PABLL

L

(<72

®

SGS-THOMSON
MICROELEGTRONICS

Z8001 SEGCPU
Z8002 CPU

CENTRAL PROCESSING UNIT

Regular, easy-to-use architecture.

Instruction set more powerful than many mini-
computers.

Directly addresses 8M bytes.
Eight user-selectable addressing modes.

Seven data types that range from bits to 32-bit
long words and word strings.

= System and Normal operating modes.
= Separate code, data and stack spaces.
= Sophisticated interrupt structure.

= Resource-sharing capabilities for multiprocess-
ing systems.

= Multi-programming support.
= Strong compiler support.

» Memory management and protection provided
by Z8010 Memory Management Unit.

w 32-bit operations, including signed multiply and
divide.

= Z-BUS compatible.

= 4,6 and 1OMHz clock rate.

GENERAL DESCRIPTION

The Z8000 microprocessor has been designed to
accommodate a wide range of applications, from
the relatively simple to the large and complex. The
Z8000 CPU is offered in two versions : the Z8001
and Z8002. Each CPU comes with an entire family
of support components : a memory management
unit, a DMA controller, serial and parallel /O con-
trollers and extended processing units - all com-
patible with the Z-BUS*. Together with other Z8000
Family components, the advanced CPU architec-
ture provides in an LS| microprocessor design the
flexibility and sophisticated features usually asso-
ciated with mini- or mainframe computers.

The major architectural features of the Z8000 CPU
that enhance throughput and processing power are
a general purpose register file, system and normal
modes of operation, multiple addressing spaces, a
powerful instruction set, numerous addressing
modes, multiple stacks, sophisticated interrupt
structure, a rich set of data types, separate /O

May 1991

PDIP48

(Ordering information at the end of the datasheet)

Figure 1-1. Logic Function

AD 15
AD 14
AD 43
AD 42
AD 1q
AD 10
AD g
AD g
AD 7
AD g
AD 5
aD 4
AD 3
AD 3
AD 3
AD g

BUS
TIMING

@l &l
‘m Zl

(=

r

z
3

EQ

READ /WRITE
NORMAL /SYSTEM
8YTE /WORD

ADDRESS/

STATUS DATA BUS

- 573
512
ST

STO

28001
28002
CcPU

D

{—1

{—

WAIT
ST0P

CPU
CONTROL

BUS
CONTROL

SN g
SN 5
SN 4
SN 3
SN 3
SN
SN g
SEGT

SEGMENT

—_—
INTERRUPTS —_—{ Vi
v NUMBER

-
I
I
|
|
|
|
— (N !
|
|
|
|
|
L

MULTI-MICRO

{]
CONTROL | =——— MO

Bt

Vec GND CLK RESET

VR001228

Z8001,2 CPU

GENERAL DESCRIPTION (Continued)

address spaces and, for the Z8001, a large address
space and segmented memory addressing. Each
of these features is treated in detail in the next
section.

These architectural features combine to produce a
powerful, versatile microprocessor. The benefits
that result from these features are code density,
compiler efficiency, support for typical operating
system operations, and complex data structures.
These topics are treated in this chapter.

The CPU has been designed so that a powerful
memory management system can be used to im-
prove the utilization of the main memory and provide
protection capabilities for the system. This is dis-
cussed in this chapter. Although memory manage-
ment is an optional capability - the Z8000 CPU is an
extremely sophisticated processor without memory
management - the CPU has explicit features to facili-
tate integrating an external memory management
device into a Z8000 system configuration.

Finally, care has been taken to provide a very
general mechanism for extending the basic instruc-
tion set through the use of external devices (called
Extended Processing Units - EPUs). In general, an
EPU is dedicated to performing complex and time-
consuming tasks so as to unburden the CPU.
Typical tasks for specialized EPUs include floating-
point arithmetic, data base search and mainten-
ance operations, network interfaces, and many
others. This topic is treated in this chapter.

Architecture

The architectural resources of the Z8000 CPU
include sixteen 16-bit general-purpose registers,
seven data types ranging from bits to 32-bit long
words and byte strings, eight user-selectable ad-
dressing modes, and an instruction set more
powerful than that of most mini-computers. The 110
distinct instruction types combine with the various
data types and addressing modes to form a rich set
of 414 instructions. Moreover, the set exhibits a
high degree of regularity : more than 90% of the
instructions can use. Any of five main addressing
modes, with 8-bit byte, 16-bit word, and 32-bit
long-word data types.

The CPU generates status signals indicating the
nature of the bus transaction that is being at-
tempted ; these can be used to implement sophis-
ticated systems with multiple address spaces -
memory areas dedicated to specific uses. The CPU
also has two operating modes, system and normal,
which can be used to separate operating system
functions from normal application processes. /O

2 Lyj $6S-THOMSON

SGTREHICS

3

operations have been separated from memory ac-
cesses, further enchancing the capability and inte-
grity of Z8000-based systems, and a sophisticated
interrupt structure facilitates the efficient operation
of peripheral I/O devices. Moreover, the Extended
Processing Unit (EPU) capability of the Z8000
allows the CPU to unload many time-consuming
tasks onto external devices.

Special features of the Z8000 have been intro-
duced to facilitate the implementation of multiple
processor systems. In addition, the Z8001 CPU
has a large, segmented addressing capability that
greatly extends the applicability of microprocessors
to large system applications.

General-Purpose Register File. The heart of the
Z8000 CPU architecture is a file of sixteen 16-bit
general-purpose registers. These general-purpose
registers give the Z8000 its power and flexibility and
add to its regular instruction structure.

General-purpose registers can be used as accu-
mulators, memory pointers or index registers. Their
major advantage is that the particular use to which
they are put can vary during the course of a pro-
gram as the needs of the program change. Thus,
the general-purpose register file avoids the critical
bottlenecks of an implied or dedicated register
architecture, which must save and restore the con-
tents of dedicated registers when more registers of
a particular type are needed than are supplied by
the processor.

The Z8000 CPU register file can be addressed in
several ways : as 16 byte registers (occupying one
half of the file) or as 16 word registers or, by using
the register pairing mechanism, as eight long-word
(32-bit) registers or a four quadruple-word (64-bit)
registers. Because of this register flexibility, it is not
necessary (for example) for a Z8000 user to dedi-
cate a 32-bit register to hold a byte of data. Regis-
ters can be used efficiently in the Z8000.

Instruction Set. A powerful instruction set is one
of the distinguishing characteristics of the Z8000.
The instruction set is one measure of the flexibility
and versatility of a computer. Having a given oper-
ation implemented in hardware saves memory and
improves speed. In addition, completeness of the
operations available on a particular data type is
frequently more important than additional, esoteric
instructions, which are uniikely to affect perfor-
mance significantly. The Z8000 CPU provides a full
complement of arithmetic, logical, branch, I/O,
shift, rotate, and string instructions. In addition,
special instructions have been included to facilitate
multiprocessing, multiple processor configurations,

Z8001,2 CPU

and typical high level language and operating sys-
tem functions. The general philosophy of the in-
struction set is two-operand register-memory
operations, which include as a special subset reg-
ister-register operations. However, to improve
code density, a few memory-memory operations
are used for string manipulation. The two-address
format reflects the most frequently occuring oper-
ations (such as A < A + B). Also, having one of the
operands in a rapidly accessible general-purpose
register facilitates the use of intermediate results
generated during a calculation.

The majority of operations deal with byte, word, or
long-word operands, thereby providing a high de-
gree of regularity. Also included in the instruction
set are compact, one-word instructions for the most
frequently used operations, such as branching
short distances in a program.

The instruction set contains some notable addi-
tions to the standard repertoire of earlier micropro-
cessors. The Load and Exchange group of
instructions has been expanded to support opera-
ting system functions and conversion of existing
microprocessor programs. The usual arithmetic in-
structions can now deal with higher-precision oper-
ands, while hardware multiply and divide
instructions have also been added. The Bit Man-

Figure 1-2. Z8000 CPU Functional Block Diagram

ipulation instructions can use calculated values to
specify the bit position within a byte or word as well
as to specify the position statically in the instruction.
The Rotate and Shift instructions are considerably
more flexible than those in previous microproces-
sors. The String instructions are useful in translat-
ing between different character codes.
Multiple-processor configurations are supported by
special instructions.

Data Types. Many data types are supported by
the Z8000 architecture. A data type is supported
when it has a hardware representation and instruc-
tions which directly apply to it. New data types can
always be simulated in terms of basic data types,
but hardware support provides faster and more
convenient operations. The basic data type is the
byte, which is also the basic addressable element.
The architecture also supports the following data
types : words (16 bits), long words (32 bits), byte
strings, and word strings. In addition, bits are fully
supported and addressed by number within a byte
or word. BCD digits are supported and represented
as two 4-bit digits in a byte. Arrays are supported
by the Indexed addressing mode (in Chapter AD-
DRESSING MODES). Stacks are supported by the
instruction set and by an external device (the Mem-
ory Management Unit Z8010 MMU) available with
the Z8001.

e e
INTERFACE

28000 CPU

]

]

]

]

| 1 |

]

| REFRESH

I GENERAL ARITHMETIC

I CONTROL

| PURPOSE LoGic

]

| REGISTERS UNIT REFRESH

I COUNTER

1

]

]

I

]

]

I

I

' < INTERNAL DATA BUS

]

]

]

]

]

1

]

]

: IINSTRUCTION] PROGRAM PSAP

i | _BUFFER | STATUS

! INSTRUCTION REGISTERS

I EXCEPTION
EXECUTION emmem

! rooRETTS HANDLING

! CONTROL rfew "1 CONTROL

]

]

| !

]

]

]

i

VROQ1226

‘7—’ SGS-THOMSON 3

+ MICRCELECTROYICS

Z8001,2 CPU

Architecture (Continued)

Addressing Modes. The addressing mode, which
is the way an operand is specified in an instruction,
determines how an address is generated. The
78000 CPU offers eight addressing modes.
Together with the large number of instructions and
data types, they improve the processing power of
the CPU. The addressing modes are Register,
Immediate, Indirect Register, Direct Address,
Index, Relative Address, Base Address, and Base
Index. Several other addressing modes are implied
by specific instructions, including autoincrement.
The first five modes listed above are basic address-
ing modes that are used most frequently and apply
to mostinstructions having more than one address-
ing mode. (In the Z8002, Base Address and Index
modes are identical, and in the Z8001, Base Ad-
dressing capabilites can be simulated with all in-
structions, using Based Addressing or the Memory
Management Unit and the Direct or Indexed Ad-
dressing mode.)

Multiple Memory Address Spaces. The Z8000
CPU facilitates the use of multiple address spaces.
When the Z8000 CPU generates an address, italso
outputs signals indicating the particular internal
activity which led to the memory request : instruc-
tion fetch, operand reference, or stack reference.
This information can be used in two ways : to
increase the memory space available to the pro-
cessor (for example, by putting programs in one
space and data in another) ; or to protect portions
of the memory and allow only certain types of
accesses (for example, by allowing only instruction
fetches from an area designated to contain proprie-
tary software). The Memory Management Unit
(MMU) has been designed to provide precisely
these kinds of protection features by using the
CPU-generated status information.

System/Normal Mode of Operation. The Z8000
CPU can run in either system mode or normal
mode. in system mode, all of the instructions can
be executed and all of the CPU registers can be
accessed. This mode is intented for use by pro-
grams performing operating system functions. In
normal mode, some instructions may not be ex-
ecuted (e.g., /O operations), and the control regis-
ters of the CPU are inaccessible. In general, this
mode of operation is intended for use by application
programs. This separation of CPU resources pro-
motes the integrity of the system, since programs
operating in normal mode cannot access those
aspects of the CPU which deal with time dependent
or system-interface events.

: L3 S5 THOMSON

Programs executing in normal mode which have errors
can always reproduce those errors for debugging pur-
poses simply by re-executing the program with its
original data. Programs using facilities available only in
system mode may have errors due to timing consider-
ations (e.g. based upon the frequency of disk requests
and disk arm-position) that are harder to debug be-
cause these errors are not easily reproduced. Thus,
the preferred method of program development is to
partition the task into a portion which can be performed
without those resources accessible only in system
mode (which will usually be the bulk of the task) and a
portion requiring system mode resources. The classic
example of this partitioning comes from current mini-
computer and mainframe systems : the operating sys-
tem runs in system mode and the individual users write
their programs to run in normal mode.

To further support the system/normal mode dicho-
tomy, there are two copies of the stack pointer -one
for a system mode stack and another for a normal
mode stack. These two stacks facilitate the task
switching involved when interrupts or traps occur. To
insure that the normal stack is free of system infor-
mation, the information saved on the occurence of
interrupts or traps is always pushed on to the system
stack before the new program status is loaded.

Separate I/0 Address Spaces. The Z8000 Archi-
tecture distinguishes between memory and I/0
spaces and thus requires specific I/O instructions.
This architectural separation allows better protection
and has more potential for extension. The use of
separate /O spaces also conserves the limited
Z8002 data memory space. There are in fact two
separate /O address spaces : standard /O and
special l/O. The main advantage of these two spaces
is to provide for two types of peripheral suppont
chips -standard I/0 peripheral and special /O periph-
erals- devices such as the Z8010 Memory Manage-
ment Unit that do not respond to standard /O
commands, but do respond to special /O com-
mands. A second advantage of these two spaces is
that they allow 8-bit peripherals to attach to the
low-order eight bits (standard I/0) or to the high-order
eight bits (special I/O) of the processor Address/Data
bus.

The increased speed requirements of future micropro-
cessors are likely to be achieved by tailoring memory
and |/O references to their respective, characteristic
reference patterns and by using simultaneous I/O and
memory referencing. These future possibilities require
an architectural separation today. Memory-mapped I/O
is still possible, but loss of protection and tack of
expandability are severe problems.

Z8001,2 CPU

Interrupt Structure. The sophisticated interrupt
structure of the Z8000 allows the processor to
continue performing useful work while waiting for
peripheral events to occur. The elimination of peri-
odic polling and idling loops (typically used to deter-
mine when a device is ready to transmit data)
increases the throughput of the system. The CPU
supports three types of interrupts. A non-maskable
interrupt represents a catastrophic event which
requires immediate handling to preserve system
integrity. In addition, there are two types of mask-
able interrupts : non-vectored interrupts and vec-
tored interrupts. The latter provides an automatic
call to separate interrupt processing routines for
each peripheral, depending on the vector
presented by the peripheral to the Z8000.

The Z8000 has implemented a priority system for
handling interrupts. Vectored interrupts have
higher priority than non-vectored interrupts. This
priority scheme allows the efficient control of many
peripheral devices in a Z8000 system.

An interrupt causes information relating to the cur-
rently executing program (program status) to be
saved on a special system stack with a code de-
scribing the reason for the switch. This allows
recursive task switches to occur while leaving the
normal stack undisturbed by system information.
The program state to handle the interrupt (new
program status) is loaded from a special area in
memory, the program status area, designated by a
pointer resident in the CPU.

The use of the stack and of a pointer to the program
status area is a specific choice made to allow
architectural compatibility if new interrupts or traps
are added to the architecture.

Multi-Processing. The increase in microproces-
sor computing power that the Z8000 represents
makes simple the design of distributed processing
systems having many low-cost microprocessors
running dedicated processes.

The Z8000 provides some basic mechanisms that
allow the sharing of address spaces among differ-
ent microprocessors. Large segmented address
spaces and the support for external memory man-
agement make this possible. Also, a resource re-
quest bus is provided which, in conjunction with
software, provides the exclusive use of shared
critical resources. These mechanisms, and new
peripherals such as the Z8038 FIO, have been
designed to allow easy asynchronous communica-
tion between different CPUs.

Large Address Space for the Z8001. For many
applications, a basic address space of 64K bytes
is insufficient. A large address space increases the
range of applications of a system by permitting
large, complex programs and data sets to reside in
memory rather than be partitioned and swapped
into a small memory as needed. A large address
space greatly simplifies program and data man-
agement. In addition, large address spaces and
memories reduce the need for minimizing program
size and permit the use of higher level languages.
The segmented version of the Z8000 generates
23-bit addresses, for a basic address space of 8
megabytes (8M or 8,388, 608 bytes).

Segmented Addressing of the Z8001. The seg-
mented version of the Z8000 CPU divides its 23-bit
addresses into a 7-bit segment number and a 16-bit
segment offset. The segment number serves as a
logical name of a segment ; it is not altered by the
effective address calculation (by indexing, for
example). This corresponds to the way memory is
typically used by a program -one portion of the
memory is set aside to hold instructions, another
for data. In a segmented address space, the in-
structions could reside in one segment (or several
different modules in different segments), and each
data set could reside in a separate segment. One
advantage of segmentation is that it speeds up
address calculation and relocation. Thus, segmen-
tation allows the use of slower memories than
linear addressing schemes allow. In addition, seg-
ments provide a convenient way of partitioning
memory so that each partition is given particular
access attributes (for example, read-only). The
78000 approach to segmentation (simultaneous
access to a large number of segments) is necess-
ary if all the advantages of segmentation are to be
realized. A system capable of directly accessing
only, say, four segments would lack the needed
flexibility and would be constrained by address
space limitations.

Memory Management. Memory management
consists primarily of dynamic relocation, protection,
and sharing of memory. It offers the following ad-
vantages : providing a logical structure to the mem-
ory space that is independent of the actual physical
location of data, protecting the user from inadver-
tent mistakes such as attempting to execute data,
preventing unauthorized access to memory resour-
ces or data, and protecting the operating system
from disruption by the users.

Ly SG6S-THOMSON 5

JE

LECTRSWICS

Z8001,2 CPU

Architecture (Continued)

The addresses manipulated by the programmer,
used by instructions, and output by the segmented
Z8000 CPU are called logical addresses. The ex-
ternal memory management system takes the logi-
cal addresses and transforms them into physical
addresses required for accessing the memory. This
address transformation process is cailed reloca-
tion, which makes user software independent of the
physical memory. Thus, the user is freed from
specifying where information is actually located in
the physical memory.

The segmented Z8000 CPU supports memory
management both with segmented addressing and
with program-status information. A segmented ad-
dressing space allows individual segments to be
treated differently.

Program status information generated by the CPU
permits an external memory management device
to monitor the intended use of each memory ac-
cess. Thus, illegal types of access can be sup-
pressed and memory segments protected from
unintended or unwanted modes of use. For
example, system tables could be protected from
direct user access. This added protection capability
becomes more important as microprocessors are
applied to large, complex tasks.

Benefits of the Architecture

The features of the Z8000 Architecture combine to
provide several significant benefits : improvements in
code density, compiler efficiency, operating system
support, and support for high level data structures.

Code Density. Code density affects both proces-
sor speed and memory utilization. Code compac-
tion saves memory space -an especially important
factor in smaller systems- and improves processor
speed by reducing the number of instruction words
that must be fetched and decoded. The Z8000
offers several advantages with respect to code
density. The most frequently used instructions are
encoded in single-word formats. Fewer instructions
are needed to accomplish a given task and a
consistent and regular architecture further reduces
the number of instructions required.

Code density is achieved in part by the use of
special "short" formats for certain instructions
which are shown by statistical analysis to be most
frequently used by assemblers. A "short offset”
mechanism has also been provided to allow a
2-word segmented address to be reduced to a

6" Lyj $Gs-THOMSON

= MICEOELECTRONICS

single word ; this format may be used by assem-
blers and compilers.

The largest reduction in program size and increase
in speed results from the consistent and regular
structure of the architecture and from the more
powerful instruction set -factors that substantially
reduce the number of instructions required for a
task. The architecture is more regular relative to
preceding microprocessors because its registers,
address modes, and data types can be used in a
more orderly fashion. Any general-purpose register
except RO can be specified as an accumulator,
index register, or base register. With a few excep-
tions, all basic addressing modes can be used with
all instructions, as can the various data types.

General-purpose registers do not have to be
changed as often as registers dedicated to a specific
purpose. This reduces program size, since frequent
load and store operations are not required.

Compiler Efficiency. For microprocessor users,
the transition from assembly language to high-levei
languages allows greater freedom from architectu-
ral dependency and improves ease of programm-
ing. However, rather than adapt the architecture to
a particular high-level language, the Z8000 was
designed as a general-purpose microprocessor.
(Tailoring a processor for efficiency in one language
often leads to inefficiency in unrelated languages).
For the Z8000, language support has been pro-
vided through the inclusion of features designed to
minimize typical compilation and code-generation
problems. Among these features is the regularity of
the Z8000 addressing modes and data types. Ac-
cess to parameters and local variables on the
procedure stack is supported by the "Index With
Short Offset” addressing mode, as well asthe Base
Address and Base Index addressing modes. In
addition, address arithmetic is aided by the Incre-
ment and Decrement instructions.

Testing of data, logical evaluation, initialization, and
comparison of data are made possible by the in-
structions Test, Test Condition Codes, Load Imme-
diate Into Memory, and Compare Immediate With
Memory. Since compilers and assemblers fre-
quently manipulate character strings, the instruc-
tions Translate, Translate And Test, Block
Compare, and Compare String all result in dramatic
speed improvements over software simulations of
these important tasks. In addition, any register
except RO can be used as a stack pointer by the
Push and Pop instructions.

Z8001,2 CPU

Operating System Support. Interrupt and task-
switching features are included to improve opera-
ting system implementations. The
memory-management and compiler-support fea-
tures are also quite important.

The interrupt structure has three levels : non-mask-
able, non-vectored, and vectored. When an interrupt
occurs, the program status is saved on the stack with
an indication of the reason for this state-switching
before a new program status is loaded from a special
area of memory. The program status consists of the
flag register, the control bits, and the program counter.
The reason for the occurence is encoded in a vector
that is read from the system bus and saved on the
stack. In the case of a vectored interrupt, the vector
also determines a jump table address that points to the
interrupt processing routine.

The inclusion of system and normal modes im-
proves operating system organization. In the sys-
tem mode, all operations are allowed ; in the
normal mode, certain system instructions are pro-
hibited. The System Call instruction allows a con-
trolled switch of mode, and the implementation of
traps enforces these restrictions.

Traps result in the same type of program status-saving
as interrupts : in both cases, the information saved is
pushed on to a system stack that keeps the normal
stack undisturbed. The Load Multiple instruction allows
the contents of registers to be saved efficiently in
memory or on the stack. Running programs can cause
program status changes under direct software control
with the Load Program Status instruction.

Finally, exclusion and serialization can be achieved
with the "atomic" Test And Set instruction that syn-
chronizes asynchronous cooperating processes.

Support for Many Types of Data Structures. A
data structure is a logical organization of primitive
elements (byte, word, etc.) whose format and ac-
cess conventions are well-defined. Common data
structures include arrays, lists, stacks, and strings.
Since data structures are high-level constructs fre-
quently used in programming, processor perfor-
mance is significantly enchanced if the CPU
provides mechanisms for efficiently manipulating
them. The Z8000 offers such mechanisms.

In many applications, one of the most frequently
encountered data structures is the array. Arrays are

supported in the Z8000 by the index and the Base
Index addressing mode and by segmented ad-
dressing. The Base Index addressing mode allows
the use of pointers into an array (i.e., offsets from
the array’s starting address). Segmented address-
ing allows an array to be assigned to one segment,
which can be referenced simply by segment num-
ber.

Lists occur more frequently than arrays in business
applications and in general data processing. Lists
are supported by Indirect Register and Base Ad-
dress addressing modes. The Base Index address-
ing mode is also useful for more complex lists.

Stacks are used in all applications for nesting of
routines, block structured languages, and interrupt
handling. Stacks are supported by the Push and
Pop instructions, and multiple stacks may be im-
plemented based on the general-purpose registers
of the Z8000. In addition, two hardware stack poin-
ters are used to assign separate stacks to system
and normal operating modes, thereby further sup-
porting the separation of system and normal oper-
ating environments discussed eartier.

Byte and word strings are supported by the Trans-
late and Translate And Test instructions. Decimal
strings use the Decima! Adjust instruction to do
decimal arithmetic on strings of BCD data, packed
two characters per byte. The Rotate Digit instruc-
tions also manipulate 4-bit data.

Two CPU Versions : 28001 and Z8002. The
78000 CPU is offered in two versions : the Z8001
48-pin segmented CPU and the Z8002 40-pin non-
segmented CPU. The main difference between the
two is addressing range. The Z8001 can directly
address 8M bytes of memory ; the Z8002 directly
addresses 64K bytes. The Z8001 has a non-seg-
mented mode of operation which permits it to ex-
ecute programs written for the Z8002.

Not all applications require the large address space
of the Z8001 ; for these applications the Z8002 is
recommended. Moreover, many multiple-proces-
sor systems can be implemented with one Z8001
and severals Z8002s, instead of exclusively using
Z8001s. Since the same assembler generates
code for both CPUs, users can buy only the power
they require without having to worry about software
incompatibility between processors.

