

MOS INTEGRATED CIRCUIT μPD44324082, 44324092, 44324182, 44324362

36M-BIT DDRII SRAM 2-WORD BURST OPERATION

Description

The μ PD44324082 is a 4,194,304-word by 8-bit, the μ PD44324092 is a 4,194,304-word by 9-bit, the μ PD44324182 is a 2,097,152-word by 18-bit and the μ PD44324362 is a 1,048,576-word by 36-bit synchronous double data rate static RAM fabricated with advanced CMOS technology using full CMOS six-transistor memory cell.

The μ PD44324082, μ PD44324092, μ PD44324182 and μ PD44324362 integrate unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (K and /K) are latched on the positive edge of K and /K.

These products are suitable for application which require synchronous operation, high speed, low voltage, high density and wide bit configuration.

These products are packaged in 165-pin PLASTIC FBGA.

Features

- 1.8 ± 0.1 V power supply and HSTL I/O
- DLL circuitry for wide output data valid window and future frequency scaling
- Pipelined double data rate operation
- Common data input/output bus
- Two-tick burst for low DDR transaction size
- Two input clocks (K and /K) for precise DDR timing at clock rising edges only
- Two output clocks (C and /C) for precise flight time and clock skew matching-clock and data delivered together to receiving device
- Internally self-timed write control
- Clock-stop capability with μs restart
- User programmable impedance output
- ★ Fast clock cycle time: 3.3 ns (300 MHz), 4.0 ns (250 MHz), 5.0 ns (200 MHz)
 - Simple control logic for easy depth expansion
 - JTAG boundary scan

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

★ Ordering Information

Part number	Cycle Time ns	Clock Frequency MHz	Organization (word x bit)	Core Supply Voltage V	I/O Interface	Package
μPD44324082F5-E33-EQ2 Note	3.3	300	4 M x 8-bit	1.8 ± 0.1	HSTL	165-pin PLASTIC
μPD44324082F5-E40-EQ2	4.0	250				FBGA (13 x 15)
μPD44324082F5-E50-EQ2	5.0	200				
μPD44324092F5-E33-EQ2 Note	3.3	300	4 M x 9-bit			
μPD44324092F5-E40-EQ2	4.0	250				
μPD44324092F5-E50-EQ2	5.0	200				
μPD44324182F5-E33-EQ2 Note	3.3	300	2 M x 18-bit			
μPD44324182F5-E40-EQ2	4.0	250				
μPD44324182F5-E50-EQ2	5.0	200				
μPD44324362F5-E33-EQ2 Note	3.3	300	1 M x 36-bit	1		
μPD44324362F5-E40-EQ2	4.0	250				
μPD44324362F5-E50-EQ2	5.0	200				

Note Under development

Pin Configurations

/xxx indicates active low signal.

165-pin PLASTIC FBGA (13 x 15) (Top View) [*µ*PD44324082F5-EQ2]

	1	2	3	4	5	6	7	8	9	10	11
Α	/CQ	Vss	Α	R, /W	/NW1	/K	NC	/LD	Α	Α	CQ
В	NC	NC	NC	Α	NC	К	/NW0	Α	NC	NC	DQ3
С	NC	NC	NC	Vss	Α	Α	Α	Vss	NC	NC	NC
D	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
E	NC	NC	DQ4	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ2
F	NC	NC	NC	VDDQ	V DD	Vss	V DD	VDDQ	NC	NC	NC
G	NC	NC	DQ5	VDDQ	V DD	Vss	V DD	VDDQ	NC	NC	NC
н	/DLL	VREF	VDDQ	VDDQ	V DD	Vss	V DD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	NC	VDDQ	V DD	Vss	V DD	VDDQ	NC	DQ1	NC
K	NC	NC	NC	VDDQ	V DD	Vss	V DD	VDDQ	NC	NC	NC
L	NC	DQ6	NC	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ0
M	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
N	NC	NC	NC	Vss	Α	Α	Α	Vss	NC	NC	NC
Р	NC	NC	DQ7	Α	Α	С	Α	Α	NC	NC	NC
R	TDO	тск	Α	Α	Α	/C	Α	Α	Α	тмѕ	TDI

Α : Address inputs **TMS** : IEEE 1149.1 Test input DQ0 to DQ7 : Data inputs / outputs TDI : IEEE 1149.1 Test input /LD : Synchronous load TCK : IEEE 1149.1 Clock input TDO R, /W : Read Write input : IEEE 1149.1 Test output /NW0, /NW1 : Nibble Write data select V_{REF} : HSTL input reference input

K, /K : Input clock V_{DD} : Power Supply C, /C : Output clock $V_{DD}Q$: Power Supply CQ, /CQ Vss : Echo clock : Ground

ZQ : Output impedance matching NC : No connection

/DLL : DLL disable

Remarks 1. Refer to Package Drawing for the index mark.

2. 2A and 7A are expansion addresses: 2A for 72Mb and 7A for 144Mb.

165-pin PLASTIC FBGA (13 x 15) (Top View) [μPD44324092F5-EQ2]

_	1	2	3	4	5	6	7	8	9	10	11
Α	/CQ	V ss	Α	R, /W	NC	/K	NC	/LD	Α	Α	CQ
В	NC	NC	NC	Α	NC	K	/BW0	Α	NC	NC	DQ4
С	NC	NC	NC	V ss	Α	Α	Α	Vss	NC	NC	NC
D	NC	NC	NC	V ss	Vss	Vss	Vss	Vss	NC	NC	NC
Ε	NC	NC	DQ5	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ3
F	NC	NC	NC	VDDQ	V DD	V ss	V DD	VDDQ	NC	NC	NC
G	NC	NC	DQ6	VDDQ	V DD	V ss	V DD	VDDQ	NC	NC	NC
н	/DLL	VREF	V _{DD} Q	VDDQ	V DD	Vss	V DD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	NC	VDDQ	V DD	V ss	V DD	VDDQ	NC	DQ2	NC
K	NC	NC	NC	VDDQ	V DD	Vss	V DD	VDDQ	NC	NC	NC
L	NC	DQ7	NC	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ1
М	NC	NC	NC	V ss	V ss	V ss	Vss	Vss	NC	NC	NC
N	NC	NC	NC	V ss	Α	Α	Α	Vss	NC	NC	NC
Р	NC	NC	DQ8	Α	Α	С	Α	Α	NC	NC	DQ0
R	TDO	тск	Α	A	Α	/C	Α	Α	Α	TMS	TDI

Α : Address inputs **TMS** : IEEE 1149.1 Test input DQ0 to DQ8 : Data inputs / outputs TDI : IEEE 1149.1 Test input /LD : Synchronous load TCK : IEEE 1149.1 Clock input R,/W : IEEE 1149.1 Test output : Read Write input TDO /BW0 : Byte Write data select V_{REF} : HSTL input reference input

K, /K : Input clock V_{DD} : Power Supply C, /C : Output clock $V_{DD}Q$: Power Supply CQ, /CQ : Echo clock Vss : Ground ZQ : Output impedance matching NC : No connection

/DLL : DLL disable

Remarks 1. Refer to Package Drawing for the index mark.

2. 2A and 7A are expansion addresses: 2A for 72Mb and 7A for 144Mb.

