Dual Frequency Generator ### **Features** - · Two independent clock outputs available - On chip Phase Locked Loops with VCO and integrated loop filters for low jitter clock outputs - Mask option for 16 + 4 frequencies, or 8 + 8 - Frequencies up to 130 MHz on each output clock generated internally - Low power CMOS technology - 20 pin PDIP or SOIC package - · Minimum number of external components - Tristate outputs - Pin compatible with ICS2494 and ICS90C64 - · Crystal oscillator circuitry with output clock - 16 pin narrow SOIC (150 mil) or PDIP package option available ### **Applications** <u>Graphics</u>: Many video graphics systems now utilize multiple clock oscillators to provide all of the frequencies required for different monitors and modes of resolution. In addition, many graphics processors require one separate fixed frequency for the memory or system clock. By providing two independent output clocks, the AV9194 saves power, board space, and cost in eliminating these oscillators. ### **General Description** The AV9194 is a dual output frequency generator that is ideal for graphics applications. The device can replace many crystal oscillators by containing all of the required output frequencies on-chip. The AV9194 can use either a crystal or TTL level clock for its input reference frequency. On notebooks and other motherboards, the 14.318MHz input can be generated by the AV9128/9 or the AV9152/3/5. Utilizing ICS' proprietary analog CMOS Phase Locked Loop (PLL) technology, this reference frequency is used to generate two independently controlled output clocks, VCLK and MCLK. Up to 20 output frequencies, ranging from 5 to 130 MHz, can be mask programmed into the device at the time of manufacture. The six Frequency Select pins are used to choose one of 16 (or 8) masked output frequencies on the video clock, VCLK, and one of 4 (or 8) frequencies on the second clock, designated MCLK. This second clock can be used as a memory clock to time DRAMs and VRAMs, as another video (or pixel) clock, or as a system clock required by graphics processors like the 8514A and 34010/20. Standard versions of the AV9194 are available. The AV9194 is one of the latest in ICS's frequency generator family. ICS has devices that are designed for many computer and computer peripheral applications, all manufactured in analog CMOS technology. ## **Pin Configurations** Pin Description for AV9194 / AV90C64 | Pi Bi # Pi | | | | | |------------|--------|---------|--------|---| | Pin | | in # | Pin | Description | | Name | AV9194 | AV90C64 | type | Description | | ICLK/X1 | 1 | 1 | Input | INPUT CLOCK. TTL clock signal or crystal input | | X2 | 2 | - | Output | CRYSTAL OUT. Connect when using crystal or ceramic resonator | | NC | 3 | 3 | - | NOT CONNECTED. No internal connection | | VFS0 | 4 | 5 | Input | VIDEO FREQUENCY SELECT 0 (LSB) | | VFS1 | 5 | 4 | Input | VIDEO FREQUENCY SELECT 1 | | EN | 6 | - | Input | ENABLE. Transparent high. A low latches the frequency select data | | EN | - | 6 | Input | ENABLE. Latches VFS0-VFS3 and MFS0, MFS1 upon rising edge | | PD* | 6 | - | Input | POWER DOWN. Turns off V+MCLK when low (AV9194-46 only) | | VFS2 | 7 | 7 | Input | VIDEO FREQUENCY SELECT 2 | | VFS3 | 8 | 8 | Input | VIDEO FREQUENCY SELECT 3 (MSB) | | MFS0 | 9 | 9 | Input | MEMORY FREQUENCY SELECT 0 (LSB) | | GND | 10 | 10 | - | DIGITAL GROUND | | MFS1 | 11 | 11 | Input | MEMORY FREQUENCY SELECT 1 (MSB) | | MCLK | 12 | 12 | Output | MEMORY CLOCK output | | VDD | 13 | - | -] | Digital power supply. Connect to +5V DC supply | | NC | 14 | 14 | - | NOT CONNECTED. No internal connection | | AVDD | 15 | 15 | - | Analog power supply. Connect to +5V DC supply | | AGND | 16 | 16 | - | ANALOG GROUND | | GND | 17 | - | - | DIGITAL GROUND | | XTALOUT | 18 | - | Intput | CRYSTAL CLOCK