

CS7620

CCD Imager Analog Processor

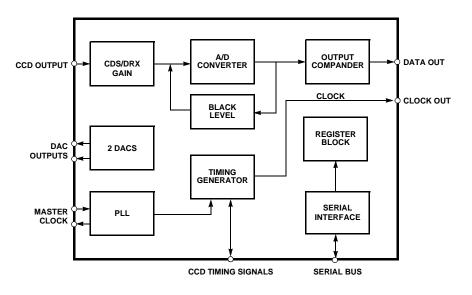
Features

- 13-Bit A/D Conversion Using DRX[™] Technology
- Backlight Compensation
- Supports three Input Ranges of 0.53V, 1.07V, and 1.60V
- Multi-Sync CCD Timing Generator
- High Resolution Output Mode
- Low Resolution (Preview) Output Mode for LCD Driver
- Integrated Correlated Double Sampler
- Digital Black Level Clamp
- Digital Outputs Selectable for 13, 12, or 10 Bits
- Two Integrated General Purpose DACs
- Low Power Consumption
- Power Down Mode
- High Speed Serial Interface
- Supports a Large Variety of Clock Input Frequencies
- Low power mode option

Description

The CS7620 is a low-power analog front-end processor for interline or frame transfer CCD imagers. Main applications include digital still image cameras with up to 8k×8k pixels.

The architecture includes a correlated double sampler, black level clamp and a 13-bit A/D conversion module using patented DRX technology. In addition, the chip contains a timing generator, which supports common CCDs from IBM, and Polaroid. For CCDs using different timing signals, the internal timing generator can be bypassed.


There are 2 general purpose DACs available which can be used to drive motors for iris and shutter control.

Chip parameters can be programmed using a high speed 4-wire asynchronous digital interface.

The chip outputs digitized CCD data in either 13-bit, 12bit or 10-bit format. 10-bit outputs are generated from the 13-bit A/D output by a programmable companding curve.

ORDERING INFORMATION

CS7620-IQ -40 to +85 °C 64-pin TQFP 10x10x1.4mm

Preliminary Product Information

This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice.

CIRRUS LOGIC®

P.O. Box 17847, Austin, Texas 78760 (512) 445 7222 FAX: (512) 445 7581 http://www.cirrus.com Copyright © Cirrus Logic, Inc. 1999 (All Rights Reserved)

TABLE OF CONTENTS

1 CHARACTERISTICS/SPECIFICATIONS	-
DIGITAL CHARACTERISTICS	. 5
POWER CONSUMPTION	
RECOMMENDED OPERATING CHARACTERISTICS	. 5
ABSOLUTE MAXIMUM RATINGS	. 6
ADC (ANALOG-TO-DIGITAL CONVERTER)	. 6
CDS/VGA PARAMETERS	. 6
FREQUENCY SYNTHESIZER PARAMETERS	. 6
SERIAL INTERFACE TIMING SPECIFICATIONS	. 7
2 GENERAL DESCRIPTION	. 8
3 OPERATION	. 9
3.1 Black Level Adjustment	10
3.2 Gain Adjust Block	12
3.3 13-to-10 Bit Compander	13
3.4 Timing Generator	
3.4.1 Vertical and Horizontal Timing Mode	15
3.4.2 Horizontal Only Timing Mode	16
3.4.3 Slave mode	17
3.4.4 Horizontal Timing Generator	17
3.4.5 Vertical Timing Generator	19
3.4.6 Frame Timing	19
3.5 Frequency Synthesizer	19
3.6 8-Bit General Purpose DACs	
3.7 Stand By Mode	
3.8 Preview Mode	21
3.9 Serial Interface	
3.10 Recommended Register Settings	21
4 REGISTER DESCRIPTIONS	
4.1 Reset	
4.2 Power Down Control 1	
4.3 Power Down Control 2	
4.4 Operation Control 1	
4.5 Operation Control 2	
4.6 Black Level Control - Accumulator (LSB)	
4.7 Black Level Control - Accumulator (MSB)	
4.8 General Black Level	
4.9 Black Level Control - Loop Gain, Clamp Length	
4.10 Gain Calibration - Offset 1	
4.11 Gain Calibration - Offset 2	
4.12 Gain Calibration - Offset 3	35

Contacting Cirrus Logic Support For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at: http://www.cirrus.com/corporate/contacts/

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product information describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publication may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic website or disk may be printed for use by the user. However, no part of the printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc. Furthermore, no part of this publication may be used as a basis for manufacture or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trademarks and service marks can be found at http://www.cirrus.com.

	4.13 Timing Control - Number of Lines (MSBs)	36
	4.14 Timing Control - Number of Lines (LSBs)	
	4.15 Timing Control - Number of Columns (MSBs)	
	4.16 Timing Control - Number of Columns (NSBs)	
	4.17 Timing Control - Number of Columns (LSBS)	
	4.18 Timing Control - Start of Black Pixels	
	4.19 Timing Control - End of Black Pixels	
	4.20 Timing Control - Number of Rows until Active	
	4.21 Timing Control - Start of Active Pixels	
	4.22 Timing Control - Vertical Time Division	
	4.23 Timing Control - Lines in Storage Buffer (MSBs)	
	4.24 Timing Control - Lines in Storage Buffer (LSBs)	
	4.25 Timing Control - Extra Lines of Exposure in Low Resolution Mode (MSBs)	
	4.26 Timing Control - Extra Lines of Exposure in Low Resolution Mode (LSBs)	
	4.27 Timing Control - Vsync Mode, Lines of Exposure in Low Resolution Mode (MSBs)	
	4.28 Timing Control - Lines of Exposure in Low Resolution Mode (MSBs)	
	4.29 Timing Control - Polarity of Vertical Shift Outputs	
	4.30 Horizontal Timing Control - H1	. 48
	4.31 Horizontal Timing Control - H2	. 49
	4.32 Horizontal Timing Control - H3	. 50
	4.33 Horizontal Timing Control - H4	. 51
	4.34 Horizontal Timing Control - Analog Delays	. 52
	4.35 Compander - Black Slope, Slopes (MSBs)	
	4.36 Compander - Slope 1 (LSBs)	
	4.37 Compander - Slope 2 (LSBs)	
	4.38 Compander - Slope 3 (LSBs)	
	4.39 Compander - Slope 4 (LSBs)	
	4.40 Compander - Offset 1	
	4.41 Compander - Offsets (MSBs)	
	4.42 Compander - Offset 2 (LSBs)	
	4.43 Compander - Offset 3 (LSBs)	
	4.44 Compander - Offset 4 (LSBs)	
	4.44 Compander - Onset 4 (LSBS)	
	4.45 Compander - X1 (MSBS)	
	4.47 Compander - X2 (MSBs)	
	4.48 Compander - X2 (LSBs)	
	4.49 Compander - X3 (MSBs)	
	4.50 Compander - X3 (LSBs)	
	4.51 Power_up Counter	. 61
	4.52 Valid_data/Dout Edge/Clock_in Divider	
	4.53 DAC #1 Control	
	4.54 DAC #2 Control	
	4.55 Device ID	
_	4.56 Rev Code	
5	PIN DESCRIPTIONS	
	5.1 Supply	
	5.2 Ground	
	5.3 CMOS Input	
	5.4 CMOS Analog Input	
	5.5 CMOS Analog Output	
	5.6 CMOS 4 mA Output	
	5.7 CMOS 28 mA Output	. 67
	5.8 Misc	. 67
6	PACKAGE DIMENSIONS	. 68

LIST OF FIGURES

Figure 1. SEN Timing	
Figure 2. Serial Write Timing	
Figure 3. Read Data Timing	
Figure 4. Digital Camera Block Diagram	
Figure 5. CS7620 Block Diagram	
Figure 6. Idealized CCD output waveform	. 9
Figure 7. Transfer function of VGA circuit (assuming full scale level of 1.07V)	
Figure 8. Block diagram of CDS/VGA circuit	
Figure 9. Idealized timing diagram of VGA/CDS circuit	
Figure 10. Black level adjustment loop	
Figure 11. Transfer function of Vin to Gain Adjust output Block (assuming full scale level of 1.07V)	
Figure 12. Gain Adjust output Block	
Figure 13. 13-to-10 bit compander	
Figure 14. CS7620 output data and clocks	
Figure 15. CS7620 output data and clocks	
Figure 16. Picture Signal Timing	
Figure 17. Signal Timing for Horizontal Only Mode	17
Figure 18. Signal Timing for Slave Mode	
Figure 19. Detailed Signal Timing Showing Internal Clock Phases	
Figure 20. Default Timing of Horizontal Signals to the CCD	
Figure 21. High Resolution Mode	
Figure 22. Low Resolution Mode	
Figure 23. Typical Connection Diagram Using Vertical and Horizontal Timing Mode	
Figure 24. Typical Connection Diagram Using Horizontal Only Timing Mode	
Figure 25. Typical Connection Diagram Using Slave Mode	
Figure 26. Transfer Function of Analog Input to Digital Output (assuming full scale level of 1.07V) 3	
Figure 27. Transfer Function of ADC with Fixed Gain Settings (assuming full scale level of 1.07V)	
Figure 28. Typical CCD Pixel Arrangement	
Figure 29. 2 million pixel IBM CCD (5:1 reduction)	
Figure 30. 2 million pixel IBM CCD (5:1 reduction) RGB pattern	
Figure 31. 1.3 million pixel IBM CCD (8:2 reduction)	
Figure 32. 1.3 million pixel IBM CCD (4:1 reduction) RGB pattern	
Figure 33. Vertical Timing Division for Low Resolution Mode	46

LIST OF TABLES

Table 1. Companding Operational Control	
Table 2. Default Phases for Horizontal Signal Edges	
Table 3. Different Resolution Operating Modes	
Table 4. General Purpose DAC specifications	
Table 5. IBM35CCD2PIX1	
Table 6. IBM35CCD13PIX	
Table 7. Register Description	
Table 8. Different Resolution Operating Modes	
Table 9. Full Scale Level Choices	
Table 10. Offset Range	
Table 11. Black Loop Time Constant	

1 CHARACTERISTICS/SPECIFICATIONS

DIGITAL CHARACTERISTICS ($T_A = 25 \degree C$; V_{DD} -Ring = 5 V)

Parameter	Symbol	Min	Тур	Max	Units
Logic Inputs				1	
High-Level Input Voltage	V _{IH}	V _{DD} _Ring-0.8	-	-	V
Low-Level Input Voltage	V _{IL}	-	-	0.8	V
Input Leakage Current	I _{IN}	-	-	10	μA
Logic Outputs					•
High-Level Output Source Current @ I _{OH} = 4mA	V _{OH}	V _{DD} -0.4	-		V
Low-Level Output Sink Current @ I _{OL} = 4mA	V _{OL}	-	-	0.4	V
(H1-H4) Output Source Current @ I _{OH = 24mA}	V _{OH_HCLK}	V _{DD} -0.4			V
(H1-H4) Output Sink Current @ I _{OL = 24 mA}	V _{OL_HCLK}			0.4	V
3-State Leakage Current	I _{OZ}	-	-	10	μA

POWER CONSUMPTION ($T_A = 25 \degree C$; $V_{AA} = V_{DD} = 5 V$; Output Load = 30 pF)

Parameter		Symbol	Min	Тур	Max	Units
Power Dissipation	Peak Mode	PD	-	375	-	mW
	Preview Mode	P _{DLR}	-	275	-	mW
	Stand By Down		-	0.125	-	mW
Analog Power Supply Current	Peak Mode	I _{AN}	-	60	-	mA
	Preview Mode	I _{ALR}	-	40	-	mA
	Stand By Down	I _{APD}	-	0.025	-	mA
Digital Power Supply Current	Peak/Preview Mode	I _{DN}	-	15	-	mA
	Stand By Mode	I _{DPD}	-	0	-	mA

RECOMMENDED OPERATING CHARACTERISTICS

Parameter		Symbol	Min	Тур	Max	Units
Power Supply Voltage		V _{AA1} , V _{AA2} , V _{DDD}	4.5	5.0	5.5	V
Power Supply Voltage for Digital Pads		V _{DD_Ring}	3.0	3.3/5.0	5.5	V
Power Supply Voltage for Horizontal CCD	Signal Outputs	V _{AA3}	3.0	3.3/5.0	5.5	V
GNDA to GNDD Voltage Differential					10	mV
Clock Frequency Range			8		160	MHz
	(w/ fs_lvl = 10) (w/ fs_lvl = 01) (w/ fs_lvl = 00)		-	1.60 1.07 0.53	-	V _{p-p}

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Units
Power Supply Voltage	$\begin{array}{c} V_{AA1}, V_{AA2}, \\ V_{AA3}, \\ V_{DD_Ring}, \\ V_{DDD} \end{array}$	-0.3	7.0	V
Digital Input Voltage		GNDD-0.3	V _{DDD} +0.3	V
Analog Input Voltage	A _{IN}	GNDA-0.3	V _{AAI} +0.3	V
Input Current (except supply pins)			10	mA
Ambient Temperature Range		70	+70	°C
Lead Solder Temperature (10sec duration)			+260	°C
Storage Temperature Range		-65	+150	°C

WARNING: WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

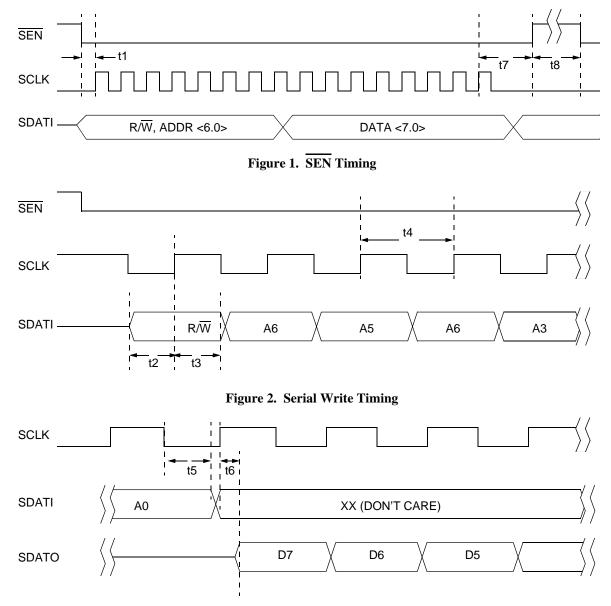
ADC (ANALOG-TO-DIGITAL CONVERTER)

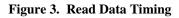
Parameter		Symbol	Min	Тур	Max	Unit
	w/ fs_lvl = 10)		-	1.60	-	V _{0-p}
	w/ fs_lvl = 01)			1.07		
	w/ fs_lvl = 00)			.53		
ADC resolution			-	10	-	bits
Conversion Rate	Maximum		16	-	-	MHz
Total Differential Non-Linearity			-	±1	-	LSB
Total Integral Non-Linearity			-	±1	-	LSB

CDS/VGA PARAMETERS

Parame	eter	Symbol	Min	Тур	Max	Unit
Input Voltage Range	(w/ fs_lvl = 10)		-	1.60	-	V _{0-p}
	$(w/ fs_lvl = 01)$			1.07		• •
	$(w/ fs_lvl = 00)$.53		
Total Gain Range		A _{VGA}	-	18	-	dB
Input Referred Noise (rms)	Maximum Gain Setting	Vn _{VGA}	-	-	0.2	mV

FREQUENCY SYNTHESIZER PARAMETERS


Parameter	Symbol	Min	Тур	Max	Unit
CLKIN Frequency	F _{clock_in}	8	-	160	MHz
PLL Output Frequency	F _{PLL_OUT}	8	-	16	MHz
CLKIN Duty Cycle	D _{clock_in}	20	-	80	%
Output Jitter		-	200	-	ps
Duty Cycle		-	50	-	%
PLL Acquisition Time		-	200	-	μs



SERIAL INTERFACE TIMING SPECIFICATIONS

Description	Symbol	Minimum	Maximum	Unit
Enable Setup	t1	10	-	ns
SDAT Setup	t2	10	-	ns
SDAT Hold	t3	10	-	ns
Serial Clock Period (Note 1)	t4	143	-	ns
Write Data Invalid	t5	0	10	ns
Read Data Valid	t6	0	10	ns
Clock to Disable	t7	143	-	ns
SEN Rise to SEN Fall	t8	200	-	ns

Notes: 1. the minimum serial clock period must be longer than two pixel clock periods.

