USB Downstream Port Terminator with VBUS ESD Protection ### **Features** - A low-capacitance USB downstream port terminator, EMI filter, and transient over-voltage protector in a single surface-mounted package - ESD protection to ±20kV contact discharge, per MIL-STD-883D, Method 3015 - ESD protection to ±15kV contact discharge, per IEC 61000-4-2 International Standard - Provides ESD protection for the VBUS line - Compact SOT23-6 package saves board space and lowers manufacturing costs compared to discrete solutions - Capacitors matched to a precision exceeding the **USB** specification - Lead-free versions available ## **Applications** - ESD protection and termination of USB downstream ports - Desktop PCs - Notebooks - Set-top boxes - USB hubs ## **Product Description** The PACUSBVB-D1/D2/D3 is a single-channel USB downstream-port termination network. It integrates EMI/RFI filter components R1 and C1 as recommended by the USB specification, as well as the required $15k\Omega$ pull-down resistors (R2) to GND. In addition, PACUSBVB-D1/D2/D3 provides a very high level of protection for sensitive electronic components that may be subjected to electrostatic discharge (ESD). The device pins will safely dissipate ESD strikes of ±15kV, exceeding the maximum requirements of the IEC 61000-4-2 international standard. Using the MIL-STD-883D (Method 3015) specification for Human Body Model (HBM) ESD, all pins are protected from contact discharges to ±20kV. The PACUSBVB-D1/D2/D3 also features a fifth zener diode (cathode at pin 5) which provides ESD protection for the USB VBUS line. There are three options for the value of the series resistor R1: 15 Ω , 33 Ω , and 22 Ω This series resistance, plus the USB driver output resistance, must be close to the USB cable's characteristic impedance of 45Ω (each side) to minimize transmission line reflections. The PACUSBVB-D1/D2/D3 is housed in a 6-pin SOT23 package and is available with optional leadfree finishing. #### **Electrical Schematic** © 2004 California Micro Devices Corp. All rights reserved | PIN DESCRIPTIONS | | | | | | |------------------|------------------|---|--|--|--| | PINS | NAME | DESCRIPTION | | | | | 1 | D+ CNTR | D+ Data to the USB controller circuitry | | | | | 2 | GND | Ground Pin | | | | | 3 | D- CNTR | D- Data to the USB controller circuitry | | | | | 4 | D- CONN | D- Data to the USB connector | | | | | 5 | V _{BUS} | V _{BUS} input pin | | | | | 6 | D+ CONN | D+ Data to the USB connector | | | | # **Ordering Information** | PART NUMBERING INFORMATION | | | | | | | |----------------------------|----------|---------|--------------------------------------|--------------|--------------------------------------|--------------| | | | | Standard Finish | | Lead-fre | ee Finish | | Pins | R1 Value | Package | Ordering Part
Number ¹ | Part Marking | Ordering Part
Number ¹ | Part Marking | | 6 | 15 Ω | SOT23-6 | PACUSBVB-D2Y6 | UD2 | PACUSBVB-D2Y6R | UD2R | | | 22 Ω | | PACUSBVB-D3Y6 | UD3 | PACUSBVB-D3Y6R | UD3R | | | 33 Ω | | PACUSBVB-D1Y6 | UD1 | PACUSBVB-D1Y6R | UD1R | Note 1: Parts are shipped in Tape & Reel form unless otherwise specified. # **Specifications** | ABSOLUTE MAXIMUM RATINGS | | | | | | |--------------------------------|-------------|-------|--|--|--| | PARAMETER | RATING | UNITS | | | | | Storage Temperature Range | -65 to +150 | °C | | | | | Power Dissipation per Resistor | 100 | mW | | | | | Package Power Dissipation | 200 | mW | | | | | Voltage on any pin (DC) | 6 | V | | | | | STANDARD OPERATING CONDITIONS | | | | | | |--------------------------------|------------|-------|--|--|--| | PARAMETER | RATING | UNITS | | | | | Operating Temperature | -40 to +85 | °C | | | | | V _{BUS} Input Voltage | 5 | V | | | | ## Specifications (cont'd) | ELECTRICAL OPERATING CHARACTERISTICS | | | | | | | |--------------------------------------|---|--|------------------|---------------|-------------|----------------| | SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | | R1 | Resistance of R1 Resistor
(PACUSBVB-D2Y6/Y6R) | T _A = 25°C | 12 | 15 | 18 | Ω | | R1 | Resistance of R1 Resistor
(PACUSBVB-D3Y6/Y6R) | T _A = 25°C | 17.6 | 22 | 26.4 | Ω | | R1 | Resistance of R1 Resistor
(PACUSBVB-D1Y6/Y6R) | T _A = 25°C | 26.4 | 33 | 39.6 | Ω | | R2 | Resistance of R2 Resistor | $T_A = 25^{\circ}C$ | | 15 | | kΩ | | TCR | Temperature Coefficient of Resistance | Note 1 | | <u>+</u> 1300 | | ppm/
