### **OVERVIEW** The SM5846AP is a multi-function digital filter that incorporates 4/8 times oversampling digital audio signal reproduction, digital deemphasis, digital attenuation and soft mute functions. The I/O interface allows serial data transmission of 16/20/24/32-bit input data and 20/24-bit output data. #### **FEATURES** #### **Functions** - 8-times oversampling (interpolation) - Switchable 8/4 times oversampling output - Two master clock frequencies (refer to Clock Functions) - 384fs/512fs (normal-speed sampling) - 192fs/256fs (high-speed sampling) - Digital deemphasis - Compatible with 32/44.1/48kHz (normalspeed) and 64/88.2/96kHz (high-speed) input sampling frequencies - ON/OFF control - Digital attenuator - 128-step attenuation using linear 7-bit data setting - Soft muting - 1016/fs (normal-speed sampling) - 2032/fs (high-speed sampling) - Output data round-off operation (normal round-off or rectangular distribution dither round-off) - Selectable LR clock polarity - Microprocessor controllable - Input data format - 2s complement, MSB first, alternating L/R serial - 16/20/24/32-bit data selectable - Output data format - 2s complement, MSB first, simultaneous L/R serial - 20/24-bit data selectable. - 24-bit internal data processing - Jitter-free mode/synchronous mode selectable - Crystal oscillator circuit built-in - TTL-compatible outputs - Molybdenum-gate CMOS #### **Filter Construction** - Interpolation filter (linear 3-stage FIR filter) - Normal-speed sampling mode 1st stage (fs to 2fs) 121st order 2nd stage (2fs to 4fs) 21st order 3rd stage (4fs to 8fs) 13th order - High-speed sampling mode 1st stage (fs to 2fs) 177th order 2nd stage (2fs to 4fs) 29th order 3rd stage (4fs to 8fs) 17th order - Deemphasis filter (IIR filter) - Arithmetic units - 25×24-bit parallel adder - 32-bit accumulator - Overflow limiter built-in ### **APPLICATIONS** ■ Digital audio equipment #### ORDERING INFOMATION | Device | Package | |----------|------------| | SM5846AP | 28-pin DIP | ## **PINOUT** (Top view) ## **PACKAGE DIMENSIONS** (Unit: mm) # FILTER CHARACTERISTICS ## **Normal-speed Sampling** | Parameter | Rating | |-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Passband bandwidth | 0 to 0.4535fs | | Stopband bandwidth | 0.5465 to 7.4535fs | | Passband ripple | ±0.0004dB | | Stopband attenuation | ≥ 75dB | | Group delay time <sup>1</sup> | When CKS is HIGH: 63.89/fs (when SYNC is LOW) and 63.51/fs to 64.26/fs (when SYNC is HIGH) When CKS is LOW: 63.76/fs (when SYNC is LOW) and 63.59/fs to 64.14/fs (when SYNC is HIGH) | <sup>1.</sup> The time difference due to digital filter operation between the end of serial data input (at rate fs) and the start of serial data output (at rate 8fs). ## Overall frequency characteristic ## Passband frequency characteristic ## **Transition band characteristic** # **High-speed Sampling (8fs Output)** | Parameter | Rating | |-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Passband bandwidth | 0 to 0.4535fs | | Stopband bandwidth | 0.5465 to 7.4535fs | | Passband ripple | ±0.00001dB | | Stopband attenuation | ≥ 105dB | | Group delay time <sup>1</sup> | When CKS is HIGH: 51.91/fs (when SYNC is LOW) and 51.53/fs to 52.28/fs (when SYNC is HIGH) When CKS is LOW: 51.78/fs (when SYNC is LOW) and 51.40/fs to 52.15/fs (when SYNC is HIGH) | <sup>1.</sup> The time difference due to digital filter operation between the end of serial data input (at rate fs) and the start of serial data output (at rate 8fs). ### **Overall frequency characteristic** ## Passband frequency characteristic ## **Transition band characteristic** # **High-speed Sampling (4fs Output)** | Parameter | Rating | |-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Passband bandwidth | 0 to 0.4535fs | | Stopband bandwidth | 0.5465 to 7.4535fs | | Passband ripple | ±0.00001dB | | Stopband attenuation | ≥ 104dB | | Group delay time <sup>1</sup> | When CKS is HIGH: 50.78/fs (when SYNC is LOW) and 50.40/fs to 51.15/fs (when SYNC is HIGH) When CKS is LOW: 50.77/fs (when SYNC is LOW) and 50.40/fs to 51.15/fs (when SYNC is HIGH) | <sup>1.