165-pin PLASTIC FBGA (13 x 15) (Top View) [μPD44324182F5-EQ2]

	1	2	3	4	5	6	7	8	9	10	11
Α	/CQ	Vss	Α	R, /W	/BW1	/K	NC	/LD	Α	Α	CQ
В	NC	DQ9	NC	Α	NC	K	/BW0	Α	NC	NC	DQ8
С	NC	NC	NC	Vss	Α	Α0	Α	Vss	NC	DQ7	NC
D	NC	NC	DQ10	Vss	Vss	Vss	Vss	Vss	NC	NC	NC
Ε	NC	NC	DQ11	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ6
F	NC	DQ12	NC	VDDQ	V DD	Vss	V DD	VDDQ	NC	NC	DQ5
G	NC	NC	DQ13	VDDQ	V DD	Vss	V DD	VDDQ	NC	NC	NC
н	/DLL	VREF	VDDQ	VDDQ	V DD	Vss	V DD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	NC	VDDQ	V DD	Vss	V DD	VDDQ	NC	DQ4	NC
K	NC	NC	DQ14	VDDQ	V DD	Vss	V DD	VDDQ	NC	NC	DQ3
L	NC	DQ15	NC	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ2
M	NC	NC	NC	Vss	Vss	Vss	Vss	Vss	NC	DQ1	NC
N	NC	NC	DQ16	Vss	Α	Α	Α	Vss	NC	NC	NC
Р	NC	NC	DQ17	Α	Α	С	Α	Α	NC	NC	DQ0
R	TDO	тск	Α	Α	Α	/C	Α	Α	Α	тмѕ	TDI

A0, A : Address inputs **TMS** : IEEE 1149.1 Test input DQ0 to DQ17 : Data inputs / outputs TDI : IEEE 1149.1 Test input /LD : Synchronous load TCK : IEEE 1149.1 Clock input R,/W : Read Write input TDO : IEEE 1149.1 Test output /BW0, /BW1 : Byte Write data select V_{REF} : HSTL input reference input

K, /K : Input clock V_{DD} : Power Supply C, /C : Output clock $V_{DD}Q$: Power Supply CQ, /CQ : Echo clock Vss : Ground ZQ : Output impedance matching NC : No connection

/DLL : DLL disable

Remarks 1. Refer to Package Drawing for the index mark.

- ★ 2. 2A and 7A are expansion addresses: 2A for 72Mb and 7A for 144Mb.
- 3. 2A is internally unconnected.

165-pin PLASTIC FBGA (13 x 15) (Top View) [μPD44324362F5-EQ2]

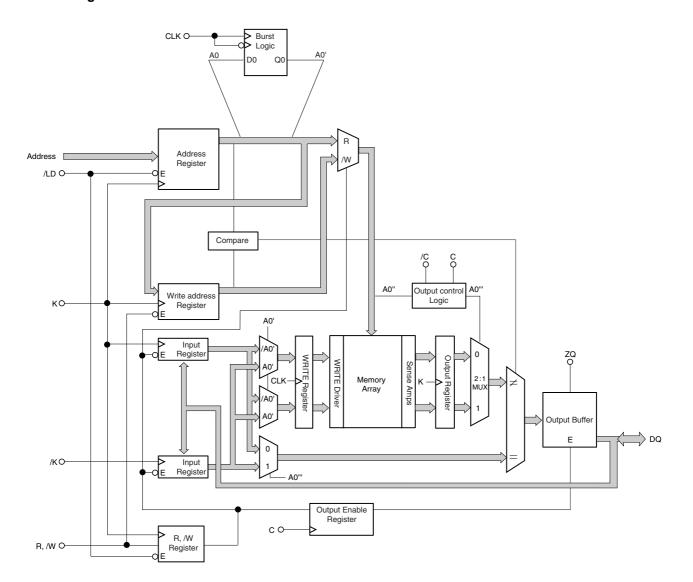
_	1	2	3	4	5	6	7	8	9	10	11
Α	/CQ	V ss	Α	R, /W	/BW2	/K	/BW1	/LD	Α	V ss	CQ
В	NC	DQ27	DQ18	Α	/BW3	K	/BW0	A	NC	NC	DQ8
С	NC	NC	DQ28	V ss	Α	Α0	Α	Vss	NC	DQ17	DQ7
D	NC	DQ29	DQ19	Vss	Vss	Vss	Vss	Vss	NC	NC	DQ16
Е	NC	NC	DQ20	VDDQ	Vss	Vss	Vss	VDDQ	NC	DQ15	DQ6
F	NC	DQ30	DQ21	VDDQ	V DD	Vss	V DD	VDDQ	NC	NC	DQ5
G	NC	DQ31	DQ22	VDDQ	V DD	Vss	V DD	VDDQ	NC	NC	DQ14
н	/DLL	VREF	V _{DD} Q	VDDQ	V DD	Vss	V DD	VDDQ	VDDQ	VREF	ZQ
J	NC	NC	DQ32	VDDQ	V DD	Vss	V DD	VDDQ	NC	DQ13	DQ4
Κ	NC	NC	DQ23	VDDQ	V DD	Vss	V DD	VDDQ	NC	DQ12	DQ3
L	NC	DQ33	DQ24	VDDQ	Vss	Vss	Vss	VDDQ	NC	NC	DQ2
М	NC	NC	DQ34	Vss	Vss	Vss	Vss	Vss	NC	DQ11	DQ1
N	NC	DQ35	DQ25	Vss	Α	Α	Α	Vss	NC	NC	DQ10
Р	NC	NC	DQ26	Α	Α	С	Α	Α	NC	DQ9	DQ0
R	TDO	тск	Α	Α	Α	/C	A	Α	Α	тмѕ	TDI

A0, A : Address inputs **TMS** : IEEE 1149.1 Test input DQ0 to DQ35 : Data inputs / outputs TDI : IEEE 1149.1 Test input /LD : Synchronous load TCK : IEEE 1149.1 Clock input R,/W : Read Write input TDO : IEEE 1149.1 Test output /BW0 to /BW3 : Byte Write data select V_{REF} : HSTL input reference input

K, /K : Input clock V_{DD} : Power Supply C, /C : Output clock $V_{DD}Q$: Power Supply CQ, /CQ : Echo clock Vss : Ground ZQ : Output impedance matching NC : No connection

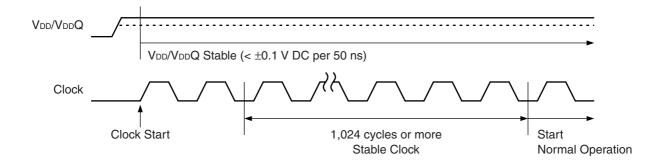
/DLL : DLL disable

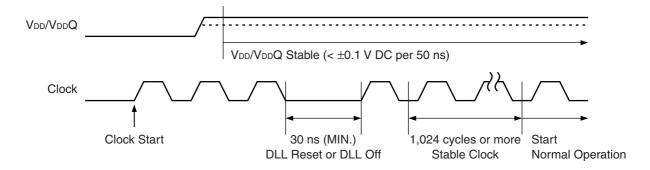
Remarks 1. Refer to Package Drawing for the index mark.


2. 2A and 10A are expansion addresses: 10A for 72Mb and 2A for 144Mb.

