NanoAmp Solutions, Inc.

1982 Zanker Road, San Jose, CA 95112 ph: 408-573-8878, FAX: 408-573-8877 www.nanoamp.com

N16T1618C2(D1/A1)A

Advance Information

16Mb Ultra-Low Power Asynchronous CMOS PSRAM 1M x 16 bit

Overview

The N16T1618C2(D1/A1)A is an integrated memory device containing a 16 Mbit Pseudo Static Random Access Memory using a self-refresh DRAM array organized as 1,048,576 words by 16 bits. It is designed to be compatible in operation and interface to standard 6T SRAMS. The device is designed for low standby and operating current and includes a power-down feature to automatically enter standby mode. The device is available in a 2 CE (chip enable) version and two \overline{ZZ} (deep sleep) versions. The ZZ version includes several power saving modes: a deep sleep mode where data is not retained in the array and partial array refresh mode where data is retained in a portion of the array. Both these modes reduce standby current drain. The VFBGA package has separate power rails, VccQ and VssQ for the I/O to be run from a separate power supply from the device core.

Features

 Dual voltage for Optimum Performance V_{CCQ} and V_{SSQ} for separate I/O power rails Vcc - 1.65V to 2.2 V Vccq - 1.65V to 3.6V

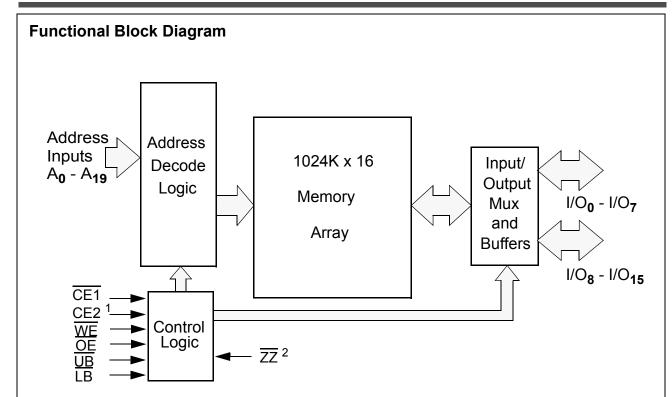
- Fast Cycle Times T_{ACC} < 85 nS
- Very low standby current I_{SB} < 40µA @ 1.8V
- Very low operating current lcc < 25mA
- Memory expansion with CE and OE
- Automatic power down mode
- 48-Pin VFBGA, Wafers Available

Product Family

Part Number	Feature	Package Type	Operating Temperature	Power Supply	Speed	Standby Current (I _{SB}), Max	Operating Current (Icc), Max
N16T1618C2AZ	2 CE						
N16T1618D1AZ	Deep Sleep Disabled	48 - BGA	-30°C to +85°C	1.65V - 2.2V	85ns @ 1.65V	40 μA @ 1.8V	3 mA @ 1MHz
N16T1618A1AZ	Deep Sleep Active						

Pin Configuration

	1	2	3	4	5	6
Α	LB	ŌE	A ₀	A ₁	A ₂	CE2/ ZZ
В	I/O ₈	UB	A ₃	A ₄	CE1	I/O ₀
С	I/O ₉	I/O ₁₀	A ₅	A ₆	I/O ₁	I/O ₂
D	V _{SSQ}	I/O ₁₁	A ₁₇	A ₇	I/O ₃	v _{cc}
Е	V _{CCQ}	I/O ₁₂	DNU	A ₁₆	I/O ₄	v_{ss}
F	I/O ₁₄	I/O ₁₃	A ₁₄	A ₁₅	I/O ₅	I/O ₆
G	I/O ₁₅	A ₁₉	A ₁₂	A ₁₃	WE	I/O ₇
Н	A ₁₈	A ₈	A ₉	A ₁₀	A ₁₁	NC


48 Pin BGA (top) 6 x 8 mm

Pin Descriptions

Pin Name	Pin Function
A ₀ -A ₁₉	Address Inputs
WE	Write Enable Input
CE1	Chip Enable Input
CE2	Chip Enable Input (only for CE2 device)
ZZ	Deep Sleep Input (only for A1 or D1 deep sleep device)
ŌE	Output Enable Input
LB	Lower Byte Enable Input
UB	Upper Byte Enable Input
I/O ₀ -I/O ₁₅	Data Inputs/Outputs
V _{CC}	Power
V_{SS}	Ground
V _{CCQ}	Power I/O pin only
V_{SSQ}	Ground I/O pin only
DNU	Do Not Use (or connect to V _{SS})

NanoAmp Solutions, Inc.