</sup> The time difference due to digital filter operation between the end of serial data input (at rate fs) and the start of serial data output (at rate 8fs). ### Overall frequency characteristic ## Passband frequency characteristic ### **Transition band characteristic** # **Deemphasis Filter Characteristics (Normal-speed Sampling)** | Parameter | | Rating | | | | | |-------------------------|-----------------|---------------------|---------------------------------------|--|--|--| | Sampling frequency (fs) | | 32kHz 44.1kHz 48kHz | | | | | | Passband bandwidth | sband bandwidth | | 0 to 14.5kHz 0 to 20.0kHz 0 to 21.7kH | | | | | Deviation from ideal | Attenuation | ±0.01dB | | | | | | characteristics | Phase | 0 to 6° | | | | | ## Deemphasis passband characteristic (logarithmic scale) The phase traces are from top to bottom fs = 32/44.1/48kHz, respectively. ## Deemphasis passband characteristic (linear scale) The phase traces are from top to bottom fs = 32/44.1/48kHz, respectively. # **Deemphasis Filter Characteristics (High-speed Sampling)** | Parameter | | | Rating | | | | | |----------------------------------|--------------------|-------|----------------------------------------|--|--|--|--| | Sampling frequency (fs) | | 64kHz | 64kHz 88.2kHz 96kHz | | | | | | Passband bandwidth | Passband bandwidth | | 0 to 29.0kHz 0 to 40.0kHz 0 to 43.5kHz | | | | | | Deviation from ideal Attenuation | | | ±0.001dB | | | | | | characteristics | Phase | | 0 to 1° | | | | | ## Deemphasis passband characteristic (logarithmic scale) The phase traces are from top to bottom fs = 64/88.2/96kHz, respectively. ## Deemphasis passband characteristic (linear scale) The phase traces are from top to bottom fs = 64/88.2/96kHz, respectively. ## **SPECIFICATIONS** # **Absolute Maximum Ratings** $$V_{SS} = 0V$$ | Parameter | Symbol | Rating | Unit | |---------------------------|------------------|--------------------------|------| | Supply voltage range | V <sub>DD</sub> | -0.3 to 7.0 | V | | Input voltage range | V <sub>IN</sub> | $-0.3$ to $V_{DD} + 0.3$ | V | | Storage temperature range | T <sub>stg</sub> | -40 to 125 | °C | | Power dissipation | P <sub>D</sub> | 750 | mW | # **Recommended Operating Conditions** $$V_{SS} = 0V$$ | Parameter | Parameter Symbol | | Unit | |-----------------------------|------------------|------------|------| | Supply voltage range | V <sub>DD</sub> | 4.5 to 5.5 | V | | Operating temperature range | T <sub>opr</sub> | -20 to 70 | °C | ## **DC Electrical Characteristics** $$V_{DD} = 4.5 \text{ to } 5.5 \text{V}, V_{SS} = 0 \text{V}, \text{ Ta} = -20 \text{ to } 70^{\circ}\text{C}$$ | Parameter | Symbol | Condition | | Rating | | | |-----------------------------------------|-------------------|-------------------------------------------------------------|-----------------------|--------|--------------------|------------------| | raiailietei | Symbol | min | typ | max | Unit | | | Supply current consumption <sup>1</sup> | I <sub>DD</sub> | | - | 110 | 130 | mA | | HIGH-level input voltage | V <sub>IH</sub> | All inputs | 0.7V <sub>DD</sub> | - | - | V | | LOW-level input voltage | V <sub>IL</sub> | All inputs | - | - | 0.3V <sub>DD</sub> | V | | XTI AC-coupled input voltage | V <sub>INAC</sub> | | 0.3V <sub>DD</sub> | - | - | V <sub>p-p</sub> | | HIGH-level output voltage | V <sub>OH</sub> | All outputs, I <sub>OH</sub> = -1mA | V <sub>DD</sub> - 0.4 | - | - | V | | LOW-level output voltage | V <sub>OL</sub> | All outputs, I <sub>OL</sub> = 2mA | - | - | 0.4 | V | | XTI HIGH-level input current | I <sub>IH</sub> | $V_{IN} = V_{DD}$ | - | 10 | 20 | μΑ | | XTI LOW-level input current | I <sub>IL</sub> | V <sub>IN</sub> = V <sub>SS</sub> | - | 10 | 20 | μΑ | | LOW-level input current | I <sub>IL</sub> | Inputs excluding XTI,<br>V <sub>IN</sub> = V <sub>SS</sub> | _ | 10 | 20 | μА | | Input leakage current | I <sub>LH</sub> | Inputs excluding XTI,<br>V <sub>IN</sub> = DV <sub>DD</sub> | - | - | 1.0 | μА | <sup>1.