Pin Identification

Symbol	Description
A0 A	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of K. All transactions operate on a burst of two words (one clock period of bus activity). A0 is used as the lowest order address bit permitting a random starting address within the burst operation. These inputs are ignored when device is deselected.
DQ0 to DQxx	Synchronous Data IOs: Input data must meet setup and hold times around the rising edges of K and /K. Output data is synchronized to the respective C and /C data clocks or to K and /K if C and /C are tied to HIGH. x8 device uses DQ0 to DQ7. x9 device uses DQ0 to DQ8. x18 device uses DQ0 to DQ17. x36 device uses DQ0 to DQ35.
/LD	Synchronous Load: This input is brought LOW when a bus cycle sequence is to be defined. This definition includes address and read/write direction. All transactions operate on a burst of 2 data (one clock period of bus activity).
R, /W	Synchronous Read/Write Input: When /LD is LOW, this input designates the access type (READ when R, /W is HIGH, WRITE when R, /W is LOW) for the loaded address. R, /W must meet the setup and hold times around the rising edge of K.
/BWx /NWx	Synchronous Byte Writes (Nibble Writes on x8): When LOW these inputs cause their respective byte or nibble to be registered and written during WRITE cycles. These signals must meet setup and hold times around the rising edges of K and /K for each of the two rising edges comprising the WRITE cycle. See Pin Configurations for signal to data relationships.
K, /K	Input Clock: This input clock pair registers address and control inputs on the rising edge of K, and registers data on the rising edge of K and the rising edge of /K. /K is ideally 180 degrees out of phase with K. All synchronous inputs must meet setup and hold times around the clock rising edges.
C, /C	Output Clock: This clock pair provides a user controlled means of tuning device output data. The rising edge of /C is used as the output timing reference for first output data. The rising edge of C is used as the output reference for second output data. Ideally, /C is 180 degrees out of phase with C. C and /C may be tied HIGH to force the use of K and /K as the output reference clocks instead of having to provide C and /C clocks. If tied HIGH, C and /C must remain HIGH and not be toggled during device operation.
CQ, /CQ	Synchronous Echo Clock Outputs. The rising edges of these outputs are tightly matched to the synchronous data outputs and can be used as a data valid indication. These signals run freely and do not stop when Q tristates.
ZQ	Output Impedance Matching Input: This input is used to tune the device outputs to the system data bus impedance. DQ and CQ output impedance are set to 0.2 x RQ, where RQ is a resistor from this bump to ground. This pin cannot be connected directly to GND or left unconnected.
/DLL	DLL Disable: When LOW, this input causes the DLL to be bypassed for stable low frequency operation.
TMS TDI	IEEE 1149.1 Test Inputs: 1.8V I/O levels. These balls may be left Not Connected if the JTAG function is not used in the circuit.
TCK	IEEE 1149.1 Clock Input: 1.8V I/O levels. This pin must be tied to Vss if the JTAG function is not used in the circuit.
TDO	IEEE 1149.1 Test Output: 1.8V I/O level.
VREF	HSTL Input Reference Voltage: Nominally V _{DD} Q/2. Provides a reference voltage for the input buffers.
VDD	Power Supply: 1.8V nominal. See DC Characteristics and Operating Conditions for range.
VDDQ	Power Supply: Isolated Output Buffer Supply. Nominally 1.5V. 1.8V is also permissible. See DC Characteristics and Operating Conditions for range.
Vss	Power Supply: Ground
NC	No Connect: These signals are internally connected and appear in the JTAG scan chain as the logic level applied to the ball sites. These signals may be connected to ground to improve package heat dissipation.


Block Diagram


★ Power-on Sequence

The following two timing charts show the recommended power-on sequence, i.e., when starting the clock after $V_{DD}/V_{DD}Q$ stable and when starting the clock before $V_{DD}/V_{DD}Q$ stable.

1. Clock starts after VDD/VDDQ stable

2. Clock starts before VDD/VDDQ stable

Burst Sequence

Linear Burst Sequence Table

[μ PD44324182, μ PD44324362]

	A0	A0
External Address	0	1
1st Internal Burst Address	1	0

Truth Table

Operation	/LD	R, /W	CLK	D	DQ			
WRITE cycle	L	L	$L\toH$	Dat	Data in			
Load address, input write data on two					Input data D(A1)		D(A2)	
consecutive K and /K rising edge					Input clock	K(t+1) ↑	/K(t+1) ↑	
READ cycle	L	Н	$L\toH$	Data out				
Load address, read data on two					Output data	Q(A1)	Q(A2)	
consecutive C and /C rising edge					Output clock	/C(t+1) ↑	C(t+2) ↑	
NOP (No operation)	Н	Х	$L \rightarrow H$	High-Z				
STANDBY(Clock stopped)	Х	Х	Stopped	Previous state				

Remarks 1. H: High level, L: Low level, \times : don't care, \uparrow : rising edge.

- 2. Data inputs are registered at K and /K rising edges. Data outputs are delivered at C and /C rising edges except if C and /C are HIGH then Data outputs are delivered at K and /K rising edges.
- **3.** All control inputs in the truth table must meet setup/hold times around the rising edge (LOW to HIGH) of K. All control inputs are registered during the rising edge of K.
- 4. This device contains circuitry that will ensure the outputs will be in high impedance during power-up.
- **5.** Refer to state diagram and timing diagrams for clarification.
- **6.** A1 refers to the address input during a WRITE or READ cycle. A2 refers to the next internal burst address in accordance with the linear burst sequence.
- 7. It is recommended that K = /K = C = /C when clock is stopped. This is not essential but permits most rapid restart by overcoming transmission line charging symmetrically.

Byte Write Operation

[*µ*PD44324082]

Operation	K	/K	/NW0	/NW1
Write DQ0 to DQ7	$L\toH$	1	0	0
	_	$L\toH$	0	0
Write DQ0 to DQ3	$L \rightarrow H$	ı	0	1
	_	$L\toH$	0	1
Write DQ4 to DQ7	$L \rightarrow H$	ı	1	0
	_	$L\toH$	1	0
Write nothing	$L \rightarrow H$	ı	1	1
	_	$L\toH$	1	1

Remark H: High level, L: Low level, \rightarrow : rising edge.

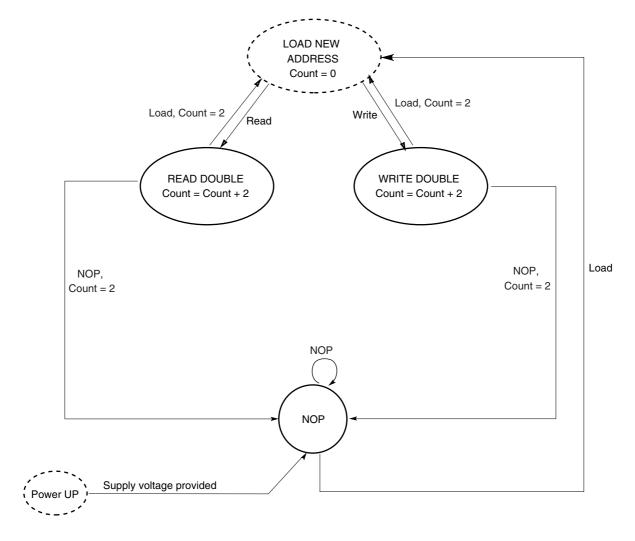
[µPD44324092]

Operation	K	/K	/BW0
Write DQ0 to DQ8	$L \rightarrow H$	_	0
	_	$L \rightarrow H$	0
Write nothing	$L \rightarrow H$	_	1
	_	$L \rightarrow H$	1

Remark H: High level, L: Low level, \rightarrow : rising edge.

[*µ*PD44324182]

Operation	K	/K	/BW0	/BW1
Write DQ0 to DQ17	$L \rightarrow H$	1	0	0
	-	$L\toH$	0	0
Write DQ0 to DQ8	$L \rightarrow H$. 1	0	1
	_	$L\toH$	0	1
Write DQ9 to DQ17	$L \rightarrow H$	1	1	0
	_	$L \rightarrow H$	1	0
Write nothing	$L \rightarrow H$	ı	1	1
	_	$L \rightarrow H$	1	1


Remark H : High level, L : Low level, \rightarrow : rising edge.

[*µ*PD44324362]

[μι ΒττοΣτοοΣ]						
Operation	K	/K	/BW0	/BW1	/BW2	/BW3
Write DQ0 to DQ35	$L \rightarrow H$	_	0	0	0	0
	_	$L \rightarrow H$	0	0	0	0
Write DQ0 to DQ8	$L \rightarrow H$	_	0	1	1	1
	_	$L \rightarrow H$	0	1	1	1
Write DQ9 to DQ17	$L \rightarrow H$	_	1	0	1	1
	_	$L \rightarrow H$	1	0	1	1
Write DQ18 to DQ26	$L \rightarrow H$	_	1	1	0	1
	_	$L \rightarrow H$	1	1	0	1
Write DQ27 to DQ35	$L \rightarrow H$	_	1	1	1	0
	_	$L \rightarrow H$	1	1	1	0
Write nothing	$L \rightarrow H$	_	1	1	1	1
	_	$L\toH$	1	1	1	1

 $\textbf{Remark} \quad \text{H}: \text{High level, L}: \text{Low level,} \rightarrow : \text{rising edge}.$

Bus Cycle State Diagram

Remarks 1. A0 is internally advanced in accordance with the burst order table.