2 GENERAL DESCRIPTION

The CS7620 forms the heart of a four chip digital CCD Camera. The four chips include the CCD imager, the CS7620 CCD digitizer, a vertical drive interface chip and a backend DSP chip to further process the digital data (see Figure 4.) The CS7620 has a built-in timing generator which works with imagers from IBM and Polaroid. If other CCDs are used, the internal timing generator can be bypassed and replaced by an external device, which outputs the appropriate timing signals.

The patented DRX technology allows the CS7620 to output data with 13-bit dynamic range, and at the

same time reducing the power consumption to a 10bit equivalent A/D converter.

The digitized output is either available in 13-bits, 12-bits or 10-bits. The 10-bit output is created by companding the 13-bit A/D output to 10-bits. The companding curve consists of 4 linear segments, where each slope and each start point is user programmable. Two output control signals and one output clock provide synchronization with the output data.

A block diagram of the CS7620 chip is shown in Figure 5.

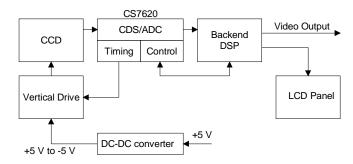


Figure 4. Digital Camera Block Diagram

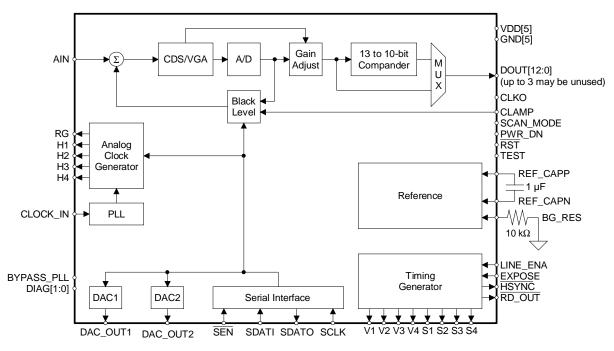
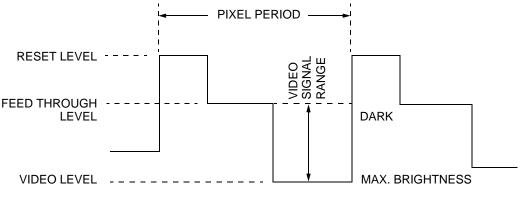


Figure 5. CS7620 Block Diagram

3 OPERATION

CDS/VGA (correlated double sampling/variable gain amplification)


An idealized waveform of the CCD output is shown in Figure 6.

The CCD output contains reset noise, thermal noise, and 1/f noise generated in the CCD output circuit. This degrades the S/N ratio and must be cancelled. Since the noise during the active video portion of the CCD signal is assumed to be correlated with the noise during the feed through portion of the signal, this noise can be cancelled by subtracting the feed through level from the video level. This operation is called correlated double sampling. The active video signal is the difference between the feed through and video levels. The active video signal varies according to light conditions. In order to insure that the full dynamic range of the ADC is utilized even under low light conditions, the CCD output is amplified using a VGA. The gain control is provided by a 2 bit control word generated by an ADC after stage 1, which has a gain of 1. Based on the input voltage, a gain of 1x, 2x, 4x, or 8x is subsequently applied to the signal. The amount of gain is later adjusted in the digital section. After the VGA, the signal gets digitized by a 10 bit ADC. The 2 bit ADC output is used in combination with the 10 bit ADC output to produce a 13 bit output.

Adding more gain before the ADC does not offer performance improvement because the noise of the CCD (after gain is applied to it) begins to dominate over the quantization noise. Any additional gain should be done in digital since the performance is the same as when the ADC output has the additional gain applied.

In order to add more flexibility, the full scale input range is programmable through register 07h. This setting will determine what input level maps to the highest ADC output code. Thus depending on the saturation level of the particular CCD used in the system, an appropriate full scale input level can be chosen in the CS7620. The choices of full scale input level are 1.6V, 1.07V, 0.53V with 1.07V the default. In the remainder of this document, all the figures and discussions assume a full scale level of 1.07 is used. If a different full scale level is used, all the voltages scale up or down by x1.5 or x0.5 for 1.6V and 0.53V full scale levels respectively.

The transfer function of the VGA portion of the circuit is shown in Figure 7 with full scale level = 1.07. It is assumed that the CDS has already been performed. If desired, the gain switching functionality can be disabled and forced to a fixed gain of 8x, 4x, 2x, or 1x. This way any dynamic range enhancement is lost and the digital output is only 10 bits. If a fixed gain of 1x is selected, DOUT[12:3] is used as the output, a fixed gain of 2x will use DOUT[11:2], etc. In order to use this mode, the

fixed gain register (16h) should be set and the calibration offset registers (10h - 12h) should be set to 0.

The CDS/VGA circuit is composed of three stages. The first stage has a fixed gain of 1, and the second and third stages have variable gain with a combined gain range of 1 to 8 (0-18 dB). Figure 8 shows a block diagram of the CDS/VGA circuit. The total gain is A = (C2/C3)(C4/C5) which is adjusted by varying C3 and C5. The capacitor Cb on the front of stage 1 is for black level adjustment and will be discussed in detail later.

This circuit utilizes a two phase non-overlapping clock to perform the desired CDS function. The

two phase clock also allows the video signal to be passed to the output while retaining a positive polarity signal. Figure 9 shows a timing diagram of the two phase clock along with the CCD signal and output signals of stages one, two and three.

There is an internal mid-scale DC bias level circuit at the input pin. This allows AC coupling into the CS7620 with a capacitor and having the input automatically biased to mid-supply without worrying about external circuitry to perform this task.

3.1 Black Level Adjustment

In order to maintain a constant reference level for black pixels, a feedback loop is implemented that

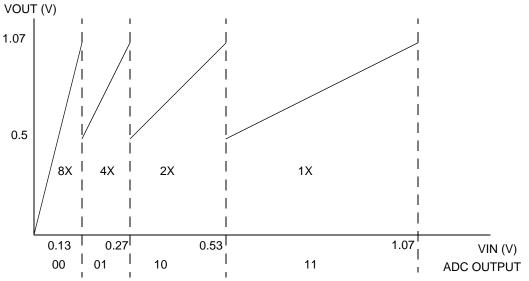
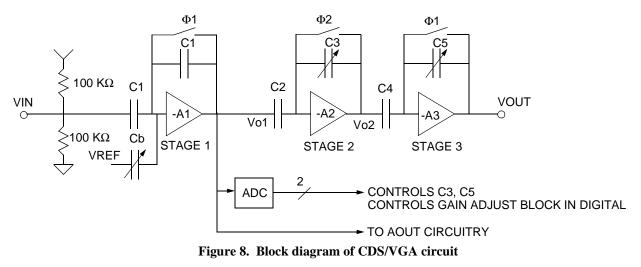



Figure 7. Transfer function of VGA circuit (assuming full scale level of 1.07V)

sets the black level value at the output of the ADC to 64 in the 13 bit digital code. This loop is active during the optically black pixels which are output at the beginning and end of a frame as well as during a portion of the horizontal blanking period. The presence of black pixels in the CCD output is indicated by the CLAMP pulse, which can either be supplied externally or generated internally if the timing for the CCD is generated by the CS7620.

The black level can also be written to through the serial port.

In order to acquire a starting value for the black level, the loop will run over the several lines of black pixels at the beginning of the frame. The block diagram of the loop is shown in Figure 10. The update rate is once per line during active pixel lines, and once every (n + 10) pixels during the optical black lines.



Figure 9. Idealized timing diagram of VGA/CDS circuit

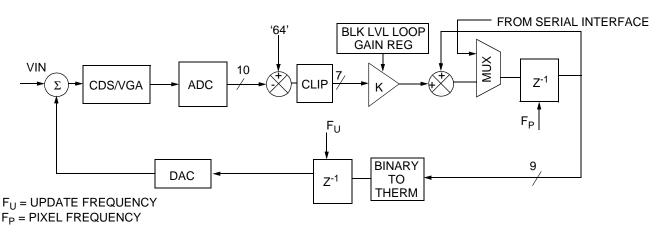


Figure 10. Black level adjustment loop

CS7620

The open-loop transfer function of the black level adjustment loop is

$$H(z) = \frac{K \times n}{z - 1} \qquad K = \frac{1}{256} blk_{gain}$$

blk_gain = 1, 2, 4, or 8

where blk_gain is programmable through a register and n = # of black pixels during clamp time, which is also programmable. The value of Kxn will determine the open-loop gain of the system. The settling time for the loop can be calculated using the following formula:

For offset range=1 (reg 06h, bit 0)

 $\tau = \left(-\frac{1}{\ln(1 - nK)}\right)\left(\frac{1}{fu}\right)$ For offset range =0

$$\tau = \left(-\frac{1}{\ln\left(1 - \frac{nK}{2}\right)}\right) \left(\frac{1}{fu}\right)$$

During fixed gain mode the time constant is a little different.

For a fixed gain of 1:
$$\tau = \left(-\frac{1}{\ln\left(1-\frac{nK}{8}\right)}\right)\left(\frac{1}{fu}\right)$$

For a fixed gain of 2:
$$\tau = \left(-\frac{1}{\ln\left(1-\frac{nK}{4}\right)}\right)\left(\frac{1}{fu}\right)$$

For a fixed gain of 4: $\tau =$

$$\tau = \left(-\frac{1}{\ln\left(1 - \frac{nK}{2}\right)}\right) \left(\frac{1}{fu}\right)$$

$$= \left(-\frac{1}{\ln(1-nK)}\right) \left(\frac{1}{fu}\right)$$

In order to achieve no ringing in the settling use, $\frac{n}{K} \le 1$ for offset range = 1, and $\frac{n}{2K} \le 1$ for offset range = 0.

τ

The 9 MSBs of the black level accumulator can be read or written through a register. If written, the LSBs are set to zero. The black level is set to "8" in a 10-bit digital output representation. In a 13-bit representation, it is set to "64." The power-up default value in the accumulator is at mid level.

Also note that the black level adjust loop can be disabled. In addition, the black level can be programmed through the serial port.

3.2 Gain Adjust Block

In order to increase the dynamic range of the ADC, a variable gain, whose value is determined by the signal level, is applied to each pixel. This allows for 13 bits of dynamic range and 10 bits of resolution after accounting for the significance of the ADC output bits. The gain applied in the analog is illustrated in the transfer curve in Figure 7. Once the signal is digitized, the gain adjust block uses the gain information for a given pixel word and shifts its bits accordingly. For example, using the default full scale level of 1.07V, if Vin = 0.3 V, the VGA would choose a gain of 2X so the ADC input is 0.6 V. The 10-bit output of the ADC (with no black level) is $(0.6/1.07) \times 1024 = 574$, or "1000111110." in binary. The gain adjust block will take this value

plus the bits representing the 2x gain and divide the output by two (shift right by 1). The output of the gain adjust block is then "0100011111.000." Note that the decimal point is virtual, having no existence in silicon. It is representing the fact that we keep 3 extra bits of lower significance in the output. In the same manner, if Vin = 0.75 V, a gain of 1X would be chosen and the output of the gain adjust block would be "1011001101000." The transfer function of the Vin/gain adjust out is shown in Figure 11.

A block diagram of the gain adjust block is shown in Figure 12.

Since the analog gain changes do not match the digital shifts exactly, there is a potential to have non-monotonic digital output. In order to remove this problem, calibration is performed. During calibration, offset values are found that will be used to counteract the errors caused by the analog gain mismatch. Using these offset values, the final output is a monotonic continuous 13-bit value.

3.3 13-to-10 Bit Compander

While a 13 bit output may be useful in some applications, others may require the standard 10 bit output. To accommodate this and yet still retain the advantages of the increased dynamic range, a 13to-10 (or 13-to-12) bit compander is included. By

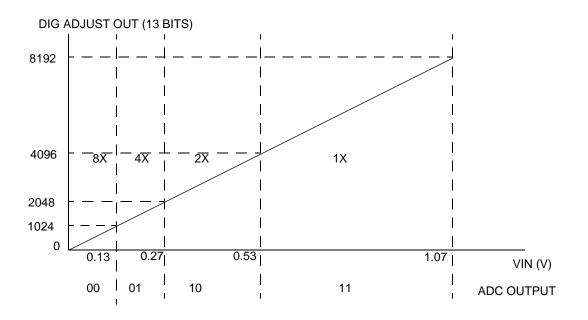


Figure 11. Transfer function of Vin to Gain Adjust output Block (assuming full scale level of 1.07V)

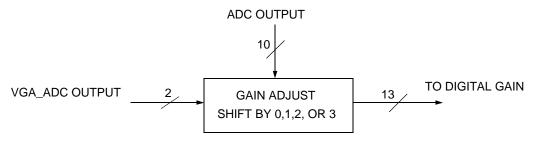


Figure 12. Gain Adjust output Block

using the picture content as a guide, the user can select which curve will lead to the best overall dynamic range in the picture. The Companding module takes 13-bit data as input, and outputs either 10-bit companded data, 12-bit MSB-clipped data or it lets the original 13-bit data pass through.

By programming the compander in the way that is shown in Figure 13, it is possible to compensate for backlighting conditions. Details in dark areas stay visible, even in very complex lighting conditions.

These three modes can be selected through 2 register bits in operational control.

Bits_out register bits	Output mode
0x	10 bits companded
10	13 bits
11	12 bits (clipped)

Table 1. Companding Operational Control

In the 12-bit clipped mode, any input above 4095 gets clipped to 4095. In the 10-bit companded mode, the input gets companded through a four segment, three knees, fully programmable curve.

To program the curve, the placement of the three knees in the companding curve must be determined. The next step is to determine the slope of the four segments created by the three knees (slope for each segment is defined as delta y / delta x). Finally, offsets must be calculated to keep the companding curve continuous.

A fourth knee exists in the curve, which represents the black level value. There are two options for the 10-bit black value. In case one, a linear mapping is employed such that "blacker-than-black" pixel information is kept, with black (code 64 in the 13 bit data) being defined as code 8 in the 10 bit domain. The second option clips all pixel values less than black (code 64 in the 13 bit data) to a programmable offset value, offset1. This may be set to 0 if desired. This option will lose the "blacker-thanblack" pixel information, but allow for slightly more dynamic range. Note: If using the linear mode (option 1), offset1 must be set to 8.

Registers x1 through x3 should be programmed with the x coordinates of each one of the three knees.

Registers slope1 through slope4 should be programmed with 256 multiplied by the calculated slopes.

