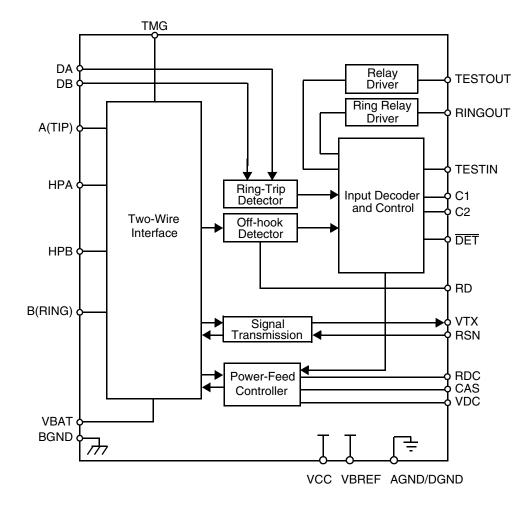
Am79486 Subscriber Line Interface Circuit

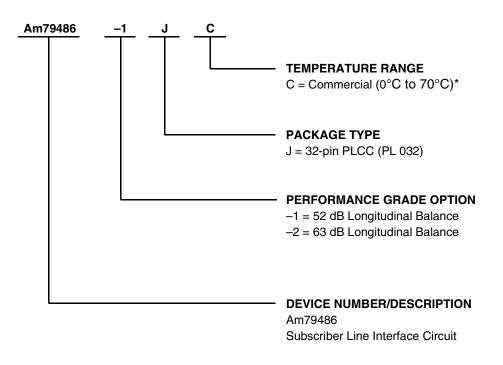


The Am79486 Subscriber Line Interface Circuit implements the basic telephone line interface functions and enables the design of low cost, high performance POTS line interface cards.

DISTINCTIVE CHARACTERISTICS

- Control states: Active, Ringing, Standby and Disconnect
- Low standby power
- -19 V to -58 V battery operation
- On-hook transmission
- Two-wire impedance set by single external impedance
- **BLOCK DIAGRAM**

- Programmable constant-current feed
- Programmable loop-detect threshold
- Programmable ring-trip detect threshold
- No –5 V supply required
- Current Gain = 500
- On-chip Thermal Management (TMG) feature
- Two on-chip relay drivers with relay snubbers

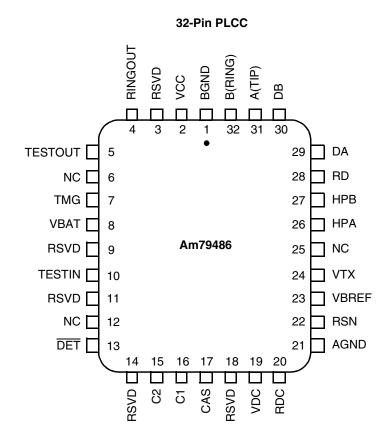


ORDERING INFORMATION

Standard Products

Legerity standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.

Valid Combinations				
-1 -2	JC			
	alid Combination -1 -2			


Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local Legerity sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on Legerity's standard military grade products.

Note:

* Functionality of the device from $0^{\circ}C$ to $+70^{\circ}C$ is guaranteed by production testing. Performance from $-25^{\circ}C$ to $+85^{\circ}C$ is guaranteed by characterization and periodic sampling of production units.

CONNECTION DIAGRAM Top View

Notes:

- 1. Pin 1 is marked for orientation.
- 2. NC = No Connect
- 3. RSVD = Reserved. Do not connect to these pins.

, Legerity.

(Legerity.

