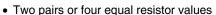
Vishay Beyschlag


Professional Thin Film Chip Resistor Array

Advanced

- TCR down to ± 25 ppm/K
- Tolerance down to ± 0.5 %
- Pure Sn termination on Ni barrier laver
- RoHS compliant component, compatible with lead (Pb)-free and lead containing soldering processes

ACAC 0612 (concave terminations) and ACAS 0612 (convex terminations) thin chip resistor arrays combine the proven reliability of professional thin film chip resistor products with the advantages of chip resistor arrays. A small package enables the design of high density circuits in combination with reduction of assembly costs. Four equal resistor values or two pairs are available.

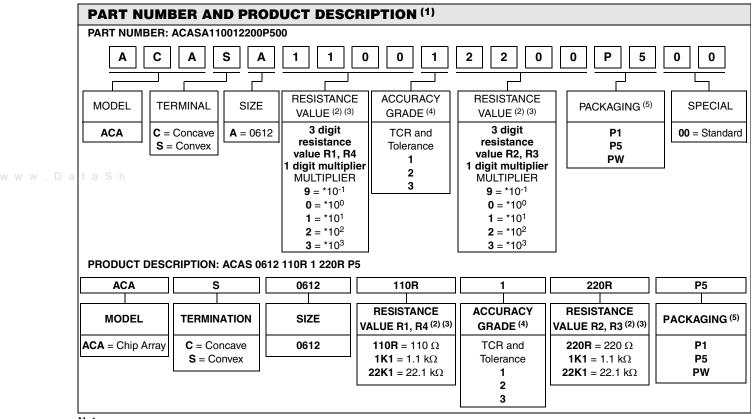
APPLICATIONS

· Voltage divider

FEATURES

- · Feedback circuits
- · Signal conditioning
- Bus terminations

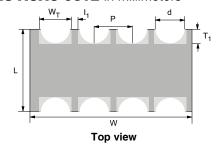
TECHNICAL SPECIFICATIONS					
DESCRIPTION	ACAC 0612, ACAS 0612				
EIA size	0612				
Metric size	RR1632M				
Configuration, isolated	4 x 0603				
Design:					
All Equal	AE				
Two Pairs	TP				
Resistance values	47 Ω to 221 kΩ ⁽¹⁾				
Absolute tolerance (2)	± 1 %; ± 0.5 %				
Absolute temperature coefficient (2)	± 50 ppm/K; ± 25 ppm/K				
Max. resistance ratio $R_{\text{min.}}/R_{\text{max.}}$	1:10 ⁽³⁾				
Rated dissipation: $P_{70}^{~(4)}$					
Element	0.1 W				
Package, 4 x 0603	0.3 W				
Operating voltage	75 V				
Film temperature	125 °C				
Insulation voltage ($U_{\rm ins}$) against ambient and between isolated resistors, continuous	75 V				


Notes

- $^{(1)}$ Resistance values to be selected from E24, E48 and E96
- (2) For TCR tracking, tolerance matching and tighter absolute tolerance please refer to data sheet "Precision Thin Film Chip Resistor Array" available on our web site at www.vishay.com
- (3) Higher resistance ratio is available on request
- (4) The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat-flow support of the printed circuit board (thermal resistance). The rated dissipation applies only if the permitted film temperature is not exceeded. Furthermore, a high level of ambient temperature or of power dissipation may raise the temperature of the solder joint, hence special solder alloys or board materials may be required to maintain the reliability of the assembly.
- These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over
 operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

Professional Thin Film Chip Resistor Array

Vishay Beyschlag



Notes

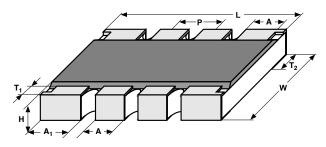
- (1) Products can be ordered using either the PART NUMBER or the PRODUCT DESCRIPTION
- (2) $R_1 = R_4 \le R_2 = R_3$; please refer to APPLICATION INFORMATION, see below
- (3) Different resistance values are available on request
- (4) Please refer to table TEMPERATURE COEFFICIENT AND RESISTANCE RANGE, see below
- (5) Please refer to table PACKAGING, see below