Advance Information

Functional Description

CE1	CE2 ¹	WE	ŌĒ	UB/LB	ZZ ²	I/O ³	MODE	POWER
Н	Х	Χ	Χ	Х	Н	High Z	Standby ⁴	Standby
Х	L	Χ	Χ	Х	Н	High Z	Standby ⁴	Standby
Х	Х	Х	Х	Н	Н	High Z	Standby ⁴	Standby
L	Н	L	X ⁵	L ³	Η	Data In	Write ⁵	Active -> Standby ⁶
L	Н	Η	L	L ³	Η	Data Out	Read	Active -> Standby ⁶
L	Н	Н	Н	L ³	Н	High Z	Active	Standby ⁶

- 1.) Only on the two-CE option device.
- 2. Only on the one-CE option device with sleep mode.
- 3. When $\overline{\text{UB}}$ and $\overline{\text{LB}}$ are in select mode (low), I/O₀ I/O₁₅ are affected as shown. When $\overline{\text{LB}}$ only is in the select mode only I/O₀ I/O₁₅ are affected as shown. If both $\overline{\text{UB}}$ and $\overline{\text{LB}}$ are in the deselect mode (high), the chip is in a standby mode regardless of the state of $\overline{\text{CE1}}$ or $\overline{\text{CE2}}$.
- 4. When the device is in standby mode, control inputs $(\overline{WE}, \overline{OE}, \overline{UB}, \text{ and } \overline{LB})$, address inputs and data input/outputs are internally isolated from any external influence and disabled from exerting any influence externally.
- 5. When WE is invoked, the OE input is internally disabled and has no effect on the circuit.
- 6. The device will consume active power in this mode whenever addresses are changed. Data inputs are internally isolated from any external influence.

Capacitance¹

Item	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	C _{IN}	V _{IN} = 0V, f = 1 MHz, T _A = 25°C		8	pF
I/O Capacitance	C _{I/O}	V _{IN} = 0V, f = 1 MHz, T _A = 25°C		8	pF

1. These parameters are verified in device characterization and are not 100% tested

Stock No. 23183 - 04 4/03

NanoAmp Solutions, Inc.

Advance Information

Absolute Maximum Ratings¹

Item	Symbol	Rating	Unit
Voltage on any pin relative to V _{SS}	V _{IN,OUT}	-0.3 to V _{CC} +0.3	V
Voltage on V_{CC} Supply Relative to V_{SS}	V _{CC}	-0.3 to 4.0	V
Power Dissipation	P_{D}	500	mW
Storage Temperature	T _{STG}	-40 to 125	°C
Operating Temperature	T _A	-30 to +85	°C
Soldering Temperature and Time	T _{SOLDER}	240°C, 10sec(Lead only)	°C

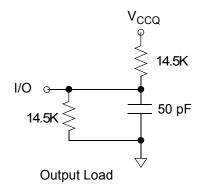
^{1.} Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Characteristics (Over Specified Temperature Range)

