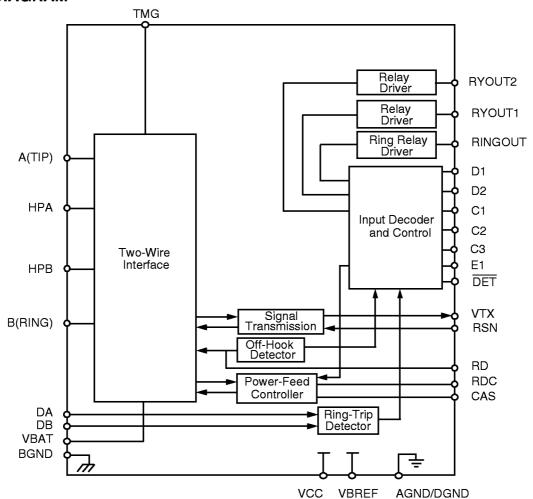


Am7922

Subscriber Line Interface Circuit

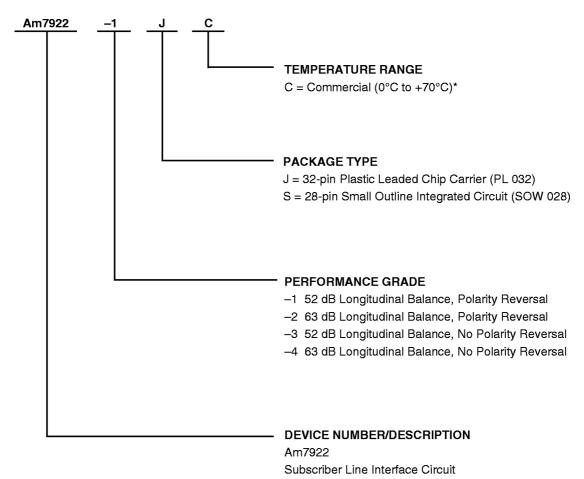

The Am7922 Subscriber Line Interface Circuit implements the basic telephone line interface functions, and enables the design of low cost, high performance, POTS line interface cards.

DISTINCTIVE CHARACTERISTICS

- Control states: Active, Reverse Polarity, Tip Open, Ringing, Standby, and Open Circuit
- Low standby power (35 mW)
- -19 V to -58 V battery operation
- On-hook transmission
- Two-wire impedance set by single external impedance
- Available in PLCC and SOIC
- Programmable constant-current feed

- Programmable loop-detect threshold
- Ground-key detector
- Programmable ring-trip detect threshold
- No -5 V supply required
- Current Gain = 500
- On-chip Thermal Management (TMG) feature
- Three on-chip relay drivers and relay snubbers, 1 ringing and 2 general purpose
- Tip Open state for ground-start lines

BLOCK DIAGRAM



Publication# 22462 Rev: A Amendment: /0 Issue Date: October 1999

ORDERING INFORMATION

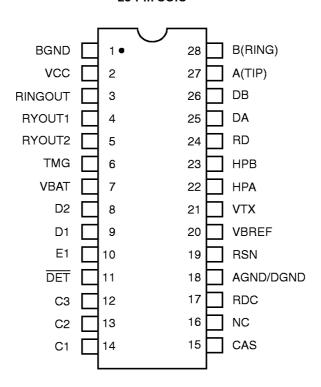
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.

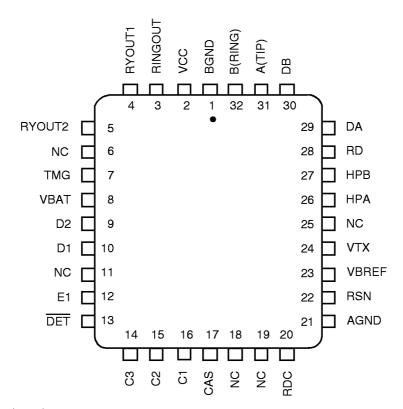
Valid Combinations				
	-1			
Am7922	– 2	JC		
	- 3	sc		
	- 4			

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.


Note:

^{*} Functionality of the device from $0^{\circ}C$ to $+70^{\circ}C$ is guaranteed by production testing. Performance from $-40^{\circ}C$ to $+85^{\circ}C$ is guaranteed by characterization and periodic sampling of production units.


