

BIPOLAR ANALOG INTEGRATED CIRCUIT μ PC2743GS/ μ PC2744GS

FREQUENCY DOWN CONVERTER FOR VHF-UHF BAND TV/VCR TUNER

DESCRIPTION

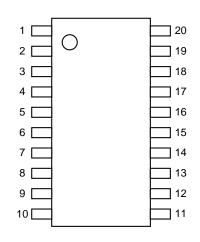
The μ PC2743GS/ μ PC2744GS are Silicon monolithic ICs designed for TV/VCR tuner applications. These ICs consist of a double balanced mixer (DBM), local oscillator, preamplifier for prescaler operation, IF amplifier, regulator, UHF/VHF switching circuit, and so on. These one-chip ICs cover a wide frequency band from VHF to UHF bands. These ICs are packaged in 20-pin SOP (small outline package) suitable for surface mounting. So, these ICs enable to produce economical and physically small or high-density VHF-UHF tuner and reduced the tuner development time.

FEATURES

- · VHF to UHF band operation.
- Low distortion (μPC2743GS), high conversion gain and low noise figure (μPC2744GS).
- Internal double balanced mixers (DBM) minimize carrier leak.
- Low oscillation frequency drift against supply voltage and temperature fluctuation due to balanced type UHF oscillator.
- Low output-impedance-fluctuation due to single-end push-pull IF amplifier.
- Supply voltage: 9 V
- · Packaged in 20-pin SOP suitable for surface mounting

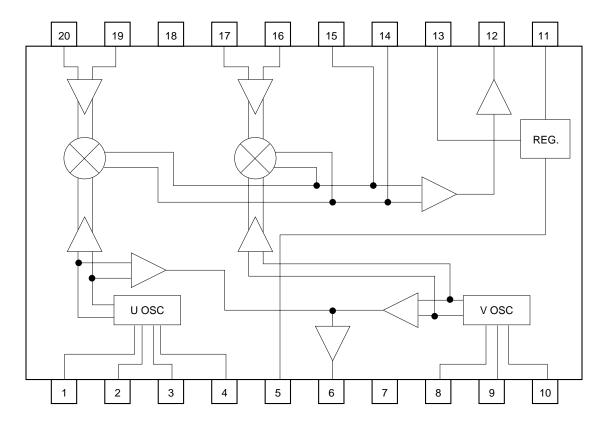
ORDERING INFORMATION

PART NUMBER	PACKAGE	PACKAGING STYLE
μPC2743GS μPC2744GS	20-pin plastic SOP (300 mil)	Plastic magazine case
μPC2743GS-E1 μPC2744GS-E1	20-pin plastic SOP (300 mil)	Embossed tape 24 mm wide, 2.5 k/REEL Pin 1 indicates pull-out direction of tape


Caution electro-static sensitive device

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.



PIN CONFIGURATION (Top View)

- 1. UOSC COLLECTOR (Tr. 1)
- 2. UOSC BASE (Tr. 2)
- 3. UOSC BASE (Tr. 1)
- 4. UOSC COLLECTOR (TR. 2)
- 5. UB
- 6. OSC OUTPUT
- 7. GND
- 8. VHF OSC BASE (BYPASS)
- 9. VHF OSC BASE
- 10. VHF OSC COLLECTOR
- 11. VB (BYPASS)
- 12. IF OUTPUT
- 13. Vcc
- 14. MIXER OUTPUT1
- 15. MIXER OUTPUT2
- 16. VHF RF INPUT1
- 17. VHF RF INPUT2
- 18. GND
- 19. UHF RF INPUT1
- 20. UHF RF INPUT2