<7 SGS-THOMSON 7

+ MICROELECTROMICS

Z8001,2 CPU

Extended Instruction Facility

The Z8000 architecture has a mechanism for ex-
tending the basic instruction set through the use of
external devices. Special opcodes have been set
aside to implement this features. When the CPU
encouters an instruction with these opcodes in its
instruction stream, it will perform any indicated ad-
dress calculation and data transfer ; otherwise, it will
treat the "extended instruction" as being executed
by the external device. Fields have been set aside
in these extended instructions which can be inter-
preted by external devices (Extended Processing
Units -EPUs) as opcodes. Thus, by using appropri-
ate EPUs, the instruction set of the Z8000 can be
extended to include specialized instructions.

In general, an APU is dedicated to performing com-
plex and time-consuming tasks in order to unburden
the CPU. Typical tasks suitable for specialized
EPUs include floating-point arithmetic, data base
search and maintenance operations, network inter-
faces, graphics support operations -a complete list
would include most areas of computing.

Summary

The architectural sophistication of the Z8000 micropro-
cessor is on a level comparable with that of the minicom-
puter. Features such as large address spaces, multiple

Figure 1-3a. Z8001 General-Purpose Registers

Z8001
re[7 RHO 017 RLO 0] ”1
ri[1s RH1 i RUI o] |
RQO
R2 RH2] RL2]
rs[RH3 i RL3
4/ Ra [RH4 1 RL4 IR
LR e i RLS !
RQ4
re [RHE i RLG,
R7[RH7 i RL7]
{ raf 15 o])
R9 ‘
L] RO
rRio[
0
RR1 [=
.
R12
RR12 ¢ r L |
(= 1]
WLL SYSTEM_STACK POINTER (SEGNO RQ12
R14 NORMAL STACK POINTER (SEG.NO.)
RR14 R15' [SvSTEM STACK POINTER (OFFSET) j
Rﬁ NORMAL STACK POINTER (OFFSET) I:IJ

VR001231

memory spaces, segmented addresses, and sup-
port for multiple processors are beyond the capa-
bilities of the traditional microprocessor. The
benefits of this architecture -code density, compiler
support, and operating system support- greatly
enhance the power and versatility of the CPU. The
CPU features that support an external memory
management system aiso enhance the CPU’s ap-
plicability to large system environments.

Register organization

The Z800 CPU is a register-oriented machine that
offers sixteen 16-bit general-purpose registers and
a set of special system registers. All general-pur-
pose registers can be used as accumulators and
all but one as index registers or memory pointers.

Register flexibility is created by grouping and over-
lapping multiple registers (Figure 1-3a and 1-3b).
For byte operations, the first eight 16-bit registers
(RO...R7) are treated as sixteen 8-bit registers
(RLO, RHO, ..., RL7, RH7). The sixteen 16-bit regis-
ters are grouped in pairs (RRO ... RR14) to form
32-bitlong-word registers. Similarly, the register set
is grouped in quadruples (RQO ... RQ12) to form
64-bit registers.

Figure 1-3b. Z8002 General-Purpose Registers

28002
ere ; RO L7 RHG 7) o
cr s RH T j R 7] -
. [r2 [RH2 j RLZ IR A
Fr {R} [RH3, i RL3 /
TRe [RH4 j RL4]
RR4 .
Les [RH5 ! RLS
M RC4
=6 | RHE i | ‘
RRE [Ri7 J R6 R7 |
RRS ¢ e 0 _]
R |]
s RQ8
mo| ﬁ ;
RR10 {m I =
fRzz[]
2 <
A ris[]
"RM I l RQ12
L)
RRI4C g SVSTEM STACK POINTER
R15 [NORMAL STACK POINTER]—‘/
ROC1230

8 Lyy sts- “THOMSON

« LT

Z8001,2 CPU

Instruction Set Summary

The Z8000 provides the following types of instruc-

tions :

1

Load and Exchange.
Arithmetic.

Logical.

— Program Control.

Load and Exchange

Bit Manipulation.

Rotate and Shift.

Block Transfer and String Manipulation.
Input/Output.

CPU Control.

Clock Cycles

R Addr. "
Mnemonics Operands Modes Word, Byte Long Word Operation
NS SS SL NS SS SL
CLR dst R 7 - Clear
CLRB IR 8 - - dst« O
DA 11 12 14
X 12 12 15
EX R,src R 6 - Exchange
EXB IR 12 - - R & sre
DA 15 16 18
X 16 16 19
LD R.src R 3 5 - - Load into Register
| LDB IM 7 - - 1 - - Resrc
| LDL IM 5 (byte only)
‘ IR 7 - - 11 - -
. DA 9 10 12 12 13 15
| X 10 10 13 13 13 16
} BA 14 - - 17 - -
' BX 14 - 17 - - ‘
LD dst,R IR 8 - - 11 - - Load into Memory (Store)
LDB DA 1 12 14 14 15 17 dst«R
, LDL X 12 12 15 15 15 18
BA 14 - - 17 - -
BX 14 - 17 -
LD dst,IM IR 11 - - Load Immediate into Memory
. LDB DA 14 15 17 dst « IM
X 15 15 18 :
LDA R,src DA 12 13 15 Load Address ‘
X 13 13 16 R « source address !
BA 15 - -
BX 15 -
, LDAR R,src RA 15 - Load Address Relative
R « source address
LDK R,src M 5 - - Load Constant
R«<n(n=0..15)
LDM R,src,n IR 11 - - Load Multipe
DA 14 15 17 > +3n R « src (n consecutive words)
X 15 15 18 | (n=1..16)
LDM dst,R,n IR 11 - - Load Multiple (Store Multiple)
DA 14 15 17 > +3n dst « R (n consecutive words)
X 15 15 18 | (n=1..16)
(N7 SGS-THOMSON s
Y1 Siches iciEor es

Z28001,2 CPU

Load and Exchange (Continued)

M 0 \
Clock Cycles
M . o d Addr. o . 1
nemonics Operands .. - Word, Byte Long Word peration
NS SS SL NS SS SL |
—
. LDR R,src RA 14 - - 17 - - Load Relative !
LDRB R« src
LDRL (range - 32768 ... + 32767)
LDR dst,R RA 14 - - 17 - - Load Relative (Store Relative)
LDRB dst < R
LDRL (range - 32768 ... + 32767)
POP dst,IR R 8 - - 12 - - Pop
POPL IR 12 - - 19 - - dst « IR
DA 16 16 18 23 23 25 Autoincrement contents of R .
X 16 16 19 23 23 26 ‘
PUSH IR,src R 9 - -2 - - Push :
PUSHL IM 12 - - - - - IR« src
IR 13 - - 20 - - Autodecrement contents of R
i DA 14 14 16 21 21 23
l X 14 14 17 21 21 24
Arithmetic
ADC R,src R 5 - - Add with Carry
ADCB R « R + src + carry
ADD R,src R 4 - - 8 - - Add
ADDB M 7 - - 14 - - R« R+src
ADDL IR 7 - - 14 - -
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
CP R,src R 4 - - 8 - - Compare with Register
CcPB M 7 - - 14 - - R-src
CPL IR 7 - - 14 - -
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
CP dst,iM IR 11 - - Compare with Immediate
CPB DA 14 15 17 dst - IM
X 15 15 18
DAB dst R 5 - - Decimal Adjust
DEC dst,n R 4 - - Decrement by n ‘
DECB IR 11 - - dst < dst-n
DA 13 14 16 (n=1..16)
X 14 14 17
DIV R,src R 107 - - 744 - - Divide (signed)
DIvL IM 107 - - 744 - - Word :Rp .1 Rany1+src
IR 107 107 107 744 744 744 Rn < remainder
DA 108 109 111 745 746 748 LongWord :Rn,2n+3 Rnons3
X 109 109 112 746 746 749 + SrC
Rn.n + 1 < remainder
EXTS dst R 11 - - 11 - - Extend Sign
EXTSB Extend sign of low order half of dst
EXTSL through high order half of dst

Z8001,2 CPU

Arithmetic (Continued)

Clock Cycles "

. Addr. .
Mnemonics Operands Modes Word, Byte Long Word Operation
NS SS SL NS SsS SL
INC dst,n R 4 - Increment by n
INCB IR ik - - dst « dst + n
DA 13 14 16 (n=1..16)
X 14 14 17
MULT R,src R 70 282" - Multiply (signed)
MULTL IM 70 282" - Word : Rnpn 41 & Rpy 1 +s1C
R 70 - - 282 - - LongWord :Rn. n+3< Rni2n.s
DA 71 72 74 283" 284" 286" *Plus seven cycles for each 1 in
X 72 72 75 284* 284" 287* the multiplicand
NEG dst R 7 - Negate
NEGB IR 12 - - dst « 0 -dst
DA 15 16 18
X 16 16 19
SBC R,src R 5 Subtract with Carry
SBCB R « R - src- carry
SUB R,src R 4 - 8 - Subtract i
' SUBB M 7 - 14 - R« R-src |
SUBL IR 7 - - 14 - - |
DA 9 10 12 15 16 18
X 10 10 13 16 16 19
Logical
AND R,src R 4 - - AND i
ANDB M 7 - R « R AND src ;
IR 7 - - i
DA 9 10 12 {
X 0 10 13 |
COM dst R 7 Complement
I comB IR 12 - - dst « NOT dst
DA 15 16 18
X 16 16 19
OR R,src R 4 - OR
ORB M 7 - - R« RORsrc
IR 7 - - ‘
DA 9 10 12 ;
X 10 10 13 |
TCC cc,dst R 5 Test Condition Code :
TCCB Set LSB if ccis true |
TEST dst R 7 13 - - Test ‘
TESTB IR 8 - - 13 - - dstORO
. TESTL DA 11 12 14 16 17 19
X 12 12 15 17 17 20
: XOR R.src R 4 - Exclusive OR
| XORB M 7 - R « R XOR src
I IR 7 - -
| DA 9 10 12
X 10 10 13 |

"

Z8001,2 CPU

Program Control

Clock Cycles "

Mnemonics Operands hﬁg:;s Word, Byte Long Word Operation |
i NS SS SL NS SS SL
CALL dst IR 10 - 15 Call Subroutine
DA 12 18 20 Autodecrement SP
X 13 18 21 @ SP « PC
PC « dst
CALR dst RA 10 - 15 Call Relative
i Autodecrement SP
@ SP « PC
PC « PC + dst (range -4094 to
+4096) ‘
 DJNZ R.dst RA 11 Decrement and Jump if Non-Zero
| DBJNZ R«<R-1 |
IfR#0:PC« PC +dst I
(range -254 to 0)
IRET @ - 13 16 Interrupt Return
PS « @ SP
Autoincrement SP
JP cc,dst IR 10 - 15 (taken) Jump Conditional
IR 7 - 7 (not taken) If ccis true : PC « dst
DA 7 8 10
X 8 8 11
[
"JR ce,dst RA 6 - Jump Condition Relative
If cc is true : PC « PC + dst
{range -256 to +254)
. RET cc 10 13 (taken) Return Conditional
| 7 7 (not taken) If ccis true : PC « @ SP
Autoincrement SP
SC src M 33 39 System Call
Autodecrement SP
@ SP « old PS
Push instruction
PS « System Call PS
Bit Manipulation
L BiT dst,B R 4 - Test Bit Static
BITB IR 8 - - Z flag «— NOT dst bit specified by b
DA 10 1 13
X 11 1 14
BIT dst,R R 10 - - Test Bit Dynamic
BITB Z flag « NOT dst bit specified by
contents of R
RES dst,b R 4 - Reset Bit Static
RESB IR 1 - - Reset dst bit specified by b
DA 13 14 16
X 14 14 17
. RES dst,R R 10 - Reset Bit Dynamic
! RESB Reset dst bit specified by contents R
12 K
L7 30 Moo

Z8001,2 CPU

Bit Manipulation (Continued)

Clock Cycles
Mnemonics Operands Addr. Operation
Modes Word, Byte Long Word pe
NS SS SL NS ss SL
SET dst,b R 4 - - Set Bit Dynamic
SETB IR 1 - - Set dst bit specified by b
DA 13 14 16
X 14 14 17
' SET dst,R R 10 - - Set Bit Dynamic
SETB Set dst bit specified by contents of
|
R
TSET dst R 7 - - Test and Set
TSETB IR 11 - - S flag « MSB of dst
DA 14 15 17 dst « all 1s
X 15 15 18
Rotate and Shift
GL dst,n R 6forn=1 Rotate Left
! RLB R 7forn=2 by n bits (n =1, 2}
RLC dst,n R 6forn=1 Rotate Left through Carry
RLCB R 7forn=2 bynbits (n=1, 2}
RLDB R,src R 9 - - Rotate Digit Left
RR dst,n R 6forn=1 Rotate Right
RRB R 7forn=2 by n bits (n =1,2)
RRC dst,n R 6forn=1 Rotate Right through Carry
RRCB R 7forn=2 by n bits (n = 1,2)
RRDB R,src R 9 - - Rotate Digit Right
, SDA dst,R R (15 + 3n) (15 + 3n) Shift Dynamic Arithmetic
! SDAB Shift dst left or right
. SDAL by contents of R
SDL dst,R R (15 + 3n) (15 + 3n) Shift Dynamic Logical
SDLB Shift dst left or right
SDLL by contents of R
SLA dst,n R (13 + 3n) (13 + 3n) Shift Left Arithmetic .
SLAB by n bits !
SLAL ‘
- - -
SLL dst,n R (13 +3n) (13 + 3n) Shift Left Logical ‘
SLLB by n bits
SLLL
|
SRA dst,n R (13 + 3n) (13 +3n) Shift Right Arithmetic |
SRAB by n bits :
. SRAL
SRL dst,n R (13 + 3n) (13 + 3n) Shift Right Logical
SRLB by n bits
SRLL

Lyy S6S-THOMSON 15

Z8001,2 CPU

Block Transfer and String Manipulation

Clock Cycles "

' . Addr. .
Mnemonics Operands M::;s Word, Byte Long Word Operation
i NS SS SL NS SS SL
! cPD Rx,src,Ry,cc IR 20 Compare and Decrement
CPDB Rx - src
Autodecrement src address
Ry « Ry - 1
CPDR Rx,src,Ry,cc IR (11 + 9n) Compare, Decrement and Repeat
CPDRB Rx - src
Autodecrement src address
Ry < Ry -1
Repeat until ccis true or Ry = 0
CPI Rx,src,Ry,cc IR 20 Compare and Increment
CPIB Rx - src
Autoincrement src address
Ry < Ry -1
CPIR Rx,src,Ry,cc IR (11 + 9n) Compare, Increment and Repeat
CPIRB Rx - src
Autoincrement src address
Ry « Ry -1
Repeat until ccis true or Ry = 0
CPSD dst,src,R,cc IR 25 - Compare String and Decrement
CPSDB dst - src
Autodecrement dst and src
addresses
R«R-1
CPSDR dst,src,R,cc IR (11 + 14n) Compare String, Decr. and Repeat
CPSDRB dst - src
Autodecrement dst and src
addresses
| R«—R-1
f Repeat until ccis true or R=0
r
' CPSI dst,src,R,cc IR 25 - Compare String and Increment
' CPSIB dst - src
‘ Autoincrement dst and src
addresses
R« R-1
., CPSIR dst,src,R,cc IR (11 + 14n) Compare String, Incr. and Repeat
CPSIRB dst - src
Autoincrement dst and src
addresses
R«R-1
Repeat until ccis true or R =0
LDD dst,sre,R IR 20 - Load and Decrement
LDDB dst « src
Autodecrement dst and src
addresses
R«—R-1
LDDR dst,rsc,R IR (11 + 9n) Load, Decrement and Repeat
LDDRB dst « src

Autodecrement dst and src
addresses

R«R-1

Repeat until R = 0

14:

Z8001,2 CPU

Block Transfer and String Manipulation (Continued)

Clock Cycles ¥
Addr. o .
Modes Word, Byte Long Word peration

Mnemonics Operands

NS SS SL NS Sss SL

LDI dst,src,R IR 20 - - Load and Increment
LDIB dst « src
Autoincrement dst and src
addresses
R«R-1

LDIR dst,src,R IR (11 + 9n) Load, Increment and Repeat
LDIRB dst « src
Autoincrement dst and src
addresses
R« R-1
Repeat untiiR = 0

TRDB dst,src,R IR 25 - - Translate and Decrement
dst « src (dst)
Autodecrement dst address
R« R-1

| TRDRB dst,src,R IR (11 + 14n) Translate, Decrement and Repeat :
1 dst « src (dst) :
Autodecrement dst address ;
R«R-1 !
Repeat until R = 0

TRIB dst,sre,R IR 25 - - Translate and Increment !
dst « src (dst) :
Autoincrement dst address !
R«R-1 !

1
TRIRB dst,src,R IR (11 + 14n) Translate, Increment and Repeat |
dst « src (dst) !
Autoincrement dst address |
R«R-1 :
Repeat until R = 0

TRTDB srcl,src2,R iR 25 - - Translate and Test, Decrement
RH1 « src2 (src1)
Autodecrement src1 address
R« R-1 i

TRTDRB src1,src2,R IR (11 + 14n) Translate and Test, Decr. and ‘
Repeat |
RH1 « src2 (srct)

; Autodecrement src1 address

R« R-1

Repeat until R = 0 or RH1 =0

TRTIB srcl,src2,R IR 25 - - Translate and Test, Increment
RH1 « src2 (src1) i
Autoincrement src1 address i
R« R-1

TRTIRB srcl,src2,R IR (11 + 14n) Translate and Test, Incr. and
Repeat
RH1 « src2 (srct)
Autoincrement src1 address
ReR-1
Repeat until R = 0 or RH1 =0

15
Oy =T

Z8001,2 CPU

Input/Output
Clock Cycles "
. Addr. .
Mnemonics Operands Modes Word, Byte Long Word Operation
NS SS SL NS SS SL
IN @ R,src IR 10 Input
INB @ DA 12 - R« src
IND @ dst,src,R IR 21 Input and Decrement
INDB @ dst « src
Autodecrement dst address
R«<R-1
INDR @ dst,src,R IR (11 + 10n} Input, Decrement and Repeat
INDRB @ dst « src
Autodecrement dst address
R«R-1
Repeat until R = 0 :
INI @ dst,src,R IR 21 - Input and Increment ‘
INB @ dst « src
Autoincrement dst address :
R—R-1
|
INIR @ dst,src,R IR (11 + 10n) Input, Increment and Repeat |
INIRB @ dst « src i
Autoincrement dst address i
R«R-1
Repeat until R = 0
|
out @ dst,R IR 10 - Output :
outs @ DA 12 - dst — R |
outp @ dst,src,R IR 21 - Output and Decrement !
outpB @ dst « src ‘
Autodecrement src address
ReR-1
OTDR @ dstsrc,R IR (11 + 10n) Output, Decrement and Repeat
OTDRB @ dst « src
Autodecrement src address
R«<R-1
Repeat untiR =0
ouTtl @ dst,src,R IR 21 - Output and Increment ‘
ouTiB @ dst ¢ src
Autoincrement src address
R«R-1 i
OTIR @ dst,src,R IR (11 + 10n) Output, Increment and Repeat
oTiRB @ dst « src :
Autoincrement src address |
R«R-1 i
Repeat untiR =0
16 -

g

=

Z8001,2 CPU

Input/Output (Continued)

Clock Cycles

. Addr. .
Mnemonics Operands Modes Word, Byte Long Word Operation
NS SS SL NS SS SL
SIN @ R.src DA 12 - - Special Input :
SINB @ R« src |
SIND @ dst,sre,R IR 21 - Special Input and Decrement ;
sINDB @ dst < src !
Autodecrement dst address
R« R-1
SINDR @ dstsrcR IR (11 + 10n) Special Input, Decr. and Repeat
SINDRB ? dst « src
Autodecrement dst address
R«R-1
Repeat until R =0
SINI @ dst,src,R IR 21 - Special Input and Increment i
siNB @ dst « src :
Autoincrement dst address
R« R-1 |
SINIR @ dst,src,R IR (11 + 10n) Special Input, Incr. and Repeat ‘
SINIRB @ dst « src ‘
Autoincrement dst address |
R« R-
Repeat untiR =0
sout @ dst,src DA 12 - - Special Output
souTB @ dst « src
SouUTD @ dstsrc,R IR 21 - Special Output and Decrement
' souTtpB ¥ dst « src
| Autodecrement src address
| R«R-1
SOTDR ? dstsrc,R IR (11 + 10n) Special Output, Decr. and Repeat
SOTDRB @ dst « src
Autodecrement src address
R« R-1
i Repeat until R = 0
I
| soutt® dst,src,R IR 21 - Special Output and Increment
souTiB @ dst « src
Autoincrement src address
R«R-1
. SOTIR @ dst,src,R IR (11 + 10n) Special Output, Incr. and Repeat :
- SOTIRB @ dst « src !
; Autoincrement src address i
i R<R-1 :
| Repeat until R =0 1
L J
SGS-THOMSON 7

&1

MECROE

ROMCS

RO

Z8001,2 CPU

CPU Control
o !
Clock Cycles |
M . o d Addr. o . |
nemonics Operands . qes Word, Byte Long Word peration
NS SS SL NS SS SL
COMFLG flags - 7 - Complement Flag
(Any combination of C, Z, S, P/V)
DI@ int - 7 - Disable Interrupt
(Any combination of NVI, VI)
E @ int - 7 - Enable Interrupt
(Any combination of NVI, VI}
HALT @ - - (8 + 3n) HALT
LDCTL® CTLRsrc R 7 - Load into Control Register
CTLR « src
LDCTL® dstCTLR R 7 - Load from Control Register
dst « CTLR
LDCTLB FLGR,src R 7 - Load into Flag Byte Register
FLGR « src
LDCTLB dst,FLGR R 7 - Load from Flag Byte Register
dst < FLGR
LDPS @ src IR 12 - 16 Load Program Status
DA 16 20 22 PS « src
X 17 20 23
mBeIT @ - 7 - Test Multi-Micro Bit _
Set S if M is Low ; reset S if M, is
High.
MREQ @ dst R (12 + 7n) Multi-Micro Request
MRES @ - 5 - Multi-Micro Reset
MSET @ 5 - - Muiti-Micro Set
| NOP - 7 - No Operation
{ RESFLG fiag 7 - - Reset Flag
(Any combination of C, Z, S, P/V)
SETFLG flag 7 - Set Flag 3
(Any combination of C, Z, S, P/V) |
Notes :
1. NS = Non-Segmented
SS = Segmented Short Offset
Sl = Segmented Long Oftset.
2. Privileged instruction. Executed in system mode only.
8 THOMSON

(STt

ELICTHONICS

Z8001,2 CPU

Condition Codes

l Code Meaning Flag Settings CC Field

Always false - 0000

Always true - 1000

z Zero Z=1 0110
NZ Not zero Z=0 1110
C Carry C=1 0111
NC No Carry C=0 1111
PL Plus 1S=0 1101
MI Minus +S=1 0101
NE Not equal Z=0 1110
EQ Equal Z=1 0110
ov Overflow PNV =1 0100
NOV No overflow PNV =0 1100
PE Parity is even PNV =1 0100
PO Parity is odd PNV=0 1100
GE Greater than or equal (signed) (SXOR P/V) =0 1001
LT Less than (signed) (S XOR PV) =1 0001
GT Greater than (signed) [ZOR (S XOR PV} =0 1010
LE Less than or equal (signed) [ZOR (S XOR PV)] =1 0010
UGE Unsigned greater than or equal C=0 11
ULT Unsigned less than C=1 0111
UGT Unsigned greater than [(C=0)AND (Z=0)] =1 1011
ULE Unsigned less than or equal (CORZ)=1 0011

Note that some condition codes have identical flag settings and binary fields in the instruction :
Z=EQ, NZ =NE, C = ULT, NC = UGE, OV = PE, NOV = PO

Lyj $GS-THOMSON 19

= MICROELECYRONMICS

Z28001,2 CPU

PIN CONFIGURATION

Introduction

This chapter covers the external manifestations
(e.g., the activity on the CPU pins) that resuit from
the operations described in prerious chapters.
Since the pins are connected to the system bus
much of the discussion will center on the bus and
bus operations. The 28000 CPU is designed to be
compatible with the Z-BUS protocols, which are
described in the Z-BUS Summary. In the sections
that follow, the interface between the Z8000 CPU
and its environment is described in detail.

