

Am27C256

32,768 x 8-Bit CMOS EPROM

Advanced Micro **Devices**

DISTINCTIVE CHARACTERISTICS

- Fast access time-55 ns
- Low power consumption: -100 µA maximum standby current
- Programming voltage: 12.75 V
- Single +5 -V power supply

- JEDEC-approved pinout
- ±10% power supply tolerance
- Fast Flashrite™ programming
- Latch-up protected to 100 mA from -1 V to Vcc +1 V

GENERAL DESCRIPTION

The Am27C256 is a 128K-bit, ultraviolet erasable programmable read-only memory. It is organized as 32,768 words by 8 bits per word, operates from a single +5-V supply, has a static standby mode, and features fast single address location programming. Products are available in windowed ceramic DIP and LCC packages, as well as plastic one-time programmable (OTP) packages.

Typically, any byte can be accessed in less than 55 ns, allowing operation with high-performance microprocessors without any WAIT states. The Am27C256 offers separate Output Enable (OE) and Chip Enable (CE) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 250 µW in standby mode.

All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random.

Data Outputs **BLOCK DIAGRAM** DQ₀-DQ₇ Output Enable Chip Enable Output Buffers Prog Logic Y-Gating Decoder Address 262,144-Bit Celi Matrix Inputs Decoder 08007-001A

PRODUCT SELECTOR GUIDE

Family Part No.				Am27C	256			
Ordering Part Number ±5% Vcc Tolerance	-55	-75						-255
±10% Vcc Tolerance	-	-70	-90	-100	-120	-150	-200	-250
Max. Access Time (ns)	55	70	90	100	120	150	200	250
CE (E) Access (ns)	55	70	90	100	120	150	200	250
OE (G) Access (ns)	35	40	40	40	50	65	75	100

Publication# 08007 Rev. F Amendment/0 Issue Date: March 1991

CONNECTION DIAGRAMS Top View

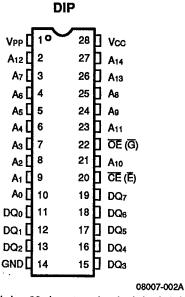
T-46-13-29

A₉

A₁₁

NC

 A_{10}


ŌĒ (G)

CE (E)

 DQ_7

 DQ_6

08007-003A

28

27

26

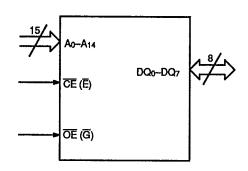
25

22

LCC*

(Note 2)

(Note 2) NC


NC

 DQ_0

Also Available in a 32-pin rectangular plastic leaded chip carrier

- JEDEC nomenclature is in parantheses. Don't use (DU) for PLCC.