CONNECTION DIAGRAMS

Top View

28-Pin SOIC

32-Pin PLCC

Notes:

1. Pin 1 is marked for orientation.

2. NC = No Connect

PIN DESCRIPTIONS

Pin Name	Туре	Description
AGND/DGND	Gnd	Analog and digital ground.
A(TIP)	Output	Output of A(TIP) power amplifier.
BGND	Gnd	Battery (power) ground.
B(RING)	Output	Output of B(RING) power amplifier.
C3-C1	Input	Decoder. SLIC control pins. C3 is MSB and C1 is LSB.
CAS	Capacitor	Anti-saturation capacitor. Pin for capacitor to filter reference voltage when operating in anti-saturation region.
D2-D1	Input	Relay driver control. D1 and D2 control the relay drivers RYOUT1 and RYOUT2. Logic Low on D1 activates the RYOUT1 relay driver. Logic Low on D2 activates the RYOUT2 relay driver.
DA	Input	Ring-trip negative. Negative input to ring-trip comparator.
DB	Input	Ring-trip positive. Positive input to ring-trip comparator.
DET	Output	Switchhook detector. A logic Low indicates that selected condition is detected. The detect condition is selected by the logic inputs (C3–C1). The output is open-collector with a built-in 15 k Ω pull-up resistor.
E1	Input	E1 = 1 selects the switchhook detector. E1 = 0 selects the ground-key detector. Note: In the Tip Open state, the ground-key detector is active irrespective of E1.
HPA	Capacitor	High-pass filter capacitor. A(TIP) side of high-pass filter capacitor.
HPB	Capacitor	High-pass filter capacitor. B(RING) side of high-pass filter capacitor.
NC	_	No connect. This pin is not internally connected.
RD	Resistor	Detect resistor. Detector threshold set and filter pin.
RDC	Resistor	DC feed resistor. Connection point for the DC feed current programming network. The other end of the network connects to the receiver summing node (RSN).
RINGOUT	Output	Ring relay driver. Open-collector driver with emitter internally connected to BGND.
RSN	Input	Receive summing node. The metallic current (both AC and DC) between A(TIP) and B(RING) is equal to 500 times the current into this pin. The networks which program receive gain, two-wire impedance, and feed resistance all connect to this node.
RYOUT1	Output	Relay/switch driver. Open-collector driver with emitter internally connected to BGND.
RYOUT2	Output	Relay/switch driver. Open-collector driver with emitter internally connected to BGND.
TMG	Thermal	Thermal management. External resistor connects between this pin and VBAT to offload power from SLIC.
VBAT	Battery	Battery supply and connection to substrate.
VBREF	_	This is an AMD reserved pin and must always be connected to the VBAT pin.
VCC	Power	+5 V power supply.
VTX	Output	Transmit audio. This output is a 0.50 gain version of the A(TIP) and B(RING) metallic voltage. VTX also sources the two-wire input impedance programming network.

ABSOLUTE MAXIMUM RATINGS

Storage temperature55°C to +150°C
V_{CC} with respect to AGND/DGND –0.4 V to +7.0 V
V _{BAT} with respect to AGND/DGND:
Continuous+0.4 V to -70 V 10 ms+0.4 V to -75 V
BGND with respect to AGND/DGND +3 V to -3 V
A(TIP) or B(RING) to BGND:
ContinuousV _{BAT} to +1 V
10 ms (f = 0.1 Hz)
1 μs (f = 0.1 Hz)80 V to +8 V 250 ns (f = 0.1 Hz)90 V to +12 V
Current from A(TIP) or B(RING)±150 mA
RINGOUT/RYOUT1,2 current50 mA
RINGOUT/RYOUT1,2 voltage BGND to +7 V
RINGOUT/RYOUT1,2 transient BGND to +10 V
DA and DB inputs
Voltage on ring-trip inputsV _{BAT} to 0 V
Current into ring-trip inputs±10 mA
C3–C1, D2–D1, and E1
Input voltage0.4 V to V _{CC} + 0.4 V
Maximum power dissipation, continuous, T _A = 70°C, No heat sink (See note)
In 32-pin PLCC package1.7 W In 28-pin SOIC package1.4 W
Thermal Data:θJA
In 32-pin PLCC package43°C/W typ
In 28-pin SOIC package60°C/W typ
ESD immunity/pin (HBM)1500 V

Note: Thermal limiting circuitry on-chip will shut down the circuit at a junction temperature of about 165°C. The device should never see this temperature and operation above 145°C junction temperature may degrade device reliability.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Ambient temperature	0°C to +70°C*
V _{CC}	4.75 V to 5.25 V
V _{BAT}	19 V to -58 V
AGND/DGND	0 V
BGND with respect to AGND/DGND	–100 mV to +100 mV
Load resistance on VTX to groun	d20 k Ω min

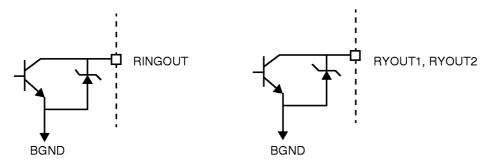
The operating ranges define those limits between which the functionality of the device is guaranteed.

