
Publication# 21921 Rev: A Amendment/0
Issue Date: June 1998

This document contains information on a product under development at Advanced Micro Devices.
The information is intended to help you evaluate this product. AMD reserves the right to change or
discontinue work on this proposed product without notice.

Interfacing the Am186™CC Communications
Controller to an AMD SLAC™ Device Using
Enhanced SSI
Application Note
by Jeff Kirk

The purpose of this application note is to describe how to interface an Am186™CC communications
controller to a Quad Subscriber Line Audio-Processing Circuit (QSLAC™) device. The same tech-
niques can be used to interface an Am186CC controller to any SLAC™ device.

BACKGROUND
Traditionally, linecards—if they had processors at all—
used simple, inexpensive 8-bit microcontrollers.
However, as the number o f l i nes per card
increases,16-bit controllers such as the Am186CC
controller become more attractive for several reasons:

n 16-bit controller costs have decreased

n More peripheral functions can be integrated,
reducing external component counts

n Smaller packaging options are now available

n 16-bit controllers generally offer larger address
spaces

These factors, combined with the availability of
superior, low-cost development tools such as the
Microsoft® and Borland C compilers, reduce the time to
market and long-term maintenance costs.

The Am186CC controller also offers several new
features useful in communication systems:

n Mixed 8- and 16-bit memory/peripheral spaces

n Programmable I/Os with dedicated set/clear
functions

n High-speed High-level Data Link Control (HDLC)
ports (10 Mbit/s)

n Direct Pulse Code Modulation (PCM) Highway
interfaces

PCM interfaces—up to four each—provide simple
processor access to data on the SLAC device’s PCM
interface. Also, one of the Am186CC controller’s HDLC
ports, Channel A, supports General Circuit Interface
(GCI) operation. GCI is also known as the ISDN
Oriented Modular Interface, Revision 2 (IOM-2).

A SLAC device connects to its host processor through
a three-pin serial interface. While this interface is used
primarily to initialize the SLAC device, several critical
functions of the Subscriber Line Interface Circuit (SLIC)
can be monitored through the serial interface. As a
result, it may be necessary to make the interface as
fast as possible. Designed to drive the SLAC device’s
Microprocessor Interface (MPI) bus, the SSI port of the
Am186CC controller makes it even easier for the
hardware and software engineer to implement the
fastest possible interface.

FURTHER REFERENCES
The remainder of this application note assumes at least
a passing familiarity with the chips involved: the
Am186CC controller and the Am79Q02 QSLAC
device. If further details are needed, the following
literature is available from AMD:

Am186™CC Communications Controller Data Sheet,
order #21915

Am186™CC Communications Controller User's
Manual, order #21914

Am186™CC Communications Controller Register Set
Manual, order #21916

Am186™ and Am188™ Family Instruction Set Manual,
order #21267

Am79Q02 /021 /031 QSLAC™ Data Shee t ,
order #18503

AMD’s complete family of linecard devices is found in
the Linecard Products for the Public Infrastructure
Market Data Book, order #18503.

2 Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI

MPI HARDWARE OVERVIEW
The MPI buses of the QSLAC device and the DSLAC
device are very similar. Both are serial, master/
s lave -type in te r faces . A sys tem or l inecard
microprocessor is the master, and the interface is
designed so that multiple slaves (i.e., SLAC devices)
can be attached to a single master’s MPI bus, as
shown in Figure 1.

Figure 1. Multiple SLAC Devices

The MPI bus signals, like those through most digital
buses, are of three types:

n Data

n Clock/control

n Address

The QSLAC data line (DIO) pin is a bidirectional,
three-state serial bus. Some DSLAC devices, like the
Am79C02 DSLAC device, has separate Data In (DIN)
and Data Out (DOUT) pins, which can be strapped
together to look like the QSLAC device’s single DIO
pin. The data on this line consists of 8-bit bytes
transmitted most significant bit first, regardless of
direction. The master initiates all transfers by sending
a command byte to the SLAC device. Each command
has a predetermined length (number of bytes) and
direction (read or write). For example, if the master
microprocessor sends out command number 25 (read
GX filter coefficients) to the DSLAC device, the DSLAC
device knows to transmit two bytes. Because the
command determines which device is transmitting,
master or slave, the software drivers must be correct to
prevent bus contention, which could damage the
devices. Also, in the case of a read, the SLAC device
will not accept a new command until the old one is
finished (i.e., until all bytes have been received or
transmitted). Software verification is critical.

