

MOS INTEGRATED CIRCUIT $\mu PD78P083(A)$

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78P083(A) is a member of the μ PD78083 Subseries of the 78K/0 Series products. Comparing with the μ PD78P083 (standard), more strict quality assurance programs are applied to this product (called Special of the quality grade in NEC). The μ PD78P083(A) uses one-time PROM instead of internal ROMs of the μ PD78081(A) and μ PD78082(A).

Because this device can be programmed by users, it is ideally suited for applications involving the evaluation of systems in development stages, small-scale production of many different products, and rapid development and time-to-market of a new product.

The details of functions are described in the user's manuals. Be sure to read the following manuals before designing.

μPD78083 Subseries User's Manual : U12176E 78K/0 Series User's Manual — Instructions : IEU-1372

FEATURES

- Pin-compatible with mask ROM version (except VPP pin)
- Internal PROM: 24 Kbytes Note
- μPD78P083CU(A), μPD78P083GB(A): One-time programmable (ideally suited for small-scale production)
- Internal high-speed RAM: 512 bytes Note
- Can be operated in the same supply voltage as the mask ROM version ($V_{DD} = 1.8$ to 5.5 V)
- Corresponding to QTOP™ Microcontrollers (under planning)
- **Note** The internal PROM and internal high-speed RAM capacities can be changed by setting the internal memory size switching register (IMS).
- **Remarks 1.** QTOP microcontroller is a general term for microcontrollers which incorporate one-time PROM and are totally supported by NEC's programming service (from programming to marking, screening and verification).
 - For the differences between PROM and Mask ROM versions, refer to Chapter 1. DIFFERENCES BETWEEN THE μPD78P083(A) AND MASK ROM VERSIONS.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package	Internal ROM
μPD78P083CU(A)	42-pin plastic shrink DIP (600 mil)	One-Time PROM
μPD78P083GB(A)-3B4	44-pin plastic QFP (10 $ imes$ 10 mm)	One-Time PROM
μ PD78P083GB(A)-3BS-MTX ^{Note}	44-pin plastic QFP (10 $ imes$ 10 mm)	One-Time PROM

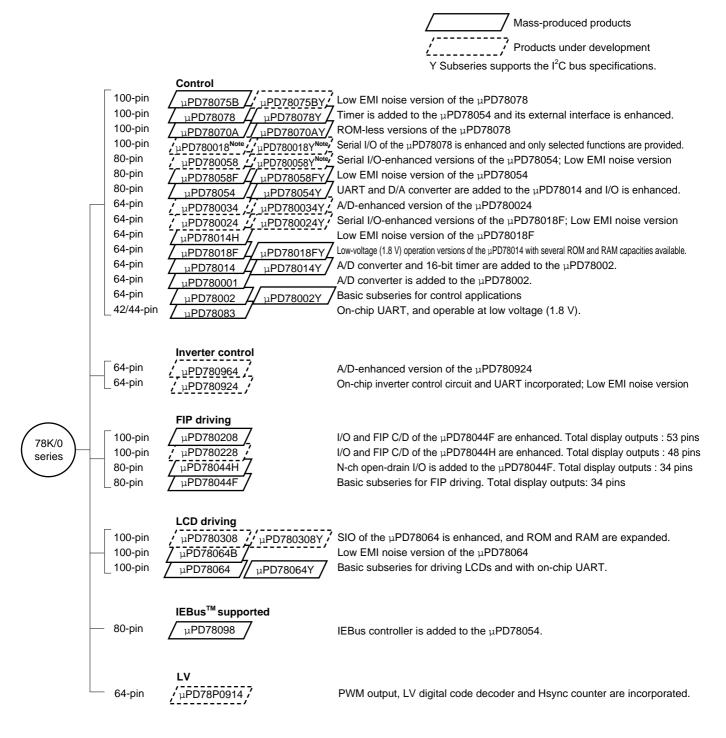
Note Under planning

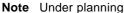
Caution μPD78P083GB(A) has two types of packages. (Refer to Chapter 7. PACKAGE DRAWINGS). Consult an NEC's sales representative for suppliable packages.

QUALITY GRADE

Part Number	Package	Quality Grades		
μPD78P083CU(A)	42-pin plastic shrink DIP (600 mil)	Special		
µPD78P083GB(A)-3B4	44-pin plastic QFP (10 $ imes$ 10 mm)	Special		
μPD78P083GB(A)-3BS-MTX ^{Note}	44-pin plastic QFP (10 $ imes$ 10 mm)	Special		

Note Under planning


Please refer to "Quality grades on NEC Semiconductor Devices" (Document number C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.


Deferences between µPD78P083(A) and µPD78P083

Product	μΡD78P083(A)	μPD78P083
Quality Grade	Special	Standard
Package	42-pin plastic shrink DIP (600 mil) 44-pin plastic QFP (10 × 10 mm)	42-pin plastic shrink DIP (600 mil) 44-pin plastic QFP (10 × 10 mm) 42-pin ceramic shrink DIP (with window) (600 mil)

78K/0 SERIES DEVELOPMENT

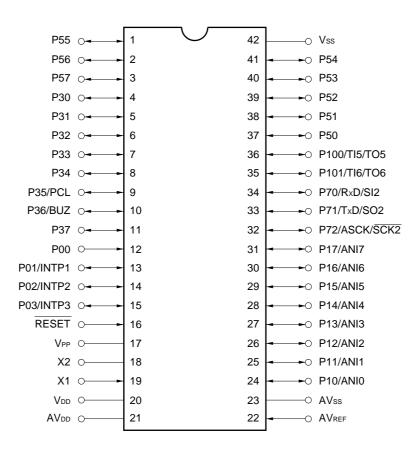
The following shows the 78K/0 Series products development. Subseries names are shown inside frames.

The following table shows the differences among subseries functions.

	Function	ROM		Tir	ner		8-bit	10-bit	8-bit			VDD MIN.	External
Subseries r	name	capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Serial interface	I/O	value	expansion
Control	μPD78075B	32K to 40K	4 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	88	1.8 V	Available
	μPD78078	48K to 60K											
	μPD78070A	_									61	2.7 V	
	μPD780018	48K to 60K								2 ch (Time division 3-wire: 1 ch)	88	-	
	μPD780058	24K to 60K	2 ch						2 ch	3 ch (Time division UART: 1 ch)	68	1.8 V	
	μPD78058F	48K to 60K								3 ch (UART: 1 ch)	69	2.7 V	
	μPD78054	16K to 60K										2.0 V	
	μPD780034	8K to 32K					_	8 ch		3 ch (UART: 1 ch, Time	51	1.8 V	
	μPD780024						8 ch	_		division 3-wire: 1 ch)			
	μPD78014H									2 ch	53		
	μPD78018F	8K to 60K											
	μPD78014	8K to 32K										2.7 V	
	μPD780001	8K		_	_					1 ch	39]	_
	μPD78002	8K to 16K			1 ch		_				53	Ī	Available
	μPD78083	_			_		8 ch			1 ch (UART: 1 ch)	33	1.8 V	
Inverter	μPD780964	8K to 32K	3 ch	Note	_	1 ch	_	8 ch	_	2 ch (UART: 2 ch)	47	2.7 V	Available
control	μPD780924						8 ch	_	•				
FIP driving	μPD780208	32K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	_	_	2 ch	74	2.7 V	_
	μPD780228	48K to 60K	3 ch	_	_					1 ch	72	4.5 V	
	μPD78044H	32K to 48K	2 ch	1 ch	1 ch						68	2.7 V	
	μPD78044F	16K to 40K								2 ch			
LCD driving	μPD780308	48K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch		_	3 ch (Time division UART: 1 ch)	57	2.0 V	—
	μPD78064B	32K								2 ch (UART: 1 ch)			
	μPD78064	16K to 32K											
IEBus supported	μPD78098	32K to 60K	2 ch	1 ch	1 ch	1 ch	8 ch	_	2 ch	3 ch (UART: 1 ch)	69	2.7 V	Available
LV	μPD78P0914	32K	6 ch	_	_	1 ch	8 ch	_	_	2 ch	54	4.5 V	Available
				1			1		1	1		1	