PIN DESCRIPTIONS

Pin Names	Туре	Description
AGND/DGND	Gnd	Analog and Digital ground.
A(TIP)	Output	Output of A(TIP) power amplifier.
BGND	Gnd	Battery (power) ground.
B(RING)	Output	Output of B(RING) power amplifier.
C2–C1	Inputs	Decoder. SLIC control pins. C2 is MSB and C1 is LSB. TTL compatible with internal current source pullups.
CAS	Capacitor	Anti-Saturation pin for capacitor to filter reference voltage when operating in anti-saturation region.
DA	Input	Ring-Trip negative. Negative input to ring-trip comparator.
DB	Input	Ring-Trip positive. Positive input to ring-trip comparator.
DET	Output	Switchhook Detector. A logic Low indicates that selected condition is detected. The detect condition is selected by the logic inputs (C1 and C2). The output is open-collector with a built-in 15 k Ω pull-up resistor.
HPA	Capacitor	High-Pass Filter Capacitor. A(TIP) side of high-pass filter capacitor.
HPB	Capacitor	High-Pass Filter Capacitor. B(RING) side of high-pass filter capacitor.
NC	_	No connect. Pin not internally connected.
RD	Resistor	Detect resistor. Detector threshold set and filter pin.
RDC	Resistor	DC feed resistor. Connection point for the DC feed current programming network. The other end of the network connects to the receiver summing node (RSN).
RINGOUT	Output	Ring Relay Driver. Open collector driver with emitter internally connected to BGND.
RSN	Input	Receive Summing Node. The metallic current (both AC and DC) between A(TIP) and B(RING) is equal to 500 times the current into this pin. The networks which program receive gain, two-wire impedance and feed resistance all connect to this node.
RSVD		These pins are reserved for Legerity use. No connection should be made to these pins.
TESTIN	Input	Relay driver control. A logic low at TESTIN forces TESTOUT low. TTL compatible with internal current source pullups.
TESTOUT	Output	Relay driver. Open collector driver with emitter internally connected to BGND.
TMG	_	Thermal management. External resistor connects between this pin and VBAT to offload power from SLIC.
VBAT	Battery	Battery supply and connection to substrate.
VBREF	—	This is a Legerity reserved pin and always must be connected to the VBAT pin.
VCC	Power	+5 V power supply.
VDC	Output	Voltage output at this pin is proportional to the voltage across pins A and B (V_{AB}).
VTX	Output	Transmit audio. This output is a 0.50 gain version of the A(TIP) and B(RING) metallic voltage. VTX also sources the two-wire input impedance programming network.

ABSOLUTE MAXIMUM RATINGS

Storage temperature55°C to +150°C
V_{CC} with respect to AGND/DGND –0.4 V to +7 V
V _{BAT} with respect to AGND/DGND:
Continuous +0.4 V to –70 V
10 ms
BGND with respect to AGND/DGND+3 V to -3 V
A(TIP) or B(RING) to BGND:
Continuous
10 ms (f = 0.1 Hz) $\dots \dots \dots$
1 µs (f = 0.1 Hz)80 V to +8 V 250 ns (f = 0.1 Hz)90 V to +12 V
Current from A(TIP) or B(RING) ±150 mA
RINGOUT current
TESTOUT current 100 mA
RINGOUT/TESTOUT voltage BGND to +7 V
RINGOUT/TESTOUT transient BGND to +10 V
DA and DB inputs
Voltage on ring-trip inputs V _{BAT} to 0 V
Current into ring-trip inputs ±10 mA
C2–C1, TESTIN
Input voltage –0.4 V to V_{CC} + 0.4 V
Maximum power dissipation, continuous,
$T_A = 70^{\circ}C$, No heat sink (See note):
In 32-pin PLCC package1.7 W
Thermal Data: θ_{JA}
In 32-pin PLCC package43°C/W typ
ESD immunity/pin (HBM)

Note: Thermal limiting circuitry on chip will shut down the circuit at a junction temperature of about 165°C. The device should never see this temperature and operation above 145°C junction temperature may degrade device reliability. See the SLIC Packaging Considerations for more information.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Ambient temperature $\hdots 0^\circ C$ to +70°C*
V_{CC}
V_{BAT}
AGND/DGND 0 V
BGND with respect to
AGND/DGND
Load resistance on VTX to ground 20 k Ω min

The operating ranges define those limits between which the functionality of the device is guaranteed.

* Functionality of the device from $0^{\circ}C$ to $+70^{\circ}C$ is guaranteed by production testing. Performance from $-25^{\circ}C$ to $+85^{\circ}C$ is guaranteed by characterization and periodic sampling of production units.