The clock signal (DCLK) is an input to the SLAC
device. The clock can run continuously or can be active
only during data transfers. The maximum frequency of
DCLK for both QSLAC and DSLAC devices is
4.096 MHz. Data is clocked into the SLAC device on
the rising edge of DCLK, but data is sent out on the
falling edge of DCLK. This common technique makes it
easier to satisfy setup and hold-time requirements.

DCLK can be stopped indefinitely in either the High or
Low state if the chip select input is held High.

Each of the individual SLAC devices on the MPI bus is
addressed (i.e., selected) by pulling one of the chip
select inputs Low. The QSLAC device has a single chip
select (CS) for all four channels, while the DSLAC
device has a separate chip select for each channel
(CS1 and CS2). The rising edge of the chip select
marks or frames the end of each byte; therefore, the
chip select line must go High for at least the minimum
off period before the next byte is read or written. The
DSLAC device’s minimum off period is 5 µs, while the
QSLAC device’s minimum is 2.5 µs.

If the QSLAC device receives 16 clocks with CS
asserted (Low), then the device resets.

In addition to the data, clock, and address pins, the
QSLAC device has an interrupt pin as part of the
microprocessor interface. This pin can be very useful in
some systems, but is not discussed in this application
note. A brief description of this pin is available in the
Am79Q02 /021 /031 QSLAC™ Data Shee t ,
order #18503.

SSI HARDWARE OVERVIEW
The Enhanced Synchronous Serial Interface (SSI) of
the Am186CC controller was designed to interface
directly with AMD SLAC devices and to provide a
low-pin-count interface with application-specific
integrated circuits (ASICs). With the right clocks, the
Am186CC controller can drive the MPI bus at its
maximum rate.

The SSI bus transmits three signals, each on a
separate pin:

n SDATA

n SCLK

n SDEN

All the pins are shared (i.e., multiplexed) with one of the
Am186CC controller’s 48 PIOs. This allows the SSI
pins to be used as PIOs if their normal SSI function is
not needed. The pins are PIOs by default.

The SDATA signal—like DIO—is a bidirectional,
three-state serial bus. Unlike DIO, a weak pullup or
pulldown resistor keeps the last value on the bus for
systems that cannot tolerate three-state inputs. The
data on this signal consist of 8-bit bytes, normally
transmitted least significant bit first, but SSI can be
programmed for MSB-first operation. The master/slave
protocol is controlled entirely with software.

The clock signal (SCLK) is active only during byte
transfers. It is an output signal. The frequency is
derived by dividing the frequency of the internal clock
by 2, 4, 8, 16, 32, 64, 128, or 256 (programmed with the

Micro-

processor
SLAC
Device

SLAC
Device

SLAC
Device

MPI Bus

Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI 3

SSCON register). In the case of a 40-MHz device, this
allows for speeds up to 20 MHz. As with the SLAC
device, data is clocked out on the falling edge and
clocked in on the rising edge.

The enable signal, SDEN, is an output signal. It is
normally active High, but it can be programmed to be
active Low to match CS of the MPI interface. While
there is only one enable pin, PIOs can be easily used
as chip selects to connect multiple SLAC devices to the
SSI port.

CONNECTING SSI TO MPI
The hardware connection is very easy. Figure 2 shows
the connections for the QSLAC device.

If interfacing the Am186CC controller with the DSLAC
device (which has two chip selects) or with multiple
SLAC devices, simply use PIOs in place of SDEN (see
Figure 3). There is nothing special about PIO9 and
PIO10; any uncommitted PIOs work. If the SLAC
device has separate DIN and DOUT pins rather than a
DIO pin, simply tie them together.

TIMING CONSIDERATIONS
The tables on page 4 compare the timing requirements
for the worst cases. Each worst case is determined by
looking at the most stringent requirement to see if the
other end of the interface can meet the requirement.
There is only one speed grade for the QSLAC device,
but there are multiple speed grades for the Am186CC
controller, so each case has been looked at with the
worst possibility in mind.