Note 10 bits timer: 1 channel

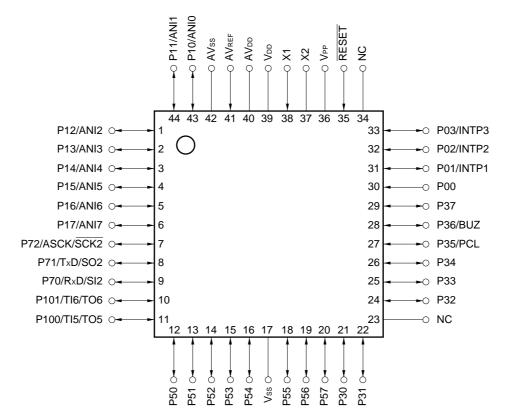
FUNCTION DESCRIPTION


Item		Function		
Internal memory		 PROM: 24 Kbytes ^{Note} RAM 		
		High-speed RAM: 512 bytes Note		
Memory space		64 Kbytes		
General register		8 bits x 32 registers (8 bits x 8 registers x 4 banks)		
Instruction cycles		Instruction execution time variable function is integrated. 0.4 $\mu s/0.8~\mu s/1.6~\mu s/3.2~\mu s/6.4~\mu s/12.8~\mu s$ (@5.0-MHz operation with main system clock)		
Instruction set		 16-bit operation Multiply/divide (8 bits x 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjust, etc. 		
I/O ports		Total: 33• CMOS input: 1• CMOS input/output: 32		
A/D converter		8-bit resolution x 8 channels		
Serial interface		3-wired serial I/O/UART mode selectable: 1 channel		
Timer		 8-bit timer/event counter: 2 channelsWatchdog timer: 1 channel		
Timer output		2 pins (8-bit PWM output enable)		
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, and 5.0 MHz (@ 5.0-MHz operation with main system clock)		
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz, and 9.8 kHz (@ 5.0-MHz operation with main system clock)		
Vectored-interrupt Maskable		Internal : 8 external : 3		
source	Non-maskable	Internal : 1		
Software		Internal : 1		
Power supply voltage		V _{DD} = 1.8 to 5.5 V		
Operating ambient temperature		$T_{A} = -40$ to +85°C		
Packages		 42-pin plastic shrink DIP (600 mil) 44-pin plastic QFP (10 × 10 mm) 		

Note Internal PROM and high-speed RAM capacities can be changed by setting the memory size switching register (IMS).

PIN CONFIGURATIONS (Top View)

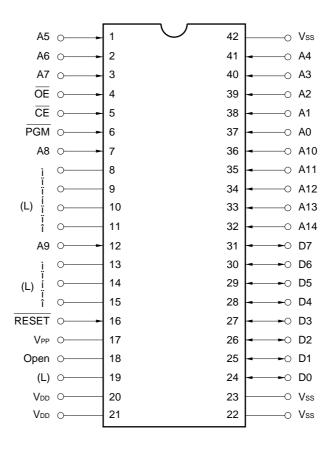
(1) Normal operating mode


 42-pin plastic shrink DIP (600 mil) μPD78P083CU(A)

- Cautions 1. Connect VPP pin directly to Vss.
 - 2. Connect AVDD pin to VDD.
 - 3. Connect AVss pin to Vss.

 44-pin plastic QFP (10 x 10 mm) μPD78P083GB(A)-3B4, μPD78P083GB(A)-3BS-MTX^{Note}

Note Under planning

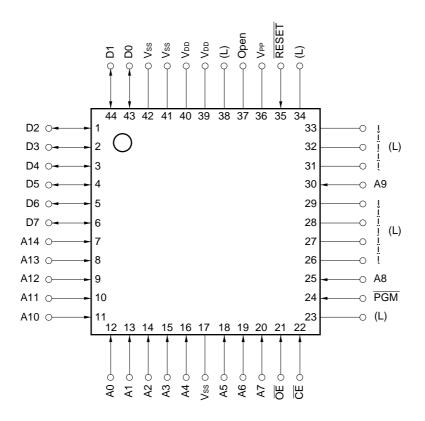


- Cautions 1. Connect VPP pin directly to Vss.
 - 2. Connect AVDD pin to VDD.
 - 3. Connect AVss pin to Vss.
 - 4. Connect NC pin to Vss for noise protection (It can be left open).

ANI0 to ANI7	: Analog Input	PCL	: Programmable Clock
ASCK	: Asynchronous Serial Clock	RESET	: Reset
AVdd	: Analog Power Supply	RxD	: Receive Data
AVREF	: Analog Reference Voltage	SCK2	: Serial Clock
AVss	: Analog Ground	SI2	: Serial Input
BUZ	: Buzzer Clock	SO2	: Serial Output
INTP1 to INTP3	: Interrupt from Peripherals	TI5, TI6	: Timer Input
NC	: Non-connection	TO5, TO6	: Timer Output
P00 to P03	: Port 0	TxD	: Transmit Data
P10 to P17	: Port 1	Vdd	: Power Supply
P30 to P37	: Port 3	Vpp	: Programming Power Supply
P50 to P57	: Port 5	Vss	: Ground
P70 to P72	: Port 7	X1, X2	: Crystal (Main System Clock)
P100, P101	: Port 10		

(2) PROM programming mode

 42-pin plastic shrink DIP (600 mil) μPD78P083CU(A)

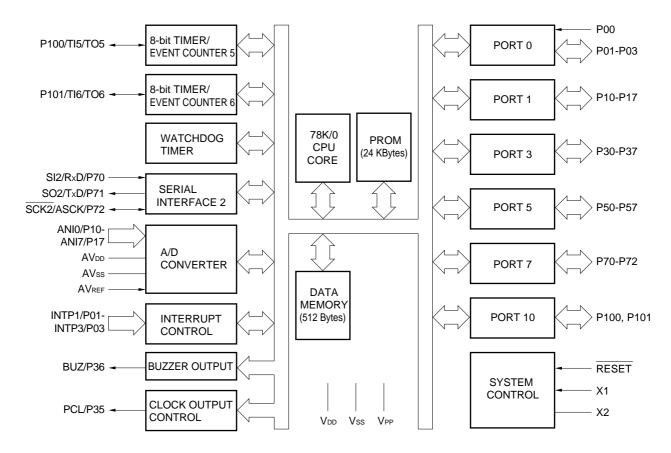


- Cautions 1. (L): Individually connect to Vss via a pull-down resistor.
 - 2. Vss: Connect to GND.
 - 3. RESET: Set to low level.
 - 4. Open: Leave open.

NEC

 44-pin plastic QFP (10 x 10 mm) μPD78P083GB(A)-3B4, μPD78P083GB(A)-3BS-MTX^{Note}

Note Under planning



Cautions 1. (L): Individually connect to Vss via a pull-down resistor.

- 2. Vss: Connect to GND.
- 3. RESET: Set to low level.
- 4. Open: Leave open.