ELECTRICAL CHARACTERISTICS

Description	Test Conditions (See Note 1)		Min	Тур	Мах	Unit	Note
Transmission Performance	•					•	<u> </u>
2-wire return loss	200 Hz to 3.4 kHz		18	36		dB	1, 4
Analog output (V _{TX}) impedance				3	20	Ω	4
Analog (V _{TX}) output offset voltage		0°C to +70°C –25°C to +85°C	40 50		+40 +50	mV	4
Overload level, 2 wire and 4 wire	Active state		2.5			Vpk	2a
Overload level	On hook, $R_{LAC} = 900 \ \Omega$		1.5			Vrms	2b
THD, Total Harmonic Distortion	0 dBm +7 dBm			64 55	-50 -40	dB	5
THD, on hook	+3 dBm, R_{LAC} = 900 Ω				-36		
Longitudinal Capability (See	Test Circuit D)			L			
Longitudinal to metallic	200 Hz to 1 kHz						
L-T, L-4 balance	0°C to +70°C	-1*	53				
	0°C to +70°C	-2	63			- -	
	–25°C to +85°C	-1	50			dB	
	–25°C to +85°C	-2	58			-	4
	<u>1 kHz to 3.4 kHz</u>						
	0°C to +70°C	-1*	53				
	0°C to +70°C	-2	58			-	
	–25°C to +85°C	-1	50			dB	
	–25°C to +85°C	-2	53				
Longitudinal current per pin (A or B)	Active state		8.5	27		mArms	7
Longitudinal impedance at A or B	0 to 100 Hz			25	35	Ω/pin	
Idle Channel Noise							•
C-message weighted noise		0°C to +70°C –25°C to +85°C		+7	+11 +13	dBrnC	4
Insertion Loss and Balance R	eturn Signal (See Test Ci	rcuits A and B)					
Gain accuracy 4- to 2-wire	0 dBm, 1 kHz	0°C to +70°C –25°C to 85°C	-0.15 -0.20	0 0	+0.15 +0.20		4
Gain accuracy 2- to 4-wire, 4- to 4-wire	0 dBm, 1 kHz 0°C to +70°C -25°C to 85°C		6.17 6.22	-6.02 -6.02	-5.87 -5.82]	4
Gain accuracy, 4- to 2-wire	On hook, $R_{LAC} = 900 \Omega$		-0.35		+0.35		4
Gain accuracy, 2- to 4-wire, 4- to 4-wire	On hook, $R_{LAC} = 900 \Omega$		-6.37	-6.02	-5.67	dB	
Gain accuracy over frequency	300 Hz to 3400 Hz relative to 1 kHz	0°C to +70°C –25°C to +85°C	-0.10 -0.15		+0.10 +0.15		4
Gain tracking	+3 dBm to –55 dBm relative to 0 dBm	0°C to +70°C –25°C to +85°C	-0.10 -0.15		+0.10 +0.15		4

Note:

* Performance Grade

(Legerity.

ELECTRICAL CHARACTERISTICS (continued)

Description	Test Conditions (See Note 1)	Min	Тур	Max	Unit	Note
Gain tracking On hook, R_{LAC} = 900 Ω	0 dBm to -37 dBm 0°C to +70°C -25°C to +85°C +3 dBm to 0 dBm	-0.10 -0.15 -0.35		+0.10 +0.15 +0.35	dB	4
Group delay	0 dBm, 1 kHz		4		μs	4, 7
Line Characteristics	I					
IL, short loops, Active state	R _{LDC} = 900 Ω	20	23	26		
IL, long loops, Active state	R _{LDC} = 1600 Ω, BAT = -42.75 V, T _A = 25°C	18	22			
I_L , accuracy, Standby state	$I_{L} = \frac{ BAT - 3 V}{R_{L} + 400}$ $T_{A} = 25^{\circ}C$	0.71 _L	ΙL	1.3I _L	mA	
	Constant-current region	18	30			
I _L , loop current, Disconnect state	R _L = 0			100	μA	
ILLIM	Active, A and B to GND		80	120	mA	
VDC accuracy	$ \begin{array}{l} R_{L} = 300 \ \Omega \\ R_{L} = 900 \ \Omega \end{array} $	0.300 0.920	0.350 1.050	0.400 1.18	v	
V _{AB} , Open Circuit voltage	$V_{BAT} = -52 V$	-42.75	-46			
Power Supply Rejection Ratio	(V _{RIPPLE} = 100 mVrms), Active Normal Sta	ite				
V _{CC}	50 Hz to 3400 Hz 500 Hz to 3000 Hz	30 35	50			
V _{BAT}	50 Hz to 3400 Hz 500 Hz to 3000 Hz	28 50 40			5	
V _{CC} , on hook	50 Hz to 3400 Hz	30	50			
V _{BAT} , on hook	50 Hz to 100 Hz 100 Hz to 200 Hz 200 Hz to 300 Hz 300 Hz to 500 Hz 500 Hz to 1000 Hz 1 kHz to 3400 Hz	4 9 16 24 30 34	8 14 24 28 34 40		dB 4	
Control pin feed-through (C2–C1)	50 Hz to 3400 Hz	3400 Hz 35 50				
Effective internal resistance	CAS pin to V _{BAT}	85	170	255	kΩ	
Power Dissipation				1		1
On hook, Disconnect state			45	70		
On hook, Standby state			55	85		
On hook, Active state	R _{TMG} = 2500 Ω		150	270	mW	
Off hook, Standby state	R _L = 600 Ω		860	1200	1	
Off hook, Active state	R _L = 300 Ω, R _{TMG} = 2500 Ω		700	950	1	
Supply Currents, Battery = -4	8 V			I	I	1
ICC, On-hook V _{CC} supply current	Disconnect state		3.0 2.8 6.3	4.0 4.0 8.5	m^	
IBAT, On-hook V _{BAT} supply current	Disconnect state Standby state Active state		0.61.00.81.52.84.8		- mA	
RFI Rejection						
RFI rejection	100 kHz to 30 MHz, (See Figure F)			1.0	mVrms	4