OUTPUT | | OE | - | 18 | Input | OUTPUT ENABLE. Tristates VCLK when low | | VCLK | 19 | 19 | Output | VIDEO CLOCK output to drive pixel clock | | VDD | 20 | 20 | - | Digital power supply. Connect to +5V DC supply | ### **ABSOLUTE MAXIMUM RATINGS** | AVDD, VDD referenced to GND | ESD rating as per MIL-STD-883D, Method 3015 | |-----------------------------|---| |-----------------------------|---| Note: Stresses above those listed under Absolute Maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum conditions for extended periods may affect devices reliability. ### **Electrical Characteristics** $(V_{DD} = +5V \pm 10\%, T_A = 0^{\circ}C \text{ to } 70^{\circ}C \text{ unless otherwise stated})$ | Symbol | Parameter | Min | Тур | Max | Units | Conditions | | |---|---|---|-----------------|---|--|--|--| | DC Characteristics | | | | | | | | | $\begin{array}{c} V_{\text{IL}} \\ V_{\text{IH}} \\ I_{\text{IL}(1)} \\ I_{\text{IH}} \\ V_{\text{OL}} \\ V_{\text{OH}} \\ V_{\text{OH}} \\ V_{\text{OH}} \\ V_{\text{OH}} \\ I_{\text{DD}} \\ I_{\text{DDSB}} \\ R_{\text{UP}(1)} \\ F_{\text{d}} \end{array}$ | Input Low Voltage Input High Voltage Input High Voltage Input High Current Input High Current Output Low Voltage Output High Voltage Output High Voltage Output High Voltage Supply Current Supply Current, Power Down (AV9194-46 Only) Internal Pullup Resistors Output Frequency Change over Supply and Temperature Input Capacitance | -
2.0
-5
-
-
VDD4V
VDD8V
2.4 | 20
30
500 | 0.8
-
-50
5
0.4
-
-
-
50
0.005 | V
V
μA
μA
V
V
V
mA
μA
KΩ
% | $\begin{split} V_{DD} &= 5V \\ V_{DD} &= 5V \\ V_{IN} &= 0V \\ V_{IN} &= VDD \\ I_{OL} &= 8mA \\ I_{OH} &= -4mA, VDD = 5.0V $ | | NOTES: (1) Input pins VFS0-VFS3, MFS0, MFS1, EN, OE and PD* have internal pull-up resistors. (2) Pins X1 and X2 have on-chip capacitors of 20pF to GND and are tied together by a $1 M\Omega$ on-chip resistor. | AC Char | acteristics | | | | | | |--|--|---|--|--|--|--| | t_{CLKR} t_{CLKF} t_w t_su t_{hd} t_r t_f t_f d_t f_{in} | Input Clock Rise Time Input Clock Rise Time Input Clock Fall Time Enable pulse width Setup time data to enable Hold time data to enable Rise time, 0.8 to 2.0 Volts Rise time, 20% to 80% Fall time, 2.0 to 0.8 Volts Fall time, 80% to 20% Duty cycle, MCLK and VCLK Input frequency, ICLK Jitter, 1 sigma Jitter, absolute | 20
20
10
-
-
-
-
5 | 1
2
1
2
48/52
14.318
±75
±325 | 20
20
-
-
-
2
4
2
4
40/60
20 | ns ps ns ns ps ns ps ns ps ns ps ns ps ms % | 25 pf load
25 pf load
25 pf load
25 pf load
25 pf load
25 pf load | | fmax | Maximum Output Frequency | | 1323 | 130 | ps
MHz | | AV9194 and AV90C64 Standard Versions | <u>AV9194 aı</u> | <u>nd AV90C6</u> | 4 Standard | Versions | | | | | | |--|--|---|---|---|--|--|--|--| | Mask
Number | AV9194-04 | AV9194-07 | AV9194-11 | AV9194-12 | AV9194-36 | AV9194-37 | | | | VGA
Controllers | Tseng Labs
ET4000 | S3
86C801,805,928 | 53
86C801,805,928 | S3
86C911,924 | Cirrus
Logic | Tseng Labs
ET4000 | | | | VCLK
ADDRESS | VCLK OUTPUT (MHz) | | | | | | | | | 0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F | 25.175
28.322
32.514
36.00
40.00
44.90
50.35
65.00
50.35
56.664
65.028
72.00
80.00
89.80
75.00
108.00 | 25.175
28.322
40.0
0.00
50.00
77.00
36.00
44.90
130.00
120.00
80.00
31.50
110.00
65.00
75.00
94.50 | 25.175
28.322
40.0
0.00
50.00
77.00
36.00
44.90
130.00
120.00
80.00
31.50
110.00
65.00
75.00
94.50 | 25.175
28.322
40.0
0.00
50.00
77.00
36.00
44.90
130.00
120.00
80.00
31.50
110.00
65.00
75.00
72.00 | XTAL
65.028
EXTFREQ
36.00
25.175
28.322
24.00
40.00
44.90
50.35
16.257
32.514
56.644
20.00
41.539
80.00 | 50.350
56.644
65.00
72.00
80.00
89.80
63.00
75.00
25.175
28.322
31.50
36.00
40.00
44.90
50.00
65.00 | | | | MCLK
ADDRESS | MCLK OUTPUT (MHz) | | | | | | | | | 0
1
2
3 | 41.00
46.00
50.00
56.00 | 45.00
38.00
52.00
50.00 | 32.90
35.60