^{*}Functionality of the device from 0°C to +70°C is guaranteed by production testing. Performance from -40°C to +85°C is guaranteed by characterization and periodic sampling of production units.

ELECTRICAL CHARACTERISTICS

Description	Test Conditions (see Note 1)	Min	Тур	Max	Unit	Note
Transmission Performance						
2-wire return loss	200 Hz to 3.4 kHz	26			dB	1, 4
Analog output (VTX) impedance			3	20	Ω	4
Analog (VTX) output offset voltage		-50		+50	mV	
Overload level, 2-wire	Active state	2.5			Vpk	2a
Overload level	On hook, $R_{LAC} = 600 \Omega$	0.77			Vrms	2b
THD, Total Harmonic Distortion	0 dBm		-64	<u>–</u> 50		
,	+7 dBm		-55	-40	dB	5
THD, On hook	0 dBm, R_{LAC} = 600 Ω			-36		
Longitudinal Capability (See Test Ci		l			ı	
Longitudinal to metallic L-T, L-4	Normal Polarity					
,	0°C to +70°C -2,	-4 63				
	-40°C to +85°C -2,					4
	0°C to +70°C -1,	-3 52				
200 Hz to 1 kHz	-40°C to +85°C -1,	-3 50				4
	Reverse Polarity					
	-40°C to +85°C -2	54				4
	0°C to +70°C -1	52				
	-40°C to +85°C -1	50				4
Longitudinal to metallic L-T, L-4	Normal Polarity				dB	
	0°C to +70°C -2,	-4 58				
	-40°C to +85°C -2,	-4 53				4
	0°C to +70°C -1,	-3 52				
1 kHz to 3.4 kHz	-40°C to +85°C -1,	-3 50				4
	Reverse Polarity					
	-40°C to +85°C -2	53				4
	0°C to +70°C -1	52				
	-40°C to +85°C -1	50				4
Longitudinal signal generation 4-L	200 Hz to 3.4 kHz	40				
Longitudinal current per pin (A or B)	Active state	17	27		mArms	8
Longitudinal impedance at A or B	0 to 100 Hz		25		Ω/pin	4
Idle Channel Noise		'				
C-message weighted noise	$R_L = 600 \Omega$ 0°C to +70°C		7	+10	ID.	
0 0	$R_{L}^{2} = 600 \Omega$ -40°C to +85°C			+12	dBrnc	
Psophometric weighted noise	$R_1 = 600 \Omega$ 0°C to +70°C		-83	-80	ID.	4
	$R_{L} = 600 \Omega$ -40°C to +85°C			-78	dBmp	
Insertion Loss and Balance Return S	Signal (See Test Circuits A and B)					•
Gain accuracy 4- to 2-wire	0 dBm, 1 kHz	-0.20	0	+0.20		
Gain accuracy 2- to 4-wire, 4- to 4-wire	0 dBm, 1 kHz	-6.22	-6.02	<i>–</i> 5.82		
Gain accuracy, 4- to 2-wire	On hook	-0.35		+0.35		
Gain accuracy, 2- to 4-wire, 4- to 4-wire	On hook	-6.37	-6.02	-5.67		4
Gain accuracy over frequency	300 to 3.4 kHz		1	+0.15	dB	
dam accuracy over frequency	relative to 1 kHz	-0.15		+0.15		
Gain tracking	+3 dBm to –55 dBm	-0.15		+0.15		
g	relative to 0 dBm	3.15				
Gain tracking	0 dBm to –37 dBm	-0.15		+0.15		
On hook	+3 dBm to 0 dBm	-0.35		+0.35		
Group delay	0 dBm, 1 kHz		4		μs	4, 7

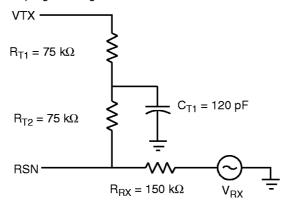
ELECTRICAL CHARACTERISTICS (continued)