A0 to A14	: Address Bus	RESET	: Reset
CE	: Chip Enable	Vdd	: Power Supply
D0 to D7	: Data Bus	Vpp	: Programming Power Supply
ŌĒ	: Output Enable	Vss	: Ground
PGM	: Program		

BLOCK DIAGRAM

CONTENTS

1.	DIFFERENCES BETWEEN THE μ PD78P083(A) AND MASK ROM VERSIONS	13
2.	PIN FUNCTIONS	14
	2.1 Pins in Normal Operating Mode	14
	2.2 Pins in PROM Programming Mode	16
	2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins	16
3.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)	18
4.	PROM PROGRAMMING	19
	4.1 Operating Modes	19
	4.2 PROM Write Procedure	
	4.3 PROM Read Procedure	25
5.	ONE-TIME PROM VERSION SCREENING	26
6.	ELECTRICAL SPECIFICATIONS	27
7.	PACKAGE DRAWINGS	45
8.	RECOMMENDED SOLDERING CONDITIONS	48
APF	PENDIX A. DEVELOPMENT TOOLS	49
APF	PENDIX B. RELATED DOCUMENTS	51

1. DIFFERENCES BETWEEN THE μ PD78P083(A) AND MASK ROM VERSIONS

The μ PD78P083(A) is a single-chip microcontroller with an on-chip one-time PROM.

Setting the memory size switching register (IMS) makes the functions except the PROM specification identical to the mask ROM versions.

Table 1-1 shows differences between the PROM version (μ PD78P083(A)) and mask ROM versions (μ PD78081(A) and μ PD78082(A)).

Table 1-1. Differences between the μ PD78P083(A) and Mask ROM Versions

Parameter	μPD78P083(A)	Mask ROM Versions
Internal ROM type	One-time PROM/EPROM	Mask ROM
Internal ROM capacity	24 Kbytes	µPD78081(A) : 8 Kbytes
		µPD78082(A) : 16 Kbytes
Internal high-speed RAM capacity	512 bytes	µPD78081(A) : 256 bytes
		µPD78082(A) : 384 bytes
Internal ROM and internal high-speed	Enable Note	Disable
RAM capacity change by		
memory size switching register (IMS)		
IC pin	No	Yes
V _{PP} pin	Yes	No
Electrical specifications	Refer to a data sheet of each product	

Note The internal PROM becomes 24 Kbytes and the internal high-speed RAM becomes 512 bytes by the RESET input.

2. PIN FUNCTIONS

2.1 Pins in Normal Operating Mode

(1) Port pins

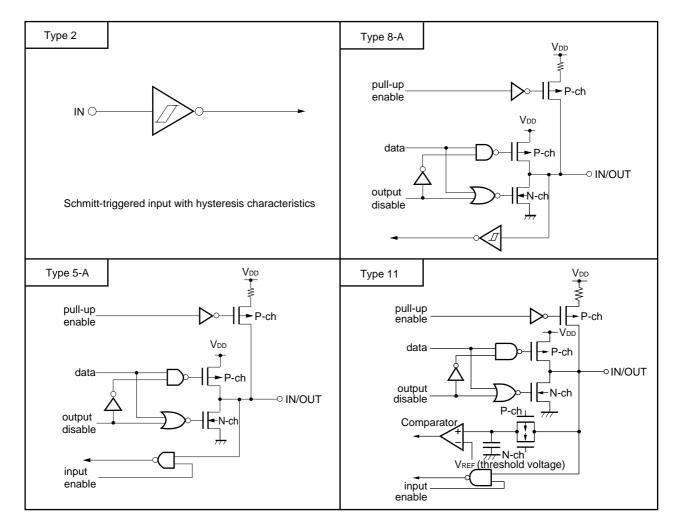
Pin Name	Input/Output		Function	After Reset	Alternate Function
P00	Input	Port 0	Input only	Input	—
P01	Input/output	4-bit input/output port	Input/output is specifiable	Input	INTP1
P02			bit-wise. When used as the		INTP2
P03			input port, it is possible to		INTP3
			connect a pull-up resistor by		
			software.		
P10 to P17	Input/output	Port 1		Input	ANI0 to ANI7
		8-bit input/output port			
		Input/output is specifiab	le bit-wise.		
		When used as the input	port, it is possible to connect		
		a pull-up resistor by sof	tware. ^{Note}		
P30-P34	Input/output	Port 3		Input	_
P35		8-bit input/output port			PCL
P36		Input/output is specifiab	le bit-wise.		BUZ
P37		When used as the input	port, it is possible to connect		_
		a pull-up resistor by sof	tware.		
P50 to P57	Input/output	Port 5		Input	—
		8-bit input/output port			
		Can drive up to seven L	EDs directly.		
		Input/output is specifiab	le bit-wise.		
		When used as the input	port, it is possible to connect		
		a pull-up resistor by sof	tware.		
P70	Input/output	Port 7		Input	SI2/RxD
P71		3-bit input/output port			SO2/TxD
P72		Input/output is specifiab	le bit-wise.		SCK2/ASCK
		When used as the input	port, it is possible to connect		
		a pull-up resistor by sof	tware.		
P100	Input/output	Port 10		Input	TI5/TO5
P101]	2-bit input/output port			TI6/TO6
		Input/output is specifiab	le bit-wise.		
		When used as the input	port, it is possible to connect		
		a pull-up resistor by sof	tware.		

Note When P10/ANI0-P17/ANI7 pins are used as the analog inputs for the A/D converter, set the port 1 to the input mode. The on-chip pull-up resistor is automatically disabled.

(2) Non-port pins

Pin Name	Input/Output	Function	After Reset	Alternate Function
INTP1	Input	External interrupt input by which the active edge (rising edge,	Input	P01
INTP2		falling edge, or both rising and falling edges) can be specified.		P02
INTP3				P03
SI2	Input	Serial interface serial data input.	Input	P70/RxD
SO2	Output	Serial interface serial data output.	Input	P71/TxD
SCK2	Input/Output	Serial interface serial clock input/output.	Input	P72/ASCK
RxD	Input	Asynchronous serial interface serial data input.	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output.	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial clock input.	Input	P72/SCK2
TI5	Input	External count clock input to 8-bit timer (TM5).	Input	P100/TO5
TI6	_	External count clock input to 8-bit timer (TM6).		P101/TO6
TO5	Output	8-bit timer output.	Input	P100/TI5
TO6				P101/TI6
PCL	Output	Clock output. (for main system clock trimming)	Input	P35
BUZ	Output	Buzzer output.	Input	P36
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
AVREF	Input	A/D converter reference voltage input.	-	-
AVdd	-	A/D converter analog power supply. Connected to VDD.	_	-
AVss	-	A/D converter ground potential. Connected to Vss.	_	-
RESET	Input	System reset input.	_	-
X1	Input	Main system clock oscillation crystal connection.	-	-
X2	-		-	-
Vdd	-	Positive power supply.	-	-
Vpp	-	High-voltage applied during program write/verification.	_	-
		Connected directly to Vss in normal operating mode.		
Vss	-	Ground potential.	_	-
NC	-	Does not internally connected. Connect to Vss.	_	-
		(It can be left open)		

2.2 Pins in PROM Programming Mode

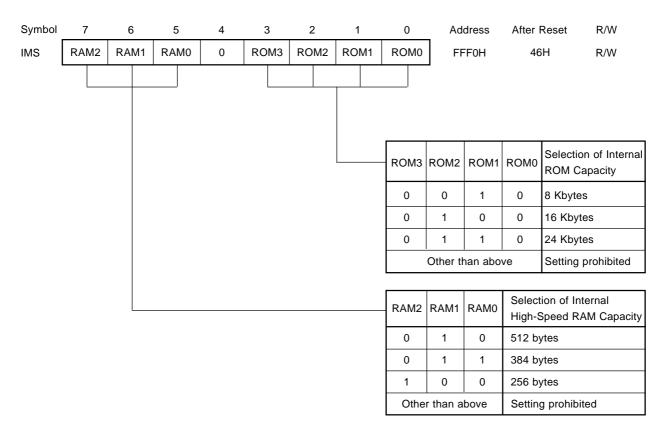

Pin Name	Input/Output	Function
RESET	Input	PROM programming mode setting
		When +5 V or +12.5 V is applied to the V_{PP} pin and a low-level signal is applied to the
		RESET pin, this chip is set in the PROM programming mode.
Vpp	Input	PROM programming mode setting and high-voltage applied during program write/verification.
A0 to A14	Input	Address bus
D0-D7	Input/output	Data bus
CE	Input	PROM enable input/program pulse input
ŌĒ	Input	Read strobe input to PROM
PGM	Input	Program/program inhibit input in PROM programming mode.
Vdd	_	Positive power supply
Vss	_	Ground potential

2.3 Pin Input/Output Circuits and Recommended Connection of Unused Pins

Types of input/output circuits of the pins and recommeded connection of unused pins are shown in Table 2-1. For the configuration of each type of input/output circuit, see Figure 2-1.

