HA166102FP, HA166104FP HA166102T, HA166104T Read/Write Amplifier for Hard Disk Drive

OHITACHI

Type

Preliminary Rev. 0 Nov. 1991

Package

The HA166102FP, HA166104FP, HA166102T and HA166104T are read/write amplifiers designed for use with two-terminal recording heads. They have the following functions and features.

Functions

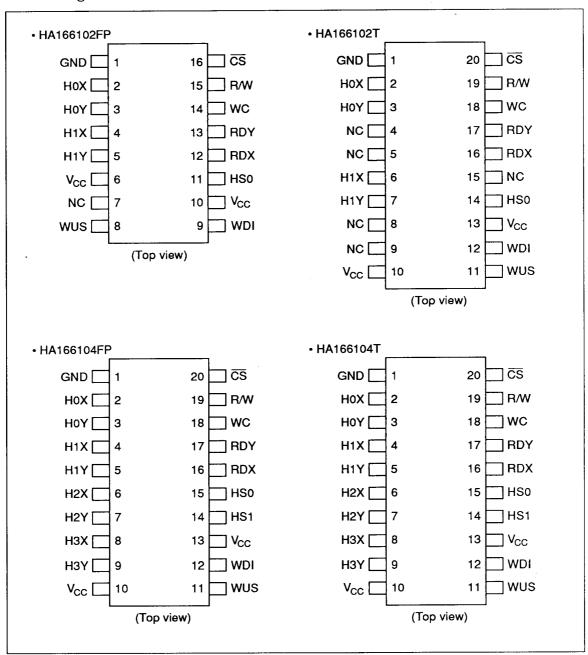
- · Read amplifier circuit
- · Write driver circuit
- · Write error detection circuit
- · Constant write current setup circuit

Features

- Single power supply +5 V
- · Low power

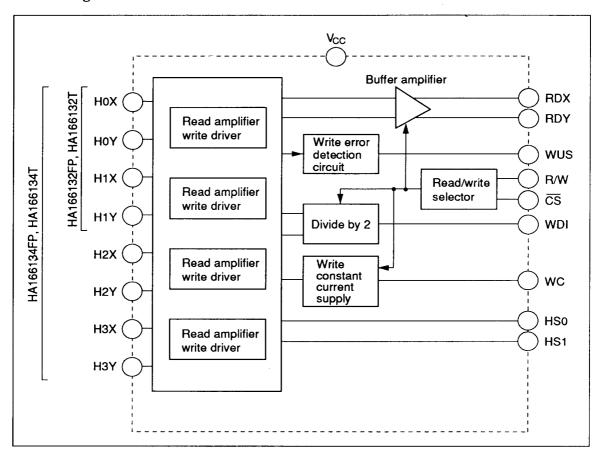
read: 150 mW (typ) idle: 5 mW (typ)

- Low Noise: 0.7 nV/√Hz (typ)
- Read amplifier has high differential voltage gain
 250 V/V (typ)
- · Built-in current and voltage monitors
- TTL compatible interface
- · Emitter-follower read amplifier outputs
- Input capacitance: 22 pF (typ)Write current range: 10 to 30 mA
- Designed for two-terminal MIG or thin-film heads


HA166102FP	2	FP-16DA
HA166104FP	4	FP-20DA
HA166102T	2	TTP-20DA
HA166104T	4	TTP-20DA

Channel

Ordering Information


Pin Arrangements

Pin Description

Symbol	Name	Description
RDX, RDY	Read amplifier output	Differential output pins for the read amp. The signal read out from the head coil is amplified and provided on these pins.
R/W	R/W switch	Mode select switch for changing over the bias condition of the head coil
		A low level selects the write mode, while a high level selects the read mode.
CS	Chip select	When this line is set high, the circuit goes into the standby state, a low power state. When this line is low, the chip is active.
HS0 HS1	Head select 0 Head select 1	Input pins for head select signals. The combination of these signals selects one head from head 0 to head 3.
		Refer to the head select table.
HoX, HoY	Head 0X, 0Y	These pins are connected to the R/W head coil of channel 0.
H1X, H1Y	Head 1X, 1Y	These pins are connected to the R/W head coil of channel 1.
H2X, H2Y	Head 2X, 2Y	These pins are connected to the R/W head coil of channel 2.
НЗХ, НЗҮ	Head 3X, 3Y	These pins are connected to the R/W head coil of channel 3.
WC	Write current setting	Write current setting pin. The write current is defined by the equation below by connecting the external resistance R _{WC} between this pin and GND.
		Write current [mA] = K/R_{WC} [k Ω]
WDI	Write data input	Write data input pin. The signal is devided in the IC, and drives the write driver.
wus	Write error detection circuit	A high level output indicates the write error detection conditions. WUS is high under the following conditions:
	23.33.13.11.3.1.30.1	1. Head short 2. Write current too small. 3. WDI input frequency too low.
V _{CC}	5 V	5 V power supply
GND	Ground	Ground pins