Line Characteristics Li, Short Loops, Active state Ri _{LDC} = 600 Ω 26.4 30 33.6 Li, Long Loops, Active state Ri _{LDC} = 1930 Ω, BAT = -42.75 V,	iption Test	Min Typ Max	Unit	Note
	cs			
$ T_A = 25^{\circ}C $	tive state R _{LDC} =	26.4 30 33.6		
		18 19		
	$I_{L} = \frac{1}{2}$	0.7l _L l _L 1.3l _L	mA	
LIM	Consta	18 30		
VAB, Open Circuit voltage 38.3 40.3 V I _A , Leakage, Tip Open state R _L = 0 100 µA Ig, Current, Tip Open state B to GND 15 30 56 mA V _A , Active RA to BAT = 7 kΩ, RB to GND = 100 Ω -7.5 -5 V Power Supply Rejection Ratio V _{CC} 50 Hz to 3.4 kHz (V _{RIPPLE} = 100 mVms) 30 40 dB Effective internal resistance CAS pin to V _{BAT} 85 170 255 kQ Power Dissipation On hook, Disconnect state 25 70 D F Power Dissipation 25 70 MW MW <td>sconnect state $R_L = 0$</td> <td>100</td> <td>μA</td> <td></td>	sconnect state $R_L = 0$	100	μA	
	Active,	75 120	mA	
	voltage	38.3 40.3	V	
V _A , Active RA to BAT = 7 kΩ, RB to GND = 100 Ω -7.5 -5 V Power Supply Rejection Ratio V _{CC} 50 Hz to 3.4 kHz (V _{RIPPLE} = 100 mVms) 30 40 dB A graph of the first state (V _{RIPPLE} = 100 mVms) 28 50 dB Effective internal resistance CAS pin to V _{BAT} 85 170 255 kΩ Power Dissipation On hook, Disconnect state 25 70 mW 70 nbook, Standby state 35 100 mW 100 mW M	pen state R _L = 0	100	μA	
Power Supply Rejection Ratio VCC	en state B to GN	15 30 56	mA	
Power Supply Rejection Ratio V _{CC}	RA to B	-7.5 - 5	V	4
V _{RIPPLE} = 100 mVms So Lat 0 3.4 kHz V _{RIPPLE} = 500 mVpp So So So So So So So	ection Ratio	,		
Value		30 40	.ID	
Power Dissipation		28 50	as	5
	sistance CAS pi	85 170 255	kΩ	4
On hook, Standby state St	1	-	'	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ct state	25 70		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	state	35 100		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		130 210	mW	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		860 1200		
CC On-hook V _{CC} supply current Standby state Active state Standby state O.25 1.0 O.55 1.5 O.55 1.5 O.55 1.5 O.55 I.5 O.55 O.55 I.5 O.55 O		700 1000		
CCr On-hook V _{CC} supply current Disconnect state Standby state Active state Standby state Standby state Active state Standby state Standby state Standby state Active state Standby st				
BAT, On-hook VBAT supply current	ly current Standb	2.2 4.0		
RFI rejection 100 kHz to 30 MHz, (See Figure F) 1.0 mVrms	oly current Standb	0.55 1.5	mA -	