The timing of the DSLAC device is largely the same as
the timing of the QSLAC device. The only difference is
that the Chip Select Off time (parameters 9 and 16) is
longer—5 µs versus 2.5 µs—on the DSLAC device.

When verifying the timing, there are two cases to
cons ide r : m ic roprocessor w r i t e cyc les and
microprocessor read cycles. Table 1 on page 4 looks at
the write cycle case, while Table 2 examines read
cycles. These numbers are easily verified, but as an
example, the next few paragraphs explain how Table 1
was derived. Verifying Table 2 is left as an exercise for
the reader.

During a write cycle, the QSLAC device's DIO pin is an
input, so it has setup and hold timing requirements as
illustrated in Table 1. These requirements can be
obtained directly from the QSLAC device’s data sheet
as parameters number 10 and 11 (Input data setup
time, tIDS, and Input data hold time, tIDH). Chip select is
also an input, with similar setup and hold times. The
QSLAC device specifies these parameters separately
for the input (write) and output (read) cases so the
correct parameters are 6 and 7 (Chip select setup time,
input state tICSS, and Chip select hold time, input state
tICSH).

Determining what the Am186CC controller provides—
the right half of Table 1—is a little more complicated.
Remember that SCLK and DCLK are tied together (i.e.,
they are the same clock.) Because data from the
Am186CC controller is output on the falling edge of
SCLK and latched into the QSLAC device on the rising
edge of DCLK, there is one-half clock cycle between
the two events. Assume the worst case duty cycle the
QSLAC device can tolerate, which is parameter 3
(Data Clock Low Pulse Width, tDCL) at 97 ns. This is a
conservative assumption because SCLK is always
very close to 50%. The Am186CC controller data sheet
guarantees that SDATA is valid no more than 20 ns
after SCLK goes Low in parameter tSLDV (SCLK Low to
Data Valid). Subtracting this delay from the length of
the clock pulse (97–20=77) leaves 77 ns for setup time
before the rising edge of DCLK.

All the other setup and hold times in Table 1 and
Table 2 are calculated in a similar fashion, and as the
tables show, there are generous margins even in the
worst case.

Am186CC
Controller

(PQFP)

Am79Q02
QSLAC Device

(PLCC)

SDATA (pin 4) ↔ DIO (pin 38)

SCLK (pin 3) → DCLK (pin 39)

SDEN (pin 2) → CS (pin 40)

Figure 2. QSLAC Device Connections

Am186CC
Controller

(PQFP)

Am79C03
DSLAC Device

(PLCC)

SDATA (pin 4) ↔ DIO (pin 21)

SCLK (pin 3) → DCLK (pin 19)

PIO10 (pin 2) → CS1 (pin 32)

PIO9 (pin 124) → CS2 (pin 31)

Figure 3. DSLAC Device Connections

4 Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI

In the case of the data hold time in Table 1, there is no
specification given in the Am186CC controller data
sheet for how quickly SDATA can change after the
clock goes Low. It is assumed that in the worst case,
SDATA instantaneously changes as soon as SCLK
goes Low. This means that the hold time provided by
the Am186CC controller is the same as the minimum
SCLK High period, which is specified by the QSLAC
device as 97 ns.

The chip-select-setup and hold times are given for
SDEN rather than PIOs as discussed previously. Even
though SDEN is driven by the SSI, SDEN is still
controlled by software by writing a 1 or 0 to the DE bit
in the SSI Control (SSCON) register. Because SDEN is
controlled by software, the actual delay is much longer
than specified. The same holds true if PIOs are used to
drive the SLAC device’s chip selects.

Table 3 gives the usable options for each of the
available speed grades and the resultant data transfer
rate. To achieve the maximum DCLK rate of 4 MHz, the
Am186CC controller's internal frequency must be 8,
16, or 32 MHz (÷ 2, 4, or 8).

Note: These frequencies are not the orderable speed grades, but are frequencies chosen that are a multiple of the fastest MPI
clock, which is 4 MHz.