Bus Operations

Two kinds of operations can occur on the system
bus : transactions and requests. At any given time,
one device (either the CPU or a bus requester, such
as the Z8016 DMA Controller) has control of the
bus and is known as the bus master. A transaction
is initiated by the bus master and is responded to
by some other device on the bus. Only one trans-
action can proceed at a time ; six kinds of transac-
tions can occur :

— Memory transaction. This type is used to trans-
fer eight or 16 bits of data to or from a memory
location

— IO transaction. This type is used to transfer
eight or 16 bits of data to or from a peripheral or
CPU support component, such as an MMU

— EPU transfer. This type is used to transfer 16
bits of data between the CPU and an EPU

— Interrupt/Trap Acknowledge. This type is used
to acknowledge an interrupt or trap and to trans-
fer an identification/status word from the inter-
rupting or trapping device

— Refresh. These transactions do not transfer
data. They refresh dynamic memory

— Internal operation. These transactions do not
transfer data. They indicate that the CPU is
performing an operation that does not require
data to be transferred on the bus

Only the bus master may initiate transactions. A
request, however, may be initiated by a component
that does not have control of the bus. Four types of
reguests can occur :

— Interrupt request. This type is used to request
the attention of the CPU

— Busrequest. This type is used to request control
of the bus to initiate transactions

~ Resource request. This type is used to request
control of a particular system resource

= L37 S5 THOMSON

— Stop request. This type is used to delay CPU
instruction execution

When an interrupt or bus request is made, it is
answered by the CPU according to its type : for
interrupt request, an interrupt acknowledge trans-
action is initiated ; for bus requests, the CPU enters
Bus Disconnect state, relinguishes the bus, and
activates an acknowledge signal ; for stop re-
quests, the CPU stops execution and enters
Stop/Refresh state. A resource request is gener-
ated by the CPU when it executes a multi-micro
request instruction.

Cpu Pins

The CPU pins can be grouped into five categories
according to their functions.

Transaction Pins. These signals provide timing,
control, and data transfer for Z-Bus transactions.

— ADo-AD15. Address/Data (Output, active
High, 3-state). These multiplexed data and ad-
dress lines carry /O addresses, memory ad-
dresses, and data during Z-Bus transactions.
For the Z8001, only the offset portion of memory
addresses is carried on these lines.

— SNo - SN7. Segment Number (Z8001 only, Out-
put, active High, 3-state). These lines contain
the segment number portion of a memory ad-
dress.

- STo-STa. (Output, active, High, 3-state).
These lines indicate the kind of transaction oc-
curing on the bus and give additional informa-
tion about the transaction (such as the address
space for memory transactions).

— AS. Address Strobe (Output, active Low, 3-
state). The rising edge of AS indicates the be-
ginning of a transaction and shows that the
Address, STo - ST3, N/S, R/W, and B/W signals
are valid.

- @ Data Strobe (Output, active Low, 3-state).
DS provides timing for data movement to or from
the CPU.

- RW. Read/Write (Output, Low = Write, 3-
state). This signal determines the direction of
data transfer for memroy, 1/0O, or EPU transfer
transactions.

- B/W. Byte/Word (Output, Low = Word, 3-state).

This signal indicates whether a byte or word of
data is to be transmitted during a transaction.

Z8001,2 CPU

Figure 2-1. Z8001 Pin Configuration

Figure 2-2. Z8002 Pin Configuration

Adg
ADg
AD1g
AD1q
ADqp
ADy 3
STOP

AD1g
AD14

ONnNOAanNOAAnNAO0O0O000O00000nnn0nan

Z8001
SEGCPU

38

OO0 oguUuooUogoooooOoOooogoounTn

ADg
SNg
SN
AD7
ADg
AD4
SNy
ADg
AD 3
ADp
AD4
SNy
GND
CLOCK
A5

RESERVED

B/W
N/S
R/W
BUSACK
WA
BUSREQ
SNg
SNy

VR0O1352

512

w M

GS-THOM
JCROEL 2

Adg O 40 @ ADg
adip O 2 39 PO AD g
a1y O 3 38 [aby
AD1z O 4 37 @ ADg
abyz O 5 36 [0 ADa
stor O 6 35 [4bs

v O 7 34 A Absz
abis O 8 33 [aDy
AD1gy O 9 32 O AD:
vee [10 28002 5 gy

vi O n cPu 30 [cLock
ooz 29 [AS

i O 13 28 [RESERVED
RESET [14 27 A s/w

Mo O 5 26 [N/S
MREQ [6 25 [R/W

ps O 17 24 [8USACK
sty [18 23 [waAIT
ST, O 19 22 [3 BUSRIQ
sty O 20 21 STg

VR001353
SON 2}
)

Z8001,2 CPU

CPU Pins (Continued)

— WAIT. (Input, active Low). A Low on this line
indicates that the responding device needs
more time to complete a transaction.

- MREQ. Memory Request (Output, active Low,
3-state). Afalling edge on this line indicates that
the address/data bus is holding a memory ad-
dress.

Bus Control Pins. These pins carry signals for
requesting and obtaining control of the bus from the
CPU.

— BUSREQ. Bus Request (Input, active Low). A
Low indicates that a bus requester has obtained
or is trying to obtain control of the bus.

— BUSACK. Bus Acknowledge (Output, active
Low). A Low on this line indicates that the CPU
has relinquished contro! of the bus in response
to a bus request.

Interrupt/Trap Pins. These pins convey interrupt
and external trap requests to the CPU.

— NMI. Non-Maskable Interrupt (Input, Edge ac-
tivated). A High-to-Low transition on NMT re-
quests a non-maskable interrupt.

22

- NVI. Non-Vectored Interrupt (Input, active
Low). ALow on this line requests a non-vectored
interrupt.

— VI. Vectored Interrupt (Input, active Low). A
Low on this line requests a vectored interrupt.

- SEGT. Segment Trap (Z8001 only, Input, active
Low). A Low on this line requests a segment
trap.

Multi-Micro Pins. These pins are the Z8000's
interface to the Z-BUS resource request lines.

— M. Multi-micro In (Input, active Low). This input
is used to sample the state of the resource
request lines.

- MO. Multi-Micro Out (Output, active Low). This
line is used by the CPU to make resource re-
quests.

CPU Control. These pins carry signals which

control the overall operation of the CPU.

- STOP. (input, active Low). This line is used to
suspend CPU operation during the fetch of the
first word of an instruction.

— RESET. (Input, active Low). A Low on this line
resets the CPU.

Z8001,2 CPU

Figure 2-4. Pin Functions

TRANSACTIONS

CPU
CONTROL

BUS
CONTROL

INTERRUPTS

MULTI-MICRO
CONTROL

~ 7S AD 15 e B
[ﬁ AD 14 [
-~ MREQ AD 13
AD 1 [e—
< |READ/WRITE AD n=—>
< | NORMAL/SYSTEM AD 10—
- |ByTE/WORD AP o™
AD g fe—» | ADDRESS/
- ST3 AD 7 je— DATA BUS
=—S12 2gg01 06~
~— S zgoo2 “Ps[T
L ~—sT0 CPU AD 4 e
= WAIT AD 9 [
AD o ~
= BUSRQ T eier -
-« | BUSACK ! SN 6 —— Z8001 |
o : SN 5 ONLY ||
—_— 3] | - |
Nl | N4 SEGMENT |
— NVI| | SN 0 e NUMBE |
i Sk — :
{ [— Y]| : SN g —— ||
- MO | SET SEGMENT |
| TRAP !
- J
Vece GND CLK VR001248

Z8001,2 CPU

Figure 2-5. Transaction Timing

CLOCK

AS
(ADDRESS
STROBE)

SNp—SNg
(SEGMENT
NO)

AD—AD, 5
(ADDRESS
OFFSET)

STo—ST3
R/"B/"S/N
STATUS
INFORMAﬂON)

DS
(DATA
STROBE)

READ

ADo— ADyq 5
(DATA)

bs
(DATA
STROBE)

WRITE

ADg—AD15
(DATA)

clock cycle of o transaction

AS falling indicotes first

A

WAIT sompled

WAIT sompled for

for memory and 1/0 ond interrupt/ Doto on AD lines

EPU transfer

trop acknowledge

is sompled for

transoctions tronsactions Jronsfers to CPU
BASIC BASIC BASIC __,
[cvee 1 CYCLE 2 / CYCLE 3
Four clock cycles added
here on interrupt/trop——ed s‘{‘;ﬁu"’f/ﬁfz‘ only for /0
acknowledge tronsactions P WAIT clock cycles odded

|=———nhere in_response to WAIT line

[N &S rising indicotes that stotus
ond oddress lines are walid

SEGMENT NUMBER
'

X

ovoiloble one clock

Segment No becomes

before rest of oddress

cycle

X QFFSET

and Wrile below

x For continuotion see Read

STATUS INFORMATION
{

Stotus informotion becomes
ovailoble ot the some time
los the oddress ond remains

transaction

active throughout the

Memory, EPU transfers and
interrupt /trap acknowledge

lntermpl/lrup acknowledge)
AD line are firsl
3" stoted by the CPU

ers from EPU, and Leo— |

1/0 transfers

The memory, 1/0 device or

EPU ploces doto on the AD
lines DATA

For transfers from the CPU
(Memory writes, 1/0 writes,

| the AD tines

and transfers lo the EPU) -‘——<
the CPU ploces, the data on

DATA

VR0O1249

24.

‘ﬂ SGS-'I;HOMSON

Z8001,2 CPU

Transactions

Data transfers to and from the CPU are accom-
plished through the use of transactions. Figure 2-5
shows the general timing for a transaction.

All transactions start with Address Strobe (AS)
being driven Low and then raised High by the CPU.
On the rising edge of AS, the status lines STo - ST3
are valid ; these lines indicate the type of transac-
tion being initiated (see Table 2-1 ; the six types of
transactions are discussed in the sections that
follow). Associated with the status lines are three
other lines that become valid at this time. These are
Normal/System (N/S), Read/Write (R/W), and
Byte/Word (B/W). Except where indicated below,
N/S designates the operating mode of the CPU,
R/W designates the direction of data transfer (read
to the CPU, write from the CPU), and B/W desig-
nates the length of the data item being transferred.

If the transaction requires an address, it too is valid
on the rising edge of AS. No address is required for
interrupt acknowledge, EPU transfer, or internal
operation transactions. (In the Z8001, the segment
number lines SNo - SN are valid one clock cycle
earlier to allow for external memory management
hardware.

The CPU uses Data Strobe (DS) to time the actual
data transfer. (Note that refresh and internal oper-

Table 2-1. Status Code

ation transactions do not transfer any data and thus
do not activate DS.) For write operations (R/W =
Low), a Low on DS indicates that valid data from
the bus master is on the ADo - AD1s lines. For read
operations (R/W = High), the bus master makes
ADo - AD15 3-state before driving DS Low so that
the addressed device can put its data on the bus.
The bus master samples this data on the falling
clock edge just before raising DS High.

WAIT. As shown in Figure 2-5, WAIT is sampled
on a falling clock edge one cycle before data is
sampled by the CPU (Read) or DS rises (Read or
Write). If WAIT is Low, another cycle is added to
the transaction before data is sampled or DS rises.
In this added cycle and all subsequent cycles
added due to WAIT being Low, WAIT is again
sampled on the falling edge and, if itis Low, another
cycle is added to the transaction. In this way, the
transaction can be extended to an arbitrary length
to accommodate (for example) slow memories or
1/O devices that are not yet ready for data transfer.

It must be emphasized that the WAIT input is
synchronous. Thus, it must meet the setup and
hold times in order for the CPU to function correctly.
This requires asynchronously generated WAIT sig-
nals to be synchronized before they are input the
CPU.

Kind of Transaction ST3 - STO Additional Information
Internal Operation 0000
Refresh 0001 J
- 0010 Standard 1/0
1/0 Transaction 0011 Special /0
0100 Segment Trap
Interrupt 0101 Non-Maskable Interrupt
Acknowledge
Transaction 0110 Non-Vectored interrupt
0111 Vectored Interrupt
1000 Data Address Space
1001 Stack Address Space,
Memory 1010 Data Address Space, EPU Transfer
| Transaction 1011 Stack Address Space, EPU Transfer
) 1100 Program Address Space,
‘ 1101 Program Address Space, First Word of Instruction
EPU Transfer 1110 j
Reserved 1111

Ly SGS-THOMSON -

Z8001,2 CPU

Figure 2-6. Memory Read and Write Transaction

CLOCK

_ STATUSES
(B/W, ST — ST3)

SNg—SNg

Tn

T

T3

WAIT
SAMPLED

WAIT CYCLES
ADDED

|_DATA SAMPLED
)‘\ FOR READ

XX

X

X SHGMENT NUMBER

AD
READ

DS
READ

R/W
READ

MEMORY ADDRH

AD
WRITE

DS
WRITE

R/W
WRITE

~ XbEMORY ADDR

DATA OUT

]

VR001250

26,

(STt

[#%3]

THOMSON

FLRDTRONCS

Z8001,2 CPU

Transactions (Continued)

Memory Transactions. Memory Transactions
move data to or from memory when the CPU
makes a memory access. Thus, they are generated
during program execution to fetch instructions from
memory and to fetch and store memory data. They
are also generated to store old program status and
fetch new program status during interrupt and trap
handling and after reset. As shown in Figure 2-6, a
memory transaction is three clock cycles long un-
less extended as explained above in WAIT. The
status pins, besides indicating a memory transac-
tion, give the following information :

— Whether the memory access is to the data
(1000, 1010), stack (1001, 1011), or program
(1100, 1101) address space.

— Whether the first word of an instruction is being
fetched (1101).

— Whetherthe data for the access is to be supplied
(write) or captured (read) by an Extended Pro-
cessing Unit (1010, 1011).

Status codes 1000 and 1001 may also indicate that
the EPU is to capture or supply the data.

For the 28002, the full memory address will be on
ADg - ADss when AS rises. For the Z8001, the
offset portion of the segmented address will be on
ADg - AD15 and the segment number portion will be
on SNo - SNg when AS rises. The segment portion
will also be on SNo - SNg approximately one cycle
before ADo - AD1s is valid.

Bytes transferred to or from odd memory (address
bit 0 is 1) locations are always transmitted on lines
ADq - AD7 (bit 0 on ADy). Bytes transferred to or
from even memory locations (address bit 0 is 0) are
always transmitted on lines ADsg - AD1s (bit 0 on
ADg). Thus, the memory attached to a Z8000 will
look like that shown in Figure 2-7. For byte reads
(BAW High, R/W High) the CPU uses only the byte
whose address it output. For byte writes (B/W High,
R/W Low), the memory should store only the byte
whose address was output. During byte memory
writes, the CPU places the same byte on both

halves of the bus, and the proper byte must be
selected by testing Ao. For word transfers, (B/W =
Low), all 16 bits are captured by the CPU (Read :
RW = High) or stored by the memory (Write :
R/W = Low). A Z8001 CPU and an Extended Pro-
cessing Unit act like a single CPU with the CPU
providing addresses, status and timing information
and the EPU providing or capturing data.

I/0 Transactions. /O transactions move data to
or from peripherals or CPU support devices (e.g.,
MMUs). They are generated during the execution
of /O instructions.

As shown in Figure 2-8, I/O transactions are four
clock cycles long at minimum, and they may be
lengthened by the addition of WAIT cycles. The
extra clock cycles allow for slower peripheral oper-
ation.

The status lines indicate whether the access is to
the Standard I/O (0010) or Special I/0 (0011) Ad-
dress Spaces. The N/S line is always Low, indicat-
ing system mode. The /O address is found on
ADg - AD15 when AS rises. Since the I/O address
is always 16 bits long, the segment number lines
are undefined on Z8001 CPUs. For byte transfers
(BW = High) in Standard I/O space, addresses
must be odd ; for byte transfers in Special I/O
space, addresses must be even.

Word data (BAW = Low) to or from the CPU is
transmitted on ADo - AD1s. Byte data (B/W = High)
is transmitted on ADg - AD7 for Standard I/O and on
ADg - AD15 for Special I/0. This allows peripheral
devices or CPU support devices to attach to only
eight of the 16 ADg - AD1s lines. The Read/Write
line (R/W) indicates the direction of the data trans-
fer : peripheral-to-CPU (Read : RW = High) or
CPU-to-peripheral (Write : R/W = Low).

EPU Transfer Transactions. These transactions
move data between the CPU and an Extended
Processing Unit (EPU), thus allowing the CPU to
transfer data to or from an EPU or to read or write
an EPU’s Status Registers. They are generated
during the execution of the EPA instruction.

Ly7 SGS-THOMSON 27

Z8001,2 CPU

Figure 2-7. Memory Organization

16 BIT Z-BUS DATA PATH

AD 5 AD g A0 7 AD o

BUS DRIVER RECEIVERS |

1 1

07 Do D7 Do
- R
ADy~AD 15 ADDRESS X X
TRANSLA— | UPPER I LOWER
1 i
TION AND) BYTE i BYTE
! BANK ! BANK
DECODE \
i (EVEN ADDRESS) \ (ODD ADDRESS)
TO WORD ' |
I
SNy~ SN ADDRESS H
_ UPPER
fD/ N :D D—, BANK
o ENABLE LOWER
BANK
R/W N ENABLE
—] VR001251

28 L3z S6s-THOMSON

« (RIS ;

Z8001,2 CPU

Transactions (Continued)

EPU transfer transactions have the same form as
memory transactions (Figure 2-6) and thus are
three clock cycles long, unless extended by WAIT.
No address is generated, and there is only one
status code that can be used onthe STo - ST3lines
(1110). In a multiple EPU system, the EPU which
is to participate in a transaction is selected implicit-
ly, rather than by an address.

Figure 2-8. Input/Output Transaction

The data transferred is 16-bit words (B/W = Low),
except for transfers between the Flags byte of the
FCW and an EPU. In this case, a byte of data is
transferred on ADg- AD7 (B/W = High). The
Read/Write line (R/W) indicates the direction of the
data transfer. The N/S line indicates either system
mode (Low) or normal mode (High).

T

]

CLOCK

T2

Twa T3

A

.__DATA SAMPLED
\ FOR READ
WAIT CYCLES
ADDED

WAIT
SAMPLED

XX

STATUSES

(B/W, STo — ST3)

N/S

LOW

HIGH

><PORT ADDRESS

R/W
INPUT

AD
OUTPUT

[XPorT AdDRESS

DATA OUT

DS
OuTPUT

R/W
OUTPUT

VR0O01252

L7 SGs-THOMSON

29 .

Z8001,2 CPU

Transactions (Continued)

Interrupt/Trap Acknowledge Transactions.
These transactions acknowledge an interrupt or
trap and read a 16-bit identifier word from the
device that generated the interrupt or trap. The
transactions are generated automatically by the
hardware when an interrupt or segment trap is
detected.

These transactions are eight clock cycles long at a
minimum (as _shown in Figure 2-9), having five
automatic WAIT cycles. The WAIT cycles are used
to give the interrupt priority daisy chain (or other
priority resolution device) time to settle before the
identifier word is tread. (Consult the Z-BUS Sum-

mary for more information on the operation of the
priority daisy-chain.)

The status lines identify the type of exception that is
being acknowledged. The possibilities are Segment
Trap(0100), Non-Maskable Interrupt (0101), Non-Vec-
tored Interrupt (0110), and Vectored Interrupt (0111).
No address is generated. The N/S line indicates sys-
tem mode (Low), the RW line indicates READ (High),
and the BW line indicates Word (Low).

The only item of data transferred is the identifier
word, which is always 16 bits long and is captured
from the ADg - AD15 lines on the falling clock edge
just before DS is raised High.

Figure 2-9. Interrupt and Segment Trap Request an Acknowledge Transition

INSTRUCTION
fe— TETCH (F,

LAST MACHINE CYCLE OF ANY_]
INSTRUCTION

ACKNOWLEDGE CYCLE SIANS

(ABORTED)

...... T7 T

CLOCK

T2

WAIT SAMPLED DENTIFIER SAMPLEID

SAYMG
AUTOMATIC WAIT STATES

-

Twa _ Twa __ Twa __Twa _ Twa T3 Ta Is

WAIT

WAIT CYCLES AQDED

<

NMi

re——SAMPLE

INTERNAL
NN

R/W

8/W

STp-ST

ACKNOWLEDGE

AD

MREQ

IDENTIFIER

WVR001253

30

‘7_1 SGS-THOMSON

Z8001,2 CPU

As shown in Figure 2-9, there are two places where
WAIT is sampled and thus a WAIT cycle may be
inserted. The first serves to delay the falling edge
of DS 1o allow the daisy chain a longer time to settle,
and the second serves to delay the point at which
data is read.

Internal Operations and Refresh Transactions.
There are two kinds of bus transactions made by
the CPU that do not transfer data : internal oper-
ations and memory refresh. Both transactions look
like a memory transaction, except that Data Strobe
remains High and no data is transferred.

For internal operation transaction (shown in Figure
2-10), the Address and Segment Number lines con-
tain arbitrary data when the Address Strobe goes
High. The R/W line indicates Read (High) ; the B/W
iine is undefined, and N/S is the same as for the
immediately preceding transaction. This transaction
is initiated to maintain a minimum transaction rate
while the CPU is doing a long internal operation.

A memory refresh transaction (shown in Figure 2-11)
is generated by the Z8000 CPU's refresh mechanism

Figure 2-10. Internal Operation Timing

CLOCK] I

INTERNAL OPERATION

AD X UNDEFINED 3=—-

MREQ

DS.R/W HIGH
B/wW UNDEFINED
N/S SAME AS PREVIOUS CYCLE

T
VR001255

and can come immediately after the final clock
cycle of any other transaction. The memory refresh
counter's 9-bit ROW field is output on ADO - AD8
during the normal time for addresses. This trans-
action can be used to generate refreshes for dy-
namic RAMs. The value of N/S, R/'W, and B/W is
the same as for the immediately preceeding trans-
action.

WAIT is not sampled during internal operation or
refresh cycles.

CPU and Extended Processing Unit Interaction

A Z8000 CPU and one or more Extended Process-
ing Units (EPUs) work together like a single CPU
component, with the CPU providing address,
status and timing signals and the EPU supplying
and capturing data. The EPU monitors the status
and timing signals output by the CPU so that it will
know when to participate in a memory or EPU
transfer transaction. When the EPU is to participate
in a memory transaction, the CPU puts its AD lines
in 3-state while DS is Low, so that the EPU may
use them.

Figure 2-11. Memory Refresh Timing

T e T, e T,]

o i e

REFRESH

AD M REFRESA ADDRESS Yo = === === == e — = <

R/WB/W SAME AS PREVIOUS CYCLE
N/S T

VRO01254

L7 SGs-THOMSON 3

Z8001,2 CPU

In order to know which transaction it is to participate
in, the EPU must track the following sequence of
events :

— When the CPU fetches the first word of an
instruction (ST3- STg = 1101), the EPU must
also capture the instruction returned by mem-
ory. If the instruction is an extended instruction,
it will have an ID field which indicates (along with
the second instruction) whether or not the EPU
is to execute the instruction.

— If the instruction is to be executed by the EPU,
the next non-refresh transaction by the CPU will
fetch the second word of the instruction (ST -
STo = 1100). The EPU must also capture this
word.

— If the instruction involves a read or write to
memory, there will be zero or more program
fetches by the CPU (ST3 - STop = 1100) to obtain
the address portion of the extended instruction.
The next one to 16 non-refresh transactions by
the CPU will transfer data between memory and
the EPU (STs-STo = 1000, 1001, 1010, or
1011). The EPU must supply the data (Write,
R/W Low) or capture the data (Read, R/W High)
for each transaction, just as if it were part of the
CPU. In both cases, the CPU will 3-state its AD
lines while data is being transferred (DS Low).
EPU memory tranfers are always word-oriented
(B/W Low).

— Ifthe instruction involves a transfer between the
CPU and EPU, the next one to 16 non-refresh
transactions by the CPU will transfer data be-
tween the EPU and CPU (ST3 - ST = 1110).

Note that in order to follow this sequence, an EPU
will have to monitor the BUSACK line to verify that
the transaction it is monitoring on the bus was
generated by the CPU. It should also be noted that
in a multiple EPU system, there is no indication on
the bus as to which EPU is cooperating with the
CPU at any given time. This must be determined
by the EPUs from the extended instructions they
capture.

A final aspect of CPU-EPU interaction is the use of
the CPU's STOP pin. When an EPU begins to
execute an extended instruction, the CPU can
continue fetching and executing instructions. If the
CPU fetches another extended instruction before
the first one has completed execution, the EPU
must activate the CPU’s STOP pin to stop the CPU
until the instruction completes execution.

Besides determining whether or not to participate
in the exection of an EPA instruction, the EPU must
determine from the first two instruction words

82 L3y 55S-THOMSON

— Whether or not a memory access will be made
and how many words of instruction will be
fetched before the data is transferred.

