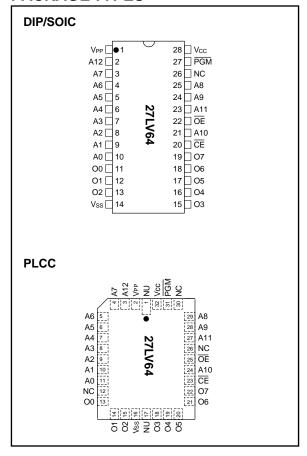


64K (8K x 8) Low-Voltage CMOS EPROM

FEATURES

- Wide voltage range 3.0V to 5.5V
- · High speed performance
 - 200 ns access time available at 3.0V
- · CMOS Technology for low power consumption
 - 8 mA active current at 3.0V
 - 20 mA active current at 5.5V
 - 100 μA standby current
- · Factory programming available
- · Auto-insertion-compatible plastic packages
- · Auto ID aids automated programming
- · Separate chip enable and output enable controls
- · High speed "express" programming algorithm
- · Organized 8K x 8: JEDEC standard pinouts
 - 28-pin Dual-in-line package
 - 32-pin PLCC Package
 - 28-pin SOIC package
 - Tape and reel
- Available for the following temperature ranges:


Commercial: 0°C to +70°C
 Industrial: -40°C to +85°C

DESCRIPTION

The Microchip Technology Inc. 27LV64 is a low-voltage (3.0 volt) CMOS EPROM designed for battery powered applications. The device is organized as 8K x 8 (8K-Byte) non-volatile memory product. The 27LV64 consumes only 8mA maximum of active current during a 3.0 volt read operation therefore improving battery performance. This device is designed for very low voltage applications where conventional 5.0 volt only EPROMs can not be used. Accessing individual bytes from an address transition or from power-up (chip enable pin going low) is accomplished in less than 200 ns at 3.0V.This device allows system designers the ability to use low voltage non-volatile memory with today's low voltage microprocessors and peripherals in battery powered applications.

A complete family of packages is offered to provide the most flexibility in applications. For surface mount applications, PLCC or SOIC packaging is available. Tape and reel packaging is also available for PLCC or SOIC packages.

PACKAGE TYPES

1.0 ELECTRICAL CHARACTERISTICS

1.1 Maximum Ratings*

Vcc and input voltages w.r.t. Vss-0.6V to + 7.25V

VPP voltage w.r.t. Vss during
programming-0.6V to +14V

Voltage on A9 w.r.t. Vss-0.6V to +13.5V

Output voltage w.r.t. Vss-0.6V to Vcc +1.0V

Storage temperature-65°C to +150°C

Ambient temp. with power applied-65°C to +125°C

*Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: PIN FUNCTION TABLE

Name	Function
A0-A12	Address Inputs
CE	Chip Enable
ŌĒ	Output Enable
PGM	Program Enable
VPP	Programming Voltage
O0 - O7	Data Output
Vcc	+5V Or +3V Power Supply
Vss	Ground
NC	No Connection; No Internal Connections
NU	Not Used; No External Connection Is Allowed

TABLE 1-2: READ OPERATION DC CHARACTERISTICS

		VCC = 3.0 V to 5.5 V unless otherwise specified Commercial: Tamb = 0 °C to $+70$ °C Industrial: Tamb = -40 °C to $+85$ °C					
Parameter	Part*	Status	Symbol	Min.	Max.	Units	Conditions
Input Voltages	all	Logic "1" Logic "0"	VIH VIL	2.0 -0.5	Vcc+1 0.8	V	
Input Leakage	all	_	ILI	-10	10	μΑ	VIN = 0 to VCC
Output Voltages	all	Logic "1" Logic "0"	Voh Vol	2.4	0.45	V V	IOH = -400 μA IOL = 2.1 mA
Output Leakage	all	_	ILO	-10	10	μΑ	Vout = 0V to Vcc
Input Capacitance	all	_	CIN	_	6	pF	VIN = 0V; Tamb = 25°C; f = 1 MHz
Output Capacitance	all	_	Соит	_	12	pF	Vout = 0V; Tamb = 25° C; f = 1 MHz
Power Supply Current, Active	C	TTL input	ICC1	_	20 @ 5.0V 8 @ 3.0V 25 @ 5.0V 10 @ 3.0V	mA mA mA mA	$\label{eq:VCC} \begin{split} &\text{VCC} = 5.5 \text{V}; \text{VPP} = \text{VCC} \\ &\text{f} = 1 \text{ MHz}; \\ &\overline{\text{OE}} = \overline{\text{CE}} = \text{VIL}; \\ &\text{IOUT} = 0 \text{ mA}; \\ &\text{VIL} = \text{-}0.1 \text{ to } 0.8 \text{V}; \\ &\text{VIH} = 2.0 \text{ to VCC}; \\ &\text{Note 1} \end{split}$
Power Supply Current, Standby	C I all	TTL input TTL input CMOS input	Icc(s)	_	1 @ 3.0V 2@ 3.0V 100 @ 3.0V	mA mA μA	<u>CE</u> = Vcc ± 0.2V