</sup> $V_{DD}$ = 5.0V, $f_{sys}$ = 18.432MHz, 384fs operation, no output load. ## **AC Characteristics** # XTI input timing $$V_{DD}$$ = 4.5 to 5.5V, $V_{SS}$ = 0V, $Ta$ = $-20$ to $70^{\circ}C$ | Parameter | Symbol Condition — | Condition | Rating | | | Unit | |---------------------------------|--------------------|-----------|--------|-----|-------|------| | | | min | typ | max | Oille | | | Oscillator frequency | fosc | | 10 | - | 18.5 | MHz | | XTI clock pulse cycle time | t <sub>XI</sub> | | 54 | - | - | ns | | XTI HIGH-level clock pulsewidth | t <sub>CWH</sub> | | 24 | - | - | ns | | XTI LOW-level clock pulsewidth | t <sub>CWL</sub> | | 24 | - | - | ns | # **RST** input timing $$V_{DD}$$ = 4.5 to 5.5V, $V_{SS}$ = 0V, Ta = -20 to 70°C | Parameter | Symbol | Condition | Rating | | | Unit | |------------------|------------------|-----------------------|--------|-----|-----|-------| | | Symbol Condition | Condition | min | typ | max | Oilit | | Reset pulsewidth | + | When power is applied | 1 | - | - | μs | | | <sup>l</sup> RST | At all other times | 50 | - | - | ns | # Serial data input timing (BCKI, DIN, LRCI) $$V_{DD}$$ = 4.5 to 5.5V, $V_{SS}$ = 0V, $Ta$ = -20 to $70^{\circ}C$ | Parameter | Symbol Conditi | Condition | Rating | | | Unit | |------------------------------------|-------------------|-----------|--------|-----|-----|------| | | Symbol | Condition | min | typ | max | Unit | | BCKI pulse cycle time | t <sub>BCY</sub> | | 100 | - | - | ns | | BCKI HIGH-level pulsewidth | t <sub>BCWH</sub> | | 50 | - | - | ns | | BCKI LOW-level pulsewidth | t <sub>BCWL</sub> | | 50 | - | - | ns | | DIN setup time | t <sub>DS</sub> | | 20 | - | - | ns | | DIN hold time | t <sub>DH</sub> | | 20 | - | - | ns | | BCKI rising edge to LRCI edge time | t <sub>BL</sub> | | 50 | - | - | ns | | LRCI edge to BCKI rising edge time | t <sub>LB</sub> | | 50 | - | - | ns | # Microprocessor serial interface timing (MDCK, MDT, MDLE) $$V_{DD}$$ = 4.5 to 5.5V, $V_{SS}$ = 0V, $Ta$ = -20 to $70^{\circ}C$ | Parameter | Cumbal | Condition | Condition | | | Unit | |------------------------------------|-------------------|-----------|-----------|-----|-----|-------| | ratameter | Symbol | Condition | min | typ | max | Oilit | | MDCK pulse cycle time | t <sub>MCY</sub> | | 100 | - | - | ns | | MDCK HIGH-level pulsewidth | t <sub>MCWH</sub> | | 50 | - | - | ns | | MDCK LOW-level pulsewidth | t <sub>MCWL</sub> | | 50 | - | - | ns | | MDT setup time | t <sub>MDS</sub> | | 20 | - | - | ns | | MDT hold time | t <sub>MDH</sub> | | 20 | - | - | ns | | MDCK rising edge to MDLE edge time | t <sub>MCL</sub> | | 50 | - | - | ns | | MDLE edge to MDCK rising edge time | t <sub>MLC</sub> | | 50 | - | - | ns | | MDLE HIGH-level pulsewidth | t <sub>MLWH</sub> | | 20 | - | - | ns | | MDLE LOW-level pulsewidth | t <sub>MLWL</sub> | | 20 | - | - | ns | # Output signal timing (CKO, BCKO, DOR, DOL, WCKO) $$V_{DD}$$ = 4.5 to 5.5V, $V_{SS}$ = 0V, Ta = -20 to 70°C, $C_L$ = 15pF | Parameter | Symbol | Condition | | Rating | | Unit | |-------------------------------------|------------------|----------------------------|----|--------|-----|-------| | raiailietei | Symbol | Symbol | | typ | max | Joint | | XTI to CKO propagation delay time | t <sub>CKH</sub> | | - | 17 | 35 | ns | | ATT to CNO propagation delay time | t <sub>CKL</sub> | | - | 17 | 35 | 1115 | | | t <sub>sbH</sub> | Normal and high-speed | _ | 20 | 60 | | | VTI to BCVO propagation dolay time | t <sub>sbL</sub> | mode 4fs output | - | 20 | 60 | ns | | XTI to BCKO propagation delay time | t <sub>sbH</sub> | High-speed mode 8fs output | - | 20 | 60 | | | | t <sub>sbL</sub> | | - | 20 | 60 | | | BCKO to DOR propagation delay time | t <sub>bdH</sub> | | -5 | - | 15 | ns | | BOKO to BOK propagation delay time | t <sub>bdL</sub> | 1 | -5 | - | 15 | 1115 | | BCKO to DOL propagation delay time | t <sub>bdH</sub> | | -5 | - | 15 | | | | t <sub>bdL</sub> | | -5 | - | 15 | ns | | BCKO to WCKO propagation delay time | t <sub>bdH</sub> | | -5 | - | 15 | | | | t <sub>bdL</sub> | | -5 | - | 15 | ns | ## **CKO** output ### **BCKO** output - \*1 : High speed mode 8fs output \*2 : Normal and high-speed mode 8fs output ## DOR, DOL, WCKO output ## SM5846AP # **PIN DESCRIPTION** | Number | Name | I/O <sup>1</sup> | Description | | |--------|------------|------------------|--------------------------------------------------------------|--| | 1 | DIN | lp | Data input | | | 2 | BCKI | lp | Bit clock input | | | 3 | VDD1 | - | 5V supply voltage | | | 4 | DITH | lp | Dither ON/OFF control | | | 5 | CKEN | lp | Crystal oscillator operation enable | | | 6 | XTI | ļ | Crystal oscillator input/external clock input | | | 7 | хто | 0 | Crystal oscillator output | | | 8 | VSS1 | - | Ground | | | 9 | СКО | 0 | Master clock output | | | 10 | CKS | lp | Master clock input frequency select | | | 11 | ASEL2/MDCK | lp | Operating mode select/microprocessor interface clock input | | | 12 | HS/MDT | lp | Operating mode select/microprocessor interface