Item	Symbol	Comments	Min.	Typ ¹	Max.	Unit
Supply Voltage	V _{CC}	N16T1618	1.65	1.8	2.2	V
Supply Voltage for I/O	V_{CCQ}		1.65		3.6	V
Input High Voltage	V_{IH}		1.4		Vcc	V
Input Low Voltage	V _{IL}		-0.3		0.4	V
Output High Voltage	V _{OH}	I _{OH} = -0.2mA	0.8V _{CCQ}			V
Output Low Voltage	V_{OL}	I _{OL} = 0.2mA			0.2	V
Input Leakage Current	I _{LI}	$V_{IN} = 0$ to V_{CC}			0.5	μΑ
Output Leakage Current	I _{LO}	OE = V _{IH} or Chip Disabled			0.5	μА
Read/Write Operating Supply Current @ 1 µs Cycle Time ²	I _{CC1}	$V_{CC}=V_{CC}MAX, V_{IN}=V_{IH}/V_{IL}$ Chip Enabled, $I_{OUT}=0$			4	mA
Read/Write Operating Supply Current @ 70 ns Cycle Time ²	I _{CC2}	$V_{CC} = V_{CC}MAX$, $V_{IN} = V_{IH} / V_{IL}$ Chip Enabled, $I_{OUT} = 0$			25	mA
	I _{SB1}	$V_{IN} = V_{CC}$ or 0V Chip Disabled $t_A = 30^{\circ}C$			tbd	μА
Standby Current ³		$t_A = 85^{\circ}C, V_{CC} = 1.8V$			40	μА
	I _{SB2}	$t_A = 85^{\circ}C, V_{CC} = 2.0V$			70	μА
		$t_A = 85^{\circ}C, V_{CC} = 2.2V$			100	μА

^{1.} Typical values are measured at Vcc=Vcc Typ., $\rm T_A=25\,^{\circ}C$ and not 100% tested.

^{2.} This parameter is specified with the outputs disabled to avoid external loading effects. The user must add current required to drive output capacitance expected in the actual system.

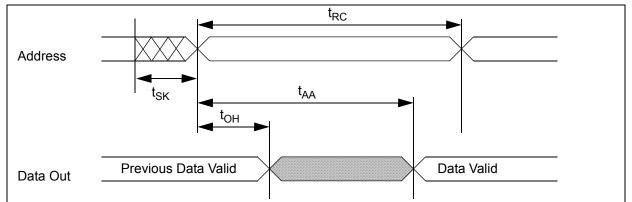

^{3.} This device assumes a standby mode if the chip is disabled (CE1 high or CE2 low). In order to achieve low standby current all inputs must be within 0.2 volts of either VCC or VSS.

NanoAmp Solutions, Inc.

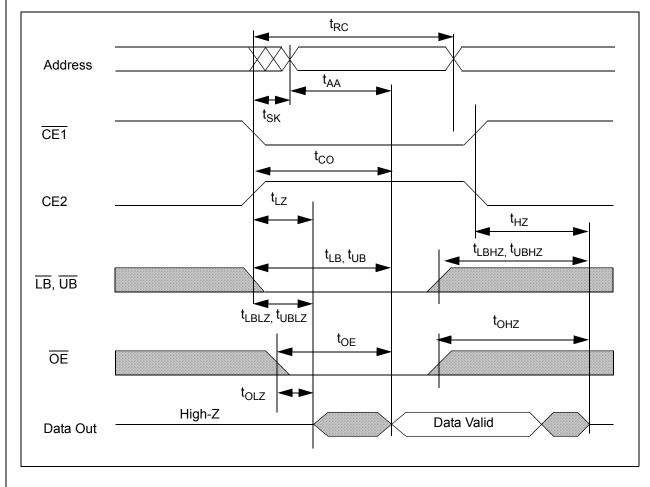
Timing Test Conditions

Item	
Input Pulse Level	0.1V _{CC} to 0.9 V _{CC}
Input Rise and Fall Time	5ns
Input Timing Reference Levels	0.5 V _{CC}
Output Timing Reference Levels	0.5 V _{CCQ}
Operating Temperature	-30 °C to +85 °C

