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Preface

This book is the primary reference and technical manual for the
MiniRISC CW4011 Superscalar Microprocessor Core, referred to in this
document as the CW4011 or as the core. This book contains a complete
functional description of the CW4011.

Audience

This book is intended for use by engineers and managers who are
evaluating the CW4011 core, or for engineers who are designing with this
core. This book assumes that this audience is familiar with the concepts
of microprocessors and related support devices.

Organization

This book has the following chapters and a glossary of terms.

♦ Chapter 1, Introduction , provides an overview of the CW4011 core
and describes the features of the LSI Logic CoreWare® program.

♦ Chapter 2, Architectural Overview , describes the CPU pipeline and
microarchitecture, the instructions set architecture, the system copro-
cessor (CP0), memory management, exception processing, and
cache maintenance.

♦ Chapter 3, Instruction Set , describes the MIPS R-series instructions
and the instruction set extensions supported in the CW4011 core.

♦ Chapter 4, CW4011 Exception Processing , describes how the
CW4011 handles exception processing.

♦ Chapter 5, CW4011 Memory Management , provides detailed infor-
mation about CP0 and the CW4011 memory management system.
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♦ Chapter 6, CW4011 Caches , provides detailed information about the
CW4011 caches and cache maintenance.

♦ Chapter 7, CW4011 Signals , describes the CW4011 core I/O
signals.

♦ Chapter 8, Interface Operation , describes the main timing scenarios
for CW4011 transactions.

♦ Chapter 9, ICEport , describes the CW4011 SerialICE port building
block.

♦ Chapter 10, Specifications , contains physical specifications and AC
timing for the CW4011 core.

♦ Appendix A, CW4011 Register Summary , provides an overview of
all core registers and general MIPS register architecture.

♦ Appendix B, Cache Sizing and Design Concerns , provides infor-
mation about connecting and selecting different CW4011 cache
sizes.

♦ Appendix C, Programmer’s Notes , provides information that is use-
ful if you are writing software for the CW4011 core.

Related
Publications

CW33300 Enhanced Self-Embedding Processor Core User’s Manual,
LSI Logic Corporation, Order No. C14014

LR4500 Superscalar Microprocessor Technical Manual, LSI Logic
Corporation, Document No. DB14-000068-00.

BDMR4011 Evaluation Board User’s Guide, LSI Logic Corporation,
Document No. DB15-000055-00.

MIPS SerialICE™ User’s Guide, available from LSI Logic Corporation.

Conventions
Used in This
Manual

The term “word” is used to define a 32-bit quantity, either signed or
unsigned. This means that in the CW4011 core a word consists of four
8-bit bytes; a doubleword has 64 bits, or eight 8-bit bytes; and a halfword
has 16 bits, or two 8-bit bytes.

Hexadecimal numbers are indicated by the prefix 0x before the number,
for example, 0x32CF. Binary numbers are indicated by the prefix 0b
before the number, for example, 0b0111 0011 0000.
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The following signal conventions are used throughout the manual:

♦ Active-LOW signals have a lowercase “n” at the end of the signal
name (for example, RESETn). Active-HIGH signals have a lowercase
“p” at the end of the signal name (for example, SCAop).

♦ The term “assert” means to drive a signal true or active. The term
“deassert” means to drive a signal false or inactive.

Revision History

This table details the changes in this manual over the document’s history.
It is not intended to reflect all changes, but should be used as a revision
overview.

Document Version Release Date Comments

Preliminary July 1997
Initial release. This document was generated from LSI
Logic’s MiniRISC® CW4010 Superscalar Microprocessor
Core Technical Manual.

Final October 1997

Final release for revision A. Added Chapter 10, “Specifica-
tions,” and revised Appendix B, “Cache Sizing and Design
Concerns,” to reflect the proper CW4011 cache connec-
tions. Minor modifications made to other chapters.
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Chapter 1
Introduction

This chapter introduces the LSI Logic CoreWare program and describes
its features. It also provides an overview of the CW4011 core. This
chapter contains the following sections:

♦ Section 1.1, “CW4011 Overview”

♦ Section 1.2, “CW4011 Core and Building Blocks”

♦ Section 1.3, “Features”

♦ Section 1.4, “CoreWare Program”

1.1 CW4011 Overview

LSI Logic Corporation has developed the MIPS II–compatible MiniRISC
CW4011 Superscalar Core using LSI Logic’s CoreWare
system-on-a-chip methodology. The CW4011 is a member of LSI Logic’s
MiniRISC family, the next generation of MIPS RISC products.

You can use the superscalar CW4011 as a microprocessor core in
products that require higher performance than that of an LSI Logic
CW400x microprocessor core. The CW4011 core is available as a
CoreWare product for use in customer ASIC designs, and is also used
in LSI Logic’s ASSPs (application specific standard products), such as
the ATMizer® II ATM-SAR chip.
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1.2 CW4011 Core and Building Blocks

As shown in Figure 1.1, the CW4011 is implemented at two levels: the
standard CW4011 core and the optional shell.

Figure 1.1 CW4011 Core and Building Blocks Diagram
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1.2.1 CW4011 Core

The CW4011 superscalar microprocessor core is an encrypted
synthesizable Verilog (or VHDL) model. It is process independent and
made up of the following units:

♦ Arithmetic logic unit (ALU)

♦ System control coprocessor (CP0)

♦ Bus interface unit (BIU)

♦ Load store unit (LSU)

♦ Instruction scheduler unit (ISU)

1.2.2 CW4011 Shell

The following microprocessor building blocks are available with the basic
microprocessor core and are available as part of the CW4011 shell. The
shell is an unencrypted Verilog model that can include:

♦ Direct-mapped or two-way set associative instruction cache (I-cache)
with cache sizes selectable up to 16 Kbytes

♦ Direct-mapped or two-way set associative data cache (D-cache) with
cache sizes selectable up to 16 Kbytes

♦ Simple memory management unit (MMU) with an optional translation
lookaside buffer (TLB)

♦ Standard multiply/divide unit (MDU) or a high-performance
multiply/accumulate unit (MAC)

♦ WriteBack buffer for writeback cache mode

1.2.3 Other CW4011 Components

The following components are typically included for any CW4011 design
and are implemented in the LR4500 reference device.

♦ ICEport (UART) for SerialICE™ hardware and software debugging
support. A SerialICE manual is available from LSI Logic upon
request.

♦ SCBus/Lbus (SCLC) converter for off-chip components.
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♦ Synchronous DRAM controller (SDRAMC) to interface the core
SCbus with off-chip memory.

Please note the following two considerations for any CW4011
microprocessor core design:

♦ LSI Logic provides the SDRAMC and SCLC modules as source code
only. LSI Logic does not supply product support or documentation for
these optional building block modules.

♦ The MMU and MDU components are considered part of the building
blocks shell and are not open to users. To modify either the MDU or
MMU for your design, please contact LSI Logic.

1.2.4 Interfaces

The core has four major interfaces:

♦ The coprocessor interface connects the core with up to three
coprocessors (CP1, CP2, and CP3), as well as the internal
coprocessor (CP0).

♦ The cache invalidation interface connects the core with optional
cache coherency logic. The core uses this bus to communicate only
with the on-chip caches.

♦ The SCbus, the bidirectional system bus, allows the CW4011 to
communicate with system elements outside the core, such as the
SCLC and the SDRAMC.

♦ The OCAbus interface allows on-chip access (OCA) to on-chip
modules at the Cache Read pipeline stage without going through the
SCbus.

1.2.5 Related Modules

In addition to the core, the MiniRlSC product family includes a variety of
other modules including:

♦ LSI Logic’s MiniSlM® performance simulator

♦ Verilog and VHDL models

♦ A system verification environment (SVE)

♦ A PROM monitor
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♦ Third party software support (Compiler and RTOS)

♦ LR4500 evaluation chip

♦ Evaluation boards for concurrent software development

♦ LSI Logic’s CoreWare, described in Section 1.4, “CoreWare
Program”

1.3 Features

The CW4011 core has the following features:

♦ Full MIPS II instruction set implementation (R4000 32-bit mode
compatible)

♦ Instruction set extensions to support embedded applications

♦ Superscalar execution with up to two instructions issued per clock
cycle

♦ 64-bit on-chip data bus system interface

♦ High-performance coprocessor interface for user definable
coprocessors and high performance hardware floating-point unit
(FPU)

♦ 3.3-Volt operation

♦ 90-MHz worst-case commercial maximum clock rate using standard
cell ASIC

♦ 130+ Dhrystone MIPS at 90 MHz

♦ 180 native MIPS peak, 120 native MIPS sustained with standard
compiled MIPS code at 90 MHz

♦ 7.0 mW/MHz core power with power management

♦ Integrated cache controllers with separate instruction and data
caches

– D-cache set sizes selectable from 1 to 8 Kbytes (up to two sets
available)

– I-cache set sizes selectable from 1 to 8 Kbytes (up to two sets
available)

♦ Optional, modifiable building blocks, such as a MAC and an MMU
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♦ SerialICE scan chain allows full testing in embedded ASIC designs

♦ Models available:

– Performance and software development model

– Verilog and VHDL models (referred to in this manual as HDL
models)

– Gate-level, timing-accurate model in various third party
simulation environments

♦ Compatible with the full range of MIPS and third party software
development tools

♦ Compact basic microprocessor core size—2.5 by 3.5 mm including
BIU, cache controllers, and external write buffer

♦ R3000 compatibility mode for exception handling and status registers

1.4 CoreWare Program

An LSI Logic core is a fully defined, optimized, and reusable block of
logic. It supports industry-standard functions and has predefined timing
and layout. The core is also an encrypted RTL simulation model for a
wide range of VHDL and Verilog simulators.

The CoreWare library contains an extensive set of complex cores for the
communications, consumer, and computer markets. The library consists
of high-speed interconnect functions such as the GigaBlaze™ G10™
core, MIPS embedded microprocessors, MPEG-2 decoders, a PCI core,
and many more.

The library also includes megafunctions or building blocks, which provide
useful functions for developing a system on a chip. Through the
CoreWare program, you can create a system on a chip uniquely suited
to your applications.

Each core has an associated set of deliverables, including:

♦ RTL simulation models for both Verilog and VHDL environments

♦ An SVE for RTL-based simulation

♦ Netlists for full timing simulation

♦ Complete documentation
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♦ LSI Logic ToolKit support

LSI Logic’s ToolKit provides seamless connectivity between products
from leading electronic design automation (EDA) vendors and LSI Logic’s
manufacturing environment. Standard interfaces for formats and
languages such as VHDL, Verilog, Waveform Generation Language
(WGL), Physical Design Exchange Format (PDEF), and Standard Delay
Format (SDF) allow a wide range of tools to interoperate within the LSI
ToolKit environment. In addition to design capabilities, full scan automatic
test pattern generation (ATPG) tools and LSI Logic’s specialized test
solutions can be combined to provide high-fault coverage test programs
that assure a fully functional design.

Because your design requirements are unique, LSI Logic is flexible in
working with you to develop your system-on-a-chip CoreWare design.
Three different work relationships are available:

♦ You provide LSI Logic with a detailed specification and LSI Logic
performs all design work.

♦ You design some functions while LSI Logic provides you with the
cores and megafunctions, and LSI Logic completes the integration.

♦ You perform the entire design and integration, and LSI Logic
provides the core and associated deliverables.

Whatever the work relationship, LSI Logic’s advanced CoreWare
methodology and ASIC process technologies consistently produce
Right-First-Time™ silicon.
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Chapter 2
Architectural Overview

This chapter discusses the CPU pipeline, CPU architecture, instruction
set architecture, the system coprocessor (CP0), memory management,
exception processing, and cache maintenance. This chapter is divided
into the following sections:

♦ Section 2.1, “Architectural Overview”

♦ Section 2.2, “Cache and External Interface”

♦ Section 2.3, “Clocking and Power Management”

♦ Section 2.4, “Pipeline Architecture”

♦ Section 2.5, “Instruction Set Summary”

♦ Section 2.6, “Configurability and Options”

2.1 Architectural Overview

The CW4011 is fully compatible with the R3000 and R4000 32-bit
instruction sets (MIPS I and MIPS II), but it also uses an updated
hardware architecture to provide higher absolute performance than any
other available MIPS core. The CW4011 also provides substantially
better instructions-per-clock performance than other MIPS processors. At
the same time, the hardware design remains compact in comparison with
similar superscalar architectures.

The CW4011 implements a 32-bit virtual address space, with up to
2 Gbytes of virtual address space available to each user-level process.
Individual memory locations are byte-addressed.

The CW4011 implements a 32-bit physical address space. Individual
memory locations are byte-addressed and, combined with the virtual
address space, provide a total of four Gbytes of physical address
memory.
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The CW4011 can issue and complete two instructions per cycle using a
combination of five independent execution units:

♦ Arithmetic logic unit (ALU)

♦ Load/store unit (LSU)

LSU executes load and store instructions. It also executes add and
load immediate instructions, allowing an add instruction to be issued
with another add or logical instruction.

♦ Branch unit

♦ Multiply/shift unit

♦ Coprocessor interface

Coprocessor interface can feed an instruction to a customer-defined
coprocessor unit. Contact LSI Logic for further information if your
design requires a coprocessor.

All instructions, except multiply and divide, can be completed in a single
cycle.

Load instructions have a single hardware delay slot for loads that hit in
the cache, but the hardware activates an interlock on register conflicts so
that a NOP (no operation) is not required in the delay slot. On a load
miss, the CW4011 extends the hardware conflict detection so that if the
load data is not required by subsequent instructions in the pipeline, the
CPU is not stalled. The operation is called load scheduling.

Figure 2.1 shows a block diagram of the basic CW4011 core.

Three units handle instructions:

♦ The IFetch Queue optimizes the supply of instructions to the
microprocessor, even across breaks in the sequential flow of
execution (jumps and branches).

♦ The IDecode Unit decodes the instructions from the IFetch Queue,
determines the actions required for the instruction execution, and
manages the Register File, LSU, ALU, and Multiply/Divide Units
accordingly.

♦ The Branch Unit is used when branch and jump instructions are
recognized within the instruction stream.
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Figure 2.1 CW4011 Block Diagram

The Register File contains the core’s general purpose registers. (There
are 32 general purpose registers located in the CPU. Of these registers
31 are read/write registers and 1 is the zero register.) The Register File
supplies source operands to the execution units and handles the storage
of results to target registers.

Three units perform logical, arithmetic, and data-movement operations:

♦ The LSU manages loads and stores of data values. Data values are
loaded from either the D-cache or from the SCbus Interface in the
event of a D-cache miss. Stores pass to the D-cache and the SCbus
interface through the write buffer. The LSU is also able to perform a
restricted set of arithmetic operations, including the addition of an
immediate offset as required in address calculations.

♦ The ALU calculates the result of an arithmetic or logical operation.
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♦ The multiply/shift interface unit performs multiply and divide
operations. You can select a number of modular options for this unit,
including an option with full multiply/accumulate capability.

The CW4011 core has four major interfaces for data transfer:

♦ The BIU manages the flow of instructions and data between the core
and the system by means of the SCbus Interface. This interface
provides the main channel for communication between the CW4011
core and the other functional blocks in the system. Some blocks may
be implemented as CoreWare library functions integrated on the
same die as the microprocessor core; others may be implemented in
separate devices connected by means of I/O pins at the board level.

♦ The coprocessor interface allows tightly coupled special-purpose
processing units to be attached to the core, enhancing the
microprocessor’s general-purpose computational power. Contact LSI
Logic for further information if you need a coprocessor in your
design.

♦ The cache invalidation interface allows supporting hardware outside
the core to maintain the coherency of on-board cache contents for
systems that include multiple main-bus masters.

♦ The OCAbus interface allows on-chip modules to be accessed at the
Cache Read (CR) stage of the pipeline without going through an
SCbus transaction. This improves performance since it reduces
traffic on the SCbus and therefore reduces latency.

2.2 Cache and External Interface

I-cache control is performed by the ISU. D-cache control is performed by
the LSU.

A write buffer is also implemented within the LSU, so that CPU execution
need not stall if a number of stores are performed in quick succession.
The write buffer accepts the store addresses and data values, and
passes them on to main memory as rapidly as it can accept them. During
this time, the CPU proceeds with execution.

The BIU provides the interface to on-chip peripherals. One or more
peripherals will typically provide a path to off-chip resources, including
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main memory. The BIU supports dynamic bus sizing between 32-bit and
64-bit transactions, see Section 2.6.3, “64-bit vs. 32-bit Memory
Interface,” for more information on bus sizing.

The on-chip system interface presented by the BIU is the SCbus. This
bus has a 64-bit data bus and a 32-bit address bus. Address and data
are not multiplexed. I-cache and D-cache refills use the 64-bit data bus
to achieve the highest performance possible.

2.3 Clocking and Power Management

The CPU core is clocked by a single phase, 1x clock with a 40–60% duty
cycle requirement. Applications that require a slower system clock
interface may use a phase-locked loop circuit (PLL), available as a cell in
LSI Logic’s ASIC libraries, and logic to implement a clock multiplier circuit
for the CPU.

Power management is provided for the CPU by the WAITI (Wait for
Interrupt) instruction and by gating the clock separately for each
functional unit. Units are clocked only when needed. In addition, the core
and cache RAMs are static, so that the clock may be slowed or turned
off by user logic to save power.

2.4 Pipeline Architecture

This section describes the CPU pipelines, instruction fetching and
scheduling. It also contains an instruction set summary.