INTERNAL BLOCK DIAGRAM

PIN EXPLANATION

Pin No.	Symbol	Pin voltage TYP. above: V mode (V) below: U mode (U)	Function and Explanation	Equivalent circuit
1	UOSC collector (Tr. 1)	8.3	Collector pin of UHF oscillator. Assemble LC resonator with 2 pin through capacitor \simeq 1 pF to oscillate with active feedback Loop.	
2	UOSC bace (Tr. 2)	4.6	Base pin of UHF oscillator with balance amplifier. Connected to LC resonator through feedback capacitor ≈ 300 pF.	\$\\ 3 (1)
3	UOSC base (Tr. 1)	4.6	Base pin of UHF oscillator with balance amplifier. Connected to LC resonator through feedback capacitor $\simeq 300$ pF.	
4	UOSC collector (Tr. 2)	8.3	Collector pin of UHF oscillator with balance amplifier. Assemble LC resonator with 3 pin through capacitor $\simeq 1$ pF to oscillate with active feedback Loop. Double balanced oscillator with transistor 1 and transistor 2.	रोग रोग
5	UB	9.0	Switching pin for VHF or UHF operation. UHF operation = 9.0 V VHF operation = Open	
6	OSC output	4.4	UHF and VHF oscillator output pin. In case of F/S tuner application, connected PLL symthesizer IC's input pin.	REG. (6) From OSC
7	OSC GND	0.0	VHF and UHF oscillators' GND pin.	1111 1111
8	VOSC collector		Base pin of VHF oscillator with balance amplifier. Grounded through capacitor = 10 pF.	
9	VOSC base	2.5	Base pin of VHF oscillator with balance amplifier. Assemble LC resonator with 10 pin to oscillate with active feedback	8 10 9 11
10	VOSC collector	5.1	Base pin of VHF oscillator with balance amplifier. Connected to LC resonator through feedback capacitor $\simeq 3$ pF.	REG.
11	VB	5.8	Monitor pin of regulator output voltage.	, , , , , , , , , , , , , , , , , , ,

Pin No.	Symbol	Pin voltage TYP. above: V mode (V) below: U mode (U)	Function and Explanation	Equivalent circuit
12	IF output	2.6	IF output pin of VHF-UHF band functions.	13 75 Ω 12 13 102
13	Vcc	9.0	Power supply for VHF-UHF band functions.	
14	MIX output 1	6.8	VHF and UHF MIX output pin. These pins should be equipped with	(4) (15) **
15	MIX output 2	6.8 7.0	tank circuit to abjust frequency.	From
16	VRF input	3.0	VRF signal input pin from antenna.	① + (6) OSC
17	VRF input (bypass)	3.0	Bypass pin for VHF MIX input. Grounded through capacitor.	<u> </u>
18	MIX GND	0	GND pin of MIX, IF amplifier and regulator.	14 (15)
19	URF input (bypass)	2.7	Bypass pin for UHF MIX input. Grounded through capacitor.	From UHF OSC
20	URF input	2.7	URF signal input pin from antenna.	

ABSOLUTE MAXIMUM RATINGS

Supply voltage 1	Vcc		11.0	V
Supply voltage 2	UB		11.0	V
Power dissipation	PD	$T_A = 75 \circ C^{\text{Note 1}}$	750	mW
Operating temperature range	TA		-20 to +75	°C
Storage temperature range	Tstg		-55 to +150	°C

Notes 1 Mounted on a $50 \times 50 \times 1.6$ mm double copper epoxy glass board.

RECOMMENDED OPERATING RANGE

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage 1	Vcc	8.0	9.0	10.0	V
Supply voltage 2	UB	8.0	9.0	10.0	V

μ PC2743GS ELECTRICAL CHARACTERISTICS (TA = 25 °C, Vcc = 9 V)