— The number of words of data to be transferred
for memory or EPU-CPU transfers.

— The operation to be performed on its data.

Requests

There are three kinds of request signals that the
Z-BUS supports and the Z8000 CPU participates
in. These are

Interrupt/Trap requests, which another device
initiates and the CPU accepts and acknow-
ledges.

— Bus requests, which another potential bus mas-
ter initiates and the CPU accepts and acknow-
ledges.

— Resource requests, which any device capable
of implementing the request protocol (usually
the CPU) can request. No component has con-
trol of the resource by default.

The CPU supports an additional request beyond
those of the Z-BUS.

— Stop request, which another device initiates and
the CPU accepts.

When a request is made, it is answered according
to its type : for interrupt/trap requests, an inter-
ruptitrap acknowledge transaction is initiated for
bus request, an acknowledge signal is sent for Stop
request, the CPU enters the Stop/Refresh state. In
all cases except Stop, the Z-BUS provides for a
daisy-chain priority mechanism to arbitrate be-
tween simultaneous requests.

Interrupt/Trap Request. The Z8000 CPU sup-
ports three interrupts and one external trap (seg-
ment trap) as shown in Figure 2-9. The Interrupt
Request line (INT) of a device that is capable of
generating an interrupt may be tied to any of the
three 28000 interrupt pins (NMI, NVI, VI). Several
devices can be connected to one pin, the devices
arranged in a priority daisy chain (see the Z-BUS
Summary). The segment trap pin (SEGT) is acti-
vated by the memory management hardware. The
CPU uses the same protocol for handling requests
on any of these pins. Here is the sequence of
events that is followed :

— Any High-to-Low transition on the NMT input is
asynchronously edge-detected, and the internal
NMIlatchiis set. Atthe beginning of the last clock
cycle in the last machine cycle of any instruction,
the VI, NVI, and SEGT inputs are sampled along
with the state of the internal NMI latch.

Z8001,2 CPU

Requests (Continued)

— Ifaninterruptortrapis detected, the subsequent
initial instruction fetch cycle is exercised, but
aborted.

The next machine cycle is the interrupt acknow-
ledge transaction that results in an identifier
word from the highest-priority interrupting de-
vice being read off the AD lines.

This word, along with the program status infor-
mation, is stored on the system stack, and new
status information is loaded.

For more information about the system-level as-
pects of the interrupt structure, consult the Z-BUS
Summary.

Bus Request. To generate transactions on the
bus, a potential bus master (such as the DMA
Controller) must gain control of the bus by making
abus request (shownin Figure 2-12). Abus request

Figure 2-12. Bus Request/Acknowledge Timing

is initiated by pulling BUSREQ Low. Several bus
requesters may be wired to the BUSREQ pin ;
priorities are resolved externally to the CPU,
usually by a priority daisy chain.

The asynchronous BUSREQ signal generates an
internal BUSREQ, which is synchronous. If the
externat BUSREQ is Low at the beginning of any
machine cycle, the internal BUSREQ will cause the
bus acknowledge line (BUSACK) to be asserted
after the current machine cycle is completed. The
CPU then enters Bus-Disconnect state and gives
up control of the bus. All CPU Output pins, except
BUSREQ and MO, are 3-stated.

The CPU regains control of the bus two clock cycles
after BUSREQ rises. Any device desiring control of
the bus must wait at least two cycles after BUSREQ
has risen before pulling it down again.

ANY M CYCLE —=f

CLOCK

BUSREQ

Tx

gl e

BUS AVAILABLE
Tx Tx

—_—

Tx Tx Tx

INTERNAL
BUSREQ

by 5%

FHOMSON

BUSACK
AS (U S IR RN
SN SO SNSRI IS SR <
AD (N SR E ISR IR IS K
MREQ.0S
_ STo=ST3 Y RN N S — 1 s s prEwS oroE X
B/WR/WN/S VR001256
33:

LECTROBICS

Z8001,2 CPU

Resource Request. The CPU generates resource
requests by executing the Multi-Micro Regquest
(MREQ) instruction. The CPU tests the availability
of the shared resource by examining MI. If Ml is
High, the resource is available, otherwise the CPU
must try again later. The MO pin is used to make
the resource request. MO is pulled Low, then, after
a delay for arbitration of priority, Ml is tested again.
If it is Low, the CPU has control of the resource ; if
it is still High, the request was not granted. In the
case of failure, MO must be deactivated. But if
successful, MO must be kept active untii the CPU
is ready to release the resource whereupon MO is
deactivated by an MRES instruction.

The Z-BUS Summary describes an arbitration
scheme that is implemented with a resource re-
quest daisy chain.

Stop Request. As shown in Figure 2-13, the STOP
pin is normally sampled on the falling clock edge
immediately preceding an initial instruction fetch

Figure 2-13. Stop Timing

cycle. It STOP is found Low, the CPU enters
Stop/Refresh state and a stream of memory refresh
cycles is inserted after the third clock cycle in the
instruction fetch. The ROW field in the Refresh
Counter is incremented by two after every refresh
cycle.

When STOP is found High again, the next refresh
cycle is completed, then the original instruction
continues.

If the EPA bit in the FCW is set (indicating an EPU
is in the system), the STOP line is also sampled on
the falling clock edge immediately preceding the
second word of an instruction fetch -if the first word
indicates an extended instuction. Thus, the STOP
line may be used by an EPU to deactivate the CPU
whenever the CPU fetches an extended instruction
before the EPU has finished processing an earlier
one. The STOP line may also be used to externally
single-step the CPU.

CLOCK

STOP SAMPLED

0 —(re o (o -

INSTRUCTION

sT0P >O<

REFRESH
TR Tk Tar| T4 Ts

—<aooRess,

wo N/ N\

I

HIGH

STy-5Ty MEMORY REFRESH X
B/W X
R/W

VR001257

% 37 Ses™o

MSON

HONICE

Z8001,2 CPU

Reset

A hardware reset puts the Z8000 in a known state
and initializes selected control registers of the CPU
to system specifiable values (as A reset will begin
at the end of any clock cycle, if the RESET line is
Low.

A system reset overrides all other operations of the
chip, including interrupts, traps, bus requests and
stop requests. A reset should be used to initialize a
system as part of the power-up sequence.

Figure 2-14. Reset Timing

Within five clock cycles of the RESET line becom-
ing low (Figure 2-14), ADo - AD15 are 3-stated ; AS,
DS, MREQ, BUSACK, Mo, and STo- STs are
forced High ; SNo - SN are forced Low. The R/W,
B/W and N/S lines are undefined. Reset must be
held Low at least five clock cycles.

After RESET has returned High for three clock
cycles, consecutive memory-read transactions are
executed in the system mode to initialize the Pro-
gram Status Registers.

RESET AN

EX 1 EX 2 |F1

c LT UUUL S U UYWL

AD D 0002 > {Few o004 > pe >——<E>——»
e

G NI/ N
DS

ALL HIGH
STp-ST3 IFny >< in R

N/S

R/W

8/W

BUSAK

Edl

VR001258

Ly7, S65-THOMSON 35

« MICROELECTRENICS

Z8001,2 CPU

ARCHITECTURE

Introduction

This chapter provides an overview of the Z8000
CPU architecture. The basic hardware, operating
modes and instruction set are all described. Dif-
ferences between the two versions of the Z8000
(the nonsegmented Z8002 and the segment
Z8001) are noted where appropriate.

General Organization

Figure 3-1 contains a block diagram that shows the

major elements of the Z8000 CPU, namely :

— A16-bitinternal data bus, which is used to move
addresses and data within the CPU.

— A Z-BUS interface, which controls the interac-
tion of the CPU with the outside world.

— A set of 16 general-purpose registers, which is
used to contain addresses and data.

— Four special-purpose registers, which control
the CPU operation.

Figure 3-1. Z8000 CPU Functional Block Diagram

— An Arithmetic and Logic Unit, which is used for
manipulating data and generating addresses.

— Aninstruction execution control, which retrieves
and executes Z8000 instructions.

— Anexception-handling control, which processes
interrupts and traps.

— Avrefresh control, which generates memory re-
fresh cycles.

Each of these elements is explained in the following
sections. All of the elements are common to both
the 28001 CPU and the Z8002 CPU. The differen-
ces between the two versions of the Z8000 are
derived from the number of bits in the addresses
they generate. The Z8002 always generates a
16-bit linear address, while the Z8001 always
generates a 23-bit segmented address (that is, an
address composed of a 7-bit segment number and
a 16-bit offset).

Z8000 CPU

]

]

]

]

| I |

]

! REFRESH
: GENERAL ARITHMETIC conTRaL
| PURPOSE LOGIC

]

| REGISTERS UNIT REFRESH
| COUNTER
]

]

I

]

]

]

]

i -
| < INTERNAL DATA BUS > Z-8US
| INTERFACE
]

]

]

]

I

]

I

! INSTRUCTION| PROGRAM psap

! | BUFFER 1 STATUS

| INSTRUCTION REGISTERS

! executon | | feczze=n EXCEPTION
H L__PC_) HANDUING
| CONTROL T few 0 CONTROL
]

]

]

]

]

]

]

|

VR001226

36" L37 S5S-THOMSON

Z8001,2 CPU

General Organization (Continued)

Figure 3-2 gives a system-level view of the Z8000.
It is important to realize that the Z8000 CPU comes

with a whole family of support components. The -

Z8000 Family has been designed to allow the easy
implementation of powerful systems. The major
elements of such a system might include :

— The Z-BUS, a multiplexed address/data shared
bus that links the components of the system.

— AZ8001 or Z8002 CPU.

— One or more Extended Processing Units
(EPUs), which are dedicated to performing spe-
cialized, time-consuming tasks.

— Amemory sub-system, which in Z8001 systems
can include one or more Memory Management

Figure 3-2. 28000 System Configuration

Units (MMUs) that offer sophisticated memory
allocation and protection features.

One or more Direct Memory Access (DMA)
controllers for high-speed data transfers.

A large number of possible peripheral devices
interfaced to the Z-BUS through Universal Pe-
ripheral Controllers (UPCs), Serial Communica-
tion Controllers (SCCs), Counter-Timer and
Parallel I/O Controllers (CIOs) or other Z-BUS
peripheral controllers.

One or more FIFO I/O Interface Units (FIOs) for
elastic buffering between the CPU and another
device, such as another CPU in a distributed
processing system.

EPU OMA

PERIPHERIALS

J

m (- i

e |

ONLY MMU

U

MEMORY

VROO1227

L3y S5S:THOMSON 37,

Z8001,2 CPU

Hardware Interface

Figure 3-3 shows the Z8000 pins grouped accord-
ing to function. The Z8001 is packaged in a 48-pin
DIP and the Z8002 is packaged in a 40-pin DIP. The
eight additional pins on the Z8001 are the seven
segment-number lines and the segment trap. Ex-
cept for those eight, all pins on the two CPU ver-
sions are identical.

The Z8000 is a Z-BUS CPU ; thus, activity on the
pins is governed by the Z-BUS protocols (see The
Z-BUS Summary). These protocols specify two
types of activities : transactions, which cover all
data movement (such as memory references or /O
operations), and requests, which cover interrupts
and requests for bus or resource control. The fol-
lowing is a brief overview of the Z8000 pin func-
tions ; complete descriptions are found in Chapter
PIN CONFIGURATION.

Address/Data Lines. These 16 lines alternately
carry addresses and data. The addresses may be
those of memory locations or I/O ports. The bus
timing signal lines described below indicate what
kind of information the Address/Data lines are car-
rying.

Segment Number (Z8001 only). These seven
lines encode the addresses of up to 128 relocatable
memory segments. The segment signals become
valid before the address offset signals, thus sup-
porting address relocation by the memory manag-
ment system.

Bus Timing. These three lines include Address
Strobe (AS), Data Strobe (DS) and Memory Re-
quest (MREQ). They are used to signal the begin-
ning of a bus transaction and to determine when
the multiplexed Address/Data Bus holds addresses
or data. The Memory Request signal can be used
to time control signals to @ memory system.

Status. These lines function to indicate the kind of
transaction on the bus (STo - STa), whether it is a
read or write (R/W, where High is Read and Lowis
Write), whether it is on byte or word data (B/W,
High = byte, Low = word), and whether the CPUis
operating in normal mode or system mode (N/S,
High = normal, Low = system). The STo - STz lines
also encode additional characteristics of the bus
transactions, as Table 3-1 shows. The availability
of status information defining the type of bus trans-
action in advance of data transmission allows bidi-
rectional drivers and other external hardware
elements to be enabled before data is transferred.

38 -
Lyz 555 THOMSON

Figure 3-3. Z8000 Pin Functions

BuS
TIMNG

STATUS]\

cpL [
CONTROL

BUS
CONTROL

INTERRUPTS i

MU_T —MICRO {
CONTRCL

.—F,TS AD 15

= AD g4
~— 08

MRED AD 13 -
~—— WUREC
~ —— RLAD /WRITE

————— NORMAL /SYSTEM .
~—— 3YTE /WORD AD g

ADDRESS/
- 573 DATA 3.5
T Y7 zsoot

AD
28002 5
cPU D af—

-—sr

570

—lwar AD pm—

— - BUSRG _ .

-— —{ BUSAK

SEGMINT

Table 3-1. Status Line Codes

—

1101
1110

1111

ST3- STy Definition
0000 Internal operation
0001 Memory refresh
0010 11O reference
0011 Special /O reference
0100 Segment trap acknowledge
0101 Non-maskable interrupt acknowledge
0110 Non-vectored interrupt acknowledge
o111 Vectored interrupt acknowledge
1000 Data memory request
1001 Stack memory request
1010 Data memory request (EPU)
1011 Stack memory request (EPU)
1100 Instruction space access

Instruction fetch, first word
EPA transfer
Reserved

Z8001,2 CPU

Hardware Interface (Continued)

CPU Control. These inputs allow external devices
to delay the operation of the CPU. The WAIT line,
when active (Low), causes the CPU to idle in the
middle of a bus transaction, taking extra clock
cycles until the WAIT line goes inactive ; it is typi-
cally used by memory or I/O peripherals which
operate more slowly than the CPU. The Stop
(STOP) line halts interna! CPU operation when the
first word of an instruction (or the second word of
an EPAinstruction) has been retrieved. This signal
is useful for single-step instruction execution during
debugging operations and for enabling Extended
Processing Units to halt the CPU temporarily.

Bus Control. These lines provide the means for
other devices, such as direct memory access
(DMA) controllers, to gain exclusive use of the
system bus, i.e., the signal lines that are common
to several devices in a system. The external device
requesting control of the bus inputs a bus request
(BUSREQ) ; the CPU responds with a bus acknow-
ledge (BUSACK) after three-starting, or electrically
neutralizing, the Address/Data Bus, Bus Timing
lines, Status lines, and Contro! lines. The Z-BUS
allows a daisy chain to be used to enforce a priority
among several external devices.

Interrupts. Three interrupt inputs are provided :
non-maskable interrupts (NMI), vectored interrupts
(V1) and non-vectored interrupts (NV1). These per-
mit external devices to suspend the CPU's execu-
tion of its current program and begin execution an
interrupt service routine.

Figure 3-4. Basic Timing Periods

Segment Trap Request (Z8001 only). This input
to the CPU is used by an external memory-man-
agement system to indicate that an illegal memory
access has been attempted.

Muiti-Micro Control

The Multi-Micro In (MT) and Multi-Micro Out (MO)
lines are used in conjunction with instructions such
as MSET and MREQ to coordinate multiple-CPU
systems. They allow exclusive use by one CPU of
a shared resource in a multiple-CPU system.

System Inputs. The four inputs shown at the
bottom of Figure 3-3 include +5V power, ground, a
single-phase clock signal and a CPU reset. The
reset function is described in Chapter EXCEP-
TIONS.

Timing

Figure 3-4 shows the three basic timing periods of
the Z8000 : a clock cycle, a bus transaction, and a
machine cycle. A clock cycle (sometimes called a
T-state) is one cycle of the CPU clock, starting with
arising edge. Abus transaction covers a single data
movement on the CPU bus and will last for three or
more clock cycles, starting with a falling edge of AS
and ending with a rising edge of DS. A machine
cycle covers one basic CPU operation and always
starts with a bus transaction. A machine cycle can
extend beyond the end of a transaction by an
unlimited number of clock cycles.

MACHINE CYCLE

BUS
TRANSACTION
CLOCK CYCLE -

CPU CLOCK

VR001229

L37 S6s:™omsoN

Z8001,2 CPU

Address Spaces

The Z8000 supports two main address spaces
corresponding to the two different kinds of locations
that can be addressed :

— Memory Address Space. This consists of the
addresses of all locations in the main memory
of the computer system.

— IO Address Space. This consists of the ad-
dresses of all IO ports through which peripheral
devices are accessed.

For more information on address spaces, consult
Chapter ADDRESS SPACES.

Memory Address Space. Memory address
space can be further subdivided into Program
Memory address space, Data Memory address
space, and Stack Memory address space, each for
both normal and system modes.

The particular space addressed is determined by
the external circuitry from the code appearing at the
CPU’s output status pins (STg - ST3) and the state
of the Normal/System signal (N/S pin). Data mem-
ory reference, stack memory reference, and pro-
gram memory reference each correspond to a
different status code at the STo - ST3 outputs, allow-
ing three address spaces to be distinguished for each
of two operating modes, giving six address space in
all. Each of the six address spaces has a range as
great as the addressing ability of the processor. For
the nonsegmented Z8002, each address space can
have up to 64K bytes, giving a potential total system
capacity of 384K bytes of directly addressable mem-
ory. The segmented Z8001, on the other hand, pro-
vides up to 48M bytes of directly addressable
memory due to the 23-bit segmented addresses.

Segmentation is a means of partitioning memory
into variable-size segments so that a variety of
useful functions may be implemented including :

— Protection mechanisms that prevent a user from
referencing data belonging to others, attempting
to modify read-only data or over-flowing a stack.

— Virtual memory, which permits a user to write
functioning programs under the assumption that
the system contains more memory than is ac-
tually available.

— Dynamic relocating which allows the placement
of blocks of data in physical memory inde-
pendently of user addresses, allowing better
management of the memory resources and
sharing of data and programs.

The signals provided on the segmented Z8001
CPU assist in implementing these features, al-
though additional software and external circuitry

‘0 - Ly SGs-THOMSON

(such as the Z8010 MMU) are generally required
to take full advantage of them. Chapter ADDRESS
SPACES contains an extensive discussion of seg-
mentation and the Z8001.

I/O Address Space. /0 addresses are represented
as 16-bit words for both the Z8001 and Z8002.

There are two I/O address spaces, Standard /O
and Special /O, which are both separate from the
memory address space. Each I/O space is ac-
cessed through a separate set of I/O instructions,
which can be executed only when the CPU is
operating in system mode.

Standard /O instructions transfer data between the
CPU and peripherals and Special /O instructions
transfer data to or from external CPU support cir-
cuits such as the Z8010 MMU. Access to Standard
or Special /O space is distinguished by the status
lines {STg - STa).

General-purpose Registers

The Z8000 CPU contains 16 general-purpose reg-
isters, each 16 bits wide. Any general-purpose
register can be used for any instruction operand
(except for minor exceptions described at the be-
ginning of Chapter ADDRESSING MODES).

Figure 3-5 shows these general-purpose registers.
They allow data formats ranging from bytes to quad-
ruple words. The word registers are specified in assem-
bly-language statements as RO through R15. Sixteen
byte registers, RHO - RL7, which may be used as
accumulators, overlap the first eight word registers.
Register grouping for larger operands includes eight
double-word (32-bit) registers, RRO - RR14, and four
quad-word registers, RQO - RQ12, which are used by
a few instructions such as Multiply, Divide, and Extend
Sign.

As Figure 3-5 illustrates, the CPU has two hard-
ware stack pointers, one dedicated to each of the
two basic operating modes, system and normal.
The segmented 28001 uses a two-word stack
pointer for each mode (R14/R15" or R14/R15),
whereas the nonsegmented Z8002 uses only one
word for each mode (R15’ or R15).

The system stack pointer is used for saving status
information when an interrupt or trap occurs and for
supporting call in system mode. The normal stack
pointer is used for subroutine call in user programs. In
normal-mode operation only the normal stack pointer
is accessible. In system mode, the normal stack pointer
can be directly accessed as a special control register.
The normal mode stack pointer can be accessed as a
special control register.

Z8001,2 CPU

Figure 3-5a. Z8001 General-Purpose Registers
(Register Address Space)

Figure 3-5b. Z8002 General-Purpose Registers
(Register Address Space)

Z28001
=0 [7 R0 017 RLO o] -
=9I ¢ L i
- : 51 |
L 1 [‘5 RH1 { =L Ll ;PQO
Come| RH2 i RI2]
FRZ T
o= RH3 1 RL3 1.
- T h
p’a! 24 RHA i RL4 |]
N
R RA® | RIS 1.
- >RG4
J R6 RH6] .6] !
R=E
L[Ri7 j R]
" =af:s o]
RRE ¢
| |
M rﬁ ‘I > ROB
R0
RRTO |
j rin [1
| B
<2<
i]
.
{ R14' [SYSTEM STACK PONTER (SEGNO. %3‘2
Riz [NORMAL STACK PONTER (SEGNO.)
RRIC oo
1S [SYSTEM SiACK PONIER (OFFSLTY ‘
L Rw5| NORMAL STACK SOINTER (O7FSET} '
P
YRI0231

28002

[ro [7 20 K R.Z 0]
RRO < :

i R1 [15 RH1 : R_" :J ‘} -
RR2 I r2 [2 E i |

[Rr3| E i s]
RR4 R L i E Re |)

j RS | =n5 i RS]

L N

[re [26 i |
RRE ﬁ - ‘

| r7 = i Rie 7|

J'Rs B 2]
R3E8 !

w g

J’RTO r f
]R10
e 1

e[|

RR'Z <

[R13]

R14 r I 7RG
RRia 4 Ri5 | SYSTEM GTACK PONTER

L,Pii [KNORMAL STAUK POINTER H/

YRZLT23

Special-purpose Registers

In addition to the general-purpose registers, there
are special-purpose registers. These include the
Program Status registers, the Program Status Area
Pointer, and the Refresh Counter ; they are illus-
trated for both CPU versions in Figure 3-6. Each
register can be manipulated by software executing
in system mode, and some are modified automat-
ically by certain operations.

Programs Status Registers. These registers in-
clude the Flag and Control Word (FCW) and the
Program Counter (PC). They are used to keep track
of the state of an executing program.

In the nonsegmented Z8002, the Program Status
registers consist of two words : one each for the
FCW and the PC. In the segmented Z8001, there
are four words : one reserved word, one word for
the FCW and two words for the segmented PC.

The low-order byte of the Flag and Control Word
(FCW) contains the six status flags, from which the
condition codes used for control of program looping
and branching are derived. The six flags are :

Lyy 5¢s:™HOM

— Carry (C), which generally indicates a carry out
of the high-order bit position of a register being
used as an accumulator.

— Zero (Z), which is generally used to indicate that
the result of an operation is zero.

— Sign (S), which is generally used to indicate that
the result of an operation is a negative number.

— Parity/Overtlow (P/V), which is generally used
to indicate either even parity (after logical oper-
ations on byte operands) or overflow (after arith-
metic operations).

— Decimal-Adjust (D), which is used in BCD
arithmetic to indicate the type of instruction that
was executed (addition or subtraction).

— Half Carry (H), which is used to convert the binary
result of a previous decimal addition or subtraction
into the correct decimal (BCD) resutt.

41, .

Z8001,2 CPU

The Z8001,2 CPU Programming Manual gives
more information about these flages.

The control bits, which occupy the high-order byte
of the FCW, are used to enable various interrupts
orto control CPU operating modes. The control bits
are:

— Non-Vectored Interrupt Enable (NVIE), Vec-
tored Interrupt Enable (VIE). These bits deter-
mined whether or not the CPU will accept
non-vectored or vectored interrupts (see page
48).

— System/Normal Mode (S/N). When this bit is
set to one, the CPU is operating in system
mode ; when cleared to zero, the CPU is in
normal mode (see page 43). The CPU output
status line (N/S pin) is the complement of this
bit.

— Extended Processor Architecture (EPA)
Mode. When this bit it setto one, it indicates that
the system contains Extended Processing
Units, and hence extended instructions en-
countered in the CPU instruction stream are
executed (see page 45). When this bit is cleared
to zero, extended instructions are trapped for
software emulation.

Figure 3-6. CPU Special Registers

— Segmentation Mode (SEG). This bit is im-
plemented only in the Z8001 ; it is always
cleared in the nonsegmented Z8002. When set
to one, the CPU is operating in segmented
mode, and when cleared to zero, the CPU is
operating in nonsegmented mode (see page
43).