As shown in Figure 2.2, the CW4011 core has two identical concurrent
five-stage pipelines that provide the core with its superscalar capabilities.
One pipeline is known as the even slot or pipeline 0, and the other as
the odd slot or pipeline 1.
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Figure 2.2 CW4011 Instruction Pipeline

The first two pipeline stages (and conditional Q stage) are used during
instruction fetch and the last three stages during instruction execution.
Once a stage has accepted an instruction from the previous stage it must
hold the instruction for re-execution in case the pipeline stalls. The
function of each pipeline stage is summarized below.

IF (Instruction Fetch) – The CW4011 fetches the instruction during the
first stage.

Q (Queuing) – Instructions may enter this conditional stage if they deal
with execution unit or register conflicts. An instruction that does not
cause an execution unit or register conflict is fed directly to the RD stage.

RD (Read) – During this stage, any required operands are read from the
Register File while the instruction is decoded.

EX (Execute) – All instructions are executed in this stage. Conditional
branches are resolved in this cycle. The address calculation for load and
store instructions is performed in this stage.

CR (Cache Read) – This stage is used to access the cache for load and
store instructions. Data is returned to the register bypass logic at the end
of this stage.

WB (WriteBack) – Results are written into the Register File during this
stage.

EX CRRDQIF
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Sections 2.4.1 and 2.4.2 provide more detailed information about pipeline
transactions.

2.4.1 Instruction Fetch and Scheduling

The IF, Q, and RD stages fetch two instructions per cycle and issue them
to the EX stage. The CW4011 fetches instructions as doubleword aligned
pairs (even and odd). There is a two-instruction window in the RD stage
during the instruction decode operation. When only the even slot can be
scheduled because the odd slot has a dependency, the window slides
down one instruction. In other words, although instructions are always
fetched as doubleword pairs, they are scheduled on single-word
boundaries.

The primary purpose of the Q stage is to execute branch instructions
with minimal penalty. The CW4011 generally fills the Q stage whenever
the RD stage has to stall. This occurs fairly frequently on typical compiled
code, because of register conflicts, cache misses, and resource conflicts.
Filling the Q stage in these cases allows the IF stage to work ahead one
cycle.

If a branch instruction is encountered when the Q stage is already active,
it is predicted that the branch will be taken. The IF stage does not bring
in any more instructions following the current address, but instead begins
fetching those instructions starting at the branch target address. At this
point, the Q stage still holds the pair of instructions immediately following
the pair that contained the branch.

The branch target enters the RD stage, bypassing the Q stage, as shown
in Figure 2.2. The branch prediction logic in the ISU resolves the branch
condition when the branch instruction enters the EX stage. If the branch
prediction logic predicts the branch correctly, the instructions in the Q
stage are cancelled. If it predicts the branch incorrectly, the ISU cancels
the branch target. In this case, it takes non-branch sequential instructions
from the Q stage and restarts the IF stage at the non-branch sequential
stream. The process is different when the branch instruction is in the odd
instruction slot.

If the branch prediction logic correctly predicts a branch in the even
instruction slot when the Q stage is full, there is generally no cycle
penalty associated with it. If the branch prediction logic predicts the
branch incorrectly, the branch has a one cycle penalty.
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If the branch instruction was in the odd instruction slot, the branch delay
slot instruction always executes by itself and has no chance to fill the
other execution slot. There may be some advantage to a software
assembler that can attempt to place branches in even word addresses.

The branch prediction logic must be able to look at two instructions at
the same time, from either the Q latches or the RD latches, depending
on whether the Q stage is active. When it looks at the two instructions,
if one is a branch, it passes the offset in that instruction into a dedicated
adder to calculate the branch address for the IF stage of the instruction
fetch. Because this is done speculatively, it also saves the non-branch
value of the PC (Program Counter) for the possible restart of the
sequential instructions from the Q stage.

After the ISU has allowed an instruction pair to pass into the RD stage,
the instruction is decoded, and at the same time the register source
addresses are passed to the register file so that the operands can be
read. Register dependencies and resource dependencies are checked in
this stage. If the instruction in the even slot has no dependency on a
register or resource currently tied up by a previous instruction, it is
passed immediately into the EX stage where it forks to the appropriate
execution unit. The instruction in the odd slot may also be dependent on
a resource or register in the even slot, so it must be checked for
dependencies against both the even slot and any previous unretried
instruction. If either instruction must be held in the RD stage and the Q
stage is not full, the IF stage is allowed to continue to fill the Q stage. If
the Q stage is full, then the Q and IF stages are frozen (stalled).

In the RD stage, register bypass opportunities are considered and the
bypass multiplexer control signals are set for potential bypass cases from
a previous instruction still in the pipeline.

2.4.2 Instruction Execution

During instruction execution, a pair of instructions (or a single instruction
when there was a previous block) are individually passed to independent
execution units. Each execution unit receives its operands from the
register bypass logic and an instruction from the instruction scheduler.
Each single cycle instruction spends one RUN cycle in an execution unit,
with the result then fed to the register/bypass unit for the CR stage.
Please note that multiple cycle instructions may spend longer than one
cycle in an execution unit.
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For load and store instructions, the cache lookup occurs during the CR
stage. For load instructions, data is returned to the register/bypass unit
during the CR stage, including loads to coprocessors.

For all other instructions, CR and WB are holding stages used to hold
the result of the execute stage for writeback to the register file.

2.5 Instruction Set Summary

Table 2.1 summarizes the instruction set for the CW4011. The CW4011
supports 32-bit MIPS II instructions and implements additional
CW4011-specific instructions. If the design includes the optional MMU,
the CW4011 supports the TLB instructions. All instructions are 32 bits
long. Table 2.1 includes only the MIPS II, CW4011-specific, and TLB
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instructions. With the exception of RFE, MIPS I instructions are not
shown.
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Table 2.1 CW4011 Instruction Set Summary

Op Description Op Description

Load/Store Instructions

LB Load Byte SH Store Halfword

LBU Load Byte Unsigned SW Store Word

LH Load Halfword SWL Store Word Left

LHU Load Halfword Unsigned SWR Store Word Right

LW Load Word LL1 Load Linked

LWL Load Word Left SC1 Store Conditional

LWR Load Word Right SYNC1 Sync

SB Store Byte

ALU Immediate Instructions

ADDI Add Immediate ANDI AND Immediate

ADDIU Add Immediate Unsigned ORI OR Immediate

SLTI Set on Less Than Immediate XORI Exclusive OR Immediate

SLTIU Set on Less Than Immediate
Unsigned

LUI Load Upper Immediate

Three-Operand, Register-Type Arithmetic Instructions

ADD Add SLTU Set on Less Than Unsigned

ADDU Add Unsigned AND AND

SUB Subtract OR OR

SUBU Subtract Unsigned XOR Exclusive OR

SLT Set on Less Than NOR NOR

Shift Instructions

(Sheet 1 of 4)
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SLL Shift Left Logical SLLV Shift Left Logical Variable

SRL Shift Right Logical SRLV Shift Right Logical Variable

SRA Shift Right Arithmetic SRAV Shift Right Arithmetic Variable

Multiply/Divide Instructions

MULT Multiply MFHI Move From HI

MULTU Multiply Unsigned MTHI Move To HI

DIV Divide MFLO Move From LO

DIVU Divide Unsigned MTLO Move To LO

Computation Instruction Extensions

ADDCIU2 Add Circular Immediate SELSR2 Select and Shift Right

FFS2 Find First Set Bit SELSL2 Select and Shift Left

FFC2 Find First Clear Bit MADD2 Multiply/Add

MIN2 Minimum MADDU2 Multiply/Add Unsigned

MAX2 Maximum MSUB2 Multiply/Subtract

MSUBU2 Multiply/Subtract Unsigned

Jump and Branch Instructions

J Jump BLEZ Branch on Less than or Equal to
Zero

JAL Jump And Link BGTZ Branch on Greater Than Zero

JR Jump Register BLTZ Branch on Less Than Zero

JALR Jump And Link Register BGEZ Branch on Greater than or Equal
to Zero

BEQ Branch on Equal BLTZAL Branch on Less Than Zero And
Link

BNE Branch on Not Equal BGEZAL Branch on Greater than or Equal
to Zero And Link

Table 2.1 CW4011 Instruction Set Summary (Cont.)

Op Description Op Description

(Sheet 2 of 4)
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Branch Likely Instructions

BEQL1 Branch on Equal Likely BGEZL1 Branch on Greater than or Equal
to Zero Likely

BNEL1 Branch on Not Equal Likely BLTZALL1 Branch on Less Than Zero And
Link Likely

BLEZL1 Branch on Less than or
Equal to Zero Likely

BGEZALL1 Branch on Greater than or Equal
to Zero And Link Likely

BGTZL1 Branch on Greater Than
Zero Likely

BCzTL1 Branch on Coprocessor z True
Likely

BLTZL1 Branch on Less Than
Zero Likely

BCzFL1 Branch on Coprocessor z False
Likely

Trap Instructions

TEQ Trap on Equal TLT Trap on Less Than

TEQI Trap on Equal Immediate TLTI Trap on Less Than Immediate

TGE Trap on Greater than or Equal TLTU Trap on Less Than Unsigned

TGEI Trap on Greater than or Equal
Immediate

TLTIU Trap on Less Than Immediate
Unsigned

TGEU Trap on Greater than or Equal
Unsigned

TNE Trap if Not Equal

TGEIU Trap on Greater than or Equal Imme-
diate Unsigned

TNEI Trap if Not Equal Immediate

Special Instructions

SYSCALL System Call BREAK Breakpoint

Coprocessor Instructions

LWCz Load Word to Coprocessor z CFCz Move Control From Coprocessor
z

SWCz Store Word from Coprocessor z COPz Coprocessor Operation

MTCz Move To Coprocessor z BCzT Branch on Coprocessor z True

Table 2.1 CW4011 Instruction Set Summary (Cont.)

Op Description Op Description

(Sheet 3 of 4)
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In addition to the standard MIPS II instruction set, the CW4011
implements certain instruction set extensions, shown in Table 2.2, that
provide greater application code performance for typical embedded
applications. Instruction set extensions are included only if they
significantly improve performance, have no impact on clock cycle rate,
and have minimal impact on the size and complexity of the hardware.

Coprocessor Instructions (continued)

MFCz Move From Coprocessor z BCzF Branch on Coprocessor z False

CTCz Move Control To Coprocessor z

System Control Coprocessor (CP0) Instructions

MTC0 Move To CP0 TLBWI3 Write Indexed TLB Entry

MFC0 Move From CP0 TLBWR3 Write Random TLB Entry

RFE Restore From Exception
(R3000 mode only)

TLBP3 Probe TLB for Matching Entry

ERET Exception Return (R4000
mode only)

WAITI2 Wait for Interrupt

TLBR3 Read Indexed TLB Entry

Cache Maintenance Instructions

FLUSHD2,
4

Flush D-Cache FLUSHID2,
4

Flush I-Cache and D-Cache

FLUSHI2, 4 Flush I-Cache WB2 Writeback

1. MIPS II instruction.
2. CW4011-specific instruction.
3. Valid only with implemented MMU building block.
4. Do not confuse these instructions with the FLUSH instruction in R6000 processors.

Table 2.1 CW4011 Instruction Set Summary (Cont.)

Op Description Op Description

(Sheet 4 of 4)
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Table 2.2 Instruction Set Extensions

Extension Format and Description

Find First Set,
Find First Clear

FFS rd,rs, FFC rd,rs
These instructions, respectively, find the first set bit and the first clear bit in
the source register, and return the bit number to the destination register.
They are useful for many applications such as interrupt handlers, floating
point emulation, and graphics.

Select and Rotate Left,
Select and Rotate
Right

SELSL rd,rs,rt, SELSR rd,rs,rt
These instructions select 32 bits from the 64-bit source register pair and
rotate the selected data left or right by the number of bits specified in the
new CP0 Rotate register. They are useful for data alignment operation in
graphics and in bit-field selection routines for data transmission and com-
pression applications.

Add Circular
Immediate

ADDCIU rt,rs,immediate
This instruction does an immediate add, modified according to the value in
the new CP0 CMask register. It is useful in addressing circular buffers. This
instruction is important in DSP (digital signal processing) and other applica-
tions that use circular buffers.

Multiply/ADD,
Multiply/SUB
Instructions

MADD(U) rs,rt, MSUB(U) rs,rt
These instructions are useful in many signal processing and graphics trans-
form algorithms. Only implemented with the high-performance
multiply/accumulate unit, these instructions do a 32 x 32 multiply and then
either add or subtract the result to the 64-bit HI/LO register pair.

Wait for Interrupt WAITI
This instruction halts the CPU in a power saving mode until one of the hard-
ware interrupt lines becomes active. Upon interrupt, normal execution is
resumed starting at the interrupt vector address.

Minimum MIN rd, rs, rt
The source operands rs and rt are compared as two’s complement values.
The smaller value is stored in the rd register.

Maximum MAX rd, rs, rt
The source operands rs and rt are compared as two’s complement values.
The larger value is stored in the rd register.
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2.6 Configurability and Options

The CW4011 is implemented using Verilog HDL (Hardware Description
Language) as the design source, and the LSI Logic Standard Cell Library
and layout tools for physical design. You can easily modify and configure
the CW4011 core to meet specific design requirements. The options
available in the basic core are shown in the following sections. Please
note that VHDL models are also available.

2.6.1 Cache Sizes

The instruction cache sizes available are 0–16 Kbytes, direct mapped or
two-way set associative. The data cache sizes available are 0–16 Kbytes,
direct mapped or two-way set associative. See Chapter 6, “CW4011
Caches,” and Appendix B, “Cache Sizing and Design Concerns,” for more
information about cache sizing.

2.6.2 High-Performance Multiply Accumulate Unit

Each project may choose a high-performance multiply unit that provides
base R3000 and R4000 multiply instructions (with similar performance)
and madd and msub instructions. The high-performance multiplier is
intended for applications with substantial multiply/accumulate
performance needs. It includes a 32 x 32 pipelined array multiplier and a
64-bit accumulator that can retire a multiply or multiply/accumulate
instruction every clock cycle with a latency of three clock cycles per
result.

2.6.3 64-bit vs. 32-bit Memory Interface

The CW4011 BIU supports a 32-bit sizing interface for cost-sensitive
designs or applications with low memory bandwidth. The BIU can be
modified to present a 32-bit data bus instead of a 64-bit data bus.
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2.6.4 Memory Management Unit

The CW4011 is designed to support the 32-bit addressing mode of the
R4000 MMU. The TLB that is available in the base processor design
contains up to 32 single-page entries. Each page can be individually
specified to be 4 Kbytes or 16 Mbytes.

The CW4011 can support a simple MMU for designs that do not require
a full MMU implementation. For designs with no TLB requirements, the
TLB can also be removed to save silicon.
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Chapter 3
Instruction Set

This chapter presents an overview of the MIPS R-series instructions and
the instruction set extensions supported in the CW4011. This chapter
contains the following sections:

♦ Section 3.1, “Instruction Set Formats”

♦ Section 3.2, “Load and Store Instructions”

♦ Section 3.3, “Computational Instructions”

♦ Section 3.4, “Jump and Branch Instructions”

♦ Section 3.5, “Trap Instructions”

♦ Section 3.6, “Special Instructions”

♦ Section 3.7, “Coprocessor Instructions”

♦ Section 3.8, “System Control Coprocessor (CP0) Instructions”

♦ Section 3.9, “Cache Maintenance Instructions”

♦ Section 3.10, “CW4011 Instruction Set Extensions”

♦ Section 3.11, “CPU Instruction Opcode Bit Encoding”

3.1 Instruction Set Formats

Every R-series instruction consists of a single word (32 bits) aligned on
a word boundary. As shown in Figure 3.1, there are three instruction
formats: I-type (immediate), J-type (jump), and R-type (register). The
restricted format approach simplifies instruction decoding. The compiler
and assembler can synthesize more complicated (and less frequently
used) operations and addressing modes.
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Figure 3.1 Instruction Format

3.2 Load and Store Instructions

Load and store instructions are all I-type instructions and move data
between memory and general purpose registers. The only addressing
mode directly supported in the base R-series architecture is base
register plus 16-bit signed immediate offset .

The MIPS II extensions add the Load Linked and Store Conditional
instructions, which support multiple processors, and the Sync instruction,
which synchronizes loads and stores. The CW4011 supports these
instructions.

The load/store instruction operation code (opcode) determines the
access type, which in turn indicates the size of the data item to be loaded
or stored. Regardless of access type or byte-numbering order
(big-endian or little-endian), the address specifies the byte that has the
smallest byte address of all the bytes in the addressed field. For a

0

op

I-Type (Immediate)

immediateop rs rt

J-Type (Jump)

31 26 25 21 20 16 15

031 26 25

target

R-Type (Register)

031 26 25 21 20 16 15 11 10 6 5

op rs rt rd shamt funct

op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination register)

immediate 16-bit immediate, branch displacement, or address displacement
target 26-bit jump target address
rd 5-bit destination register specifier
shamt 5-bit shift amount
funct 6-bit function field



Load and Store Instructions 3-3

big-endian machine, the smallest byte is the leftmost byte; for a little-
endian machine, it is the rightmost byte.

The bytes used within the addressed word can be determined directly
from the access type and the two low-order bits of the address, as shown
in Figure 3.2. Note that certain combinations of access type and
low-order address bits can never occur; only the combinations shown in
Figure 3.2 are allowed.