43.90
49.10 | 40.00
41.612
44.744
50.00 | 55.00
60.00
70.00
65.00 | 55.00
75.00
70.00
80.00 | | | AV9194 and AV90C64 Standard Versions (continued) | AVS 134 a | na Avguco | <u> 4 Standard</u> | <u>versio</u> ns (| continuea) | | | |--|---|--|--|--|--|---| | Mask
Number | AV9194-42 | AV9194-44 | AV9194-46 | AV9194-56 | AV9194-60 | AV90C64 | | VGA
Controllers | WD
WD90C30 | CPU
Applications | NCR
77C22E | S3
86C911, 86C924 | Weitek
5X86 | WD
(All) | | VCLK
ADDRESS | | | VCLK OU | TPUT (MHz) | | , | | 0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F | 30.00
77.250
EXTFREQ
80.00
31.50
36.00
75.00
50.00
40.00
50.00
32.00
44.90
25.175
28.322
65.00
36.00 | 20.00
24.00
32.00
40.00
50.00
66.667
80.00
100.00
54.00
70.00
90.00
110.00
25.00
33.333
40.00
50.00 | 25.175 28.322 36.00 65.00 44.90 50.00 80.00 75.00 56.644 63.00 72.00 130.00 90.00 100.00 110.00 120.00 | 25.175
28.322
40.0
0.00
50.00
77.00
36.00
44.90
130.00
120.00
80.00
31.50
110.00
65.00
75.00 | 50.35
56.644
33.25
52.00
80.00
63.00
0.00
75.00
25.175
28.322
31.50
36.00
40.00
44.90
50.00
65.00 | 30.00
77.25
0.00
80.00
31.50
36.00
75.00
50.00
40.00
50.00
32.00
44.90
25.175
28.322
65.00
36.00 | | MCLK
ADDRESS | MCLK OUTPUT (MHz) | | | | | | | 0
1
2
3 | 36.00
44.347
37.50
44.773 | 16.00
24.00
50.00
66.667 | 50.00
60.00
65.00
75.00 | 55.00
75.00
70.00
80.00 | 40.00
33.333
45.00
50.00 | 41.61
37.50
49.22
44.30 | Avasem is continually developing new standard versions of the AV9194. Consult your local sales representative for the latest Avasem products. #### **AV9194 BOARD LAYOUT** This is the recommended layout for the AV9194. Shown are the power connections and the ground plane. The most important feature is the isolated ground plane, connected at one point near the $2.2\mu F$ and $0.1~\mu F$ decoupling caps. The ferrite bead is optional, but will help with EMI radiation from the power supply trace. In applications with an excessively noisy power supply, a $10~\Omega$ resistor in the power supply line (between the decoupling caps and the ferrite bead, if used) is recommended to reduce induced clock jitter. The traces to distribute power should be as wide as possible. If a crystal or crystal oscillator is used, it should be surrounded by the isolated ground plane. Clock output traces should be kept narrow, and distance over isolated ground plane should be kept to a minimum to reduce coupling. ## AV9194 Recommended External Circuit #### Notes: - 1. Avasem recommends the use of an isolated ground plane for the AV9194. All grounds shown on this drawing should be connected to this ground plane. This ground plane should be connected to the system ground plane at a single point. Please refer to AV9194 Board Layout diagram. - 2. A single power supply connection for all VDD lines at the decoupling capacitors is recommended to reduce interaction of analog and digital circuits. The decoupling capacitors should be located as close to the VDD pins as possible. - 4. The ferrite bead does not enhance the performance of the AV9194, but will reduce EMI radiation from the VDD line. - 5. The 10 Ω resistor is optional for noisy power supply applications. It is used to reduce clock jitter which may be induced by excessive power supply noise. ## **Ordering Information** | Part Number | Temperature Range | Package Type | |---------------|-------------------|----------------------| | AV9194-xxCN20 | 0°C to +70°C | 20 lead Plastic DIP | | AV9194-xxCW20 | 0°C to +70°C | 20 lead Plastic SOIC | | AV90C64N | 0°C to +70°C | 20 lead Plastic DIP | | AV90C64M | 0°C to +70°C | 20 lead Plastic SOIC | Note: The dash number following AV9194, (denoted by xx above) must be included when ordering product since it specifies the mask options being ordered. Please request an AV9194 customer order form when ordering custom masks.