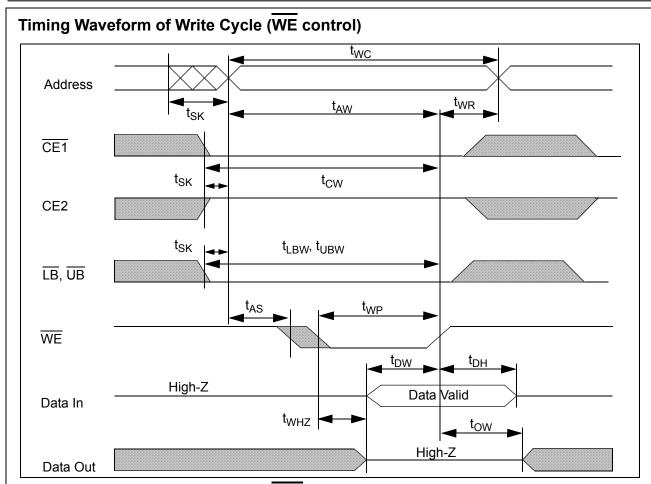
Output Load Circuit

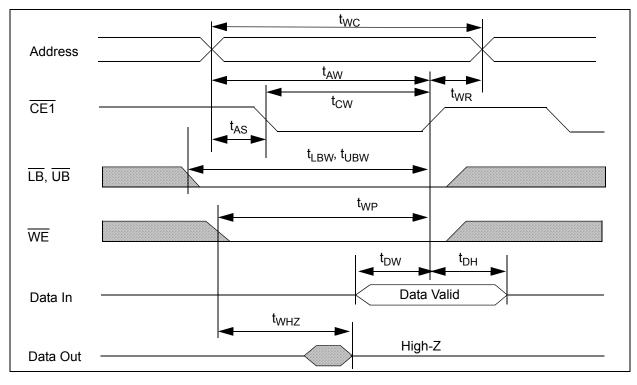

NanoAmp Solutions, Inc.