Finally, the offsets can be programmed following the formulas below:

 $y1 = slope1/256 \times (x1-64) + offset1$

 $y2 = slope2/256 \times (x2-x1) + y1$

 $y3 = slope3/256 \times (x3-x2) + y2$

offset2 = y1 - (x1 \times slope2 / 256)

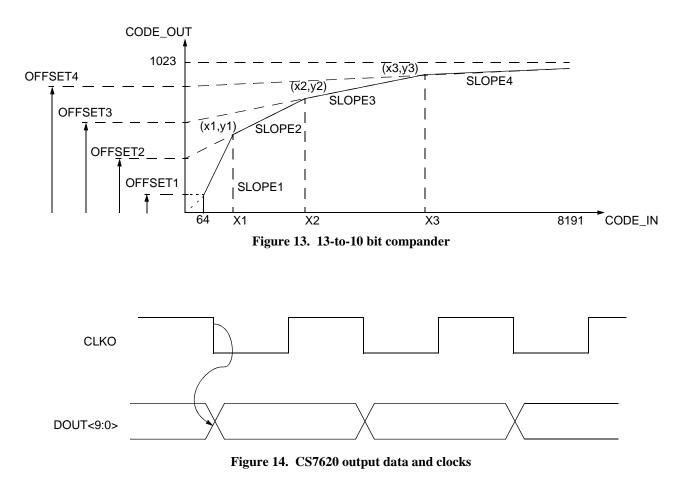
offset3 = $y_2 - (x_2 \times slope_3 / 256)$

offset4 = y3 - (x3 \times slope4 / 256)

(use integer division and discard the remainder)

When using the 10 bit companded output, be aware of the non-linearity of the output data. If linear output is needed to perform AWB or AGC, a linear curve can be implemented to gather statistics. This can be achieved by writing 8191 to x1 (set register 38h to 1fh and set register 39h to ffh) and setting slope1 to 32 (set register 2eh to 00010xxxb and set register 2fh to 20h). Once the statistics have been gathered, all four registers should be returned to their previous values before taking the actual picture.

The output of the compander is available at the pins DOUT<9:0> and it makes transitions either at the falling or rising edges of the pixel rate clock CL-KO, controlled by a register bit. The Falling edge option is shown in Figure 14.

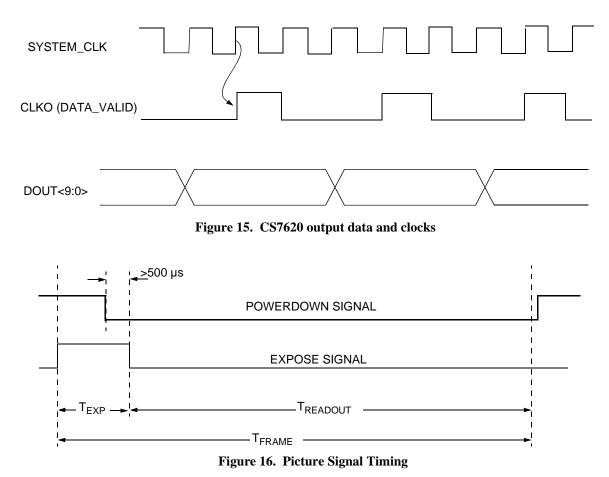

Two options exist for outputting data. The first option will output the pixel rate clock on the CLKO pin. The polarity of the pixel clock out of the pin is programmable so that the user may choose the appropriate clock edge to latch in the data. Based on the RD_OUT and HSYNC signals, the user will be able to determine when he is over active pixels. The second option will output a data_valid signal on the CLKO pin that is synchronous with the input clock (Figure 15). The data_valid signal will only toggle over active pixels. The user may then latch the data during this valid time. Note: DATA_VALID mode cannot be used if the system clock runs at the pixel rate.

3.4 Timing Generator

There are three timing options available with the CS7620. The chip may produce all the vertical and horizontal timing for the imager, only the horizon-tal timing, or the chip may be used in a complete slave mode and not produce any of the CCD timing at all. Each will be discussed in detail in this section.

3.4.1 Vertical and Horizontal Timing Mode

To select this option, the user must tie the BYPASS_PLL pin low and select the proper internal timing mode in the timing mode register. The CS7620 is the master of the clocking. It will provide vertical outputs and horizontal outputs. In this mode, the user must control two signals. The first is the master PWR_DN signal. When this signal is high, all of the CS7620 powers down except for the



DAC outputs (these may be powered down through register control if they are not being used). The second signal is the EXPOSE signal. This signal should go high at the beginning of exposure and low at the beginning of readout. The suggested timing of these signals is shown in Figure 16. Note that the chip must power up at least 500 µs before readout begins. The LINE_ENA and CLAMP pins are not used in this mode.

3.4.2 Horizontal Only Timing Mode

To select this mode, the user must set the BYPASS_PLL pin low and select external timing mode in the timing mode register. The CS7620 is the master of the pixel rate timing, but the line and frame timing is controlled externally. In this mode, the user must control four signals- PWR_DN, EX-

POSE, LINE ENA, and CLAMP. The master PWR DN signal may be used to conserve power during non-readout time. The EXPOSE pin is redefined as the non-readout signal. When high, the H1-H4 and RG signals are set in their idle state (low for H1-H4, high for RG). The LINE-ENA pin should be high during the vertical shift and load periods. This will hold the H1-H4 signals in their user-programmable default states. The CLAMP pin should be high when over dark reference (black) pixels. The suggested timing for these signals is shown in Figure 17. Note that the chip should power up at least 500 µs before the beginning of readout. The CLAMP signal may also be high during the dark pixel lines at the beginning of the frame.

WARNING: NOTE: It is recommended to keep the part in power down mode while not in use to reduce power

3.4.3 Slave mode

To select this mode, the user must set the BYPASS PLL pin high and select external timing mode in the timing register. The CS7620 timing is now slaved off of an external source and supplied with sampling clocks for feedthrough and data. In this mode, the user must control five signals-PWR DN, EXPOSE, CLAMP, CK FT (CLOCK IN), and CK DT (LINE ENA). The master PWR DN signal may be used to conserve power during non-readout time. The EXPOSE pin is redefined as the non-readout signal. Using the falling edge of this signal, the chip will delay its **RD OUT** pin output by the appropriate amount as determined by the chip latency so that it will go active at the correct point in the data stream. CLAMP should be high when over the dark reference pixels. The CLOCK IN and LINE ENA pins are redefined as the CK_FT and CK_DT signals, which sample the feedthrough and data levels, respectively. The suggested timing for PWR_DN, EXPOSE, and CLAMP is the same as shown previously in Figures 16 and 17. The timing for CK_FT (CLOCK-IN) and CK_DT (LINE-ENA) is shown in Figure 18.

3.4.4 Horizontal Timing Generator

During every horizontal line period the data from the horizontal shift register is shifted out on the CCD output pin one pixel at a time. The analog timing generator creates the required driving signals to control the CCD horizontal timing as well as the analog sampling signals. The timing signals involved in this operation are H1, H2, H3, H4 and RG. The exact timing of these signals can be con-

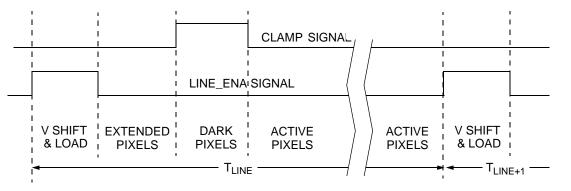


Figure 17. Signal Timing for Horizontal Only Mode

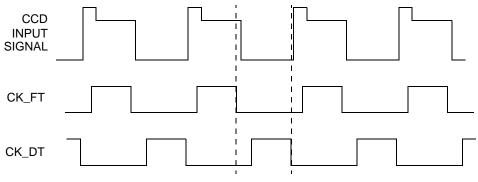


Figure 18. Signal Timing for Slave Mode

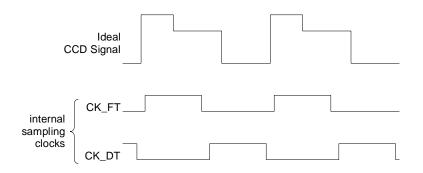


Figure 19. Detailed Signal Timing Showing Internal Clock Phases

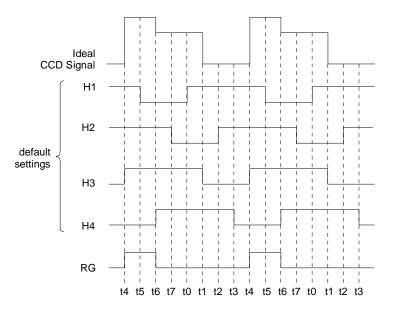


Figure 20. Default Timing of Horizontal Signals to the CCD

trolled through the serial interface as described below.

The pixel period is broken down into 8 equal time periods. By delaying the clock a given number of these time periods, different phases are created. This is shown in Figure 19. These clock phases are labeled t0-t7 and are shown relative to an idealized CCD signal and the internal sampling signals.

Using these eight clock phases, the user may set the rising and falling edges of each horizontal pixel clock at 1/8 of a pixel clock period. In addition, the

user may set each horizontal signal to a default state when the output lines are to be held constant during blanking. The default timing for the horizontal signals is shown in Figure 20 and Table 2. See the register listing for more details.

Signal	Rising edge	Falling edge	Hold level
H1	t0	t5	high ('1')
H2	t2	t7	high ('1')
H3	t4	t1	high ('1')
H4	t6	t3	low ('0')

Table 2	. Default	Phases	for	Horizontal	Signal	Edges
---------	-----------	--------	-----	------------	--------	-------

3.4.5 Vertical Timing Generator

The signals involved in the vertical timing generator are the vertical shift clocks V1 through V4 and the storage clocks S1 through S4. The vertical timing generator generates the signals needed by the CCD to shift charge vertically down into the horizontal shift register. The chip is the timing master, and it generates the signals needed by the horizontal timing generator and other modules to operate.

The timing generator is controlled externally by various signals; the falling edge of the input signal EXPOSE sets the part into readout mode, and after this edge, it generates the timing signals to output a full frame, provided that $\overline{\text{RST}}$ and PWR_DN are not active.

The mode register selects the CCD timing, and the resolution mode to be generated. Please refer to IBM-CCD datasheet for more info.

Mode value	Mode
000	IBM35CCD2PIX1 and IBM35CCDPIX13
	CCD high resolution mode
001	IBM35CCD2PIX1 CCD low resolution
	(viewfinder) mode
010-100	reserved
101	IBM35CCD13PIX CCD (2x2) low resolu-
	tion (viewfinder) mode
110	IBM35CCD13PIX CCD (3x4) low resolu-
	tion (viewfinder) mode
111	external timing used

 Table 3. Different Resolution Operating Modes

The timing module's functionality can be configured through the use of registers. Note that before entering a preview mode, all of the programmable parameters must be set prior to this.

Shiftl_num is the number of lines in the shift buffer.

Tdv is the length of the minimum vertical timing interval measured in pixel clocks.

Num_pixels is the number of pixels per line

Num_lines is the number of lines per frame.

V_polarity allows to switch the polarity of all the vertical timing signals going to the CCD.

Blk_begin is the first black pixel in a line

Blk_end is the last black pixel in a line

Drk_rws_fst is the number of black lines to be readout at the beginning of the frame

Drk_rws_lst is the number of black lines to be readout at the end of the frame

3.4.6 Frame Timing

Figures 21 and 22 illustrates the frame timing for the low and high resolution modes.

HSYNC is high during the active pixel area, and it is low during vertical shift (horizontal and vertical blanking periods).

 $\overline{\text{RD}_\text{OUT}}$ is triggered by the falling edge of expose, it is delayed by the chip latency, and it switches back high once the last pixel has been read out of the CS7620. $\overline{\text{RD}_\text{OUT}}$ is low during the active pixel areas and during the horizontal blanking periods (vertical line shifts) and it goes high during the vertical blanking period, between frames.

The dotted lines in Figures 21 and 22 correspond to the vsync option which can be enabled by writing a one to register vsync_md (register 25h bit 5). This causes the $\overline{\text{RD}}_{OUT}$ signal to behave like a vertical sync signal. It makes the signals $\overline{\text{HSYNC}}$ and $\overline{\text{RD}}_{OUT}$ the same length at the beginning of a new frame (see Figures 21 and 22).

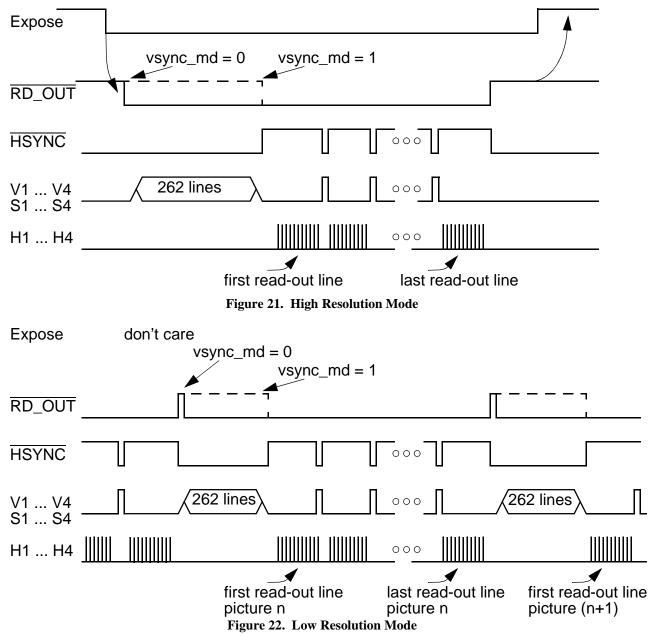
3.5 Frequency Synthesizer

Since multiple clock phases and timing are required for the pixel rate clocks controlling the CCD imager, the clock generator contains a PLL circuit to generate the proper timing. "Frequency Synthesizer Parameters" on page 6 shows the requirements for this PLL. The frequency of the input clock may be set from 1 to 20X the pixel clk frequency, in integer multiples. The frequency used is

register programmable in terms of multiples of the pixel clock rate.

3.6 8-Bit General Purpose DACs

Two 8-bit current-output DACs are available for external use. Table 4 shows the output specifications of these DACs.


3.7 Stand By Mode

Stand-by mode can be entered using the PWR_DN pin. All circuitry on chip including the DACs can

Parameter	High impedance mode	Low impedance mode
lout	2.155 mA	8.7 mA
loading	464 Ω	115 Ω

Table 4. General Purpose DAC specifications

be powered down. Various functional blocks can be powered down individually, and are controlled through registers. Note that the DACs can be powered down in that way if not in use. During Stand By mode, the register contents are maintained and

do not have to be reprogrammed at the next power up.

3.8 Preview Mode

It is strongly recommend that the chip should be kept in Stand By mode when not in use in order to save power. When in preview mode, a user may wish to cut down the resolution of the ADC output to 6 bits in order to reduce the power consumption of the CS7620. In this mode, the current is reduced by 20 mA. With the DRX (Dynamic Range eXtension) circuitry, 3 bits of dynamic range are added to the 6-bit ADC output producing a 9-bit output. The pins DOUT[12:4] are used to output the digitized data in preview or Stand By mode.

3.9 Serial Interface

The serial interface is designed to allow high speed input to control the chip's registers. The specifications on this interface are as follows:

Asserting the enable pin, $\overline{\text{SEN}}$, enables the serial interface to perform data transfers. Data present on the SDATI pin is latched into the CS7620 on each rising edge of the serial clock, SCLK. Data output on SDATO from the CS7620 is clocked out on the rising edge of SCLK.

The CS7620 receives only the first 16 rising edges of the SCLK while \overline{SEN} is low and then ignores any remaining SCLK and SDATI information. If \overline{SEN} goes high before 16 SCLK pulses have been received, the CS7620 aborts the serial transfer.