Receive Summing Node (RSN) RSN DC voltage I _{RSN} = 0 mA 0 V RSN impedance 200 Hz to 3.4 kHz 10 20 Ω Logic Inputs (C3–C1, D2–D1, and E1) V _{IH} , Input High voltage (except C3) 2.0 V V _{IL} , Input Low voltage 0.8 I _{IH} , Input High current -75 40 μA Logic Output (DET) V _{OL} Output I ow voltage 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage I _{OUT} = 0.3 mA 15 kΩ to V _{OC} 0.40 V V _{OL} Output I ow voltage 0.40 V	<u> </u>	<u> </u>		
RSN DC voltage I _{RSN} = 0 mA 0 V RSN impedance 200 Hz to 3.4 kHz 10 20 Ω Logic Inputs (C3–C1, D2–D1, and E1) V _{IH} , Input High voltage (except C3) 2.0 V V _{IH} , C3 2.5 V V _{IL} , Input Low voltage 0.8 I _{IH} , Input High current -75 40 μA Logic Output (DET) V _{OL} Output I ow voltage Ioux = 0.3 mA 15 kO to Voc 0.40 V _{OL} Output I ow voltage Ioux = 0.3 mA 15 kO to Voc 0.40 V _{OL} Output I ow voltage Ioux = 0.3 mA 15 kO to Voc 0.40 V _{OL} Output I ow voltage Ioux = 0.3 mA 15 kO to Voc 0.40 V _{OL} Output I ow voltage Ioux = 0.3 mA 15 kO to Voc 0.40 V _{OL} Output I ow voltage Ioux = 0.3 mA 15 kO to Voc 0.40 V _{OL} Output I ow voltage Ioux = 0.3 mA 15 kO to Voc 0.40 V _{OL} Output I ow voltage Ioux = 0.3 mA 15 kO to Voc 0.40 V _{OL} Output I ow voltage Ioux = 0.3 mA 15 kO to Voc 0.40 V _{OL} Output I ow voltage Ioux = 0.3 mA 15 kO to Voc 0.40 V _{OL} Output I ow voltage 0.40	100 kH	1.0	mVrms	4
RSN impedance 200 Hz to 3.4 kHz 10 20 Ω	Node (RSN)	-	'	
RSN impedance 200 Hz to 3.4 kHz 10 20 Ω	I _{RSN} =	0	V	
Logic Inputs (C3–C1, D2–D1, and E1) V _{IH} , Input High voltage (except C3) 2.0 V V _{IH} , C3 2.5 V V _{IL} , Input Low voltage 0.8 V I _{IH} , Input High current -75 40 μA I _{IL} , Input Low current -400 0.40 Logic Output (DET)		10 20	Ω	4
V _{IH} , Input High voltage (except C3) 2.0 V V _{IH} , C3 2.5 V V _{IL} , Input Low voltage 0.8 V I _{IH} , Input High current -75 40 μA I _{IL} , Input Low current -400 0.40 V Logic Output (DET) Vor. Output Low voltage 0.40 0.40		ı l		
V _{II} , C3 V _{IL} , Input Low voltage I _{IH} , Input High current I _{IL} , Input Low current Logic Output (DET) Vo. Output I ow voltage IOUT = 0.3 mA 15 kΩ to Voc		2.0		
V _{IL} , Input Low voltage 0.8 I _{IH} , Input High current -75 40 μA Logic Output (DET) Vol. Output I ow voltage 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.	- , ,		v	
I _{IH} , Input High current I _{IL} , Input Low current Logic Output (DET) Vor. Output Low voltage Jour = 0.3 mA 15 kΩ to Voc 0.40	ige			
Logic Output Ow voltage Lour = 0.3 mA 15 kQ to Voc 0.40				
Logic Output (DET) Voi. Output Low voltage			µA	
V_{OL} . Output Low voltage $I_{OUT} = 0.3 \text{ mA} \cdot 15 \text{ kO to } V_{OC}$ 0.40			<u> </u>	
[-OL)	•	0.40		
V_{OH} , Output High voltage $I_{OUT} = -0.1$ mA, 15 kΩ to V_{CC} 2.4			\ \ \ \	