Table 1. Microprocessor Output (Data Write)

Timing
Parameter

QSLAC
Device

Requires
(ns, min)

Am186CC
Controller
Provides
(ns, min)

Timing
Conflicts

Data Setup time 30 72 None

Data Hold time 30 97 None

CS Setup time 70 219 None

CS Hold time 0 122 None

Table 2. Microprocessor Input (Data Read)

Timing
Parameter

Am186CC
Controller
 Requires
 (ns, min)

QSLAC
Device

 Provides
 (ns, min)

Timing
Conflicts

Data Setup time 10 47 None

Data Hold time 3 97 None

Table 3. Am186CC Controller Frequencies

Clock
Divisor

Am186CC
Controller
-20 MHz

Am186CC
Controller
-32 MHz

Am186CC
Controller
-40 MHz

Am186CC
Controller
-48 MHz

Am186CC
Controller
-50 MHz

 ÷2 – – – – –

÷4 – – – – –

÷8 2.5 MHz 4 MHz – – –

÷16 1.25 MHz 2 MHz 2.5 MHz 3.0 MHz 3.13 MHz

÷32 625 KHz 1 MHz 1.25 MHz 1.5 MHz 1.56 MHz

÷64 313 KHz 500 KHz 625 KHz 750 KHz 781 KHz

÷128 156 KHz 250 KHz 313 KHz 375 KHz 391 KHz

÷256 78 KHz 125 KHz 156 KHz 187.5 KHz 195 KHz

Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI 5

SOFTWARE CONSIDERATIONS
The basics of using the SSI port from software can be
illustrated with two subroutines. The first subroutine
writes a byte to the SLAC device; the second reads a
s ing le by te . These two rout ines , a long wi th
initialization, form the core of the necessary drivers.

The SSI port appears as five registers in the Am186CC
controller’s peripheral control block. This 1-Kbyte block
can be located either in memory or in I/O space at the
location pointed to by the Peripheral Control Block
Relocation (RELOC) register. The RELOC register
resides in the last register address of the peripheral
control block, at offset 03FEh. Because the base
location of the block can be moved, the location of
individual registers is specified as an offset from the
RELOC register rather than as an absolute address.
The PIO ports and control registers are also located in

this block of addresses. At reset, the peripheral control
block is located at FC00h in I/O space. This places the
RELOC register at FFFEh.

Table 4 shows the five SSI registers. The bit-level
definitions of these registers are given in Table 5.

The Port Busy (PB) bit in the SSSTAT status register
goes High when a transmit or receive operation is in
progress. The DE bits control the state of SDEN and
enable transmission or reception. A write to the
SSTXD0 or SSTXD1 transmit register or a read of the
SSRXD receive register initiates the transfer. For a
complete functional description of these registers,
including the features not used here, refer to the
Am186™CC Communications Controller Register Set
Manual, order #21916.

Assuming the connections in Figure 2 on page 2, the
following steps are required to execute the Read
Revision Code Number Command (#30 = 73h) of the
QSLAC device.

Initialize the SSI registers:

1. Write the PIO Mode 0 register to enable the SSI
function on the multiplexed pins [PIOMODE0 bits
10, 11, 12 = 0]

2. Write the PIO Direction 0 register to enable the SSI
function on the multiplexed pins [PIODIR0 bits 10,
11, 12 = 0]

3. Write the SSI Mode/Status register to enable SSI
enhancements [SSSTAT bit 15 = 1]

4. Write SSI Control register to set MSB first, Low true
SDEN, and ÷ 16 [SSCON = 0130h]

Send the command:

1. Enable transmit by setting DE High
[SSCON bit 0 = 1]

2. Write the command [SSTXD0 = 73h]

3. Wait for PB to go Low [SSSTAT bit 0 = 0]

4. Disable transmit by setting DE Low
[SSCON bit 0 = 0]

After waiting at least 2.5 µs, receive the data:

1. Enable receive by setting DE0 High
[SSCON bit 0 = 1]

2. Start reception (read SSRXD)

3. Wait for PB to go Low [SSSTAT bit 0 = 0]

4. Disable receive by setting DE0 Low
[SSCON bit 0 = 0]

5. Read revision number (read SSRXD)

Table 4. SSI Port Registers

Offset from PCB
Register

Mnemonic
Register Name

2F0h SSSTAT SSI Mode/Status

2F2h SSCON SSI Control

2F4h SSTXD1 SSI Transmit 1

2F6h SSTXD0 SSI Transmit 0

2F8h SSRXD SSI Receive

Table 5. Bit Level Definitions

Offset Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2F0h SSSTAT ENHCTL RE/TE DR/DT PB

