	Vcc	High Z
Standby	ViH	X	Х	X	X ⁽⁵⁾	Vcc	High Z
Rapid Program ⁽²⁾	VIL	ViH	VIL	Ai	Vpp	Vcc	DiN
PGM Verify	VIL	VIL	ViH	Ai	VPP	Vcc	Dout
PGM Inhibit	ViH	X	Х	X	Vpp	Vcc	High Z
Product Identification ⁽⁴⁾	ViL	ViL	х	A9=VH (3) A0=VIH or VIL A1-A15=VIL	Vcc	Vcc	Identification Code

Notes: 1. X can be VIL or VIH.

4-80

- 2. Refer to Programming characteristics.
- 3. $V_H = 12.0 \pm 0.5 \text{ V}$.
- Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H

and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

Standby V_{CC} current (I_{SB}) is specified with V_{PP}=V_{CC}. V_{CC} > V_{PP} will cause a slight increase in I_{SB}.

AT27LV1024

1074177 0005318 086

D.C. and A.C. Operating Conditions for Read Operation

		AT27LV1024				
		-25	-30			
Operating	Com.	0°C - 70°C	0°C - 70°C			
Temperature (Case)	Ind.	-40°C - 85°C	-40°C - 85°C			
Vcc Power Supply		5 V ± 10%	5 V ± 10%			

D.C. and Operating Characteristics for Read Operation

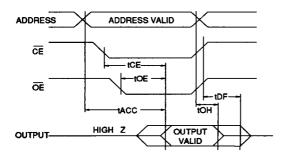
Symbol	Parameter	Cond	ition		Min	Max	Units
1LI	Input Load Current	VIN =	V _{IN} = -0.1 V to V _{CC} +1 V			5	μΑ
llo	Output Leakage Current	Vout	= -0.1 V to Vcc+0.1 V			10	μΑ
l _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	V _{PP} =	VPP = 3.8 to Vcc+0.3 V			10	μА
ISB Vcc (1) Standby Current			CMOS) Vcc-0.3 to Vcc+1.0 V			100	μА
ISB	VCC - Standby Current	ISB2 (TTL) 2.0 to V _{CC+} 1.0 V		1	mA	
		•	f = 1 MHz lour = 0 mA	Com.		30	mA
lcc	Vcc Active Current	ICC1		Ind.		40	mA
100	VCC ACTIVE OUTTER	laaa		Com.		10	mA
		Icc2		ind.		12	mA
VIL	Input Low Voltage				-0.6	0.8	V
ViH	Input High Voltage		571 - 1000 000000		2.0	Vcc+.75 V	V
Vol	Output Low Voltage	lot =	2.1 mA			.45	٧
			-100 μA		Vcc-0.3		V
VoH	Output High Voltage	юн =	-2.5 mA		3.5		V
		IOH = -400 µA			2.4		٧

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

A.C. Characteristics for Read Operation

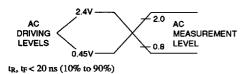
				-			
1			-:	25	-:	30	
Symbol	Parameter	Condition	Min	Max	Min	Мах	Units
tacc (3)	Address to Output Delay	CE = OE = VIL		250		300	ns
tce (2)	CE to Output Delay	ŌE = VIL		250		300	ns
toE (2,3)	OE to Output Delay	CE = VIL	1	100		150	ns
t _{DF} (4,5)	OE High to Output Float	CE = VIL		50		50	ns
tон	Output Hold from Address, CE or OE, whichever occurred first	CE = OE = VIL	0		0		ns

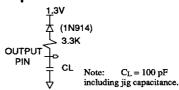
Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.


4-81

107417? 0005319 T12 ■

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .

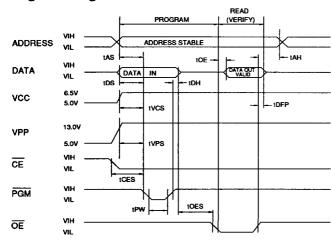

A.C. Waveforms for Read Operation (1)


Notes:

- Timing measurement references are 0.8 V and 2.0 V. Input AC driving levels are 0.45 V and 2.4 V, unless otherwise specified.
- 2. \overline{OE} may be delayed up to t_{CE}-t_{OE} after the falling edge of \overline{CE} without impact on t_{CE}.
- OE may be delayed up to tACC-tOE after the address is valid without impact on tACC.
- This parameter is only sampled and is not 100% tested.
- Output float is defined as the point when data is no longer driven.

Input Test Waveforms and Measurement Levels

Output Test Load



Pin Capacitance (f = 1 MHz, T = 25°C) (1)

	Тур	Max	Units	Conditions
Cin	4	8	pF	$V_{IN} = 0V$
Cout	8	12	pF	Vout = 0V

Notes: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes:

- The Input Timing Reference is 0.8 V for V_{IL} and 2.0 V for V_{IH}.
- top and topp are characteristics of the device but must be accommodated by the programmer.
- When programming the AT27LV1024 a 0.1-μF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

4-82 AT27LV1024

1074177 0005320 734

D.C. Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25 \text{ V}$, $V_{PP} = 13.0 \pm 0.25 \text{ V}$

Sym-		Test	Lir	nits	
bol	Parameter	Conditions	Min	Max	Units
ILI	Input Load Current	VIN=V(L,VIH		10	μΑ
VIL	Input Low Level	(All Inputs)	-0.6	0.8	٧
ViH	Input High Level	•	2.0	Vcc+1	٧
Vol	Output Low Volt.	loL=2.1 mA		.45	٧
Vон	Output High Volt.	I _{OH} =-400 µA	2.4		٧
lcc2	Vcc Supply Curren (Program and Veri	t fy)		50	mA
IPP2	Vpp Supply Current	CE=PGM=VIL	-	30	mA
VID	A9 Product Identification Voltage		11.5	12.5	٧