Figure 3.2 Byte Specifications for Loads/Stores

1 1 1

1 1 0

Data Bus

63 0 63 0

MSB LSBLSB MSB

Byte Numbers Byte Numbers
Low-Order

Address Bits

A2 A1 A0

Access
Type

Doubleword

Word

Tribyte

Halfword

Byte

Bytes Accessed Bytes Accessed

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

0 0 0

0 1 0

1 0 0

1 1 0

0 0 0

0 0 1

1 0 0

1 0 1

0 0 0

0 0 0

Little-EndianBig-Endian

7 6 5 4 3 2 1 0

1 0 0

76543210
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Table 3.1 describes the load and store instructions supported by the
CW4011. Instruction format is shown in courier; for example, LB rt,
offset(base) .

Table 3.1 Load and Store Instruction Summary

Instruction Format and Description

Load Byte LB rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Sign-extend the contents of addressed byte and load into rt .

Load Byte
Unsigned

LBU rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Zero-extend the contents of addressed byte and load into rt .

Load
Halfword

LH rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Sign-extend contents of addressed halfword and load into rt .

Load Halfword
Unsigned

LHU rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Zero-extend contents of addressed halfword and load into rt .

Load Word LW rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address, and load the addressed word into rt .

Load Word
Left

LWL rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Shift addressed word left so that addressed byte is leftmost byte of a
word. Merge bytes from memory with contents of register rt and load result into
register rt .

Load Word
Right

LWR rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Shift addressed word right so that addressed byte is rightmost byte of a
word. Merge bytes from memory with contents of register rt and load result into reg-
ister rt .

Store Byte SB rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Store least-significant byte of register rt at addressed location.

Store
Halfword

SH rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Store least-significant halfword of register rt at addressed location.

(Sheet 1 of 2)



Computational Instructions 3-5

3.3 Computational Instructions

Computational instructions perform arithmetic, logical, and shift
operations on values in registers. Computational instructions occur in
both R-type (both operands are registers) and I-type (one operand is a
16-bit immediate) formats. There are five categories of computational
instructions:

♦ Table 3.2 summarizes the ALU immediate instructions

♦ Table 3.3 summarizes the three-operand, register-type instructions

♦ Table 3.4 summarizes the shift instructions

Store Word SW rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Store contents of register rt at addressed location.

Store Word
Left

SWL rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Shift contents of register rt left so that the leftmost byte of the word is in
the position of the addressed byte. Store word containing shifted bytes into word at
addressed byte.

Store Word
Right

SWR rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Shift contents of register rt right so that the rightmost byte of the word
is in the position of the addressed byte. Store word containing shifted bytes into
word at addressed byte.

Load Linked LL rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address, and load the addressed word into register rt .

Store Conditional SC rt, offset(base)
Sign-extend the 16-bit offset and add to the contents of register base to form
address. Conditionally store register rt at address, based on whether the load-
link has been “broken.”

Sync SYNC
Complete all outstanding load and store instructions before allowing any new load
or store instruction to start.

Table 3.1 Load and Store Instruction Summary (Cont.)

Instruction Format and Description

(Sheet 2 of 2)
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♦ Table 3.5 summarizes the multiply/divide instructions

♦ Table 3.6 summarizes the computational CW4011 instruction
extensions (CW4011 ISA)

Table 3.2 ALU Immediate Instruction Summary

Instruction Format and Description

Add Immediate ADDI rt, rs, immediate
Add 16-bit, sign-extended immediate to register rs and place 32-bit result in
register rt . Trap on two’s complement overflow.

Add Immediate
Unsigned

ADDIU rt, rs, immediate
Add 16-bit, sign-extended immediate to register rs and place 32-bit result in
register rt . Do not trap on overflow.

Set on Less Than
Immediate

SLTI rt, rs, immediate
Compare 16-bit, sign-extended immediate with register rs as signed 32-bit
integers. Result = 1 if rs is less than immediate; otherwise, result = 0. Place
result in register rt .

Set on Less Than
Immediate
Unsigned

SLTIU rt, rs, immediate
Compare 16-bit, sign-extended immediate with register rs as unsigned 32-bit
integers. Result = 1 if rs is less than immediate; otherwise, result = 0. Place
result in register rt .

AND Immediate ANDI rt, rs, immediate
Zero-extend 16-bit immediate , AND with contents of register rs , and place
result in register rt .

OR Immediate ORI rt, rs, immediate
Zero-extend 16-bit immediate , OR with contents of register rs , and place result
in register rt .

Exclusive OR
Immediate

XORI rt, rs, immediate
Zero-extend 16-bit immediate , exclusive OR with contents of register rs , and
place result in register rt .

Load Upper
Immediate

LUI rt, immediate
Shift 16-bit immediate left 16 bits. Set least-significant 16 bits of word to zeros.
Store result in register rt .
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Table 3.3 Three-Operand, Register-Type Instruction Summary

Instruction Format and Description

Add ADD rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd . Trap
on two’s complement overflow.

Add Unsigned ADDU rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in register rd . Do not
trap on overflow.

Subtract SUB rd, rs, rt
Subtract contents of register rt from rs and place 32-bit result in register rd .
Trap on two’s complement overflow.

Subtract Unsigned SUBU rd, rs, rt
Subtract contents of register rt from rs and place 32-bit result in register rd . Do
not trap on overflow.

Set on Less Than SLT rd, rs, rt
Compare contents of register rt to register rs (as signed, 32-bit integers). If reg-
ister rs is less than rt , rd = 1; otherwise, rd = 0.

Set on Less Than
Unsigned

SLTU rd, rs, rt
Compare contents of register rt to register rs (as unsigned, 32-bit integers). If
register rs is less than rt , rd = 1; otherwise, rd = 0.

AND AND rd, rs, rt
Bitwise AND contents of registers rs and rt and place result in register rd .

OR OR rd, rs, rt
Bitwise OR contents of registers rs and rt and place result in register rd .

Exclusive OR XOR rd, rs, rt
Bitwise exclusive OR contents of registers rs and rt and place result in register
rd .

NOR NOR rd, rs, rt
Bitwise NOR contents of registers rs and rt and place result in register rd .
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Table 3.4 Shift Instruction Summary

Instruction Format and Description

Shift Left Logical SLL rd, rt, shamt
Shift contents of register rt left by shamt bits, inserting zeros into low-order
bits. Place 32-bit result in register rd .

Shift Right Logical SRL rd, rt, shamt
Shift contents of register rt right by shamt bits, inserting zeros into high-order
bits. Place 32-bit result in register rd .

Shift Right Arithmetic SRA, rd, rt, shamt
Shift contents of register rt right by shamt bits, sign-extending the high-order
bits. Place 32-bit result in register rd .

Shift Left Logical
Variable

SLLV rd, rt, rs
Shift contents of register rt left. Low-order 5 bits of register rs specify the
number of bits to shift. Insert zeros into low-order bits of rt and place 32-bit
result in register rd .

Shift Right Logical
Variable

SRLV rd, rt, rs
Shift contents of register rt right. Low-order 5 bits of register rs specify the
number of bits to shift. Insert zeros into high-order bits of rt and place 32-bit
result in register rd .

Shift Right Arithmetic
Variable

SRAV rd, rt, rs
Shift contents of register rt right. Low-order 5 bits of register rs specify the
number of bits to shift. Sign-extend the high-order bits of rt and place 32-bit
result in register rd .
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Table 3.5 Multiply/Divide Instruction Summary

Instruction Format and Description

Multiply MULT rs, rt
Multiply contents of registers rs and rt as two’s complement values. Place 64-bit
results in special registers HI and LO.

Multiply Unsigned MULTU rs, rt
Multiply contents of registers rs and rt as unsigned values. Place 64-bit results
in special registers HI and LO.

Divide DIV rs, rt
Divide contents of register rs by the contents of rt as two’s complement values.
Place 32-bit quotient in special register LO and 32-bit remainder in HI.

Divide Unsigned DIVU rs, rt
Divide contents of register rs by the contents of rt as unsigned values. Place
32-bit quotient in special register LO and 32-bit remainder in HI.

Move From HI MFHI rd
Move contents of special register HI to register rd .

Move From LO MFLO rd
Move contents of special register LO to register rd .

Move To HI MTHI rs
Move contents of register rs to special register HI.

Move To LO MTLO rs
Move contents of register rd to special register LO.
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Table 3.6 Computation Instruction Extensions Summary (CW4011 ISA)

Instruction Format and Description

Add Circular
Immediate

ADDCIU rt, rs, immediate
The 16-bit immediate is sign-extended and added to the contents of general reg-
ister rs , with the result masked by the value in CP0 register CMASK according to
the formula: rt = (rs 31...cmask ||(rs+signextended_imed) cmask-1...0 ) .

Find First Set Bit FFS rd, rs
Starting at the most-significant bit in register rs , find the first bit that is set to a
one, and return the bit number in register rd . If no bit is set, return with all bits of
rd set to 1.

Find First Clear
Bit

FFC rd, rs
Starting at the most-significant bit in register rs , find the first bit that is set to a
zero, and return the bit number in register rd . If no bit is set, return with all bits
of rd set to 1.

Minimum MIN rd, rs, rt
Compare the contents of registers rs and rt as two’s complement values. The
smaller value is stored in register rd .

Maximum MAX rd, rs, rt
Compare the contents of registers rs and rt as two’s complement values. The
larger value is stored in register rd .

Select and Shift
Right

SELSR rd, rs, rt
Using register rs and rt as a 64-bit register pair and the CP0 register Rotate as
the shift count, shift the register pair rs ||rt right the number of bits specified in
Rotate, and place the least significant 32-bit value in result register rd .

Select and Shift
Left

SELSL rd, rs, rt
Using register rs and rt as a 64-bit register pair and the CP0 register Rotate as
the shift count, shift the register pair rs ||rt left the number of bits specified in
Rotate, and place the most significant 32-bit value in result register rd .

Multiply/Add MADD rs, rt
Multiply contents of registers rs and rt as two’s complement values. Add 64-bit
results to contents in special register pair HI/LO, and place results in HI and LO.

Multiply/Add
Unsigned

MADDU rs, rt
Multiply contents of registers rs and rt as unsigned values. Add 64-bit results to
contents in special register pair HI/LO, and place results in HI and LO.

Multiply/Subtract MSUB rs, rt
Multiply contents of registers rs and rt as two’s complement values. Subtract
64-bit results from contents in special register pair HI/LO, and place results in HI
and LO.

Multiply/Subtract
Unsigned

MSUBU rs, rt
Multiply contents of registers rs and rt as unsigned values. Subtract 64-bit results
from contents in special register pair HI/LO, and place results in HI and LO.
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Table 3.7 shows the execution time of the multiply/divide/accumulate type
instructions.

3.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program.
MIPS I jump and branch instructions always occur with a one-instruction
delay. The instruction immediately following the jump or branch is always
executed while the target instruction is being fetched from storage. There
may be additional cycle penalties, depending on circumstances and
implementation, but the penalties are interlocked in hardware. The
MIPS II ISA extensions add the branch likely class of instructions that
operate exactly like their non-likely counterparts, except that when the
branch is not taken, the instruction following the branch is cancelled.

The J-type instruction format is used for both jump and jump-and-link
instructions for subroutine calls. In the J-type format, the 26-bit target
address is shifted left two bits and combined with the 4 high-order bits
of the current program counter to form a 32-bit absolute address.

The R-type instruction format, which takes a 32-bit byte address
contained in a register, is used for returns, dispatches, and cross-page
jumps.

Table 3.7 Execution Time of Multiply and Divide Instructions

Operation R3000 CW33300 R4000
CW4011
High Speed

Multiply 12 1 + (bits/3) 10 3

Multiply/Add na na na 31

1. For high-speed CW4011 multiply/add instructions, instructions can be pipe-
lined for a throughput of one operation every clock cycle while the latency is
three cycles. Pipelining the instructions accelerates calculations such as dot
products and FIR filters that perform a series of multiplies/adds to compute a
single result.

Divide 34 34 69 34/172

2. The divide time is shortened to 17 cycles if the divisor has less than 16 sig-
nificant bits.
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Branches have 16-bit signed offsets relative to the program counter
(I-type). Jump-and-link and branch-and-link instructions save a return
address in register 31.

Table 3.8 summarizes the R-series jump instructions, Table 3.9
summarizes the branch instructions, and Table 3.10 summarizes the
branch likely instructions.

Table 3.8 Jump Instruction Summary

Instruction Format and Description

Jump J target
Shift 26-bit target address left two bits, combine with four high-order bits of PC,
and jump to address with a one-instruction delay.

Jump and Link JAL target
Shift 26-bit target address left two bits, combine with four high-order bits of PC,
and jump to address with a one-instruction delay. Place address of instruction fol-
lowing delay slot in register 31 (link register).

Jump Register JR rs
Jump to address contained in register rs with a one-instruction delay.

Jump and Link
Register

JALR rs, rd
Jump to address contained in register rs with a one-instruction delay. Place address
of instruction following delay slot in rd .
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Table 3.9 Branch Instruction Summary

Instruction Format and Description

Branch on Equal BEQ rs, rt, offset
Branch to target address1 if register rs is equal to register rt .

Branch on Not Equal BNE rs, rt, offset
Branch to target address if register rs does not equal register rt .

Branch on Less than
or Equal to Zero

BLEZ rs, offset
Branch to target address if register rs is less than or equal to 0.

Branch on Greater
Than Zero

BGTZ rs, offset
Branch to target address if register rs is greater than 0.

Branch on Less Than
Zero

BLTZ rs, offset
Branch to target address if register rs is less than 0.

Branch on Greater
than or Equal to Zero

BGEZ rs, offset
Branch to target address if register rs is greater than or equal to 0.

Branch on Less Than
Zero And Link

BLTZAL rs, offset
Place address of instruction following delay slot in register 31 (link register).
Branch to target address if register rs is less than 0.

Branch on Greater
than or Equal to Zero
And Link

BGEZAL rs, offset
Place address of instruction following delay slot in register 31 (link register).
Branch to target address if register rs is greater than or equal to 0.

1. All branch-instruction target addresses are computed as follows: add address of instruction in delay
slot and the 16-bit offset (shifted left two bits and sign-extended to 32 bits). All branches occur
with a delay of one instruction.
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Table 3.10 Branch Likely Instruction Summary (MIPS II ISA Extensions)

Instruction Format and Description

Branch on Equal
Likely

BEQL rs, rt, offset
Branch to target address1 if register rs is equal to register rt .

Branch on Not
Equal Likely

BNEL rs, rt, offset
Branch to target address if register rs does not equal register rt .

Branch on Less
than or Equal to
Zero Likely

BLEZL rs, offset
Branch to target address if register rs is less than or equal to 0.

Branch on Greater
Than Zero Likely

BGTZL rs, offset
Branch to target address if register rs is greater than 0.

Branch on Less
Than Zero Likely

BLTZL rs, offset
Branch to target address if register rs is less than 0.

Branch on Greater
than or Equal to
Zero Likely

BGEZL rs, offset
Branch to target address if register rs is greater than or equal to 0.

Branch on Less
Than Zero And
Link Likely

BLTZALL rs, offset
Place address of instruction following delay slot in register 31 (link register).
Branch to target address if register rs is less than 0.

Branch on
Greater than
or Equal to Zero
And Link Likely

BGEZALL rs, offset
Place address of instruction following delay slot in register 31 (link register).
Branch to target address if register rs is greater than or equal to 0.

1. All branch-instruction target addresses are computed as follows: add address of instruction in delay
slot and the 16-bit offset (shifted left two bits and sign-extended to 32 bits). All branches occur
with a delay of one instruction.
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3.5 Trap Instructions

Trap instructions are part of the MIPS II instruction set and provide
instructions that conditionally create an exception, based on the same
conditions tested in the branch instructions. Table 3.11 provides a
summary of MIPS II ISA extensions.

Table 3.11 Trap Instruction Summary (MIPS II ISA Extensions)

Instruction Format and Description

Trap on Equal TEQ rs, rt
Trap if register rs is equal to register rt .

Trap on Equal
Immediate

TEQI rs, immediate
Trap if register rs is equal to the immediate value.

Trap on Greater
than or Equal

TGE rs, rt
Trap if register rs is greater than or equal to register rt .

Trap on Greater
than or Equal
Immediate

TGEI rs, immediate
Trap if register rs is greater than or equal to the immediate value.

Trap on Greater
than or Equal
Unsigned

TGEU rs, rt
Trap if register rs is greater than or equal to register rt .

Trap on Greater
than or Equal
Immediate Unsigned

TGEIU rs, immediate
Trap if register rs is greater than or equal to the immediate value.

Trap on Less
Than

TLT rs, rt
Trap if register rs is less than register rt .

Trap on Less
Than Immediate

TLTI rs, immediate
Trap if register rs is less than the immediate value.

Trap on Less
Than Unsigned

TLTU rs, rt
Trap if register rs is less than register rt .

Trap on Less
Than Immediate
Unsigned

TLTIU rs, immediate
Trap if register rs is less than the immediate value.

Trap if Not Equal TNE rs, rt
Trap if register rs is not equal to rt .

Trap if Not Equal
Immediate

TNEI rs, immediate
Trap if register rs is not equal the immediate value.
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3.6 Special Instructions

Special instructions cause an unconditional branch to the general
exception-handling vector. Special instructions are always R-type and are
summarized in Table 3.12.