LOGIC SYMBOL

08007-004A

PIN DESCRIPTION

Ao - A14 Address Inputs

CE (E) Chip Enable Input

 $DQ_0 - DQ_7 =$ Data Inputs/Outputs

OE (G) **Output Enable Input**

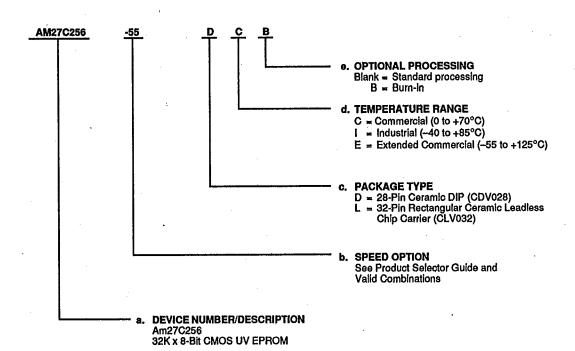
Vcc Vcc Supply Voltage VPP

Program Supply Voltage **GND** Ground

NC No Internal Connection

DU = No External Connection

ORDERING INFORMATION Standard Products


T-46-13-29

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

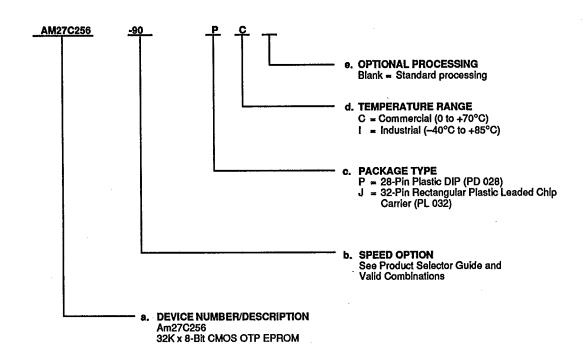
a. Device Number

b. Speed Option
d. Temperature Range

Optional Processing

Valid Com	binations
AM27C256-55	DC, DCB,
AM27C256-70	LC, LCB
AM27C256-75	,
AM27C256-90	DC, DCB, DI,
AM27C256-100	DIB, DE, DEB,
AM27C256-120	LC, LCB, LI, LIB, LE, LEB,
AM27C256-150	LID, EE, EED,
AM27C256-200	
AM27C256-255	

Valid Combinations


Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

ORDERING INFORMATION **OTP Products**

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

a. Device Number

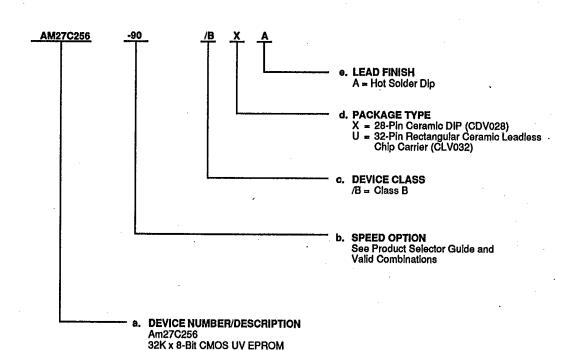
b. Speed Option
c. Package Type
d. Temperature Range
e. Optional Processing

Valid Combinations					
AM27C256-90	JC, PC				
AM27C256-120					
AM27C256-150	JC, PC,				
AM27C256-200	JI, PI				
AM27C256-255					

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION APL Products


T-46-13-29

AMD products for Aerospace and Defense applications are available in several packages and operating ranges, APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) is formed by a combination of:

a. Device Number

b. Speed Option

c. Package Type
d. Temperature Range
e. Lead Finish

Valid Com	binations
AM27C256-90	
AM27C256-100]
AM27C256-120	
AM27C256-150	/BXA, /BUA
AM27C256-200	
AM27C256-250	

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Con-sult the local AMD sales office to confirm avail-ability of specific valid combinations, or to check on newly released combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

FUNCTIONAL DESCRIPTION Erasing the Am27C256

In order to clear all locations of their programmed contents, it is necessary to expose the Am27C256 to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase an Am27C256. This dosage can be obtained by exposure to an ultraviolet lamp-wavelength of 2537 Angstroms (A)-with intensity of 12,000 µW/cm2 for 15 to 20 minutes. The Am27C256 should be directly under and about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the Am27C256, and similar devices, will erase with light sources having wavelengths shorter than 4000 A. Although erasure times will be much longer than with UV sources at 2537 A, nevertheless the exposure to fluorescent light and sunlight will eventually erase the Am27C256 and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package window should be covered by an opaque label or substance.

Programming the Am27C256

Upon delivery, or after each erasure, the Am27C256 has all 262,144 bits in the "ONE", or HIGH state. "ZE-ROs" are loaded into the Am27C256 through the procedure of programming.

The programming mode is entered when 12.75 ± 0.25 V is applied to the VPP pin, \overline{OE} is at VIH, and \overline{CE} is at VIL.

For programming, the data to be programmed is applied 8 bits in parallel to the data output pins.