2F2h SSCON CLKP DENP MSBF CLKEXP DE1 DE0

2F4h SSTXD1 TXDATA

2F6h SSTXD0 TXDATA

2F8h SSRXD RXDATA

6 Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI

Appendix A gives the listings for two general-purpose
read and write routines. They have been coded in
assembly language to maximize speed. In most cases,
the natural flow of the software guarantees that there is
at least 5 µs between bytes. In the listing given, the
print commands between writes and reads take much
longer than 5 µs. If this is not the case, either a software
delay or the Am186CC controller’s timer could provide
the necessary wait.

INITIALIZATION
The initialization process requires two steps. First, the
on-board peripheral of the Am186CC controller (PIO
and SSI ports) must be set up for proper operation.
This includes setting the mode and direction of the PIO
signals as well as setting the pin itself to a known state.
Second, now that the interface is operational, the
SLAC device itself should be initialized. Each of the
SLAC devices has a recommended power-up
sequence that can be found in the data sheet. For
example, the QSLAC device’s recommended
sequence is as follows:

1. Select MCLK (command #6)

2. Reset software (command #2)

3. Program coefficients and parameters

4. Activate (command #5)

The Am186CC controller’s PIO and SSI ports should
be initialized as soon as possible after reset to ensure
that the output pins are in the correct state. However,
after power is stable, 1 ms is needed before commands
can be sent to the SLAC device. Most systems have an
external power-up-reset monitor that provides this
delay. If not, or if they have separate power supplies,
software must wait before sending the first command.
The QSLAC device has a power interruption flag (PI,

command 23, bit 7), which should be checked after the
delay.

SOFTWARE LISTING
The software listing given in Appendix A is written in C
and compiled with Microsoft’s C/C++ compiler. This
example code illustrates how to read the QSLAC
device’s Z-filter coefficients. The software was tested
on several of the evaluation boards available from
AMD. An ASLAC™ Device Interface Board (ACIF™
board) was used to load a known set of coefficients into
a QSLAC device low-noise board. An Am186CC
controller demonstration board was then connected in
place of the ACIF board to read back the coefficients.

The main body of the program first initializes the
various ports and then sends a read Z-filter command.
The for loop then reads back the 15 bytes of the Z-filter
coefficients. The subroutines, SLAC_read and
SLAC_write, are written in assembly language for
speed and clarity. These subroutines implement the
code required to send or receive a single byte.

Appendix B shows how to modify the write routine to
use PIOs instead of SDEN. This example makes use of
the Am186CC controller's new PIO set and clear
registers to ensure that no other PIOs are affected by
this low-level routine. The new registers make it easy
to set the state of a specific PIO without affecting any
other PIOs, even though all 16 bits are written. The
modification of the other routines is left to the reader.

SUMMARY
The new features of the Am186CC controller make it
easy to interface with AMD SLAC devices using the
SSI. The te lecommunicat ions features of the
Am186CC controller make it an excellent choice for
higher performance linecards.

Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI A-1

Appendix A

Interface Software
(Using SDEN)

#include <stdio.h>
#include "sys\types.h"
#include "serrano.h" // defines register addresses

// function prototypes

 void SLAC_init(void);
 void SLAC_write(int);
 Uint8 SLAC_read(void);

// useful constants

 #define READ_Z 0x85 // read z-filter
 #define DE_LOW 0xFFFE // DE bit low bit mask
 #define DE_HI 0x0001 // DE bit high bit mask
 #define PB_HI 0x0001 // PB bit high bit mask

void main() {

 Uint8 buf[256];
 int i;

 printf("Start Program\n");

 SLAC_init();
 printf("Finish SLAC_init\n");

 for (i=0; i<256; i++) buf[i] = 0;
 printf("Finish buffer initialization\n");

 SLAC_write(READ_Z);
 printf("Command Sent\n");

 for (i=0; i<15; i++) {

 buf[i] = SLAC_read();

 printf("byte %d = %x \n",i,buf[i]);

 } /* end for loop */

exit(0);
}

//****************************** END OF MAIN *******************************
void SLAC_init(void)
{