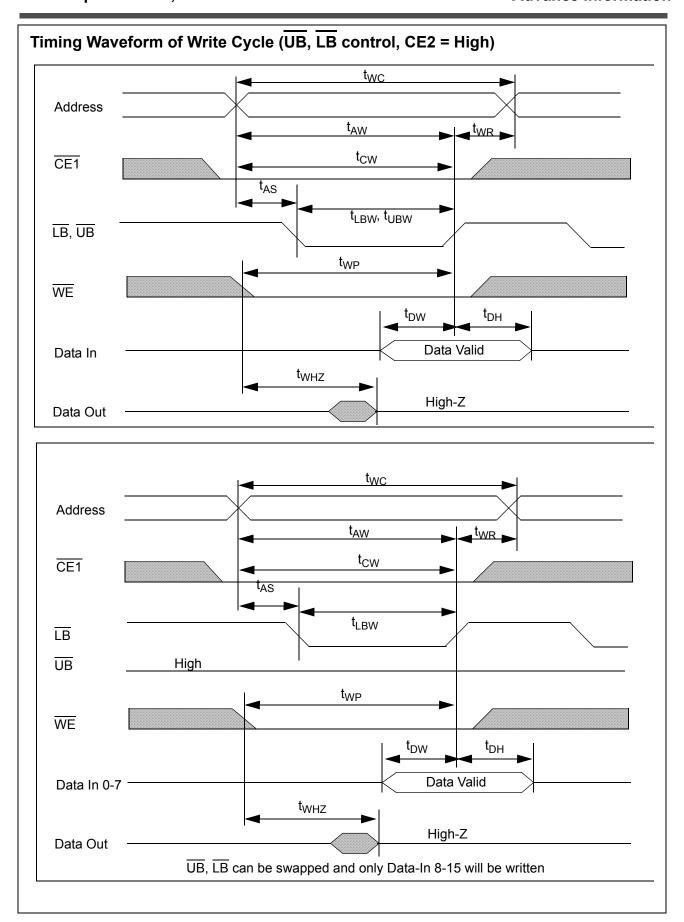
Timings


	Item	Symbol	Min.	Max.	Unit
	Read Cycle Time	t _{RC}	85		ns
	Address Access Time	t _{AA}		85	ns
	Chip Enable to Valid Output	t _{CO}		85	ns
	Output Enable to Valid Output	t _{OE}		15	ns
	Byte Select to Valid Output	t_{LB}, t_{UB}		85	ns
Read	Chip Enable to Low-Z output	t _{LZ}	10		ns
Cycle	Output Enable to Low-Z Output	t _{OLZ}	5		ns
	Byte Select to Low-Z Output	t_{LBZ}, t_{UBZ}	10		ns
	Chip Disable to High-Z Output	t_{HZ}	0	20	ns
	Output Disable to High-Z Output	t _{OHZ}	0	20	ns
	Byte Select Disable to High-Z Output	t_{LBHZ},t_{UBHZ}	0	20	ns
	Output Hold from Address Change	t _{OH}	5		ns
	Write Cycle Time	t_{WC}	85		ns
	Chip Enable to End of Write	t_{CW}	85		ns
	Address Valid to End of Write	t _{AW}	85		ns
	Byte Select to End of Write	t_{LBW} , t_{UBW}	85		ns
	Write Pulse Width	t_{WP}	65	30000	ns
Write Cycle	Write Recovery Time	t _{WR}	0		ns
Gyo.c	Write to High-Z Output	t_{WHZ}		20	ns
	Address Setup Time	t _{AS}	0		ns
	Data to Write Time Overlap	t _{DW}	25		ns
	Data Hold from Write Time	t _{DH}	0		ns
	End Write to Low-Z Output	t _{OW}	5		ns
All Cycle	Address Skew	t _{SK}		10	ns

NanoAmp Solutions, Inc.


Timing of Read Cycle ($\overline{CE1} = \overline{OE} = V_{IL}$, $\overline{WE} = CE2 = V_{IH}$) t_{RC}


Timing Waveform of Read Cycle (WE=V_{IH})


NanoAmp Solutions, Inc.

Timing Waveform of Write Cycle (CE1 Control, CE2 = High)

NanoAmp Solutions, Inc.

NanoAmp Solutions, Inc.

Advance Information

Power Savings Modes

In the N16T1618D1(A1)A devices there are several power savings modes. The three modes are:

- Reduced Memory Size
- · Partial Array Refresh
- Deep Sleep Mode

All three modes are available only on the D1 and A1 devices which have a single \overline{CE} and a \overline{ZZ} (Deep Sleep Mode) input pin.

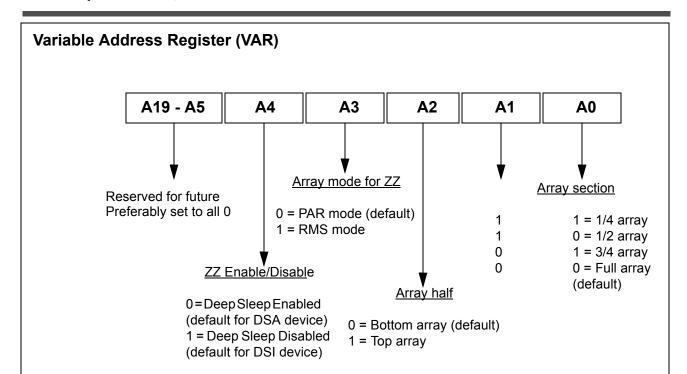
The operation of the power saving modes is controlled by setting the Variable Address Register (VAR). This VAR is shown in the following "Variable Address Register" figure and is used to enable/disable the various low power modes. The VAR is set by using the timings defined in the figure titled "Variable Address Register (VAR) Update Timings". The register must be set in less then 1us after \overline{ZZ} is enabled low

1) Reduced Memory Size (RMS)

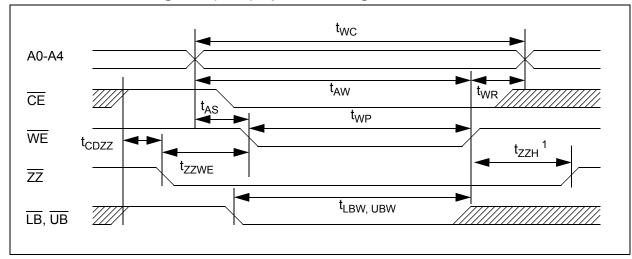
In this mode of operation, the 16Mb PSRAM can be operated as a 4Mb, 8Mb or a 12Mb device. The mode and array size are determined by the settings in the VA register. The VA register is set according to the following timings and the bit settings in the table "Address Patterns for RMS". The RMS mode is enabled at the time of ZZ transitioning high and the mode remains active until the register is updated. To return to the full 16Mb address space, the VA register must be reset using the previously defined procedures. While operating in the RMS mode, the unselected portion of the array may not be used. The high order address, A19, is internally ignored within the PSRAM and must be at a logic level to addressing the selected portion of the array.