3.7 Coprocessor Instructions

The CW4011 supports external (on-chip) coprocessors and implements
the coprocessor instruction set. Please contact LSI Logic if your design
needs more than one coprocessor. Coprocessor branch instructions are
J-type. Table 3.13 summarizes the different coprocessor instructions.

Table 3.12 Special Instruction Summary

Instruction Format and Description

System Call SYSCALL
Initiates system call trap, immediately transferring control to exception handler.

Breakpoint BREAK
Initiates breakpoint trap, immediately transferring control to exception handler.
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Table 3.13 Coprocessor Instruction Summary

Instruction Format and Description

Load Word to
Coprocessor z

LWCz rt, offset(base)
Extends the sign of the 16-bit offset and adds the offset to the contents of the
general register base to form a 32-bit unsigned effective address. The word at the
memory location specified is loaded into coprocessor register rt of the coproces-
sor unit z.

Store Word
from
Coprocessor z

SWCz rt, offset(base)
Extends the sign of the 16-bit offset and adds the offset to the contents of the
general register base to form a 32-bit unsigned effective address. The contents of
coprocessor register rt of the coprocessor unit z are stored at the address spec-
ified by the 32-bit unsigned effective address.

Move To
Coprocessor z

MTCz rt, rd
Loads the contents of general register rt into the rd register of coprocessor unit
z.

Move From
Coprocessor z

MFCz rt , rd
Loads the contents of the rd register of coprocessor unit z into general register
rt .

Move Control
to Coprocessor z

CTCz rt, rd
Loads the contents of general register rt into the control register rd of coprocessor
unit z.

Move Control
From Coproces-
sor z

CFCz rt, rd
Loads the contents of the control register rd of coprocessor unit z into general
register rt .

Coprocessor
Operation

COPz cofun
Initiates a coprocessor operation that may specify and reference the coprocessor’s
internal registers or change the state of the coprocessor’s condition line, but does
not change the state within the processor or the cache memory.

Branch on
Coprocessor z
True (Likely)

BCzT offset, (BCzTL offset)
Compute a branch target address by adding address of instruction to the 16-bit
offset (shifted left two bits and sign-extended to 32 bits). Branch to the target
address (with a delay of one instruction) if coprocessor z’s condition line is true.
In the case of branch likely, the delay slot instruction is not executed when the
branch is not taken.

Branch on
Coprocessor z
False (Likely)

BCzF offset, (BCzFL offset)
Compute a branch target address by adding address of instruction to the 16-bit
offset (shifted left two bits and sign-extended to 32 bits). Branch to the target
address (with a delay of one instruction) if coprocessor z’s condition line is false.
In the case of branch likely, the delay slot instruction is not executed when the
branch is not taken.
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3.8 System Control Coprocessor (CP0) Instructions

Coprocessor 0 instructions perform operations on the system control
coprocessor (CP0) registers to manipulate the memory management and
exception-handling facilities of the processor. Table 3.14 summarizes the
CP0 instructions.

If the TLB is removed, the TLB instructions (TLBR, TLBWI, TLBWR,
TLBP) cause an RI (Reserved Instruction) exception. If the CW4011 is
in R3000 compatibility mode, the ERET (Exception Returned) instruction
is unavailable, and this causes an RI exception. Conversely, if the
CW4011 is in R4000 mode, the RFE (Restore From Exception)
instruction is unavailable, and this causes an RI exception.

Table 3.14 CP0 Instruction Summary

Instruction Format and Description

Move To CP0 MTC0 rt, rd
Loads contents of CPU register rt into CP0 register rd .

Move From CP0 MFC0 rt, rd
Loads contents of CP0 register rd into CPU register rt .

Read Indexed
TLB Entry1

TLBR
Loads EntryHi and EntryLo with the TLB entry pointed to by the Index register.

Write Indexed
TLB Entry1

TLBWI
Loads TLB entry pointed to by the Index register with the contents of the
EntryHi and EntryLo registers.

Write Random
TLB Entry1

TLBWR
Loads TLB entry pointed to by the Random register with the contents of the
EntryHi and EntryLo registers.

Probe TLB for
Matching Entry1

TLBP
Loads the Index register with the address of the TLB entry whose contents
match the EntryHi and EntryLo registers. If no TLB entry matches, set the
high-order bit of the Index register.

(Sheet 1 of 2)
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Exception Return2 ERET(R4000 mode)
Loads the PC from ErrorEPC (SR2 = 1: Error Exception) or EPC (SR2 = 0:
Exception) and clear ERL bit (SR2 = 1) or EXL bit (SR2 = 0) in the Status
Register. SR2 is Status register bit 2.

Restore From
Exception2

RFE(R3000 mode)
Restores previous interrupt mask and mode bits of the Status register into
current status bits. Restore old status bits into previous status bits.

Wait for Interrupt WAITI
Stops execution of instructions and places the processor into a power save
(stall) condition until a hardware interrupt, NMI, or reset is received.

1. If there is no MMU installed, any of these instructions can cause a reserved instruction exception.
2. Only one of these instructions is legal at any one time. The one that is not legal causes a reserved

instruction exception.

Table 3.14 CP0 Instruction Summary (Cont.)

Instruction Format and Description

(Sheet 2 of 2)
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3.9 Cache Maintenance Instructions

Cache Maintenance instructions are always I-type. Table 3.15
summarizes these instructions.

Table 3.15 Cache Maintenance Instruction Summary

Instruction Format and Description

Flush I-Cache FLUSHI
Flush I-cache needs 256 stall cycles.

Flush D-Cache FLUSHD
Flush D-cache needs 256 stall cycles.

Flush I-Cache and
D-Cache

FLUSHID
Flush both I-cache and D-cache in 256 stall cycles.

WriteBack WB offset(base)
Write back a D-cache line addressed by offset+GPR[base] .
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3.10 CW4011 Instruction Set Extensions

This section defines the CW4011 instruction set extensions. Table 3.16
lists all the extensions and the page where a description can be found.

Table 3.16 CW4011 Instruction Set Extensions

Extension Page Extension Page

ADDCIU 3-22 MAX 3-30

FFC 3-23 MIN 3-31

FFS 3-24 MSUB 3-32

FLUSHD 3-25 MSUBU 3-33

FLUSHI 3-26 SELSL 3-34

FLUSHID 3-27 SELSR 3-35

MADD 3-28 WAITI 3-36

MADDU 3-29 WB 3-37
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ADDCIU Add Circular Immediate

Format

Syntax ADDCIU   rt, rs, immediate

Description The immediate field of the instruction is sign-extended and added to the
contents of general register rs , the result of which is masked with the
expanded value in special register CMask according to the equation
shown below. The CMask register is CP0 register number 24, whose
valid bits are [4:0].

The carries resulting from the addition of the sign-extended offset are
not propagated into the final result beyond bit [CMask-1].

Operation T: sign_extend_immed = (immediate 15) 16 || immediate 15..0
GPR[rt] = GPR[rs] 31..cmask  || (GPR[rs] +
sign_extend_immed) cmask-1..0

Exceptions None

31 26 25 21 20 16 15 0

ADDCIU rs rt immediate

011100 rs rt immediate
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FFC Find First Clear Bit

Format

Syntax FFC rd, rs

Description The contents of general register rs are examined starting with the most-
significant bit. The bit number of the first clear bit is returned in general
register rd . If no bit is set, all ones are returned in rd .

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs 0 rd 0 FFC

000000 rs 0 rd 00000 001011
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FFS Find First Set Bit

Format

Syntax FFS rd, rs

Description The contents of general register rs are examined starting with the most-
significant bit. The bit number of the first set bit is returned in general
register rd . If no bit is set, all ones are returned in rd .

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs 0 rd 0 FFS

000000 rs 0 rd 00000 001010
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FLUSHD FLUSH Data Cache

Format

Syntax FLUSHD

Description FLUSHD flushes all D-cache lines and causes stall cycles for 256 clocks,
regardless of the cache size.

Exceptions None

31 26 25 21 20 16 15 0

CACHE 0 FLUSHD 0

101111 00000 00010 0
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FLUSHI FLUSH Instruction Cache

Format

Syntax FLUSHI

Description FLUSHI flushes all I-cache lines and causes stall cycles for 256 clocks,
regardless of the cache size.

Exceptions None

31 26 25 21 20 16 15 0

CACHE 0 FLUSHI 0

101111 00000 00001 0
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FLUSHID FLUSH Instruction and Data Cache

Format

Syntax FLUSHID

Description FLUSHID flushes all D-cache and I-cache lines and causes stall cycles
for 256 clocks, regardless of the cache size.

Exceptions None

31 26 25 21 20 16 15 0

CACHE 0 FLUSHID 0

101111 00000 00011 0
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MADD Multiply/Add

Format

Syntax MADD rs, rt

Description The contents of general register rs and the contents of general register
rt are multiplied. Both operands are treated as 32-bit two’s complement
values. When the operation is completed, the doubleword result is added
to special register pair HI/LO.

No overflow exception occurs under any circumstances.

This instruction is only available when the chip has multiplier-accumulator
module hardware and MAD/MUL are set to one in the Configuration and
Cache Control (CCC) register.

MADD executes in multiple cycles, depending on the number of
significant bits in the operands. Refer to Table 3.18 on page 3-39.

Operation T: t <- (HI || LO) + (GPR[rs] * GPR[rt])
LO <- t 31..0 , HI <- t 63..32

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 0 MADD

000000 rs rt 0 00000 011100
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MADDU Multiply/Add Unsigned

Format

Syntax MADDU rs, rt

Description The contents of general register rs and the contents of general register
rt are multiplied with both operands treated as 32-bit unsigned values.
When the operation is completed, the doubleword result is added to
special register pair HI/LO.

No overflow exception occurs under any circumstances.

This instruction is only available when the chip has multiplier-accumulator
module hardware and MAD/MUL are set to one in the CCC register.

The instruction executes in multiple cycles, depending on the number of
significant bits in the operands. Refer to Table 3.18 on page 3-39.

Operation T: t <- (HI || LO) + ((0||GPR[rs]) * (0||GPR[rt]))
LO <- t 31..0 , HI <- t 63..32

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 0 MADDU

000000 rs rt 0 00000 011101
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MAX Maximum

Format

Syntax MAX rd, rs, rt

Description The source operands rs and rt are compared as two’s complement
values. The larger value is stored in the rd register.

Operation T: if GPR[rs]>GPR[rt] then
GPR[rd]<-GPR[rs]

else
GPR[rd]<-GPR[rt]

endif

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 MAX

000000 rs rt rd 00000 101001
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MIN Minimum

Format

Syntax MIN rd, rs, rt

Description The source operands rs and rt are compared as two’s complement
values. The smaller value is stored in the rd register.

Operation T: if GPR[rs]<GPR[rt] then
GPR[rd]<-GPR[rs]

else
GPR[rd]<-GPR[rt]

endif

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 MIN

000000 rs rt rd 00000 101000
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MSUB Multiply/Subtract

Format

Syntax MSUB rs, rt

Description The contents of general register rs and rt are multiplied and both
operands are treated as 32-bit two’s complement values. When the
operation is complete, the doubleword result is subtracted from special
register pair HI/LO.

No overflow exception occurs under any circumstances.

This instruction is only available when the chip has multiplier-accumulator
module hardware and MAD/MUL are set to one in the CCC register.

The instruction executes in multiple cycles, depending on the number of
significant bits in the operands. Refer to Table 3.18 on page 3-39.

Operation T: t <- (HI || LO) - (GPR[rs] * GPR[rt])
LO <- t 31..0 , HI <- t 63..32

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 0 MSUB

000000 rs rt 0 00000 011110
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MSUBU Multiply/Subtract Unsigned

Format

Syntax MSUBU rs, rt

Description The contents of general register rs and rt are multiplied and both
operands are treated as 32-bit unsigned values. When the operation is
completed, the doubleword result is subtracted from special register pair
HI/LO.

No overflow exception occurs under any circumstances.

This instruction is only available when the chip has multiplier-accumulator
module hardware and MAD/MUL are set to one in the CCC register.

The instruction executes in multiple cycles, depending on the number of
significant bits in the operands. Refer to Table 3.18 on page 3-39.

Operation T: t <- (HI || LO) - ((0||GPR[rs]) * (0||GPR[rt]))
LO <- t 31..0 , HI <- t 63..32

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt 0 0 MSUBU

000000 rs rt 0 00000 011111
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SELSL Select and Shift Left

Format

Syntax SELSL rd, rs, rt

Description The contents of general register rs and rt are combined to form a 64-bit
doubleword. The doubleword is shifted left the number of bits specified
in the CP0 register Rotate, and the upper 32 bits of the result are placed
in general register rd . This Rotate register is CP0 register number 23,
with valid bits [4:0].

Operation T: s <- ROTATE 4..0
GPR[rd] <- GPR[rs] 31-s..0  || GPR[rt] 31..32-s

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 SELSL

000000 rs rt rd 00000 000101
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SELSR Select and Shift Right

Format

Syntax SELSR rd, rs, rt

Description The contents of general register rs and rt are combined to form a 64-bit
doubleword. The doubleword is shifted right the number of bits specified
in CP0 register Rotate, and the lower 32 bits of the result are placed in
general register rd . This Rotate register is CP0 register number 23. Valid
bits are [4:0].

Operation T: s <- ROTATE 4..0
GPR[rd] <- GPR[rs] s-1..0  || GPR[rt] 31..s

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL rs rt rd 0 SELSR

000000 rs rt rd 00000 000001
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WAITI Wait for Interrupt

Format

Syntax WAITI

Description When this instruction is executed, the main processor clock stops and
execution of instructions is halted. Execution resumes when a hardware
interrupt, NMI, or reset exception is received. While it is in wait mode,
the processor is in a power saving mode, using very little current
because the clock is turned off to most of the circuitry.

WAITI must be followed by two or more NOP instructions, otherwise, the
results may be undefined. Refer to Appendix C, “Programmer’s Notes,”
for further information.

Exceptions None

31 26 25 21 20 16 15 11 10 6 5 0

COP0 0 0 0 WAITI

010000 10000 00000 00000 00000 100000
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WB WriteBack

Format

Syntax WB offset( base )

Description Eight words of the D-cache line addressed by offset +GPR[base] are
written back to memory if the line is dirty. Upper bits of offset
+GPR[base ] are ignored.

Exceptions None

31 26 25 21 20 16 15 0

CACHE base WB offset

101111 base 00100 offset
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3.11 CPU Instruction Opcode Bit Encoding

Tables 3.17–3.23 show the opcode bit encoding for CW4011 instructions.
The following key applies to operation codes referenced in the table:

*rxf1 Cause reserved instruction exceptions in all current implementations
and are reserved for future versions of the architecture.

*rxf2 Cause reserved instruction exceptions in all current implementations
and are reserved for future versions of the architecture. *rxf2 is sepa-
rated from other reserved instructions for COPz. These are not detected
as reserved instruction codes that cause an exception on the R3000.
The R4000 detects them.

*rx40 Cause a reserved instruction exception on R4000 and CW4011 proces-
sors (when in R4000 mode). They are used as a Restore From
Exception (RFE) instruction on the R3000, LR33000, LR33300, and
CW4011 in R3000 mode.

*rx64 Cause a reserved instruction exception. They are 64-bit instructions on
R4000.