Pin Name	Input/Output	Input/Output	Recommended Connection for Unused Pins
	Circuit Type		
P00	2	Input	Connect to Vss.
P01/INTP1	8-A	Input/Output	Independently connect to Vss via a resistor.
P02/INTP2			
P03/INTP3			
P10/ANI0 to P17/ANI7	11	Input/Output	Independently connect to VDD or VSS via
P30 to P32	5-A		a resistor.
P33, P34	8-A		
P35/PCL	5-A		
P36/BUZ			
P37			
P50 to P57	5-A		
P70/SI2/RxD	8-A		
P71/SO2/TxD	5-A		
P72/SCK2/ASCK	8-A		
P100/TI5/TO5	8-A		
P101/TI6/TO6	_		
RESET	2	Input	-
AVREF	-	-	Connect to Vss.
AVdd]		Connect to VDD.
AVss			Connect to Vss.
Vpp			Connect directly to Vss.
NC			Connect to Vss (can leave open)

Table 2-1. Type of Input/Output Circuit of Each Pin


Figure 2-1. Types of Pin Input/Output Circuits

3. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

This is a register to disable use of part of internal memories by software. By setting this memory size switching register (IMS), it is possible to get the same memory mapping as that of the mask ROM versions with a different internal memory (ROM, RAM).

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to 46H.



Table 3-1 shows the setting values of IMS which make the memory mapping the same as that of the mask ROM version.

Table 3-1. Internal Memory Size Switching Register Setting Values

Target Mask ROM Versions	IMS Setting Value
μPD78081(A)	82H
μPD78082(A)	64H

4. PROM PROGRAMMING

The μ PD78P083(A) has an internal 24-Kbyte PROM as a program memory. For programming, set the PROM programming mode with the VPP and RESET pins. For the connection of unused pins, refer to "**PIN CONFIGURA-TIONS (TOP VIEW) (2) PROM programming mode.**"

Caution Programs must be written in addresses 0000H to 5FFFH (The last address 5FFFH must be specified). They cannot be written by a PROM programmer which cannot specify the write address.

4.1 Operating Modes

When +5 V or +12.5 V is applied to the VPP pin and a low-level signal is applied to the $\overrightarrow{\text{RESET}}$ pin, the PROM programming mode is set. This mode will become the operating mode as shown in Table 4-1 when the $\overrightarrow{\text{CE}}$, $\overrightarrow{\text{OE}}$, and $\overrightarrow{\text{PGM}}$ pins are set as shown.

Further, when the read mode is set, it is possible to read the contents of the PROM.

	Pin	RESET	Vpp	Vdd	CE	ŌĒ	PGM	D0 to D7
Operating Mode								
Page data latch		L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write					н	н	L	High-impedance
Byte write					L	н	L	Data input
Program verify					L	L	н	Data output
Program inhibit					х	н	Н	High-impedance
					х	L	L	
Read			+5 V	+5 V	L	L	Н	Data output
Output disable					L	н	х	High-impedance
Standby					н	х	х	High-impedance

Table 4-1. Operating Modes of PROM Programming

 $x: L \ or \ H$

(1) Read mode

Read mode is set if $\overline{CE} = L$, $\overline{OE} = L$ is set.

(2) Output disable mode

Data output becomes high-impedance, and is in the output disable mode, if $\overline{OE} = H$ is set. Therefore, it allows data to be read from any device by controlling the \overline{OE} pin, if multiple μ PD78P083(A)s are connected to the data bus.

(3) Standby mode

Standby mode is set if $\overline{CE} = H$ is set. In this mode, data outputs become high-impedance irrespective of the \overline{OE} status.

(4) Page data latch mode

Page data latch mode is set if $\overline{CE} = H$, $\overline{PGM} = H$, $\overline{OE} = L$ are set at the beginning of page write mode. In this mode, 1 page 4-byte data is latched in an internal address/data latch circuit.

(5) Page write mode

After 1 page 4 bytes of addresses and data are latched in the page data latch mode, a page write is executed by applying a 0.1-ms program pulse (active low) to the \overline{PGM} pin with $\overline{CE} = H$, $\overline{OE} = H$. Then, program verification can be performed, if $\overline{CE} = L$, $\overline{OE} = L$ are set.

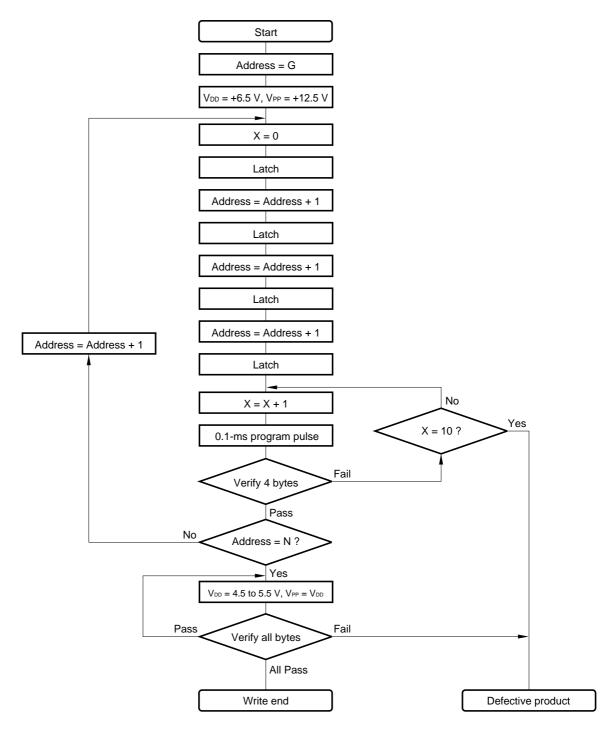
If programming is not performed by a one-time program pulse, X times (X - 10) write and verification operations should be executed repeatedly.

(6) Byte write mode

Byte write is executed when a 0.1-ms program pulse (active low) is applied to the \overline{PGM} pin with $\overline{CE} = L$, $\overline{OE} = H$. Then, program verification can be performed if OE = L is set.

If programming is not performed by a one-time program pulse, X times (X - 10) write and verification operations should be executed repeatedly.

(7) Program verify mode


Program verify mode is set if $\overline{CE} = L$, $\overline{PGM} = H$, $\overline{OE} = L$ are set. In this mode, check if a write operation is performed correctly after the write.

(8) Program inhibit mode

Program inhibit mode is used when the \overline{OE} pin, VPP pin, and D0-D7 pins of multiple μ PD78P083(A)s are connected in parallel and a write is performed to one of those devices.