Block Diagram

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Rating	Unit	Applicable Terminal
Supply voltage	V5	-0.3 to +6.0	V	V _{CC}
Write current	l _W	35	mA	
Interface input voltage	V _{IN}	-0.3 to V5 +0.3	V	HS0, HS1, WDI, R/W, CS
WUS voltage	V _{WUS}	6.0	V	WUS
WUS output current	lwus	12	mA	wus
Read data output current	I _{RO}	–10	mA	RDX, RDY
Operating temperature	Topr	0 to +70	°C	
Storage temperature	Tstg	-55 to +125	°C	

Power Supply ($Ta = 25^{\circ}C$)

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply voltage range	V _{CC}	4.75	5.0	5.25	V	
+5 V supply current	I 5		33	45	mA	Read mode V _{CC} = 5.25 V
			21 + I _W	30 + I _W	_	Write mode V _{CC} = 5.25 V
			1.1	3		Idle mode V _{CC} = 5.25 V

Electrical Characteristics ($V_{CC} = 5 \text{ V}$, $Ta = 25^{\circ}\text{C}$ unless otherwise specified)

Digital Input

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Low level input voltage	V _{IL}	-0.3		0.8	٧	
Low level input current	l _{IL}	-100		_	μА	V _{IL} = 0.8 V
High level input voltage	V _{IH}	2.0	,	V _{CC} + 0.3	٧	
High level input current	I _{IH}			100	μΑ	V _{IH} = 2.0 V
Read/write transition time	t _{RW}	-		1000	ns	
Write/read transition time	t _{WR}	_		1500	ns	
Head select switching delay time	t _{HS}	-		1500	ns	Read or write mode
Chip disable transition time	t _{IRW}	-		12	μs	R/W to Idle or Idle to R/W

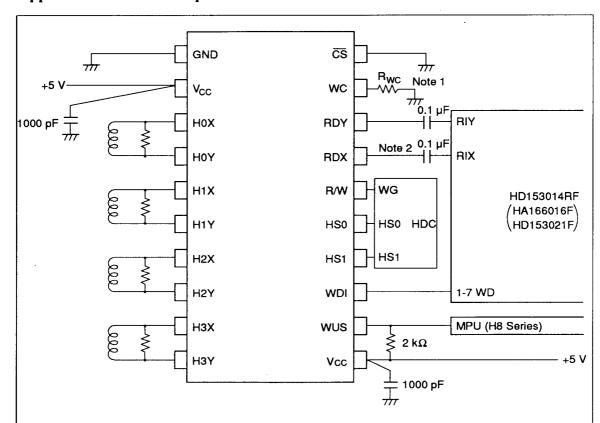
Write Fault Detection

Item	Symbol	Min	Тур	Max	Unit	· Test Conditions
Low level US voltage	V _{OL}	_		0.5	V	I _{OL} = 8 mA
High level US current	l _{OH}	_		100	μА	V _{OH} = 5.0 V
Unsafe to safe delay time	td ₂			1.0	μs	
Safe to unsafe delay time	td ₁	0.8		6.0		

Head Select Table

Mode Select Table

HS1	HS0	Head Selected	cs	R/W	Mode
L	L	0	L	L	Write
	Н	1		Н	Read
Н	L	2	Н	L	ldle
	Н	3		Н	


Read Amplifier

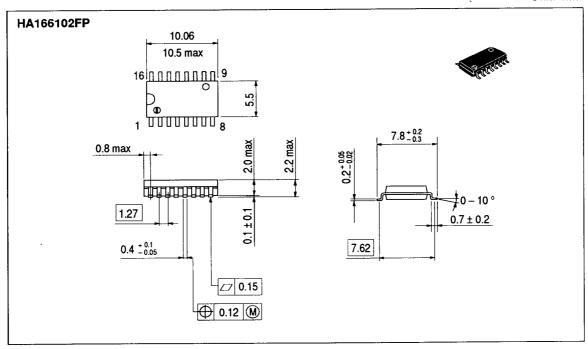
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Differential voltage gain	Avd	220	250	280	V/V	f = 300 kHz
Bandwidth	V _W	40	70		MHz	-3 dB
Input noise voltage	Vn		0.7	0.85	nV/√ Hz	f ≤ 15 MHz, Inputs shorted
Common mode rejection ratio	CMRR	60	80		dB	
Power supply stability	PSRR	45	60	_		$V_{CC} \pm 100 \text{ mVpp,}$ f = 5 MHz
Channel separation	Sep	60	80	_		Vin = 100 mVpp on unselected channels and Vin = 0 mVpp on selected channels, f = 5 MHz
Output offset voltage	Vo	-300	_	300	mV	Inputs shorted
Differential input	Rin		1.1	_	kΩ	f = 300 kHz
impedance			0.85	_	•	f = 5 MHz
Common mode output voltage	Vocm	2.0	2.5	3.0	V	
Output source current	I _{ODR}	_	-10	_	mA	
Output sink current	IOSDR	1.7	2.2	-	·	