PARAMETERS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Circuit current 1 (VHF)	Icc1	37	47	57	mA	No input signal ^{Note 2}
Circuit current 2 (UHF)	Icc2	39	49	59	mA	No input signal ^{Note 2}
Conversion gain 1 (VHF _(L))	CG1	16.5	20	23.5	dB	$f_{RF} = 55 \text{ MHz}, P_{in} = -30 \text{ dBm}^{Note 2}$
Conversion gain 2 (VHF _(M))	CG2	16.5	20	23.5	dB	$f_{RF} = 200 \text{ MHz}, P_{in} = -30 \text{ dBm}^{\text{Note 2}}$
Conversion gain 3 (VHF _(H))	CG3	16.5	20	23.5	dB	$f_{RF} = 470 \text{ MHz}, P_{in} = -30 \text{ dBm}^{\text{Note 2}}$
Conversion gain 4 (UHF _(L))	CG4	19.5	23	26.5	dB	$f_{RF} = 470 \text{ MHz}, P_{in} = -30 \text{ dBm}^{\text{Note 2}}$
Conversion gain 5 (UHF _(H))	CG5	19.5	23	26.5	dB	$f_{RF} = 890 \text{ MHz}, P_{in} = -30 \text{ dBm}^{\text{Note 2}}$
Noise figure 1 (VHF _(L))	NF1		13	16	dB	f _{RF} = 55 MHz ^{Note 2}
Noise figure 2 (VHF _(M))	NF2		13	16	dB	frf = 200 MHzNote 2
Noise figure 3 (VHF _(H))	NF3		13	16	dB	f _{RF} = 470 MHz ^{Note 2}
Noise figure 4 (VHF _(L))	NF4		12	15	dB	f _{RF} = 470 MHz ^{Note 2}
Noise figure 5 (VHF _(H))	NF5		12	15	dB	frf = 890 MHzNote 2
Maximum output power 1 (VHF _(L))	Po(SAT)1	+10	+13		dBm	fref = 55 MHz, Pin = 0 dBmNote 2
Maximum output power 2 (VHF _(M))	Po(SAT)2	+10	+13		dBm	fref = 200 MHz, Pin = 0 dBmNote 2
Maximum output power 3 (VHF _(H))	Po(SAT)3	+10	+13		dBm	f _{RF} = 470 MHz, P _{in} = 0 dBm ^{Note 2}
Maximum output power 4 (UHF _(L))	Po(SAT)4	+10	+13		dBm	f _{RF} = 470 MHz, P _{in} = 0 dBm ^{Note 2}
Maximum output power 5 (UHF _(H))	Po(SAT)5	+10	+13		dBm	fref = 890 MHz, Pin = 0 dBmNote 2
Oscillation output level	Pesc	-20		0	dBm	Note 3

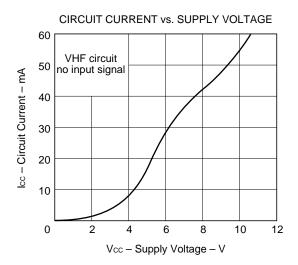
STANDARD CHARACTERISTICS (REFERENCE VALUES) (Ta = 25 $^{\circ}$ C, Vcc = 9 V) $^{Note\ 3}$