When a write operation is performed, the page write mode or byte write mode described above is used. At this time, a write is not performed to a device which has the \overline{PGM} pin driven high.

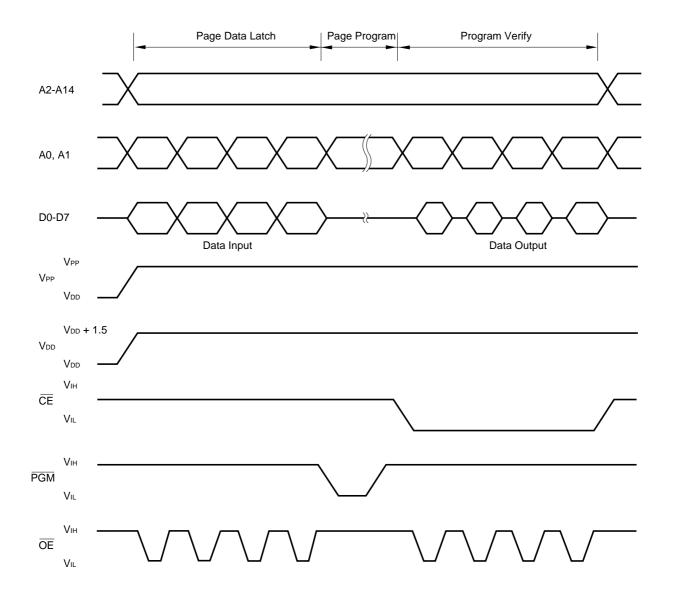
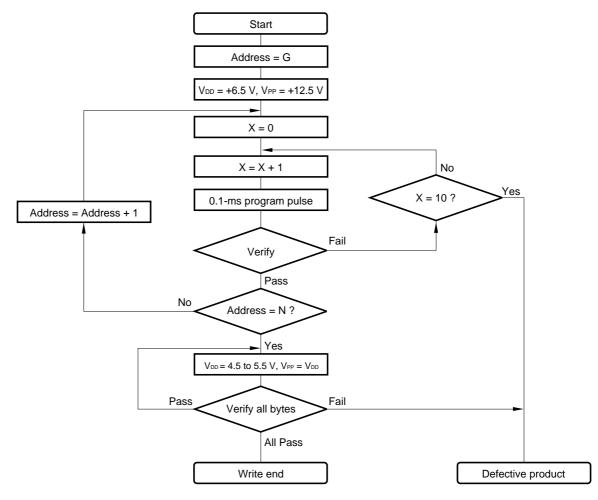

4.2 PROM Write Procedure

Figure 4-1. Page Program Mode Flow Chart


G = Start address

N = Program last address

Figure 4-2. Page Program Mode Timing

G = Start address

N = Program last address

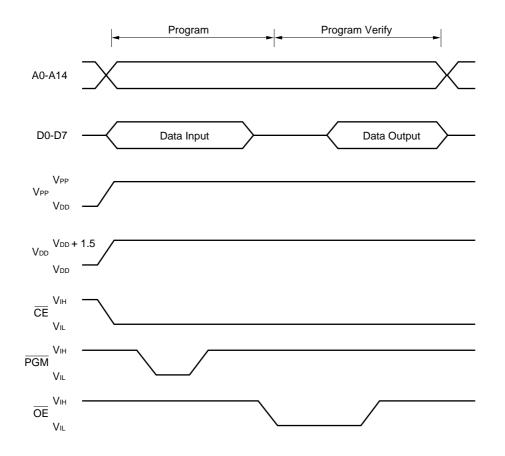
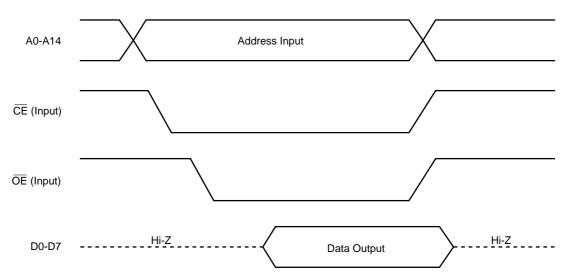


Figure 4-4. Byte Program Mode Timing


- Cautions 1. VDD should be applied before VPP and removed after VPP.
 - 2. VPP must not exceed +13.5 V including overshoot.
 - 3. Reliability may be adversely affected if removal/reinsertion is performed while +12.5 V is being applied to VPP.

4.3 PROM Read Procedure

The contents of PROM are readable to the external data bus (D0-D7) according to the read procedure shown below.

- (1) Fix the RESET pin at low level, supply +5 V to the VPP pin, and connect all other unused pins as shown in "PIN CONFIGURATIONS (TOP VIEW) (2) PROM programming mode".
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input address of read data into the A0 to A14 pins.
- (4) Read mode
- (5) Output data to D0 to D7 pins.

The timings of the above steps (2) to (5) are shown in Figure 4-5.

Figure 4-5. PROM Read Timings

5. ONE-TIME PROM VERSION SCREENING

The one-time PROM version (μ PD78P083CU(A), 78P083GB(A)-3B4, 78P083GB(A)-3BS-MTX^{Note}) cannot be tested completely by NEC before it is shipped, because of its structure. It is recommended to perform screening to verify PROM after writing necessary data and performing high-temperature storage under the condition below.

Note Under planning

Storage Temperature	Storage Time
125°C	24 hours

NEC offers for an additional fee one-time PROM writing to marking, screening, and verify for products designated as QTOP Microcontroller. A fee-charged service for the μ PD78P083(A) is under planning. Consult an NEC sales representative for details.

6. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbol	Test Conditi	ions		Ratings	Unit
Supply voltage	Vdd				-0.3 to +7.0	V
	Vpp				-0.3 to +13.5	V
	AVDD				-0.3 to V _{DD} + 0.3	V
	AVREF				-0.3 to V _{DD} + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	VI1				–0.3 to V _{DD} + 0.3	
	VI2	A9	PROM progra	amming mode	–0.3 to +13.5	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	Analog input	pins	AVss - 0.3 to AVREF + 0.3	V
Output current, high	Іон	Per pin			-10	mA
		Total for P10 to P17, P50 to P54,			-15	mA
		P70 to P72, P100, P101				
		Total for P01 to P03, P30 to P37,			–15	mA
		P55 to P57				
Output current, low	OL Note	Per pin		Peak value	30	mA
				r.m.s. value	15	mA
		Total for P5	0 to P54	Peak value	100	mA
				r.m.s. value	70	mA
		Total for P5	5 to P57	Peak value	100	mA
				r.m.s. value	70	mA
		Total for P1	0 to P17,	Peak value	50	mA
		P70 to P72,	P100, P101	r.m.s. value	20	mA
		Total for P0	1 to P03,	Peak value	50	mA
		P30 to P37		r.m.s. value	20	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note The r.m.s. value should be calculated as follows: [r.m.s. value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution If the absolute maximum rating of even one of the above parameters is exceeded, the quality of the product may be degraded. The absolute maximum ratings are therefore the rated values that may, if exceeded, physically damage the product. Be sure to use the product with all the absolute maximum ratings observed.

Remark Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.

Capacitance (TA = 25°C, VDD = VSS = 0 V)

Parameter	Symbol	Test Conditions			TYP.	MAX.	Unit
Input capacitance	CIN	= 1 MHz, Unmeasured pins returned to 0 V.				15	pF
I/O capacitance	Сю	f = 1 MHz,	P01 to P03, P10 to P17,			15	pF
		Unmeasured pins	P30 to P37, P50 to P57,				
		returned to 0 V.	P70 to P72, P100, P101				

Remark Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.