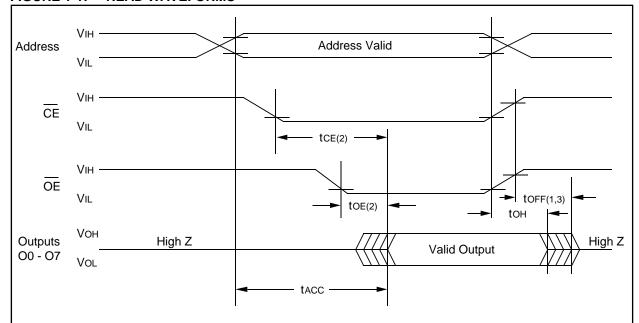
^{*} Parts: C=Commercial Temperature Range; I=Industrial Temperature Range

Note 1: Typical active current increases .5 mA per MHz up to operating frequency for all temperature ranges.

TABLE 1-3: READ OPERATION AC CHARACTERISTICS

AC Testing Waveform: VIH = 2.4V and VIL = 0.45V; VOH = 2.0V VOL = 0.8V

Output Load: 1 TTL Load + 100 pF


Input Rise and Fall Times: 10 ns

Ambient Temperature: Commercial: Tamb = 0°C to +70°C Industrial: Tamb = -40°C to +85°C

27LV64-25 27LV64-20 27LV64-30 **Parameter** Sym **Units Conditions** Min. Max. Min. Max. Min. Max. $\overline{CE} = \overline{OE} = VIL$ Address to Output Delay **t**ACC 200 250 300 ns 300 CE to Output Delay 200 250 $\overline{OE} = VIL$ tCE ns $\overline{\mathsf{CE}} = \mathsf{VIL}$ OE to Output Delay tOE 100 125 125 ns CE or OE to O/P High 0 50 0 50 0 50 toff ns Impedance Output Hold from Address CE or tOH 0 0 ns

FIGURE 1-1: READ WAVEFORMS

OE, whichever goes first

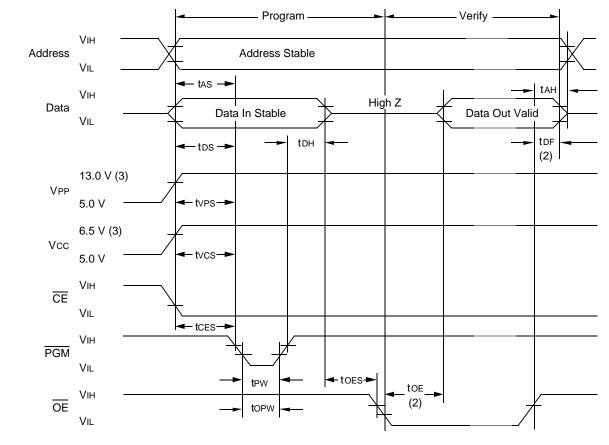
Notes: (1) toff is specified for \overline{OE} or \overline{CE} , whichever occurs first

- (2) $\overline{\text{OE}}$ may be delayed up to tce toe after the falling edge of $\overline{\text{CE}}$ without impact on tce
- (3) This parameter is sampled and is not 100% tested.

TABLE 1-4: PROGRAMMING DC CHARACTERISTICS

	Ambient Temperature: Tamb = 25° C $\pm 5^{\circ}$ C VCC = 6.5 V ± 0.25 V, VPP = VH = 13.0 V ± 0.25 V								
Parameter	Status	Symbol	Min.	Max.	Units	Conditions			
Input Voltages	Logic"1" Logic"0"	VIH VIL	2.0 -0.1	Vcc+1 0.8	V V				
Input Leakage	_	ILI	-10	10	μΑ	VIN = 0V to VCC			
Output Voltages	Logic"1" Logic"0"	Voh Vol	2.4	0.45	V V	IOH = -400 μA IOL = 2.1 mA			
Vcc Current, program & verify	_	ICC2	_	20	mA	Note 1			
VPP Current, program	_	IPP2	_	25	mA	Note 1			
A9 Product Identification	_	Vн	11.5	12.5	V				

Note 1: Vcc must be applied simultaneously or before VPP and removed simultaneously or after VPP.