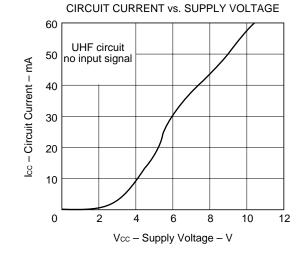
PARAMETERS	SYMBOL	Value for reference	UNIT	CONDITIONS
Conversion gain 1 (VHF _(L))	CG1	22.0	dB	fr= 55 MHz, Pin = -30 Bdm
Conversion gain 2 (VHF(H))	CG2	22.5	dB	frf = 360 MHz, Pin = -30 Bdm
Conversion gain 3 (UHF _(L))	CG3	27.0	dB	$f_{RF} = 400 \text{ MHz}, P_{in} = -30 \text{ Bdm}$
Conversion gain 4 (UHF _(H))	CG4	26.5	dB	$f_{RF} = 800 \text{ MHz}, P_{in} = -30 \text{ Bdm}$
Noise figure 1 (VHF _(L))	NF1	12.3	dB	frf = 55 MHz
Noise figure 2 (VHF _(H))	NF2	13.4	dB	frf = 360 MHz
Noise figure 3 (UHF _(L))	NF3	11.0	dB	frf = 400 MHz
Noise figure 4 (UHF _(H))	NF4	12.7	dB	frf = 800 MHz
1 % cross-modulation distortion 1 (VHF _(L))	CM1	97	dΒμ	fdes = 55 MHz, Note 4
1 % cross-modulation distortion 2 (VHF(H))	CM2	94	dΒμ	f _{des} = 55 MHz ^{Note 4}
1 % cross-modulation distortion 3 (UHF(L))	CM3	92	dΒμ	f _{des} = 55 MHz ^{Note 4}
1 % cross-modulation distortion 4 (UHF(H))	CM4	90	dΒμ	f _{des} = 55 MHz ^{Note 4}
6 channel beat	S/I	57.5	dBc	Note 5
Oscillator output power 1 (VHF _(L))	Posc1	-4	dBm	fosc = 100 MHz
Oscillator output power 2 (VHF _(H))	Posc2	-5	dBm	fosc = 405 MHz
Oscillator output power 3 (UHF _(L))	Posc3	-9	dBm	fosc = 445 MHz
Oscillator output power 4 (UHF(H))	Posc4	-13	dBm	fosc = 845 MHz

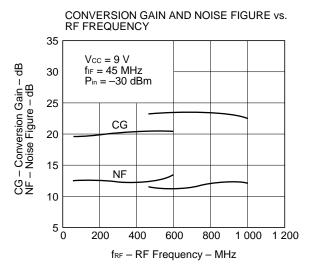
Notes 2. By measurement circuit

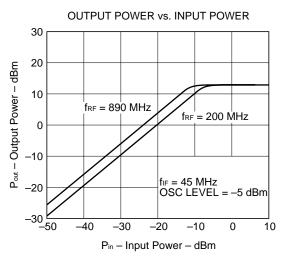
- **3.** By application circuit
- **4.** $f_{undes} = f_{des} + 12 \, MHz$, $P_{in} = -30 \, dBm$, AM100 kHz 30 % modulation, DES/CM = 46 dBc, the cross-modulation values are level of undesired signals at open impedance.
- **5.** $f_P = 83.25 \text{ MHz}$, $f_S = 87.75 \text{ MHz}$, $P_{in} = -30 \text{ dBm each}$, $f_{OSC} = 129 \text{ MHz}$

PARAMETERS	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Circuit current 1 (VHF)	Icc1	37	47	57	mA	No input signal ^{Note 2}
Circuit current 2 (UHF)	Icc2	39	49	59	mA	No input signal ^{Note 2}
Conversion gain 1 (VHF _(L))	CG1	21.5	25	28.5	dB	f _{RF} = 55 MHz, P _{in} = -30 dBm ^{Note 2}
Conversion gain 2 (VHF _(M))	CG2	21.5	25	28.5	dB	$f_{RF} = 200 \text{ MHz}, P_{in} = -30 \text{ dBm}^{Note 2}$
Conversion gain 3 (VHF(H))	CG3	21.5	25	28.5	dB	fre = 470 MHz, Pin = -30 dBmNote 2
Conversion gain 4 (UHF _(L))	CG4	27.5	31	34.5	dB	fre = 470 MHz, Pin = -30 dBmNote 2
Conversion gain 5 (UHF(H))	CG5	27.5	31	34.5	dB	$f_{RF} = 890 \text{ MHz}, P_{in} = -30 \text{ dBm}^{Note 2}$
Noise figure 1 (VHF _(L))	NF1		13	14	dB	f _{RF} = 55 MHz ^{Note 2}
Noise figure 2 (VHF _(M))	NF2		13	14	dB	fre = 200 MHzNote 2
Noise figure 3 (VHF(H))	NF3		13	14	dB	fre = 470 MHz ^{Note 2}
Noise figure 4 (VHF _(L))	NF4		12	13	dB	fre = 470 MHzNote 2
Noise figure 5 (VHF(H))	NF5		12	13	dB	fre = 890 MHzNote 2
Maximum output power 1 (VHF _(L))	Po(SAT)1	+10	+13		dBm	fref = 55 MHz, Pin = 0 dBmNote 2
Maximum output power 2 (VHF _(M))	Po(SAT)2	+10	+13		dBm	fre = 200 MHz, Pin = 0 dBmNote 2
Maximum output power 3 (VHF _(H))	Po(SAT)3	+10	+13		dBm	fre = 470 MHz, Pin = 0 dBmNote 2
Maximum output power 4 (UHF _(L))	Po(sat)4	+10	+13		dBm	fref = 470 MHz, Pin = 0 dBmNote 2
Maximum output power 5 (UHF _(H))	Po(sat)5	+10	+13		dBm	fre = 890 MHz, Pin = 0 dBmNote 2
Oscillation output level	P _{PSC}	-20		0	dBm	Note 3