Main System Clock Oscillator Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fX) Note 1	V _{DD} = Oscillation voltage range	1.0		5.0	MHz
		Oscillation stabilization	After VDD came to MIN.			4	ms
	· +	time Note 2	of oscillation voltage range				
Crystal resonator	or	Oscillation frequency (fX) Note 1		1.0		5.0	MHz
		Oscillation stabilization	VDD = 4.5 to 5.5 V			10	ms
	· · · · · · · · · · · · · · · · · · ·	time Note 2				30	
External clock	X2 X1	X1 input frequency (fX) ^{Note 1}		1.0		5.0	MHz
		X1 input high- and		85		500	ns
		low-level widths (txH, txL)					

- **Notes 1.** Only the oscillator characteristics are shown. For the instruction execution time, refer to **AC Character-istics**.
 - 2. Time required for oscillation to stabilize after a reset or the STOP mode has been released.

Caution When using the oscillation circuit of the main system clock, wire the portion enclosed in broken lines in the figures as follows to avoid adverse influences on the wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring over other signal lines.
- Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss.
- Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test C	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P30 to P32, P35 to P37, P50 to P57,	V _{DD} = 2.7 to 5.5 V	0.7Vdd		Vdd	V
		P71		0.8Vdd		Vdd	V
	VIH2	P00 to P03, P33, P34, P70, P72, P100,	V _{DD} = 2.7 to 5.5 V	0.8Vdd		Vdd	V
		P101, RESET		0.85Vdd		Vdd	V
	Vінз	X1, X2	V _{DD} = 2.7 to 5.5 V	Vdd - 0.5		Vdd	V
				Vdd - 0.2		Vdd	V
Input voltage, low	VIL1	P10 to P17, P30 to P32,	Vpd = 2.7 to 5.5 V	0		0.3Vdd	V
		P35 to P37, P50 to P57, P71		0		0.2Vdd	V
	VIL2	P00 to P03, P33, P34,	VDD = 2.7 to 5.5 V	0		0.2VDD	V
		P70, P72, P100, P101, RESET		0		0.15V _{DD}	V
	VIL3	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
				0		0.2	V
Output voltage, high	Vон	VDD = 4.5 to 5.5 V, IOH = -	–1 mA	Vdd - 1.0			V
		Іон = –100 µА		Vdd - 0.5			V
Output voltage, low	Vol	P50 to P57	V _{DD} = 2.0 to 4.5 V,			0.8	V
			IoL = 10 mA				
			$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$		0.4	2.0	V
			lo∟ = 15 mA				
		P01 to P03, P10 to P17,	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$			0.4	V
		P30 to P37, P70 to P72,	loL = 1.6 mA				
		P100, P101	lol = 400 μA			0.5	V
Input-leak current, high	Ішні	Vin = Vdd	P00 to P03, P10 to P17,			3	μA
			P30 to P37, P50 to P57,				
			P70 to P72, P100,				
			P101, RESET				
	ILIH2		X1, X2			20	μA
Input-leak current, low		$V_{IN} = 0 V$	P00 to P03, P10 to P17,			-3	μA
			P30 to P37, P50 to P57,				
			P70 to P72, P100,				
			P101, RESET				
			X1, X2			-20	μA
Output leak current, high	Ігон	Vout = Vdd				3	μA
Output leak current, low	ILOL	Vout = 0 V				-3	μA
Software pull-up resistor	R	Vin = 0 V	P01 to P03, P10 to P17,	15	40	90	kΩ
			P30 to P37, P50 to P57,				
			P70 to P72, P100,				
			P101				

Remark Unless otherwise specified, dual-function pin characteristics are the same as port pin characteristics.

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	5.0-MHz crystal	$V_{DD} = 5.0 \text{ V} \pm 10\%$ Note 4		5.4	16.2	mA
		oscillation operating	$V_{DD} = 3.0 \text{ V} \pm 10\% \text{ Note 5}$		0.8	2.4	mA
		mode (fxx = 2.5 MHz) Note 2	$V_{DD} = 2.0 \text{ V} \pm 10\%$ Note 5		0.45	1.35	mA
		5.0-MHz crystal oscillation	$V_{DD} = 5.0 \text{ V} \pm 10\%$ Note 4		9.5	28.5	mA
		operating mode	$V_{DD} = 3.0 \text{ V} \pm 10\% \text{ Note 5}$		1.0	3.0	mA
		(fxx = 5.0 MHz) Note 3					
	IDD2	5.0-MHz crystal oscillation	$V_{DD} = 5.0 V \pm 10\%$		1.4	4.2	mA
		HALT mode	$V_{DD} = 3.0 V \pm 10\%$		0.5	1.5	mA
		(fxx = 2.5 MHz) Note 2	$V_{DD} = 2.0 V \pm 10\%$		280	840	μA
		5.0-MHz crystal oscillation	$V_{DD} = 5.0 V \pm 10\%$		1.6	4.8	mA
		HALT mode	$V_{DD} = 3.0 V \pm 10\%$		0.65	1.95	mA
		(fxx = 5.0 MHz) Note 3					
	IDD3	STOP mode	$V_{DD} = 5.0 V \pm 10\%$		0.1	30	μA
			$V_{DD} = 3.0 V \pm 10\%$		0.05	10	μA
			$V_{DD} = 2.0 V \pm 10\%$		0.05	10	μA

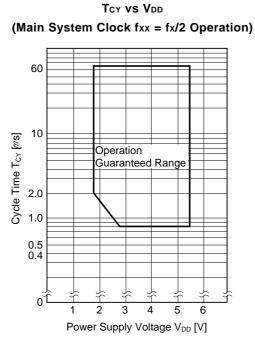
DC Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V)

Notes 1. Not including AVREF, AVDD currents or port currents (including current flowing into internal pull-up resistors).

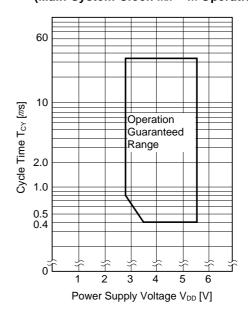
- **2.** $f_{xx} = f_x/2$ operation (when oscillation mode selection register (OSMS) is set to 00H).
- **3.** fxx = fx operation (when oscillation mode selection register (OSMS) is set to 01H).
- 4. High-speed mode operation (when processor clock control register (PCC) is set to 00H).
- 5. Low-speed mode operation (when processor clock control register (PCC) is set to 04H).

Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency


AC Characteristics

(1) **Basic Operation** ($T_A = -40$ to $+85^{\circ}C$, $V_{DD} = 1.8$ to 5.5 V)


Parameter	Symbol	Tes	t Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	$f_{XX} = f_X/2$ Note1	V _{DD} = 2.7 to 5.5 V	0.8		64	μs
(minimum instruction				2.0		64	μs
execution time)		$f_{XX} = f_X / Note2$	3.5 V - VDD - 5.5 V	0.4		32	μs
			2.7 V - Vdd < 3.5 V	0.8		32	μs
TI5, TI6	fтı	V _{DD} = 4.5 to 5.5 V		0		4	MHz
input frequency				0		275	kHz
TI5, TI6 input high-/	tтıн,	V _{DD} = 4.5 to 5.5 V		100			ns
low-level widths	t⊤ı∟			1.8			μs
Interrupt input high-/	tinth,	V _{DD} = 2.7 to 5.5 V		10			μs
low-level widths	t INTL			20			μs
RESET low-level width	trsl	V _{DD} = 2.7 to 5.5 V		10			μs
				20			μs

Notes 1. When oscillation mode selection register (OSMS) is set to 00H.2. When OSMS is set to 01H.