TABLE 1-5: PROGRAMMING AC CHARACTERISTICS

for Program, Program Verify and Program Inhibit Modes AC Testing Waveform: VIH=2.4V and VIL=0.45V; VOH=2.0V; VOL=0.8V Ambient Temperature: Tamb= 25° C $\pm 5^{\circ}$ C VCC= 6.5 V ± 0.25 V, VPP = VH = 13.0 V ± 0.25 V						
Parameter	Symbol	Min.	Max.	Units	Remarks	
Address Set-Up Time	tas	2	_	μs		
Data Set-Up Time	tDS	2	_	μs		
Data Hold Time	tDH	2	_	μs		
Address Hold Time	tah	0	_	μs		
Float Delay (2)	tDF	0	130	ns		
Vcc Set-Up Time	tvcs	2	_	μs		
Program Pulse Width (1)	tpw	95	105	μs	100 μs typical	
CE Set-Up Time	tces	2	_	μs		
OE Set-Up Time	toes	2	_	μs		
VPP Set-Up Time	tvps	2	_	μs		
Data Valid from OE	toE		100	ns		

Note 1: For express algorithm, initial programming width tolerance is 100 μs ±5%.

Note 2: This parameter is only sampled and not 100% tested. Output float is defined as the point where data is no longer driven (see timing diagram).

FIGURE 1-2: **PROGRAMMING WAVEFORMS (1)** Program

Notes: (1) The input timing reference is 0.8V for V_{IL} and 2.0V for V_{IH}.

- (2) tDF and toE are characteristics of the device but must be accommodated by the programmer.
- (3) $Vcc = 6.5V \pm 0.25V$, $VPP = VH = 13.0V \pm 0.25V$ for Express algorithm.

TABLE 1-6: MODES

Operation Mode	CE	ŌĒ	PGM	VPP	А9	O0 - O7
Read	VIL	VIL	VIH	Vcc	Х	Dout
Program	VIL	VIH	VIL	VH	Х	DIN
Program Verify	VIL	VIL	VIH	VH	Х	Dout
Program Inhibit	ViH	Х	Х	VH	Х	High Z
Standby	ViH	Х	Х	Vcc	Х	High Z
Output Disable	VIL	VIH	ViH	Vcc	Х	High Z
Identity	VIL	VIL	ViH	Vcc	VH	Identity Code

X = Don't Care

1.2 Read Mode

(See Timing Diagrams and AC Characteristics) Read Mode is accessed when

- the $\overline{\text{CE}}$ pin is low to power up (enable) the chip
- b) the \overline{OE} pin is low to gate the data to the output pins

For Read operations, if the addresses are stable, the address access time (tACC) is equal to the delay from CE to output (tCE). Data is transferred to the output after a delay from the falling edge of \overline{OE} (toe).

1.3 Standby Mode

The standby mode is defined when the $\overline{\text{CE}}$ pin is high (VIH) and a program mode is not defined.

When these conditions are met, the supply current will drop from 20 mA to 100 μ A.

1.4 Output Enable

This feature eliminates bus contention in microprocessor-based systems in which multiple devices may drive the bus. The outputs go into a high impedance state when the following condition is true:

• The \overline{OE} and \overline{PGM} pins are both high.

1.5 Erase Mode (U.V. Windowed Versions)

Windowed products offer the capability to erase the memory array. The memory matrix is erased to the all 1's state when exposed to ultraviolet light. To ensure complete erasure, a dose of 15 watt-second/cm² is required. This means that the device window must be placed within one inch and directly underneath an ultraviolet lamp with a wavelength of 2537 Angstroms, intensity of $12,\!000\mu\text{W/cm}^2$ for approximately 20 minutes.

1.6 **Programming Mode**

The Express Algorithm has been developed to improve the programming throughput times in a production environment. Up to ten 100-microsecond pulses are applied until the byte is verified. No overprogramming is required. A flowchart of the express algorithm is shown in Figure 1-3.

Programming takes place when:

- a) Vcc is brought to the proper voltage,
- b) VPP is brought to the proper VH level,
- c) the $\overline{\text{CE}}$ pin is low,
- d) the \overline{OE} pin is high, and
- e) the PGM pin is low.