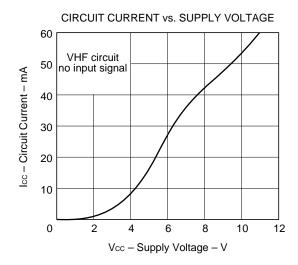

STANDARD CHARACTERISTICS (REFERENCE VALUES) (Ta = 25 $^{\circ}$ C, Vcc = 9 V) $^{Note\ 3}$

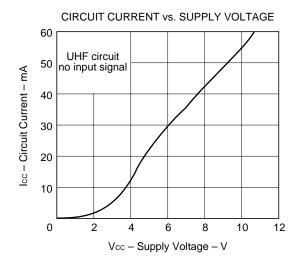

PARAMETERS	SYMBOL	Value for reference	UNIT	CONDITIONS
Conversion gain 1 (VHF _(L))	CG1	27.5	dB	fr= 55 MHz, Pin = -30 Bdm
Conversion gain 2 (VHF _(H))	CG2	28.0	dB	$f_{RF} = 360 \text{ MHz}, P_{in} = -30 \text{ Bdm}$
Conversion gain 3 (UHF _(L))	CG3	35.5	dB	fr = 400 MHz, Pin = -30 Bdm
Conversion gain 4 (UHF _(H))	CG4	35.0	dB	frf = 800 MHz, Pin = -30 Bdm
Noise figure 1 (VHF _(L))	NF1	9.2	dB	frf = 55 MHz
Noise figure 2 (VHF _(H))	NF2	9.4	dB	frf = 360 MHz
Noise figure 3 (UHF _(L))	NF3	8.3	dB	frf = 400 MHz
Noise figure 4 (UHF _(H))	NF4	10.0	dB	frf = 800 MHz
1 % cross-modulation distortion 1 (VHF _(L))	CM1	92	dΒμ	f _{des} = 55 MHz ^{Note 4}
1 % cross-modulation distortion 2 (VHF(H))	CM2	90	dΒμ	f _{des} = 55 MHz ^{Note 4}
1 % cross-modulation distortion 3 (UHF(L))	СМЗ	82	dΒμ	f _{des} = 55 MHz ^{Note 4}
1 % cross-modulation distortion 4 (UHF _(H))	CM4	80	dΒμ	f _{des} = 55 MHz ^{Note 4}
6 channel beat	S/I	53.5	dBc	Note 5
Oscillator output power 1 (VHF(L))	Posc1	-4	dBm	fosc = 100 MHz
Oscillator output power 2 (VHF _(H))	Posc2	- 5	dBm	fosc = 405 MHz
Oscillator output power 3 (UHF _(L))	Posc3	-9	dBm	fosc = 445 MHz
Oscillator output power 4 (UHF(H))	Posc4	-13	dBm	fosc = 845 MHz

