Wide-Band Amplifier Discriminators #### Features & Applications: - Exceptionally high gain: power gain at 4.5 MHz 75 dB typ. - Excellent limiting characteristics input limiting voltage (knee) = 300 µV typ. at 4.5 MHz Excellent AM rejection: > 50 dB at - Excellent AM rejection: > 50 dB a 4.5 MHz - High audio-voltage recovery 220 mV typ at 4.5 MHz, 25 kHz deviation - Wide frequency capability -100 kHz to > 20 MHz - Comprehensive circuit functions: if amplifier, AM and noise limiter, FM detector, audio preamplifier Fig. 1 — Schematic diagram for CA3013 and CA3014 Fig. 2 — Block diagram of typical television receiver using RCA integrated-circuit sound-if amplifier and detector section File Number 129 ### ABSOLUTE-MAXIMUM VOLTAGE LIMITS AT TA = 25° C Indicated voltage limits for each terminal can be applied under the specified voltage conditions for other terminals. All voltages are with respect to ground (Terminal 8). #### CA3013 | TERMINAL | | | VOLTAGE CONDITIONS AT OTHER TERMINALS | | | | | | | | | | | |----------|---|-------|---------------------------------------|---------------------|-------|--------------|------|-----------|-----------|--------|-----------|----------|--| | | VOLTAGE LIMITS | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | 1 | - 3 | -3 +3 | | Same as 1 | | +2.5 to +7.5 | +7.5 | Same as 4 | Same as 4 | Ground | AF Output | +7.5 | | | 2 | - 3 | +3 | Same as 2 | Same as 1 Same as 1 | | +2.5 to +7.5 | +7.5 | Same as 4 | Same as 4 | Ground | AF Output | +7.5 | | | 3 | - 3 | +3 | -3 to +3 | | | +2.5 to +7.5 | +7.5 | Same as 4 | Same as 4 | Ground | AF Output | +7.5 | | | 4 | +2.5 | +7.5 | -3 to +3 | | | | +7.5 | Same as 4 | Same as 4 | Ground | AF Output | +7.5 | | | 5 | 0 | +10 | -3 to +3 | | | +2.5 to +7.5 | | Same as 4 | Same as 4 | Ground | AF Output | +7.5 | | | 6 | +2.5 | +7.5 | -3 to +3 | Same as 1 | | Same as 6 | +7.5 | - | Same as 4 | Ground | AF Output | +7.5 | | | 7 | +2.5 | +7.5 | -3 to +3 | Same as 1 | Apply | +2.5 to +7.5 | +7.5 | Same as 4 | - | Ground | AF Output | +7.5 | | | . 8 | -3 | +7.5 | -3 to +3 | Same as 1 | Not | +2.5 to +7.5 | +7.5 | Same as 4 | Same as 4 | Ground | AF Output | +7.5 | | | 9 | 0 | +7.5 | -3 to +3 | Same as 1 | a | +2.5 to +7.5 | +7.5 | Same as 4 | Same as 4 | Ground | | +7.5 | | | 10 | 0 | +10 | -3 to +3 | Same as 1 | | +2.5 to +7.5 | +7.5 | Same as 4 | Same as 4 | Ground | AF Output | <u> </u> | | | CASE | INTERNALLY CONNECTED TO TERMINAL No.8 (GROUND TERMINAL) | | | | | | | | | | | | | #### CA3014 | TERMINAL | VOLTAGE LIMITS | | VOLTAGE CONDITIONS AT OTHER TERMINALS | | | | | | | | | | | |----------|----------------|---|---------------------------------------|---|---|-------------|-----|-----------|-----------|--------|-----------|-----|--| | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | 1 | - 3 | +3 | • | Same as 1 | | +2.5 to +10 | +10 | Same as 4 | Same as 4 | Ground | AF Output | +10 | | | 2 | -3 | +3 | Same as 2 | Same as 1 | | +2.5 to +10 | +10 | Same as 4 | Same as 4 | Ground | AF Output | +10 | | | 3 | -3 | +3 | -3 to +3 | | | +2.5 to +10 | +10 | Same as 4 | Same as 4 | Ground | AF Output | +10 | | | 4 | +2.5 | +10 | -3 to +3 | | | - | +10 | Same as 4 | Same as 4 | Ground | AF Output | +10 | | | 5 | 0 | +13 | -3 to +3 | | | +2.5 to +10 | | Same as 4 | Same as 4 | Ground | AF Output | +10 | | | 6 | +2.5 | +10 | -3 to +3 | | | Same as 6 | +10 | • | Same as 4 | Ground | AF Output | +10 | | | 7 | +2.5 | +10 | -3 to +3 | | | +2.5 to +10 | +10 | Same as 4 | | Ground | AF Output | +10 | | | 8 | -3 | +10 | -3 to +3 | | | +2.5 to +10 | +10 | Same as 4 | Same as 4 | Ground | AF Output | +10 | | | 9 | 0 | +10 | -3 to +3 | Same as 1 | å | +2.5 to +10 | +10 | Same as 4 | Same as 4 | Ground | • | +10 | | | 10 | 0 | +13 | -3 to +3 | Same as 1 | | +2.5 to +10 | +10 | Same as 4 | Same as 4 | Ground | AF Output | - | | | CASE | | INTERNALLY CONNECTED TO TERMINAL No.8 (GROUND TERMINAL) | | | | | | | | | | | | #### Example of use of LIMITS TABLE: For RCA-CA3013, a maximum voltage of ± 3 volts may be applied to Terminal 1 under the following conditions: Terminal 2 is at the same dc potential as Terminal 1 Terminal 3: do not apply external voltage Terminal 4 is at any dc potential between +2.5 and +7.5 volts Terminal 5 is at a dc potential of +7.5 volts Terminals 6 and 7 are at the same dc potential as Terminal 4 Terminal 8 is at dc ground potential Terminal 9 is used as the af output terminal Terminal 10 is at a dc potential of +7.5 volts | | | | LIMITS | | | | | | TYPICAL | | | | | |--|-----------------------|-------------------------|-------------|--------------------------------|-----------------------------------|-----------------|-------------------|----------------|-------------------|-------------------|-------------------|---|----| | ELECTRICAL CHARACTERISTICS (See Page 8 for Definitions of Terms) | SYMBOLS | SETUP
&
PROCEDURE | FREQUENCY | DC
SUPPLY
VOLTAGE
VCC | AMBIENT
TEMPERA-
TURE
TA | - RCA
CA3013 | | | | | | TYPICAL
CHARAC-
TERISTICS
CURVES | | | benintions of Terms) | | Fig. | Mc/s | volts | °C | | | Min. Typ. Max. | | 1 | Fig. | | | | | | 3 | _ | 6 | - 55
+25
+125 | -
60
- | 80
90
70 | -
133
- | 73
73
60 | 80
90
70 | 120
110
110 | mW
mW | 4 | | Total
Device
Dissipation* | P _T | 3 | _ | 7.5 | - 55
+25
+125 | -
87
- | 130
120
100 | -
187
- | 106
106
90 | 130
120
100 | 170
150
150 | mW
mW
mW | 4 | | · | | 3 | - | 10 | - 55
+25
+125 | - | -
- | -
-
- | 165
165
150 | 210
190
160 | 250
230
230 | mW
mW | 4 | | | | 5 | 1 | 6 | - 55
+25
+125 | -
60
- | 55
66
61 | -
- | 50
60
50 | 55
66
61 | - | dB
dB
dB | 6 | | Voltage Gain** | А | 5 | 1 | 7.5 | - 55
+25
+125 | -
65
- | 59
70
65 | - | 55
65
55 | 59
70
65 | - | dB
dB
dB | 6 | | | | 5 | 1 | 10 | - 55
+25
+125 | -
-
- | -
-
- | -
-
- | 55
65
55 | 61
71
66 | -
-
- | dB
dB
dB | 6 | | | | 5 | 4.5
10.7 | 7.5
7.5 | +25
+25 | 55 | 67 | - | 60
55 | 60 | - | dB
dB | 7 | | Input-Impedance
Components: | | | | | | | | | | | | | | | Parallel Input
Resistance | RIN | 8 | 4.5 | 7.5 | +25 | - | 3 | - | - | 3 | - | kΩ | 9 | | Parallel Input
Capacitance | CIN | 8 | 4.5 | 7.5 | +25 | - | 7 | - | - | 7 | - | pF | 9 | | Output-Impedance
Components: | | | | | | | | | | | | | | | Parallel Output
Resistance | R _{OUT} | 10 | 4.5 | 7.5 | +25 | - | 31.5 | - | - | 31.5 | - | kΩ | 11 | | Parallel Output
Capacitance | C _{OUT} | 10 | 4.5 | 7.5 | +25 | - | 4.2 | - | - | 4.2 | - | pF | 11 | | Noise Figure | NF | 12 | 4.5 | 7.5 | +25 | - | 8.7 | - | - | 8.7 | - | dВ | 13 | | Input Limiting
Voltage (Knee) | v _i (lim) | 14 | 4.5 | 7.5 | +25 | - | 300 | 450 | - | 300 | 400 | μV | 15 | | Recovered AF Voltage | v _o (af) | 14 | 4.5 | 6
7.5
10 | +25
+25
+25 | -
128
- | 155
188
- | -
-
- | 135 | 155
188
220 | - | mV
mV | 15 | | Amplitude-Modulation