PACKAGING								
MODEL	TAPE WIDTH	DIAMETER	PIECES	PITCH	PACKAGING CODE			
MODEL	IAPE WIDTH	DIAMETER	PIECES		PAPER TAPE			
ACAC 0612	8 mm	180 mm/7"	1000	4 mm	P1			
	8 mm	180 mm/7"	5000	4 mm	P5			
ACAS 0612	8 mm	330 mm/13"	10 000	4 mm	PW			

DIMENSIONS ACAC 0612 in millimeters

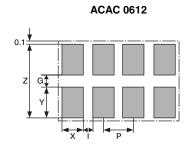
DIMENSIONS - chip resistor array, mass and relevant physical dimensions											
TYPE L W H P W _T T ₁ T ₂ d I ₁ I ₂ MASS (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m											
ACAC 0612	1.6 ± 0.15	3.2 ± 0.15	0.55 ± 0.1	0.8 ± 0.1	0.5 ± 0.15	0.3 ± 0.15	0.4 ± 0.15	0.3 ± 0.1	min. 0.15	min. 0.25	9.53

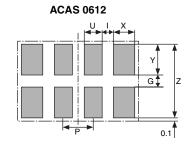
Document Number: 28754 Revision: 11-Sep-08 For technical questions, contact: filmresistors.thinfilmarray@vishay.com


ACAC 0612, ACAS 0612 - Professional

Vishay Beyschlag

Professional Thin Film Chip Resistor Array




DIMENSIONS ACAS 0612 in millimeters

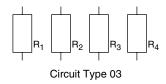
www.DataShe	DIMENSIONS - chip resistor array, mass and relevant physical dimensions									
	TYPE	W (mm)	L (mm)	H (mm)	P (mm)	A ₁ (mm)	A (mm)	T ₁ (mm)	T ₂ (mm)	MASS (mg)
	ACAS 0612	1.5 ± 0.15	3.2 ± 0.15	0.45 ± 0.1	0.8 ± 0.1	0.6 ± 0.15	0.4 ± 0.15	0.3 ± 0.15	0.4 ± 0.15	6.59

PATTERN STYLES FOR CHIP RESISTOR ARRAYS

Dimensions in mm
☐ limits for solder resistance

RECOMMENDED SOLDER PAD DIMENSIONS FOR CHIP RESISTOR ARRAYS								
TYPE	G (mm)	Y (mm)	X (mm)	U (mm)	Z (mm)	l (mm)	P (mm)	
ACAC 0612	0.7	0.7	0.5	-	2.1	0.3	0.8	
ACAS 0612	0.8	1.15	0.64	0.44	3.1	0.36	0.8	

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE							
	RESISTANCE VALUE						
ACCURACY GRADE	ABSOLUTE TCR	ABSOLUTE TOLERANCE	ACAC 0612, ACAS 0612				
1	± 25 ppm/K	± 0.5 %	47 Ω to 221 k Ω				
2	± 50 ppm/K	± 0.5 %	47 Ω to 221 k Ω				
3	± 50 ppm/K	± 1 %	47 Ω to 221 k Ω				



Professional Thin Film Chip Resistor Array

Vishay Beyschlag

APPLICATION INFORMATION

DESCRIPTION

The production of the components is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade (96 % Al₂O₃) ceramic substrate and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are realised on both sides. A special laser is used to achieve the target value by smoothly cutting a meander groove in the resistive layer without damaging the ceramics.

The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating.

The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. Only accepted products are laid directly into the paper tape in accordance with IEC 60286-3*.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using reflow or vapour phase as shown in IEC 61760-1*. For ACAC resistor arrays automatic soldering using wave can also be used. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system. The resistors are RoHS compliant; the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. The permitted storage time is 20 years, whereas the solderability is specified for 2 years after production or regualification. The immunity of the plating against tin whisker growth has been proven under extensive testing.

All products comply with the $GADSL^{(1)}$ and the $CEFIC\text{-}EECA\text{-}EICTA^{(2)}$ list of legal restrictions on hazardous substances. This includes full compliance with the following directives:

- 2000/53/EC End of Vehicle life Directive (ELV) and Annex II (ELV II)
- 2002/95/EC Restriction of the use of Hazardous Substances directive (RoHS)
- 2002/96/EC Waste Electrical and Electronic Equipment Directive (WEEE)

APPROVALS

Where applicable, the resistors are tested in accordance with EN 140401-801 which refers to EN 60115-1 and EN 140400.