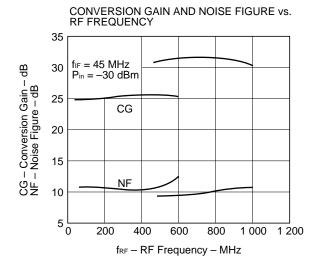

Notes 2. By measurement circuit

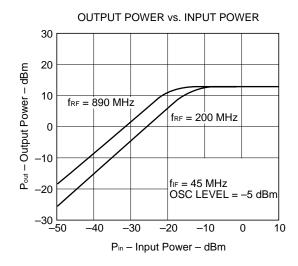

- 3. By application circuit
- **4.** $f_{undes} = f_{des} + 12 \, MHz$, $P_{in} = -30 \, dBm$, AM100 kHz 30 % modulation, DES/CM = 46 dBc, the cross-modulation values are level of undesired signals at open impedance.
- **5.** $f_P = 83.25 \text{ MHz}$, $f_S = 87.75 \text{ MHz}$, $P_{in} = -30 \text{ dBm each}$, $f_{OSC} = 129 \text{ MHz}$

TYPICAL CHARACTERISTICS (Ta = 25 °C) – on Measurement Circuit – μ PC2743GS

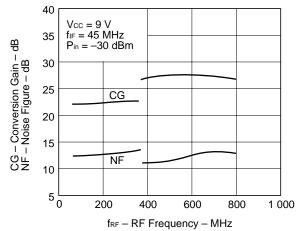


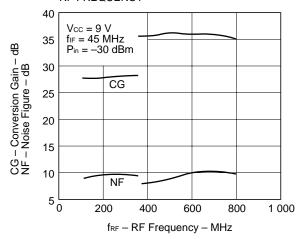




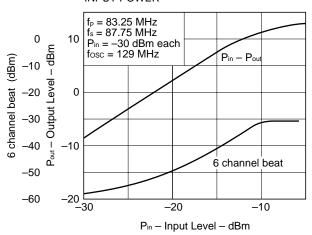


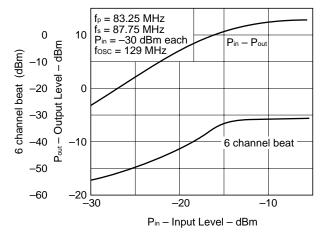
TYPICAL CHARACTERISTICS (Ta = 25 $^{\circ}$ C) – on Measurement Circuit – μ PC2744GS

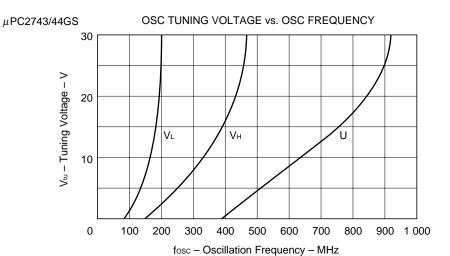




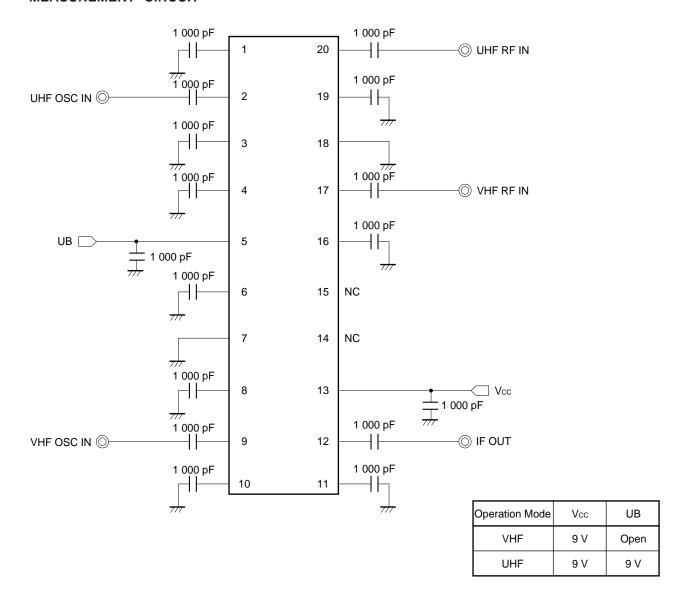
TYPICAL CHARACTERISTICS (TA = 25 °C) - on Application Circuit -