data input | | | 13 | SYNC/MDLE | lp | Sync mode select/microprocessor interface latch enable input | | | 14 | RST | lp | Reset input | | | 15 | LRS | lp | LR clock polarity select | | | 16 | DEEM | lp | Deemphasis ON/OFF select | | | 17 | TEST1 | lp | Test pin 1. Tie HIGH or leave open for normal operation. | | | 18 | TEST2 | lp | Test pin 2. Tie LOW for normal operation. | | | 19 | OBS | lp | Output data length select | | | 20 | ASEL1 | lp | Operating mode select | | | 21 | VSS2 | - | Ground | | | 22 | VDD2 | - | 5V supply voltage | | | 23 | DOR | 0 | Right-channel data output | | | 24 | DOL | 0 | Left-channel data output | | | 25 | WCKO | 0 | Word clock output | | | 26 | ВСКО | 0 | Output data bit clock output | | | 27 | MDS | lp | Mode set method select | | | 28 | LRCI | lp | LR clock input | | <sup>1.</sup> Ip = input pin with pull-up resistor, I = input, O = output # **BLOCK DIAGRAM** ## **SYSTEM CONFIGURATION** ## **DATA FLOW** ATT1/ATT2 soft muting uses the D-ATT function to set the gain to $-\infty$ . ## Normal-speed Sampling (fs = 32/44.1/48kHz) ## **High-speed Sampling (fs = 64/88.2/96kHz)** ### **FUNCTIONAL DESCRIPTION** ## **Mode Switching and Function Switching** The SM5846AP supports several operating modes and function switches. Internal control flags, set by the digital inputs or serial data input signal from a microprocessor, determine the status of those function switches. ## Mode switching/function switch controls | Ctono | Name | Control request | | Function | |-------------------------|--------|---------------------|---------------------|----------------------------------------------------| | Stage | Ivalle | Input | Control flag | FullCuoii | | System | MDS | Yes | | IC control request switch (input pin/control flag) | | | HS | Yes | Yes | | | Operating mode switch | ASEL2 | Yes | Yes | Operating mode switching | | | ASEL1 | Yes | Yes | | | Clock switch | CKS | Yes | | Input clock frequency switching | | Clock Switch | CKEN | Yes | | Crystal oscillator operating control switching | | | DEEM | Yes | Yes | Deemphasis ON/OFF switching | | | FSEL2 | | Yes | Deemphasis filter sampling frequency set | | Filter switch | FSEL1 | | Yes | Deemphasis liller sampling frequency set | | | MUTE | | Yes | Mute ON/OFF control | | | DITH | Yes<br>(pos. logic) | Yes<br>(neg. logic) | Dither ON/OFF control | | | SYNC | Yes | Yes | Jitter-free/sync mode switching | | Input interfece quitab | LRS | Yes | | LRCI (LR clock) input polarity switching | | Input interface switch | IBS2 | | Yes | Input data length set | | | IBS1 | | Yes | niput data lengtii set | | Output interface switch | OBS | Yes | Yes | Output data length set | ### **Control request switching** ## MDS input and device control Mode switching/function switching is performed under input pin control when MDS is HIGH, and under internal flag control when MDS is LOW. | MDS <sup>1</sup> | Control request | |------------------|-----------------| | HIGH | Input pins | | LOW | Control flags | <sup>1.</sup> Switching MDS during device operation is prohibited. ## Input pin functions when MDS is LOW All pins that are part of the microprocessor interface can be used whenever MDS is LOW. | Pin name | Function | Notes | |---------------------------------------------|-----------------------------------------|--------------------------------------------| | HS/MDT | Serial data transfer data clock | | | ASEL2/MDCK Serial data transfer clock input | | Used for the microprocessor interface | | SYNC/MDLE | Serial data transfer latch enable input | | | CKS | CKS function switch input | Input pin control only because there is no | | CKEN | CKEN CKEN function switch input | | | LRS | LRS function switch input | corresponding control flag. | ### Control flag functions when MSD is HIGH (default) Other requests are controlled by internal flag only because there is no corresponding input pin. These control flags are valid when MDS is HIGH. The default values are shown in the following table. | Flag name | Default value | Default setting | | |-----------|---------------|----------------------------------------------|--| | FSEL2 | HIGH | 44.1kHz deemphasis filter sampling frequency | | | FSEL1 | HIGH | 44.1km2 deemphasis liller sampling frequency | | | MUTE | HIGH | Muting OFF | | | IBS2 | LOW | - 16-bit input data length | | | IBS1 | HIGH | 