2) Partial Array Refresh (PAR)

In this mode of operation, the internal refresh operation can be restricted to a 4Mb, 8Mb or 12Mb portion of the array. The mode and array partition to be refreshed are determined by the settings in the VA register. The VA register is set according to the following timings and the bit settings in the table "Address Patterns for PAR". In this mode, when \overline{ZZ} is active low, only the portion of the array that is set in the register is refreshed. The operating mode is only available during standby time (\overline{ZZ} low) and once \overline{ZZ} is returned high, the device resumes full array refresh. All future PAR cycles will use the contents of the VA register that has been previously set. To change the address space of the PAR mode, the VA register must be reset using the previously defined procedures.

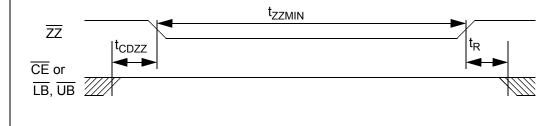

The two device versions (D1 and A1) only differ in that they have different default settings for the VA register.

In the first version (A1), the default state for the \overline{ZZ} Enable/Disable register (register A4) will be "Deep Sleep Enabled" where \overline{ZZ} low will initiate a deep sleep mode after 1us. This device is referred to as Deep Sleep Active, or DSA device. In the second version (D1), the default state for the \overline{ZZ} Enable/Disable register (register A4) will be "Deep Sleep Disabled" such that \overline{ZZ} low will not initiate a deep sleep mode but rather put the device into PAR mode after 1us. This device is referred to as Deep Sleep Inactive, or DSI device. To enter Deep Sleep in the D1 or DSA device the A4 register must first be programmed. In either device, once the SRAM enters Deep Sleep Mode, the VAR contents are destroyed and the default register settings are reset.


3) Deep Sleep Mode

In this mode of operation, the internal refresh is turned off and all data integrity of the array is lost. Deep Sleep is entered by bringing \overline{ZZ} low with the A4 register programmed to "Deep Sleep Enabled". The device will remain in this mode as long as \overline{ZZ} remains low.

NanoAmp Solutions, Inc.



Variable Address Register (VAR) Update Timings

1) Applies only for setting the register for RMS mode.

Deep Sleep Mode - Entry/Exit Timings

NanoAmp Solutions, Inc.

VAR Update and Deep Sleep Timings

Item	Symbol	Min	Max	Unit
PAR and RMS ZZ low to WE low	t _{zzwe}		1000	ns
Chip (CE, UB/LB) deselect to ZZ low	t _{cdzz}	0		ns
ZZ low after WE high	t _{zzh} 1	20		ns
Deep Sleep Mode	t _{zzmin}	10		us
Deep Sleep Recovery	t _r	200		us

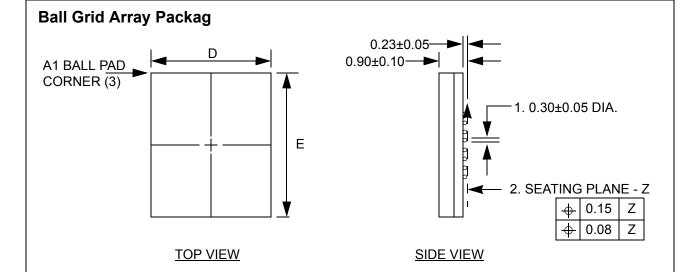
¹⁾ Applies only for setting the register for RMS mode.