The Flashrite programming algorithm (shown in Figure 2) reduces programming time by using initial 100 µs pulses followed by a byte verification to determine whether the byte has been successfully programmed. If the data does not verify, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the OTP EPROM.

The Flashrite programming algorithm programs and verifies at $V_{CC} = 6.25 \text{ V}$ and $V_{PP} = 12.75 \text{ V}$. After the final address is completed, all bytes are compared to the original data with Vcc = Vpp = 5.25 V.

Program Inhibit

Programming of multiple Am27C256s in parallel with different data is also easily accomplished. Except for CE, all like inputs of the parallel Am27C256 may be common. A TTL low-level program pulse applied to an Am27C256 \overline{CE} input with $V_{PP} = 12.75 \pm 0.25$ and \overline{OE} HIGH will program that Am27C256. A high-level CE input inhibits the other Am27C256s from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine that they were correctly programmed. The verify should be performed with \overline{OE} at V_{IL}, \overline{CE} at V_{IH}, and VPP between 12.5 V to 13.0 V.

Auto Select Mode

The auto select mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the 25°C ± 5°C ambient temperature range that is required when programming the Am27C256.

To activate this mode, the programming equipment must force 12.0 ± 0.5 V on address line A₉ of the Am27C256. Two identifier bytes may then be sequenced from the device outputs by toggling address line Ao from VIL to VIH. All other address lines must be held at V_k during auto select mode.

Byte 0 ($A_0 = V_{IL}$) represents the manufacturer code, and byte 1 (Ao = VH), the device identifier code. For the Am27C256, these two identifier bytes are given in the Mode Select table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

Read Mode

The Am27C256 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (OE) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (facc) is equal to the delay from CE to output (fce). Data is available at the outputs to after the falling edge of OE, assuming that CE has been LOW and addresses have been stable for at least tacc-toe.

Standby Mode

The Am27C256 has a CMOS standby mode which reduces the maximum Vcc current to 100 µA. It is placed in CMOS-standby when CE is at Vcc ± 0.3 V. The Am27C256 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTL-standby when CE is at V_{IH}. When in standby mode. the outputs are in a high-impedance state, independent of the OE input.

AMU 📂

Output OR-Tieing

To accomodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation, and
- Assurance that output bus contention will not occur.

It is recommended that CE be decoded and used as the primary device-selecting function, while OE be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

T-46-13-29

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 µF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 µF bulk electrolytic capacitor should be used between Vcc and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

Mode Select Table

Mode	Pins	CE	ŌĒ	Ao	A ₉	Vpp	Outputs
Read		Vil.	VIL	Х	Х	Vcc	Dour
Output [Disable	ViL	Vін	Х	Х	Vcc	High Z
Standby	(TTL)	ViH	Х	Х	х	Vcc	High Z
Standby	(CMOS)	Vcc ± 0.3 V	x	Χ.	х	Vcc	High Z
Program	1	VIL	Vін	Х	Х	Vpp	DIN
Program	n Verify	V∺	Vil	Х	Х	VPP	Dout
Program	n Inhibit	ViH	VIH	Х	х	V _{PP}	High Z
Auto Select (Notes	Manufacturer Code	ViL	VIL	VIL	Vн	Vcc	01H
3 & 4)	Device Code	VIL	ViL	ViH	Vн	Vcc	10H

Notes:

- 1. X can be either ViL or VIH
- 2. $V_H = 12.0 V \pm 0.5 V$
- 3. $A_1-A_8 = A_{10}-A_{12} = V_{IL}$
- 4. A13 and A14 = X
- 5. See DC Programming Characteristics for VPP voltage during programming.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature:

OTP Products -65 to + 125°C -65 to + 150°C All Other Products

Ambient Temperature with Power Applied

-55 to +125°C

Voltage with Respect to Ground: All pins except A9, VPP, and

Vcc (Note 1) -0.6 to Vcc + 0.6 V

A9 and VPP (Note 2) -0.6 to 13.5 V Vcc -0.6 to 7.0 V

Stresses above those listed under "Absolute Maximum Rat-Stresses above those listed under "Absolute Maximum Hatings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

Notes:

- 1. During transitions the inputs may overshoot GND to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and I/O may overshoot to Vcc + 2.0 V for periods up to 20 ns.
- 2. During transitions, As and VPP may overshoot GND to -2.0 V for periods of up to 20 ns. As and Vpp must not exceed 13.5 V for any period of time.