Bus cycle is terminated after burst count = 2.

2. State machine control timing sequence is controlled by K.

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	VDD		-0.5		+2.5	V
Output supply voltage	VDDQ		-0.5		VDD	V
Input voltage	VIN		-0.5		VDD + 0.5 (2.5 V MAX.)	V
Input / Output voltage	VI/O		-0.5		VDDQ + 0.5 (2.5 V MAX.)	V
Operating ambient temperature	TA		0		70	°C
Storage temperature	Tstg		– 55		+125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions (TA = 0 to 70 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	VDD		1.7		1.9	V	
Output supply voltage	VDDQ		1.4		VDD	V	1
High level input voltage	VIH (DC)		VREF + 0.1		V _{DD} Q + 0.3	V	1, 2
Low level input voltage	VIL (DC)		-0.3		VREF - 0.1	V	1, 2
Clock input voltage	Vin		-0.3		V _{DD} Q + 0.3	V	1, 2
Reference voltage	VREF		0.68		0.95	V	

Notes 1. During normal operation, VDDQ must not exceed VDD.

2. Power-up: $V_{IH} \le V_{DD}Q + 0.3 \text{ V}$ and $V_{DD} \le 1.7 \text{ V}$ and $V_{DD}Q \le 1.4 \text{ V}$ for $t \le 200 \text{ ms}$

Recommended AC Operating Conditions (TA = 0 to 70 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
High level input voltage	VIH (AC)		VREF + 0.2		-	V	1
Low level input voltage	VIL (AC)		-		VREF - 0.2	V	1

Note 1. Overshoot: $V_{IH (AC)} \le V_{DD} + 0.7 \text{ V}$ for $t \le TKHKH/2$

Undershoot: VIL (AC) \geq - 0.5 V for $t \leq$ TKHKH/2

Control input signals may not have pulse widths less than TKHKL (MIN.) or operate at cycle rates less than TKHKH (MIN.).

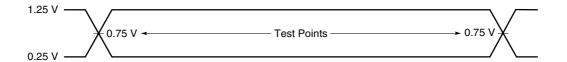
DC Characteristics (T_A = 0 to 70° C, V_{DD} = $1.8 \pm 0.1 \text{ V}$)

Parameter	Symbol	Test condition		MIN.	TYP.	MAX.		Unit	Note	
						x8, x9	x18	x36		
Input leakage current	lu			-2	_		+2		μΑ	
I/O leakage current	llo			-2	-		+2		μΑ	
Operating supply current	IDD	$VIN \le VIL \text{ or } VIN \ge VIH,$	-E33			750	1,050	1,200	mA	
(Read Write cycle)		II/O = 0 mA	-E40			650	900	1,000		
		Cycle = MAX.	-E50			550	750	850		
Standby supply current	ISB1	$VIN \le VIL \text{ or } VIN \ge VIH,$	-E33				550		mA	
(NOP)		II/O = 0 mA	-E40				500			
		Cycle = MAX.	-E50				400			
High level output voltage	VOH(Low)	IOH ≤ 0.1 mA		VDDQ - 0.2	_		VDDQ		V	3, 4
	Vон	Note1		VDDQ/2-0.12	_	VDI	Q/2+0).12	V	3, 4
Low level output voltage	VOL(Low)	IoL ≤ 0.1 mA		Vss	_		0.2		V	3, 4
	Vol	Note2		VDDQ/2-0.12	_	VDI	Q/2+0).12	٧	3, 4

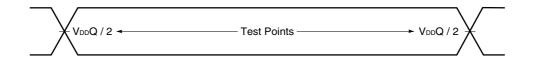
Notes 1. Outputs are impedance-controlled. | IoH | = (VDDQ/2)/(RQ/5) for values of 175 $\Omega \le RQ \le 350 \ \Omega$.

- 2. Outputs are impedance-controlled. IoL = $(V_{DD}Q/2)/(RQ/5)$ for values of 175 $\Omega \le RQ \le 350 \ \Omega$.
- 3. AC load current is higher than the shown DC values.
- 4. HSTL outputs meet JEDEC HSTL Class I and Class II standards.

Capacitance (TA = 25 °C, f = 1MHz)

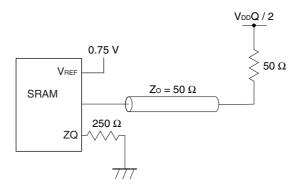

Parameter	Symbol	Test conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	VIN = 0 V		4	5	pF
Input / Output capacitance	CI/O	VI/O = 0 V		6	7	pF
Clock Input capacitance	Cclk	Vclk = 0 V		5	6	pF

Remark These parameters are periodically sampled and not 100% tested.


AC Characteristics (T_A = 0 to 70 °C, V_{DD} = 1.8 ± 0.1 V)

AC Test Conditions

Input waveform (Rise / Fall time ≤ 0.3 ns)