The first bit is the R/\overline{W} bit. $R/\overline{W} = 1$ identifies the transfer as a read. If (0), the transfer is a write. The next seven bits define the address. For write transfers, the second byte of the 16-bit packet contains the data byte. For read transfers, the CS7620 outputs the read data on SDATO after accepting the address. Address and data are transferred MSB first. When not reading out data, the SDATO pin is not driven by the chip (Hi-Z state).

The timing diagrams and specifications are shown in "Serial Interface Timing Specifications" on page 7 and Figures "SEN Timing", "Read Data Timing", and "Serial Write Timing" on page 7.

3.10 Recommended Register Settings

These are the values that need to be written to the registers to change the configuration of the CS7620 to work with each CCD in either low resolution or high resolution mode. (2×2) refers to a RGRGRG pattern and (3×4) refers to a RGBRGB pattern CCD.

	2.0M pixel (default)	2.0M pixel (2x2)	2.0M pixel (3x4)
	high resolution	low resolution	low resolution
tim_modes(06h)	000b	001b	001b
num_lines[12:8](17h)	05h	05h	05h
num_lines[7:0](18h)	1Ch	1Ch	1Ch
num_pixels[12:8](19h)	06h	06h	06h
num_pixels[7:0](1Ah)	93h	93h	93h
drk_rws (frst/lst)(1Bh)	A4h	20h	20h
blk_begin(1Ch)	04h	04h	04h
blk_end(1Dh)	3Fh	3Fh	3Fh
act_rws (frst/lst)(1Eh)	B6h	32h	32h
act_begin(1Fh)	4Bh	4Bh	4Bh
tdv(20h)	01h	01h	01h
shiftl_num[8](21h)	01h	01h	01h
shiftl_num[7:0](22h)	06h	06h	06h
lowres_sen[3:0](25h)	XXXXb	0000b	0000b
		0100b 2x sens	0010b 2x sens
		0001b 2x sens	
		0101b 3x sens	

Table 5. IBM35CCD2PIX1

	1.3M pixel high resolution	1.3M pixel (2x2) low resolution	1.3M pixel (3x4) low resolution
tim_modes(06h)	000b	101b	110b
num_lines[12:8](17h)	04h	04h	04h
num_lines[7:0](18h)	1Ch	1Ch	1Ch
num_pixels[12:8](19h)	05h	05h	05h
num_pixels[7:0](1Ah)	50h	50h	50h
drk_rws (frst/lst)(1Bh)	A4h	20h	20h
blk_begin(1Ch)	04h	04h	04h
blk_end(1Dh)	3Fh	3Fh	3Fh
act_rws (frst/lst)(1Eh)	B6h	42h	42h
act_begin(1Fh)	4Bh	4Bh	4Bh
tdv(20h)	01h	01h	01h
shiftl_num[8](21h)	01h	01h	01h
shiftl_num[7:0](22h)	06h	06h	06h
lowres_sen[3:0](25h)	XXXXb	0000b 0100b 2x sens	0000b 0010b 2x sens

Table 6. IBM35CCD13PIX

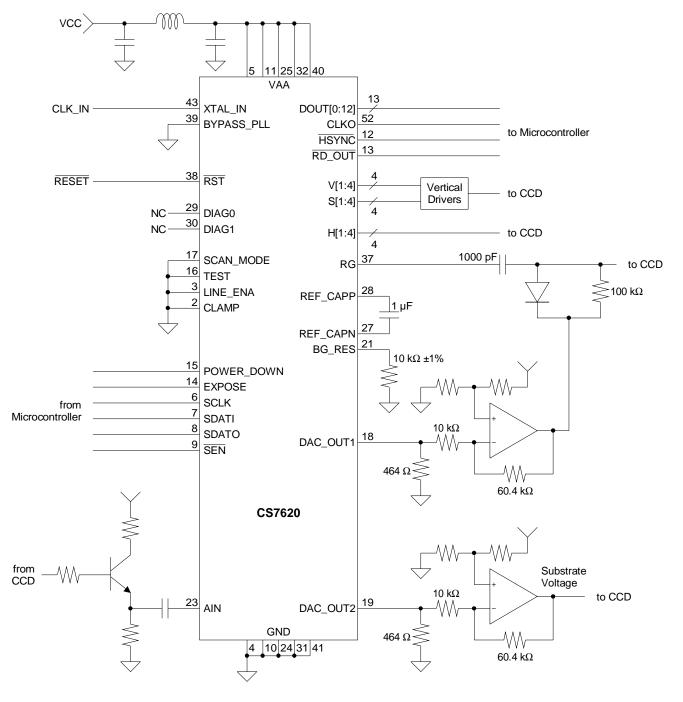


Figure 23. Typical Connection Diagram Using Vertical and Horizontal Timing Mode

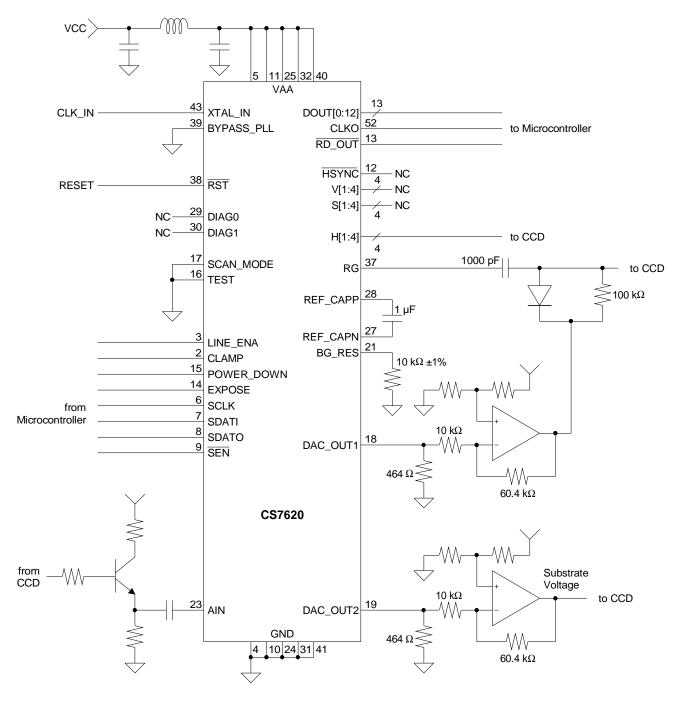


Figure 24. Typical Connection Diagram Using Horizontal Only Timing Mode

CS7620

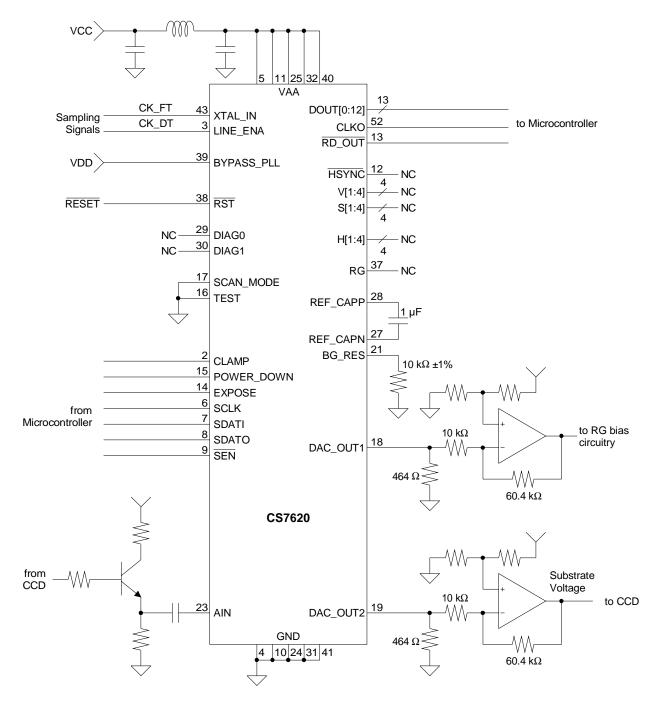


Figure 25. Typical Connection Diagram Using Slave Mode

4 REGISTER DESCRIPTIONS

Register (hex)	Register Function	Access	Default value (hex)
00h	Software Reset	W	00
01h	Power Down Control 1	R/W	00h
02h	Power Down Control 2	R/W	00
03h-05h	Reserved		
06h	Operation Control 1	R/W	09h
07h	Operation Control 2	R/W	04h
08h-0Ch	Reserved		
0Dh	Black Level Control - Accumulator (LSB)	R/W	00h
0Eh	Black Level Control - Accumulator (MSB)	R/W	01h
0Fh	Black Level Control - Loop Gain, Clamp Length	R/W	0Ah
10h	Gain Calibration - Offset 1	R/W	00h
11h	Gain Calibration - Offset 2	R/W	00h
12h	Gain Calibration - Offset 3	R/W	00h
13h-15h	Reserved		
16h	Gain Calibration - Fixed Gains	R/W	00h
17h	Timing Control - Number of Lines (MSB's)	R/W	05h
18h	Timing Control - Number of Lines (LSB's)	R/W	1Ch
19h	Timing Control - Number of Columns (MSB's)	R/W	06h
1Ah	Timing Control - Number of Columns (LSB's)	R/W	93h
1Bh	Timing Control - Number of Dark Rows	R/W	A4h
1Ch	Timing Control - Start of Black Pixels	R/W	04h
1Dh	Timing Control - End of Black Pixels	R/W	3Fh
1Eh	Timing Control - Number of Rows Until Active	R/W	C6h
1Fh	Timing Control - Start of Active Pixels	R/W	4Bh
20h	Timing Control - Vertical Time Division	R/W	01h
21h	Timing Control - Lines in Storage Buffer (MSB)	R/W	01h
22h	Timing Control - Lines in Storage Buffer (LSB's)	R/W	06h
23h	Timing Control - Extra Lines of Exposure in Low Resolution Mode (MSB's)	R/W	00h
24h	Timing Control - Extra Lines of Exposure in Low Resolution Mode (LSB's)	R/W	00h
25h	Timing Control - Vsync Mode, Low Res Sensitivity, Lines of Exposure in Low Res Mode (MSB)	R/W	01h
26h	Timing Control - Lines of Exposure in Low Res Mode (LSB)	R/W	06h
27h	Reserved		
28h	Timing Control - Polarity of vertical shift outputs	R/W	FFh
29h	Horizontal Timing Control - H1	R/W	68h
2Ah	Horizontal Timing Control - H2	R/W	7Ah
2Bh	Horizontal Timing Control - H3	R/W	4Ch
2Ch	Horizontal Timing Control - H4	R/W	1Eh
2Dh	Horizontal Timing Control - Analog Delays	R/W	00h
2Eh	Compander - Black slope, Slopes (MSBs)	R/W	00h
2Fh	Compander - Slope1 (LSBs)	R/W	A8h
30h	Compande - Slope2 (LSBs)	R/W	60h
31h	Compander - Slope3 (LSBs)	R/W	20h

Table 7. Register Description

Register (hex)	Register Function	Access	Default value (hex)
32h	Compander - Slope4 (LSBs)	R/W	07h
33h	Compander - Offset1	R/W	08h
34h	Compander - Offsets (MSBs)	R/W	0Bh
35h	Compander - Offset2 (LSBs)	R/W	BFh
36h	Compander - Offset3 (LSBs)	R/W	05h
37h	Compander - Offset4 (LSBs)	R/W	20h
38h	Compander - X1 (MSBs)	R/W	03h
39h	Compander - X1 (LSBs)	R/W	20h
3Ah	Compander - X2 (MSBs)	R/W	05h
3Bh	Compander - X2 (LSBs)	R/W	18h
3Ch	Compander - X3 (MSBs)	R/W	0Bh
3Dh	Compander - X3 (LSBs)	R/W	58h
3Eh	Power_up Counter	R/W	7Dh
3Fh	Valid_data/Dout edge/Clock_in divider	R/W	01h
40h	DAC #1 Control	R/W	00h
41h	DAC #2 Control	R/W	00h
42h-7Dh	Reserved		
7Eh	Device ID	R	ECh
7Fh	Rev Code	R	02h

 Table 7. Register Description (Continued)

4.1 Reset

Default = 00; Write (address 00h)

Bit Number	7 6 5 4 3 2 1							
Bit Name	Reserved							sft_rst
Default	-	-	-	-	-	-	-	00
					•	•		•

Bit	Mnemonic	Function
7:1	-	Reserved
0	sft_rst	Software Reset: When this bit is written with a '1', all of the digital circuitry and the registers will reset to their default values. It automatically clears after 4 pixel clock periods. The clocks remain running during the reset period.

4.2 Power Down Control 1

Default = 00h; Read/Write (address 01h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	pd_vga	pd_adc	pd_ref	Rese	rved	pd_dac1	pd_dac2	Reserved
Default	0	0	0	-	-	0	0	-

Bit	Mnemonic	Function
7	pd_vga	DRX Front End Power Down: When written with a '1', the DRX front end circuitry powers down. Used for test purposes only.
6	pd_adc	ADC Power Down: When written with a '1', the Analog-to-Digital converter circuitry powers down. Used for test purposes only.
5	pd_ref	Voltage Reference Power Down: When written with a '1', the voltage reference generator powers down. Used for test purposes only.
4:3	-	Reserved
2	pd_dac1	DAC #1 Power Down: When written with a '1', DAC #1 powers down. Should be powered down when DAC#1 is not being used by the system.
1	pd_dac2	DAC #2 Power Down: When written with a '1', DAC #2 powers down. Should be powered down when DAC#2 is not being used by the system.
0	-	Reserved

4.3 Power Down Control 2

Default = 00; Read/Write (address 02h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Reserved							Reserved
Default	-	-	-	-	-	-	0	-

Bit	Mnemonic	Function
7:2	-	Reserved
1	pd_htim	Horizontal Timing Power Down: When written with a '1', the horizontal tim- ing generator powers down. Should be powered down when horizontal timing is not being used by the system. In this mode the chip is a "timing slave."
0	-	Reserved

4.4 Operation Control 1

Default = 09h; Read/Write (address 06h).

Bit Number	7	6	5	4	3	2	1	0
Bit Name	low_res	tim_modes2	tim_modes1	tim_modes0	bits_out1	bits_out1	blk_dis	off_range
Default	0	0	0	0	1	0	0	1

Bit	Mnemonic	Function
7	low_res	Low Resolution Mode: This mode can be used to cut the current consumption of the chip by 20 mA. The output of the ADC will have 6 bits of resolution in this mode, and the output of the chip will have 9 bits after using the DRX circuitry. It is intended to be used when driving an LCD display or any other time when a lower resolution picture is acceptable.
6	tim_modes2	Timing Generator Select: The type of timing signals output by the chip can be selected using these control bits. IBM35CCDPIX13 2x2 and IBM35CCDPIX13 3x4 modes, support type IBM CCDs with different color filter patterns. Note that register 1Bh needs to be rewritten with correct low resolu-
5	tim_modes1	tion values for black rows if low resolution mode is used (see Table 3). The chip's default power up setting is hardcoded to be IBM35CCD2PIX1. So
4	tim_modes0	that the registers that hold the number of lines, the number of pixels per line, the number of black lines, and the number of active lines are all set up to their proper values. If IBM35CCDPIX13 is to be used, the values on all those reg- isters has to be changed appropriately (see Tables 5 and 6).