10-bit iliput data lerigiri | | ## **Clock Functions** ## Input clock frequency switching (CKS) This switch is used to select the input clock frequency—384fs or 512fs (normal-speed sampling), and 192fs or 256fs (high-speed sampling). | скѕ | lanut compling from concerts [Idd=] | System o | clock | Notes | | |------|-------------------------------------|-----------------|-------|----------------------------|--| | | Input sampling frequency fs [kHz] | Frequency [MHz] | [×fs] | Notes | | | LOW | 32 | 16.384 | 512fs | Normal-speed sampling mode | | | LOW | 64 | 16.384 | 256fs | High-speed sampling mode | | | | 32 | 12.288 | | | | | | 44.1 | 16.9344 | 384fs | Normal-speed sampling mode | | | HIGH | 48 | 18.432 | | | | | піап | 64 | 12.288 | | | | | | 88.2 | 16.9344 | 192fs | High-speed sampling mode | | | | 96 | 18.432 | | | | ## Crystal oscillator control switch (CKEN) This switch is used to start/stop the crystal oscillator circuit. | CKEN | Crystal oscillator operation | |------|------------------------------| | HIGH | Oscillating | | LOW | Stopped | ## Crystal oscillator circuit The built-in crystal oscillator circuit comprises a feedback resistor and several logic gates. The system clock can be generated using an external quartz crystal and 2 capacitors. ### **External clock** When an external clock is used, XTO is left open-circuit and the clock signal is input on XTI. #### Other control settings ### Input data length select ISB1 and ISB2 flags are used to set the input data length. | IBS2 | IBS1 | Input data<br>length | Notes | |------|------|----------------------|---------------------------------------------------| | HIGH | HIGH | 20 bits | | | HIGH | LOW | 24 bits | The length is set to the default value of 16 bits | | LOW | HIGH | 16 bits | (IBS2 = LOW and IBS1 = HIGH) after a reset. | | LOW | LOW | 32 bits | 1 11011, 4101 4 10001. | ### LRCI input polarity select Pin LRS is used to set the LRCI input polarity. | LRS | LRCI | Input channel | |------|------|---------------| | HIGH | HIGH | Left | | HIGH | LOW | Right | | LOW | HIGH | Right | | LOW | LOW | Left | #### Sync mode select The SYNC pin or flag setting can be used to select either jitter-free mode or sync mode to control synchronization between input data and internal arithmetic blocks. | SYNC | Mode | Notes | | |------|------------------|---------------------------|--| | HIGH | Jitter-free mode | The SYNC flag is set HIGH | | | LOW | Sync mode | (default) after a reset. | | ### **Filter Stage** ### **Operating mode** The SM5846A supports 3 different operating modes to control output data rate switching. The operating mode is selected by the state of $\overline{\text{HS}}$ , ASEL1 and ASEL2. | HS | ASEL1 | ASEL2 | Operating mode <sup>1</sup> | | |------|-------|-------|-----------------------------|--------------| | | | | Speed | Oversampling | | HIGH | LOW | HIGH | Normal-speed sampling | 8-times | | LOW | HIGH | HIGH | High-speed sampling | 8-times | | | | LOW | | 4-times | <sup>1.</sup> Only the above 3 modes are valid. #### Operating speed and sampling frequency The SM5846AP supports sampling frequencies of 32/44.1/48kHz (normal-speed sampling mode) and 64/88.2/96kHz (high-speed sampling mode). | Operating speed | Input sampling frequency | |-----------------------|--------------------------| | Normal-speed sampling | 32/44.1/48kHz | | High-speed sampling | 64/88.2/96kHz | ### Deemphasis filter The SM5846AP contains a digital deemphasis filter controlled by DEEM. | DEEM | Deemphasis | |------|------------| | HIGH | ON | | LOW | OFF | The sampling frequency is selected by FSEL1 and FSEL2. | | | Sampling frequency fs [kHz] | | | |-------------|------|-----------------------------|---------------------|--| | FSEL2 FSEL1 | | Normal-speed sampling | High-speed sampling | | | HIGH | HIGH | 44.1 | 88.2 | | | HIGH | LOW | 48 | 96 | | | LOW | HIGH | 44.1 | 88.2 | | | LOW | LOW | 32 | 64 | | ## Digital attenuator The digital attenuator is controlled by serial data from the microprocessor interface. This data can set attenuation and muting. Note that the digital attenuator is only enabled when MDS is LOW. ATT1 and ATT2 are used to set the attenuation in normal-speed sampling and high-speed sampling, respectively. #### Attenuation setting The data stored in the D-ATT attenuation register, accessed through the microprocessor