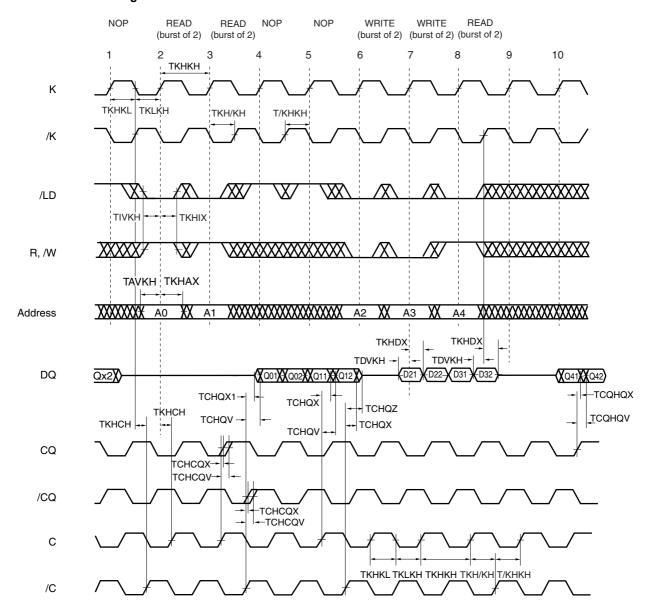


Output waveform

Output load condition

Figure 1. External load at test

Read and Write Cycle


Param	neter	Symbol	-E:		-E4		-E5		Unit	Note
			(300	· '	(250 l		(200 l			
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Clock				ī	ī	ı	ī	Γ	1	
Average Clock cycle	Average Clock cycle time (K, /K, C, /C)		3.3	8.4	4.0	8.4	5.0	8.4	ns	1
Clock phase jitter (K	, /K, C, /C)	TKC var		0.2	_	0.2	_	0.2	ns	2
Clock HIGH time (K,	/K, C, /C)	TKHKL	1.32	_	1.6	-	2.0	_	ns	
Clock LOW time (K,	/K, C, /C)	TKLKH	1.32	_	1.6	-	2.0	_	ns	
Clock to /clock (K→/	K., C→/C.)	TKH /KH	1.49	_	1.8	-	2.2	_	ns	
Clock to /clock (/K→	K., /C→C.)	T /KHKH	1.49	_	1.8	-	2.2	_	ns	
Clock to data clock	250 to 300 MHz	TKHCH	0	1.45	_	_	_	-	ns	
(K→C., /K→/C.)	200 to 250 MHz		0	1.8	0	1.8	_	-		
	167 to 200 MHz		0	2.3	0	2.3	0	2.3	1	
	133 to 167 MHz		0	2.8	0	2.8	0	2.8		
	< 133 MHz		0	3.55	0	3.55	0	3.55		
DLL lock time (K, C)		TKC lock	1,024	_	1,024	-	1,024	-	Cycle	3
K static to DLL reset		TKC reset	30	_	30	_	30	_	ns	
		_								
Output Times										
C, /C HIGH to outpu	t valid	TCHQV	_	0.45	_	0.45	_	0.45	ns	
C, /C HIGH to outpu	t hold	TCHQX	- 0.45	_	- 0.45	_	- 0.45	_	ns	
C, /C HIGH to echo	clock valid	TCHCQV	_	0.45	_	0.45	_	0.45	ns	
C, /C HIGH to echo	clock hold	TCHCQX	- 0.45	_	- 0.45	_	- 0.45	_	ns	
CQ, /CQ HIGH to ou	itput valid	TCQHQV	_	0.27	_	0.3	_	0.35	ns	4
CQ, /CQ HIGH to ou	tput hold	TCQHQX	- 0.27	_	- 0.3	_	- 0.35	_	ns	4
C HIGH to output Hi	gh-Z	TCHQZ	_	0.45	_	0.45	_	0.45	ns	
C HIGH to output Lo	w-Z	TCHQX1	- 0.45	_	- 0.45	_	- 0.45	_	ns	
·									•	
Setup Times		1								
Address valid to K ri	sing edge	TAVKH	0.4	_	0.5	_	0.6	_	ns	5
Synchronous load in	put (/LD),	TIVKH	0.4	_	0.5	_	0.6	_	ns	5
read write input (R, /	W) valid to									
K rising edge										
Data inputs and write	e data select	TDVKH	0.3	_	0.35	_	0.4	_	ns	5
inputs (/BWx, /NWx)	inputs (/BWx, /NWx) valid to									
K, /K rising edge										
		_								
Hold Times										
K rising edge to address hold		TKHAX	0.4	_	0.5	_	0.6	_	ns	5
K rising edge to		TKHIX	0.4	_	0.5	_	0.6	_	ns	5
synchronous load in	put (/LD),									
read write input (R, /	W) hold									
K, /K rising edge to	data inputs and	TKHDX	0.3	_	0.35	-	0.4	_	ns	5
write data select inpo	uts (/BWx, /NWx)									
hold										

- **Notes 1.** The device will operate at clock frequencies slower than TKHKH(MAX.).
 - 2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
 - 3. V_{DD} slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention.
 - DLL lock time begins once V_{DD} and input clock are stable.
 - It is recommended that the device is kept inactive during these cycles.
 - **4.** Echo clock is very tightly controlled to data valid / data hold. By design, there is a \pm 0.1 ns variation from echo clock to data. The data sheet parameters reflect tester guardbands and test setup variations.
 - **5.** This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold times for all latching clock edges.

Remarks 1. This parameter is sampled.

- **2.** Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise noted.
- 3. Control input signals may not be operated with pulse widths less than TKHKL (MIN.).
- **4.** If C, /C are tied HIGH, K, /K become the references for C, /C timing parameters.
- **5.** V_{DD}Q is 1.5 V DC.

Read and Write Timing

Remarks 1. Q01 refers to output from address A0.

Q02 refers to output from the next internal burst address following A0, etc.

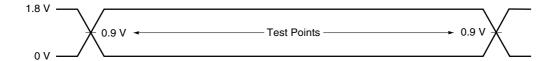
- 2. Outputs are disable (high impedance) one clock cycle after a NOP.
- The second NOP cycle is not necessary for correct device operation; however, at high clock frequencies it may be required to prevent bus contention.

JTAG Specification

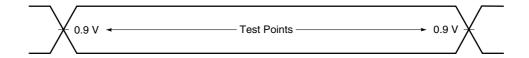
These products support a limited set of JTAG functions as in IEEE standard 1149.1.

Test Access Port (TAP) Pins

Pin name	Pin assignments	Description					
TCK	2R	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.					
TMS	10R	Test Mode Select. This is the command input for the TAP controller state machine.					
TDI	11R	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.					
TDO	1R	Test Data Output. Output changes in response to the falling edge of TCK. This is the output side of the serial registers placed between TDI and TDO.					

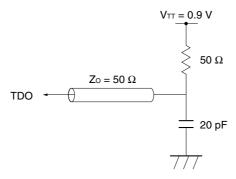

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for five rising edges of TCK. The TAP controller state is also reset on the SRAM POWER-UP.

JTAG DC Characteristics ($T_A = 0$ to 70° C, $V_{DD} = 1.8 \pm 0.1$ V, unless otherwise noted)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
JTAG Input leakage current	lц	$0 \text{ V} \leq V_{IN} \leq V_{DD}$	-5.0	-	+5.0	μΑ	
JTAG I/O leakage current	ILO	$0 \text{ V} \leq V_{IN} \leq V_{DD}Q,$	-5.0	-	+5.0	μΑ	
		Outputs disabled					
JTAG input high voltage	ViH		1.3	-	VDD+0.3	٧	
JTAG input low voltage	VIL		-0.3	-	+0.5	٧	
JTAG output high voltage	Voh1	Ioнc = 100 μA	1.6	-	_	٧	
	VOH2	Іонт = 2 mA	1.4	_	_	٧	
JTAG output low voltage	Vol1	IoLC = 100 μA	_	_	0.2	٧	
	VOL2	IOLT = 2 mA	_	-	0.4	٧	

JTAG AC Test Conditions

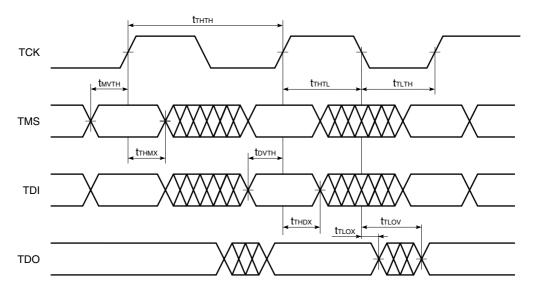
Input waveform (Rise / Fall time ≤ 1 ns)



Output waveform

Output load

Figure 2. External load at test



JTAG AC Characteristics (T_A = 0 to 70 °C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Clock							
Clock cycle time	tтнтн		100	_	_	ns	
Clock frequency	f TF		_	_	10	MHz	
Clock high time	tтнт∟		40	_	_	ns	
Clock low time	tтьтн		40	_	_	ns	
Output time							
TCK low to TDO unknown	t TLOX		0	_	_	ns	
TCK low to TDO valid	t TLOV		_	_	20	ns	
TDI valid to TCK high	tоvтн		10	_	_	ns	
TCK high to TDI invalid	tтнох		10	-	_	ns	
Setup time	1						
TMS setup time	t м∨тн		10	_	_	ns	
Capture setup time	tcs		10	_	_	ns	
Hold time	7						
TMS hold time	tтнмх		10	_	_	ns	
Capture hold time	tсн		10	_	_	ns	

JTAG Timing Diagram

Scan Register Definition (1)

Register name	Description
Instruction register	The instruction register holds the instructions that are executed by the TAP controller when it is moved into the run-test/idle or the various data register state. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Scan Register Definition (2)

Register name	Bit size	Unit	
Instruction register	3	bit	
Bypass register	1	bit	
ID register	32	bit	
Boundary register	109	bit	

ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μPD44324082	4M x 8	XXXX	0000 0000 0011 1101	0000010000	1
μPD44324092	4M x 9	XXXX	0000 0000 0011 1110	0000010000	1
μPD44324182	2M x 18	XXXX	0000 0000 0011 1111	0000010000	1
μPD44324362	1M x 36	XXXX	0000 0000 0100 0000	00000010000	1