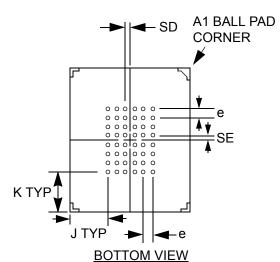
Address Patterns for PAR (A3 = 0, A4 = 1)

A2	A1	A0	Active Section	Address space	Size	Density
0	1	1	One-quarter of die	00000h - 3FFFFh	256Kb x 16	4Mb
0	1	0	One-half of die	00000h - 7FFFFh	512Kb x 16	8Mb
0	0	1	Three-quarters of die	00000h - BFFFFh	768Kb x 16	12Mb
1	1	1	One-quarter of die	C0000h - FFFFh	256Kb x 16	4Mb
1	1	0	One-half of die	80000h - FFFFFh	512Kb x 16	8Mb
1	0	1	Three-quarters of die	40000h - FFFFFh	768Kb x 16	12Mb

Address patterns for RMS (A3 = 1, A4 = 1)

A2	A1	A0	Active Section	Address space	A19	A18	Size	Density
0	1	1	One-quarter of die	00000h - 3FFFFh	0	0	256Kb x 16	4Mb
0	1	0	One-half of die	00000h - 7FFFFh	0	X	512Kb x 16	8Mb
0	0	1	Three-quarters of die	00000h - BFFFFh	0	0	768Kb x 16	12Mb
					0	1		
					1	0		
0	0	0	Full die	00000h - FFFFFh	X	X	1Mb x 16	16Mb
1	1	1	One-quarter of die	C0000h - FFFFh	1	1	256Kb x 16	4Mb
1	1	0	One-half of die	80000h - FFFFFh	1	X	512Kb x 16	8Mb
1	0	1	Three-quarters of die	40000h - FFFFFh	1	1	768Kb x 16	12Mb
					1	0		
					0	1		
1	0	0	Full die	00000h - FFFFFh	X	X	1Mb x 16	16Mb


The specifications of this device are subject to change without notice. For latest documentation see http://www.nanoamp.com.

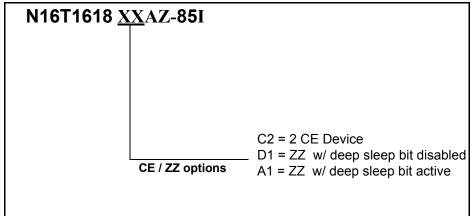

NanoAmp Solutions, Inc.

Unit

Low Power ICC Characteristics for N16T1618C2(D1/A1)A							
Item	Symbol	Test	Array Partition	Тур	Max		
PAR Mode Standby	I _{PAR}	\/ =\/ or 0\/	1/4 Array		35	1	

NanoAmp Solutions, Inc.

- 1. DIMENSION IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER. PARALLEL TO PRIMARY Z.
- 2. PRIMARY DATUM Z AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- 3. A1 BALL PAD CORNER I.D. TO BE MARKED BY INK.


Dimensions (mm)

D	E	e = 0.75				BALL MATRIX	
		SD	SE	J	K	TYPE	
6±0.10	8±0.10	0.375	0.375	1.125	1.375	FULL	

NanoAmp Solutions, Inc.

Advance Information

Ordering Information

Note: Add -T&R following the part number for Tape and Reel. Orders will be considered in tray if not noted.

Revision History

Revision	Date	Change Description
01	10/01/02	Released new 1.8V only datasheet
02	November 2002	Updated for standby and active current specs
03	January 2003	Clarified tCP requirement
04	April 2003	Removed tCP requirement

© 2002, 2003 Nanoamp Solutions, Inc. All rights reserved.

NanoAmp Solutions, Inc. ("NanoAmp") reserves the right to change or modify the information contained in this data sheet and the products described therein, without prior notice. NanoAmp does not convey any license under its patent rights nor the rights of others. Charts, drawings and schedules contained in this data sheet are provided for illustration purposes only and they vary depending upon specific applications.

NanoAmp makes no warranty or guarantee regarding suitability of these products for any particular purpose, nor does NanoAmp assume any liability arising out of the application or use of any product or circuit described herein. NanoAmp does not authorize use of its products as critical components in any application in which the failure of the NanoAmp product may be expected to result in significant injury or death, including life support systems and critical medical instrument.