*nrx Invalid but do not cause reserved instruction exceptions in CW4011
implementations.

x1 Originally, extended instructions in CW4011 implementations. They are
reserved instructions that cause an exception on R4000.

x2 The operation code CACHE marked with x2 is valid only for CW4011 pro-
cessors with CP0 enabled and causes a reserved instruction exception
with CP0 disabled. Bits [20:16] are sub-opcodes. They are instructions for
cache maintenance, and the functions are not compatible with R4000.
Recommended mnemonics are FLUSHI, FLUSHD, FLUSHID, and WB
offset (base ). Undefined opcodes of CACHE instruction do not cause
reserved instruction exception in CW4011 implementations.

x3 Originally, extended instructions in CW4011 implementations. They are
used for 64-bit multiply and divide instructions on R4000. If the MUL bit
or MAD bit in the CCC register is zero, they cause a reserved instruc-
tion exception. The CCC register is described in detail in Section 4.3.10,
“Configuration and Cache Control (CCC) Register,” on page 4-22.

x4 Cause a reserved instruction exception if the MUL bit in the CCC reg-
ister is zero.

x5 The operation code ERET marked with x5 is valid only on the R4000
and CW4011 in R4000 mode.

x6 Coprocessor 3 instructions, which are not available on R4000. They are
available on the R3000 and CW4011.
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Table 3.17 CW4011 Opcode Bit Encoding

[28:26] Opcode

[31:29] 0 1 2 3 4 5 6 7

0 SPECIAL REGIMM J JAL BEQ BNE BLEZ BGTZ

1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 COP0 COP1 COP2 COP3x6 BEQL BNEL BLEZL BGTZL

3 *rx64 *rx64 *rx64 *rx64 ADDCIUx1 *rxf1 *rxf1 *rxf1

4 LB LH LWL LW LBU LHU LWR *rx64

5 SB SH SWL SW *rx64 *rx64 SWR CACHEx2

6 LL LWC1 LWC2 LWC3x6 *rx64 *rx64 *rx64 *rx64

7 SC SWC1 SWC2 SWC3x6 *rx64 *rx64 *rx64 *rx64

Table 3.18 SPECIAL Opcode Bit Encoding

[2:0] SPECIAL Function

[5:3] 0 1 2 3 4 5 6 7

0 SLL SELSRx1 SRL SRA SLLV SELSLx1 SRLV SRAV

1 JR JALR FFSx1 FFCx1 SYSCALL BREAK *rxf1 SYNC

2 MFHIx4 MTHIx4 MFLOx4 MTLOx4 *rx64 *rxf1 *rx64 *rx64

3 MULTx4 MULTUx4 DIVx4 DIVUx4 MADDx3 MADDUx3 MSUBx3 MSUBUx3

4 ADD ADDU SUB SUBU AND OR XOR NOR

5 MINx1 MAXx1 SLT SLTU *rx64 *rx64 *rx64 *rx64

6 TGE TGEU TLT TLTU TEQ *rxf1 TNE *rxf1

7 *rx64 *rxf1 *rx64 *rx64 *rx64 *rxf1 *rx64 *rx64
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Table 3.19 REGIMM Opcode rt Bit Encoding

[18:16] REGIMM rt

[20:19] 0 1 2 3 4 5 6 7

0 BLTZ BGEZ BLTZL BGEZL *rxf1 *rxf1 *rxf1 *rxf1

1 TGEI TGEIU TLTI TLTIU TEQI *rxf1 TNEI *rxf1

2 BLTZAL BGEZAL BLTZALL BGEZALL *rxf1 *rxf1 *rxf1 *rxf1

3 *rxf1 *rxf1 *rxf1 *rxf1 *rxf1 *rxf1 *rxf1 *rxf1

Table 3.20 CACHE x2 Opcode rt Bit Encoding

[18:16] CACHE x2 rt

[20:19] 0 1 2 3 4 5 6 7

0 *nrx FLUSHIx2 FLUSHDx2 FLUSHIDx2 WBx2 *nrx *nrx *nrx

1 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx

2 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx

3 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx

Table 3.21 COPz rs Opcode Bit Encoding

[23:21] COPz rs

[25:24] 0 1 2 3 4 5 6 7

0 MFCz *rx64 CFCz *rxf2 MTCz *rx64 CTCz *rxf2

1 BC *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2

2
COPz (Coprocessor defined instructions)

3
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Table 3.22 COPz rt Opcode Bit Encoding

[18:16] COPz rt

[20:19] 0 1 2 3 4 5 6 7

0 BCF BCT BCFL BCTL *rxf2 *rxf2 *rxf2 *rxf2

1 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2

2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2

3 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2 *rxf2

Table 3.23 CP0 Opcode Bit Encoding

[2:0] CP0 Function

[5:3] 0 1 2 3 4 5 6 7

0 *nrx TLBR TLBWI *nrx *nrx *nrx TLBWR *nrx

1 TLBP *nrx *nrx *nrx *nrx *nrx *nrx *nrx

2 RFErx40 *nrx *nrx *nrx *nrx *nrx *nrx *nrx

3 ERETx5 *nrx *nrx *nrx *nrx *nrx *nrx *nrx

4 WAITIx1 *nrx *nrx *nrx *nrx *nrx *nrx *nrx

5 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx

6 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx

7 *nrx *nrx *nrx *nrx *nrx *nrx *nrx *nrx
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Chapter 4
CW4011 Exception
Processing

This chapter describes the CW4011 system coprocessor, Coprocessor 0
(CP0), and explains how the CW4011 handles exception processing. The
chapter is divided into the following sections:

♦ Section 4.1, “Overview”

♦ Section 4.2, “R3000 Exception Compatibility Mode”

♦ Section 4.3, “Exception Handling Registers”

♦ Section 4.4, “Exception Description Details”

4.1 Overview

When the CW4011 detects an exception, it suspends the normal
sequence of instruction execution, exits from User mode, and enters
Kernel mode where it can handle exceptions. The CW4011 reverts to
Kernel mode, regardless of the mode at the time of the exception. The
processor then disables interrupts and forces a software handler located
at a fixed address in memory to be executed. The handler saves the
context of the processor. The context must be restored when the
exception has been handled. Section 5.2.1, “Operating Modes,” provides
more information on this subject.

When an exception occurs, the CP0 loads the Exception Program
Counter (EPC) with a restart location where execution may resume after
the exception has been serviced. The restart location in the EPC is the
address of the instruction that caused the exception or, if the instruction
was executing in a Branch Delay slot, the address of the branch
instruction immediately preceding the delay slot. The instruction causing
the exception and all the instructions following in the pipeline are
aborted. They will be refetched after return from the exception.
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This chapter describes the events that can initiate exception processing.
Table 4.1 summarizes these events.

Table 4.1 CW4011 Exceptions

Exception Cause

Cold Reset Deassertion of the CW4011 cold reset signal, CRESETn.

Warm Reset Deassertion of the CW4011 warm reset signal, WRESETn.

Nonmaskable Interrupt Assertion of the nonmaskable interrupt signal, NMIn.

Debug Detection of a program counter breakpoint, data address breakpoint,
or trace event. Not supported in standard R3000 and R4000
processors.

Address Error Either an attempt to load, fetch, or store a word not aligned on a word
boundary, or an attempt to load or store a halfword not aligned on a
halfword boundary. References to an address for which the most sig-
nificant bit was set while in the CW4011 was in User mode may also
cause an address error.

TLB Refill There is no TLB entry to match a reference to a mapped address
space.

TLB Entry Invalid A virtual address reference matches a TLB entry that is marked
invalid.

TLB Modified A store operation’s virtual address reference matches a TLB entry
that is marked valid but is not dirty/writable.

Bus Error Assertion of the CW4011 external bus error signal, SCBERRn.

Integer Overflow Two’s complement overflow during an add or subtract.

Trap One of the trap instructions results in a “true” condition.

System Call An attempt to execute the SYSCALL instruction.

Breakpoint An attempt to execute the BREAK instruction.

Reserved Instruction Execution of an instruction with an undefined or reserved major oper-
ation code (bits [31:26]), or a SPECIAL instruction whose minor
operation code (bits [5:0]) is undefined.

Coprocessor Unusable Execution of a coprocessor instruction where the Cu (coprocessor
usable) bit is not set for the target coprocessor.

Floating Point Available for use by an external floating-point coprocessor.

(Sheet 1 of 2)
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4.2 R3000 Exception Compatibility Mode

Although the CW4011 processor is based on the MIPS R4000
architecture, an R3000-style exception processing capability has been
added. This facility allows you to configure CP0 exception processing in
such a way that existing R3000 exception handling code can be run on
the CW4011 processor with little or no modification to the code.

R3000 compatibility mode is under the control of the compatibility bit
(bit 24) of the Configuration and Cache Control (CCC) register, discussed
in Section 4.3.10. The compatibility bit is reset to zero (R4000 mode)
when a cold reset exception occurs. If R3000 mode operation is desired,
bit 24 should be set to one as part of the cold reset handler. Once it has
been placed in R3000 mode, the processor should only be switched back
to R4000 mode by another cold reset. When R3000 mode is enabled,
the behavior of the following areas is affected:

♦ Status Register

The lower six bits of the Status register are redefined to implement
the Kernel/User mode and interrupt enable stack as defined by the
R3000 architecture. The Status register is discussed in detail in
Section 4.3.6, “Status Register.”

♦ Exception Handling Vectors

The exception handling vectors (base and offset) are remapped to
those specified by the R3000 architecture. The exception vectors are
discussed in detail in Section 4.4.3, “Exception Vector Locations.”

Interrupt Assertion of one of the CW4011’s six hardware interrupt inputs, or the
setting of one of the two software interrupt bits in the Cause register.
Interrupts must be enabled.

External Vectored
Interrupt

Assertion of the CW4011 EXViNTn input. Not supported in R3000
and R4000 processors.

Table 4.1 CW4011 Exceptions (Cont.)

Exception Cause

(Sheet 2 of 2)
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♦ Exception Return (RFE vs. ERET)

When operating in R3000 compatibility mode, exception return is
accomplished using the RFE instruction. If an attempt is made to use
the ERET instruction, a reserved instruction exception will be
recognized.

The following sections provide more detail on CW4011 exception
handling. Where appropriate, the differences between standard operation
R4000 and R3000 compatibility mode are noted. In all other cases,
operation is identical.

4.3 Exception Handling Registers

This section describes the CP0 registers used in exception processing.
Software examines these registers during exception processing to
determine the cause of an exception and the state of the CPU at the time
of the exception. Each of the registers is listed in Table 4.2 and described
in detail in the sections that follow.

Table 4.2 CP0 Exception Processing Registers

Register Name

CP0
Register
Number

Reference
Page

Context 4 4-5

Debug Control and Status (DCS) 7 4-7

Bad Virtual Address (BadVAddr) 8 4-9

Count 9 4-9

Compare 11 4-9

Status 12 4-10

Cause 13 4-18

Exception Program Counter (EPC) 14 4-20

Processor Revision Identifier (PRId) 15 4-20

(Sheet 1 of 2)
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Two other CP0 registers that are part of the virtual memory management
system and contain important information about exception handling are
the Index register (CP0 register 0), described in Section 5.3.2.4, “Index
Register,” and the Random register (CP0 register 1), described in Section
5.3.2.5, “Random Register.”

You can use the MTC0 (Move To Coprocessor 0) instruction to set the
bits in the registers, and MTF0 (Move From Coprocessor 0) to read the
contents of the registers.

4.3.1 Context Register

The Context register is a read/write register containing a pointer to an
entry in the Page Table Entry (PTE) array. This array is an operating
system data structure that stores virtual to physical address translations.
When there is a TLB miss, operating system software handles the miss
by loading the TLB with the missing translation from the PTE array.

The BadVPN field is not writable. It contains the VPN of the most
recently translated virtual address that did not have a valid translation
(TLBL or TLBS). The PTEBase field is both writable and readable, and

Configuration and Cache Control (CCC) 16 4-22

Load Linked Address (LLAdr) 17 4-26

Breakpoint Program Counter (BPC) 18 4-27

Breakpoint Data Address (BDA) 19 4-27

Breakpoint PC Mask (BPCM) 20 4-27

Breakpoint Data Address Mask (BDAM) 21 4-28

Rotate 23 4-28

Circular Mask (CMask) 24 4-29

Error Exception Program Counter (Error EPC) 30 4-30

Table 4.2 CP0 Exception Processing Registers (Cont.)

Register Name

CP0
Register
Number

Reference
Page

(Sheet 2 of 2)
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indicates the base address of the PTE table of the current user address
space.

The Context register duplicates some of the information provided in the
BadVAddr register, but the information is in a form that is more useful for
a software TLB exception handler.

The Context register can be used by the operating system to hold a
pointer into the PTE array. The operating system sets the PTE base field
register, as needed. Normally, the operating system uses the Context
register to address the current page map, which resides in the kernel-
mapped segment kseg2. The register is included solely for the use of the
operating system. Figure 4.1 shows the format of the Context register.

Figure 4.1 Context Register

PTEBase Page Table Entry Base [31:22]
This field is the Operating System Pointer. It points to the
PTE in memory.

BadVPN Bad Virtual Page Number [21:2]
This field contains bits [31:12] of the most recently trans-
lated virtual address that did not have a valid translation.
This format provides a table of four-byte PTEs for a page
size of 4 Kbytes. For other PTE and page sizes, shifting
and masking bits [21:2] produces an appropriate
address.

R Reserved [1:0]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure
compatibility with future versions of the software.

31 22 21 2 1 0

PTEBase BadVPN R
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4.3.2 Debug Control and Status (DCS) Register

The DCS register contains the enable and status bits for the CW4011
debug facility. All bits have read/write access. Figure 4.2 shows the
format of the DCS register.

Figure 4.2 DCS Register

TR Trap 31
This is the trap enable bit. Setting it to one traps debug
events to the debug exception vector. Clearing it to zero
disables the trap. However, the status bits (UD, KD, etc.)
are updated with status debug event information even
when the bit is cleared.

UD User Mode Debug Event 30
This bit is set to one to enable detection of a debug event
when the CW4011 is operating in User mode.

KD Kernel Mode Debug Event 29
This bit is set to one to enable detection of a debug event
when the CW4011 is operating in Kernel mode.

TE Trace Event 28
This bit is set to one to enable detection of a trace event
(nonsequential fetch operation).

DW Data Write 27
This bit is set to one to enable detection of a data write
event as defined by the BDA and BDAM registers. The bit
is used in conjunction with DAE.

DR Data Read 26
This bit is set to one to enable detection of a data read
event as defined by the BDA and BDAM registers. The bit
is used in conjunction with DAE.

DAE Detect BDA Event 25
This bit is set to one to enable detection of a BDA debug
event.

31 30 29 28 27 26 25 24 23 22 6 5 4 3 2 1 0

TR UD KD TE DW DR DAE PCE DE R T W RD DA PC DB
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PCE Program Counter Breakpoint Event 24
This bit is set to one to enable detection of a program
counter breakpoint event as defined by the BPC and
BPCM registers.

DE Debug Enable 23
This bit is set to one to enable the debug facility. Clearing
the bit disables the debug facility.

R Reserved [22:6]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure com-
patibility with future software revisions.

T Trace Status 5
The core sets T to one when it detects a trace condition.

W Write Status 4
The core sets W to one when it detects a write reference
to the address specified in the Breakpoint Address
register.

RD Read Status 3
The core sets RD to one when it detects a read reference
to the address specified in the Breakpoint Data Address
register.

DA DAE Debug Condition Status 2
The core sets DA to one when it detects a data address
debug condition.

PC PCE Debug Condition Status 1
The core sets PC to one when it detects a program
counter debug condition.

DB Debug Detected Status 0
The core sets DB to one when it detects any debug
condition.
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4.3.3 Bad Virtual Address (BadVAddr) Register

The BadVAddr register is a read-only register that holds the 32-bit failing
virtual address for address error (AdEL, AdES) and TLB translation
(TLBL, TLBS, Mod) exceptions. Figure 4.3 shows the format of the
BadVAddr register.

Figure 4.3 BadVAddr Register

4.3.4 Count Register

The Count register acts as a timer. It increments at a constant rate
regardless of whether an instruction is executed, retried, or any forward
progress is made. The Count register increments at half the maximum
instruction issue rate.

The Count register is a read/write register—it can be written for
diagnostic purposes or for system initialization to synchronize two
processors operating in lock step.

Figure 4.4 shows the format of the Count register.

Figure 4.4 Count Register

4.3.5 Compare Register

The Compare register implements a timer service (see also the Count
register) that maintains a stable value and is not automatically updated
by core events. When the timer facility is enabled and the value of the
Count register equals the value of the Compare register, interrupt bit
IP[7] in the Cause register is set. This causes an interrupt on the next
execution cycle when the interrupt is enabled. Writing a value to the
Compare register clears the timer interrupt.

31 0

Bad Virtual Address

MD96.141

31 0

Count

MD96.142
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For diagnostic purposes, the Compare register is a read/write register. In
normal operation, the Compare register is only written. Figure 4.5 shows
the format of the Compare register.

Figure 4.5 Compare Register

4.3.6 Status Register

The Status register is a read/write register that contains the operating
mode, interrupt enabling, and the diagnostic states of the processor. The
format of the Status register is slightly different when the CW4011 is
operating in R4000 mode from when it is in R3000 mode. Section
4.3.6.1, “R4000 Mode Operation,” describes the format for R4000 mode
operation and Section 4.3.6.2, “R3000 Mode Operation,” describes the
format for R3000 mode operation.

4.3.6.1 R4000 Mode Operation

The format of the R4000 version of the Status register (CCC24 = 0) is
shown in Figure 4.6. Following the figure are bit-field descriptions and
information on these R4000 operations:

♦ Interrupt Enable

♦ Processor Modes

♦ Kernel Address Space Accesses

♦ User Address Space Accesses

♦ Cold Reset

♦ Warm Reset

31 0

Compare
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Figure 4.6 Status Register (R4000 Mode)

CU[3:0] Coprocessor Usability Bits [31:28]
The software uses this field to control accesses to the
coprocessors. When the bit is set to one the correspond-
ing coprocessor is usable:

Please note that CP0 is always available in Kernel mode
regardless of the CU[0] setting.

R Reserved [27:23, 21, 19:16, 7:5]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure
compatibility with future versions of the software.

BEV Bootstrap Exception Vector 22
This bit controls the location of the TLB refill and the
general exception vectors. Setting the bit to one indicates
a bootstrap operation and bootstrap vector locations are
used. When the bit is cleared to zero, normal exception
vectors are used.

SR Soft Reset 20
When a warm reset or a nonmaskable interrupt occurs,
the core sets SR to one.

INT[5:0] Interrupt Mask [15:10]
This field is a six-bit [5:0] hardware interrupt mask.
Setting a bit to one enables the corresponding hardware
interrupt. For example, setting bit 5 enables hardware
interrupt 5.

31 28 27 23 22 21 20 19 16 15 10 9 8 7 5 4 3 2 1 0

CU[3:0] R BEV R SR R INT[5:0] SW[1:0] R KSU[1:0] ERL EXL IE

CU[3:0] Coprocessor

3 3

2 2

1 1

0 0
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SW[1:0] Software Interrupt Mask [9:8]
This field is a two-bit [1:0] software interrupt mask.
Setting a bit to one enables the corresponding software
interrupt.

KSU[1:0] Kernel/User Mode [4:3]
This field determines the base operating mode of the
CW4011 core as follows:

All other settings are reserved.

ERL Error Level 2
This bit determines the error level of the CW4011. When
it is set to one, the level is Error. When it is cleared to
zero, the level is Normal.

EXL Exception Level 1
This bit determines the exception level of the CW4011.
When it is set to one, the level is Exception. When it is
cleared to zero, the level is Normal.