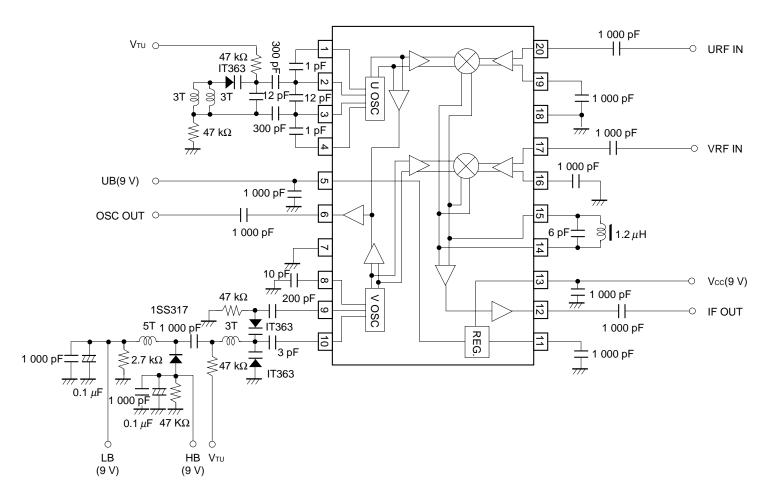



 $\mu \text{PC}2744\text{GS}$ CONVERSION GAIN AND NOISE FIGURE vs. RF FREQUENCY

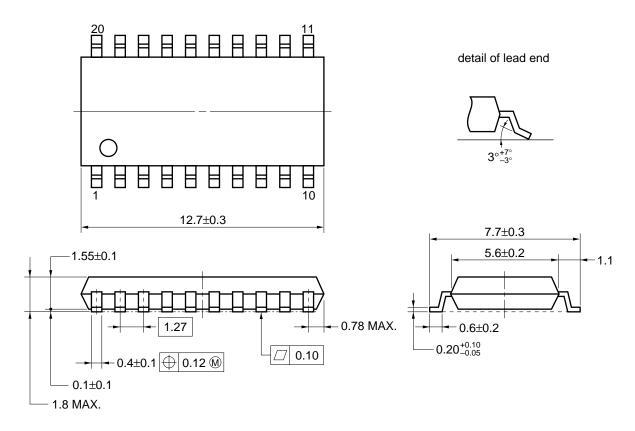


 μ PC2743GS 6 CHANNEL BEAT AND OUTPUT POWER vs. INPUT POWER


 μ PC2744GS 6 CHANNEL BEAT AND OUTPUT POWER vs. INPUT POWER



MEASUREMENT CIRCUIT


APPLICATION CIRCUIT EXAMPLE

PACKAGE DIMENSIONS

★ 20 PIN PLASTIC SOP (300 mil) (UNIT: mm)

NOTE Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions. Other soldering method and conditions than the recommended conditions are to be consulted with our sales representative.

 μ PC2743GS, μ PC2744GS

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 230 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow process: 1, Exposure limit ^{Note 6} : None	IR30-00
VPS	Peak package's surface temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow process: 1, Exposure limit ^{Note 6} : None	VP15-00
Wave soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or below, Number of flow process: 1, Exposure limit Note 6: None	WS60-00
Partial heating method	Terminal temperature: 300 °C or below, Flow time: 10 seconds or below, Exposure limit Note 6: None	

Notes 6 Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Apply only a single process at once, except for "Partial heating method".

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

[MEMO]

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

M7 98.8