Wide-Band Amplifier Discriminators

Features & Applications:

- Exceptionally high gain: power gain at 4.5 MHz 75 dB typ.
- Excellent limiting characteristics input limiting voltage (knee) = 300 µV typ. at 4.5 MHz Excellent AM rejection: > 50 dB at
- Excellent AM rejection: > 50 dB a
 4.5 MHz
- High audio-voltage recovery 220 mV typ at 4.5 MHz, 25 kHz deviation
- Wide frequency capability -100 kHz to > 20 MHz
- Comprehensive circuit functions: if amplifier, AM and noise limiter, FM detector, audio preamplifier

Fig. 1 — Schematic diagram for CA3013 and CA3014

Fig. 2 — Block diagram of typical television receiver using RCA integrated-circuit sound-if amplifier and detector section

File Number 129

ABSOLUTE-MAXIMUM VOLTAGE LIMITS AT TA = 25° C

Indicated voltage limits for each terminal can be applied under the specified voltage conditions for other terminals. All voltages are with respect to ground (Terminal 8).

CA3013

TERMINAL			VOLTAGE CONDITIONS AT OTHER TERMINALS										
	VOLTAGE LIMITS		1	2	3	4	5	6	7	8	9	10	
1	- 3	-3 +3		Same as 1		+2.5 to +7.5	+7.5	Same as 4	Same as 4	Ground	AF Output	+7.5	
2	- 3	+3	Same as 2	Same as 1 Same as 1		+2.5 to +7.5	+7.5	Same as 4	Same as 4	Ground	AF Output	+7.5	
3	- 3	+3	-3 to +3			+2.5 to +7.5	+7.5	Same as 4	Same as 4	Ground	AF Output	+7.5	
4	+2.5	+7.5	-3 to +3				+7.5	Same as 4	Same as 4	Ground	AF Output	+7.5	
5	0	+10	-3 to +3			+2.5 to +7.5		Same as 4	Same as 4	Ground	AF Output	+7.5	
6	+2.5	+7.5	-3 to +3	Same as 1		Same as 6	+7.5	-	Same as 4	Ground	AF Output	+7.5	
7	+2.5	+7.5	-3 to +3	Same as 1	Apply	+2.5 to +7.5	+7.5	Same as 4	-	Ground	AF Output	+7.5	
. 8	-3	+7.5	-3 to +3	Same as 1	Not	+2.5 to +7.5	+7.5	Same as 4	Same as 4	Ground	AF Output	+7.5	
9	0	+7.5	-3 to +3	Same as 1	a	+2.5 to +7.5	+7.5	Same as 4	Same as 4	Ground		+7.5	
10	0	+10	-3 to +3	Same as 1		+2.5 to +7.5	+7.5	Same as 4	Same as 4	Ground	AF Output	<u> </u>	
CASE	INTERNALLY CONNECTED TO TERMINAL No.8 (GROUND TERMINAL)												

CA3014

TERMINAL	VOLTAGE LIMITS		VOLTAGE CONDITIONS AT OTHER TERMINALS										
			1	2	3	4	5	6	7	8	9	10	
1	- 3	+3	•	Same as 1		+2.5 to +10	+10	Same as 4	Same as 4	Ground	AF Output	+10	
2	-3	+3	Same as 2	Same as 1		+2.5 to +10	+10	Same as 4	Same as 4	Ground	AF Output	+10	
3	-3	+3	-3 to +3			+2.5 to +10	+10	Same as 4	Same as 4	Ground	AF Output	+10	
4	+2.5	+10	-3 to +3			-	+10	Same as 4	Same as 4	Ground	AF Output	+10	
5	0	+13	-3 to +3			+2.5 to +10		Same as 4	Same as 4	Ground	AF Output	+10	
6	+2.5	+10	-3 to +3			Same as 6	+10	•	Same as 4	Ground	AF Output	+10	
7	+2.5	+10	-3 to +3			+2.5 to +10	+10	Same as 4		Ground	AF Output	+10	
8	-3	+10	-3 to +3			+2.5 to +10	+10	Same as 4	Same as 4	Ground	AF Output	+10	
9	0	+10	-3 to +3	Same as 1	å	+2.5 to +10	+10	Same as 4	Same as 4	Ground	•	+10	
10	0	+13	-3 to +3	Same as 1		+2.5 to +10	+10	Same as 4	Same as 4	Ground	AF Output	-	
CASE		INTERNALLY CONNECTED TO TERMINAL No.8 (GROUND TERMINAL)											