IE Interrupt Enable 0
Setting this bit to one enables interrupts. Clearing it to
zero disables interrupts.

Interrupt Enable – Interrupts are enabled when the following field
conditions are true:

♦ IE is set to one

♦ EXL is cleared to zero

♦ ERL is cleared to zero

If these conditions are met, interrupts are recognized according to the
setting of the INT and SW mask bits.

Processor Modes – The setting of the KSU bits, in conjunction with the
settings of the EXL and ERL bits, defines the CW4011 processor modes
as follows:

Bit Base Mode

00 Kernel

10 User
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♦ The processor is in User mode when KSU is equal to 0b10, and EXL
and ERL are cleared to zero.

♦ The processor is in Kernel mode under any one of the following
conditions:

– KSU is equal to 0b00

– EXL is set to one

– ERL is set to one

Kernel Address Space Accesses – Access to the Kernel address
space is allowed only when the processor is in Kernel mode.

User Address Space Accesses – Access to the User address space is
always allowed.

Cold Reset – The contents of the Status register are undefined after a
cold reset, except for these bits:

♦ ERL and BEV bits are set to one

♦ CU[3:0] and SR bits are set to zero

Warm Reset – The contents of the Status register are unchanged by
warm reset, except for these bits: ERL, BEV, and SR bits are set to one.

4.3.6.2 R3000 Mode Operation

The format of the R3000 version of the Status register (CCC24 = 1) is
shown in Figure 4.7. Following the figure are bit-field descriptions and
descriptions of these R3000 operations:

♦ Interrupt Enable

♦ Processor Modes

♦ Kernel Address Space Accesses

♦ User Address Space Accesses

♦ Cold Reset

♦ Warm Reset

♦ Mode Bits and Exception Processing
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Figure 4.7 Status Register (R3000 Mode)

CU[3:0] Coprocessor Usability Bits [31:28]
The software uses this field to control accesses to the
coprocessors. When the bit is set to one the correspond-
ing coprocessor is usable, as shown below:

Please note that CP0 is always available in Kernel mode
regardless of the CU[0] setting.

R Reserved [27:23, 21, 19:16, 7:6]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure com-
patibility with future versions of the software.

BEV Bootstrap Exception Vector 22
This bit controls the location of the TLB refill and the
general exception vectors. Setting the bit to one
implements a bootstrap operation and bootstrap vector
locations are used. When the bit is cleared to zero,
normal exception vectors are used.

SR Soft Reset 20
When either a warm reset or a nonmaskable interrupt
occurs, the core sets SR to one.

INT[5:0] Interrupt Mask [15:10]
This field is a six-bit [5:0] hardware interrupt mask.
Setting a bit to one enables the corresponding hardware
interrupt. For example, setting bit 5 to one enables hard-
ware interrupt 5.

31 28 27 23 22 21 20 19 16 15 10 9 8 7 6 5 4 3 2 1 0

CU[3:0] R BEV R SR R INT[5:0] SW[1:0] R KUo IEo KUp IEp KUc IEc

CU[3:0] Coprocessor

3 3

2 2

1 1

0 0
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SW[1:0] Software Interrupt Mask [9:8]
This field is a two-bit [1:0] software interrupt mask. Set-
ting a bit to one enables the corresponding software
interrupt.

KUo Kernel/User Mode, Old 5
This bit shows the old base operating mode of the
CW4011 core. Setting it to one indicates User mode.
Clearing the bit to zero indicates Kernel mode. The bit is
part of a three-bit stack that indicates old, previous, and
current modes.

IEo Interrupt Enable, Old 4
This bit shows the old interrupt enable setting. Setting it
to one indicates that interrupts are enabled. Clearing the
bit to zero indicates that interrupts are disabled. The bit
is part of a three-bit stack that indicates old, previous,
and current interrupt enable settings.

KUp Kernel/User Mode, Previous 3
This bit shows the previous base operating mode of the
CW4011 core. Setting it to one indicates User mode.
Clearing the bit to zero indicates Kernel mode. The bit is
part of a three-bit stack that indicates old, previous, and
current modes.

IEp Interrupt Enable, Previous 2
This bit shows the previous interrupt enable setting.
Setting it to one indicates that interrupts are enabled.
Clearing the bit to zero indicates that interrupts are
disabled. The bit is part of a three-bit stack that indicates
old, previous, and current interrupt enable settings.

KUc Kernel/User Mode, Current 1
This bit shows the current base operating mode of the
CW4011 core. Setting it to one indicates User mode.
Clearing the bit to zero indicates Kernel mode. The bit is
part of a three-bit stack that indicates old, previous, and
current modes.

IEc Interrupt Enable, Current 0
This bit shows the old interrupt enable setting. Setting it
to one indicates that interrupts are enabled. Clearing the
bit to zero indicates that interrupts are disabled. The bit
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is part of a three-bit stack that indicates old, previous,
and current interrupt enable settings.

Interrupt Enable – Interrupts are enabled when IEc is set to one. In this
case, interrupts are recognized according to the setting of the INT and
SW masks.

Processor Modes – CW4011 processor modes are defined by the
setting of the KUc bit:

♦ The processor is in User mode when KUc is set to one.

♦ The processor is in Kernel mode when KUc is cleared to zero.

Kernel Address Space Accesses – Access to the Kernel address
space is allowed only when the processor is in Kernel mode.

User Address Space Accesses – Access to the User address space is
always allowed.

Cold Reset – The CW4011 processor enters R4000 mode upon cold
reset. Refer to “Cold Reset” on page 4-13 for the initial Status register
settings for this mode. To enter R3000 mode, set bit 24 of the
Configuration and Cache Control (CCC) register to one as part of the
cold reset handler.

Upon entering R3000 mode after a cold reset, the contents of the Status
register are undefined except for the following bits:

♦ The BEV bit is set to one.

♦ The CU[3:0], KUc, KUo, KUp, IEc , IEo, IEp, and SR bits are cleared
to zero.

Warm Reset – The contents of the Status register are unchanged by
warm reset, except for the following bits:

♦ The BEV and SR bits are set to one.

♦ The KU and IE bits are pushed deeper into the stack and KUc and
IEc are cleared to zero, for example:
KUo/IEo ← KUp/IEp ← KUc/IEc ← 0/0.
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Mode Bits and Exception Processing – Figure 4.8 shows how the
CW4011 core manipulates the Status register during exception
recognition.

Figure 4.8 Status Register and Exception Recognition

When the CW4011 recognizes an exception, it saves the current
Kernel/User mode bit (KUc) and the current interrupt enable bit (IEc) in
the previous Kernel/User mode bit (KUp) and previous interrupt enable
bit (IEp), respectively. The previous bits are saved in the old bits, and the
current bits are cleared to zero. The process is shown in the following
example: KUo/IEo ← KUp/IEp ← KUc/IEc ← 0/0.

When the CW4011 executes a Return From Exception (RFE) instruction,
the values are popped off the stack, KUc and IEc are reset to their
previous values, for example: KUc/IEc ← KUp/IEp ← KUo/IEo.

5 4 3 2 1 0

KUo IEo KUp IEp KUc IEc

KUo IEo KUp IEp KUc IEc

0 0Exception Recognition

KUc Current Kernel/User mode bit
IEc Current Interrupt Enable mode bit
KUp Previous Kernel/User mode bit
IEp Previous Interrupt Enable mode bit
KUo Old Kernel mode bit
IEo Old Interrupt Enable mode bit



4-18 CW4011 Exception Processing

4.3.7 Cause Register

The Cause register is a read/write register. The contents of this register
provide information about the most recent exception. The format of the
Cause register is shown in Figure 4.9. All bits in the register, with the
exception of IP[1:0], are read-only bits.

Figure 4.9 Cause Register

BD Branch Delay 31
When set, this bit indicates that the last exception was
taken while the CW4011 was executing an instruction in
a Branch Delay slot.

BT Branch Taken 30
If the BD bit is set, this bit indicates if the branch was
taken.

CE[1:0] Coprocessor Error [29:28]
The value in the coprocessor error field indicates the
coprocessor unit referenced when a Coprocessor
Unusable exception is taken:

R Reserved [27:16, 7, 1:0]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure
compatibility with future versions of the software.

31 30 29 28 27 16 15 8 7 6 2 1 0

BD BT CE[1:0] R IP[7:0] R ExcCode[4:0] R

BT bit Branch Condition

0 Branch Not Taken

1 Branch Taken

CE1 CE0 Coprocessor Referenced

1 1 Coprocessor 3

1 0 Coprocessor 2

0 1 Coprocessor 1

0 0 Coprocessor 0



Exception Handling Registers 4-19

IP[7:0] Interrupt Pending [15:8]
This bit field indicates which interrupts are pending. Bits
IP[7:2] correspond to the six external hardware interrupts
and bits IP[1:0] correspond to the two software interrupts.
The software interrupts can be set and cleared directly by
writing to IP[1:0].

ExcCode[4:0] Exception Code [6:2]
This field defines the exception code. Table 4.3 lists the
valid exception code values.

Table 4.3 Cause Register ExcCode Field

Exception
Code Value Mnemonic Description

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 Bus Bus error exception

7 — Reserved

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic overflow exception

13 Tr Trap exception

14 — Reserved

15 FPE Floating-point exception

16–31 — Reserved
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4.3.8 Exception Program Counter (EPC) Register

The read-write EPC register contains the address at which processing
resumes after an exception has been serviced. For synchronous
exceptions, the EPC register contains either:

♦ The virtual address of the instruction that was the direct cause of the
exception

♦ The virtual address of the immediately preceding branch or jump
instruction (when the instruction is in a Branch Delay slot, and the
Branch Delay bit in the Cause register is set)

Figure 4.10 shows the format of the EPC register. Bits [31:2] make up
the program counter. Bits [1:0] are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however, software should
write these bits as zero to ensure compatibility with future versions of the
software.

Figure 4.10 EPC Register

4.3.9 Processor Revision Identifier (PRId) Register

The 32-bit, read-only PRId register contains information identifying the
implementation and revision level of the CW4011 core, as shown in
Figure 4.11.

Figure 4.11 PRId Register

R Reserved [31:16]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure
compatibility with future versions of the software.

31 2 1 0

Exception Program Counter R

31 16 15 12 11 8 7 4 3 0

R LIMP UIMP LREV UREV
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LIMP LSI Logic Implementation Number [15:12]
This value represents the implementation number of the
CW4011; it is currently set to 0x4.

UIMP User Implementation Number [11:8]
The value in this field represents the user’s implementa-
tion number. This field can be programmed at the core
interface using the iMPLop[3:0] lines.

LREV LSI Logic Revision Number [7:4]
This value is the revision number of the CW4011, which
is set to 0x1 for the original version.

UREV User Revision Number [3:0]
The value of this field is interpreted as a processor unit
revision number. This field can be programmed at the
core interface using the REVLop[3:0] lines.

The revision number can distinguish between some chip
revisions. However, LSI Logic does not guarantee that
changes to the core will necessarily be reflected in the
PRId register, or that changes to the revision number
necessarily reflect real core changes. For this reason,
these values are not listed and software should not rely
on the revision number in the PRId register to character-
ize the core.
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4.3.10 Configuration and Cache Control (CCC) Register

The CCC register allows software to configure various pieces of the
CW4011 design (for example, BIU, TLB, and cache controllers).
Figure 4.12 shows the format of the CCC register.

Figure 4.12 CCC Register

R Reserved [31:29, 27]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure
compatibility with future versions of the software.

EWP External Write Priority 28
This bit defines SCBus arbitration priority between data
reads and writes in the 4-level write buffer. Clearing EWP
to zero gives higher priority to data read requests, if the
read address does not match any of the write addresses
in the write buffer. Setting EWP to one gives higher
priority to data writes.

ISR1 I-Cache Scratchpad RAM 26
Setting this bit to one enables I-cache Set 1 to be used
as a scratchpad RAM. Clearing ISR1 to zero disables the
I-cache Set 1 scratchpad RAM mode.

EVI External Vectored Interrupt 25
This bit enables and disables external vectored interrupts.
Setting the bit to one enables the interrupt and clearing it
to zero disables the interrupt.

CMP R3000 Compatibility 24
This bit enables and disables the R3000 exception
processing and status register compatibility mode. Set-
ting the bit to one enables the mode and clearing it
disables the mode.

31 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R EWP R ISR1 EVI CMP IIE DIE MUL MAD TMR BEG IE0 IE1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IS[1:0] DE0 DE1 DS[1:0] IPWE IPWS[1:0] TE WB SR0 SR1 IsC TAG INV
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IIE I-Cache Invalidate Enable 23
This bit enables and disables I-cache invalidation. Setting
IIE to one enables the interface and clearing it to zero
disables the interface.

DIE D-Cache Invalidate Enable 22
This bit enables and disables the D-cache invalidate
interface. Setting the bit to one enables the request and
clearing it to zero disables the interface.

MUL Multiplier Enable 21
This bit enables and disables the hardware multiplier.
Setting MUL to one enables the multiplier and clearing it
disables the multiplier.

MAD Multiplier Accumulate Extensions 20
This bit allows the multiplier to support accumulate exten-
sions. Setting the bit to one enables the feature and
clearing the bit disables the feature. When this bit is set,
MUL must also be set.

TMR Timer 19
This bit is the timer facility enable. When set to one,
external hardware interrupt 5 is disabled. In the place of
interrupt 5, the core enables the CP0 Count/Compare
timer facility. This new timer facility replaces interrupt 5 in
the Cause register IP[7] bit.

BEG BIU Bus Enable Grant 18
This bit enables and disables the BIU bus grant. Setting
this bit to one enables the external bus master. Clearing
it to zero causes the CW4011 core to ignore the external
bus master.

IE0 I-Cache Set 0 Enable 17
This bit enables and disables Set 0 of the I-cache. Setting
the bit to one enables Set 0 and clearing it to zero
disables Set 0.

IE1 I-Cache Set 1 Enable 16
This bit enables and disables Set 1 of the I-cache. Setting
the bit to one enables Set 1 and clearing it to zero
disables Set 1.
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IS[1:0] I-Cache Size [15:14]
The IS[1:0] field determines the size of each I-cache set.
The field is set as follows:

DE0 D-Cache Set 0 Enable 13
This bit enables and disables Set 0 of the D-cache.
Setting the bit to one enables Set 0 and clearing it to zero
disables Set 0.

DE1 D-Cache Set 1 Enable 12
This bit enables and disables Set 1 of the D-cache.
Setting the bit to one enables Set 1 and clearing it to zero
disables Set 1.

DS[1:0] D-Cache Size [11:10]
The DS[1:0] field determines the size of each D-cache
set. The field is set as follows:

IPWE In-Page Write Enable 9
This bit enables and disables in-page write operations.
Setting the bit to one enables in-page write and clearing
it to zero disables in-page write.

IS[1] IS[0]
Cache Size
(Kbytes)

0 0 1

0 1 2

1 0 4

1 1 8

DS[1] DS[0]
Cache Size
(Kbytes)

0 0 1

0 1 2

1 0 4

1 1 8
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IPWS[1:0] In-Page Write Size [8:7]
The IPWS[1:0] field determines the external DRAM page
size for in-page write operations. The field is set as
follows:

TE TLB Enable 6
This bit enables and disables the TLB. Setting the bit
to one enables the TLB, if one is present, and clearing
the bit to zero disables the TLB.

WB WriteBack 5
This bit defines the caching algorithm used for kseg0.
Additionally, when the TLB is absent or disabled, it also
defines the caching algorithm for kuseg and kseg2. Set-
ting WB to one enables WriteBack operation and clearing
WB to zero enables WriteThrough operation.

SR0 Scratchpad RAM Mode Set 0 4
This bit enables and disables scratchpad RAM mode for
Set 0 of the D-cache. Setting the bit to one enables
scratchpad mode and clearing it to zero disables scratch-
pad mode.

SR1 Scratchpad RAM Mode Set 1 3
This bit enables and disables scratchpad RAM mode for
Set 1 of the D-cache. Setting the bit to one enables
scratchpad mode and clearing it to zero disables scratch-
pad mode.

IsC Isolate Cache 2
This bit enables isolate cache mode. This means that
stores to the cache are not propagated to external mem-
ory. Setting the bit to one enables the mode and clearing
it to zero disables the mode.

TAG Tag Test Mode 1
This bit enables and disables tag test mode, which is
used for cache maintenance. Setting the bit to one

IPWS[1] IPWS0
In-Page Write Size
(Kbytes)

0 0 1

0 1 2

1 0 4

1 1 8
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enables the mode and clearing it to zero disables the
mode.

INV Invalidate Cache Mode 0
This bit enables and disables cache invalidate mode,
which is used for cache maintenance. Setting the bit to
one enables the mode and clearing it to zero disables the
mode.

4.3.11 Load Linked Address (LLAddr) Register

The LLAddr register is a read/write register that contains the physical
address (PAddr[31:2]) read by the most recent Load Linked instruction.
This register is used for diagnostic purposes only and serves no function
during normal operation.

Figure 4.13 shows the format of the LLAddr register. Bits [31:2] contain
the physical address (PAddr). Bits [1:0] are reserved and cleared to zero.

Figure 4.13 LLAddr Register

31 2 1 0

PAddr[31:2] R
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4.3.12 Breakpoint Program Counter (BPC) Register

Software uses the read/write BPC register to specify a program counter
breakpoint. The BPC register is used in conjunction with the Breakpoint
PC Mask register, described in Section 4.3.14.