Rejection | AMR | 16 | 4.5 | 7.5 | +25 | - | 50 | - | - | 50 | - | dB | _ | | Discriminator
Output Resistance | R _O (disc) | - | 4.5 | 7.5 | +25 | - | 60 | - | - | 60 | - | Ω | - | | Total Harmonic
Distortion | THD | 14 | 4.5 | 7.5 | +25 | _ | 1.8 | _ | - | 1.8 | _ | % | 17 | ^{*} Total current drain may be determined by dividing P_T by V_{CC}. ^{**} Recommended minimum dc supply voltage (VCC) is 5.5 V. Nominal load current flowing into terminal 5 is 1.5 mA at 7.5 V. ### TYPICAL CHARACTERISTICS AND TEST SETUPS #### DISSIPATION TEST SETUP Fig.3 #### DISSIPATION vs. TEMPERATURE Fig.4 #### **VOLTAGE-GAIN TEST SETUP** ### PROCEDURE: - 1) Set input frequency at desired value, v_i = 100 μV rms. - 2) Record v_o. - 3) Calculate Voltage Gain A from A = 20 $\log_{10} v_0/v_i$. - 4) Repeat Steps 1, 2, and 3 for each frequency and/or temperature desired. Fig.5 #### 1-Mc/s VOLTAGE GAIN vs. TEMPERATURE Fig.6 ## VOLTAGE GAIN vs. FREQUENCY ## TYPICAL CHARACTERISTICS AND TEST SETUPS #### INPUT-IMPEDANCE COMPONENTS TEST SETUP Fig.8 #### OUTPUT-IMPEDANCE COMPONENTS TEST SETUP C_1 , C_2 = Arco Type 423 padder, or equivalent Fig. 12 L_2 = 2.36 μH #### INPUT-IMPEDANCE COMPONENTS vs. FREQUENCY Fig.9 #### OUTPUT-IMPEDANCE COMPONENTS vs. FREQUENCY Fig.11 #### NOISE FIGURE VS. DC SUPPLY VOLTAGE Fig. 13 #### TYPICAL CHARACTERISTICS AND TEST SETUPS #### INPUT LIMITING VOLTAGE, RECOVERED AF VOLTAGE, AND TOTAL HARMONIC DISTORTION TEST SETUP #### PROCEDURE: - A Recovered-AF Voltage Output: - 1) Set input frequency = 4.5 Mc/s, v_i = 100 mV rms, modulating frequency = 1 kc/s, frequency deviation = ± 25 kc/s. - 2) Record vo as Recovered-AF Voltage Output. - B Input Limiting Voltage (Knee): - 1) Repeat Steps A1 and A2, using vi = 100 mV rms. - 2) Decrease v_i to the level at which v_0 is 3 dB below its value for v_i = 100 mV. - 3) Record vi as Input Limiting Voltage (Knee). Fig.14 #### INPUT LIMITING VOLTAGE (KNEE) AND RECOVERED AF VOLTAGE (b) Fig. 15 (c) ### TYPICAL CHARACTERISTICS AND TEST SETUPS ### AM-REJECTION TEST SETUP #### PROCEDURE: - 1) With Switch S in position ''a'', set input frequency = 4.5 Mc/s, ν_j = 10 mV rms, modulating frequency = 1 kc/s, frequency deviation = ± 25 kc/s. - 2) Record v. - 3) Place Switch S in position "b", and set input frequency = 4.5 Mc/s, v_i = 10 mV rms, modulating frequency = 1 kc/s, % modulation = 50. - 4) Measure v_0 , and record value in dB below value in Step 2 as AM Rejection. Fig. 16 ### TOTAL HARMONIC DISTORTION vs. DC SUPPLY VOLTAGE Fig. 17 #### DISCRIMINATOR TRANSFORMER SCHEMATIC # CONSTRUCTION DETAILS OF DISCRIMINATOR TRANSFORMERS SHOWN IN FIGS. 2, 14 AND 16 Coil-Form Outside Diameter = 7/32 inch Slugs: Radio Industries, Inc. Type "E" Material, or equivalent Wire Type: "GRIPEZE"*, or equivalent | Operating | Wire Size | | Τι | C ₁ | c ₂ | | |-------------------|-----------|-----|-----------------------------|-----------------------------------|----------------|------------| | Frequency
Mc/s | (AWG #) | L₁▲ | L ₂ [▲] | L ₃ | ρ F | р F | | 1.75 | 40 | 44 | 20 | 44 total
(22 bifilar
wound) | 820 | 820 | | 4.5 | 36 | 18 | 7 | 22 total
(11 bifilar
wound) | 560 | 330 | | 10.7 | 36 | 18 | 18 | 18 total
(9 bifilar
wound) | 100 | 100 | ^{*} Registered Trade Mark, Phelps-Dodge Copper Products. NOTE: The mutual coupling between L₁ and L₃ is adjusted for the desired degree of linearity. [▲] wound bifilar.