Example of use of LIMITS TABLE:

For RCA-CA3013, a maximum voltage of ± 3 volts may be applied to Terminal 1 under the following conditions:

Terminal 2 is at the same dc potential as Terminal 1

Terminal 3: do not apply external voltage

Terminal 4 is at any dc potential between +2.5 and +7.5 volts

Terminal 5 is at a dc potential of +7.5 volts

Terminals 6 and 7 are at the same dc potential as Terminal 4

Terminal 8 is at dc ground potential

Terminal 9 is used as the af output terminal

Terminal 10 is at a dc potential of +7.5 volts

			LIMITS						TYPICAL				
ELECTRICAL CHARACTERISTICS (See Page 8 for Definitions of Terms)	SYMBOLS	SETUP & PROCEDURE	FREQUENCY	DC SUPPLY VOLTAGE VCC	AMBIENT TEMPERA- TURE TA	- RCA CA3013						TYPICAL CHARAC- TERISTICS CURVES	
benintions of Terms)		Fig.	Mc/s	volts	°C			Min. Typ. Max.		1	Fig.		
		3	_	6	- 55 +25 +125	- 60 -	80 90 70	- 133 -	73 73 60	80 90 70	120 110 110	mW mW	4
Total Device Dissipation*	P _T	3	_	7.5	- 55 +25 +125	- 87 -	130 120 100	- 187 -	106 106 90	130 120 100	170 150 150	mW mW mW	4
·		3	-	10	- 55 +25 +125	-	- -	- - -	165 165 150	210 190 160	250 230 230	mW mW	4
		5	1	6	- 55 +25 +125	- 60 -	55 66 61	- -	50 60 50	55 66 61	-	dB dB dB	6
Voltage Gain**	А	5	1	7.5	- 55 +25 +125	- 65 -	59 70 65	-	55 65 55	59 70 65	-	dB dB dB	6
		5	1	10	- 55 +25 +125	- - -	- - -	- - -	55 65 55	61 71 66	- - -	dB dB dB	6
		5	4.5 10.7	7.5 7.5	+25 +25	55	67	-	60 55	60	-	dB dB	7
Input-Impedance Components:													
Parallel Input Resistance	RIN	8	4.5	7.5	+25	-	3	-	-	3	-	kΩ	9
Parallel Input Capacitance	CIN	8	4.5	7.5	+25	-	7	-	-	7	-	pF	9
Output-Impedance Components:													
Parallel Output Resistance	R _{OUT}	10	4.5	7.5	+25	-	31.5	-	-	31.5	-	kΩ	11
Parallel Output Capacitance	C _{OUT}	10	4.5	7.5	+25	-	4.2	-	-	4.2	-	pF	11
Noise Figure	NF	12	4.5	7.5	+25	-	8.7	-	-	8.7	-	dВ	13
Input Limiting Voltage (Knee)	v _i (lim)	14	4.5	7.5	+25	-	300	450	-	300	400	μV	15
Recovered AF Voltage	v _o (af)	14	4.5	6 7.5 10	+25 +25 +25	- 128 -	155 188 -	- - -	135	155 188 220	-	mV mV	15
Amplitude-Modulation Rejection	AMR	16	4.5	7.5	+25	-	50	-	-	50	-	dB	_
Discriminator Output Resistance	R _O (disc)	-	4.5	7.5	+25	-	60	-	-	60	-	Ω	-
Total Harmonic Distortion	THD	14	4.5	7.5	+25	_	1.8	_	-	1.8	_	%	17

^{*} Total current drain may be determined by dividing P_T by V_{CC}.

^{**} Recommended minimum dc supply voltage (VCC) is 5.5 V. Nominal load current flowing into terminal 5 is 1.5 mA at 7.5 V.