Program Status Area Pointer (PSAP). The Pro-

gram Status Area Pointer points to an array of

program status values (FCWs and PCs) in main
memory called the Program Status Area. New Pro-
gram Status register vaiues are fetched from this
area when an interrupt or trap occurs. As shown in

Figure 3-6, the PSAP comprises either one word

(nonsegmented Z8002) or two words (segmented

Z8001) ; for either configuration, the lower byte of

the pointer must be zero. Refer to Chapter EXCP-

TIONS for more details about the Program Status

Area and its layout.

Refresh Counter. The CPU contains a programm-
able counter that can be used to refresh dynamic
memory automatically. The refresh counter register
consists of a 9-bit row counter, a 6-bit rate counter
and an enable bit (Figure 3-6). Refer to Chapter
REFRESH for details of the refresh mechanism.

15 Q
RESERVED
0,0,0,0/00,0,000000000 }WORD

secfs/alvelwe] 0, 0 of c[z] sprpAH] o0 }é%&%w%’tr)
COUNTER
I_L 11) ISEFMENI OlrFE|ST| 1 1 | |—]

28001 PROGRAM STATUS REGISTERS

15 o]
SEGMENT NUMBER

LOI T S Y S Y IO|O|O|0|010|OJF|
UPPER OFFSET

Ll T TN T Y Y |O|O|O|D|O|010|ﬂ

ZB001 PROGRAM STATUS AREA POINTER

1514 3 8 o]
’BEl 1 IRAITEI 1 [11 |Ff°vf 1 |ﬂ

ZB0C! REFRESH COUNTER

VR0O01232

15) s
(o [Aesvep] 0,0 o] clz[sprpd-]o0] }é%%;wgto
I_L I T S | AIDDIRESIS Lt i1 ﬂ S ggai??;

Z8002 PROGRAM STATUS REGISTERS

15 g
UPPER POINTER
YA I T OIOIOIOIOIOIOIO

ZB002 PROGRAM STATUS AREA PQINTER

1514 9 8 0
RATE
RE 1l 1 1

ROW]
§ W T N Y T T OO S Y I |

78002 REFRISH COUNTER VR0G233

42 .
Kyy S65-™

oM

T

Z8001,2 CPU

Instruction Execution

in the normal course of events, the Z8000 CPU will
spend most of its time retrieving instructions from
memory and executing, them. This process is
called the running state of the CPU. The CPU also
has two other states that it occasionally enters.

- Stop/Refresh State. This is really one state,
although it may be entered in two different
ways : either automatically for a periodic mem-
ory refresh ; or when the STOP line is activated.
In this state, program execution is temporarily
suspended and the CPU makes use of the
Refresh Counter to generate refreshes. For
more information, consult Chapter REFRESH.

— Bus-Disconnect State. This is the state the
CPU enters when the DMA, or some other bus
requester, takes over the bus. Program execu-
tion is suspended and the CPU disconnects
itself from the bus.

While the CPU is the running state, it can either be
handling interrupts or executing instructions. If it is
executing instructions, the Z8000 can be in the
system or normal execution mode. In system
mode, privileged instruction (such as those which
perform I/O) can be executed ; in normal mode they
cannot. This dichotomy allows the creation of oper-
ating system software, which controls CPU resour-
ces and is protected from application program
action.

In addition, the CPU will be in either segmented or
nonsegmented mode. In segmented mode, which
is available only on the 28001, the program uses
23-bit segmented addresses for memory ac-
cesses ; in nonsegmented mode, which is avail-
able on both CPUs, the program uses 16-bit
nonsegmented addresses for memory accesses.

While executing instructions, the mode of the CPU
is controlled by bits in the FCW (see Figure 5-2).
While handling interrupts, the CPU is always in
system mode and, for the Z8001, in segmented
mode.

Instructions

The Z8000 instruction set contains over 400 differ-
ent instructions which are formed by combining the
110 distinct instruction types (opcodes) with the
various data types and addressing modes. The
complete set is divided into the following groups :

IS7TA

w M

— Load and Exchange for register-to-register
and register-to-memory operations, including
stack management.

— Arithmetic for arithmetic operations, including
multiply and divide, on data in either registers or
memory. Compare, increment, and decrement
functions are included.

— Logical for Boolean operations on data in reg-
isters or memory.

— Program Control for program branching (con-
ditional or unconditional), calls, and returns.

— Bit Manipulation for setting, resetting and test-
ing individual bits of bytes or words in registers
or memory.

— Rotate and Shift for bytes, words, or, for shifts
only, long words within registers.

— Block Transfer and String Manipulation for
automatic memory-to-memory transfers of data
blocks or strings, including compare and trans-
late functions.

— Input/Output for transfers of data between 110
ports and memory or registers.

— Extended for operations involving Extended
Processing Units.

— CPU Control for accessing special registers,
controlling the CPU operating state, synchroniz-
ing multiple-processor operation, enabling/dis-
abling interrupts, mode selection, and memory
refresh.

The 28001,2 CPU Programming Manual contains
full details of the instruction set.

Instruction Formats. Formats of the instructions
are shown in Figure 3-7. The two most significant
bits in the instruction word determine whether the
compact instruction format (A) or the general in-
struction format (B) is used. Compact formats en-
code the four most frequently used instructions into
single words, thereby saving on instruction-mem-
ory usage and increasing execution speed. As long
as the two most significant bits are not logic ones,
the general format applies. In the general format,
the two most significant bits in conjunction with the
source-register field are sufficient for specifying
any of the five main addressing modes. Source and
destination fields are four bits wide for addressing
the 16 general-purpose registers.

GS-THOMSON -3

Z8001,2 CPU

Figure 3-7. Instruction Formats

A COMPACT INSTRUCT ON FORMAT

LOAD IMMEDIATE BYTE

) [1‘1'0‘01 T

IIITIIII

CALL RELAT.VE

. LI T T Ty T ¢ T T T 7%
CALR [161 OFFSET I

JUMP RE_ATVE

R |WI‘IWIO| IC[CI | T]OF}S[LI I]

DECREMENT AND oLMP ON NON-ZERQO

DUNZ |‘I“I"IIEIIWIIIQF‘FS%Y‘III

VRQOC1234

B GENERAL NSTRUCTION FORMAT (SIRST WORD)

ADDRESSING
MQDE

BYTE OR

worp |71 Todeol

T T 1T T 1771
orcobe ' Jw] dovket Joefndaton

ADDRESSNC
MODF

WORD OR | I T

T I T 1 T T 1 T T 1
{ ONG WORD 0PCCDE l SCURCE IBESTINATON]

Data Types

The Z8000 supports manipulation of eight data
types. Five of these have fixed lengths ; the other
three have lengths that can vary dynamically. Each
data type is supported by a number of instructions
which operate upon it directly. These data types are :

— Bit

— Signed and unsigned byte, word, long word, or
quadruple word binary integer

— Byte or word-length logical value

- Word (nonsegmented) or long word (seg-
mented) address

— Unsigned byte decimal integer

— Dynamic-length string of byte data
— Dynamic-length string of word data
— Dynamic-length stack of word data

Bits can be manipulated in registers or memory.
Binary and decimal integers and logical values can
be manipulated in registers only, although oper-
ands can be fetched directly from memory. Ad-
dresses are manipulated only in registers, and
strings and stacks are manipulated only in memory.

Addressing Modes

The information included in Z8000 instructions con-
sists of the function to be performed, the type and
size of data elements to be manipulated, and the
location of the data elements. Locations are desig-
nated using one of the following eight addressing
modes :

4“ Gy S55-THOMSON

— Register Mode. The data element is located in
one of the 16 general-purpose registers.

— Immediate Mode. The data element is located
in the instruction.

— Indirect Register Mode. The data element can
be found in the location whose address is in a
register.

— Direct Address Mode. The data element can
be found in the location whose address is in the
instruction.

- Index Mode. The data element can be found in
the location whose address is the sum of the
contents of a 16-bit index value in a register and
an address in the instruction.

— Relative Address Mode. The data elementcan
be found in the location whose address is the
sum of the contents of the program counter and
a 16-bit displacement in the instruction.

— Base Address Mode. The data element can be
found in the location whose address is the sum
of a base address in a register and a 16-bit
displacement in the instruction.

— Base index Mode. The data element can be
found in the location whose address is the sum
of a base address in one register and an index
value in another register.

Chapter ADDRESSING MODES defines and illus-
trates the eight addressing modes.

Z8001,2 CPU

Extended Processing Architecture

The extended Processing Architecture (EPA) pro-
vides an extremely flexible and modular approach
to expanding both the hardware and software ca-
pabilities of the Z8000 CPU. Features of the EPA
include :

— Specialized instructions for external processors
or software traps may be added to CPU instruc-
tion set.

— Increases throughput of the system by using up
to four specialized external processors in paral-
lel with the CPU.

— Permits modular design of Z8000-based sys-
tems.

— Provides easy management of multiple micro-
processor configurations via "single instruction
stream" communication.

— Simple interconnection between extended pro-
cessing units and Z8000 CPU requires no addi-
tional external supporting logic.

— Supports debugging of suspect hardware
against proven software.

Specific benefits include :

— EPUs can be added as the system grows and
as EPUs with specialized functions are de-
veloped.

— Control of EPUs is accomplished via a "single
instruction stream" in the Z8000 CPU, eliminat-
ing many significant system software and bus
contention management obstacles that occur in
other multiprocessor (e.g., master-slave) organ-
ization schemes.

The processing power of the Z8000 can be boosted
beyondiits intrinsic capability by Extended Process-
ing Architecture. Simply stated, EPA allows the
Z8000 CPU to accomodate up to four Extended
Processing Units (EPUs), which perform spe-
cialized functions in parallel with the CPU’s main
instruction execution stream.

The use of extended processors to boost the main
CPU’s performance capability has been proven
with large mainframe computers and minicompu-
ters. In these systems, specialized functions such
as array processing, special input/output process-
ing, and data communications processing are typi-
cally assigned to extended processor hardware.
These extended processors are complex compu-
ters in their own right.

The Extended Processing Architecture combines
the best concepts of these proven performance
boosters with the latest in high-density MOS inte-
grated-circuit design. The result is an elegant ex-

pansion of design capability - a powerful micropro-
cessor architecture capable of connecting single-
chip EPUs that permits very effective parallel
processing and makes for a smoothly integrated
instruction stream from the Z8000 programmer’s
point of view. Atypical addition to the current Z8000
instruction set is Floating Points Instructions.

The Extended Processing Units connect directly to
the Z-BUS and continuously monitor the CPU in-
struction stream.

When an extended instruction is detected, the ap-
propriate EPU responds, obtaining or placing data
or status information on the Z-BUS using the
Z8000-generated control signais and performing
its function as directed.

The Z8000 CPU is responsible for instructing the
EPU and delivering operands and data to it. The
EPU recognizes instructions intended for it and
executes them, using data supplied with the in-
struction and/or data within its internal registers.
There are four classes or EPU instructions :

— Data transfers between main memory and EPU
registers.

— Datatransfers between CPU registers and EPU
registers.

— EPU internal operations.

- Status transfers between the EPUs and the
78000 CPU Flag and Control Word register
(FCW).

Four Z8000 addressing modes may be utilized with
transfers between EPU registers and the CPU and
main memory :

— Register,

Indirect Register,
Direct Address,
Indexed.

In addition to the hardware-implemented capabilities
of the Extended Processing Architecture, there is an
extended instruction trap mechanism to permit soft-
ware simulation of EPU functions. A control bit in the
Z8000 FCW register indicates whether actual EPUs
are present or not. If not, when an extended instruc-
tion is detected, the Z8000 traps on the instruction,
so that a software "trap handler" can emulate the
desired EPU function - a very useful development
tool. The EPA software trap routine supports the
debugging of suspect hardware against proven soft-
ware. This feature will increase in significance as
designers become familiar with the EPA capability of
the 28000 CPU.

Lyj SGs-THOMSON -

Z8001,2 CPU

Figure 3-8. Typical Extended Processor Configuration

STOP LINE

DEDICATED DEDICATED DEDICATED DEDICATED
28000 —
E’:U Py E;U EPU ooy EPU €PU EZU 1 eeu
MEMORY MEMORY 3 MEMORY MEMORY
[| I I] Z-BUS COMPONENT INTERFACE
MEMORY
PERIPHERAL PERIPHERAL MANAGEMENT
UNIT
MEMORY
VR001350

Figure 3-9. EPA and Z8000 CPU Instruction Execution

cPu
IDLES IN
sTop/
REFRESH
STATE

YES

STOP
LINE ACTIVE

FETCH
NEXT
INSTRUCTION

EPA
BIT SET
?

CPU
EXECUTES
INSTRUCTION

EPA TRAP
SERVICE
ROUTINE

MONITOR Z-8US

1

: CPU GENERATES
I_[DATA ADDRESS
AND PLACES ON
Z-BuS

EPU
EXECUTES

INSTRUCTION

INSTRUCTION
STREAM

SET STOP
LINE AT CPU

UNTIL EPU
FREE

VRO01351

46

Z8001,2 CPU

Extended Processing Architecture (Continued)

This software trap mechanism facilitates the design
of systems for later addition of EPUs : initially, the
extended function is executed as a trap subrou-
tine ; when the EPU is finally attached, the trap
subroutine is eliminated and the EPA control bit is
set. Application software is unaware of the change.

Extended Processing Architecture also offers pro-
tection against extended instruction overlapping.
Each EPU connects to the Z8000 CPU via the
STOP line so that if an EPU is requested to perform
a second extended instruction function before it
has completed the previous one, it can put the CPU
into the Stop/Refresh state until execution of the
previous extended instruction is complete.

EPA and CPU instruction execution are shown in
Figure 3-9. The CPU begins operation by fetching
an instruction and determining whether it is a CPU
or an EPU command. The EPU meanwhile moni-
tors the Z-BUS for its own instructions. If the CPU
encounters an EPU command, it checks to see
whether an EPU is present ; if not, the EPU may be
simulated by an EPU instruction trap software rou-
tine ; if an EPU is present, the necessary data
and/or address is placed on the Z-BUS. If the EPU
is free when the instruction and data for it appear,
the extended instruction is executed. If the EPU is
still processing a previous instruction, it activates
the CPU’s STOP line to lock the CPU off the Z-BUS
untit execution is complete. After the instruction is
finished, the EPU deactivates the STOP line and
CPU transactions continue.

Exceptions

Three events can alter the normal execution of a
Z8000 program : hardware interrupts that occur
when a peripheral device needs service, synchron-
ous software traps that occur when an error condi-
tion arises, and system reset. Chapter 7 contains
a detailed description of exceptions and how they
are handled. Interrupt requests and segmentation
trap requests are accepted after the completion of
the instruction execution during which they were
made. At the end of the instruction execution, a
spurious instruction retrieve transaction is usually
performed before the interrupt or acknowledge se-
quence begins, but the Program Counter is not
affected by the spurious retrieval.

Reset. Asystem reset overrides all other operating
conditions. It puts the CPU in a known state and
then causes a new program status to be retrieved
from a reserved area of memory to reinitialize the
Flag and Control Word (FCW) and the Program
Counter (PC).

Traps. Traps are synchronous events that are
usually triggered by specific instructions and recur
each time the instruction is executed with the same
set of data and the same process or state. The four
kinds of traps are :

— Extended instruction attempted in non-EPA
mode. The current instruction is an EPU instruc-
tion, but the system is not in EPA mode. This
trap allows system software to either simulate
instruction or abort the program.

Lyz S6S-THOMSON 47

Z8001,2 CPU

— Privileged instruction attempted in normal
mode. The current instruction is privileged (I/O
for example), but the CPU is in normal mode.

— System Call (SC) instruction. This instruction
provides a controlled access from normal-mode
to system-mode operation.

— Segmentation violation (supplied by exter-
nal circuit). A segmentation violation, such as
using an offset larger than the defined length of
the segment, can be made to cause an external
memory management system to signal a seg-
mentation trap. This can occur only with the
segmented Z8001.

Interrupts. Interrupts are asynchronous events
typically triggered by peripheral devices needing
attention. The three kinds of interrupts associated
with the three interrupt lines of the CPU are :

— Non-maskable interrupts (NMI). These inter-
rupts cannot be disabled and are usually
reserved for critical external events that require
immediate attention.

— Vectored interrupts (VI). These interrupts
cause eight bits of the vector output by the
interrupting device to be used to select a par-
ticular interrupt service procedure to which the
program automatically branches.

48 .
‘_7 77 %GS ﬂlOMSO!I

— Non-vectored interrupts (NVI). These inter-
rupts are maskable interrupts which are all
handled by the same interrupt procedure.

Trap and Interrupt Service Procedures. Inter-
rupts and traps are handled similarly by the Z8000
CPU. The Z8000 CPU automatically acknowledges
interrupts and processes traps in system mode. In
the case of the segmented Z8001, the CPU uses
the segmented mode regardless of its mode at the
time of interrupt or trap. The program status infor-
mation in effect just prior to the interrupt or trap is
pushed onto the system stack. An additional word,
which serves as an identifier for the interrupt or trap,
also is pushed onto the system stack, where it can
be accessed by the interrupt or trap handler. The
Program Status registers are loaded with new
status information obtained from the Program
Status Area of memory. Then control is transferred
to the service procedure, whose address is now
located in the Program Counter. For details of
interrupt and trap handling, refer to Chapter EX-
CEPTIONS.

Z8001,2 CPU

ADDRESS SPACES

Introduction

Programs and data may be located in the main
memory of the computer system or in peripheral
devices. In either case, the location of the informa-
tion must be specified by an address of some sort
before that information can accessed. A set of
these addresses is called an address space.

The Z8000 supports two different types of ad-
dresses and thus two categories of address
spaces :

— Memory addresses, which specify locations in
main memory.

— /O addresses, which specify the ports through
which peripheral devices are accessed.

The CPU generates addresses during four types of

operations :

— Instruction retrievals, decribed in Chapter CPU
OPERATIONS.

— Operand retrievals and stores, described in
Chapter ADDRESSING MODES.

— Exception processing, described in Chapter
EXCEPTIONS.

— Refreshes, described in Chapter REFRESH.

Timing information concerning addresses is de-
scribed in Chapter PIN CONFIGURATION.

Types of Address Spaces

Within the two general types of address spaces
(memory and I/O), it is possible to distinguish sev-
eral subcategories. Figure 4-1 shows the address
spaces that are available on both the Z8001 and
the Z8002.

The difference between the Z8001 and the Z8002
lies not in the number and type of address spaces,

but rather in the organization and maximum size of
each space. Forthe Z8001, each of the six memory
address spaces contains 8M byte addresses
grouped into 128 segments, for a total memory
addressing capability of 48M bytes. For the 28002,
each memory space is a homogeneous collection
of 64K byte addresses. In both the Z8001 and the
Z8002, the /O address spaces contain 64K port
addresses. When an address is used to access
data, the address spaces may be distinguished by
the state of the status lines (STo - ST3) (which is
determined by the way the address was generated)
and by the value of the Normal/System line (N/S)
(which is determined by the state of the S/N bit in
the FCW).

— Instruction Space (status = 1100 or 1101), nor-
mal mode (N/S = 1) or system mode (N/S = 0).
These spaces typically address memory that
contains user programs (normal) or system pro-
grams (system).

— Data Spaces (status = 1000 or 1010), normal
mode (N/S = 1) or system mode (N/S = 0).
These spaces may be used to address the data
that user or sytem programs operate on.

— Stack Spaces (status = 1001 or 1011), normal
mode (N/S= 1) or system mode (N/S = 0).
These spaces can be used to address the sys-
tem and normal program stacks.

— Standard I/O Space (status = 0010). This space
addresses all the I/O ports that are used for
Z8000 peripherals.

— Special /O Space (status = 0011). This space
addresses ports in CPU support chips (such as
the Z8010 Memory Management Unit).

Figure 4-1. Address Spaces on the Z8001 and Z8002

/0 ADDRESS SPACES

MEMORY ADDRESS SPACES
SYSTEM MODE NORMAL MODE
INSTRUCTIONS INSTRUCTIONé

DATA DATA

STACK STACK

|

I

i

SYSTEM MODE
STANDARD /O

SPECIAL I/O

Lyy Sts-THOMSON -

Z8001,2 CPU

/O Address Spaces

Al /O addresses are represented by 16-bit words.
Each of the ports addressed is either eight or 16
bits wide. Transfer to or from 16-bit ports always
involves word data and, for 8-bit ports, byte data.

The address of a 16-bit port may be even or odd
for both address spaces. In standard 1/O space,
byte ports must have an odd address ; in special
I/O space, byte ports must have an even address.

Memory Address Spaces

Each memory address space in the Z8002, or each
segment in each memory address space on the
Z8001, can be viewed as addressing a string of 64K
bytes numbered consecutively in ascending order.
The 8-bit byte is the basic addressable element in
Z8000 memory address spaces. However, there
are three other addressable data elements :

~ Bits, in either bytes or words.
— 16-bit words.
— 32-bit words.

Addressable Data Elements. The nature of the
data element being addressed depends on the
instruction being executed. As Chapter EXCEP-
TIONS explains in detail, different assembler mne-
monics are used for addressing bytes, words, and

Figure 4-2. Addressable Data Elements

long words. Moreover, only certain instructions can
address bits.

Abit can be addressed by specifying a byte or word
address and the number of the bit within the byte
(0-7) orword (0-15). Bits are numbered right-to-left,
from the least to the most significant. This is con-
sistent with the convention that bit n corresponds
10 position 2" in the conventional representation of
binary numbers (see Figure 4-2).

The address of a data type longer than one byte
(word or long word) is the same as the address of
the byte with the lowest memory address within the
word or long word (Figure 4-2). This is the leftmost,
highest-order, or most significant byte of the word
or long word.

Word or long word addresses are always even-
numbered. Low bytes of words are stored at odd-
numbered memory locations and high bytes at
even-numbered locations. Byte addresses can be
either even -or odd- numbered.

Certain memory locations are reserved for system-
reset handling. These are described fully in Chap-
ter EXCEPTIONS. Except for these reserved
locations, there are not memory addresses speci-
fically designated for a particular purpose.

76543210

1514131211109 8 7 6 54 3 2 1 0

BITS IN A BYTE

LITTITTITTTTTTTT] &7s w a woro

ADDRESS n

UPPER BYTE

BYTE

ADDRESS n (even) ADDRESS n + 1
UPPER BYTE | LOWER BYTE WORD
1 i Il | L i L | | 1 | | L
ADDRESS n ADDRESS n + 1
UPPER WORD /UPPER BYIE
I_A] L I/ L | | ‘ L | L L 1 | j
ADDRESS n + 2 ADDRESS n - 3 LONG WORD
[LOWER’ WORD /LOWER BY*E]
Nl L 1 | L Il L | 1 L I " |
VROO1236

50 5,' SGS-THOMSON

= MICHBOELFCTPONCS

28001,2 CPU

Segmented and Nonsegmented Addresses.
The two versions of the Z8000 CPU generate two
kinds of addresses with different lengths. The
Z8002 generates a 16-bit address specifying one
of 64K bytes. The Z8001 generates a 23-bit seg-
mented address. A segmented address consists of
a 7-bit segment number, which specifies one of 128
segments, and a 16-bit offset, which specifies one
of up to 64K bytes in the segment. Each segment
is an independent collection of bytes ; thus, instruc-
tions and multiple byte data elements cannot cross
segment boundaries. Some of the advantages of
address segmentation are outlined in this Chapter.

Figure 4-3 shows the format of segmented and
nonsegmented addresses. Nonsegmented ad-
dresses are 16 bits long and thus can be stored in
word registers (Rn) or in memory as word-lenght
addressable elements. The 23-bit segmented ad-
dresses are embedded in a 32-bit long word and
thus can be stored in a long word register (RRn) or
a long word memory element. There is a short
encoding of segmented addresses that appears in
instructions and requires only 16 bits.

Itis important to realize that even though the Z8001
can operate in nonsegmented mode (Chapter CPU
OPERATIONS), it always generates segmented
addresses. The segment number is supplied by the
program counter segment number.

Figure 4-3. Segmented and Nonsegmented
Address Formats

NON—SEGMENTED MEMORY ADDRESS
(28002 ONLY)

15 o]
ADDRESS
[R

| | | | | L1 1 | |

SEGMENTED MEMORY ADDRESS

(28001 ONLY)
15 14 8 7 0
15| SEGMENT #]
| S W S S | Y O S | | |
OFFSET
I I Y N Sy N | |
5 0

VR001237

Segmentation and Memory Management. Ad-
dresses manipulated by the programmer, used by
instructions, and output by the Z8001 are called
"logical addresses”. An external memory-manage-

ment circuit can translate logical addresses into
physical (actual} memory addresses and perform
certain checks to insure data and programs are
properly accessed.