Bit	Mnemonic	Function
3	bits_out1	Number of Data Bits Out: The range of the output data can be determined by these bits. The data internal to the chip has a 13-bit range. The output can be this full range, half this range (12 bits), or an eighth of this range (10 bits). If 12-bit data is selected, the top half of the 13-bit range is saturated to the maximum 12-bit code. If 10-bit data is selected, the compander curve which is upper programmable is employed to man the 12 bit data to the 10 bit output
2	bits_out1	 is user programmable is employed to map the 13-bit data to the 10-bit output. 0 - 10 bits output 1 - 10 bits output 2 - 13 bits output 3 - 12 bits output
1	blk_dis	Black Level Loop Disabled: If the user chooses to adjust the black level him- self through register access, he may disable the internal black level loop. This loop usually updates the black level to what it calculates to be the correct level. If disabled, the offset used will be determined from the value written in the black level accumulator register.
		0 - internal black level loop is enabled 1 - black level loop is disabled
0	off_range	Offset Range: The black level loop is used to cancel any offsets from the CCD and chip circuitry. If the offsets are small, the user has the option to decrease the offset cancellation range for the added advantage of increasing the resolution of the offset cancellation.
		0 - smaller offset cancellation range used (~50 mV) 1 - larger offset cancellation range used (~100 mV)

Mode value	Mode
000	IBM35CCD2PIX1 and IBM35CCDPIX13 CCD high resolution mode
001	IBM35CCD2PIX1 CCD low resolution (viewfinder) mode
010	reserved
100	reserved
101	IBM35CCD13PIX CCD (2x2) low resolution (viewfinder) mode
110	IBM35CCD13PIX CCD (3x4) low resolution (viewfinder) mode
111	external timing used

 Table 8. Different Resolution Operating Modes

4.5 *Operation Control 2*

Default = 04h; Read/Write (address 07h).

Bit Number	7	6	5	4	3	2	1	0			
Bit Name	pol_hsyncb	pol_rd_outb	dac2_mode	dac1_mode	fs_lvl1	fs_lvl0	gain_cal1	gain_cal2			
Default	0	0	0	0	0	1	0	0			
Bit	Mnemonic			F	unction						
7	pol_hsyncb	other times. 0 - HSYNC is high during horizontal data read out 1 - HSYNC is low during horizontal data read out									
6	pol_rd_outb	when th data <u>fro</u> that RD that whe	Rd_Out Polarity: The RD_OUT signal output from the chip defaults to be low when the CCD data readout is being performed and high when not reading out data from the CCD. The polarity of this signal may be swapped with this bit so that RD_OUT is high during readout and low when not reading data out. Note that when this bit is redefined in order to function as a vertical sync signal, this bit will serve to swap its polarity as well.								
5	dac2_mode	Default will incr mode ca the 8-bi	Dac #2 Current Mode: There are two modes for the output current of DAC2. Default mode provides a current range of 2.2 mA for the 8-bit input word. This will increment the current by ~8.6 μ A per LSB code change. The high current mode can be selected using this bit to change the current range to 8.7 mA for the 8-bit input word. This will increment the current by ~34 μ A per LSB code change.								
4	dac1_mode	Default will incr mode ca	Dac #1 Current Mode: There are two modes for the output current of DAC1. Default mode provides a current range of 2.2 mA for the 8-bit input word. This will increment the current by ~8.6 μ A per LSB code change. The high current mode can be selected using this bit to change the current range to 8.7 mA for the 8-bit input word. This will increment the current the current by ~34 μ A per LSB code change.								
3	fs_lvl1	Since C	CDs have va	is is used to s rious saturati	on levels,	it is adva	ntageous to	set the full			
2	fs_lvl0			the CS7620 to s the full scale			on level of t	he CCD			
1	gain_cal1	monoto after a c tion afte a calibra	Gain Calibration #1: A calibration of the gain stages is required to insure a monotonic digital output. In default ('0'), this calibration is automatically done after a chip reset and after coming up from power down mode. If the recalibration after power down is not desired, this bit can be written with a '1' to force a calibration only after a chip reset.								
0	gain_cal2	monoto if the us bit to '1'	nic digital out ser wishes to , which will in	: A calibratior put. This calib force a calibra tvoke a gain c itself after a c	oration is t ation to oc calibration	ransparer cur, he m sequence	nt to the user ay do so by e immediate	. However, setting this			

fs_lvl	Full Scale Voltage
00	0.53 V
01	1.07 V
1X	1.60 V

Table 9. Full Scale Level Choices

4.6 Black Level Control - Accumulator (LSB)

Default = 00h; Read/Write (address 0Dh)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	accumulator7	accumulator6	accumulator5	accumulator4	accumulator3	accumulator2	accumulator1	accumulator0
Default	0	0	0	0	0	0	0	0

Bit	Mnemonic	Function
7	accumulator7	Black Level Accumulator: See Description of register 0Eh.
6	accumulator6	
5	accumulator5	
4	accumulator4	
3	accumulator3	
2	accumulator2	
1	accumulator1	
0	accumulator0	

4.7 Black Level Control - Accumulator (MSB)

Default = 01h; Read/Write (address 0Eh).

t Number	7	6	5	4	3	2	1	0		
it Name		Reserved								
efault	-	-	-	-	-	-	-	1		
Bit	Mnemor	nic	Function							
7:1	-	- Reserved								
0	accumulat	tor8 rese level ADC disal is a t 1 or to co this o	nting an am loop alters settle to co oled and wr otal of ~100 ~50 mV wh rrect for CC chip. The o	ount of offset the black lev ode 64 during itten to manu mV of offset en this registe D offsets plue	added to the el accumula black pixels ally to add a range if the er setting is s internal off efore subtrace	e input of the ator value to s. If desired any desired a offset range set to "0". T fsets genera cting the inte	e CDS circ make the the black amount of register s his offset ted in the a ernal offset	offset. There etting is set to range is used analog path of s is as shown		

Offset Range (Reg 06h bit 0)	Max Offset Blk Acc=511	Min Offset Blk Acc=0	Accumulator LSB Size
1	~30 mV	~-72 mV	~0.2 mV
0	~11 mV	~-40 mV	~0.1 mV

Table 10. Offset Range

0

blk_clp_10

0

4.8 General Black Level

The black loop is a feedback system that causes the ADC output to settle to 64 during the register defined black pixels. This has the purpose of removing any CCD and system offsets and defining 64 as the known black level. The loop has an exponential settling response and the time constant of this loop is effected by the black loop gain and the number of black pixels to accumulate before updating the black accumulator. See Figure 10 for a block diagram of the black level.

4.9 Black Level Control - Loop Gain, Clamp Length

Default = 0Ah; Read/Write (address 0Fh).

Bit Number 7 6 5 4 3 2 1 **Bit Name** blk_clp_11 blk_gain1 blk_gain0 blk_clp_15 blk_clp_14 blk_clp_13 blk_clp_12 Default 0 0 0 0 1 0 1

Bit	Mnemonic	Function			
7	blk_gain1	Black Loop Gain Factor: The Black loop gain factor can be set to 1x,2x,4x,or 8x and is simply a multiplying constant to effect the weight of each black pixel before it is accumulated.			
6	blk_gain0	00 - defines a gain of 1x 01 - defines a gain of 2x 10 - defines a gain of 4x 11 - defines a gain of 8x			
5	blk_clp_15	Black Loop Clamp Length: The black clamp length effects the loop time con-			
4	blk_clp_14	stant and also acts to average out noise in the black level. The larger this val-			
3	blk_clp_13	ue the more pixels that are summed before the loop is updated which causes greater averaging and a smaller settling time constant.			
2	blk_clp_12				
1	blk_clp_11	Table 11 shows the black loop time constant for various settings of Offse Range (register 06h, bit 0) and Fixed Gain Settings (register 16h, bits 5-3			
0	blk_clp_10	- Range (register oon, bit of and Fixed Gain Settings (register ron, bits 3-3).			

Fixed Gain (Register 16h)	Offset Range = 1	Offset Range = 0
not fixed	-1/(ln(1-nK))(1/fu)	-1/(ln(1-nK/2))(1/fu)
x1	-1/(ln(1-nK/8))(1/fu)	-1/(ln(1-nK/16))(1/fu)
x2	-1/(ln(1-nK/4))(1/fu)	-1/(ln(1-nK/8))(1/fu)
x4	-1/(ln(1-nK/2))(1/fu)	-1/(ln(1-nK/4))(1/fu)
x8	-1/(ln(1-nK))(1/fu)	-1/(ln(1-nK/2))(1/fu)

Table 11. Black Loop Time Constant

Where:

K = 1/256*blk_gain

n = Black loop clamp length = blk_clp_l[5:0]

fu = update rate

4.10 Gain Calibration - Offset 1

Default = 00h; Read/Write (address 10h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	gain_offset17	gain_offset16	gain_offset15	gain_offset14	gain_offset13	gain_offset 12	gain_offset11	gain_offset10
Default	0	0	0	0	0	0	0	0
Rit	Mnemonic				Function	n		

Bit	Mnemonic	Function
7	gain_offset17	Gain Calibration Offset 1: Offset added to 4x gain segment, values are in 2's
6	gain_offset16	complement. See details in register 12h.
5	gain_offset15	
4	gain_offset14	
3	gain_offset13	
2	gain_offset12	
1	gain_offset11	
0	gain_offset10	

4.11 Gain Calibration - Offset 2

Default = 00h; Read/Write (address 11h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	gain_offset27	gain_offset26	gain_offset25	gain_offset24	gain_offset23	gain_offset 22	gain_offset21	gain_offset20
Default	0	0	0	0	0	0	0	0

Bit	Mnemonic	Function
7	gain_offset27	Gain Calibration Offset 2: Offset added to 2x gain segment, values are in 2's
6	gain_offset26	complement. See details in register 12h.
5	gain_offset25	
4	gain_offset24	
3	gain_offset23	
2	gain_offset22	
1	gain_offset21	1
0	gain_offset20	1

4.12 Gain Calibration - Offset 3

Default = 00h; Read/Write (address 11h)

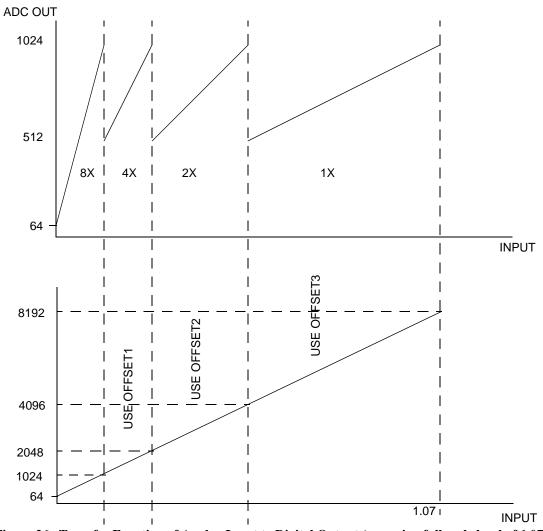
Bit Number		7	6	5	4	3	2	1	0	
Bit Name		gain_offset 37	gain_offset 36	gain_offset 35	gain_offset 34	gain_offset 33	gain_offset 32	gain_offset 31	gain_offset 30	
Default		0	0	0	0	0	0	0	0	
			I							
Bit	N	Inemonic				Functio	n			
7	g	ain_offset37		Gain Calibration Offset 3: Offset added to 1x gain segment. Values are in 2's complement.						
6	g	ain_offset36		These registers are used to report some of the calibration settings. ibration is performed the gain offset registers are automatically updated						
5	g	ain_offset35	value shoul	s needed fo d not be writ	r the DRX ci	rcuitry to op this will remo	erate correc ove the prop	tly. These r er settings fo	egisters ound during	
4	g	ain_offset34	the A	calibration. The gain offset values are used to add an offset to the outpu the ADC when using different analog gain settings (See equations below The purpose of this is to produce a continuous transition between the diffe				s below).		
3	g	ain_offset33	gains	ettings so th	nat the final 1					
2	g	ain_offset32	artilat	– artifacts. (See Figure 26)						
1	g	ain_offset31	•	<pre>{ADC_outif in the 8x gain segment} dout[12:0] ={ADC_out*2+Offset1if in the 4x gain segment}</pre>						
0	g	ain_offset30	{ADC	_out*4+Offs	et2*2if in the et3*4if in the	e 2x gain se	gment}	- ,		

Gain Calibration - Fix Gains

Default = 00h; Read/Write (address 16h)

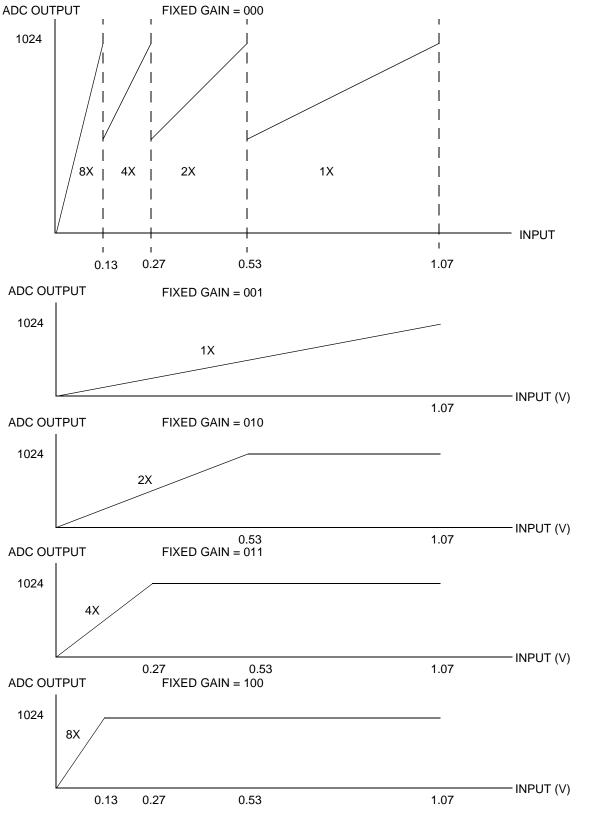
Bit Number	7	6	5	4	3	2	1	0
Bit Name	Reserved		fixed_gain2	fixed_gain1	fixed_gain0	Reserved		
Default	-	-	0	0	0	-	-	-

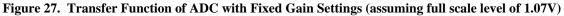
Bit	Mnemonic	Function		
7:6	-	Reserved		
5	fixed_gain2	Fixed Gain: This is used to turn off the DRX functionality and apply a fixed gain to the input before reaching the ADC. A setting of 000 is used for normal exercises this will yield the largest duration apply a provide the defined the defined to the setting of 000 is used for normal exercises.		
4	fixed_gain1	 operation this will yield the largest dynamic range by switching the front end gain relative to the amplitude of the input signal. The settings 001, 010, 011, and 100 are for fixed gains of 1x, 2x, 4x, and 8x respectively. Figure 27 shows 		
3	fixed_gain0	the transfer function of the output of the ADC for a given input with the various fixed gain settings.		
2:0	-	Reserved		



4.13 Timing Control - Number of Lines (MSBs)

Default = 05h; Read/Write (address 17h)


Bit Number	7	6	5	4	3	2	1	0
Bit Name		Reserved		num_lines12	num_lines11	num_lines10	num_lines9	num_lines8
Default	-	-	-	0	0	1	0	1


Bit	Mnemonic	Function
7:5	-	Reserved
4	num_lines12	Line Numbers: Bits 12 through 8 of the number of lines. (See Figure 26)
3	num_lines11	
2	num_lines10	
1	num_lines9	
0	num_lines8	

4.14 Timing Control - Number of Lines (LSBs)

Default = 1Ch; Read/Write (address 18h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	num_lines7	num_lines6	num_lines5	num_lines4	num_lines3	num_lines2	num_lines1	num_lines0
Default	0	0	0	1	1	1	0	0
Dit	Masaais				Function	•		
Bit	Mnemonic				Functio	n		
7	num_lines7	Line	Line Numbers: Bits 7 through 0 of the number of lines.					
6	num_lines6	The r	The number of lines registers should be written with the total number of lir					ber of lines
5	num_lines5		s) of the CCE	•				
4	num_lines4	fer ar	ea).					
3	num_lines3	The	default value	is 1308 whi	ch is the nur	nber of lines	s in a IBM35	CCD2PIX1
2	num_lines2	CCD	CCD. (See Figure 28)					
1	num_lines1							
0	num_lines0							