 _asm{

A-2 Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI

 mov dx,PIOMODE0 // point to mode register
 in ax,dx // read register (in IO space)
 and ax,0xE3FF // set bits low (to turn on SSI)
 out dx,ax // write to register (in IO space)

 mov dx,PIODIR0 // point to PIO1 DIRECTION register

 in ax,dx // read
 and ax,0xE3FF // set bit low (to turn on SSI)
 out dx,ax // write

 mov dx,SSSTAT // point to sync serial control register
 mov ax,0x8000 // set ENHCTL (turn on enhancements)
 out dx,ax // write

 mov dx,SSCON // point to sync serial control register
 mov ax,0x0130 // set clk divisor to 16, MSB first
 out dx,ax // write

 } /* end _asm */

}
// Bit Settings for SSCON:
//
// CLKP = 0 ;low active clock
// DENP = 0 ;low active SDEN0
// MSBF = 1 ;send msb first
// CLKEXP = 011 ;divide processor clock by 16
// DE1 = 0 ;don’t start transmission yet
// DE0 = 0 ;ditto
//
//============================ END OF SLAC_INIT =============================
Uint8 SLAC_read(void)
{

 int i;
 _asm{

 mov dx,SSCON // STEP 1 - enable reception
 in ax,dx // (i.e. set bit DE0 = 1)
 or ax,DE0_HI //
 out dx,ax //

 mov dx,SSRXD // STEP 2 - start reception
 in ax,dx // (with dummy read of SSR)

 mov dx,SSSTAT // STEP 3 - wait for data
h1: in ax,dx // (done when PB = 0)
 and ax,PB_HI //
 jnz h1 //

 mov dx,SSCON // STEP 4 - disable reception
 in ax,dx // (set DE0 low)
 and ax,DE0_LOW //
 out dx,ax //

Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI A-3

 mov dx,SSRXD // STEP 5 - read the data
 in ax,dx //

 mov i,ax // move data to output variable
 } /* end _asm */

 return(i);
}
//============================ END OF SLAC_READ =============================
static void SLAC_write(i)
int i;
{

 _asm{

 mov dx,SSCON // STEP 1 - enable transmission
 in ax,dx // (i.e. set bit DE0 = 1)
 or ax,DE0_HI //
 out dx,ax //

 mov dx,SSTXD0 // STEP 2 - transmit byte
 mov ax,i //
 out dx,ax //

 mov dx,SSSTAT // STEP 3 - wait for completion
h1: in ax,dx // (done when PB = 0)
 and ax,PB_HI //
 jnz h1 //

 mov dx,SSCON // STEP 4 - disable transmission
 in ax,dx // (set DE0 low)
 and ax,DE0_LOW //
 out dx,ax //

 } /* end _asm */

}
//========================== END OF SLAC_WRITE ==============================

A-4 Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI

Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI B-1

Appendix B

Modifying the Write Routine to
Use PIO Enable Instead of SDEN

static void SSI_write(i)
int i;
{

 _asm{

 mov dx,PCLR10 // STEP 1 - set CS1 low (PIO 10)

 mov ax,P10 // using new PIO clear
 out dx,ax // function.

 mov dx,SSCON // STEP 2 - enable transmission
 in ax,dx // (i.e. set bit DE0 = 1)
 or ax,DE0_HI //
 out dx,ax //

 mov dx,SSTXD0 // STEP 3 - transmit byte
 mov ax,i //
 out dx,ax //

 mov dx,SSSTAT // STEP 4 - wait for completion
h1: in ax,dx // (done when PB = 0)
 and ax,PB_HI //
 jnz h1 //
 mov dx,SSCON // STEP 5 - disable transmission
 in ax,dx // (set DE0 low)
 and ax,DE0_LOW //
 out dx,ax //

 mov dx,PSET10 // STEP 6 - set CS1 high (PIO 10)

 mov ax,P10 // P10 = 0000010000000000b
 out dx,ax //

 } /* end _asm */

}
//========================== END OF SSI_WRITE ==============================

B-2 Interfacing the Am186™CC Controller to an AMD SLAC™ Device Using Enhanced SSI

Trademarks

AMD, the AMD logo, combinations thereof, ACIF, Am186, Am188, ASLAC, DSLAC, QSLAC, and SLAC are trademarks of Advanced Micro De-
vices, Inc.

Microsoft is a registered trademark of Microsoft Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