T-46-13-29 **OPERATING RANGES**

Commerciai (C) Devices

Case Temperature (Tc) 0 to +70°C

Industrial (I) Devices

Case Temperature (Tc) -40 to +85°C

Extended Commercial (E) Devices Case Temperature (Tc) -55 to +125°C

Military (M) Devices Case Temperature (Tc) -55 to +125°C

Supply Read Voltages:

Vcc/Vpp for Am27C256-XX5 +4.75 to +5.25 V Vcc/Vpp for Am27C256-XX0 +4.50 to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 4, 5 & 8)

TTI and NMOS Innute

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	lон = -400 mA		2.4		٧
Vol	Output LOW Voltage	loL = 2.1 mA			0.45	٧
ViH	Input HIGH Voltage			2.0	Vcc + 0.5	V
VŁ	Input LOW Voltage		-0.5	+0.8	V	
lu	Input Load Current	V _{IN} = 0 V to V _{CC}	C/I Devices E/M Devices		1.0 5.0	μА
lro	Output Leakage Current	Vout = 0 V to Vcc	C/I Devices E/M Devices		10 10	μА
lcc1	Vcc Active Current (Note 5)	CE = VIL, f = 5 MHz,	C/I Devices		30	mA
		lout = 0 mA (Open Outputs)	E/M Devices		50	
lcc2	Vcc Standby Current	CE = ViH,	C/I Devices		1.0	mA
		OE = V _{IL} E/M Devices			1.0	
IPP1	VPP Supply Current (Read) (Note 6)	CE = OE = Vil., Vpp		100	μΑ	

DC CHARACTERISTICS over operating range unless otherwise specified (Continued) T-46-13-29 **CMOS Inputs**

JMO3 III	วนเร				1-40-13-	LJ
Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Іон ≕ –400 μА		2.4		٧
Vol	Output LOW Voltage	loL = 2.1 mA			0.45	۷.
ViH	Input HIGH Voltage			Vcc - 0.3	Vcc + 0.3	٧
Vil	Input LOW Voltage			-0.5	+0.8	V
lu .	Input Load Current	Vin = 0 V to Vcc	C/I Devices E/M Devices		1.0 5.0	μА
lLO	Output Leakage Current	Vour = 0 V to Vcc	C/I Devices E/M Devices		10 10	μΑ
Icc ₁	Vcc Active Current (Note 5)	CE = VIL, f = 5 MHz,	C/I Devices		25 ·	mA
		lout = 0 mA (Open Outputs)	E/M Devices		25	
Icc2	Vcc Standby Current	$\overline{CE} = Vcc \pm 0.3 V$	C/I Devices E/M Devices		100 120	μΑ
IPP1	VPP Supply Current (Read) (Note 6)	CE = OE = VIL, VPP		100	μА	

CAPACITANCE (Notes 2, 3, & 7)

Parameter Symbol	Parameter Description	Test Conditions	Тур.	Max.	Unit
CIN1	Address Input Capacitance	VIN = 0 V	8	12	pF
CiN2	OE Input Capacitance	VIN = 0 V	8	. 12	pF
CIN3	CE Input Capacitance	VIN = 0 V	9	12	pF
Соит	Output Capacitance	Vout = 0 V	8	12	pF

Notes:

- 1. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.
- 2. Typical values are for nominal supply voltages.
- 3. This parameter is only sampled and not 100% tested.
- 4. Caution: The Am27C256 must not be removed from, or inserted into, a socket or board when Vpp or Vcc is applied.
- 5. ICC1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 6. Maximum active power usage is the sum of Icc and IPP.
- 7. TA = 25°C, f = 1 MHz.
- 8. During transitions, the inputs may overshoot to -2.0 V for periods less than 20 ns. Maximum DC voltage on output pins may overshoot to Vcc + 2.0 V for periods less than 20 ns.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3, & 4) T-46-13-29

Para	meter					•	-	m27C	256	<u> </u>		 I
Sym JEDEC	bols Standard	Parameter Description	Test Condition	ons	-55	-70, -75	-90	-120	-150	-200	-255, -250	Unit
tavov	tacc	Address to Output Delay	CE = OE = VIL	Min. Max.	55	70	90	120	150	200	250	ns
TELOV	tce	Chip Enable to Output Delay	ÖË = VIL	Min. Max.	55	70	90	120	150	200	250	ns
tgrav	toe	Output Enable to Output Delay	CE = VIL	Min. Max.	35	40	40	50	65	75	100	ns
тенго, теног	t⊳ғ	Output Enable HIGH to Output Float (Note 2)		Min. Max.	25	25	25	30	30	30	30	ns
taxox	tон	Output Hold from Addresses, CE, or OE, whichever occurred first		Min. Max.	0	0	0	0	0	0	0	ns

Notes:

- 1. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27C256 must not be removed from, or inserted into, a socket or board when VPP or Vcc is applied.
- 4. For the -55, -70, and -75:

Output Load: 1 TTL gate and CL = 30 pF,

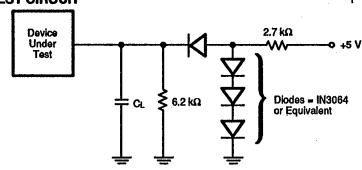
Input Rise and Fall Times: 20 ns,

Input Pulse Levels: 0 to 3 V,

Timing Measurement Reference Level: 1.5 V for inputs and outputs.

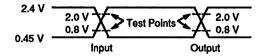
For all other versions:

Output Load: 1 TTL gate and CL = 100 pF,


Input Rise and Fall Times: 20 ns,

Input Pulse Levels: 0.45 to 2.4 V,

Timing Measurement Reference Level: 0.8 V and 2 V for inputs and outputs.

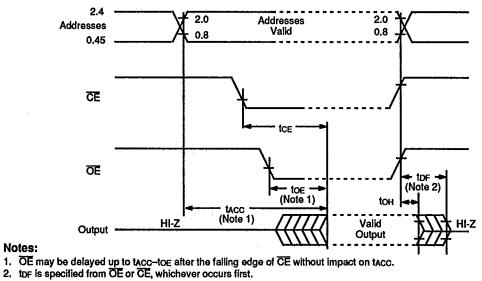

08007-005A

08007-006A

C_L = 100 pF including jig capacitance (30 pF for -55, -70, and -75)

SWITCHING TEST WAVEFORMS

Test Points Input **Qutput**


AC Testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Input pulse rise and fall times are ≤ 20 ns.

AC Testing: Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic "0". Input pulse rise and fall times are \leq 20 ns for -55, -70, and -75 devices.

SWITCHING WAVEFORMS Key to Switching Waveforms

WAVEFORM	INPUTS	OUTPUTS
	Must be Steady	Will be Steady
	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
>>	Does Not Apply	Center Line is High- Impedance "Off" State