4.15 Timing Control - Number of Columns (MSBs)

Default = 06h; Read/Write (address 19h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Reserved			num_pixels12	num_pixels11	num_pixels10	num_pixels9	num_pixels8
Default	-	-	-	0	0	1	1	0

Bit	Mnemonic	Function
7:5	-	Reserved
4	num_pixles12	Column Numbers: Bits 12 through 8 of the number of columns. (See
3	num_pixels11	Figure 28)
2	num_pixels10	
1	num_pixels9	
0	num_pixels8	

4.16 Timing Control - Number of Columns (LSBs)

Default = 93h; Read/Write (address 1Ah)

Bit Number		7	6	5	4	3	2	1	0
Bit Name		num_pixels7	num_pixels6	num_pixels5	num_pixels4	num_pixels3	num_pixels2	num_pixels1	num_pixels0
Default		1	0	0	1	0	0	1	1
Bit		Mnemonic				Functio	n		
7	r	num_pixels7	Colu	Column Numbers: Bits 7 through 0 of the number of columns.					
6	r	num_pixels6	The r	The number of columns registers should be written with the total number of					number of
5	r	num_pixels5	pixels	pixels per line (columns) of the CCD including any black pixels and any extra					
4	r	num_pixels4	pixels	s. (due to CC	CD horizonta	I register lat	ency)		
3	r	num_pixels3	The c	lefault value	(num_pixels	s[12:0]) is 16	83 which is	the number	of rows in a
2	r	num_pixels2		IBM35CCD2PIX1 CCD. (See Figure 28)					
1	r	num_pixels1							
0	r	num_pixels0							

4.17 Timing Control - Number of Dark Rows

Default = A4h; Read/Write (address 1Bh)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	drk_rws_frst3	drk_rws_frst2	drk_rws_frst1	drk_rws_frst0	drk_rws_lst3	drk_rws_lst2	drk_rws_lst1	drk_rws_lst0
Default	1	0	1	0	0	1	0	0

Bit	Mnemonic	Function
7	drk_rws_frst3	Dark Rows: The dark rows registers should be written with the number of rows at the top and bottom of the CCD.
6	drk_rws_frst2	Please note that drk_rws_frst refers to the first rows to be read out. These are the rows at the top of the image, which get inverted through the lens, and get
5	drk_rws_frst1	focused onto the bottom rows of the CCD. The CS7620 uses these rows to acquire the proper black level.
4	drk_rws_frst0	The default value is 10 and the correct value to work with the IBM35CCD2PIX1 CCD. (See Figure 28)
3	drk_rws_lst3	Dark Rows: The dark rows registers should be written with the number of rows at the top and bottom of the CCD.
2	drk_rws_lst2	Note that drk_rws_lst refers to the last rows to be read out. This are the rows at the bottom of the image, which get inverted through the lens, and get fo-
1	drk_rws_lst1	cused onto the top rows of the CCD. The CS7620 uses these rows to acquire the proper black level.
0	drk_rws_lst0	The default value is 4 and is the correct value to work with the IBM35CCD2PIX1 CCD. (See Figure 28)

4.18 Timing Control - Start of Black Pixels

Default = 04h; Read/Write (address 1Ch)

Bit Number	7	6	5	4	3	2	1	0
Bit Name		Rese	rved		blk_begin3	blk_begin2	blk_begin1	blk_begin0
Default	-	-	-	-	0	1	0	0

Bit	Mnemonic	Function
7:4	-	Reserved
3	blk_begin3	Black Pixels: This register indicates the beginning of the black pixels within
2	blk_begin2	a horizontal line.
1	blk_begin1	Before the black pixels, there can be some extra pixels, due to latency through the horizontal shift register inside the CCD. The default value for this register
0	blk_begin0	is 4, since IBM35CCD2PIX1 has 3 extra pixels. (See Figure 28)

4.19 Timing Control - End of Black Pixels

Default = 3Fh; Read/Write (address 1Dh)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Reserved	blk_end6	blk_end5	blk_end4	blk_end3	blk_end2	blk_end1	blk_end0
Default	-	0	1	1	1	1	1	1

Bit	Mnemonic	Function
7	-	Reserved
6	blk_end6	Black Pixels: This register indicates the end of the black pixels within the hor-
5	blk_end5	izontal line.
4	blk_end4	This register is used by the black level loop together with blk_begin, to acquire
3	blk_end3	the proper black level on a line by line basis. Since the loop has some latency,
2	blk_end2	the value stored in this register, should be 10 less than the actual last black
1	blk_end1	 pixel in each line. Since in IBM35CCD2PIX1, this number is 73, the default is set to 63. (See Figure 28)
0	blk_end0	

4.20 Timing Control - Number of Rows until Active

Default = C6h; Read/Write (address 1Eh)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	act_rws_frst3	act_rws_frst2	act_rws_frst1	act_rws_frst0	act_rws_lst3	act_rws_lst2	act_rws_lst1	act_rws_lst0
Default	1	1	0	0	0	1	1	0

Bit	Mnemonic	Function
7	act_rws_frst3	Active Rows: act_rws_frst corresponds to the first group of non active rows at the top of the image, which get inverted through the lens, and get focused onto the bottom rows of the CCD.
6	act_rws_frst2	The register value is used by the CS7620 when the part is in the valid data
5	act_rws_frst1	mode to generate the data valid signal on the CLKO pin. Valid data can be set through the above mentioned registers together with
4	act_rws_frst0	act_begin(1Fh) to define a subset of pixels to be passed to the subsequent ASIC or DSP component. This subset may or may not include dark rows and/or dark pixels. Please refer to Figure 28.
3	act_rws_lst3	Active Rows: act_rws_lst corresponds to the last group of non active rows at the bottom of the image, which get inverted through the lens, and get focused onto the top rows of the CCD.
2	act_rws_lst2	The register value is used by the CS7620 when the part is in the valid data
1	act_rws_lst1	mode to generate the data valid signal on the CLKO pin. Valid data can be set through the above mentioned registers together with
0	act_rws_lst0	act_begin(1Fh) to define a subset of pixels to be passed to the subsequent ASIC or DSP component. This subset may or may not include dark rows and/or dark pixels. Please refer to Figure 28.

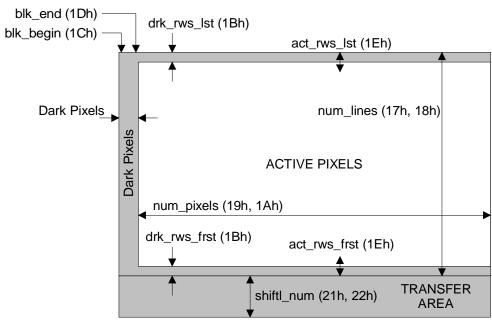


Figure 28. Typical CCD Pixel Arrangement

4.21 Timing Control - Start of Active Pixels

Default = 4Bh; Read/Write (address 1Fh)

Bit Number		7	6	5	4	3	2	1	0		
Bit Name	t Name act_begin7 act		act_begin6	act_begin5	act_begin4	act_begin3	act_begin2	act_begin1	act_begin0		
Default		0	1	0	0	1	0	1	1		
Bit	N	Mnemonic				Functio	n				
7		act_begin7		ve Pixels: Th							
6	i	act_begin6		 the first active pixel to be read out. That is the first pixel after the extra pixels, the black pixels, and the grey pixel. 							
5	i	act_begin5		This register value is used by the CS7620 when the part is in the valid data							
4	i	act_begin4	mod	e to generate	e the data va	lid signal on	the CLKO	pin.			
3		act_begin3		Valid data can be set through the above mentioned registers together with act_begin(1Fh) to define a subset of pixels to be passed to the subsequent							
2	i	act_begin2	ASI	ASIC or DSP component. This subset of pixels to be passed to the subsetu and/or dark pixels. Please refer to Figure 28.							
1	1	act_begin1									
0 act_begin0				The default value is set to 75, which is the sum of the blk_end register (1Dh) and act_rws_lst register (1Eh).							

4.22 Timing Control - Vertical Time Division

Default = 01h; Read/Write (address 20h)

Bit Number	7 6 5			4	3	2	1	0
Bit Name	Reserved			tdv4	tdv3	tdv2	tdv1	tdv0
Default	-	-	-	0	0	0	0	1

Bit	Mnemonic	Function
7:5	-	Reserved
4	tdv4	Critical Timing: This determines the width of the minimum vertical division
3	tdv3	measured in pixel clocks. (One vertical pixel shift (row) requires 8 vertical time
2	tdv2	– division slots) See Figure 33.
1	tdv1	
0	tdv0	

4.23 Timing Control - Lines in Storage Buffer (MSBs)

Default = 01h; Read/Write (address 21h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name			shiftl_num9	shiftl_num8				
Default	-	-	-	-	-	-	0	1
					•	•	•	•
Bit	Mnemonic				Functio	n		
7:2	-	Rese	erved					
1	shiftl_num9		Storage Buffer Lines: This value must be programmed for proper operation in both high and low resolution modes.					

Please refer to Figure 28.

4.24 Timing Control - Lines in Storage Buffer (LSBs)

Default = 06h; Read/Write (address 22h)

shiftl_num8

0

Bit Number	7	6	5	4	3	2	1	0
Bit Name	shiftl_num7	shiftl_num6	shiftl_num5	shiftl_num4	shiftl_num3	shiftl_num2	shiftl_num1	shiftl_num0
Default	0	0	0	0	0	1	1	0

Bit	Mnemonic	Function
7	shiftl_num7	Storage Buffer Lines: This value must be programmed for proper operation
6	shiftl_num6	in both high and low resolution modes.
5	shiftl_num5	The default value for shiftl_num is 262.
4	shiftl_num4	Please refer to Figure 28.
3	shiftl_num3	
2	shiftl_num2	
1	shiftl_num1	
0	shiftl_num0	

4.25 Timing Control - Extra Lines of Exposure in Low Resolution Mode (MSBs)

Default = 00h; Read/Write (address 23h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name			Reserved			n_extra10	n_extra9	n_extra8
Default	-	-	-	-	-	0	0	0

Bit	Mnemonic	Function
7:3	-	Reserved
2	n_extra10	Extra Lines: See description for register 24h below.
1	n_extra9	
0	n_extra8	

4.26 Timing Control - Extra Lines of Exposure in Low Resolution Mode (LSBs)

Default = 00h; Read/Write (address 24h)

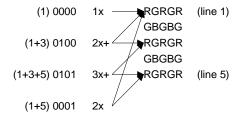
Bit Number		7	6	5	4	3	2	1	0		
Bit Name		n_extra7	n_extra6	n_extra5	n_extra4	n_extra3	n_extra2	n_extra1	n_extra0		
Default		0	0	0	0	0	0	0	0		
Bit	N	Inemonic				Functio	n				
7		n_extra7	Extra	Lines: This	allows for i	ncreased ex	posure time	while in low	resolution		
6		n_extra6	mode	mode.							
5		n_extra5	In low	resolution r	node, the C	S7620 conti	nuously outp	outs data on	a frame by		
4		n_extra4				LCD panel i					
3		n_extra3		•		signal. The o		se time is eo	quivalent to		
2		n_extra2	202	ne umes (se	e registers .	25h and 26h	, n_int).				
1		n_extra1				way to increase the exposure time beyond the one which					
0		n_extra0	is set by register n_int (25h and 26h). The value of n_extra c number of line times.						onds to the		

4.27 Timing Control - Vsync Mode, Lines of Exposure in Low Resolution Mode (MSBs)

Default = 01h; Read/Write (address 25h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Rese	rved	vsync_md	lowres_sen3	lowres_sen2	lowres_sen1	lowres_sen0	n_int8
Default	-	-	0	0	0	0	0	1

Bit	Mnemonic	Function
7:6	-	Reserved
5	vsync_md	Vertical Sync: Vsync_md, will switch the RD_OUT pin to output a vertical sync signal on this pin when the vsync_md register is set to 1. The default is 0 which outputs the RD_OUT signal (see Figures 21 and 22).



Bit	Mnemonic	Function
		Sensitivity in Low Resolution Mode: lowres_sens provides a way to increase the sensitivity during low resolution mode (see Figure 33).
		For proper settings of these values, please refer to the CCD data sheets.
4	4 lowres_sen3	In order to allow for a video mode, (low resolution) IBM 1.3Mpixel and 2.0Mpixel have a storage area that is in both cases 262 lines long. The use of this transfer area, is to keep the pixels covered from light during readout. This must be done because it is not practical to have a shutter at such high speed. Without the storage area the picture would be smeared, since the last line to be readout would have had a lot more exposure time than the first one.
		To solve this the storage area is used in the following manner. In the 1.3Mpixel there are 4 times more active lines than there are storage lines. The low resolution mode consists of two steps:
2	louros con?	Step 1: transfer: During this step, the active lines are subsampled into the storage area. In the 1.3Mpixel there are 4 times more active lines than there are storage lines, so that active line one will be stored into storage line 1, active line 5 will be stored into storage line 2, active line 9 into storage line 3 and so on until finally active line 1045 will be stored into storage line 262.
3	3 lowres_sen2	Step 2: readout: During this step, the data in the storage area is transferred line by line into the horizontal regis- ter, from where it will be read out sequentially.
		By using this optically covered transfer area, there is still a minimum amount of smear in the low resolution mode. However, it is greatly reduced. This smear will only take place during the transfer time, because the pixels in the active area are constantly being exposed since the shutter is always open in the low resolution mode. This however is a small percentage of the total exposure.
2	lowres_sen1	Sensitivity: The sensitivity of the CCD to light can be increased by 2x or 3x in the IBM 2.0M with RGRG, GBGB Bayer pattern. With a 2x extra sensitivity, twice as many photons will be accumulated. This mode can be used to increase resolution in low light scenes, and should be part of the AGC/iris control loop.
		To achieve this extra sensitivity, 2 lines from the active area get added together into one line in the storage area. this is done by having an additional pulse on the s1 line (see Figure 33).
1	lowres_sen0	Below are some examples: All of this can be programmed using register lowres_sen(25h). Each bit of this register controls one pulse. The first pulse is always on. 0000 means only first pulse is on 1000 means the second and first pulse are on 0100 means the third and first pulse are on 0010 means the fourth and first pulse are on 0001 means the fifth and first pulse are on 0101 means the third, fifth and first pulse are on
		Note that the user has to select very carefully the lines to be added. The selection of the lines is based on the color coating of the CCD. In some cases of color coating it is possible to add 2 lines, in other cases it is possible to add 3 lines (see below).
		(R = Red Pixel, B = Blue Pixel, G = Green Pixel)

Bit	Mnemonic	Function
0	n_int8	Exposure Time in Low Resolution Mode: Number of lines of exposure during readout (262 = all readout).
		See register 26h for more details.

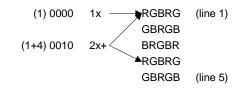
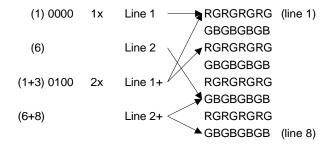



Figure 30. 2 million pixel IBM CCD (5:1 reduction) RGB pattern * note that in this mode the RGB pattern

switches to RBG in the vertical direction.