ELECTRICAL CHARACTERISTICS (continued)

Description	Test Conditions (See Note 1)	Min	Тур	Max	Unit	Note
Ring-Trip Detector Input (DA, DB)						
Bias current		-500	-50		nA	
Offset voltage	Source resistance = 2 M Ω	-50	0	+50	mV	6
Loop Detector						
On threshold	$R_D = 35.4 \text{ k}\Omega$	9.4	11.7	14.0		
Off threshold	$R_D = 35.4 \text{ k}\Omega$	8.8	10.4	12.0	mA	
Hysteresis	$R_D = 35.4 \text{ k}\Omega$		1.3			
IGK, Ground-key detector threshold	R _L from BX to GND Active, Standby, and Tip open	5	9	13	mA	
Relay Driver Output (RINGOUT, RYOUT1, RYOUT2)						
On voltage	I _{OL} = 40 mA		+0.3	+0.7	V	
Off leakage	V _{OH} = +5 V			100	μA	
Zener breakover	I _Z = 100 μA	6	7.2		V	
Zener On voltage	I _Z = 30 mA		10			

Note:

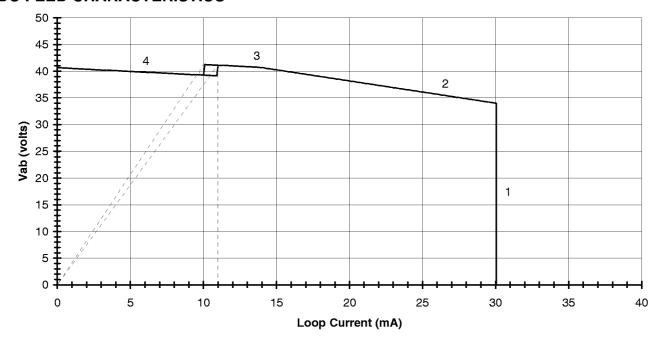

RELAY DRIVER SCHEMATICS

^{*} Performance Grade

Notes:

1. Unless otherwise noted, test conditions are BAT = -48 V, V_{CC} = +5 V, R_L = 600 Ω , R_{DC1} = R_{DC2} = 10.4K, R_{TMG} = 1600 Ω , R_D = 35.4 k Ω , no fuse resistors, C_{HP} = 0.22 µF, C_{DC} = 0.33 µF, C_{CAS} = 0.33 µF, D_{CAS} = 0.33 µF, D_{CAS}

- 2. a. Overload level is defined when THD = 1%.
 - b. Overload level is defined when THD = 1.5%.
- 3. Balance return signal is the signal generated at V_{TX} by V_{RX} . This specification assumes that the two-wire, AC-load impedance matches the programmed impedance.
- 4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.
- 5. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.
- 6. Tested with 0 Ω source impedance. 2 $M\Omega$ is specified for system design only.
- 7. Group delay can be greatly reduced by using a Z_T network such as that shown in Note 1. The network reduces the group delay to less than 2 μ s and increases 2WRL. The effect of group delay on linecard performance also may be compensated for by synthesizing complex impedance with the QSLAC μ or DSLAC μ device.
- 8. Minimum current level guaranteed not to cause a false loop detect.


Table 1. SLIC Decoding

					E1 = 1	E1 = 0
State	СЗ	C2	C1	Two-Wire Status	DET Output	DET Output
0	0	0	0	Reserved	Х	X
1	0	0	1	Reserved	Х	X
2	0	1	0	Active Polarity Reversal	Loop detector	Ground Key
3	0	1	1	Tip Open	Ground Key	Ground Key
4	1	0	0	Open Circuit	Ring trip	Ring Trip
5	1	0	1	Ringing	Ring trip	Ring Trip
6	1	1	0	Active	Loop detector	Ground Key
7	1	1	1	Standby	Loop detector	Ground Key

 Table 2.
 User-Programmable Components

$Z_{\rm T} = 250(Z_{\rm 2WIN} - 2R_{\rm F})$	Z_T is connected between the VTX and RSN pins. The fuse resistors are R_F , and Z_{2WIN} is the desired 2-wire AC input impedance. When computing Z_T , the internal current amplifier pole and any external stray capacitance between VTX and RSN must be taken into account.
$Z_{RX} = \frac{Z_L}{G_{42L}} \bullet \frac{500Z_T}{Z_T + 250(Z_L + 2R_F)}$	Z_{RX} is connected from VRX to RSN. Z_T is defined above, and G_{42L} is the desired receive gain.
$R_{DC1} + R_{DC2} = \frac{625}{I_{LOOP}}$	$R_{DC1},R_{DC2},$ and C_{DC} form the network connected to the R_{DC} pin. R_{DC1} and R_{DC2} are approximately equal. I_{LOOP} is the desired loop current in the constant-current region.
$C_{DC} = 1.5 \text{ ms} \bullet \frac{R_{DC1} + R_{DC2}}{R_{DC1} \bullet R_{DC2}}$	
$RD_{ON} = \frac{390}{I_T}$, $RD_{OFF} = \frac{355}{I_T}$, $C_D = \frac{0.5 \text{ ms}}{R_D}$	$\rm R_D$ and $\rm C_D$ form the network connected from $\rm R_D$ to AGND/DGND and $\rm I_T$ is the threshold current between on hook and off hook.
$C_{CAS} = \frac{1}{3.4 \cdot 10^5 \pi f_c}$	$\mbox{$C_{CAS}$}$ is the regulator filter capacitor and $\mbox{$f_{c}$}$ is the desired filter cut-off frequency.
$I_{STANDBY} = \frac{ V_{BAT} - 3 V}{400 \Omega + R_{L}}$	Standby loop current (resistive region).
Thermal Management Equations (Normal Active and Tip C	Open States)
$R_{\rm TMG} \ge \left(\frac{\left V_{\rm BAT} \right - 6 \text{ V}}{I_{\rm LOOP}} - 70 \Omega \right)$	R_{TMG} is connected from TMG to VBAT and saves power within the SLIC in Active and Polarity Reversal states only.
$P_{\text{RTMG}} = \frac{(\left V_{\text{BAT}}\right - 6 \ V - (I_{\text{L}} \bullet R_{\text{L}}))^{2}}{(R_{\text{TMG}} + 70 \ \Omega)^{2}} \bullet R_{\text{TMG}}$	Power dissipated in the TMG resistor, R _{TMG} , during Active and Polarity Reversal states.
$P_{SLIC} = V_{BAT} \bullet I_L - P_{RTMG} - R_L(I_L)^2 + 0.13 \text{ W}$	Power dissipated in the SLIC while in Active and Polarity Reversal states.