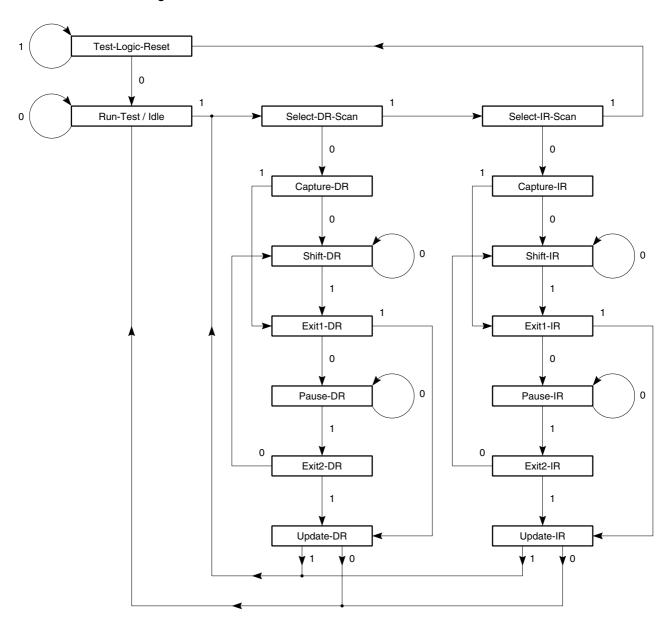
SCAN Exit Order

Bit		Bump			
no.	x8	x9	x18	x36	ID
1		/(С		6R
2		()		6P
3		A	4		6N
4		A	4		7P
5		A	4		7N
6		A	A		7R
7		A	4		8R
8		A	4		8P
9		A	4		9R
10	NC	DQ0	DQ0	DQ0	11P
11	NC	NC	NC	DQ9	10P
12	NC	NC	NC	NC	10N
13	NC	NC	NC	NC	9P
14	NC	NC	DQ1	DQ11	10M
15	NC	NC	NC	DQ10	11N
16	NC	NC	NC	NC	9M
17	NC	NC	NC	NC	9N
18	DQ0	DQ1	DQ2	DQ2	11L
19	NC	NC	NC	DQ1	11M
20	NC	NC	NC	NC	9L
21	NC	NC	NC	NC	10L
22	NC	NC	DQ3	DQ3	11K
23	NC	NC	NC	DQ12	10K
24	NC	NC	NC	NC	9J
25	NC	NC	NC	NC	9K
26	DQ1	DQ2	DQ4	DQ13	10J
27	NC	NC	NC	DQ4	11J
28	ZQ			11H	
29	NC	NC	NC	NC	10G
30	NC	NC	NC	NC	9G
31	NC	NC	DQ5	DQ5	11F
32	NC	NC	NC	DQ14	11G
33	NC	NC	NC	NC	9F
34	NC	NC	NC	NC	10F
35	DQ2	DQ3	DQ6	DQ6	11E
36	NC	NC	NC	DQ15	10E