ELECTRICAL CHARACTERISTICS (continued)

Description	Test Conditions (See Note 1)	Min	Тур	Max	Unit	Note
Receive Summing Node (RSI	N)					
RSN DC voltage	I _{RSN} = 0 mA		0		V	
RSN impedance	200 Hz to 3.4 kHz		10	20	Ω	- 4
Logic Inputs (C2–C1, TESTIN)	•	•			
V _{IH} , input High voltage		2.0				
V _{IL} , input Low voltage				0.8	- V	
I _{IH} , input High current		-75 44		40		
IIL, input Low current		-400		-13	μA	
Logic Output (DET)	•	•	•			
V _{OL} , output Low voltage	lout = 0.3 mA, 15 k Ω to V _{CC}			0.40		
V_{OH} , output High voltage	lout = -0.1 mA, 15 k Ω to V _{CC} lout = -10 μ A	2.4 0.7•V _{CC}	0.97•V _{CC}		V	
Ring-Trip Detector Input (DA,	, DB)	•	•			_
Bias current		-20	-5		nA	4
Offset voltage	Source resistance = 2 M Ω	-50	0	+50		6
Offset voltage	Source resistance mismatch = $3 M\Omega$ -50 0 +4		+50	mV	4	
Relay Driver Output (RINGOL	JT, TESTOUT)					
V _{OH} , On voltage, RINGOUT	I _{OL} = 40 mA	+0.3 +0.7		+0.7	V	
V _{OH} , On voltage, TESTOUT	I _{OL} = 80 mA		+0.4	+1.0	V	
I _{OL} , Off leakage, RINGOUT	V _{OH} = +5 V		0	100		
I _{OL} , Off leakage, TESTOUT	V _{OH} = +5 V	80	140	μA		
Zener breakover	I _Z = 300 μA	5.7	7.2			
Zener On voltage, RINGOUT	I _Z = 30 mA 8 I _Z = 80 mA 8		8		v	
Zener On voltage, TESTOUT				1		
Loop Detector	•					
R _{LTH} , loop-detect threshold resistance	Active state, $R_D = 35.4 \text{ k}\Omega$ Standby state, $R_D = 35.4 \text{ k}\Omega$	RD/11.5 RD/15	RD/10.1 RD/12.6	RD/8.8 RD/10	Ω	8

RELAY DRIVER SCHEMATICS

Notes:

- 1. Unless otherwise noted, test conditions are BAT = -52 V, $V_{CC} = +5 \text{ V}$, $R_L = 900 \Omega$, $R_T = 225 \text{ k}\Omega$, $RRX = 225 \text{ k}\Omega$, $R_{DC1} = R_{DC2} = 27.17 \text{ k}\Omega$, $R_{TMG} = 2500 \Omega$, $RD = 35.4 \text{ k}\Omega$, no fuse resistors, $CHP = 0.1 \mu$ F, $C_{DC} = 0.1 \mu$ F, $C_{CAS} = 0.1 \mu$ F, D1 = 1N400x, BSWEN = logic low (0), (two-wire AC input impedance is a 900 Ω).
- 2. a. Overload level is defined when THD = 1%.
 b. Overload level is defined when THD = 1.5%.
- 3. Balance return signal is the signal generated at V_{TX} by V_{RX} . This specification assumes that the two-wire AC load impedance matches the programmed impedance.
- 4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.
- 5. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.
- 6. Tested with 0 Ω source impedance. 2 M Ω is specified for system design only.
- 7. Minimum current level guaranteed not to cause a false Loop Detect.
- 8. \overline{DET} goes high during loss of V_{BAT} supply.

State	C2	C1	2-Wire Status	DET Output
0	0	0	Disconnect	Ring trip
1	0	1	Ringing	Ring trip
2	1	0	Active	Loop detector
3	1	1	Standby	Loop detector

Table 1. SLIC Decoding

gerity.

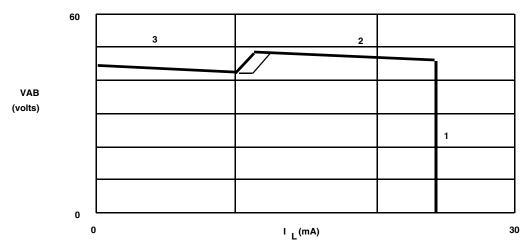
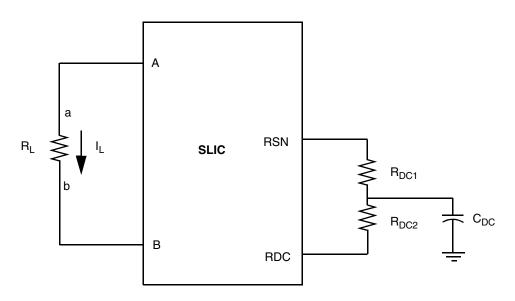

(Legerity_____

 Table 2.
 User-Programmable Components

$Z_{\rm T} = 250(Z_{\rm 2WIN} - 2R_{\rm F})$	$Z_{\rm T}$ is connected between the VTX and RSN pins. The fuse resistors are ${\rm R}_{\rm F}$ and Z_{2WIN} is the desired 2-wire AC input impedance. When computing $Z_{\rm T}$, the internal current amplifier pole and any external stray capacitance between VTX and RSN must be taken into account.
$Z_{RX} = \frac{Z_{L}}{G_{42L}} \bullet \frac{500 \bullet Z_{T}}{Z_{T} + 250(Z_{L} + 2R_{F})}$	Z_{RX} is connected from V_{RX} to $R_{SN}.\ Z_{T}$ is defined above, and G_{42L} is the desired receive gain.
$R_{DC1} + R_{DC2} = \frac{1250}{I_{LOOP}}$	R_{DC1},R_{DC2} , and C_{DC} form the network connected to the RDC pin. R_{DC1} and R_{DC2} are approximately equal. I_{LOOP} is the desired loop current in the constant-current region.
$C_{DC} = 1.5 \text{ ms} \bullet \frac{R_{DC1} + R_{DC2}}{R_{DC1} \bullet R_{DC2}}$	
$RD_{ACTIVE} = 10.1 \bullet R_{LTH}$ for $ V_{BAT} > 40 V$	R_{LTH} is the desired loop resistance detect threshold. I_{LTH} is the loop current at R_{LTH} for a given battery.
$RD_{STANDBY} = 10(R_{LTH} + 400) \bullet \frac{54 \text{ V}}{BAT - 3}$	
$RD_{ACTIVE} = \frac{375}{I_{DET}}$	
$RD_{STANDBY} = \frac{375}{I_{DET}}$ for $ V_{BAT} < 40 \text{ V}$	
$C_{CAS} = \frac{1}{3.4 \bullet 10^5 \pi f_c}$	C_{CAS} is the regulator filter capacitor and \textbf{f}_{c} is the desired filter cut-off frequency.
$I_{STANDBY} = \frac{V_{BAT} - 3 V}{400 \Omega + R_L}$	Standby loop current (resistive region).
VDC Scale Factor = $\frac{63.4 \bullet R_L}{R_{DC1} + R_{DC2}}$	VDC Scale Factor valid for constant-current region.
Thermal Management Equations (Normal Active and Tip O	pen States)
$R_{TMG} \ge \frac{ V_{BAT} - 6 V}{I_{LOOP}} - 70 \Omega$	R_{TMG} is connected from T_{MG} to V_{BAT} and is used to limit power dissipation within the SLIC in Active and Disconnect states only.
$P_{RTMG} = \frac{(V_{BAT} - 6 V - (I_L \bullet R_L))^2}{(R_{TMG} + 70 \Omega)^2} \bullet R_{TMG}$	Power dissipated in the thermal management resistor, $R_{TMG},$ during Active and Disconnect states.
$\mathbf{P}_{\text{SLIC}} = \left \mathbf{V}_{\text{BAT}} \right \bullet \mathbf{I}_{\text{L}} - \mathbf{P}_{\text{RTMG}} - \mathbf{R}_{\text{L}} (\mathbf{I}_{\text{L}})^2 + 0.12 \text{ W}$	Power dissipated in the SLIC while in Active and Disconnect states.