A.C. Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25 \text{ V}$, $V_{PP} = 13.0 \pm 0.25 \text{ V}$

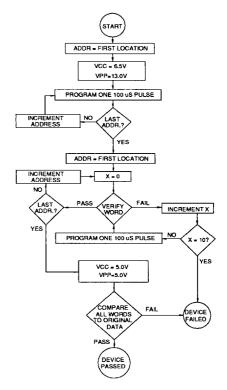
Sym- bol	Parameter	Test Conditions* (see Note 1)	Lir Min	nits Max l	Units
tas	Address Setup Tir	ne	2		μS
tces	CE Setup Time		2		μs
toes	OE Setup Time		2		μs
tos	Data Setup Time		2		μS
tan	Address Hold Tim	е	0		μS
ton	Data Hold Time		2		μS
tDFP	OE High to Out- put Float Delay	(Note 2)	0	130	ns
tvps	V _{PP} Setup Time		2		μS
tvcs	V _{CC} Setup Time		2		μS
tpw	PGM Program Pulse Width	(Note 3)	95	105	μS
toe	Data Valid from O	Ē		150	ns

*A.C. Conditions of Test:

Input Rise and Fall Times (10% to 90%)	20 ns
Input Pulse Levels	5 V to 2.4 V
Input Timing Reference Level0.3	8 V to 2.0 V
Output Timing Reference Level 0.3	8 V to 2.0 V

Notes:

- V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}.
- This parameter is only sampled and is not 100% tested.
 Output Float is defined as the point where data is no longer driven see timing diagram.
- 3. Program Pulse width tolerance is 100 µsec ± 5%.


Atmel's 27LV1024 Integrated Product Identification Code⁽¹⁾

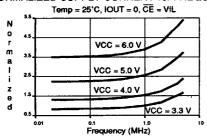
		Pins						Hex			
Codes	ΑO	015-08	07	06	O 5	04	ОЗ	02	01	00	Data
Manufacturer	0	0	0	0	0	1	1	1	1	0	001E
Device Type	1	0	1	1	1	1	0	0	0	1	00F1

Note: 1. The AT27LV1024 has the same Product Identification Code as the AT27C1024. Both are programming compatible.

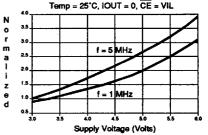
Rapid Programming Algorithm

A 100 μs \overline{PGM} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5 V and Vpp is raised to 13.0 V. Each address is first programmed with one 100 μs \overline{PGM} pulse without verification. Then a verification / reprogramming loop is executed for each address. In the event a word fails to pass verification, up to 10 successive 100 μs pulses are applied with a verification after each pulse. If the word fails to verify after 10 pulses have been applied, the part is considered failed. After the word verifies properly, the next address is selected until all have been checked. Vpp is then lowered to 5.0 V and Vcc to 5.0 V. All words are read again and compared with the original data to determine if the device passes or fails.

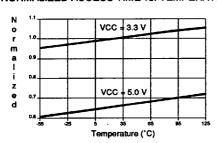
<u>AIMEL</u>

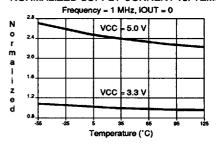

4-83

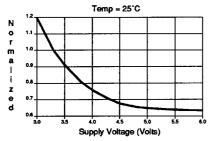
1074177 0005321 670

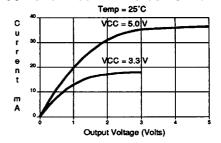


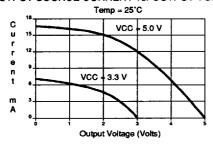
LV EPROM Product Characteristics


NORMALIZED SUPPLY CURRENT vs. FREQUENCY


NORMALIZED SUPPLY CURRENT vs. VOLTAGE


NORMALIZED ACCESS TIME vs. TEMPERATURE


NORMALIZED SUPPLY CURRENT vs. TEMP.


NORMALIZED ACCES TIME vs. SUPPLY VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

AT27LV1024

1074177 0005322 507 **m**

4-84

Ordering Information

tacc lcc (mA		(mA)	Ordorina Codo	Package	Operation Range
(ns)	Active	Active Standby Ordering Code		rackage	Operation hange
250	8	0.1	AT27LV1024-25DC AT27LV1024-25JC AT27LV1024-25KC AT27LV1024-25LC AT27LV1024-25PC	40DW6 44J 44KW 44LW 40P6	Commercial (0°C to 70°C)
250	10	0.1	AT27LV1024-25DI AT27LV1024-25KI AT27LV1024-25LI	40DW6 44KW 44LW	Industrial (-40°C to 85°C)
300	8	0.1	AT27LV1024-30DC AT27LV1024-30JC AT27LV1024-30KC AT27LV1024-30LC AT27LV1024-30PC	40DW6 44J 44KW 44LW 40P6	Commercial (0°C to 70°C)
300	10	0.1	AT27LV1024-30DI AT27LV1024-30KI AT27LV1024-30LI	40DW6 44KW 44LW	Industrial (-40°C to 85°C)

Package Type		
40DW6	40 Lead, 0.600" Wide, Windowed, Ceramic Dual Inline Package (Cerdip)	
44J	44 Lead, Plastic J-Leaded Chip Carrier OTP (PLCC)	
44KW	44 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC)	
44LW	44 Pad, Windowed, Ceramic Leadless Chip Carrier (LCC)	
40P6	40 Lead, 0.600" Wide, Plastic Dual Inline package OTP (PDIP)	

4-85

| 1074177 0005323443 🖿