°C | | C1 | Capacitance of C1 Capacitor | 0 VDC; 30 mVAC; 1MHz; 25°C | 37.6 | 47 | 56.4 | pF | | | | 2.5 VDC; 30 mVAC; 1MHz; 25°C | 25.6 | 32 | 38.4 | pF | | TOL _{CM} | Matching Tolerance of C1 Capacitors | 1MHz; 25°C | | | <u>+</u> 2 | % | | I _{LEAK} | Diode Leakage Current to GND | Measured at 3.3 VDC, 25°C | | 1 | 100 | nA | | V _{RB} | Diode Reverse Bias Voltage | $I_{LOAD} = 10 \mu A; T_A = 25^{\circ}C$ | 5.5 | | | V | | V _{SIG} | Signal Voltage: Positive Clamp Negative Clamp | I _{LOAD} = 10mA; T _A = 25°C
I _{LOAD} = 10mA; T _A = 25°C | 5.6
-0.4 | 6.8
-0.8 | 9.0
-1.5 | V
V | | V _{ESD} | In-system ESD Withstand Voltage MIL-STD-883D, Method 3015 (HBM) IEC 61000-4-2 Contact Discharge | Pins 1, 3; Notes 1, 2 and 3
Pins 4, 5; Notes 1 and 2
Pins 4, 5; Notes 1 and 2 | ±4
±20
±15 | | | kV
kV
kV | | V _{CL} | Clamping voltage under ESD discharge | MIL-STD-883D, Method 3015 +8kV;
Notes 1 and 4 | | 12 | | V | | | | MIL-STD-883D, Method 3015 -8kV;
Notes 1 and 4 | | -7 | | V | Note 1: Guaranteed by design and characterization. Note 2: ESD voltage applied to pins with respect to GND, one at a time; unused pins are left open. Note 3: Pins 1 and 3 are not connected to the USB port connector, and therefore are not exposed to external ESD hazards. Thus, they do not require the high ESD protection levels provided for pins 4, 5, and 6. Note 4: ESD Clamping Voltage is measured at the opposite end of R1 from the pin to which the ESD discharge is applied (e.g., if ESD is applied to pin 6, then the clamping voltage is measured at pin 1). ## **Performance Information** ### Capacitance vs. Voltage The C1 capacitance value as a function of DC voltage across it is presented in Figure 1. The curve is normalized to a capacitance of 1.0 capacitance units at 2.5 VDC. Figure 1. Diode Capacitance vs. DC Voltage (Normalized) #### Insertion Loss vs. Frequency Characteristics Figure 2. Insertion Loss vs. Frequency Performance Curve, PACUSBVB-D1 (SOT23-6) © 2004 California Micro Devices Corp. All rights reserved. # Performance Information (cont'd) Figure 3. Insertion Loss vs. Frequency Performance Curve, PACUSBVB-D2 (SOT23-6) Figure 4. Insertion Loss vs. Frequency Performance Curve, PACUSBVB-D3 (SOT23-6) © 2004 California Micro Devices Corp. All rights reserved. ## **Application Information** The PACUSBVB-D1/D2/D3 provides a complete interface for a single downstream USB port typically found in computers and USB hubs. It integrates the series resistors (R1) and the $15k\Omega$ pull-down resistors (R2) for both USB data lines (D+ and D-) as well as the capacitors to ground for EMI suppression. Zener diodes provide ESD protection up to 15kV contact discharge per the IEC 61000-4-2 standard and protect the USB con- troller on both data lines. The 6-lead PACUSBVB-D1/D2/D3 device provides an additional zener diode to protect the VBUS USB power line. The PACUSBVB-D1/D2/D3 should be placed on the PCB between the USB controller and the USB connector, as shown on the Connection Diagram Figure 5. Figure 5. Connection Diagram for PACUSBVB-D1/D2/D3 To guarantee the best ESD and filtering performance, it is recommended that the PACUSBVB-D1/D2/D3 be located close to the USB connector. Also, the trace lengths between the PACUSBVB-D1/D2/D3 and the USB controller should be kept as short as possible. 7 ### **Mechanical Details** ### **SOT23-6 Mechanical Specifications:** Dimensions for the PACUSBVB-D1/D2/D3 supplied in a 6-pin SOT23 package are presented below. For complete information on the SOT23-6, see the California Micro Devices SOT23 Package Information document. | PACKAGE DIMENSIONS | | | | | | |------------------------------------|--------------------------------|------|------------|-------|--| | Package | SOT23-6 (JEDEC name is MO-178) | | | | | | Pins | 6 | | | | | | Dimensions | Millimeters | | Inches | | | | Difficusions | Min | Max | Min | Max | | | Α | | 1.45 | | 0.057 | | | A1 | 0.00 | 0.15 | 0.000 | 0.006 | | | b | 0.30 | 0.50 | 0.012 | 0.020 | | | С | 0.08 | 0.22 | 0.003 | 0.009 | | | D | 2.75 | 3.05 | 0.108 | 0.120 | | | E | 2.60 | 3.00 | 0.102 | 0.118 | | | E1 | 1.45 | 1.75 | 0.057 | 0.069 | | | е | 0.95 BSC | | 0.0374 BSC | | | | e1 | 1.90 BSC | | 0.0748 BSC | | | | L | 0.30 | 0.60 | 0.012 | 0.024 | | | L1 | 0.60 REF 0.024 REF | | | 4 REF | | | # per tape
and reel | 3000 pieces* | | | | | | Controlling dimension: millimeters | | | | | | ^{*} This is an approximate amount which may vary. Package Dimensions for SOT23-6.