Bit Signal → Mex Bump no. x8 x9 x18 x36 ID 37 NC NC NC NC 10D 38 NC NC NC NC 9E 39 NC NC DQT DQT 10C 40 NC NC NC DQT 11D 41 NC NC NC NC 9C 42 NC NC NC NC 9D 43 DQ3 DQ4 DQ8 DQ8 11B 44 NC NC NC NC 9B 46 NC NC NC NC 10B 47 TC NC NC NC 10B 47 TC NC NC NC 9B 50 TC NC NC NC 9B 51 TC NC NC NC NC						
37 NC NC NC NC 10D 38 NC NC NC NC 9E 39 NC NC DQ7 DQ17 10C 40 NC NC NC DQ16 11D 41 NC NC NC NC 9D 42 NC NC NC NC 9D 43 DQ3 DQ4 DQ8 DQ8 11B 44 NC NC NC DQ7 11C 45 NC NC NC PB 46 NC NC NC NC 9B 46 NC NC NC NC 10B 47 TC TC NC NC 10B 9A 48 A A A VS 10A	Bit	Signal name			Bump	
38 NC NC NC DQT DQT 10C 39 NC NC DQT DQT 10C 40 NC NC NC DQT 11D 41 NC NC NC NC 9C 42 NC NC NC NC 9D 43 DQ3 DQ4 DQ8 DQ8 11B 44 NC NC NC DQ7 11C 45 NC NC NC 9B 46 NC NC NC NC 10B 47 TC TC NC NC 10B NC	no.	x8	x9	x18	x36	ID
39 NC NC DQ7 DQ16 11D 40 NC NC DQ16 11D 41 NC NC NC QC 42 NC NC NC NC 9D 43 DQ3 DQ4 DQ8 DQ8 11B 44 NC NC NC DQ7 11C 45 NC NC NC DQ7 11C 45 NC NC NC PB 46 NC NC NC NC 10B 47 TO TO NC NC 10B 49 TO TO NC NC 10A 8B 51 TO TO NC	37	NC	NC	NC	NC	10D
40 NC NC NC DQ16 11D 41 NC NC NC NC 9C 42 NC NC NC NC 9D 43 DQ3 DQ4 DQ8 DQ8 11B 44 NC NC NC DQ7 11C 45 NC NC NC DQ8 9B 46 NC NC NC NC 10B 47 TCUT TUT 11A 48 A A A NC NC 10B 47 TUT TUT TUT 9A 10A 49 11A 48 A A A NC NC 10A 9A 9A 10A 6C 10A 9A 9A 9A 10A 6C 9A 10A 9C 7A 7A 9A 10A 9B 10A 9C 7A 7A 9B 7A 7A	38	NC	NC	NC	NC	9E
41 NC NC NC NC 9C 42 NC NC NC NC 9D 43 DQ3 DQ4 DQ8 DQ8 11B 44 NC NC NC DQ7 11C 45 NC NC NC DQ8 10B 46 NC NC NC NC 10B 47 TO TO NC 10B 48 A A A Vss 10A 49 TO TO NC	39	NC	NC	DQ7	DQ17	10C
42 NC NC NC 9D 43 DQ3 DQ4 DQ8 DQ8 11B 44 NC NC NC DQ7 11C 45 NC NC NC DQ7 11C 46 NC NC NC NC 10B 47 TOTA NC NC NC 10A 48 A A A Vss 10A 49 TOTA NC NC NC NC 50 TOTA NC NC NC NC NC 52 A A AO AO AC AC NC	40	NC	NC	NC	DQ16	11D
43 DQ3 DQ4 DQ8 DQ8 11B 44 NC NC NC DQ7 11C 45 NC NC NC NC 10B 46 NC NC NC 10B 47 TC TC 11A 48 A A A Vss 10A 49 TA TA PS 10A 50 TA TA AO AO 6C 51 TA A AO AO 6C 52 A A AO AO 6C 53 TUT TUT RA AO AO 6C 53 NC NC NC /BW1 7A AA AO 6C 7B AB	41	NC	NC	NC	NC	9C
44 NC NC NC DQ7 11C 45 NC NC NC NC 10B 46 NC NC NC 10B 47 TCU TU 11A 48 A A A Vss 10A 49 TA TA SB SB 50 TA TA AO AC GC 52 A A AO AO GC 53 T/LD TA SB A AG AC GC 54 NC NC NC /BW1 7A AC AC SB AC AG AG <td>42</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>NC</td> <td>9D</td>	42	NC	NC	NC	NC	9D
45 NC NC NC NC 10B 46 NC NC NC 10B 47 TC TC NC 11A 48 A A A Vss 10A 49 TA TS 10A 8B 51 TA TS TC 8B 51 TA A AO AO 6C 53 TL T 8A 54 NC NC NC /BW1 7A 55 /NW0 /BW0 /BW0 /BW0 7B 56 TK K 6B 6B 6B 57 NC NC NC /BW3 5B 59 /NW1 NC /BW1 /BW2 5A 60 TX W /BW1 /BW2 5A 61 TA T 5C 4A 61 TA T 5C 4A 62 TA T 4A 4A <td< td=""><td>43</td><td>DQ3</td><td>DQ4</td><td>DQ8</td><td>DQ8</td><td>11B</td></td<>	43	DQ3	DQ4	DQ8	DQ8	11B
46 NC NC NC NC 10B 47 CU U 11A 48 A A A Vss 10A 49 A A A A A 50 A A AO AO 6C 52 A A AO AO 6C 53 A A AO AO 6C 54 NC NC NC /BW1 7A 55 /NW0 /BW0 /BW0 /BW0 7B 56 K K GB GB 57 NW1 NC NC /BW3 5B 59 /NW1 NC /BW1 /BW2 5A 60 R W /BW1 /BW2 5A 61 A NC /BW1 /BW2 5A 62 A A A A A A 63 A A A A A A 6	44	NC	NC	NC	DQ7	11C
47 CU 111A 48 A A A Vss 10A 49 A A A 9A 50 A A A0 A0 6C 51 A A A0 A0 6C 52 A A A0 A0 6C 53 JU BW BW 7A 54 NC NC NC BW 7A 55 JNW0 JBW0 JBW0 7B 56 K GB 6B 7B 6B 57 JW NC NC JBW3 5B 59 JNW1 NC JBW1 JBW2 5A 60 R JW JBW2 5A 61 A A A A A 61 A JBW3 A A A A 61 A JBW3 A A A A A A A A A A	45	NC	NC	NC	NC	9B
48 A A Vss 10A 49 A A N	46	NC	NC	NC	NC	10B
49 A SB 50 A A RB 51 A A AO AO 6C 52 A A AO AO 6C 53 JLU BA AA AA ABA AA AA AA ABA 54 NC NC NC /BW1 7A ABA ABA <td< td=""><td>47</td><td></td><td>С</td><td>Q</td><td></td><td>11A</td></td<>	47		С	Q		11A
50 A A A0 A0 6C 51 A A A0 A0 6C 52 A A A0 A0 6C 53 JLU BA A </td <td>48</td> <td>Α</td> <td>Α</td> <td>Α</td> <td>Vss</td> <td>10A</td>	48	Α	Α	Α	Vss	10A
51 J J A B	49		A	Α		9A
52 A A A0 A0 6C 53 JLD 8A 54 NC NC NC /BW1 7A 55 /NW0 /BW0 /BW0 /BW0 7B 56 K 6B 57 /K 6A 58 NC NC NC /BW3 5B 59 /NW1 NC /BW1 /BW2 5A 60 R, /W 4A 61 A 5C 62 A 4B 63 A 3A 64 Vss 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC NC NC 1C 69 NC NC NC NC NC 1B 70 NC NC NC DQ28 3C	50		A	4		8B
53 JLD 8A 54 NC NC NC /BW1 7A 55 /NW0 /BW0 /BW0 /BW0 7B 56 K 6B 6B 57 K 6A 6A 58 NC NC NC /BW3 5B 59 /NW1 NC /BW1 /BW2 5A 60 R, /W 4A 61 A 5C 62 A 4B 63 A 3A 64 Vss 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC NC 1C 69 NC NC NC NC 1C 69 NC NC NC DQ19 3D 71 NC NC NC DQ28 3C	51		A	Α		7C
54 NC NC NC /BW1 7A 55 /NW0 /BW0 /BW0 /BW0 7B 56 K 6B 57 /K 6A 58 NC NC NC /BW3 5B 59 /NW1 NC /BW1 /BW2 5A 60 R, /W 4A 61 A 5C 62 A 4B 63 A 3A 64 Vss 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC NC 1C 69 NC NC NC DQ19 3D 71 NC NC NC DQ28 3C	52	Α	Α	A0	A0	6C
55 /NW0 /BW0 /BW0 /BW0 7B 56 K 6B 57 /K 6A 58 NC NC NC /BW3 5B 59 /NW1 NC /BW1 /BW2 5A 60 R, /W 4A 61 A 5C 62 A 4B 63 A 3A 64 Vss 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC NC DQ28 3C	53		/L	.D		8A
56 K 6B 57 K 6A 58 NC NC NC BW3 5B 59 NW1 NC BW1 BW2 5A 60 R, W 4A 61 A 5C 62 A 4B 63 A 3A 64 Vss 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC NC DQ28 3C	54	NC	NC	NC	/BW1	7A
57 /K 6A 58 NC NC NC /BW3 5B 59 /NW1 NC /BW1 /BW2 5A 60 R, /W 4A 61 A 5C 62 A 4B 63 A 3A 64 V₅s 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC NC DQ19 3D 71 NC NC NC DQ28 3C	55	/NW0	/BW0	/BW0	/BW0	7B
58 NC NC NC /BW3 5B 59 /NW1 NC /BW1 /BW2 5A 60 R, /W 4A 61 A 5C 62 A 4B 63 A 3A 64 Vss 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC NC DQ28 3C	56		ŀ	<		6B
59 /NW1 NC /BW1 /BW2 5A 60 R, /W 4A 61 A 5C 62 A 4B 63 A 3A 64 Vss 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D 71 NC NC NC DQ28 3C	57		/1	K		6A
60 R, /W 4A 61 A 5C 62 A 4B 63 A 3A 64 V₅s 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC NC 1C 69 NC NC NC NC NC 1B 70 NC NC NC DQ19 3D 71 NC NC NC DQ28 3C	58	NC	NC	NC	/BW3	5B
61 A 5C 62 A 4B 63 A 3A 64 Vss 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D 71 NC NC NC DQ28 3C	59	/NW1	NC	/BW1	/BW2	5A
62 A 4B 63 A 3A 64 Vss 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC NC 1C 69 NC NC NC NC NC 1B 70 NC NC NC DQ19 3D 71 NC NC NC DQ28 3C	60		4A			
63 A 3A 64 V _{SS} 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D 71 NC NC NC DQ28 3C	61		5C			
64 Vss 2A 65 /CQ 1A 66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC NC 1C 69 NC NC NC NC 1C 70 NC NC NC NC 1B 70 NC NC NC DQ19 3D 71 NC NC NC DQ28 3C	62		4B			
65	63		3A			
66 NC NC DQ9 DQ27 2B 67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D 71 NC NC NC DQ28 3C	64		2A			
67 NC NC NC DQ18 3B 68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D 71 NC NC NC DQ28 3C	65		1A			
68 NC NC NC NC 1C 69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D 71 NC NC NC DQ28 3C	66	NC	NC	DQ9	DQ27	2B
69 NC NC NC NC 1B 70 NC NC DQ10 DQ19 3D 71 NC NC NC DQ28 3C	67	NC	NC	NC	DQ18	3B
70 NC NC DQ10 DQ19 3D 71 NC NC NC DQ28 3C	68	NC	NC	NC	NC	1C
71 NC NC NC DQ28 3C	69	NC	NC	NC	NC	1B
	70	NC	NC	DQ10	DQ19	3D
72 NC NC NC NC 1D	71	NC	NC	NC	DQ28	3C
	72	NC	NC	NC	NC	1D

Bit	Signal name				Bump
no.	x8 x9 x18 x36				ID
73	NC NC		NC	NC	2C
74	DQ4	DQ5	DQ11	DQ20	3E
75	NC	NC	NC	DQ29	2D
76	NC	NC	NC	NC	2E
77	NC	NC	NC	NC	1E
78	NC	NC	DQ12	DQ30	2F
79	NC	NC	NC	DQ21	3F
80	NC	NC	NC	NC	1G
81	NC	NC	NC	NC	1F
82	DQ5	DQ6	DQ13	DQ22	3G
83	NC	NC	NC	DQ31	2G
84		/D	LL		1H
85	NC	NC	NC	NC	1J
86	NC	NC	NC	NC	2J
87	NC	NC	DQ14	DQ23	3K
88	NC	NC	NC	DQ32	3J
89	NC	NC	NC	NC	2K
90	NC	NC	NC	NC	1K
91	DQ6	DQ7	DQ15	DQ33	2L
92	NC			DQ24	3L
93	NC	NC	NC	NC	1M
94	NC	NC	NC	NC	1L
95	NC	NC	DQ16	DQ25	3N
96	NC	NC	NC	DQ34	3M
97	NC	NC	NC	NC	1N
98	NC	NC	NC	NC	2M
99	DQ7	DQ8	DQ17	DQ26	3P
100	NC	NC	NC	DQ35	2N
101	NC	NC	NC	NC	2P
102	NC NC		NC	NC	1P
103	А				3R
104	А				4R
105	A				4P
106	А				5P
107	Α				5N
108	A			5R	
109	- Interna			Internal	

JTAG Instructions


Instructions	Description
EXTEST	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-scan register cells at output pins are used to apply test vectors, while those at input pins capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and the PRELOAD data is driven onto the output pins.
IDCODE	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
BYPASS	The BYPASS instruction is loaded in the instruction register when the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
SAMPLE / PRELOAD	SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and DQ pins into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tch). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.
SAMPLE-Z	If the SAMPLE-Z instruction is loaded in the instruction register, all RAM DQ pins are forced to an inactive drive state (high impedance) and the boundary register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state.