interface, determines the attenuation setting of the digital attenuator. The D-ATT register data format is shown below. The attenuation setting is given by the following equations. Attenuation = 0 [dB] (DATT = 0) Attenuation = $$20\log_{10}\left(\frac{127 - DATT}{128}\right)$$ [dB] (0 < DATT < 127) Attenuation = $-\infty$ (DATT = 127) The attenuation for a selection of values is given in the following table. | DATT register value | Microprocess or command [hex] | Attenuation<br>[dB] | Relative gain | |---------------------|-------------------------------|---------------------|---------------| | 0 | 00H | 0 | ×1.0 | | 1 | 01H | -0.137 | × 0.984375 | | 2 | 02H | -0.206 | × 0.9765625 | | <b>\</b> | <b>\</b> | $\downarrow$ | <b>\</b> | | 63 | 3FH | -6.021 | ×0.5 | | 64 | 40H | -6.157 | × 0.4921875 | | <b></b> | <b>\</b> | $\downarrow$ | <b>\</b> | | 125 | 7DH | -36.12 | × 0.015625 | | 126 | 7EH | -42.14 | × 0.0078125 | | 127 | 7FH | -∞ | ×0 | #### Digital attenuator operation The attenuation register is reset to 0 (attenuation = 0 dB) after a system reset signal. When data is written to the attenuation register, through the microprocessor interface, the attenuation changes from the current value to the new value at the speed shown in the following table. | Operating speed | Speed of attenuation change | Time from min. to max. attenuation | |-----------------------|-----------------------------|------------------------------------| | Normal-speed sampling | 8/fs per step change | 1016/fs (23.0ms at<br>44.1kHz) | | High-speed sampling | 16/fs per step<br>change | 2032/fs (23.0ms at<br>88.2kHz) | #### Soft muting operation Soft muting ON/OFF is controlled by the $\overline{\text{MUTE}}$ flag, accessed through the microprocessor interface. | MUTE | Muting | Notes | |------|--------|---------------------------------------------| | HIGH | OFF | The MUTE flag is set HIGH (default) after a | | LOW | ON | system reset. | When muting is ON, the attenuation ramps down to $-\infty$ at the speed shown in the table. Similarly when muting is OFF, the attenuation level returns to the original value at the same speed. If the contents of the DATT attenuation register are changed while muting is ON (attenuation = $-\infty$ ), only the register contents are replaced. If muting is subsequently turned OFF, the attenuation value changes to the new value at the same speed as shown in the table. ### Output data round-off Output data round-off processing is required because the internal data length of the digital filter is different from the output data length (internal data processing width > output data width). The SM5846AP can select either normal round-off or dither round-off on the output data. Round-off processing can be selected either by input pin or control flag settings. | MDS | DITH<br>pin | DITH<br>flag | Output<br>data<br>round-off | Notes | |------|-------------|------------------|-----------------------------|---------------------------------------------| | HIGH | HIGH | × | Dither round-off | | | пісн | LOW | | Normal round-off | The DITH flag is set HIGH (default) after a | | LOW | | HIGH | Normal round-off | system reset. | | | × LOW | Dither round-off | | | #### Normal round-off Normal round-off is carried out by adding 1/2 LSB to the filter output data to form 20/24-bit output data, depending on the selected output data length. #### Dither round-off Dither round-off is carried out by adding a pseudorandom number between 0 and 1 LSB, derived from a rectangular distribution, to the filter output data to form 20/24-bit output data, depending on the selected output data length. The random number rectangular distribution is shown below (average = 1/2 LSB). #### **Overflow limiter** If an overflow or underflow condition occurs after round-off or filter arithmetic processing, the output data will be fixed at positive or negative maximum value. ## **Audio Data Input Interface** Serial data transmission is used for the digital audio data input. The data has the following format: - 16/20/24/32-bit data length - Alternating left/right-channel serial data transmission - MSB first - Rear packed - 2s complement for negative values ### Audio data input interface pins Audio data is input using pins LRCI, BCKI, and DIN. The LRCI input polarity is determined by pin LRS. | Pin name | Function | |----------|--------------------------------------| | LRCI | Left/right-channel latch clock input | | BCKI | Bit transfer clock input | | DIN | Serial data input | | LRS | LRCI input polarity switch | Serial data on DIN is input to the serial-to-parallel shift register on the falling edge of the bit transfer clock BCKI. The parallel data is then stored in the left/right-channel input buffers on the HIGH/LOW-level pulse of the LRCI latch clock signal, depending on the selected polarity of the LRCI clock. ### Audio data input interface schematic ## Input data interface example (LRS = HIGH) ### 32-bit input data length ### 24-bit input data length ### 20-bit input data length ### 16-bit input data length ## Input data validity ### 32-bit input data length ## 24-bit input data length ### 20-bit input data length ### 16-bit input data length ### **Audio Data Output Interface** Serial data transmission is used for the digital audio data output. The data has the following format: - 20/24-bit data length - Simultaneous left/right-channel serial data transmission - MSB first - Bit transfer clock burst (NPC format) - 2s complement for negative values ### Audio data output interface pins Audio data is output using pins WCKO, BCKO, DOL and DIN. | Pin name | Function | |----------|----------------------------------| | WCKO | Word clock output | | ВСКО | Bit transfer clock output | | DOL | Left-channel serial data output | | DOR | Right-channel serial data output | Serial data is output on DOL and DOR on the falling edge of the bit transfer clock BCKO. Generally, external circuits, such as a serial D/A converter, sample the serial data output on DOL and DOR on the rising edge of the bit transfer clock signal, and then shift the data into a register. At the completion of one data cycle (20/24-bit selectable) transfer, the word clock WCKO goes LOW with a 50% duty ratio. Then the external circuit writes parallel data to a buffer register on the falling edge of word clock WCKO. ### Output data length select The output data length is set by either the OBS pin or flag. | OBS | Output data length | Notes | |------|--------------------|---------------------------------| | HIGH | 24 bits | The OBS flag is set LOW | | LOW | 20 bits | (default) after a system reset. | ## Audio data output interface ## output data format ### 24-bit output data length ## 20-bit output data length ## Audio data output timing ## Normal-speed sampling: 384fs clock, 24-bit data output, 8fs output data rate ## Normal-speed sampling: 384fs clock, 20-bit data output, 8fs output data rate ### Normal-speed sampling: 512fs clock, 24-bit data output, 8fs output data rate ## Normal-speed sampling: 512fs clock, 20-bit data output, 8fs output data rate ## High-speed sampling: 192fs clock, 24-bit data output, 8fs output data rate ## High-speed sampling: 192fs clock, 20-bit data output, 8fs output data rate ## High-speed sampling: 256fs clock, 24-bit data output, 8fs output data rate ## High-speed sampling: 256fs clock, 20-bit data output, 8fs output data rate ## High-speed sampling: 192fs clock, 24-bit data output, 4fs output data rate ## High-speed sampling: 192fs clock, 20-bit data output, 4fs output data rate ## High-speed sampling: 256fs clock, 24-bit data output, 4fs output data rate ## High-speed sampling: 256fs clock, 20-bit data output, 4fs output data rate ## **Microprocessor Interface** ### Microprocessor interface pins When MDS is LOW, the SM5846AP is controlled by internal flags set by serial data transferred over the microprocessor interface comprising MDLE, MDCK and MDT. | Pin name | Function | |----------|------------------------------------------| | MDLE | Microprocessor data latch enable input | | MDCK | Microprocessor data transfer clock input | | MDT | Serial data input | Internal control flag serial data on MDT is input into an internal shift register on the rising edge of MDCK. After 8-bit data has been input, the data in the shift register is stored in one of four internal flag registers on the rising edge of MDLE latch enable. The address of the flag register is derived by decoding bits 1 to 3 of the 8-bit data. ### Microprocessor interface ## Microprocessor interface data input timing ## MDCK and MDLE can also follow the dotted lines above #### Serial data format | Register | Bit 1 | Bit 2 | Bit 3 | Bit 4 | Bit 5 | Bit 6 | Bit 7 | Bit 