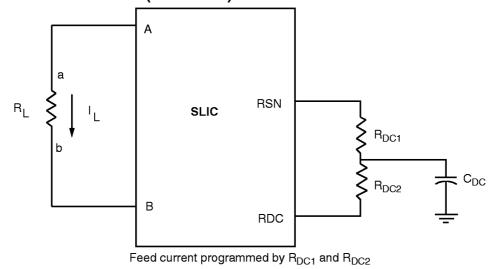
DC FEED CHARACTERISTICS

$$R_{DC} = R_{DC1} + R_{DC2} = 10.4K$$

BAT = 48 V

Notes:

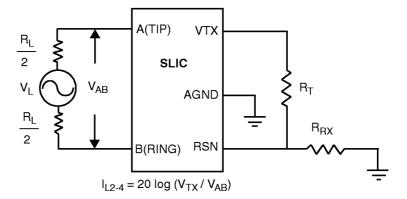
1. Constant current region:
$$V_{AB} = I_L R_L' = \frac{625}{R_{DC}} \; R_L' \; , \; \text{where} \; \; R_L' = R_L + 2R_F$$


2. Battery-independent anti-sat:
$$V_{AB} = 47 \ V - I_L \frac{R_{DC}}{50}$$

3. Battery tracking anti-sat (off hook): a)
$$V_{AB} \ge 34.5 \text{ V}$$
 $V_{AB} = 0.67 \left| V_{BAT} \right| + 10.5 - I_L \frac{R_{DC}}{150}$ b) $V_{AB} < 34.5 \text{ V}$ $V_{AB} = \left| V_{BAT} \right| - 1.7 - I_L \frac{R_{DC}}{200}$

4. Battery tracking anti-sat (on hook): a)
$$V_{AB} \ge 34.5 \text{ V}$$
 $V_{AB} = 0.67 |V_{BAT}| + 8.5 - I_L \frac{R_{DC}}{150}$ b) $V_{AB} < 34.5 \text{ V}$ $V_{AB} = |V_{BAT}| - 4.4 - I_L \frac{R_{DC}}{200}$

a. Load Line (Typical)


DC FEED CHARACTERISTICS (continued)

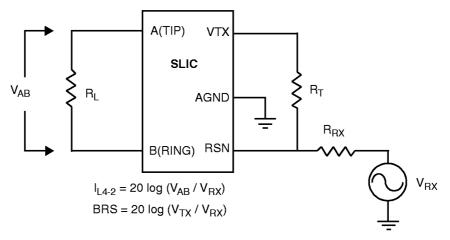
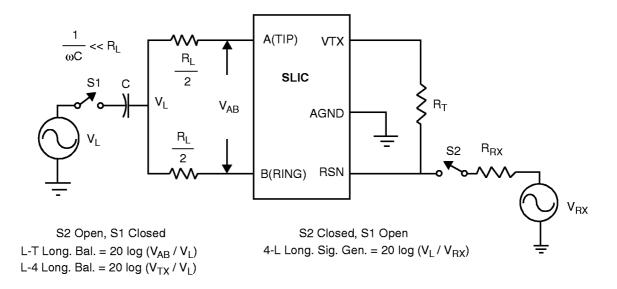
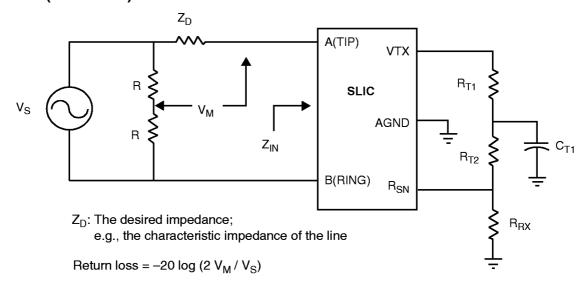