Legerity.

DC FEED CHARACTERISTICS

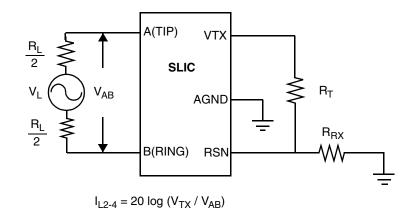

$$\label{eq:BC} \begin{split} R_{DC} &= R_{DC1} + R_{DC2} = 54.34 \ \text{k}\Omega \\ \text{BAT} &= -48 \ \text{V} \end{split}$$

1.
$$V_{AB} = I_L R_L' = \frac{1250}{RDC} R_L'$$
, where $R_L' = R_L + 2R_F$

2.
$$V_{AB} = |V_{BAT}| - 3.3 - I_L \frac{RDC}{300}$$

3.
$$V_{AB} = |V_{BAT}| - 5.5 - I_L \frac{RDC}{300}$$

a. Load Line (typical)



Feed current programmed by $\mathsf{R}_{\mathsf{DC1}}$ and $\mathsf{R}_{\mathsf{DC2}}$

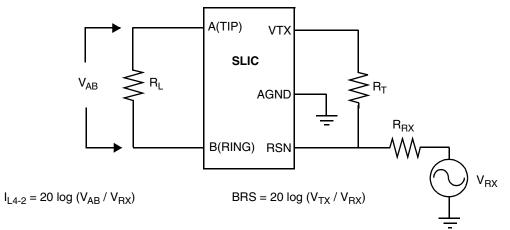
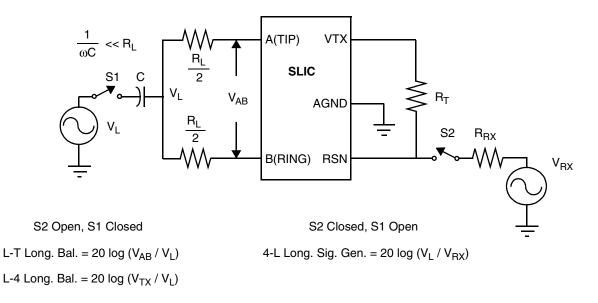
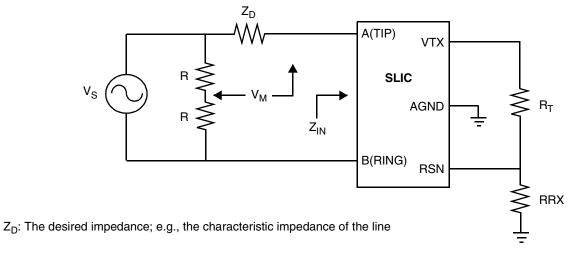