8 | |-------------------|-------|-------|-------|-----------|-------|-----------|-------|-------| | D-ATT attenuation | 0 | a1 | a2 | а3 | a4 | a5 | a6 | a7 | | Mode flag 1 | 1 | 0 | SYNC | TEST1 = 0 | HS | FSEL1 | FSEL2 | DEEM | | Mode flag 2 | 1 | 1 | MUTE | DITH | OBS | IBS1 | IBS2 | 1 | | Mode flag 3 | 1 | 1 | ASEL1 | ASEL2 | 1 | TEST2 = 0 | 1 | 0 | Address information is displayed in double-line cells of the table. Test bits (mode flag 1 bit 4 and mode flag 3 bit 6) should be set to 0. ### **System Reset** #### When a reset is necessary The device must be reset under the following conditions. - When power is first applied - When the LRCI clock or system clock stop #### **Reset input conditions** The $\overline{RST}$ input is active LOW. At power-ON reset, $\overline{RST}$ must go LOW and then go HIGH after the XTI and LRCI clocks stabilize (reset release). #### Reset timing The internal arithmetic registers and output sequence are initialized on the rising edge of the LRCI clock after reset release. The internal control flags and D-ATT attenuation register are initialized after RST goes LOW. Outputs DOL and DOR are tied LOW while $\overline{RST}$ is LOW. #### Power-ON reset using a capacitor The $\overline{RST}$ input configuration is a Schmitt-trigger input with a pull-up resistor, which means that a simple power-ON reset circuit can be made by connecting a capacitor between $\overline{RST}$ and VSS as shown below. A $0.01\mu F$ external capacitor is recommended. However, the time constant can be lengthened if longer time is required for the XTI and LRCI clocks to stabilize after power-ON. The external capacitor discharges through the internal pull-up resistor at power-OFF as this is the only possible discharge path. This could cause reset failure if power is reapplied while the external capacitor is discharging. Therefore, a diode should be connected between $\overline{RST}$ and VDD to quickly discharge the capacitor and ensure correct power-ON reset operation. ### **External power-ON reset circuit** #### Internal control flag/D-ATT attenuator register initial values | Register | Bit 1 | Bit 2 | Bit 3 | Bit 4 | Bit 5 | Bit 6 | Bit 7 | Bit 8 | |-------------------|-------|--------|-----------|-----------|---------|-----------|-----------|----------| | D-ATT attenuation | 0 | a1 = 0 | a2 = 0 | a3 = 0 | a4 = 0 | a5 = 0 | a6 = 0 | a7 = 0 | | Mode flag 1 | 1 | 0 | SYNC = 1 | TEST1 = 0 | HS = 1 | FSEL1 = 1 | FSEL2 = 1 | DEEM = 0 | | Mode flag 2 | 1 | 1 | MUTE = 1 | DITH = 1 | OBS = 0 | IBS1 = 1 | IBS2 = 0 | 1 | | Mode flag 3 | 1 | 1 | ASEL1 = 1 | ASEL2 = 1 | 1 | TEST2 = 1 | 1 | 0 | ### When external muting is required The SM5846AP has a relatively long group delay time because multi-stage filters are employed to achieve the desired filter characteristics. Under the following conditions, undesirable noise output can occur during the group delay time period. In this case, it may be necessary to use external muting. - When power is first applied. The state of internal registers may be undefined during power-ON. - When switching the operating mode. When switching the operating mode using HS, ASEL1 and ASEL2, the internal register assignments may be changed. - If the LRCI and/or XTI clock stop. If a disturbance occurs during an input data cycle, normal filter output may not be achieved. - When switching deemphasis ON/OFF. Switching the deemphasis filter parameters may cause switching noise output. - When switching the sampling frequency (clock frequency). - When switching between input/output data formats (including LRCI clock polarity switching). Note that switching MDS is inhibited during system operation. ### **Test Precautions** The following conditions should be maintained for normal operation. - MDS and DITH inputs should not be simultaneously LOW. - TEST1 (bit 4 of mode flag 1 register) should not be set to 1. - TEST2 (bit 4 of mode flag 3 register) should be set to 0 after system reset (including power-ON). - Mode flag 3 register bit 5 and/or bit 7 should not be set to 0. Please pay your attention to the following points at time of using the products shown in this document. The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies. #### SEIKO NPC CORPORATION 15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611 http://www.npc.co.jp/ Email: sales@npc.co.jp NC9616CE 2006.04