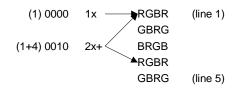
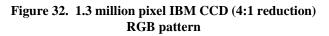



Figure 31. 1.3 million pixel IBM CCD (8:2 reduction)

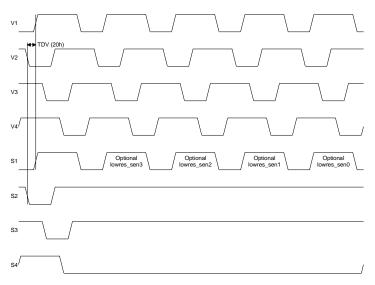


Figure 33. Vertical Timing Division for Low Resolution Mode

4.28 Timing Control - Lines of Exposure in Low Resolution Mode (MSBs)

Default = 06h; Read/Write (address 26h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	n_int7	n_int6	n_int5	n_int4	n_int3	n_int2	n_int1	n_int0
Default	0	0	0	0	0	1	1	0

Bit	Mnemonic	Function
7	n_int7	Exposure Time in Low Resolution Mode: In low resolution mode, the
6	n_int6	CS7620 continuously outputs data on a frame by frame basis; so it can drive
5	n_int5	 a LCD panel in a video mode. In this mode the CS7620 ignores the expose signal.
4	n_int4	
3	n_int3	N_int allows to shorten the exposure time while in low resolution mode.
2	n_int2	N_int controls the amount of time (measured in readout lines) where the CCD
1	n_int1	will be exposed to light. The default is 262, this means that the CCD receives
0	n_int0	full exposure during readout. By decreasing n_int, the amount of exposure can be decreased. To further increase this exposure time beyond the full 262 lines of readout time, the n_extra register (23h and 24h) is provided.

4.29 Timing Control - Polarity of Vertical Shift Outputs

Default = FFh; Read/Write (address 28h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	v_polarity7	v_polarity6	v_polarity5	v_polarity4	v_polarity3	v_polarity2	v_polarity1	v_polarity0
Default	1	1	1	1	1	1	1	1

Bit	Mnemonic	Function
7	v_polarity7	Vertical Signal Polarity: Polarity of each of the eight vertical shift outputs
6	v_polarity6	(V1 V2 V3 V4 S1 S2 S3 S4), where V1 polarity = MSB, S4 polarity = LSB
5	v_polarity5	A "0" indicates that the signal state is low, a "1" indicates that the signal state
4	v_polarity4	is high.
3	v_polarity3	
2	v_polarity2	
1	v_polarity1	
0	v_polarity0	

4.30 Horizontal Timing Control - H1

Default = 68h; Read/Write (address 29h)

Bit Number	7	6	5	4	3	2	1	0		
Bit Name	Reserved	h1d	h1f_reg2	h1f_reg1	h1f_reg0	h1f_reg2	h1f_reg1	h1f_reg0		
Default	-	1	1	0	1	0	0	0		
Bit	Mnemonic				Functio	n				
7	-	Rese	erved							
6	h1d	held time. A "0"	H1 Default Setting: During the vertical shift time, the horizontal clocks are held in one state. This bit controls whether H1 is held high or low during th time.A "0" indicates that the signal state is low, a "1" indicates that the signal state is high.							
5	h1f_reg2	throu the ir	alling Edge igh this regis nternally sele vith the comp	ter. The falli cted clock.	ng edge of F The phases	1 correspor	nds to the ris	sing edge o		
4	h1f_reg1		0 = t0 1 = t1 2 = t2 3 = t3							
3	h1f_reg0		4 = t4 5 = t5 6 = t6 7 = t7 (See Figur	re 19)						
2	h1f_reg2	throu the ir	H1 Rising Edge: The phase of the rising edge of H1 can be programmed through this register. The rising edge of H1 corresponds to the rising edge of the internally selected clock. The phases of these clocks are shown in Figure 19, with the complemented clocks being the inverse of these.							
1	h1f_reg1		0 = t0 1 = t1 2 = t2 3 = t3							
0	h1f_reg0		4 = t4 5 = t5 6 = t6 7 = t7							

(See Figure 19)

4.31 Horizontal Timing Control - H2

Default = 7Ah; Read/Write (address 2Ah)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Reserved	h2d	h2f_reg2	h2f_reg1	h2g_reg0	h2g_reg2	h2g_reg1	h2g_reg0
Default	-	1	1	1	1	0	1	0

Bit	Mnemonic	Function
7	-	Reserved
6	h2d	H2 Default Setting: During the vertical shift time, the horizontal clocks are held in one state. This bit controls whether H2 is held high or low during this time.A "0" indicates that the signal state is low, a "1" indicates that the signal state is high.
5	h2f_reg2	 H2 Falling Edge: The phase of the falling edge of H2 can be programmed through this register. The falling edge of H2 corresponds to the rising edge of the internally selected clock. The phases of these clocks are shown in Figure 19, with the complemented clocks being the inverse of these.
4	h2f_reg1	$ \begin{array}{c} 0 = t0 \\ 1 = t1 \\ 2 = t2 \\ 3 = t3 \\ 4 = t4 \end{array} $
3	h2g_reg0	5 = t5 6 = t6 7 = t7 (See Figure 19)
2	h2g_reg2	H2 Rising Edge: The phase of the rising edge of H2 can be programmed through this register. The rising edge of H2 corresponds to the rising edge of the internally selected clock. The phases of these clocks are shown in Figure 19, with the complemented clocks being the inverse of these.
1	h2g_reg1	$ \begin{array}{c} 0 = t0 \\ 1 = t1 \\ 2 = t2 \\ 3 = t3 \\ 4 = t4 \end{array} $
0	h2g_reg0	$ \begin{array}{l} 4 = t4 \\ 5 = t5 \\ 6 = t6 \\ 7 = t7 \\ (See Figure 19) \end{array} $

4.32 Horizontal Timing Control - H3

Default = 4Ch; Read/Write (address 2Bh)

Bit Number		7	6	5	4	3	2	1	0			
Bit Name		Reserved	h3d	h3f_reg2	h3f_reg1	h3f_reg0	h3f_reg2	h3f_reg1	h3f_reg0			
Default		-	1	0	0	1	1	0	0			
	r											
Bit		Mnemonic				Functio	n					
7		-	Rese	rved								
6		h3d	held i time. A "0" is hig	 H3 Default Setting: During the vertical shift time, the horizontal clocks a held in one state. This bit controls whether H3 is held high or low during t time. A "0" indicates that the signal state is low, a "1" indicates that the signal state is high. 								
5		h3f_reg2	throug the in	gh this regis ternally sele	ter. The falling ter. The falling ter.	of the falling ng edge of H The phases ocks being t	13 correspor	nds to the ris	ing edge of			
4		h3f_reg1		0 = t0 1 = t1 2 = t2 3 = t3								
3		h3f_reg0		4 = t4 5 = t5 6 = t6 7 = t7 (See Figur	e 19)							
2		h3f_reg2	throug the in	gh this regis ternally sele	ter. The risir	of the rising ng edge of H The phases ocks being t	3 correspor	nds to the ris	ing edge of			
1		h3f_reg1		0 = t0 1 = t1 2 = t2 3 = t3 4 = t4								
0		h3f_reg0		4 = t4 5 = t5 6 = t6 7 = t7 (See Figure 19)								

4.33 Horizontal Timing Control - H4

Default = 1Eh; Read/Write (address 2Ch)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Reserved	h4d	h4f_reg2	h4f_reg1	h4f_reg0	h4f_reg2	h4f_reg1	h4f_reg0
Default	-	0	0	1	1	1	1	0

Bit	Mnemonic	Function
7	-	Reserved
6	h4d	During the vertical shift time, the horizontal clocks are held in one state. This bit controls whether H4 is held high or low during this time.A "0" indicates that the signal state is low, a "1" indicates that the signal state is high.
5	h4f_reg2	The phase of the falling edge of H4 can be programmed through this register.
4	h4f_reg1	The falling edge of H4 corresponds to the rising edge of the internally selected
3	h4f_reg0	clock. The phases of these clocks in shown in Figure 19, with the complement- ed clocks being the inverse of these (i.e. the falling edge of p1 is the rising edge of p1, etc.). 0 = t0 $1 = t1$ $2 = t2$ $3 = t3$ $4 = t4$ $5 = t5$ $6 = t6$ $7 = t7$ (See Figure 19)
2	h4f_reg2	The phase of the rising edge of H4 can be programmed through this register.
1	h4f_reg1	The rising edge of H4 corresponds to the rising edge of the internally selected
0	h4f_reg0	clock. The phases of these clocks in shown are Figure 19, with the comple- mented clocks being the inverse of these. 0 = t0 1 = t1 2 = t2 3 = t3 4 = t4 5 = t5 6 = t6 7 = t7 (See Figure 19)

4.34 Horizontal Timing Control - Analog Delays

Default = 00h; Read/Write (address 2Dh)

rgf_reg1

rgf_reg0

rgr_reg1

rgr_reg0

Bit Number		7	6	5	4	3	2	1	0
Bit Name Resrved			srved	phase_h1	phase_h0	rgf_reg1	rgf_reg0	rgr_reg1	rgr_reg0
Default		-	-	0	0	0	0	0	0
Bit	N	Inemonic				Functio	n		
7:6		-	Rese	erved					
5		phase_h1	phas put s only, clock	Phase Shift of H1-H4 Pulses: This register allows for minor shifts in the phases of H1-H4. This can help to optimize the sampling time of the CCD input signal. 1 unit of delay is ~1.5 ns. This should be used for final adjustments only, with large adjustments done through the selection of the appropriate clock phases for each edge. All four horizontal clocks shift together when this register is used. 0 - no shift 1 - 1.5 ns shift 2 - 3.0 ns shift 3 - 4.5 ns shift					
4		phase_h0	regis						

0 - no shift 1 - 1.5 ns shift

0 - no shift 1 - 1.5 ns shift

2 - 3.0 ns shift 3 - 4.5 ns shift

2 - 3.0 ns shift 3 - 4.5 ns shift

RG Falling Edge Phase Shift: This register allows for minor shifts in the

RG Rising Edge Phase Shift: This register allows for minor shifts in the

phase of the falling edge of RG. 1 unit of delay is ~1.5 ns.

phase of the rising edge of RG. 1 unit of delay is ~1.5 ns.

3

2

1

0

4.35 Compander - Black Slope, Slopes (MSBs)

Default = 00h; Read/Write (address 2Eh)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Reserved			comp_linear	slope18	slope28	slope38	slope48
Default	-	-	-	0	0	0	0	0

Bit	Mnemonic	Function
7:5	-	Reserved
4	4 comp_linear	Compander Black Level Slope: 0 - The values of "0" to "64" in a 13 bit representation are set to "offset1" in a 10 bit representation. Offset1 can be set in register 33h.
		1 - In this case the black level is mapped linearly from 13 bit values to 10 bit values. "64" is mapped into "8". All the other values between "0" and "64" are divided by 8 in order to get the 10 bit representation. (See Figure 13)
3	slope18	Compander Slope 1: MSB of slope of first segment of companding curve. (See Figure 13)
2	slope28	Compander Slope 2: MSB of slope of second segment of companding curve. (See Figure 13)
1	slope38	Compander Slope 3: MSB of slope of third segment of companding curve. (See Figure 13)
0	slope48	Compander Slope 4: MSB of slope of fourth segment of companding curve. (See Figure 13)

4.36 Compander - Slope 1 (LSBs)

Default = A8h; Read/Write (address 2Fh)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	slope17	slope16	slope15	slope14	slope13	slope12	slope11	slope10
Default	1	0	1	0	1	0	0	0

Bit	Mnemonic	Function
7	slope17	Compander Slope 1: Slope of first segment (slope1[8:0]) of companding curve.
6	slope16	Max value is 1.996. The LSB step size is 0.0039. (See Figure 13)
5	slope15	
4	slope14	
3	slope13	
2	slope12	
1	slope11	
0	slope10	

4.37 Compander - Slope 2 (LSBs)

Default = 60h; Read/Write (address 30h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	slope27	slope26	slope25	slope24	slope23	slope22	slope21	slope20
Default	0	1	1	0	0	0	0	0

Bit	Mnemonic	Function
7	slope27	Compander Slope 2: Slope of second segment (slope2[8:0]) of companding
6	slope26	curve. Max value is 1.996. The LSB step size is 0.0039. (See Figure 13)
5	slope25	
4	slope24	
3	slope23	
2	slope22	
1	slope21	
0	slope20	

4.38 Compander - Slope 3 (LSBs)

Default = 20h; Read/Write (address 31h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	slope37	slope36	slope35	slope34	slope33	slope32	slope31	slope30
Default	0	0	1	0	0	0	0	0

Bit	Mnemonic	Function
7	slope37	Compander Slope 3: Slope of third segment (slope3[8:0]) of companding
6	slope36	curve. Max value is 1.996. The LSB step size is 0.0039. (See Figure 13)
5	slope35	
4	slope34	
3	slope33	
2	slope32	
1	slope31	
0	slope30	

4.39 Compander - Slope 4 (LSBs)

Default = 07h; Read/Write (address 32h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	slope47	slope46	slope45	slope44	slope43	slope42	slope41	slope40
Default	0	0	0	0	0	1	1	1

Bit	Mnemonic	Function
7	slope47	Compander Slope 4: Slope of fourth segment (slope4[8:0]) of companding
6	slope46	curve. Max value is 1.996. The LSB step size is 0.0039. (See Figure 13)
5	slope45	
4	slope44	
3	slope43	
2	slope42	
1	slope41	
0	slope40	

4.40 Compander - Offset 1

Default = 08h; Read/Write (address 33h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	offset17	offset16	offset15	offset14	offset13	offset12	offset11	offset10
Default	0	0	0	0	1	0	0	0

Bit	Mnemonic	Function
7	offset17	Compander Offset 1:Black level value of companding curve if not in linear
6	offset16	mapping mode (comp_linear = 0). (See Figure 13)
5	offset15	
4	offset14	
3	offset13	
2	offset12	
1	offset11	
0	offset10	

4.41 Compander - Offsets (MSBs)

Default = 0Bh; Read/Write (address 34h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Rese	Reserved		offset28	offset39	offset38	offset49	offset48
Default	-	-	0	0	1	0	1	1
Dit	Mnomonio				Function			

Bit	Mnemonic	Function
7:6	-	Reserved
5	offset29	Compander Offset 2: MSBs of offset of second segment of companding
4	offset28	curve. (See Figure 13)
3	offset39	Compander Offset 3: MSBs of offset of third segment of companding curve.
2	offset38	(See Figure 13)
1	offset49	Compander Offset 4: MSBs of offset of fourth segment of companding curve.
0	offset48	(See Figure 13)

4.42 Compander - Offset 2 (LSBs)

Default = BFh; Read/Write (address 35h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	offset27	offset26	offset25	offset24	offset23	offset22	offset21	offset 20
Default	1	0	1	1	1	1	1	1

Bit	Mnemonic	Function
7	offset 27	Compander Offset 2: Offset of second segment (offset2[9:0]) of companding
6	offset26	curve. (See Figure 13)
5	offset25	
4	offset24	
3	offset23	
2	offset22	
1	offset21	
0	offset20	

4.43 Compander - Offset 3 (LSBs)

Default = 05h; Read/Write (address 36h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	offset37	offset36	offset35	offset34	offset33	offset32	offset31	offset30
Default	0	0	0	0	0	1	0	1

Bit	Mnemonic	Function
7	offset37	Compander Offset 3: Offset of third segment (offset3[9:0]) of companding
6	offset36	curve. (See Figure 13)
5	offset35	
4	offset34	
3	offset33	
2	offset32	
1	offset31	
0	offset30	