The 28010 Memory Management Unit (MMU) per-
forms this function for the segmented addresses
produced by the Z8001 CPU. A single MMU keeps
a descriptor for each of 64 segments. This descrip-
tor tells where in physical memory the segment lies,
how long the segment is, and what kind of ac-
cesses can be made to the segment. The MMU
uses these descriptors to translate logical segment
numbers and offsets into 24-bit physical addresses
(as shown in Figure 4-4). At the same time, the
MMU checks for errors such as writing into a read-
only segment or a system segment being accessed
by a nonsystem program. MMUs are designed to
be combined so that more than 64 segments can
be supported at once. The CPU does not require
MMUs ; the segment number can be used directly
as part of a physical address.

Some of the benefits of the memory management
features provided by the MMU are :

— Provision for flexible and efficient allocation of
physical memory resources during the execu-
tion of programs.

— Hardware stack overflow protection.

— Support for multiple, independently executing
programs that can share access to common
code and data.

— Protection from unauthorized or unintentional
access to data or programs.

— Detection of obviously incorrect use of memory
by an executing program.

— Separation of users from system functions.

Segmentation in the Z8001 helps support memory
management in two ways :

— By allowing part of an address (the segment
number) to be output by the CPU early in a
memory cycle. This keeps access to the seg-
ment descriptor in the MMU from adding to the
basic access time of the memory.

— By providing a standard, variable-sized unit of
memory for the protection, sharing, and move-
ment of data.

In addition, segmentation is the natural model for
the support of modular programs and data in a
multi-programming environment. It efficiently sup-
ports re-entrant programs by providing data reloca-
tion for different tasks using common code.

L3y SGS-THOMSON 51

28001,2 CPU

Figure 4-4. Segmented Address Translation

Lllll

OFFSET
L1l

LOGICAL
{VIRTUAL) PHYSICAL
ADDRESSING SPACE r—n MEMORY
SEGMENT 0
t T ~
| | z
| | 29
| ! o
] ! s
! |
SEGMENT 1 | |
[E2 .
[z
s 37
= &
Lz ¥ A
- g
g 3"
SEGMENT 2 b &
% 1 v
OFFSET (-
FROM
BEGINNING a |
[T
>
I} =
I 5 z
I 35
| i
@
SEGMENT N |
T [
| | z
| | 23
| | o
| |
L__21
SEGMENT 127
Segments of physical
memory can be looded
from peripheral devices
through the CPU or DMA

VRO01238

52

OMSON

‘ﬁ SGS

TRONCS

Z8001,2 CPU

CPU OPERATION

Introduction

This chapter gives a fundamental description of the
operating states of the Z8000 CPU and the process
of instruction execution.

Operating States

The Z8000 CPU has three operationg states : Run-
ning state, Stop/Refresh state, and Bus-Discon-
nect state. Running state is the usual state of the
processor : the CPU is executing instructions or
handling exceptions. Stop/Refresh state is entered
when the STOP line is asserted or the refresh
counter indicates that a periodic refresh should be
done. In this state, memory refresh transactions
are generated continually. Bus-Disconnect state is
entered when the CPU acknowledges a bus re-
quest and gives up control of the system bus.
Figure 5-1 shows the three states and the condi-
tions that cause state transitions.

Running State. While the CPU is in Running state,
it is either executing instructions or handling excep-
tions. The CPU is normally in Running state, but
will leave this state in response to one of three
conditions :

Figure 5-1. Operating States and Transitions

f’\ STCF RELEASED, OR
5 PERICO C REFRESH
RUNNING

: C

SNy oL TED

STOP ASSERTED, OR
PERIODIC REFRESH
REQUESTED

BUSREQ RELEASED, |
STCP INACTIVE

| ReFReESKH |

BUSREQ RE.EASED,
AND_ACKNOWLEDGED ON STOP ACTIVE
FUEAK VRO01239

— Therefresh mechanismindicates that a periodic
refresh needs to be done, in which case the
CPU temporarily enters Stop/Refresh state.

— An external stop request pushes the CPU into
Stopped state.

— An external bus request pushes the CPU into
Bus-Disconnect state.

Stop/Refresh State. While the CPU is in Stop/Re-
fresh state, it generates a continuous stream of
refresh cycles and does not perform any other
functions.

This state provides for the generation of memory
refreshes by the CPU and allows external devices
to suspend CPU operation. This feature can be
used to force single-step operation of the processor
or to synchronize the CPU with an Extended Pro-
cessing Unit.

The CPU enters Stop/Refresh state when the re-
fresh mechanism needs to do a refresh or when the
stop line is activated. It leaves Stop/Refresh state
when neither of these conditions holds or when a
bus request causes the CPU to enter Bus-Discon-
nect state.

Bus-Disconnect State. While the CPU is in Bus-
Disconnect state, it does nothing. It enters Bus-Dis-
connect state from either Running state or
Stop/Refresh state when a bus request has been
received on BUSREQ and acknowledged on BU-
SACK. While in this state, it disconnects itself from
the bus by 3-stating its output. It leaves Bus-Dis-
connect state when the external bus request has
been released. Note that Bust-Disconnect state is
highest in priority in that the presence of a bus
request will force the CPU into this state, regardless
of any conditions indicating that a different state
should be entered.

Effect of Reset. Activation of the CPU's RESET
line puts the CPU in a nonoperational state within
five clock cycles, regardless of its previous state or
the states of its other inputs. The CPU will remain
in this state until RESET is deactivated. When this
occurs, the program enters one of the three oper-
ating states described above, depending on the
state of BUSREQ and STOP inputs.

Ly7 555 THOMSON 53

Z8001,2 CPU

Instruction Execution

While the CPU is in Running state and executing
instructions, it is controlled by the Program Status
registers (Figure 5-2). The Program Counter gives
the address from which instructions are fetched,
the flags control branching, and the control bits
determine the mode in which the CPU operates
and the interrupts that are masked.

Instruction execution consists of the repeated ap-
plication of two steps :

— Fetch one or more words comprising a single
instruction from the program memory address
space at the address specified by the Program
Counter (PC).

— Perform the operation specified by the instruc-
tion and update the Program Counter and flags
in the Program Status registers.

The operation performed by an instruction and the
way the flags are updated depends on the particu-
lar instruction being executed For most instruc-
tions, the PC value is updated to point to the word
immediately following the last word of the instruc-
tion. The effect of this is that instructions are
fetched sequentally from memory. Exceptions to
this are Branch, Call, Interrupt Return and Load
Program Status, and Return instructions, which

Figure 5-2. Program Status Registers

cause the PC to be set to a value generated by the
instruction. This causes a transfer of control with
execution continuing at the new address in PC.

The Z8000 CPU is able to overlap the fetching of
one instruction with the operation of the previous
instruction. This facility, called Instruction Look-
Ahead, is illustrated in Figure 5-3. This shows the
execution of a series of memory-to-register instruc-
tions, such as a value in memory being added to
the value in a general-purpose register. Part of
each instruction is fetched while the previous in-
struction execution is being completed. This mech-
anism provides faster execution speed than the
typical alternative of fetching each instruction only
after the prior instruction has completed execution.

After executing an instruction and in some cases
during an instruction’s execution, the CPU checks
to see if there are any traps or interrupts pending
and not masked. If so, it temporarily suspends
instruction execution and begins a standard excep-
tion-handling sequence. This sequence, causes
the value of the Program Status registers to be
saved and a new value loaded. Instruction execu-
tion then continues with a new PC value and Flag
and Control Word value. The effect is to switch the
execution of the CPU from one program to another.

15

Q
RESERVED
O1 Ol O| 9 Ol OI o On OI 0 01 O| O] 0 010 }WORD

lS[GlS/NIEPAI\/\ElN‘AEI 0,0, 0[c] z[sprbA 4] o,0] }%%E%p%\ﬁo

SEGMENT NUMBER
LOJ R Y Y Y | IOIOIOIOIOIOIOIO }
SEGMENT QFFEST
Lo T | T N S I

78001 PROGRAM STATUS REG.STERS

PROGRAM
COUNTER

15)
SEGMENT NUVBER
'_Ol) I I ['} IOIOIOIOIOI oIOIO

UPPER OFFSET
| T S | |OIOIOIOIOIOIOIO—I

28001 PROGRAM STATUS AREA POINTER

1514 9 8 9
£ RATZ ROW
IRLI Y N S I S NS R I B —|

Z8001 REFRESH COUNTER

VR0O01232

15 3. ria ,

BEDEGE o ofc[z]sbrpA ~[c,0] 4}%%5);0\?
> =2ROGH

A|DD|RE31S) I T T —| jtgjﬁ?ég

| | T N T

28002 PRCGRAM STATUS REGISTERS

o

c
UFPER PONTER [0 0.0 0,0 0,00
1 1 1

-
1 | W it ol et |

78002 PROGRAN STATUS AREA POINTER

"5 4 g 8 ¢}
£ RATE ROW
[R_‘[_l L (I T Y SO I N

Z8002 REFRESH COUNTER

54 ‘ﬁ SGS-THOMSON

TRONITS

Z8001,2 CPU

Running-State Modes. While the CPU is execu-
ting instructions, its mode will be controlled by three
control bits in the FCW : the System/Norma! Mode
bit (S/N), the Segmentation Mode bit (SEG), and
the EPA Mode bit.

Segmented and Nonsegmented Modes. The
segmentation mode of the CPU (segmented or
nonsegmented) determines the size and format of
addresses that are directly manipulated by pro-
grams. In segmented mode (SEG = 1), programs
manipulate 23-bit segmented addresses ; in non-
segmented mode (SEG = 0), programs generate
16-bit nonsegmented addresses. There are aiso
the following differences in the address portions of
instructions, which are due to the difference in
address size :

— Indirect and Base Registers are 32-bit registers
in segmented mode and 16-bit registers in non-
segmented mode.

— Addresses embedded ininstructions are always
16-bits in nonsegmented mode. They consist of
a 7-bit segment number and either and 8-bit or
16-bit offset in segmented mode.

Segmented mode is available only on the Z8001
CPU ; on the Z8002, the segment bit is always
forced to zero, indicating nonsegmented mode.

Figure 5-3. Instruction Look-Ahead

Because the Z8001 supports segmented and non-
segmented modes, it is possible to run programs
written for the Z8002 on the Z8001 without alter-
ation. The reverse is not possible. The Z8001 CPU
always generates segmented addresses, even
when operating in nonsegmented mode. When a
memory access is made in nonsegmented mode,
the offset of the segmented address is the 16-bit
address generated by the program, and the seg-
ment number is the value of the segment number
field of the Program Counter.

Normal and System Modes. The operation mode
of the CPU (system mode or normal mode) deter-
mines which isntructions can be executed and
which Stack Pointer register is used.

In system mode (S/N = 1), all instructions can be
executed. While in normal mode, certain privileged
instructions that alter sensitive parts of the machine
state (such as I/O operations or changes to control
registers) cannot be executed.

The second distinction between system and nor-
mal mode is access to the system or normal Stack
Pointer. As shown in Figure 5-4, there are two
copies of the Stack Pointer registers (Register 15
in the Z8002 and Registers 14 and 15 in the
Z8001) : one for normal mode and one for system
mode. When in normal mode, a reference to the

‘INSTRUCTION AND DATA FETCH EXECUTION 1

INSTRUCTION AND DATA FETCH

EXECUTION ‘

INSTRUCTION AND DATA FETCH EXECUTION

VR001242
Table 5-1. Registers Accessed by References to R14 and R15
[Register 7 System Mode Normal Mode
Referenced by T
‘ Instruction Segmented ‘ Nonsegmented Segmented ‘ Nonsegmented
‘ Ria System R14 | Normal R14 Normal R14 ‘ Normal R14
R15 System R15 System R15 Normal R15 ! Normal R15
| RR14 System R14 Normal R14 Normal R14 Normal R14
System R15] System R15 Normal R15 ‘ Normal R15

Note : Z8002 always runs in nonsegmented mode.

Ly SEs-THOMSON >

Z8001,2 CPU

Instruction Execution (Continued)

Stack Pointer register by an instruction will access
the normal Stack Pointer. When in system mode,
an access to the Stack Pointer register will refer-
ence the system Stack Pointer, unless the Z8001
is running in nonsegmented system mode, in which
case a reference to R14 will access the normal
mode R14. This is summarized in Table 5-1.

In normal mode, the system Stack Pointer is not
accessible ; in system mode the normal Stack
Pointer is accessed by using a special Load Control
Register instruction.

The CPU switches modes whenever the Program
Status Control bits change. This can happen when
a privileged load control instruction is executed or
when an exception (interrupt, trap, or reset) occurs.
There is a special instruction (system call) whose
sole purpose is to generate a trap and thus provide
a controlled transition from normal to system mode.

The distinction between normal/system mode
allows the construction of a protected operating
system. This is a program that runs in system mode
and controls the system’s resources, managing the
execution of one or more application programs
which run in normal mode. Normal and system
modes, along with Memory Protection, provide the
basis for protecting the operating system from mal-
functions of application programs.

Extended Instructions

The Z8000 CPU supports seven types of extended
instructions, which can be executed cooperatively
by the CPU and an external Extended Processing
Unit. The execution of these instructions is control-
led by the EPA control bit in the FCW.

When the EPA bit is zero, it indicates that there is
no Extended Processing Unit connected to the
CPU and causes the CPU to trap when it en-
counters an extended instruction.

This allows the operation of the extended instruc-
tion to be simulated by software running on the
CPU.

If the EPA bit is set, it indicates that an Extended
Processing Unit is connected to the CPU in order

%6 (37 S5S-THOMSON

to process the operation encoded in the extended
instruction. The CPU will fetch the extended in-
struction and perform any address calculation re-
quired by that instruction. If the instruction specifies
the transfer of data, the CPU will generate the
timing signals for this transfer. The CPU will fetch
and begin executing the next instruction in its in-
struction stream. The Extended Processing Unit is
expected to monitor the CPU’s activity, participate
in extended instruction data transfers initiated by
the CPU, and execute the extended instruction.
While the Extended Processing Unit is executing
the instruction, the CPU can be fetching and execu-
ting further instructions. H the CPU fetches another
extended instruction before the Extended Process-
ing Unit is finished executing a previous instruction,
the STOP line may be used to delay the CPU until
the previous instruction is complete.

Figure 5-4. General-Purpose Registers

R2 [RL2 |
R - -
"3 RH3 Ri3)
R4 RH4 i RL4 [
RR4 — e —
RS [RH5] RLS]
— — = > 08
" ome [RHE] 6 |
RRE ¢ R
R7 L RH7 “ RL7 J
R8 15 o] W B
RS L e e] ‘
H

R1
RR12

=
=

oo Ai SYSTEM STACK_ POINTER [SEG NG J yRot2
R4 NOSMAL STACK POINTER (SEG NG
RR14
<‘ R %l;svsrw STACK POINTER (OFFSETy
R'5

LR NORMA. STACK PONTER (OFFSE

/R007242

Z8001,2 CPU

ADDRESSING MODES

Introduction

This chapter describes the eight addressing modes
used by instructions to access data in memory or
CPU registers. Separate sets of examples for the
nonsegmented and segmented modes of oper-
ation are given at the end of the chapter.

An instruction is a consecutive list of one or more
words aligned at even-numbered byte addresses
in memory. Most instructions have operands in
addition to an operation code (opcode). These

Figure 6-1. Addressing Modes

operands may reside in CPU registers or memory
locations. The modes by which references are
made to operands are called "addressing modes".
Figure 6-1 illustrates these modes. Not all instruc-
tions can use all addressing modes ; some instruc-
tions can use only a few, and some instructions use
none at all. In Figure 6-1, the term "operand" refers
to the data to be operated upon.

. Addressing Mode Operand Addressing Operand Value
In the Instruction In a Register in Memory B
R Register [REGISTER ADDRESS | [OPERAND The content of the
i register

IM Immediate OPERAND

In the instruction

The content of the

“IR Indirect

Register | REGISTER ADDRESS I*' - $|

ADDRESS]—> OPERAND location whose address is

in the register

The content of the location

Direct
DA Address | ADDRESS }

OPERAND whose address is in the

instruction

The content of the location

X index REGISTER ADDRESS —>I INDEX l—‘ whose address in the in-
| BASE ADDRESS A<+) ,| OPERAND | struction plus the content
of the ing register
The content of the location
. | PC VLAUE I—
Relative tent of the program

RA Address | DISPLACEMENT I

whose address is the con- i
|
|

+ OPERAND counter, offset by the

displacement in the
instruction

The content of the location

Base REGISTER ADDRESS |——»| BASE ADDRESS Ii whose address is the ad-
BA Address I dress in the register,
DISPLACEMENT + OPERAND offset by the displacement
in the instruction
The content of the location ‘
Base REGISTER ADDRESS BASE ADDRESS |[——, whose address is the ad- |
BX Index dressina register plus
REGISTER ADDRESS INDEX @ OPERAND the index value in another

register

Note : Do not use RO or RRO as indirect, index, or base registers.

Lyy SGs-THOMsON 57

Z8001,2 CPU

Use of CPU Registers

The 16 general-purpose CPU registers can, with
the exceptions noted below, be used in any of the
following ways :

- As accumulators, where the data to be manipu-
lated resides within the register.

~ As pointers, where the value in the register is
the memory address of the operand, rather than
the operand itself. In string and stack instruc-
tions, the pointers may be automatically
stepped either forward or backward through
memory locations.

— As index or base registers, where the contents
of the register and the word(s) following the
instruction are combined to produce the ad-
dress of the operand. This allows efficient ac-
cess to a variety of data structures.

There are two exceptions to the above uses of
general-purpose registers :

— Register RO (or the double register RRQ in seg-
mented mode) cannot be used as an indirect
register, base register, index register, or soft-
ware stack pointer.

— Register R15' (or the double register RR14' in
the Z8001) is used in acknowledging interrupts
and therefore can never be used as an accumu-
lator in system-mode operation. The system-
mode registers, R14’ and R15’, are
automatically accessed when R14, R15, or
RR14 are referenced by instructions executed
in system mode.

In addition to the general-purpose use of Z8000
registers, the following registers are used for spe-
cial purposes :

— Register R15 (or the double register RR14 in the
Z8001) is used as a stack pointer for subroutine
calls and returns.

— The byte register RH1 is used in the translate
bulleted item instructions (TRDB, TRDRB,
TRIB, TRIRB) and the translate and test instruc-
tions (TRTDB, TRTDRB, TRTIB, TRTIRB).

— Register RO is used in extended instructions.

In Relative Address (RA) mode, the Program
Counter (PC) is used instead of a general-purpose
CPU register to supply the base address for an
effective address calculation. The Program
Counter normally is used only to keep track of the

%8 Ly sGs-mHomsoN

next instruction to be executed ; whenever an in-
struction is fetched from memory, the PC is in-
cremented to point to the next instruction. For
addressing purposes, however, the updated PC
serves as a base for referencing an operand
relative to the location of an instruction. Operands
specified by relative addressing reside in the pro-
gram address space if the memory system distin-
guishes between program and data or stack
address spaces.

Two of the addressing modes, Direct Address and
Index, involve an I/O or memory address as part of
the instruction. I/O addresses are always 16 bits
long, as are nonsegmented memory addresses
(£28002), so these addresses occupy one word in
the instruction. Segmented addresses generated
by the Z8001 are 23 bits iong. Within an instruction,
asegmented address may occupy either two words
(16-bit long offset) or one word (8-bit short offset).

As Figure 6-2 illustrates, bit 7 of the segment
number byte distinguishes the two formats. When
this bit is set, the long-offset representation is im-
plied. When the bit is cleared, the short-offset ad-
dress representation is implied. For a short-offset
address, the 23-bit segmented address is reduced
to 16 bits by omitting the eight most significant bits
of the offset, which are assumed to be zero.

Figure 6-2. Segmented Memory Address
Within Instruction

15 8 7 C

| N I S |

i5 C
[LONG OFFSET
) NN Y N I S T (N T O N

15 B 7 o]
0 SEGMENT NUMBER SFCORT CFFSET
N T N S | § I T S T I |

VRCO1244

Note : Shaded area is reserved.

Z8001,2 CPU

Addressing Mode Descriptions

The foliowing pages contain descriptions of the
addressing modes of the Z8000. Each description :

— Explains how the operand address is calcu-
lated,

— Indicates which address space (Register, 1/0O,
Special I/0, Data Memory, Stack Memory, or
Program Memory) the operand is located in,

— Shows the assembly language format used to
specify the addressing mode, and

— Works through an example.

The descriptions are grouped into two sections
-one for nonsegmented CPUs, the other for seg-
mented CPUs. Users of the Z8002 need refer to
the first section only ; users of the Z8001 in non-
segmented mode should also refer to the first
section, while users of Z8001 in segmented mode
should refer to the second section. Inthe examples,
hexadecimal notation is used for memory ad-
dresses and the contents of registers and memory
locations. The % symbol precedes hexadecimal
numbers in assembly language text.

Descriptions and Examples (28002 and 28001
Nonsegmented Mode)

In this section, the addressing modes of both the
Z8002 and the nonsegmented mode Z8001 are
described.

Register (R). Inthe Register addressing mode the
instruction processes data taken from a specified
general-purpose register. Storing data in a register
allows shorter instructions and faster execution
than occur with instructions that access memory.

INSTRUCTION REGISTER

IOPERATION ’ REGISTER I—.l OPERAND I

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the register address
space. The register length (byte, word, register pair,
or register quadruple) is specified by the instruction
opcode.

Assembler language format :

RHn, RLn Byte register
Rn Word register
RRn Double-word register
RQn Quadruple-word register

Example of R mode :

LD R2, R3 lload the contents of!

IR3 into R2!

Before Execution

R2 A6B8
R3 9A20
After Execution
R2 9A20
R3 9A20

Immediate (IM). The Immediate addressing mode
is the only mode that does not indicate a register
or memory address as the source operand. The
data processed by the instruction is in the instruc-
tion.

INSTRUCTION
WORD(S) OPERATION
WORD(S) OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operand is part of the in-
struction, it is always located in the program mem-
ory address space. Immediate mode is often used
to initialize registers. The Z8000 is optimized for
this function, providing several short immediate
instructions to reduce the length of programs.
Assembler language format :

data

Example of IM mode :

LDB RH2 #%55 lload hex 55 into RH2!

Before Execution

R2 6789

After Execution

R2 5589

Lyy $5s-THOMSON 59 -

Z8001,2 CPU

Indirect Register (IR). In the Indirect Register
addressing mode, the data processed is not the
value in the specified register. Instead, the register
holds the address of the data.

INSTRUCTION REGISTER MEMORY

[OPERATIONI REGISTER |—>| ADDRESS—| 4[OPERAND |

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS 13 IN REGISTER.

A single word register is used to hold the address.
Any general-purpose word register can be used
except RO.

Depending on the instruction, the operand speci-
fied by IR mode will be located in either I/O address
space (/O instructions), Special /O address space
(Special I/O instructions), or data or stack memory
address spaces. For non-1/O references, the oper-
and will be in stack memory space if the stack
pointer (R15) is used as the indirect register ; other-
wise, the operand will be in data memory space.

The Indirect Register mode way save space and
reduce execution time when consecutive locations
are referenced. This mode can also be used to
simulate more complex addressing modes, since
addresses can be computed before the data is
accessed.

Assembler language format :

@Rn
Example of IR mode :

LD R2, @R5 lload R2 with the!
'data addressed by the!

lcontents of R5!

Before Execution Memory

R2 | 030F .
R3 | 0005 170A | A023
R4 | 2000 | 170C | OBOE
R5 | 170C | 170E | 10D0
After Ex;ut/or; .
R2 | OBOE |

R3 0005

R4 | 2000 |

RS ?17004

e L3 Scs-THOMSON

Direct Address (DA). In the Direct Addressing
mode, the data processed is found at the address
specified in the instruction.

INSTRUCTION
OPERATION DATA MEMORY
WORD(S) ADDRESS - *L OPERAND—l

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS IN THE INSTRUCTION.

Depending upon the instruction, the operand spe-
cified by DA mode will be either in 1/O space (/O
instructions), in Special I/O space (Special /O in-
structions), or in data memory space.

This mode is also used by Jump and Call instruc-
tions to specify the address of the next instruction
to be executed. (Actually, the address serves as an
immediate value that is loaded into the Program
Counter).

Assembler language format :

address either memory, t/O, or

Special YO

Example of DA mode :

L.DB RH2,%5E23 lload RH2 with the!

ldata in address!