TYPICAL CHARACTERISTICS AND TEST SETUPS

DISSIPATION TEST SETUP

Fig.3

DISSIPATION vs. TEMPERATURE

Fig.4

VOLTAGE-GAIN TEST SETUP

PROCEDURE:

- 1) Set input frequency at desired value, v_i = 100 μV rms.
- 2) Record v_o.
- 3) Calculate Voltage Gain A from A = 20 $\log_{10} v_0/v_i$.
- 4) Repeat Steps 1, 2, and 3 for each frequency and/or temperature desired.

Fig.5

1-Mc/s VOLTAGE GAIN vs. TEMPERATURE

Fig.6

VOLTAGE GAIN vs. FREQUENCY

TYPICAL CHARACTERISTICS AND TEST SETUPS

INPUT-IMPEDANCE COMPONENTS TEST SETUP

Fig.8

OUTPUT-IMPEDANCE COMPONENTS TEST SETUP

 C_1 , C_2 = Arco Type 423 padder, or equivalent Fig. 12

 L_2 = 2.36 μH

INPUT-IMPEDANCE COMPONENTS vs. FREQUENCY

Fig.9

OUTPUT-IMPEDANCE COMPONENTS vs. FREQUENCY

Fig.11

NOISE FIGURE VS. DC SUPPLY VOLTAGE

Fig. 13

TYPICAL CHARACTERISTICS AND TEST SETUPS

INPUT LIMITING VOLTAGE, RECOVERED AF VOLTAGE, AND TOTAL HARMONIC DISTORTION TEST SETUP

PROCEDURE:

- A Recovered-AF Voltage Output:
 - 1) Set input frequency = 4.5 Mc/s, v_i = 100 mV rms, modulating frequency = 1 kc/s, frequency deviation = ± 25 kc/s.
 - 2) Record vo as Recovered-AF Voltage Output.
- B Input Limiting Voltage (Knee):
 - 1) Repeat Steps A1 and A2, using vi = 100 mV rms.
 - 2) Decrease v_i to the level at which v_0 is 3 dB below its value for v_i = 100 mV.
 - 3) Record vi as Input Limiting Voltage (Knee).

Fig.14

INPUT LIMITING VOLTAGE (KNEE) AND RECOVERED AF VOLTAGE

(b)

Fig. 15

(c)

TYPICAL CHARACTERISTICS AND TEST SETUPS

AM-REJECTION TEST SETUP

PROCEDURE:

- 1) With Switch S in position ''a'', set input frequency = 4.5 Mc/s, ν_j = 10 mV rms, modulating frequency = 1 kc/s, frequency deviation = ± 25 kc/s.
- 2) Record v.
- 3) Place Switch S in position "b", and set input frequency = 4.5 Mc/s, v_i = 10 mV rms, modulating frequency = 1 kc/s, % modulation = 50.
- 4) Measure v_0 , and record value in dB below value in Step 2 as AM Rejection.

Fig. 16

TOTAL HARMONIC DISTORTION vs. DC SUPPLY VOLTAGE

Fig. 17

DISCRIMINATOR TRANSFORMER SCHEMATIC

CONSTRUCTION DETAILS OF DISCRIMINATOR TRANSFORMERS SHOWN IN FIGS. 2, 14 AND 16

Coil-Form Outside Diameter = 7/32 inch

Slugs: Radio Industries, Inc. Type "E" Material, or equivalent Wire Type: "GRIPEZE"*, or equivalent

Operating	Wire Size		Τι	C ₁	c ₂	
Frequency Mc/s	(AWG #)	L₁▲	L ₂ [▲]	L ₃	ρ F	р F
1.75	40	44	20	44 total (22 bifilar wound)	820	820
4.5	36	18	7	22 total (11 bifilar wound)	560	330
10.7	36	18	18	18 total (9 bifilar wound)	100	100

^{*} Registered Trade Mark, Phelps-Dodge Copper Products.

NOTE: The mutual coupling between L₁ and L₃ is adjusted for the desired degree of linearity.

[▲] wound bifilar.