b. Feed Programming

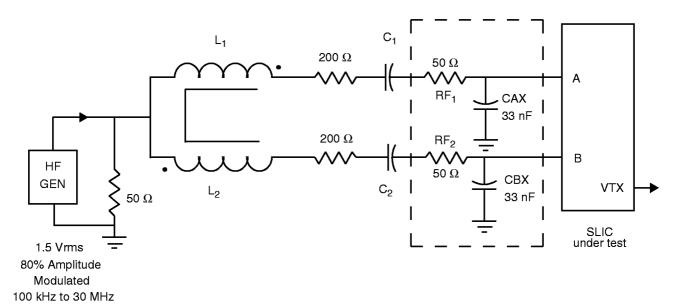
Figure 1. DC Feed Characteristics


TEST CIRCUITS

A. Two- to Four-Wire Insertion Loss

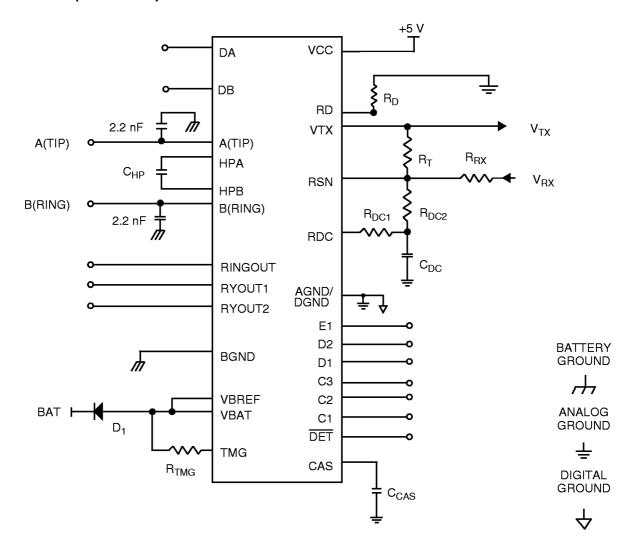


B. Four- to Two-Wire Insertion Loss and Balance Return Signal



C. Longitudinal Balance

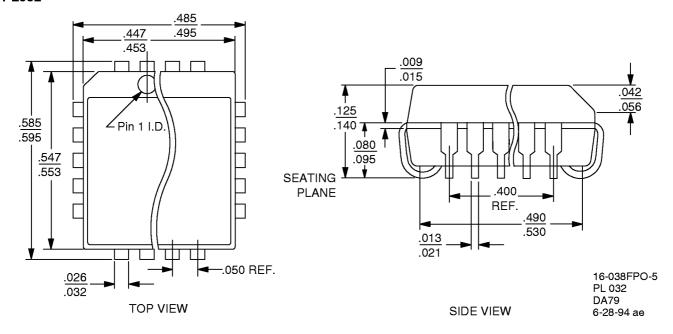
TEST CIRCUITS (continued)



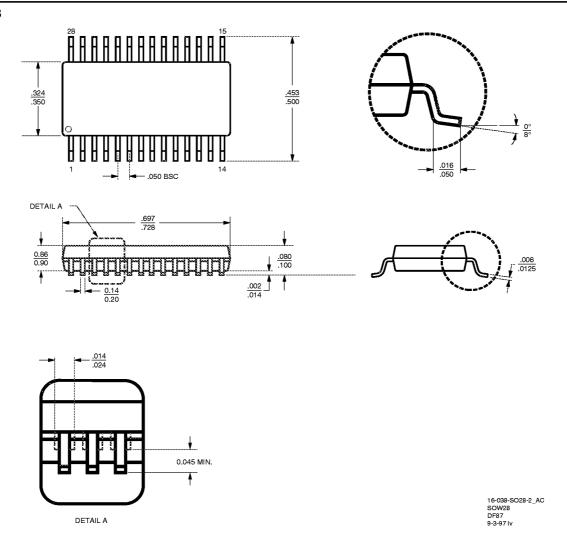
D. Two-Wire Return Loss Test Circuit

E. RFI Test Circuit

TEST CIRCUITS (continued)



F. Am7922 Test Circuit


PHYSICAL DIMENSIONS

BSC is an ANSI standard for Basic Centering. Dimensions are measured in inches.

PL032

SOW028