KS000010

08007-007A

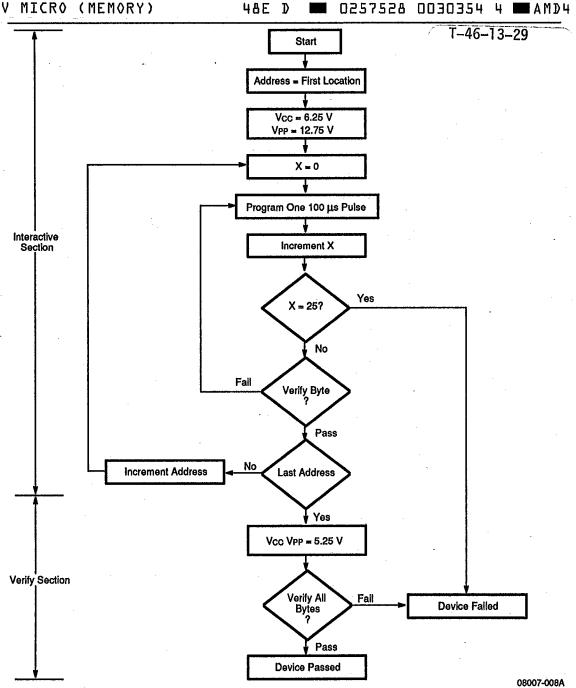
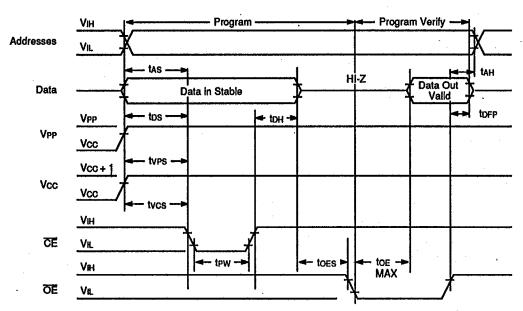


Figure 1. Flashrite Programming Flow Chart

DC PROGRAMMING CHARACTERISTICS (T_A = +25°C ±5°C) (Notes 1, 2, & 3) T-46-13-29

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
lu	Input Current (All Inputs)	VM = VIL Or VH		10.0	μА
Vil	Input LOW Level (All Inputs)		-0.3	0.8	٧
ViH	Input HIGH Level		2.0	Vcc + 0.5	٧
Vol ·	Output LOW Voltage During Verify	lot = 2.1 mA		0.45	٧
Vон	Output HIGH Voltage During Verify	Іон = -400 μΑ	2.4		٧
VH	A ₉ Auto Select Voltage		11.5	12.5	٧
lcc	Vcc Supply Current (Program & Verify)			50	mA
lpp :	VPP Supply Current (Program)	CE = VIL, OE = VIH		30	mA
Vcc	Flashrite Supply Voltage		6.00	6.50	V
Vpp	Flashrite Programming Voltage		12.5	13.0	٧

SWITCHING PROGRAMMING CHARACTERISTICS ($T_A = +25$ °C ± 5 °C) (Notes 1, 2, & 3)


Parameter	Parameter Symbols Parameter				
JEDEC	Standard	Description	Min.	Max.	Unit
tavel	tas	Address Setup Time	2		μs
tdzgl.	toes	OE Setup Time	2		μs
TOVEL	tos	Data Setup Time	2		μs
t GHAX	tah	Address Hold Time	0		μs
tenox	toн	Data Hold Time	2		μs
tанаz	tofp	Output Enable to Output Float Delay	0	100	ns
tves	tvps	V _{PP} Setup Time	2		μs
telen	tew	CE Program Pulse Width	95	105	μs
tvcs	tvcs	Vcc Setup Time	2		μs
tgrav	to∈	Data Valid from OE		100	ns

Notes:

- 1. Vcc must be applied simultaneously or before VPP, and removed simultaneously or after VPP.
- 2. When programming the Am27C256, a 0.1 μ F capacitor is required across Vpp and ground to suppress spurious voltage transients which may damage the device.
- 3. Programming characteristics are sampled but not 100% tested at worst-case conditions.

PROGRAMMING ALGORITHM WAVEFORMS (Notes 1 & 2)

T-46-13-29

Notes:

08007-009A

- 1. The input timing reference level is 0.8 V for VIL and 2 V for VIH.
- 2. toe and topp are characteristics of the device, but must be accommodated by the programmer.