Figure 4.14 shows the format of the 32-bit BPC register. Bits [1:0] are
reserved and cleared to zero.

Figure 4.14 BPC Register

4.3.13 Breakpoint Data Address (BDA) Register

Software uses the read/write BDA register to specify a virtual data
address breakpoint. The BDA register is used in conjunction with the
Breakpoint Data Address Mask register described in Section 4.3.15.

Figure 4.15 shows the format of the 32-bit BDA register.

Figure 4.15 BDA Register

4.3.14 Breakpoint PC Mask (BPCM) Register

The read/write BPCM register masks bits in the BPC register. A one in
any bit in the BPCM register indicates that the CW4011 compares the
corresponding PC bit to that contained in the BPC register for program
counter exceptions. Zero values in the mask indicate that the CW4011
does not check the corresponding PC bits to the BPC register bits.

Figure 4.16 shows the format of the 32-bit BPCM register. Bits [1:0] are
reserved and cleared to zero.

31 2 1 0

Breakpoint Program Counter R

31 0

Breakpoint Data Address
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Figure 4.16 BPCM Register

4.3.15 Breakpoint Data Address Mask (BDAM) Register

The read/write BDAM register masks bits in the BDA register. A one in
any bit in the BDAM register indicates that the CW4011 compares the
corresponding virtual data address bit to that contained in the BDA
register for data address (debug) exceptions. Values of zero in the mask
indicate that the CW4011 does not check the corresponding virtual data
address bits to the BDA register bits.

Figure 4.17 shows the format of the 32-bit BDAM register.

Figure 4.17 BDAM Register

4.3.16 Rotate Register

Select and Rotate Left (SELSL) and Select and Rotate Right (SELSR)
use the lower five bits of the Rotate register [4:0] as the shift count. This
is useful for data alignment operations in graphics and in bit-field
selection routines for data transmission and compression applications.

Even though the Rotate register resides in the CP0, User-mode access
to the register is always granted, regardless of the value contained in the
Cu0 bit of the Status register.

Figure 4.18 shows the format of the Rotate register.

31 2 1 0

Breakpoint Program Counter Mask R

31 0

Breakpoint Data Address Mask
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Figure 4.18 Rotate Register

R Reserved [31:5]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure
compatibility with future versions of the software.

Rotate Rotate [4:0]
This field determines the shift count.

4.3.17 Circular Mask (CMask) Register

The CMask register is used by the CW4011 instruction set extensions.
The Load/Store word/halfword/byte with update circular instructions store
a value in the destination register and update the base address register
with the addition of base + offset, which is modified according to the
value of bits [4:0]. This feature is important in DSP (digital signal
processing) and other applications that use circular buffers.

Even though the CMask register resides within the CP0, User-mode
access to the register is always granted, regardless of the value
contained in Status[Cu0].

Figure 4.19 shows the format of the CMask register.

Figure 4.19 CMask Register

R Reserved [31:5]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure com-
patibility with future versions of the software.

CMask Circular Mask [4:0]
This field contains the circular mask.

31 5 4 0

R Rotate

31 5 4 0

R CMask
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4.3.18 Error Exception Program Counter (Error EPC) Register

The Error EPC register is similar to the EPC register. It stores the PC
(Program Counter) on cold reset, warm reset, and NMI exceptions. The
read/write Error EPC register contains the virtual address at which
instruction processing can resume after the exception has been serviced.
The address may be either:

♦ The virtual address of the first instruction terminated by the exception

♦ The virtual address of the immediately preceding branch or jump
instruction when the terminated instruction is in a Branch Delay slot

There is no Branch Delay slot indication for the Error EPC register.
Figure 4.20 shows the format of the Error EPC register. Bits [31:2] make
up the Error EPC. Bits [1:0] are reserved and cleared to zero.

Figure 4.20 Error EPC Register

4.4 Exception Description Details

This section describes each of the CW4011 core exceptions, what
causes these exceptions, and how they are handled and serviced. This
section is further divided as follows:

♦ Section 4.4.1, “Exception Operation”

♦ Section 4.4.2, “Precision of Exceptions”

♦ Section 4.4.3, “Exception Vector Locations”

♦ Section 4.4.4, “Priority of Exceptions”

♦ Section 4.4.5, “Reset Exceptions”

♦ Section 4.4.6, “Interrupt Exceptions”

♦ Section 4.4.7, “Address Error Exception”

♦ Section 4.4.8, “TLB Exceptions”

♦ Section 4.4.9, “Bus Error Exception”

31 2 1 0

Error EPC R
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♦ Section 4.4.10, “Integer Overflow Exception”

♦ Section 4.4.11, “Trap Exception”

♦ Section 4.4.12, “System Call Exception”

♦ Section 4.4.13, “Breakpoint Exception”

♦ Section 4.4.14, “Reserved Instruction Exception”

♦ Section 4.4.15, “Floating-Point Exception”

♦ Section 4.4.16, “Coprocessor Unusable Exception”

♦ Section 4.4.17, “Debug Exception”

4.4.1 Exception Operation

To handle an exception, the processor saves the current operating state,
enters Kernel mode, disables interrupts, and forces execution of a
handler at a fixed address. To resume normal operation, the operating
state must be restored and interrupts enabled.

When an exception occurs, the EPC register is loaded with the restart
location at which execution can resume after the exception has been
serviced. The EPC register contains the address of the instruction
associated with the exception, or, if the instruction was executing in a
Branch Delay slot, the EPC register contains the address of the branch
instruction immediately preceding.

4.4.1.1 R4000 Mode Operation (Default after Cold Reset)

The CW4011 processor uses the following mechanisms for saving and
restoring the operating mode and interrupt status:

♦ A single interrupt enable bit (IE) located in the Status register

♦ A base operating mode (User, Kernel) located in the KSU field of the
Status register

♦ An exception level (normal, exception) located in the EXL field of the
Status register

♦ An error level (normal, error) located in the ERL field of the Status
register

Interrupts are enabled by setting the IE bit to one and both levels (EXL,
ERL) to normal.
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Table 4.4 shows how the current processor operating mode is defined.

Exceptions set the exception level to exception (EXL = 1). The exception
handler typically resets the exception level to normal (EXL = 0) after
saving the appropriate state. It sets it back to exception while restoring
that state. Returning from an exception (ERET instruction) resets the
exception level to normal.

4.4.1.2 R3000 Mode Operation

R3000 mode of operation is much simpler than the R4000 mode. The
current processor operating state is always defined by the KUc bit
(0 → Kernel, 1 → User). The basic mechanism for saving and restoring
the operating state of the processor is the Kernel/User (KU) and Interrupt
Enable (IE) stack located in the bottom six bits of the Status register.

When responding to an exception, the current mode bits (KUc/IEc) are
saved into the previous mode bits (KUp/IEp); the previous mode bits are
saved into the old mode bits (KUo/IEo); and the current mode bits
(KUc/IEc) are both cleared to zero.

After exception processing has been completed, the saved state is
restored using the RFE instruction, which causes the previous mode bits
to be copied back into the current mode bits and the old mode bits to be
copied back into the previous mode bits. The old mode bits are left
unchanged.

4.4.1.3 Exception Processing Diagrams

Figures 4.21–4.25 show the basic set of actions taken for each of the
major CW4011 exception classes: Cold Reset, Warm Reset,
Nonmaskable Interrupt (NMI), Common, Debug, and External Vectored
Interrupt.

Table 4.4 Current Processor Mode

Current Mode Status KSU[1:0] Status EXL Status ERL

User
Kernel
Kernel
Kernel

10
00
xx
xx

0
0
1
0

0
0
0
1
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Figure 4.21 Cold Reset Exception

Figure 4.22 Warm Reset, NMI Exceptions

Figure 4.23 Common Exceptions

Random ←TLBENTRIES - 1
Wired ←0
CCC←032

DCS ←032

ErrorPC ←PC
SR ←04 || SR[27:23] || 1 || 0 || 0 || SR[19:3] || 1 || SR[1:0]
PC ←0xBFC0 0000

ErrorPC ←PC
if (CCC24 = 0) then
    SR ←SR[31:23] || 1 || 0 || 1 || SR[19:3] || 1 || SR[1:0]
else
    SR ←SR[31:23] || 1 || 0 || 1 || SR[19:6] || SR[3:0] || 0 2

endif
PC ←0xBFC0 0000

Cause ←BD || BT || CE || 0 12 || Cause[15:8] || 0 || ExcCode || 0 2

if ((CCC24 = 1) | (SR1 = 0)) then
    EPC ←PC
endif
if (CCC24 = 0) then
    SR ←SR[31:2] || 1 || SR0
else
    SR ←SR[31:6] || SR[3:0] || 0 2

endif
if (SR22 = 1) then
    if (CCC24 = 0) then
         PC ←0xBFC0 0200 + vector offset
    else
         PC ←0xBFC0 0100 + vector offset
    endif
else
    PC ←0x8000 0000 + vector offset
endif
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Figure 4.24 Debug Exception

Figure 4.25 External Vectored Interrupt Exception

4.4.2 Precision of Exceptions

Exceptions are logically precise. This means that the instruction that
causes an exception and all those that follow it are aborted, generally
before committing to any state; execution picks up where it left off before
the exception; and the instruction can be re-executed after the exception
has been serviced. When following instructions are killed, exceptions
associated with those instructions are also killed, so that exceptions are
not taken in the order detected, but in the instruction fetch order.

Interrupts generated by external devices attached to the processor have
a variety of meanings, depending on the system environment into which
the CW4011 core is designed. Variations in memory system design can
affect the meaning of bus error exceptions and the location and means
of accessing relevant parameters to service them. As far as possible, this

DCS ←DCS[31:6] || T || W || R || DA || PC || DB
Cause ←BD || BT || Cause[29:0]
if ((CCC24 = 1) | (SR1 = 0)) then
    EPC ←PC
endif
if (CCC24 = 0) then
    SR ←SR[31:2] || 1 || SR0
else
    SR ←SR[31:6] || SR[3:0] || 0 2

endif
if (SR22 = 1) then
    if (CCC24 = 0) then
         PC ←0xBFC0 0200 + vector offset
    else
         PC ←0xBFC0 0100 + vector offset
    endif
else
    PC ←0x8000 0000 + vector offset
endif

Cause ←BD || BT || Cause[29:0]
if ((CCC24 = 1) | (SR1 = 0)) then
    EPC ←PC
endif
if (CCC24 = 0) then
    SR ←SR[31:2] || 1 || SR0
else
    SR ←SR[31:6] || SR[3:0] || 0 2

endif
PC ←EXVAp[31:2] || 0 2
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architectural description of the exception handling system defines which
state information is reliable and which is unreliable.

In some cases, however, the characteristics of the pipeline staging
cannot guarantee that all states in the processor and associated system
will remain completely unchanged as a result of the (possibly incomplete)
execution of instructions immediately following an instruction that has
caused an exception. State changes that may occur include the
following:

♦ Instructions may be read from memory and loaded into the I-cache.

♦ The multiply/divide registers (HI and LO) may have been altered by
a MULT/MULTU, DIV/DIVU, or MTHI/MTLO instruction.

These changes can normally be ignored because the state of the
machine is sufficiently restored, allowing execution to resume after the
exception has been serviced.

4.4.3 Exception Vector Locations

The Cold Reset, Warm Reset, and NMI exceptions are always vectored
to location 0xBFC00000. Addresses for other exceptions are a
combination of a vector offset and a base address, and they are
determined by the BEV bit of the Status register. Table 4.5 shows the
vector base addresses and Table 4.6 shows the vector offsets.

Table 4.5 Exception Vector Base Addresses

BEV R4000 Mode (CCC24 = 0) R3000 Mode (CCC24 = 1)

0 0x80000000 0x80000000

1 0xBFC00200 0xBFC0100

Table 4.6 Exception Vector Offset Addresses

Exception R4000 Mode (CCC24 = 0) R3000 Mode (CCC24 = 1)

TLB refill 0x000 (EXL = 0) 0x000 (kuseg access)

Debug 0x040 0x040

All Others 0x180 0x080
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4.4.4 Priority of Exceptions

While more than one exception can occur for a single instruction, only
one exception is reported. Table 4.7 shows the priority order given to
the exception, with Cold Reset having the highest priority.

4.4.5 Reset Exceptions

This subsection describes the cold and warm reset exceptions.

Table 4.7 Exception Priority Order

Priority Exception

Highest

Lowest

Cold Reset

Warm Reset

Nonmaskable Interrupt

Address Error (Instruction Fetch)

TLB Refill (Instruction Fetch)

TLB Invalid (Instruction Fetch)

Bus Error

Integer Overflow, Trap, System Call, Breakpoint, Reserved
Instruction, Coprocessor Unusable, Floating-Point Error

Address Error (Data Access)

TLB Refill (Data Access)

TLB Invalid (Data Access)

TLB Modified (Data Write)

Interrupt

External Vectored Interrupt

Debug
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4.4.5.1 Cold Reset Exception

The primary purpose of a cold reset is to initialize the CW4011 core at
power-up. This section describes the cause of and response to a Cold
Reset exception.

Cause – The Cold Reset exception occurs when the CRESETn signal is
asserted and then deasserted. This exception is not maskable.

Handling – The CPU provides a special interrupt vector (0xBFC00000)
for the Cold Reset exception. The reset vector resides in unmapped and
uncached CPU address space, so the hardware need not initialize the
TLB or the cache to handle the exception. The processor can fetch and
execute instructions while the caches and virtual memory are in an
undefined state.

The contents of all registers in the CPU are undefined when the Cold
Reset exception occurs, except for the following:

♦ In the Status register, the CU[3:0] and SR bits are cleared to zero
and the ERL and BEV bits are set to one. Other bits are undefined.

♦ The Random register is initialized to the value of its upper boundary.

♦ The Wired register is initialized to zero.

Servicing – The Cold Reset exception is serviced by initializing all
processor registers, coprocessor registers, caches, and the memory
system. Servicing is accomplished by performing diagnostic tests, and by
bootstrapping the operating system.

4.4.5.2 Warm Reset Exception

The primary purpose of the Warm Reset exception is to reinitialize the
processor after a fatal error. Unlike nonmaskable interrupts, all cache and
bus state machines are reset by this exception. Like Cold Reset, it can
be used on the processor in any state. The caches, TLB, and normal
exception vectors need not be properly initialized. This section describes
the cause of and response to a Warm Reset exception.

Cause – The Warm Reset exception occurs when the WRESETn signal
is asserted and then deasserted. This exception is not maskable.
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Handling – The reset exception vector (0xBFC00000) is used for this
exception. The vector resides in unmapped and uncached CPU address
space, so the hardware need not initialize the TLB or the cache to handle
the exception. The SR bit of the Status register is set to distinguish
between a Warm Reset exception and a Cold Reset exception.

The contents of all registers are preserved when the Warm Reset
exception occurs, except for the following:

♦ The ErrorPC register, which contains the restart PC (Program
Counter)

♦ The BEV and SR bits of the Status register, which are set to one

♦ R4000 mode, in which the ERL bit is set to one

♦ R3000 mode, in which KUo/IEo ← KUp/IEp ← KUc/IEc ← 0/0

Because Warm Reset can abort cache and bus operations, cache and
memory state is undefined when the Warm Reset exception occurs.

Servicing – The Warm Reset exception is serviced by saving the
current processor state for diagnostic purposes, and reinitializing in a
manner similar to that for the Cold Reset exception.

4.4.6 Interrupt Exceptions

This section describes exceptions caused by nonmaskable interrupts,
normal interrupts, and external vectored interrupts.

4.4.6.1 Nonmaskable Interrupt (NMI) Exception

Nonmaskable interrupts cannot be disabled. They occur when a
catastrophic event, such as power failure, requires immediate attention
to maintain system integrity.

Cause – The Nonmaskable Interrupt exception occurs in response to the
falling edge of the NMI signal. As the name implies, the NMI exception
is not maskable, and occurs regardless of the settings of the EXL, ERL,
and IE Status register bits.

Handling – The reset exception vector (0xBFC00000) is also used for
this exception. The reset vector resides in unmapped and uncached CPU
address space, so the hardware need not initialize the TLB or the cache
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to handle the NMI interrupt. The SR bit of the Status register is set to
differentiate the NMI exception from a Cold Reset exception.

Because an NMI could occur in the middle of another exception, it is
generally not possible to continue program execution after servicing an
NMI.

Unlike Cold and Warm Reset, but in common with other exceptions, NMI
is taken only at instruction boundaries. The states of the caches and
memory system are preserved by this exception.

The contents of all registers in the CPU are preserved when this
exception occurs, except for the following:

♦ The ErrorPC register, which contains the restart PC

♦ The BEV and SR bits of the Status register, which are set to one

♦ R4000 mode, in which the ERL bit is set to one

♦ R3000 mode, in which KUo/IEo ← KUp/IEp ← KUc/IEc ← 0/0

Servicing – The NMI exception is serviced by saving the current
processor state for diagnostic purposes and reinitializing the system in a
manner similar to that for the Cold Reset exception.

4.4.6.2 Interrupt Exception

This section describes the cause of and response to an Interrupt
exception.

Cause – The Interrupt exception occurs when one of the eight interrupt
conditions is asserted. The significance of these interrupts depends on
the specific system implementation. Each of the eight interrupts can be
masked by clearing the corresponding bit in the Interrupt Mask field of
the Status register. All eight interrupts can be masked at once by clearing
the IE bit of the Status register.

Handling – The common exception vector is used for this exception. The
ExcCode field in the Cause register is set to INT.