b. Feed Programming

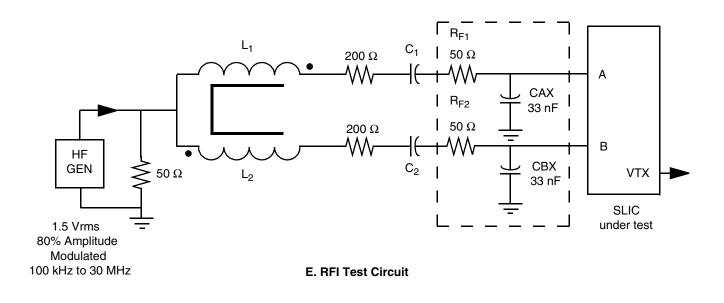
Figure 1. DC Feed Characteristics



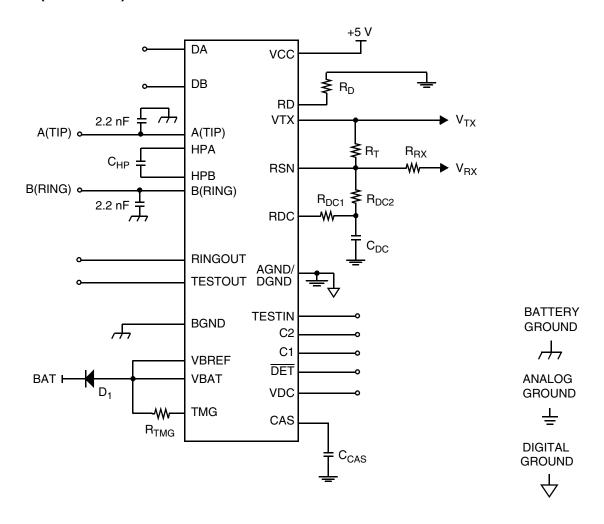
A. Two- to Four-Wire Insertion Loss


B. Four- to Two-Wire Insertion Loss and Balance Return Signal

C. Longitudinal Balance


Legerity.

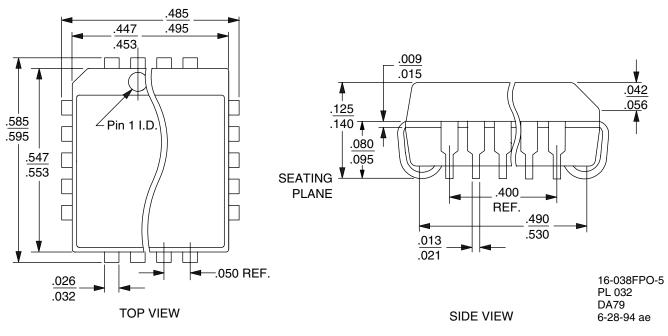
TEST CIRCUITS (continued)



Return loss = $-20 \log (2 V_M / V_S)$

D. Two-Wire Return Loss Test Circuit

(Legerity ______ TEST CIRCUITS (continued)



F. Am79486 Test Circuit

PHYSICAL DIMENSIONS

REVISION SUMMARY

Revision A to Revision B

- Minor changes were made to the data sheet style and format to conform to Legerity standards.
- Absolute Maximum Ratings: Added ESD immunity specification

Revision B to Revision C

- The physical dimensions (PL032) were added to the Physical Dimensions section.
- Updated the Pin Description table to correct inconsistencies.

Notes:

www.legerity.com

Notes:

www.legerity.com

Legerity provides silicon solutions that enhance the performance, speeds time-to-market, and lowers the system cost of our customers' products. By combining process, design, systems architecture, and a complete set of software and hardware support tools with unparalleled factory and worldwide field applications support, Legerity ensures its customers enjoy a smoother design experience. It is this commitment to our customers that places Legerity in a class by itself.

The contents of this document are provided in connection with Legerity, Inc. products. Legerity makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in Legerity's Standard Terms and Conditions of Sale, Legerity assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

Legerity's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of Legerity's product could create a situation where personal injury, death, or severe property or environmental damage may occur. Legerity reserves the right to discontinue or make changes to its products at any time without notice.

© 1999 Legerity, Inc. All rights reserved.

Trademarks

Legerity, the Legerity logo and combinations thereof are trademarks of Legerity, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

(Legerity.

P.O. Box 18200 Austin, Texas 78760-8200

Telephone: (512) 228-5400 Fax: (512) 228-5510 North America Toll Free: (800) 432-4009

To contact the Legerity Sales Office nearest you, or to download or order product literature, visit our website at **www.legerity.com.**

To order literature in North America, call: (800) 572-4859 or email: americalit@legerity.com To order literature in Europe or Asia, call: 44-0-1179-341607 or email: Europe — eurolit@legerity.com

Asia — asialit@legerity.com