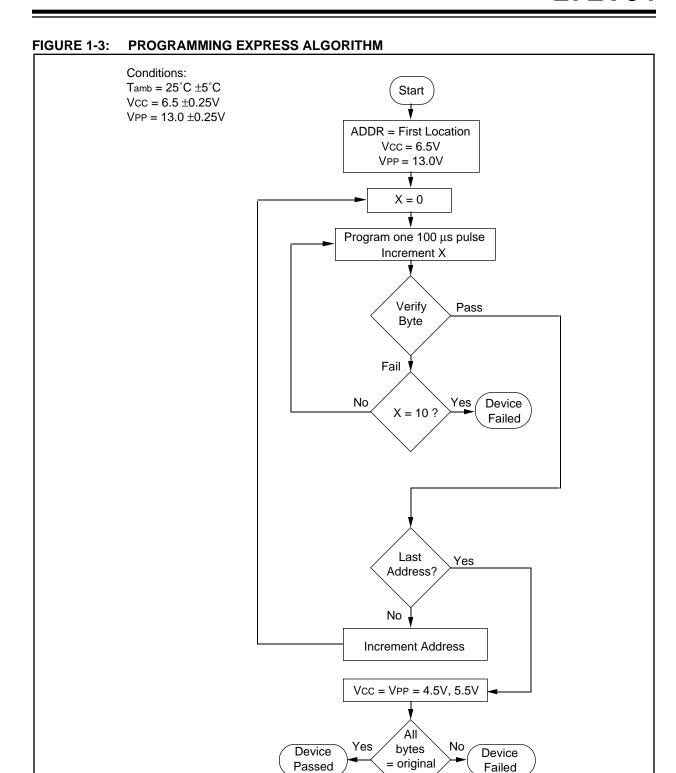
Since the erased state is "1" in the array, programming of "0" is required. The address to be programmed is set via pins A0-A12 and the data to be programmed is presented to pins O0-O7. When data and address are stable, $\overline{\text{OE}}$ is high, $\overline{\text{CE}}$ is low and a low-going pulse on the $\overline{\text{PGM}}$ line programs that location.

1.7 <u>Verify</u>

After the array has been programmed it must be verified to ensure all the bits have been correctly programmed. This mode is entered when all the following conditions are met:

- a) Vcc is at the proper level,
- b) VPP is at the proper VH level,
- c) the CE line is low,
- d) the PGM line is high, and
- e) the OE line is low.

1.8 Inhibit

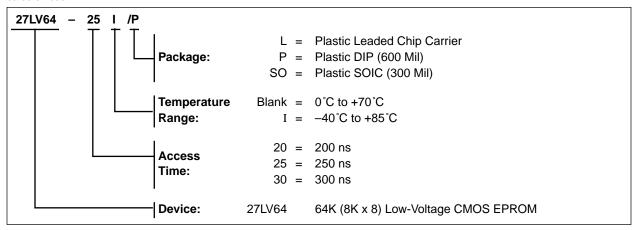

When programming multiple devices in parallel with different data, only \overline{CE} or \overline{PGM} need be under separate control to each device. By pulsing the \overline{CE} or \overline{PGM} line low on a particular device in conjunction with the \overline{PGM} or \overline{CE} line low, that device will be programmed; all other devices with \overline{CE} or \overline{PGM} held high will not be programmed with the data, although address and data will be available on their input pins (i.e., when a high level is present on \overline{CE} or \overline{PGM}); and the device is inhibited from programming.

1.9 Identity Mode

In this mode specific data is output which identifies the manufacturer as Microchip Technology Inc. and device type. This mode is entered when Pin A9 is taken to VH (11.5V to 12.5V). The $\overline{\text{CE}}$ and $\overline{\text{OE}}$ lines must be at VIL. A0 is used to access any of the two non-erasable bytes whose data appears on O0 through O7.

Pin →	Input	Output								
Identity	Α0	0 7	O 6	O 5	O 4	O 3	O 2	0	0	H e x
Manufacturer Device Type*	VIL VIH	0 0	0 0	1 0	0 0	1 0	0 0	0 1	1 0	29 02

^{*} Code subject to change


data?

27	ΙV	64
— I	-	VT

NOTES:

27LV64 Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-786-7200 Fax: 480-786-7277 Technical Support: 480-786-7627 Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 4570 Westgrove Drive, Suite 160 Addison, TX 75248 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342

Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc. Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

Hong Kong

Microchip Asia Pacific Unit 2101, Tower 2 Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431

Beijing

Microchip Technology, Beijing Unit 915, 6 Chaoyangmen Bei Dajie Dong Erhuan Road, Dongcheng District New China Hong Kong Manhattan Building Beijing 100027 PRC Tel: 86-10-85282100 Fax: 86-10-85282104

India

Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222-0033 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai

Microchip Technology RM 406 Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hong Qiao District Shanghai, PRC 200335 Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore 188980

Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C

Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

United Kingdom

505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5858 Fax: 44-118 921-5835

Arizona Microchip Technology Ltd.

Denmark

Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 München, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infiningement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products ac critical components in life support systems is not authorized except with express written approval by Microchip, No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.