Remark fxx: Main system clock frequency (fx or fx/2) fx: Main system clock oscillation frequency

Tcy vs VDD (Main System Clock fxx = fx Operation)

(2) Serial Interface $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{DD} = 1.8 \text{ to } 5.5 \text{ V})$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkCY1	4.5 V - VDD - 5.5 V	800			ns
		2.7 V - VDD < 4.5 V	1600			ns
		2.0 V - VDD < 2.7 V	3200			ns
			4800			ns
SCK2 high-/low-level width	t кн1,	V _{DD} = 4.5 to 5.5 V	tксү1/2-50			ns
	t KL1		tксү1/2–100			ns
SI2 setup time (to $\overline{\text{SCK2}}$ \uparrow)	tsik1	4.5 V - VDD - 5.5 V	100			ns
		2.7 V - VDD < 4.5 V	150			ns
		2.0 V - VDD < 2.7 V	300			ns
			400			ns
SI2 hold time (from SCK2 ↑)	tksi1		400			ns
$\overline{\text{SCK2}} \downarrow \rightarrow \text{SO2}$	tkso1	C = 100 pF ^{Note}			300	ns
output delay time						

(a) 3-wired serial I/O mode (SCK2 ... internal clock output)

Note C is the $\overline{SCK2}$, SO2 output line load capacitance.

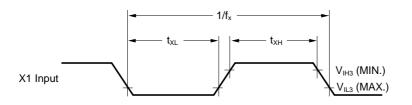
(b) 3-wired serial I/O mode (SCK2 --- external clock input)

Parameter	Symbol	Tes	t Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tKCY2	4.5 V - VDD - 5.5 V	,	800			ns
		2.7 V - VDD < 4.5 V	,	1600			ns
		2.0 V - VDD < 2.7 V	,	3200			ns
				4800			ns
SCK2 high-/low-level width	tкн2,	4.5 V - VDD - 5.5 V	,	400			ns
	tKL2	2.7 V - VDD < 4.5 V	,	800			ns
		2.0 V - VDD < 2.7 V	,	1600			ns
				2400			ns
SI2 setup time (to $\overline{\text{SCK2}}$ \uparrow)	tsik2	V _{DD} = 2.0 to 5.5 V		100			ns
				150			ns
SI2 hold time (from $\overline{\text{SCK2}}$ \uparrow)	tksi2			400			ns
$\overline{\mathrm{SCK2}}\downarrow ightarrow\mathrm{SO2}$	tĸso2	C = 100 pF ^{Note}	VDD = 2.0 to 5.5 V			300	ns
output delay time						500	ns
SCK2 rise, fall time	t _{R2} ,					1000	ns
	tF2						

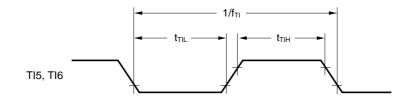
Note C is the SO2 output line load capacitance.

(c) UART mode (Dedicated baud rate generator output)

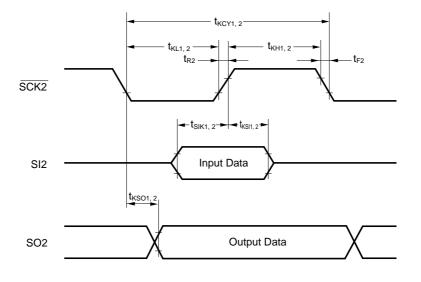
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		4.5 V - VDD - 5.5 V			78125	bps
		2.7 V - VDD < 4.5 V			39063	bps
		2.0 V - VDD < 2.7 V			19531	bps
					9766	bps


(d) UART mode (External clock input)

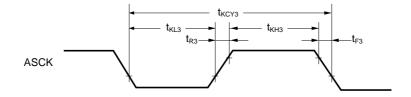
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз	4.5 V - VDD - 5.5 V	800			ns
		2.7 V - VDD < 4.5 V	1600			ns
		2.0 V - V _{DD} < 2.7 V	3200			ns
			4800			ns
ASCK high-/low-level width	tкнз,	4.5 V - VDD - 5.5 V	400			ns
	t ĸ∟з	2.7 V - VDD < 4.5 V	800			ns
		2.0 V - V _{DD} < 2.7 V	1600			ns
			2400			ns
Transfer rate		4.5 V - VDD - 5.5 V			39063	bps
		2.7 V - VDD < 4.5 V			19531	bps
		2.0 V - VDD < 2.7 V			9766	bps
					6510	bps
ASCK rise, fall time	trs,				1000	ns
	tгз					


AC Timing Test Point (Excluding X1 Input)

Clock Timing



TI Timing



Serial Transfer Timing

3-wired serial I/O mode:

UART mode (external clock input):

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Total error Note		2.7 V - AV _{REF} - AV _{DD}			1.4	%
Conversion time	tсолу		19.1		200	μs
Sampling time	t SAMP		12/fxx			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		2.7		AVDD	V
AVREF-AVss resistance	RAIREF		4	14		kΩ

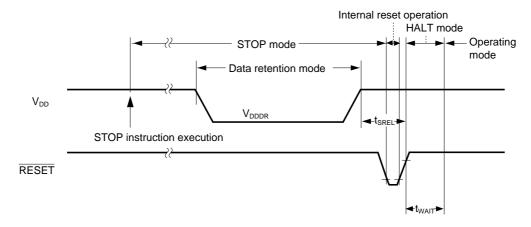
A/D Converter Characteristics (TA = -40 to +85°C, AVDD = VDD = 2.7 to 5.5 V, AVSS = VSS = 0 V)

Note Excluding quantization error (±1/2 LSB). Shown as a percentage of the full scale value.

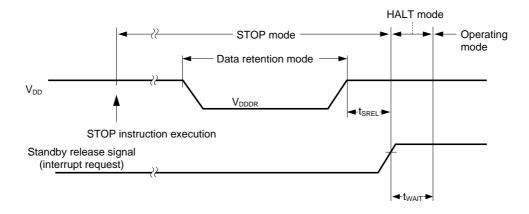
Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency

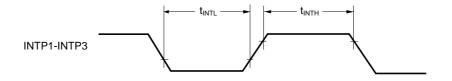
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.8		5.5	V
Data retention supply current	Idddr	VDDDR = 1.8 V		0.1	10	μA
Release signal set time	tSREL		0			μs
Oscillation stabilization wait	twait	Release by RESET		217/fx		ms
time		Release by interrupt		Note		ms


Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (TA = -40 to $+85^{\circ}$ C)

Note 2¹²/fxx or 2¹⁴/fxx to 2¹⁷/fxx can be selected by bit 0 to bit 2 (OSTS0 to OSTS2) of oscillation stabilization time selection register (OSTS).