I5E23!
Before Execution Memory
R2 | 6789 | o
After Execution 5E22 | 0106
5E24 | 0304
R2 | 0689 —
Index (X). In the Index Addressing mode, the

instruction processes data located at an indexed
address in memory. The indexed address is com-
puted by adding the address specified in the in-
struction to an "index" contained in a word register,
also specified by the instruction. Indexed address-
ing allows random access to tables or other com-
plex data structures where the address of the base
of the table is known, but the particular element
index must be computed by the program.

INSTRUCTION REGISTER
OPERATION | REGISTER ﬁal;mnzx]— DATA MEMORY
B Y

ADDRESS ———— »{«;»| OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE ADDRESS IN THE INSTRUCTION, OFFSET BY THE
CONTENTS OF THE REGISTER.

Z8001,2 CPU

Any word register can be used as the index register
except RO.

Operands specified by X mode are always in the
data memory address space except when Index
Addressing is used with the Jump and Call instruc-
tions. In these cases, the destination, computed by
adding the index register contents to the base
address, is in program memory space.

Assembler language format :
address (Rn)

Example of X mode :

LD R4,%231A(R3) lload into R4 the con-!
'tnents of the memory!
lfocation whose!
laddress is 231A +!

lthe value in R3!

Before Execution Memory

[.

R3
R4

2516
2518
251A

F3C2
3DOE
7ADA |

Address Calculation

231A
+ 01FE
2518

After Execution

R3 01FE
R4 3DOE

Relative Address (RA). In the Relative Address-
ing mode, the data processed is found at an ad-
dress relative to the current instruction. The
instruction specifies a two’s complement displace-
ment which is added to the Program Counter to
form the target address. The Program Counter
setting used is the address of the first instruction
following the currently executing instruction. (The
assembler will take this into account in calculating
the constant that is assembled into the instruction.)

INSTRUCTION PC

OPERATION —»I ADDRESS —lﬁ' MEMORY

DISPLACEMENT (+)—»| opeRaND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN
THE INSTRUCTION

An operand specified by RA mode is always in the
program memory address space.

As with the Direct Addressing mode, the Relative
Addressing mode is used by certain program con-
trol instructions to specify the address of the next
instructions to be executed (specifically, the result
of the addition of the Program Counter value and
the displacement is loaded into the Program
Counter, except when executing the DJNZ or
CALR instructions. The displacement is then sub-
tracted from the PC, not added to it). Relative
addressing allows references forward or backward
from the current Program Counter value and is used
only for such instructions as Jumps or Calls and
special loads (LDR) that can cross the normally strict
boundary between program and data memory.

Assembler language format :
address

Example of RA mode : (Note that the symbol "$"
is used for the value of the current program
counter.)

LDR R2,$+%6 lload into R2 the con-!
ltents of the memory!
llocation whose!
laddress is the current!
Iprogram counter!

I+ hex 6!

Because the program counter will be advanced to
point to the next instruction when the address
calculation is performed, the constant that occurs
in the instruction will actually be +2.

Before Execution

— Program Memory
ACFO

R2
PC ¢
0202 | 3102)
| lInstruction
0204 | 0002
Address Calculation ‘i
0206 | E801
0206 8
+ 2 0208 | FFFE
0208
After Execution
R2 FFFE
PC 0206

Lyg SCS:THOMSON o

Z8001,2 CPU

Base Address (BA). The Base Addressing mode
is similar to Index mode in that a base and offset
are combined to produce the effective address. In
Base Addressing, however, a register contains the
base address, and the displacement is expressed
as a 16-bit value in the instruction. The two are
added and the resulting address points to the data
to be processed. This addressing mode may be
used only with the Load instructions. Base Ad-
dressing mode, as a complement to Index mode,
allows random access to tables or other data struc-
tures where the displacement of an element within
the structure is known, but the base of the particular
structure must be computed by the program.

Any word register can be used for the base address
except RO.

An operand specified by BA mode will be in stack
memory space if the base register is the stack
pointer (R15) and in data memory space otherwise.

INSTRUCTION REGISTER

OPERATION | REGISTER —»LADDRESSI% DATA MEMORY

DISPLACEMENT

_»

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE ADDRESS IN THE INSTRUCTION, OFFSET BY THE
CONTENTS OF THE REGISTER.

Assembler language format :

Rn (#disp)

Example of BA mode :
LDL R5(#%18),RR2 lload the long word!
lin RR2 into the!
'memory location!
lwhose address is the!
value in R5 + hex!

118!
Before Execution Memory
RR2 R2 | 0A0O .
R3 1500 20C0 0ABE
R4 3100 20C2 F50D
R5 20AA 20C4 | BADE
20C6 BOD1
Address Calculation .
20A1A
+ 18
20C2

37 ses-momson

+| OPERAND I

After Execution Memory
RR2 R2 0A00 | .
R3 hsoo | 20C0 | OABE
R4 3100 1 20C2 | 0A0O
R5 | 20AA! 20C4 | 1500
3
20C6 | BOD1

Base Index (BX). The Base Index addressing
mode is an extension of the Base Addressing mode
and may be used only with the Load instructions.
In this case, both the base address and index
(displacement) are held in registers. This mode
allows access to memory locations whose physical
addresses are computed at runtime and are not
fully known at assembly time.

Any word register can be used for either the base
address or the index except RO.

An operand specified by BX mode will be in stack
memory space if the base register is the stack
pointer (R15) and in data memory otherwise.

Assembler language format :
Rn (Rm)

Example of B mode :
LD R2,R5(R3) lload into R2 the!
value whose address!
lis the value in!

R5 + value in R3!

Before Execution Data Memory

R2 | 1F3A Lo
R3 FFFE 14FE | 0101
R4 0300 1500 | BODE
R5 1502 1502 | F73
L ‘L__

|

Address Calculation
1502

+ FFFE
1500

Z8001,2 CPU

After Execution
R2 501 5]

R3 | FFFE

R4

R5

INSTRUCTION

OPERATION REGISTER 1

REGISTER2 |—————* ADDRESS ﬁ

REGISTER

DATA MEMORY

(«)—>| oprEAND
'y

REGISTER

DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS
THE CONTENTS OF THE ONE REGISTER OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.

Descriptions and Examples (Segmented
Z8001)

In this section, <<nn>> will often be used to refer
to segment number nn.

Register (R). In the Register addressing mode,
the instruction processes data taken from a speci-
fied general-purpose register. Storing data in a
register allows shorter instructions and faster exe-
cution than occurs with instructions that access
memory.

INSTRUCTION REGISTER

I OPERATION ‘ REGISTER |—>

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the register address
space. The register length (byte, word, register pair,
or register quadruple) is specified by the instruction
opcode.

Assembler language format :

RHn, RLn Byte register
Rn Word register
RRn Double-word register
RQn Quadruple-word register

Example of R mode :

LDL RR2, RR4 lload the contents of!

'RR4 into RR2!

Before Execution

A6BS |

RR2 R2
R3 9A20
RR4 R4 38A6
RS | 745€
After Execution
RR2 R2 38A6
R3 745E
RR4 R4 38A6

R5 ‘ 745E

Gy7 SGs-THOMSON &

Z8001,2 CPU

Immediate (IM). The Immediate addressing mode
is the only mode that does not indicate a register
or memory address as the location of the source
operand. The data processed by the instruction is
in the instruction.

INSTRUCTION

OPERATION

WORD(S) OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

Because an immediate operands is part of the
instruction, it is always located in the program
memory address space. Immediate mode is often
used to initialize registers. The Z8000 is optimized
for this function, providing several short immediate
instructions to reduce the length of programs.

Assembler language format :
#data

Example of IM mode :

LDB RH2 #%55 lload hex 55 into RH2!

Before Execution

R2 6789

After Execution

R2 5589

Indirect Register (IR). In the Indirect Register
addressing mode, the data processed is not the
value in the specified register. Instead, the register
holds the address of the data.

INSTRUCTION REGISTER MEMORY

IOPEHATlON‘ REGISTER |—>| ADDRESS |A,| OPERAND l

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS IN REGISTER.

Depending upon the instruction, the operand spe-
cified by IR mode will be located in either VO
address space (I/O instructions), Special /0 ad-
dress space (Special I/O instructions), or data or
stack memory address spaces. For non-I/O refer-
ences, the operand will be in stack memory space
if the stack pointer (RR14) is used as the indirect
register, otherwise the operand will be in data
memory space.

84/ Ly SGS-THOMSON

A 16-bit register is used to hold an /O or Special
/O address ; a register pair is used to hold a
memory address. Any general-purpose register or
register pair may be used except RO or RRO.

The Indirect Register mode may save space and
reduce execution time when consecutive locations
are referenced. This mode can also be used to
simulate more complex addressing modes, since
addresses can be computed before the data is
accessed.

Assembler language format :

@Rn Contains 1/0 or
Special I/O address.
@RRn Contains memory

address.

Example of memory access using IR mode :

LD R2, @R4 lload into R2 with the!
lvalue in the memory!
llocation addressed!
Iby the contents of!

'RR4!

Before Execution Memory
RR2 R2 030F .

R3 0005 170A* | AD23
RR4 R4 | 2000 | 170C | OBOE

R5 170C 170E 10D3
After Execution .

i Note : Segment Number 20.

RR2 R2 0BOE

RS | 0005
RR4 R4 2000

R5 170C

Example of /O using IR mode :
OUTB @R1,RLO
Before Execution

RO 0A23
R1 0011

Execution sends the

data "23" to the I/O

device addressed by
"0011".

Z8001,2 CPU

Direct Address (DA). In the Direct Addressing
mode, the data processed is found at the address
specified as an operand in the instruction.

INSTRUCTION
OPERATION DATA MEMORY
WORD(S) ADDRESS — OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS IN THE INSTRUCTION.

Depending upon the instruction, the operand spe-
cified by the Direct Address (DA) mode will be either
in /0O space (standard I/O instructions), or in data
memory space. I/0 and Special I/O addresses are
one word long ; memory addresses can be either
one or two words long, depending on whether the
long or short format is used.

This mode is also used by Jump and Call instruc-
tions to specify the address of the next instruction
to be executed. (Actually, the address serves as an
immediate value that is loaded into the Program
Counter.)

Assembler language format :
address either memory, /O, or
Special |/O where dou-
ble angle brackets
"<<"and ">>" enclose
the segment , number,
and vertical lines "|" and
"I" enclose short-form
memory addresses.

Example of DA mode :

LDB RH2, |<<15>>%23 lload RH2 with the!
lvalue in memory!
Isegment 15, dis-!
Iplacement 23 (hex)!

Before Execution Memory

R2 (6789 | e
<<15>> 0022 0206 “

After Execution 0024 10304 }

R2 0689 |)

Index (X). In the Index addressing mode, the

instruction processes data are located at an in-
dexed address in memory. The indexed address is
computed by adding the address specified in the
instruction to an "index" contained in a word regis-
ter, also specified by the instruction.

WORD

The offset of the operand address is computed by
adding the 16-bitindex value to the 8 or 16-bit offset
portion of the address in the instruction. The seg-
ment number of the operand address comes direct-
ly from the instruction. (Any overflow is ignored -it
neither sets the Overflow flag nor increments the
segment number). iIndexed addressing allows ran-
dom access to table or other complex data struc-
tures where the address of the base of the table is
known, but the particular element index must be
computed by the program.

INSTRUCTION REGISTER

OPERATION | REGISTER ~~o| INDEX |7 MEMORY
)

()

ADDRESS 77—7fﬁ@»| OPERAND l

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE ADDRESS IN THE INSTRUCTION, OFFSET BY
THE CONTENTS OF THE REGISTER.

Any word register can be used as the index register
except RO. The address in the instruction can be
one or two words, depending on whether a long or
short offset is used in the address.

Operands specified by X mode are always in the
data memory address space.

Assembler language format :
address (Rn)

Example of X mode :

LD R4,
<<15>>%231A(R3)

lload into R4 the con-!
ltents of the memory!
I'location whose!
laddress is segment 5,!
Idisplacement 231A + !
Ithe value in R3!

Before Execution Memory
R3S | O1FE | .
| <<b5>> 2516 | F3C2 |
R4 203A r» C2 |
2518 | 3DOE
Address Calculation 251A ' 7ADA

<<5>> %231A
+ 01FE
<<5>> %2518

.

After Execution

R3 01FE
R4 | 3DOE i

L7 555 THOmSON i

Z8001,2 CPU

Relative Address (RA). In the Relative Address-
ing mode, the data processed is found at an ad-
dress relative to the current instruction. The
instruction specifies a two’s complement displace-
ment which is added to the offset of the Program
Counter to form the target address. The Program
Counter setting used is the address of the instruc-
tion following the currently executing instruction.
(The assembler will take this into account in calcu-
lating the constant that is assembled into the in-
struction.)

INSTRUCTION PC

OPERATION _.l ADDRESS 1% MEMORY

v
o]

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS IS THE CONTENTS OF PC OFFSET BY THE DISPLACEMENT IN
THE INSTRUCTION

DISPLACEMENT

An operand specified by RA mode is always in the
program memory address space. Either long or
short format addresses may be used.

As with the Direct Addressing mode, the Relative
Addressing mode is also used by certain program
control instructions to specify the address of the
next instruction to be executed (specifically, the
result of the addition of the Program Counter value
and the displacement is loaded into the Program
Counter, except when executing the DJNZ or
CALR instructions ; the displacement is then sub-
tracted from the PC, not added to it). Relative
addressing allows short references forward or
backward from the current Program Counter value

the segment number is unchanged relative ad-
dresses are located in the same segment as the
instruction.

Assembler language format :

address

Example of RA mode :
LDR R2,$+6 fload into R2 the!
lcontents of the!
Imemoary location!
'whose address is the!
lcurrent program!
lcounter +6!

Because the program counter will be advanced to
point to the next instruction when the address
calculation is performed, the constant that occurs
in the instruction will actually be +2.

Before Execution Memory

R2 AOFQ .

<<13>> 0202|3102 | |ngtryc-

After Execution 0204 | 0002 tion
PC 0D00 0206 | ES01
R4 0202 0208 FFFE

Address Calculation
<<13>> 0206

andis used only for such instructions as Jumps and +13—020%
Calls and special loads (LDR). Note that because ~ <<'9>>
&6 (37 SGS-THOMSON

’L MICROZLECTRONICS

Z8001,2 CPU

Base Address (BA). The Base Addressing mode
is similar to Index mode in that a base and displace-
ment are combined to produce the effective ad-
dress. In Base Addressing, a register pair contains
the 23-bit segmented base address and the dis-
placement is expressed as a 16-bit value in the
instruction. The displacement is added to the offset
of the base address, and the resulting address
points to the data to be processed. (The segment
number is not changed.) This addressing mode
may be used only with the Load instructions. Base
Addressing mode, as a complement to Index
mode, allows random access to records or other
data structures where the displacement of an ele-
ment within the structure is known, but the base of
the particular structure must be computed by the
program.

INSTRUCTION REGISTER(S)

MEMORY

v
& — (oo

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE
ADDRESS 1S ADDRESS IN THE REGISTER, OFFSET BY THE DISPLACE-
MENT IN THE INSTRUCTION

OPERATION —»l ADORESS |%

DISPLAGEMENT

Any double-word register can be used for the base
address except RRO. The Base Address mode
allows access to locations whose segment num-
bers are not known at assembly time.

An operand specified by BA mode will be in stack
memory space if the base register is the stack
pointer (RR14) and in data memory space other-
wise.

If the segment number is known when the program
is assembled (or loaded, for example, if the loader
can resolve symbolic segment numbers), the In-
dexed addressing mode may be used to simulate
the based addressing mode. For example, if R2 is
known to hold segment number 18, then the oper-
and specified using the based address RR2 (#93)
can also be referenced by the indexed address
<<18>> %93 (R3). The advantage of this simula-
tion is that indexing mode is supported for most
operations, whereas based is restricted to LOAD
and LOAD ADDRESS. Thus, using Indexed ad-
dressing is faster and leads to compact code.

Assembler language format :
RRn{#disp) Add the immediate
value to the contents of
RRn ; the result is the
address of the operand.

Example of BA mode :

LDL RR4(#%18),RR2 lload the long word!
lin RR2 into the!
'memory location!
'whose address is!
lthe value of RR4!

I+ hex 18!

Before Execution Data Memory

RR2 R2 AOFO . 1
R3 1500 | <<31>> 20CO | OABE
P
RR4 R4 2500 20C2 | F50D
A5 POAA 20C4 | BADE
: 20C6 BODT |
Address Calculation °

<<13>> 1502
+ FFEE
<<13>> 1500

After Execution Data Memory
RR2 R2 | 0A00 .
R3 1 1500 <<31>> 20C0 | OABE }
RR4 R4 | 2500 20C2 | 0ACO
P
RS | 20AA | 20C4 1 1500
- 20C6 | BOD1 |

Ly SGS-THOMSON 67

Z8001,2 CPU

Base Index (BX). The Base Index addressing
mode is an extension of the Base Addressing mode
and may be used only with the LOAD and LOAD
ADDRESS instructions. In this case, both the base
address and index are held in register. The index
value is added to the offset of the base address to
produce the offset of the operand address. The
segment number of the operand address is the
same as the base address. This mode allows ac-
cess to memory locations whose physical ad-
dresses are computed at runtime and are not fully
known at assembly time.

INSTRUCTION REGISTER
T
OPERATION REGISTER1 REGISTER 2 | ADDRESS — DATA MEMORY
l @ — | OPREAND
1 REGISTER]‘

_ I DISPLACEMENT I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS
THE CONTENTS OF THE ONE REGISTER OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.

Any register pair can be used for the base address Before Execution Data Memory

except RRO. Any word register except RO can be

used for the index. Note that the Short Offset format RR2- R2 3535 .
for base addresses is illegal in registers. —— [P
An operand specified by BX mode will be in stack R3 FFFE | <<13>> 14FE . 0101
memory space if the base register is the stack RR4 R4 0D00 1500 | BODE
pointer (RR14) and in data memory otherwise.

Assembler language format R5 JSOQ 1502 F732
(see also Chapter 6) : [
RRn (Rn) ‘

Address Calculation

. <<13>> 1502
Example of BX mode : FFEE

+
LD R2,RR4 (R3) lload into R2 the value! <<13>> 1500
'whose address is the!
lcontents of RR4 +!
the contents of R3! After Execution Data Memory

RR2 R2 BODE|
R3 FFFE | <<31>> 14FE | 0101

RR4 R4 0DOO 1500 BODE
R5 | 1502 1502 . F732

68 Ly SGs-THOMSON

Z8001,2 CPU

EXCEPTIONS

Introduction

The Z8000 CPU supports three types of exceptions
(conditions that can alter the normal flow of pro-
gram execution) :

— interrupts
— traps
— reset

Interrupts are asynchronous events typically trig-
gered by peripheral devices needing attention.
They cause the processor to temporarily suspend
its present program execution in order to service
the requesting device. Traps are synchronous
events that are responses by the CPU to certain
events detected during the attempted execution of
an instruction. Thus, the major distinction between
traps and interrupts is their origin : a trap condition
is always reproducible by re-executing the program
that created the traps, whereas an interrupt is
generally independent of the currently executing
task. A reset overrides all other conditions, includ-
ing all interrupts and traps. |t occurs when the
RESET line is activated, and it causes certain
control registers to be initialized. The action that the
Z8000 CPU takes in response to an interrupt, trap,
or reset is similar ; hence, they are treated together
in this chapter.

Interrupts

Three kinds of interrupts are activated by three
different pins on the Z8000 CPU.

Non-Maskable Interrupt (NMI). This type of inter-
rupt cannot be disabled (masked) by software. It is
typically reserved for highest-priority external
events that require immediate attention.

Vectored Interrupt (VI). One result of any inter-
rupt or trap is that a 16-bit identifier word is pushed
onto the system stack.

This word may be used to identify the source of the
interrupt or trap. In vectored interrupts, this identi-
fier is also used by the CPU hardware as a pointer
to select a particular interrupt service routine. The
processing of vectored interrupts is thus consider-
ably faster than would be the case if a general trap
handler had to first examine the identifier, then
branch off to the appropriate service routine. These
interrupts can be disabled by software.

Nonvectored Interrupts (NVI). These interrupts
also result in an identifier word being pushed onto
the system stack. However, the CPU does not use

the identifier as a vector to select a service routine :
all non-vectored interrupts are serviced by the
same routine. They can be disabled by software.

Traps

The Z8001 and 28002 CPUs support three traps
generated internally. The Z8001 supports a fourth
trap, which is generated externally (but synchron-
ously) by the Memory Management Unit. Since a
trap always occurs when all its defining conditions
are present, traps cannot be disabled.

Extended Instruction Trap. This trap occurs
when the CPU encounters an extended instruction
while the EPA bit in the FCW is cleared. This trap
allows the program to simulate the operations of
the EPU when none is present in the system or to
abort the program.

Privileged Instruction Trap. This trap occurs
whenever an attempt is made to execute a privi-
leged instruction while the CPU is in normal mode
(S/N bit in the FCW is cleared). This trap allows the
CPU to detect and prevent operation (such as I/O)
that could disable the system.

System Call Trap. This trap occurs whenever a
System Call (SC) instruction is executed. It allows
an orderly transition to be made between normal
mode and system mode.

Segment Trap. This trap occurs when ever the
SEGT line is asserted on a Z8001, regardless of
the state of the SEG bit in the FCW. This trap is
generated by external memory management hard-
ware, such as the Z8010 Memory Management
Unit (MMU), and is the result of detecting a memory
access violation {such as an offset larger than the
assigned segment length) or a write warning (a
write into the lowest 256 bytes of a stack). See the
MMU Technical Manual for more information on
memory management hardware.

Reset

A reset initializes selected control registers of the
CPU to system specifiable values. A reset can
occur at the end of any clock cycle, provided the
RESET line is Low.

A system reset overrides all other considerations,
including interrupts, traps, bus requests, and stop
requests. A reset should be used to initialize a
system as part of the power-up sequence.

L3y S6S-THOMSON i

Z8001,2 CPU

Reset (Continued)

Within five clock cycles of the RESET becoming
Low, ADo - AD1s are 3-stated ; AS, DS, MREQ,
BUSACK, and MO are forced High ; STo - ST3 are
forced High and SNo - SNg are forced Low. The
RW., B/W, and N/S lines are undefined. RESET
must be held Low five clock cycles to properly reset
the CPU.

Three clock cycles after RESET has returned to
High, consecutive memory read cycles are ex-
ecuted in system mode to initialize the Program
Status registers. In the Z8001, the first cycle reads
the FCW from location 0002, the next reads the PC
from location 0004, and the following initial instruc-
tion fetch cycle starts the program. Each of these
fetches is made from system program address
space. In the 28002, the first cycle reads the PC
from location 0004 and the following intial instruc-
tion fetch cycle starts the program. Each of these
fetches is made from the program address space.

Interrupt Disabling

Vectored and nonvectored interrupts can be en-
abled or disabled independently via software by
setting or clearing appropriate control bits in the
Flag and Control Word (FCW). Two control bits in
the FCW control the maskable interrupts : VIE and
NVIE. Any control bit may be changed by automat-
ically loading a new FCW during an interrupt or trap
acknowledge sequence and may be restored to its
previous setting by an Interrupt Return (IRET) in-
struction. When VIE is 1, vectored interrupts are
enabled ; when NVIE is 1, non-vectored interrupts
are enabled. These two flags may be set or cleared
together or separately. In addition, these control
bits are set when the FCW is loaded. Any control
bit may be changed by the occurence of an inter-
rupt or trap and then be restored to its previous
setting by an Interrupt Return (IRET) instruction.

When a type of interrupt has been disabled, the
CPU ignores any interrupt request on the corre-
sponding input pin. Because maskable interrupt
request are not retained by the CPU, the request
signal must be asserted until the CPU acknow-
ledges the request.

Interrupt And Trap Handling

The CPU response to a trap or interrupt request
consists of five steps : acknowledging the external
request (for interrupts and segment traps), saving
the old program status information, loading a new
program status, executing the service routine, and
returning to the interrupted taks.

70 Lyy SGS-THOMSON

Acknowledge Cycle. An external acknowledge
cycle is required only for externally generated re-
quest.

The main effect of such a cycle is to receive from
the external device a 16-bit identifier word, which
will be saved with the old program status. Before
the acknowledge cycle, the CPU enters segmented
(28001 only) system mode. (The N/S line indicates
that a transition has been made to system mode.)
The old FCW is not affected by this change in
mode. The CPU remains in this mode unti it begins
to execute the exception service routine, at which
time its mode is dictated by the FCW.