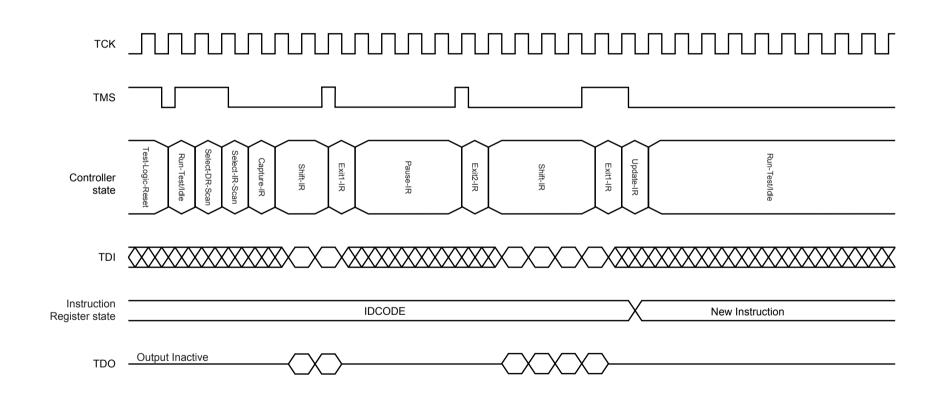
JTAG Instruction Coding

IR2	IR1	IR0	Instruction	Note
0	0	0	EXTEST	
0	0	1	IDCODE	
0	1	0	SAMPLE-Z	1
0	1	1	RESERVED	
1	0	0	SAMPLE / PRELOAD	
1	0	1	RESERVED	
1	1	0	RESERVED	
1	1	1	BYPASS	

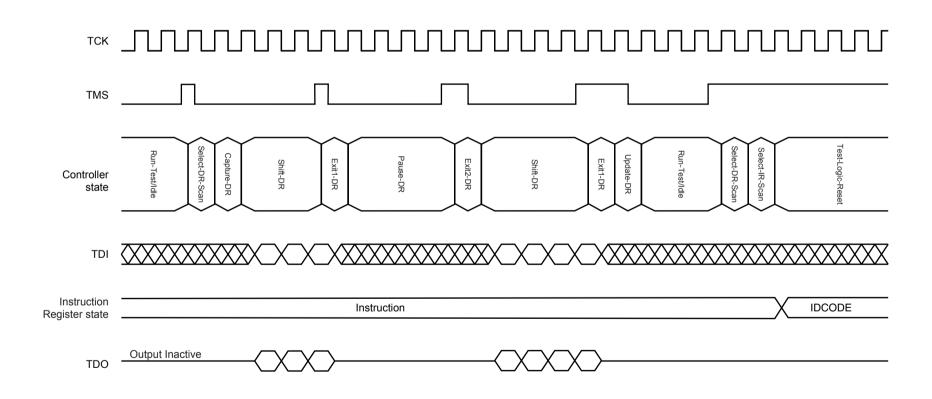
 $\textbf{Note 1.} \ \ \mathsf{TRISTATE} \ \ \mathsf{all} \ \ \mathsf{DQ} \ \ \mathsf{pins} \ \ \mathsf{and} \ \ \mathsf{CAPTURE} \ \ \mathsf{the} \ \ \mathsf{pad} \ \ \mathsf{values} \ \ \mathsf{into} \ \ \mathsf{a} \ \ \mathsf{SERIAL} \ \ \mathsf{SCAN} \ \ \mathsf{LATCH}.$

TAP Controller State Diagram

Disabling the Test Access Port

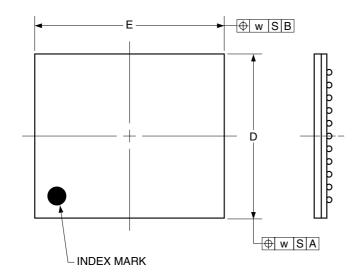

It is possible to use this device without utilizing the TAP. To disable the TAP Controller without interfering with normal operation of the device, TCK must be tied to Vss to preclude mid level inputs.

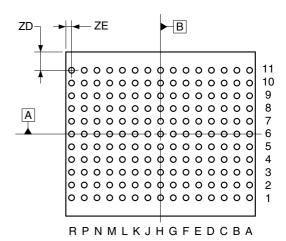
TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be tied to VDD through a 1 $k\Omega$ resistor.

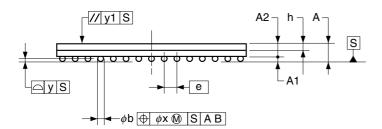

TDO should be left unconnected.

_/µPD44324082, 44324092, 44324182, 44324362

Test Logic Operation (Instruction Scan)




Test Logic (Data Scan)



Package Drawing

165-PIN PLASTIC FBGA (13x15)

ITEM	MILLIMETERS
D	13.00
E	15.00
ZD	1.50
ZE	0.50
е	1.00
h	0.60
Α	1.40
A1	0.40
A2	1.00
b	0.50
у	0.08
Х	0.08
W	0.15
v1	0.20

This package drawing is a preliminary version. It may be changed in the future.

Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of these products.

★ Types of Surface Mount Devices

μPD44324082F5-EQ2: 165-pin PLASTIC FBGA (13 x 15) μPD44324092F5-EQ2: 165-pin PLASTIC FBGA (13 x 15) μPD44324182F5-EQ2: 165-pin PLASTIC FBGA (13 x 15) μPD44324362F5-EQ2: 165-pin PLASTIC FBGA (13 x 15)

Revision History

Edition/	Pa	ge	Type of	Location	Description	
Date	This	Previous	revision		(Previous edition $ ightarrow$ This edition)	
	edition	edition				
1st edition/	Throughout	Throughout	Modification	_	Preliminary Product Information	
Oct. 2004					→ Preliminary Data sheet	
				Package Code	F5-EQ1 → F5-EQ2	
			Deletion	_	-E60 (167MHz)	
	p.2	p.2	Addition	Ordering Information	"Note Under development" has been added to	
					-E33.	
	pp.3-6	pp.3-6		Pin Configurations	Remark 2 has been added.	
	p.5	p.5			Remark 3 has been added.	
	p.9	_		Power-on Sequence	Power-on sequence has been added.	
	p.14	p.13	Modification	DC Characteristics IDD (MAX.)	<u> </u>	
				 	nit MAX. Unit	
				x8, x9 x18 x36	x8, x9 x18 x36	
				255 5.6 555 1.15	-E33 750 1,050 1,200 mA	
				-E40 540 560 640	_E40 650 900 1,000	
				-E50 450 470 540	_E50 550 750 850	
				DO Observa stanistica di (MANV.)	J	
				DC Characteristics I _{SB1} (MAX.))	
				MAX. U	nit MAX. Unit	
				x8, x9 x18 x36	x8, x9 x18 x36	
					AG, X9 X10 X30 MA	
				-E40 250	-E40 500	
				-E50 210	-E50 400	
				210	200 100	

NOTES FOR CMOS DEVICES —

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between $V_{\rm IL}$ (MAX) and $V_{\rm IH}$ (MIN).

② HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of October, 2004. The information is subject to
 change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
 sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
 all products and/or types are available in every country. Please check with an NEC Electronics sales
 representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
 property rights of third parties by or arising from the use of NEC Electronics products listed in this document
 or any other liability arising from the use of such products. No license, express, implied or otherwise, is
 granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).