Remark fxx: Main system clock frequency (fx or fx/2)

fx: Main system clock oscillation frequency


Data Retention Timing (STOP mode released by RESET)

Data Retention Timing (Standby release signal: STOP mode released by interrupt request signal)

Interrupt Input Timing

RESET Input Timing

PROM Programming Characteristics

DC Characteristics

(1) **PROM Write Mode** (T_A = $25 \pm 5\frac{1}{2}$ C, V_{DD} = 6.5 ± 0.25 V, V_{PP} = 12.5 ± 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vін	Vін		0.7Vdd		Vdd	V
Input voltage, low	VIL	VIL		0		0.3Vdd	V
Output voltage, high	Vон	Vон	Іон = —1 mA	Vdd - 1.0			V
Output voltage, low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	lu	lu	0 - Vin - Vdd	-10		+10	μA
VPP supply voltage	Vpp	Vpp		12.2	12.5	12.8	V
VDD supply voltage	Vdd	Vcc		6.25	6.5	6.75	V
VPP supply current	IPP	Ірр	PGM = VIL			50	mA
VDD supply current	lod	Icc				50	mA

(2) **PROM Read Mode** (TA = $25 \pm 5\frac{1}{2}$ C, VDD = 5.0 ± 0.5 V, VPP = VDD ± 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vін	Vін		0.7Vdd		Vdd	V
Input voltage, low	VIL	VIL		0		0.3Vdd	V
Output voltage, high	Vон1	Voh1	Іон = −1 mA	Vdd - 1.0			V
	Vон2	V _{OH2}	Іон = -100 <i>µ</i> А	Vdd - 0.5			V
Output voltage, low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	lu -	lu	0 - Vin - Vdd	-10		+10	μA
Output leakage current	Ilo	Ilo	0 - Vout - Vdd, $\overline{OE} = Vih$	-10		+10	μA
VPP supply voltage	Vpp	Vpp		Vdd - 0.6	Vdd	VDD + 0.6	V
VDD supply voltage	Vdd	Vcc		4.5	5.0	5.5	V
VPP supply current	Ірр	Ірр	Vpp = Vdd			100	μA
VDD supply current	Idd	ICCA1	$\overline{CE} = VIL, VIN = VIH$			50	mA

Note Corresponding *µ*PD27C1001A symbol.

AC Characteristics

(1) PROM Write Mode

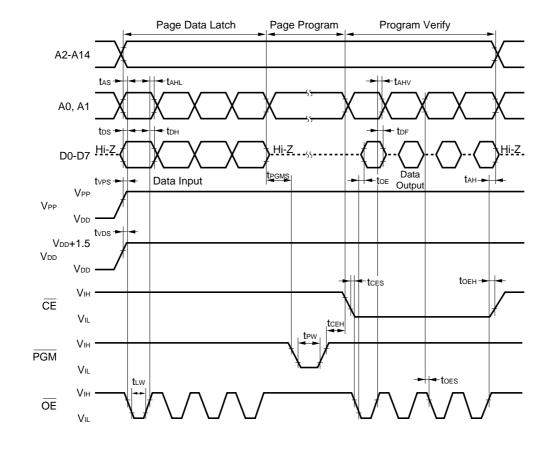
(a)	Page program mode ($T_A = 25 \pm 5\frac{1}{2}C$	$V_{DD} = 6.5 \pm 0.25 V,$	$V_{PP} = 12.5 \pm 0.3 V$
-----	---------------------	------------------------------	----------------------------	---------------------------

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{\text{OE}}\downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
\overline{CE} setup time (to $\overline{OE}\downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{\text{OE}} \downarrow$)	tos	tos		2			μs
Address hold time (from \overline{OE} \uparrow)	tан	tан		2			μs
	tahl	tahl		2			μs
	tанv	t ahv		0			μs
Input data hold time (from $\overline{OE} \uparrow$)	tон	tон		2			μs
$\overline{OE} \uparrow \rightarrow Data$ output float	tdf	t DF		0		250	ns
delay time							
V_{PP} setup time (to $\overline{OE} \downarrow$)	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{OE} \downarrow$)	tvds	tvcs		1.0			ms
Program pulse width	tpw	tpw		0.095	0.1	0.105	ms
$\overline{\text{OE}} \downarrow \rightarrow \text{Valid}$ data delay time	toe	toe				1	μs
OE pulse width during data	t∟w	tLW		1			μs
latching							
PGM setup time	tрдмs	t PGMS		2			μs
CE hold time	tсен	tсен		2			μs
OE hold time	tоен	toeн		2			μs

(b) Byte program mode (TA = $25 \pm 5\frac{1}{2}$ C, VDD = 6.5 ± 0.25 V, VPP = 12.5 ± 0.3 V)

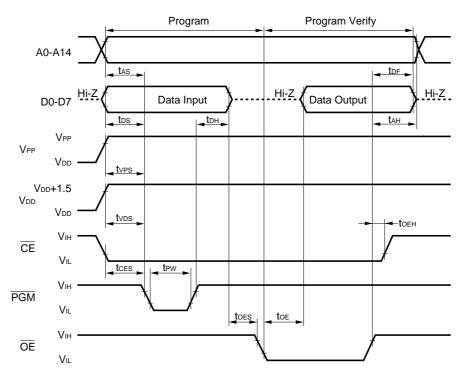
Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address setup time (to $\overline{PGM} \downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
$\overline{\text{CE}}$ setup time (to $\overline{\text{PGM}} \downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{\text{PGM}} \downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{OE} \uparrow$)	tан	tан		2			μs
Input data hold time (from PGM ↑)	tон	tон		2			μs
$\overrightarrow{OE} \uparrow \rightarrow Data$ output float delay time	t df	tor		0		250	ns
VPP setup time (to $\overline{PGM} \downarrow$)	tvps	tvps		1.0			ms
VDD setup time (to $\overline{PGM} \downarrow$)	tvos	tvcs		1.0			ms
Program pulse width	t PW	tew		0.095	0.1	0.105	ms
$\overline{OE} \downarrow \rightarrow Valid$ data delay time	t OE	t OE				1	μs
OE hold time	tоен	_		2			μs

Note Corresponding μ PD27C1001A symbol.

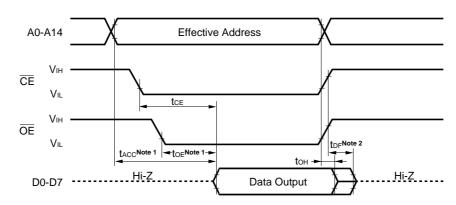

(2) **PROM Read Mode** $(T_A = 25 \pm 5\frac{1}{2}C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)$

Parameter	Symbol	Symbol ^{Note}	Test Conditions	MIN.	TYP.	MAX.	Unit
Address $\uparrow \rightarrow$ Data output float delay time	tacc	tacc	$\overline{CE} = \overline{OE} = V_{IL}$			800	ns
$\overline{\operatorname{CE}} \downarrow \to \operatorname{Valid}$ output delay time	t CE	tce.	OE = VIL			800	ns
$\overline{OE} \downarrow \rightarrow Valid$ output delay time	t OE	toe	CE = VIL			200	ns
$\overline{\text{OE}} \downarrow \rightarrow$ Data output float delay time	tdf	tor	\overline{CE} = VIL	0		60	ns
Address \rightarrow Data hold time	tон	tон	$\overline{CE} = \overline{OE} = V_{IL}$	0			ns

Note Corresponding *µ*PD27C1001A symbol.

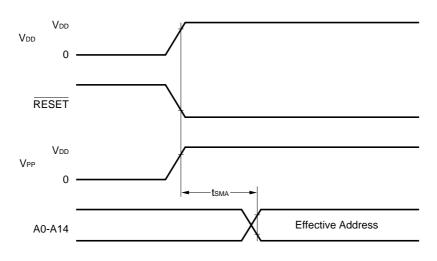

(3) **PROM Programming Mode** $(T_A = 25\frac{1}{2}C, V_{SS} = 0 V)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
PROM programming mode setup time	tSMA		10			μs


PROM Write Mode Timing (page program mode)

PROM Write Mode Timing (byte program mode)

Cautions 1. VDD should be applied before VPP, and removed after VPP.


- 2. VPP must not exceed +13.5 V including overshoot.
- 3. Reliability may be adversely affected if removal/reinsertion is performed while + 12.5 V is being applied to VPP.

PROM Read Mode Timing

- **Notes** 1. If you want to read within the range of tacc, make the \overline{OE} input delay time from the fall of \overline{CE} a maximum of tacc toe.
 - **2.** top is the time from when either \overline{OE} or \overline{CE} first reaches VIH.

PROM Programming Mode Setting Timing