4.44 Compander - Offset 4 (LSBs)

Default = 20h; Read/Write (address 37h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	offset47	offset46	offset45	offset44	offset43	offset42	offset41	offset40
Default	0	0	1	0	0	0	0	0

Bit	Mnemonic	Function
7	offset47	Compander Offset 4: Offset of fourth segment (offset4[9:0]) of companding
6	offset46	curve. (See Figure 13)
5	offset45	
4	offset44	
3	offset43	
2	offset42	
1	offset41	
0	offset40	

4.45 Compander - X1 (MSBs)

Default = 03h; Read/Write (address 38h)

Bit Number	7 6 5			4	3	2	1	0
Bit Name	Reserved			x112	x111	x110	x19	x18
Default	-	-	-	0	0	0	1	1

Bit	Mnemonic	Function
7:5	-	Reserved
4	x112	Compander X1: End value of first segment of companding curve (MSBs).
3	x111	(See Figure 13)
2	x110	
1	x19	
0	x18	

4.46 Compander - X1 (LSBs)

Default = 20; Read/Write (address 39h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	x17	x16	x15	x14	x13	x12	x11	x10
Default	0	0	1	0	0	0	0	0

Bit	Mnemonic	Function
7	x17	Compander X1: End value of first segment (x1[12:0]) of companding curve
6	x16	(LSBs). (See Figure 13)
5	x15	
4	x14	
3	x13	
2	x12	
1	x11	
0	x10	

4.47 Compander - X2 (MSBs)

Default = 05h; Read/Write (address 3Ah)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Reserved			x212	x211	x210	x29	x28
Default	-	-	-	0	0	1	0	1

Bit	Mnemonic	Function
7:5	-	Reserved
4	x212	Compander X2: End value of second segment of companding curve (MSBs).
3	x211	(See Figure 13)
2	x210	
1	x29	
0	x28	

4.48 Compander - X2 (LSBs)

Default = 18h; Read/Write (address 3Bh)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	x27	x26	x25	x24	x23	x22	x21	x20
Default	0	0	0	1	1	0	0	0

Bit	Mnemonic	Function
7	x27	Compander X2: End value of second segment (x2[12:0]) of companding
6	x26	curve (LSBs). (See Figure 13)
5	x25	
4	x24	
3	x23	
2	x22	
1	x21	
0	x20	

4.49 Compander - X3 (MSBs)

Default = 0Bh; Read/Write (address 3Ch)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Reserved			x312	x311	x310	x39	x38
Default	-	-	-	0	1	0	1	1

Bit	Mnemonic	Function
7:5	-	Reserved
4	x312	Compander X3: End value of third segment of companding curve (MSBs).
3	x311	(See Figure 13)
2	x310	
1	x39	
0	x38	

4.50 Compander - X3 (LSBs)

Default = 58h; Read/Write (address 3Dh)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	x37	x36	x35	x34	x33	x32	x31	x30
Default	0	1	0	1	1	0	0	0

Bit	Mnemonic	Function
7	x37	Compander X3: End value of third segment (x3[12:0]) of companding curve
6	x36	(LSBs). (See Figure 13)
5	x35	
4	x34	
3	x33	
2	x32	
1	x31	
0	x30	

4.51 Power_up Counter

Default = 7Dh; Read/Write (address 3Dh)

Bit Number		7	6	5	4	3	2	1	0	
Bit Name		cnt_reg7	cnt_reg6	cnt_reg5	cnt_reg4	cnt_reg3	cnt_reg2	cnt_reg1	cnt_reg0	
Default		0	1	1	1	1	1	0	1	
D'(-					E				
Bit	, r	Mnemonic				Functio	n			
7		cnt_reg7		Power Up Counter Register: When coming out of power down, there is a pe-						
6		cnt_reg6			•	ges and curr				
5		cnt_reg5				e gain calibr 0 µs. The piː				
4		cnt_reg4				ed into this re				
3		cnt_reg3	is bei	ng divided o	n chip, the c	livider's outp	out clock is t	he pixel cloc	:k.	
2		cnt_reg2								
1		cnt_reg1								
0		cnt_reg0								

4.52 Valid_data/Dout Edge/Clock_in Divider

Default = 01h; Read/Write (address 3Fh)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	Reserved	valid_data	dout_edge	clk_divide4	clk_divide3	clk_divide2	clk_divide1	clk_divide0
Default	-	0	0	0	0	0	0	1

Bit	Mnemonic	Function
7	-	Reserved
6	valid_data	 Valide Data Mode: This mode will redefine the CLKO pin as a data valid pin. The data_valid signal will only toggle over active pixels and is phase-aligned with the master clock. The user may then latch the data during this valid time using the master clock or a clock derived from it. Note that this mode may only be used if the master clock frequency is an integer multiple greater than 1 of the pixel rate (see Figures 14 and 15). If this mode is not selected, the output clock is output on the CLKO pin. 0 - digital clock output on CLKO pin 1 - valid_data signal on CLKO pin
5	dout_edge	Dout Edge Selection: If valid_data = 0, the edge of the clock that clocks out the data is selected by this bit. The data may be output either on the rising or the falling edge of the output clock, CLKO. HSYNC and RD_OUT are also output on same edge. Note that If valid_data = "1", this register is invalid. * HSYNC and RD_OUT also output on the same edge

Bit	Mnemonic	Function
4	clk_divide4	Clock Divider: The master clock frequency can be an integer multiple of the
3	clk_divide3	pixel clock rate. This register contains the number by which to divide the mas-
2	clk_divide2	ter clock frequency in order to get the pixel clock frequency. If a '0' is pro- grammed here, the divider is bypassed and the master clock is assumed to be
1	clk_divide1	at the pixel rate.
0	clk_divide0	

4.53 DAC #1 Control

Default = 00h; Read/Write (address 40h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	dac_cntl17	dac_cntl16	dac_cntl15	dac_cntl14	dac_cntl13	dac_cntl12	dac_cntl11	dac_cntl10
Default	0	0	0	0	0	0	0	0

Bit	Mnemonic	Function
7	dac_cntl17	DAC#1 Control: This is the digital input code to the general purpose DAC#1
6	dac_cntl16	which will then be converted into the analog current output. Each LSB in this
5	dac_cntl15	word will increment the output by ~8.7 μ A in low current mode and ~34 μ A in high current mode.
4	dac_cntl14	
3	dac_cntl13	
2	dac_cntl12	
1	dac_cntl11	
0	dac_cntl10	

4.54 DAC #2 *Control*

Default = 00h; Read/Write (address 41h)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	dac_cntl27	dac_cntl26	dac_cntl25	dac_cntl24	dac_cntl23	dac_cntl22	dac_cntl21	dac_cntl20
Default	0	0	0	0	0	0	0	0

Bit	Mnemonic	Function
7	dac_cntl27	DAC #2 Control: This is the digital input code to the general purpose DAC#2
6	dac_cntl26	which will then be converted into the analog current output. Each LSB in this
5	dac_cntl25	word will increment the output by ~8.7 μA in low current mode and ~34 μA in high current mode.
4	dac_cntl24	
3	dac_cntl23	
2	dac_cntl22	
1	dac_cntl21	
0	dac_cntl20	

4.55 Device ID

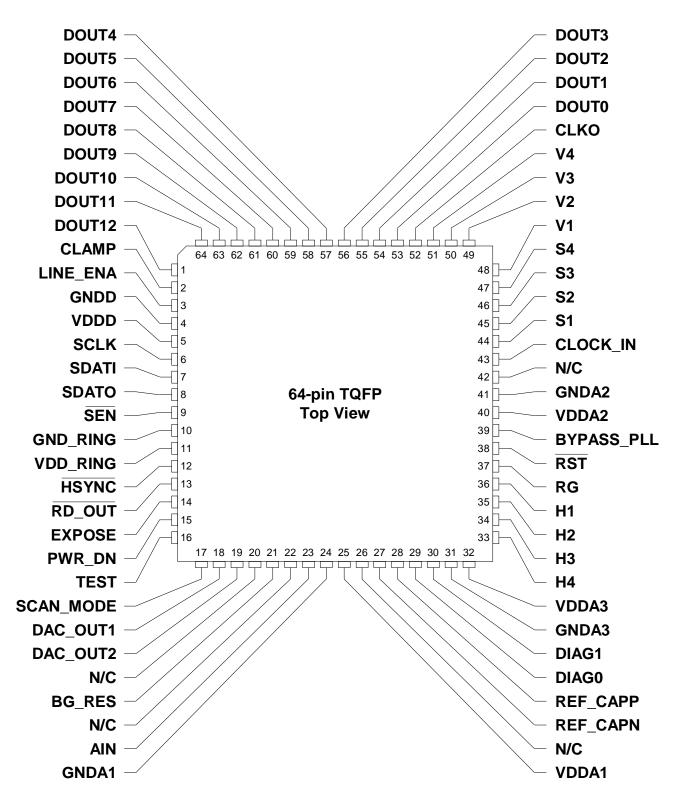
Default = ECh; Read (address 7Eh)

Bit Number	7	6	5	4	3	2	1	0
Bit Name	devide_ID7	devide_ID6	devide_ID5	devide_ID4	devide_ID3	devide_ID2	devide_ID1	devide_ID0
Default	1	1	1	0	1	1	0	0

Bit	Mnemonic	Function
7	devide_ID7	Device ID: This read-only register is the unique ID for the CS7620.
6	devide_ID6	
5	devide_ID5	
4	devide_ID4	
3	devide_ID3	
2	devide_ID2	
1	devide_ID1	
0	devide_ID0	

4.56 Rev Code

Default = 02h; Read (address 7Fh)


Bit Number	7	6	5	4	3	2	1	0
Bit Name	rev_code7	rev_code6	rev_code5	rev_code4	rev_code3	rev_code2	rev_code1	rev_code0
Default	0	0	0	0	0	0	1	0

Bit	Mnemonic	Function
7	rev_code7	Revision Code: This read-only register is the revision code for the CS7620.
6	rev_code6	
5	rev_code5	
4	rev_code4	
3	rev_code3	
2	rev_code2	
1	rev_code1	
0	rev_code0	

CS7620

5 PIN DESCRIPTIONS

5.1 Supply

VDDA[1:2] - Supply for an	alog				
Pins 25 and 40	5 V analog supply.				
VDDA3 - Supply for horizontal outputs					
Pin 32	3.3 V or 5 V analog supply.				

VDDD - Supply for digital	
Pin 5	5 V digital supply.

VDD_RING - supply for pad ring (digital pads)Pin 113.3 V or 5 V digital supply

5.2 Ground

GNDA[1:2] - Ground for anal	og
Pins 24 and 41	GNDA1 and GNDA2 are supplied by VDDA1 and VDDA2 respectively.
GNDA3 - Ground for horizon	tal outputs

Pin 31 Supplied by VDDA3. GNDD - Ground for digital

- Pin 4 Supplied by VDDD.
- **GND_RING Ground for pad ring (digital pads)** Pin 10 Supplied by VDD RING.

5.3 CMOS Input

Pin 2

BYPASS_PLL - Powers down PLL if not in use Pin 39 Supplied by VDDA2.

CLAMP - Black level clamp signal

Only used if an external timing generator is used. Supplied by VDD_RING.

CLOCK_IN - Chip input clock Pin 43 Su

Supplied by VDDA2.

EXPOSE - Begin expose sequence

Pin 14 Expose signal from the shutter. Supplied by VDD_RING.

LINE_ENA - Line enable signal

Pin 3 Supplied by VDD_RING.

PWR_DN - Places chip in full power down

Pin 15 Supplied by VDD_RING.

REF_CAPN - Reference capacitor- negative terminal Pin 27 Supplied by VDDA1. A

Supplied by VDDA1. A 1 μ F ceramic capacitor should be connected between REF_CAPN and REF_CAPP.

REF_CAPP - Reference capacitor- positive terminal

Pin 28 Supplied by VDDA1. A 1 µF ceramic capacitor should be connected between REF_CAPN and REF_CAPP.

RST - Reset pin, negative true Pin 38 May be con

May be connected to external power-on-reset-circuit. Supplied by VDDA2.

- SCAN_MODE TestPin 17Supplied by VDD_RING.
- SCLK Serial bus clock signal Pin 6 Supplied by VDD_RING.
- SDATI Serial bus data input signalPin 7Supplied by VDD_RING.
- SEN Serial bus enable signal-chip select (active low) Pin 9 Supplied by VDD_RING.
- **TEST Test enable pin**
Pin 16Supplied by VDD_RING.
- 5.4 CMOS Analog Input
 - AIN Video data input from CCD Pin 23 Supplied by VDDA1.
 - BG_RES Band-gap resistor Pin 21

Supplied by VDDA1. A 10 $k\Omega$ resistor should be connected between BG_RES and GNDA1.

5.5 <u>CMOS Analog Output</u>

DAC_OUT[1:2] - General purpose Digital-to-Analog converter output Pins 18 and 19 Supplied by VDDA1.

5.6 CMOS 4 mA Output

CLKO - Clock = output

Pin 52

Signal on this pin can either be the pixel clock output or data_valid signal output. Supplied by VDD_RING.

- DOUT[0:12] Digitized CCD data outputPins 53-64, and 1DOUT0 is LSB. Supplied by VDD_RING.
- SDATO Serial bus data output signal Pin 8 Supplied by VDD_RING.
- HSYNC Horiz sync (active low) Pin 12 Supplied by VDD_RING.
- **RD_OUT** Readout signal (active low) Pin 13 Supplied by VDD_RING.
- RG Reset gate clock pulse for CCDPin 37Supplied by VDDA3.

- S[1:4] Storage timing signal Pins 44-47 Supplied by VDDA2.
- V[1:4] Vertical timing signal Pins 48-51 Supplied by VDDA2.

5.7 CMOS 28 mA Output

H[1:4] - Horz. shift reg clock to CCD Pins 36, 35, 34, and 33 Supplied by VDDA3.

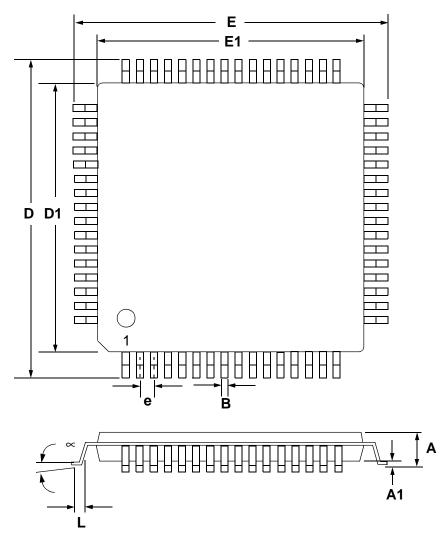
<u>5.8</u> <u>Misc</u>

DIAG[0:1] - CMOS analog test pins

Pins 29 and 30 test pins only - NC. Supplied by VDDA1.

N/C - No Connect Pins 20, 22, and 26

N/C - No Connect Pin 42


1 111 42

6 PACKAGE DIMENSIONS

64L TQFP PACKAGE DRAWING

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
A		0.063		1.60
A1	0.002	0.006	0.05	0.15
В	0.007	0.011	0.17	0.27
D	0.461	0.484	11.70	12.30
D1	0.390	0.398	9.90	10.10
E	0.461	0.484	11.70	12.30
E1	0.390	0.398	9.90	10.10
e*	0.016	0.024	0.40	0.60
L	0.018	0.030	0.45	0.75
×	0.000°	7.000°	0.00°	7.00°

* Nominal pin pitch is 0.50 mm

Controlling dimension is mm. JEDEC Designation: MS026

CS7620

• Notes •