Notes

(1) Global Automotive Declarable Substance List, see www.gadsl.org

• The quoted IEC standards marked with an asterisk (*) are also released as EN standards with the same number and identical contents

Document Number: 28754 Revision: 11-Sep-08

⁽²⁾ CEFIC (European Chemical Industry Council), EECA (European Electronic Component Manufacturers Association), EICTA (European trade organisation representing the information and communications technology and consumer electronics), see www.eicta.org → issues → environment policy → chemicals → chemicals for electronics

ACAC 0612, ACAS 0612 - Professional

Vishay Beyschlag

Professional Thin Film Chip Resistor Array

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the following specifications:

EN 60115-1, Generic specification (includes tests)

EN 140400, Sectional specification (includes schedule for qualification approval)

The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5202.

The tests are carried out in accordance with IEC 60068* and under standard atmospheric conditions according to IEC 60068-1*, 5.3. Climatic category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days) is

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar) In the following table only the tests and requirements are listed with reference to the relevant clauses of EN 60115-1 and IEC 60068-2*; a short description of the test procedure is also given.

TEST P	TEST PROCEDURES AND REQUIREMENTS								
EN 60115-1 CLAUSE	IEC 60068-2* TEST METHOD	T TEST PROCEDURE		REQUIREMENTS ⁽¹⁾ PERMISSIBLE CHANGE (△ <i>R</i>)					
			Stability for product types:						
			ACAC 0612, ACAS 0612	47 Ω to 221 k Ω					
			Climatic category (LCT/UCT/duration)	- 55 °C/+ 125 °C/56 days					
4.5	-	Resistance	-	± 1 %; ± 0.5 %; ± 0.25 %					
4.8.4.2	-	Temperature coefficient	At 20/LCT/ 20 °C and 20/UCT/20 °C	± 50 ppm/K; ± 25 ppm/K					
4.25.1	-	Endurance	$U = \sqrt{P_{70}} \times R \text{ or } U = U_{\text{max.}};$ 1.5 h on; 0.5 h off; 70 °C; 1000 h	± (0.25 % R + 0.05 Ω)					
4.25.3	-	Endurance at upper category temperature	125 °C; 1000 h	± (0.25 % R + 0.05 Ω)					
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	$\pm (0.5 \% R + 0.05 \Omega)$					
4.13	-	Short time overload (2)	$U = 2.5 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{\text{max}}$; 5 s	\pm (0.1 % R + 0.01 Ω) no visible damage					
4.19	14 (Na)	Rapid change of temperature	30 min at LCT and 30 min at UCT; 5 cycles	\pm (0.1 % R + 0.01 Ω) no visible damage					
4.18.2	58 (Td)	Resistance to soldering heat	Reflow method 2 (IR/forced gas convention); (260 ± 5) °C; (10 ± 1) s	± (0.25 % R + 0.01 Ω) no visible damage					
4.17.2	58 (Td)	Solderability	Solder bath method; SnPb; non-activated flux accelerated ageing 4 h/155 °C (215 ± 3) °C; (3 ± 0.3) s Solder bath method; SnAgCu; non-activated flux accelerated ageing 4 h/155 °C (235 ± 3) °C; (2 ± 0.2) s	Good tinning (≥ 95 % covered); no visible damage					
4.32	21 (Ue ₃)	Shear (adhesion)	45 N	No visible damage					
4.33	21 (Ue ₁)	Substrate bending	Depth 2 mm, 3 times	\pm (0.1 % R + 0.01 Ω) no visible damage; no open circuit in bent position					
4.7	-	Voltage proof	U _{rms} = U _{ins} 60 ± 5 s; against ambient, between adjacent resistors	No flashover or breakdown					

Notes

⁽¹⁾ Figures are given for equal values

⁽²⁾ For a single element

The quoted IEC standards marked with an asterisk (*) are also released as EN standards with the same number and identical contents

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08