Status Saving. The old program status informa-
tion is saved by being pushed on the system stack
in the following order : The Program Counter (PC :
16 bits for Z8002 ; 16-bit offset followed by a word
containing the 7-bit segment number for Z8001) ;
the Flag and Control Word (FCW) ; and finally, the
interrupt/trap identifier word. The identifier word
contains the reason or source of the trap or inter-
rupt. Forinternal traps, the identifier is the first word
of the trapped instruction. For segment trap or
interrupts, the identifier is the value on the data bus
read by the CPU during the interrupt-acknowledge
or trap-acknowledge cycle. The format of the saved
program status in the system stack is illustrated in
Figure 7-1.

Figure 7-1. Format of Saved Program Status in
the System Stack

28002 ZBCT"
LOw _DW

ACORESS #057zss
SYSTEM STACK
POINTER AFTER
RAP OR
INTFRRUP®

SYSTEM 58
AFTER “Rap __}
OR INTERRUPT

1 centee

SENTT LR

Fow Fow

SYSTIM STACK PC
POINTIR BEFORE
TRAP OR 7
INTERRUS T

BT OSEGMINT

SYSTEW SP
SEFORC "RAP _.J
0% NTERILE™

5T orrais

[=—" WORC—={ [WCRI-=

HIGH ~15H
ADIRESS ADIRESS

VROC 245

The following table shows the PC value that is
pushed on the stack for each type of interrupt and
trap.

Z8001,2 CPU

Exception PC Value is Address of

Extended
Instruction Trap

Next Instruction
(Single Word Privileged Instruction)

Privileged . Second Word of Instruction
Instruction Trap | (Multiple Word Privileged Instruction) |

System Call Trap ‘ Next Instruction
Segment Trap Next Instruction (1. 2

|
All Interrupts ! Next Instruction (2

Notes :
1. Assumes successful completion of instruction fetch.

2. If executing an interruptable instruction (e.g. LDIR) and the
instruction is the current instruction.

Loading New Program Status. After saving the
current program status, the new program status
(PC and FCW) is automatically loaded from the
Program Status Area in system program memory.
The particular status words fetched from the Pro-
gram Status Area are a function of the type of trap
or interrupt and (for vectored interrupt) of the inter-
rupt vector. Figure 7-2 shows the format of the
Program Status Area.

For each kind of interrupt or trap other than a
vectored interrupt, there is a single program status
block that is automatically loaded into the Program
Status registers (which includes the Flag and Con-
trol Word and the Program Counter).

Note that the size of each program status block
depends on the version of the Z8000 (two words
for the nonsegmented Z8002 and four words for the
segmented Z8001).

For all vectored interrupts, the same Flag and
Control Word (FCW) is loaded from the corre-
sponding program status block. However, the ap-
propriate Program Counter (PC) value is selected
from up to 256 (Z8002) or 128 (Z8001) different
values in the Program Status Area. The low-order
eight bits of the identifier placed on the data bus by
the interrupting device is multiplied by two and used
as an offset into the Program Status Area following
the FCW for vectored interrupts. On the Z8002, the

identifier value 0 selects the first PC value, the
value 1 selects the second PC, and so on up to the
identifier value 255. On the Z8001, the identifier
value 0 selects the first PC value, the value 2
selects the second PC, and so on up to the identifier
value 254, which selects the 128th PC value. All
vectors on Z8001 systems must be even.

The program Status Area is addressed by a special
control register, the Program Status Area Pointer,
or PSAP. This pointer is one word for the nonseg-
mented Z8002 and two words for segmented
Z8001. As shown in Figure 7-2, the pointer contains
a segment number (if applicable) and the high-
order byte of a 16-bit offset address. The low-order
byte is assumed to contain zeros ; thus the Pro-
gram Status Area must start on a 256-byte address
boundary. The programmer accesses the PSAP
using the Load Control Register instruction
(LDCTL).

Executing the Service Routine. Loading the new
program status automatically initializes the Pro-
gram Counter to the starting address of the service
routine to process the interrupt or trap. This pro-
gram is now executed. Because a new FCW was
loaded, the maskable interrupts can be disabled for
the initial processing of the service routine by a
suitable choice of FCW. This allows critical informa-
tion to be stored before subsequent interrupts are
handled. Service routines that enable interrupts
before exiting permit interrupts to be handled in a
nested fashion.

Returning from an Interrupt or Trap. Upon com-
pletion, the service routine can execute an Interrupt
Return instruction, IRET, to cause execution to
continue at the point where the interrupt or trap
occurred. IRET causes information to be popped
from the system stack in the following order : the
identifier is discarded, the saved FCW and PC are
restored. The newly loaded FCW takes effect with
the next fetched instruction, which is determined by
the restored Program Counter.

On Z8001 CPUs, IRET can be executed only in
segmented mode ; in nonsegmented mode the
operation is undefined.

Ly7 S6S-THOMSON 4

Z8001,2 CPU

Figure 7-2. Program Status Area

BYTE OFFSET
HEX DECIMAL

0 0

8 8

10 16
18 24
20 32
28 40
30 48
38 56
3C 60
40 64
44 68

L] []

[] []

[] [)

L] []

[] []
23A 570

PROGRAM STATUS AREA
POINTER (PSAP)

r N
[seeno) [upPer T “00..0]
OFFSET IMPLIED
78001 78002
RESERVED
RE%%SJED EXTENDED FCW
INSTRUCTION
[Jsec | TRAP PC
PC OFFSET | "™
REiisyED PRIVILEGED FCW
INSTRUCTION
[Jsec [| TRAP PC
PC OfFfFSET | "™
RESERVED SYSTEM FCw
FCwW
Tt CALL
PC OFFSET ___Tfip___ Pe
RESERVED
FCW SEGMENT
TsEG TRAP NOT USED
PC OFFSET |
RESERVED
FCW NON—MASKABLE Few
| | SEG INTERRUPT .
PC OFFSET |
RESERVED
FCW NON- VECTORED Fow
|] SEG INTERRUPT be
PC OFFSET |
RESERVED
= FCw
| JSEG[| PCT
PC OFFSET
| | SEG
PC2 OFFSET Pe2
| | SEG
VECTORED PC3
PC3 OFFSET INTERRUPTS
L]
[
L
L
[]
| Jsec [| Ben
PCn OFFSET

BYTE OFFSET

DECIMAL
0

20

24

28

30

32

540

HEX
0

21C
VR001246

72

Z8001,2 CPU

Priority

Because it is possible for several exceptions to
occur simuitaneously, the CPU enforces a priority
scheme for deciding which event will be honored

first. The following gives the descending priority
order :

— Reset

— Internal Trap (i.e., privileged instruction, system
call, extended instruction)

— Non-Maskable Interrupt

— Segment Trap (Z8001 only)

— Vectored Interrupt

— Nonvectored Interrupt

This is how the priority system works :

— Whenever areset is requested, it is immediately
performed.

— If several non-reset exceptions occur simuita-
neously, the one that has the highest priority and
is also enabled (traps and non-maskable inter-
rupts are always enabled) is acknowledged, old
status is saved, and new status is loaded. The
new status consists of the starting address of
the service routine (PC) and a new FCW that
may disable vectored and nonvectored inter-
rupts.

— If any enabled exceptions remain, the highest-
priority one is acknowledged, the old status is

b [

saved, and the new status is loaded. Note that
in this case, the old status is the PC and FCW
of the previous exception’s service routine.

— This process is repeated until no enabled ex-
ceptions remain. At that point, the current PC
and FCW will contain the status values for the
lowest priority exception that was acknow-
ledged.

- The execution of the service routines now pro-
ceeds in reverse priority order. That is, the lo-
west priority exception is serviced first.

— After all the exceptions have been serviced, the
original status is restored and execution re-
sumes.

Within each of the classes above, there can be
multiple-interrupt sources. The internal traps are
mutually exclusive and therefore need no priority
resolution within that class. The other types arise
from external sources ; thus when muitiple devices
share the same request line, the possibility arises
that more than one device may request service
from the CPU simultaneously. Either all the inter-
rupt sources must be serviced simultaneously (as
with the MMU) or competing requests must be
resolved externally to the CPU, for example, by
means of a daisy-chain or priority interrupt control-
ler. This resolution is done during the interrupt
acknowledge cycle.

Z8001,2 CPU

REFRESH

Introduction

The Z8000 CPU has an internal mechanism for

refreshing dynamic memory. This mechanism can

be activated in two ways :

— When the Refresh Enable (RE) bit in the CPU
Refresh Counter is set to one (Figure 8-1),
memory refresh is performed periodically at a
rate specified by the RATE field in the counter.

— When the STOP line is activated, the CPU
generates memory refreshes continuously.

Figure 8-1. Refresh Control Register

ROW ADDRESS e }

RN

AD8 AD6 AD4 AD2 ADD
AD7 AD5 AD3 AD1

[e

VR001247

Refresh Cycles

The refresh mechanism is a way of generating a
special kind of bus transaction called a refresh
cycle.

A refresh cycle is three clock cycles long and may
be inserted immediately after the last clock cycle of
any transaction.

During a refresh cycle, the status lines are set to
0001 and the address lines AD1 - ADg are set to the
value of the row address counter. Address lines
ADg - AD1s are undefined, and ADy is always 0. The
ROW value determines the memory row that is
being refreshed on this cycle. Since memory is
word-organized, ADo is always zero. After the re-
fresh cycle is complete, the ROW fieid is in-
cremented by two, thus stepping through 256 rows.

Periodic Refresh

The Refresh Enable (RE) bit controls only Periodic
Refresh ; refresh cycles may be generated using
the STOP line, regardless of the state of RE. When

74' L7 SGS-THOMSON

RE is set to one, the value of the 6-bit RATE field
determines the time between successive refreshes
(the refresh period). When RATE = 0, the refresh
period is 256 clock cycles ; when RATE = n, the
refresh period is 4n clock cyles. (Thus, if there is a
4MHz clock, the refresh period can be from 1us to
64ys.)

The LDCTL instruction is used to set the refresh
rate, to set or clear RE, or to initialize or read the
ROW field.

The refresh cycle is generated as soon as possible
after the refresh period has elapsed. This usually
means after the last clock cycle of the current
transaction. If the CPU receives a trap or an inter-
rupt simultaneously with a Periodic Refresh re-
quest, the refresh operation is performed first.

When the CPU does not have control of the bus
(that is, when BUSACK is asserted and the CPU
enters Bus-Disconnect state) or when the WAIT
lines is deactivated, the CPU issues the skipped
refresh cycles. To deal with this situation, both
Z8000 CPUs have internal circuitry that records
when the refresh period has elapsed and refresh
cycles cannot be generated. When the CPU re-
gains control of the bus, or when the WAIT line is
reactivated, it immediately issues the skipped re-
fresh cycles. The internal circuitry can record up to
two such skipped refresh operations.

After areset operation, Periodic Refresh is disabled
(RE is cleared) and the internal circuitry that counts
skipped refreshes is cleared.

Stop-state Refresh

The CPU has three internal operating states : Run-
ning, Stop, and Bus-Disconnect states Stop state
is entered duing the first word fetch of an instruction
if STOP is activated before the machine cycle
begins, or during the second word fetch of an EPA
instruction if the STOP line is activated before the
start of the machine cycle. When STOP is found
High again, one more refresh cycle is performed,
then the remaining clock cycles of the instruction
fetch are executed.

Z8001,2 CPU

CHARACTERISTICS AND TIMING

AC Characteristics

No. Symbol Parameter Z8001/28002 28001A/Z8002A Z80018/28002B |
Min.(ns) Max.(ns) Min.(ns) Max.(ns) Min.(ns) Max.(ns) :
1 Tee Clock Cycle Time 250 2000 165 2000 100 2000 ‘
2 Twew Clock Width (High) 105 2000 70 2000 40 ‘
3 Twel Clock Width (Low) 105 2000 70 2000 40
4 Tec Clock Fall Time 20 10 10
5 Tre Clock Rise Time 20 15 10
(1) 6 Tocisny gg;l; ITO;OC')Segment Number Valid 130 110 70
(1) 7 Tocisnn Clock T to Segment Number Not 20 10 5
Valid
8 Tocen Clock T to Bus Float 65 55 40
9 Tocw Clock T to Address Valid 100 75 50
10 Tocmy Clock T 1o Address Float 65 55 40 |
11 Toaosr) éggﬁrs;dv\ﬂl‘ijdw Read Data 475+ 305° 180* j
P12 Teomo Read Data to Clock | Setup Time 30 20 10
13 Toosw DS T to Address Active 80" 45 20
14 Tocow Clock T to Write Data Valid 100 75 50
15 Twrpsy Read Datato DS T Hold Time 0 0 0
16 Toowos) Write Data Valid to DS T Delay 295" 195" 1to0”
17 Toawm Address Valid to MREQ | Delay (55)" (35)* 20"
18 Tocwm Clock { to MREQ { Delay 80 70 40
19 Tumnm MREQ Widith (High) 210 135 80" i
| 20 Towws MREQ L to Address Not Active 70° 35" 20° :
© 21 Toowosw \ISVrite Data Valid to DS | (Write) 55+ 35+ 15 '
elay !
22 Tomror ﬁ 1 to Read Data Required 475 230 1407
23 Tocmm Clock L MREQ T Delay 80 60 45
24 Tocasn Clock Tto AS | Delay 80 60 40
25 Toans) Address Valid to AS T Delay 55 35 20°
26 Tocmsm) Clock { to AS T Delay 90 80 40
27 Toapr) AS T to Read Data Required Valid 360" 220" 140
| 28 Toosmsy DS TtoAS ! Delay 70 35* 15*
}1 29 Tuas AS Width {Low) 85 55 30
| 30 Toasy AS T 1o Address Not Active Detay 70 45 20*
31 Toazosm Address Float to DS (Read) | Delay 0 0 0
32 Toaspsm AS T to DS (Read) | Delay 80 55* 30*
33 Toosr ioR) ggq(&ree%d\)/;'g) Read Data 205" 130" 70
34 Tocosw Clock | to DS T Delay 70 65 45 |
35 Toosowy DS T to Write Data Not Valid 75* 45" 25° ‘
Notes :
1. Only for Z8001
" Clock cycle-table dependent. See table on next page.

Z8001,2 CPU

AC Characteristics (Continued)

No. Symbol Parameter Z8001/28002 28001A/Z8002A Z8001B/Z8002B
Min.(ns) Max.(ns) Min.(ns) Max.(ns) Min.(ns) Max.(ns}
T 36 Toaosm Address Valid to DS (Read) | Delay 180" 110* 65*
37 Tocosm Clock T to DS (Read) | Delay 120 85 60
38 Twosa DS (Read) Width (Low) 275* 185" 110*
39 Tocosw Clock to DS (Write) | Delay 95 80 60
40 Twpsw DS (Write) Width (Low) 185 110° 75"
41 Tosiom DS (1O) | to Read Data Required 330" 210 120"
Valid
42 Tocosh Clock 4 to DS (O) | Delay 120 90 60
43 Tuwos DS (1/0) Width {Low) 410" 255" 160
44 Toasosm AS T to DS (Acknowledge) L Delay 1065* 690" 410
i 45 Tocosm Clock T to DS (Acknowledge) | 120 85 65
i Delay
‘H746 Toosapmy DS (Acknowledge) | to Read Data 455+ 295 165°
i Required Delay
47 Tocs) Clock T to Status Valid Delay 110 85 60
48 Tosas) Status Valid to AS T Delay 50" 30" 10*
49 Tsmg RESET to Clock T Setup Time 180 70 50
50 Ture RESET to Ciock T Hold Time 0 0 0
TS Tenm NMI Width (Low) 100 70 50
L52 Tewwio NMIto Clock T Setup Time 140 70 50
53 Tsvic) VI, NVi to Clock T Setup Time 110 50 40
54 Tuvio) VI, NV to Clock T Hold Time 20 20 10
55 Tssarc) SEGT to Clock T Setup Time 70 55 40
56 Twserc) SEGT to Clock T Hold Time o) 0)
57 Tsmic) Mito Clock T Setup Time 180 140 80
| 58 Twme MitoClock T Hold Time 0 0 0
' 59 Toomp Clock T to MO Delay 120 85 70
.80 Tsstee STOP to Clock | Setup Time 140 100 50
61 Tusteei STOPto Clock L Hold Time 0 0 0
62 Tswe WAIT to Clock L Setup Time 50 30 20
i 63 Thwic) WAIT to Clock 4 Hold Time 10 10 5
I B84 Teerao BUSREQ to Clock T Setup Time 90 80 60
65 Tueracy ~ BUSREQ to Clock T Hold Time 10 10 5
66 Toceakm) Clock T to BUSACK T Delay 100 75 60
67 Toceaks Clock T to BUSACK | Delay 100 75 60
68 Twa Address Valid Width 150 95° 50°
| 69 Tooss DS 1 to STATUS Not Valid 80* 55* 30°

Note : Clock cycle-table dependent. See table on next page.

76.

SﬁS-'l'HOMSl!I!IE

Z8001,2 CPU

Composite AC Timing Diagram

RESET K
49 ol |a— 50 —f

J— 51
NMI
52—
VI,NVI This composite timing diogram
53] 54 does not show octual timing
sequences. Refer ta this
SEGT diagram only for the detailed
timing reiationships of individ—
55] ft—— 56 ual edges. Use the preceding
_ illuslrations as an explonotion
M of the vorious timing sequences
|
57 o=l ja—— 58
M
o]
59 ey
[—— s Timing meosurements are
STOP _>< made ot the following
vollages.
60 61 High Low
— s
Clock 4.0v c.8v
WAIT —><‘ Qutput 2.0v 0.8v
62 63 Input 20V 08V
Float AV 405V
BUSREQ >¢ 3<
66 m— le 645 [« 65
BUSACK
./ &
%-—4 5
clock /] /] \ % !

e B e ol 8 o
SNG-SN ¢ X X fﬁ,__
fee- 9 10
ADDRESS ¥~ - 12 __1_3:5:
\ n —
m DATA IN D< }___
ADy=AD, ¢ J-
15 w1 L
DATA OUT s 17— | I’<
le— 18 o 6 !
o 23
“ 22, P
MREQ / bd N il Jdo_o
LG 27
“AS le 25 ol f) 5%
AS 28 2=/ »?o le 34] (NI
" et 29 ——mef 32
MEMORY READ /1 36 \E— 33—« i K o
re 37 38
MEMORY WRITE /] ’ N-\r———
DS 39 40
4
INPUT/QUTPUT /| N n o f N
‘,44_.‘ 42 =} -
INTERRUPT B / % L
acknowepce —] /_H N
PR 1. J— o 45
7 —
STy— STy,
READ /WRITE, A
NORMAL /SYSTEM, A
BYTE /WORD VR001240

77

Z8001,2 CPU

Clock-Cycle-Time-Dependent Characteristics

. Number Symbol 28001/28002 Z8001A/Z8002A Z8001B/Z8002B
Equation Equation Equation
1 ToapR) 2Tce + Twer - 130ns 2Tcc + Twen - 95ns 2Tce + Twen - 60ns
13 Toosa) Twed - 25ns Twol - 25ns Twel - 20ns
16 Toowps) Tee + Twew - 60ns Tee + Twen - 40ns Toc + TweH - 30ns
17 Toawn) Twew - 50ns TwcH - 35ns TwcH - 20ns
19 TwmrH Tce - 40ns Tee - 30ns Tce - 20ns
T2 Tomre) TwoL - 35ns TweL - 35ns Twct - 20ns
21 Topw(psw) TwcH - 50ns Twew - 35ns TwcH - 25ns
22 ToMmRDR) 2Tce - 130ns 2Tcc - 100ns 2Tcc - 60ns
25 Toaas) TwcH - 50ns Twen - 35ns TwceH - 20ns
27 Tpapry 2Tce - 140ns 2Tcc - 110ns 2Tcc - 60ns
28 Tops(as) Twel - 35ns Twc - 35ns Twol - 25ns
29 Twas TwcH - 20ns Twen - 15ns Twew - 10ns
30 Toasia) Twel - 35ns Twel - 25ns Twcl - 20ns
32 Toas(pR) Twet - 25ns TweL - 15ns TweL - 10ns
33 ToosR (DR) Tee + Twek - 150ns Tce + Twen - 105ns Tee + Twen - 70ns
35 Toosow) Twet - 30ns Twel - 25ns TwoL - 15ns
36 TpA©SR) Tcc - 70ns Tec-55ns Tcc - 35ns
38 Twosk Tee + Twen - 80ns Tec + TweH - 50ns Tce + Twen - 30ns
40 Twosw Tcc - 65ns Tec - 55ns Tce - 25ns
41 ToosioR) 2Tcc - 170ns 2Tce - 120ns 2Tce - 80ns
43 Twos 2Tce - 90ns 2Tcc - 75ns 2Tcc - 40ns
44 ToAs(DSA) 4Tce + Twel - 40ns 4Tce + TweL - 40ns 4Tce + Twel - 30ns
46 ToDsADR) 2Tce + Twen - 150ns 2Tcc + Twew - 105ns 2Tce + Twew - 75ns
48 Tos(as) TwcH - 55ns Twch - 40ns Twch - 30ns
68 Twa Tec - 90ns Tec - 70ns Tcc - 50ns
69 Toos(s) Twol - 25ns Twet - 15ns TweL - 10ns
[SGS-THOMSON

or.

w

MICEOELECTRONITS

Z8001,2 CPU

Absolute Maximum Ratings

Symbol Parameter Value Unit
Voltages on all inputs and outputs with respect ;
Voo -0.310+7.0 ; \ I
’ i to GND - ‘
Ta | Operating Ambient Temp. 0to+70 \ : 'C

1
Note : Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating

only ; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect device reliability.

Test Conditions

The characteristics below apply for the following
test conditions, unless otherwise noted. All volt-
ages are referenced to GND (0V). Positive current

flows into the referenced pin. Available operating R 0T
temperature range is :
0'Cto +70°C, Vcc =5V 1 5%

| [

All AC parameters assume a load capacitance of 100pF max., except
for parameter 6 (50pF max). Timing references between two output
signals assume a load difference of 50pF max.

e

DC Characteristics

Symbol Parameter Min. Max. ; Unit Condition ‘
Vo | Clock Input High Voltage Veo-0.4 |Veo+ 03| V 82‘{’1‘;':3?;5’“9’”3' Clock
Vel : Clock Input Low Voltage -0.3 0.45 v g;ir]zrr]at'[)grExlernal Clock
VIH Input High Voltage 2.0 Veec +0.3 | \

ViH reser | Input High Voltage on RESET pin 2.4 Vecto .3 \Y
Vi Input Low Voltage -0.3 0.8 v
Von Ouput High Voltage 2.4 \ lon = -250pA
VoL Output Low Voltage j 0.4 \ loL = +2.0mA

L input Leakage +10 A 0.4<ViNS+24V
liseeT | Input Leakage on SEGT pin -100 100 MA

lou Ouput Leakage +10 pA 04 <ViN<+24V

loc Vce Supply Current 300 mA 4MHz - 6MHz

lec | Vee Supply Current i 350 ‘ mA 10MHz

79

Z8001,2 CPU

MECHANICAL PACKAGE

Figure 9-1. PDIP48

Dim mm inches :
. Min | Typ | Max | Min | Typ | Max
et [e S R i
;
c at 0.63 0.024
f’ f“ b 0.45 0017
bt |0.23 {031 [0.009 0012
" o [Tp2 127 | 0.050
C — — - — - —
€) 62.74 2.470
5 | E [15.20 1668|0598 0.656
e 2.54 0.100
4 = | e3 58.42 " T2300 1
- - ed | - | - | - | = -] -
| a F 14.10 0.555:
— I 445 0.175
L 3.30 0.129
Figure 9-2. PDIP40
Dim. mm inches
ed Min | Typ | Max | Min | Typ | Max
£ A - - - - - -
¢ al 0.63 0.025
i) b 045 0.018
N - j —l L | bt jo23 0.31 [0.009 0.012
< - — b2 127 0.050
b2 b L C - - - = - —
E) 52.58] ~leor0
. E 1520 16.68[0.598 0.656!
e 2.54 10.100
0 z “e3 | |4826 1.800
_ _ _ ed N — — — —
‘ o F 114.10 0555
1 | 4.45 0.175
o DL 3.30 0.129
80, GS-THOMSON

IS72

S

56

1NCE

Z8001,2 CPU

ORDERING INFORMATION

Type Package Temperature Clock

28001 B1V 4AMHz
78001 AB1Y Plastic DIL48 0/+70°C Y
28001 BBAV 1MHz

28002 B1V ! 4MHz

78002 AB1V “ | Plastic DIL 40 01470°C | Mz

|
8002BB1V 1 10MHz

81/~

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned
in this publication are subject to change without notice. This publication supersedes and replaces al! information previously supplied
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express
written approval of SGS-THOMSON Microelectronics.

© 1991 SGS-THOMSON Microelectronics — Printed in italy — All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - ltaly - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -
Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.

872 MR 2788 neecn