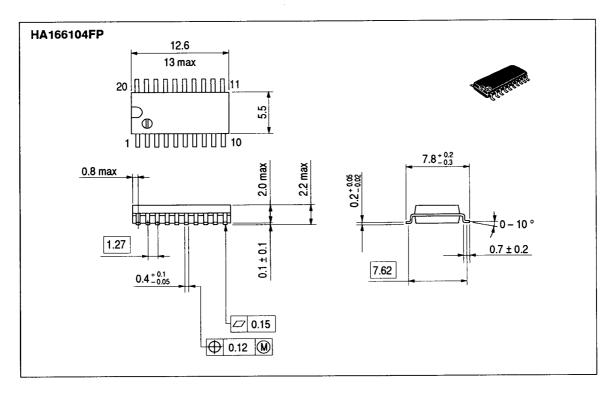
Write Driver

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Write current setting range	l _W	10	_	30	mA	
Head current rise time	thex	_	6	20	ns	Lh = 0 μH, Rh = 0 Ω , 10% to 90% point
Head current switching delay time	td ₃	_	12	35		Rh = 0 Ω , Lh = 0 μ H, from 50% point
Head current switching symmetry	td ₄	_	_	1		WDI duty cycle = 50%, rise/fall time = 1 ns
WDI minimum input frequency	fw	1.8		_	MHz	WUS = low
Head current gain	lh/l _{WC}		20	_	_	Head current/lwc
WC output voltage	V _{wc}	_	1.35	_	٧	
Write current determination coefficient	K	24.8	27	29.2	_	

Application Circuit Example

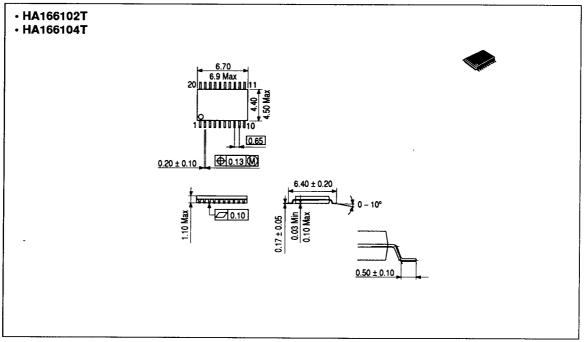
Notes: 1. External resistance value $R_{\mbox{WC}}$ is determined by following equation.


$$R_{WC}[k\Omega] = \frac{27 \text{ (typ)}}{\text{Write current [mA]}}$$


Also, write current ringing on changeover between read and write can be suppressed by locating the resistor R_{WC} as close as possible to the WC pin.

2. When the length of the wiring pattern increases, the RDX and RDY outputs might have some oscillation. This oscillation can be eliminated by inserting series resistors on these outputs as close to the pins as possible.

Package Dimensions


Unit: mm

Package Dimensions (cont)

Unit: mm

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

Hitachi, Ltd.

Semiconductor & IC Div.

Karukozaka MN Bldg., 2-1, Ageba-cho, Shinjuku-ku, Tokyo 162, Japan

Tel: Tokyo (03) 3266-9376 Fax: (03) 3235-2375

For further information write to:

Hitachi America, Ltd. Semiconductor & IC Div. 2000 Sierra Point Parkway Brisbane, CA. 94005-1819

USA Tel: 415-589-8300 Fax: 415-583-4207 Hitachi Europe GmbH Electronic Components Div. Central Europe Headquarters Hans-Pinsel-Straße 10A 8013 Haar bei München F. R. Germany Tel: 089-46140

Fax: 089-463068

Hitachi Europe Ltd. Electronic Components Div. Northern Europe Headquarters Wihtebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA United Kingdom Tel: 0628-585000

Fax: 0628-778322

Hitachi Asia (Hong Kong) Ltd. Unit 706, North Tower, World Finance Centre, Harbour City, Canton Road Tsimshatsui, Kowloon Hona Kona Tel: 852-7359218

Fax: 852-7306071

11

SEP 0 5 1992

ADE-207-050 (H) Printed in Japan 030513 ¥ _