The IP field of the Cause register indicates the current interrupt requests.
It is possible that more than one of the bits will be set at the same time,
or that no bits will be set if an interrupt is asserted and then deasserted
before the Cause register is read.
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The EPC register points at the first instruction for which processing was
not completed unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set
as an indicator.

Servicing – If the interrupt is caused by one of the two software
generated exceptions, the interrupt condition is cleared by setting the
corresponding Cause register bit to zero.

If the interrupt is hardware generated, the interrupt condition is cleared
by correcting the condition causing the interrupt signal to be asserted.

4.4.6.3 External Vectored Interrupt Exception

The CW4011 implements an external vectored interrupt interface, which
consists of an interrupt input (EXViNTn), interrupt vector virtual address
input (EXVAp[31:2]), and interrupt accepted output (EXVAEn). The
signals must be asserted and deasserted on the rising edge of the
system clock. This interrupt class can be enabled or disabled using the
EVI bit in the CCC register (enabled when CCC24 = 1). This section
describes the cause of and response to an external vectored interrupt
exception.

Cause – An external vectored interrupt occurs when the EXViNTn is
asserted. The significance of this interrupt depends on the specific
system implementation. The interrupt can be masked by clearing the IE
(R3000 = IEc) bit of the Status register.

Handling – The virtual address specified by the EXVAp[31:2] interface
is used to specify the target exception handling routine. The EXVAp[31:2]
address must be provided by a user-defined interrupt controller. The
EXViNTn and EXVAp[31:2] inputs must be held stable and valid until the
exception is accepted. This is indicated by asserting the EXVAEn output
for one cycle.

The EPC register points at the first instruction for which processing was
not completed unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction, and the BD bit of the Cause register is set
as an indicator.
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Servicing – The interrupt condition can be cleared in the user-defined
interrupt controller in one of two ways: by detecting the assertion of the
interrupt accepted output (EXVAEn), or by correcting the condition
causing the interrupt pin (EXViNTn) to be asserted.

4.4.7 Address Error Exception

This section describes the cause of and response to an Address Error
exception.

Cause – The Address Error exception occurs when an attempt is made
to either:

♦ Load, fetch, or store a word that is not aligned on a word boundary

♦ Load or store a halfword that is not aligned on a halfword boundary

♦ Reference the Kernel address space from User mode

The Address Error exception is not maskable.

Handling – The common exception vector is used for this exception. The
Cause register ExcCode is set based on the type of reference that
caused the exception: AdEL for a data load or instruction fetch, AdES for
a data store operation.

When the Address Error exception occurs, the BadVAddr register retains
the virtual address that was not properly aligned or that referenced
protected address space. The contents of the VPN field of the Context
and EntryHi registers are undefined, as are the contents of the EntryLo
register.

The EPC register points at the instruction that caused the exception
unless this instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing – The process executing at the time should be handed a
“segmentation violation” signal. This error is usually fatal to the process
incurring the exception.
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4.4.8 TLB Exceptions

This subsection describes the TLB modified exception, TLB invalid
exception, and the TLB refill exception. If a specific design does not have
a TLB, this section may be disregarded.

4.4.8.1 TLB Refill Exception

This section describes the cause of and response to a TLB Refill
exception.

Cause – The TLB Refill exception occurs when there is no TLB entry to
match a reference to a mapped address space. This exception is not
maskable.

Handling – A special TLB Refill exception vector is used for this
exception. The Cause register ExcCode is set based on the type of
reference that caused the exception: TLBL for a data load or instruction
fetch and TLBS for a data store operation.

When the TLB refill exception occurs, the BadVAddr, Context, and
EntryHi registers hold the virtual address that failed translation. The
EntryHi register also contains the address space identifier (ASID) from
which the translation fault occurred. The Random register normally
contains a valid location in which to place the replacement TLB entry.
The contents of the EntryLo register are undefined.

The EPC register points at the instruction that caused the exception
unless the instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

R4000 mode – This special exception vector is used when the exception
level (at the time of TLB miss detection) is set to normal (EXL = zero). If
the exception level is set to exception (EXL = 1), the common exception
vector is used.

R3000 mode – This special exception vector is used when User or
Kernel mode references to user memory space (kuseg) do not find a
matching entry in the TLB. If the reference is to kernel memory space
(kseg2), the common exception vector is used.
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Servicing – To service this exception, the contents of the Context
register are used as a virtual address to fetch memory locations
containing the physical page frame and access control bits for a TLB
entry. This information is placed in the EntryHi and EntryLo registers and
written into the TLB.

It is possible that the virtual address used to obtain the physical address
and access control information is on a page that is not resident in the
TLB. In this case, a TLB refill exception is allowed inside the TLB Refill
handler. While the first exception goes to a special exception vector
offset (0x000), the second exception goes to the common exception
vector offset (0x180).

The second TLB refill exception obscures the contents of the BadVAddr,
Context, and EntryHi registers within the TLB Refill handler. As a result,
the exact virtual address whose translation caused the first fault is not
known unless the TLB Refill handler specifically saved this address. It is
possible to observe only the failing PTE virtual address. The BadVAddr
register now contains the original contents of the Context register within
the TLB Refill handler, which is the PTE address for the original failing
address.

The operating system can determine the original virtual page number
that caused the fault, but not the complete address. The operating
system uses this information to fetch the PTE that contains the physical
address and to access control information. It also writes the entry into
the TLB and returns to the original user program.

Returning to the TLB Refill handler at this point should be avoided.

R4000 mode – When the EXL bit is set, it prevents the EPC from the
first TLB refill exception from being overwritten by the second TLB refill
exception. Consequently, the appropriate return address can be
determined from the values of the current EPC and the BD bit of the
Status register.

R3000 mode – The TLB Refill handler must save the first refill EPC and
Status[BD] information in a way that allows the second refill to find it.
Using this “saved” EPC register and Status[BD] information, the
appropriate return address can be determined.
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4.4.8.2 TLB Invalid Exception

This section describes the cause of and response to a TLB Invalid
exception.

Cause – The TLB Invalid exception occurs when a virtual address
reference matches a TLB entry that is marked invalid. This exception is
not maskable.

Handling – The common exception vector is used for this exception. The
Cause register ExcCode is set based on the type of reference that
caused the exception: TLBL for a data load or instruction fetch, TLBS for
a data store operation.

When the TLB Invalid exception occurs, the BadVAddr, Context, and
EntryHi registers hold the virtual address that failed translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in
which to place the replacement TLB entry. The contents of the EntryLo
register are undefined.

The EPC register points at the instruction that caused the exception,
unless this instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing – The valid bit of the TLB entry is typically cleared when:

♦ A virtual address does not exist

♦ The virtual address exists, but is not in main memory (a page fault)

♦ A trap is desired on any reference to the page (for example, to
maintain a reference bit)

After servicing the cause of this exception, the TLB entry is located with
the TLB Probe (TLBP) instruction, and replaced by an entry with the valid
bit set.
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4.4.8.3 TLB Modified Exception

This section describes the cause of and response to a TLB Modified
exception.

Cause – The TLB Modified exception occurs during a store operation,
when the virtual address reference to memory matches a TLB entry that
is marked valid but is not dirty or writable. This exception is not
maskable.

Handling – The common exception vector is used for this exception. The
ExcCode field in the Cause register is set to one, indicating a TLB
modification exception (Mod).

When the TLB Modified exception occurs, the BadVAddr, Context, and
EntryHi registers hold the virtual address that failed translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in
which to place the replacement TLB entry. The contents of the EntryLo
register are undefined.

The EPC register points at the instruction that caused the exception,
unless this instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction, and the BD bit of the Cause register is set.

Servicing – The Kernel uses the failed virtual address and virtual page
number to identify the corresponding access control information. The
page identified may or may not permit write access. If writes are not
permitted, a Write Protection Violation has occurred.

If write access is permitted, the Kernel marks the page frame as
dirty/writable in the Kernel’s own data structures. The TLBP instruction is
used to place the index of the TLB entry that must be altered in the Index
register. The EntryLo registers are loaded with physical page frame and
access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.
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4.4.9 Bus Error Exception

This section describes the cause of and response to a Bus Error
exception.

Cause – The Bus Error exception occurs when signaled by board-level
circuitry for events such as bus time-out, bus parity errors, and invalid
physical memory accesses. This exception is not maskable.

In the CW4011, bus errors are asynchronous events with respect to CPU
instruction processing (much like the NMI interrupt). This means that
there is no attempt to identify the instruction that was the root source of
the error.

Handling – The common exception vector is used for this exception. The
ExcCode field in the Cause register is set to Bus.

The EPC register points at the first instruction for which processing was
not completed, unless the instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set.

Servicing – The physical address at which the fault occurred is not
available to the exception handler. The process executing at the time of
the exception must be handed a “bus error” signal, which is usually fatal.

4.4.10 Integer Overflow Exception

This section describes the cause of and response to an Integer Overflow
exception.

Cause – The Integer Overflow exception occurs when an ADD, ADDI,
SUB, DADD, DADDI, or DSUBI instruction results in a two’s complement
overflow. This exception is not maskable.

Handling – The common exception vector is used for this exception. The
ExcCode field in the Cause register is set to OV.

The EPC register points at the instruction that caused the exception
unless the instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.
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Servicing – The process executing at the time of the exception should
be handed an “integer overflow” signal. This error is usually fatal to the
current process.

4.4.11 Trap Exception

This section describes the cause of and response to a Trap exception.

Cause – The Trap exception occurs when a TGE, TGEU, TLT, TLTU,
TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction results
in a TRUE condition. This exception is not maskable.

Handling – The common exception vector is used for this exception. The
ExcCode field in the Cause register is set to TR.

The EPC register points at the instruction that caused the exception
unless the instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing – The process executing at the time of the exception should
be handed a “trap” signal. This error is usually fatal.

4.4.12 System Call Exception

This section describes the cause of and response to a System Call
exception.

Cause – The System Call exception occurs when an attempt is made to
execute the SYSCALL instruction. This exception is not maskable.

Handling – The common exception vector is used for this exception. The
ExcCode field in the Cause register is set to Sys.

The EPC register points at the SYSCALL instruction that caused the
exception unless this instruction is in a Branch Delay slot. If the
instruction is in the Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set
as an indicator.

Servicing – When this exception occurs, control is transferred to the
applicable system routine. To resume execution, the routine must restart
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instruction execution after the SYSCALL instruction. This restart address
can be computed using the EPC register along with the BD and BT bits
in the Cause register.

♦ If (BD = 0) then Restart_PC = EPC + 4

♦ If ((BD = 1) and (BT = 0)) then Restart_PC = EPC + 8

♦ If ((BD = 1) and (BT = 1)) then Restart_PC = Branch Target Address

It is up to the exception handler to obtain the Branch Target Address from
the prior branch when the SYSCALL instruction resides in a Branch
Delay slot.

4.4.13 Breakpoint Exception

This section describes the cause of and response to a Breakpoint
exception.

Cause – The Breakpoint exception occurs when an attempt is made to
execute the BREAK instruction. This exception is not maskable.

Handling – The common exception vector is used for this exception. The
ExcCode field in the Cause register is set to BP.

The EPC register points at the BREAK instruction that caused the
exception unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set
as an indicator.

Servicing – When the Breakpoint exception occurs, control is
transferred to the applicable system routine. Additional distinctions can
be made from the unused bits of the BREAK instruction (bits [25:6]), by
loading the contents of the instruction at which the EPC register points.
(A value of four must be added to the EPC register to locate the
instruction if it resides in a Branch Delay slot).

To resume execution, the routine must start executing the instruction
again after the BREAK instruction. The restart address can be computed
using the EPC register along with the BD and BT bits held in the Cause
register.

♦ If (BD = 0) then Restart_PC = EPC + 4
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♦ If ((BD = 1) and (BT = 0)) then Restart_PC = EPC + 8

♦ If ((BD = 1) and (BT = 1)) then Restart_PC = Branch Target Address

When the BREAK instruction resides in a Branch Delay slot, it is up to
the exception handler to obtain the Branch Target Address from the prior
branch.

4.4.14 Reserved Instruction Exception

This section describes the cause of and response to a Reserved
Instruction exception.

Cause – The Reserved Instruction exception occurs when an attempt is
made to execute an instruction whose major opcode (bits [31:26]) are
undefined, or a SPECIAL instruction whose minor opcode (bits [5:0]) are
undefined. This exception also occurs on a REGIMM instruction whose
minor opcode (bits [20:16]) are undefined. This exception is not
maskable.

Handling – The common exception vector is used for this exception. The
ExcCode field in the Cause register is set to RI.

The EPC register points at the BREAK instruction that caused the
exception unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set.

Servicing – The Reserved Instruction exception can be used to trap to
emulation routines for instructions not supported in the CW4011
instruction set. Once emulation has been completed, execution can be
resumed using the EPC register along with the BD and BT bits in the
Cause register.

♦ If (BD = 0) then Restart_PC = EPC + 4

♦ If ((BD = 1) and (BT = 0)) then Restart_PC = EPC + 8

♦ If ((BD = 1) and (BT = 1)) then Restart_PC = Branch Target Address

When the instruction receiving a Reserved Instruction exception resides
in a Branch Delay slot, it is up to the exception handler to obtain the
Branch Target Address from the prior branch.
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If there is no emulation routine, the process executing at the time of the
exception should be given an “illegal instruction” signal. This error is
usually fatal.

4.4.15 Floating-Point Exception

This section describes the cause of and response to a floating-point
exception.

Cause – The Floating-Point exception is used by the floating-point
coprocessor (if installed). The contents of the Floating-Point Control
Status register (inside CP1) indicate the cause of the exception.

Handling – The common exception vector is used for this exception. The
ExcCode field in the Cause register is set to FPE.

The EPC register points at the first instruction for which processing was
not completed, unless this instruction is in a Branch Delay slot. If the
instruction is in a Branch Delay slot, the EPC register points at the
preceding branch instruction and the BD bit of the Cause register is set.

Servicing – This exception is cleared by clearing the appropriate bit in
the Floating-Point Control Status register. For an unimplemented
instruction exception, the Kernel should emulate the instruction. For other
exceptions, the Kernel should pass the exception to the user process that
caused the exception.

4.4.16 Coprocessor Unusable Exception

This section describes the cause of and response to a Coprocessor
Unusable exception.

Cause – The Coprocessor Unusable exception occurs when an attempt
is made to execute a coprocessor instruction for either a corresponding
coprocessor unit that has not been marked usable, or for CP0
instructions, when the unit has not been marked usable and the process
is executing in User mode.

This exception is not maskable.

Handling – The common exception vector is used for this exception. The
ExcCode field in the Cause register is set to CPU. The contents of the
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CE field in the Cause register indicate the coprocessor to which an
attempted reference has been made.

The EPC register points at the instruction that caused the exception
unless this instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing – The coprocessor unit to which an attempted reference was
made is identified by the CE field of the Cause register. The result is one
of the following:

♦ If the process is entitled to access, the coprocessor is marked usable
and the corresponding user state is restored.

♦ If the process is entitled to access the coprocessor, but the
coprocessor does not exist or has failed, interpretation of the
coprocessor instruction is possible.

♦ If the process is not entitled to access the coprocessor, the process
executing at the time should be given some sort of “Illegal/Privileged
Instruction” signal. This error is usually fatal.

4.4.17 Debug Exception
This section describes the cause of and response to a Debug exception.

Cause – The Debug exception occurs when a debug condition
(read/write access at Breakpoint Data Address, read access at
Breakpoint Program Counter, Trace) is detected by the CP0. The Debug
Control and Status (DCS) register specifies which event was detected.

R4000 mode – In R4000 mode, the debug exception can be masked by
setting the EXL bit in the Status register. When this bit is set, a debug
event does not cause an exception trap even if the DCS[TE] bit is set to
one. However, the status bits of the DCS register are updated to indicate
that an event was recognized.

R3000 mode – In R3000 mode, the debug exception is not maskable.

Handling – The Debug exception vector is used for this exception in
both R4000 and R3000 modes.
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The EPC register points at the instruction that caused the exception
unless this instruction is in a Branch Delay slot. If the instruction is in a
Branch Delay slot, the EPC register points at the preceding branch
instruction and the BD bit of the Cause register is set.

Servicing – The Debug exception is a debugging aid. Typically the
exception handler transfers control to a debugger, allowing you to
examine the situation. The debug exception condition must be disabled
to execute the failing instruction and then re-enabled.

Notes:

1. The Trace status bit (DCS5) is set whenever a branch instruction is
encountered regardless of whether the branch is actually taken.
However, if the debug exception trap is enabled (DCS31 = 1), an
exception is recognized only if the branch is taken and the target
instruction executed.

2. The Program Counter debug status bit (DCS1) is set whenever the
target address of a branch falls within the specified PC address
range (BPC, BPCM) regardless of whether the branch is actually
taken. However, if the debug exception trap is enabled (DCS31 = 1),
an exception is recognized only if the branch is taken and the target
instruction executed.
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Chapter 5
CW4011 Memory
Management

This chapter describes the System Coprocessor (Coprocessor 0)
Memory Management functions. It contains the following sections:

♦ Section 5.1, “TLB Physical Organization”

♦ Section 5.2, “Memory Management System”

♦ Section 5.3, “Virtual Memory and the TLB”

Please note that the translation lookaside buffer (TLB) is an optional
module for the CW4011. If a specific design does not contain a TLB, any
TLB references in this chapter may be ignored.

5.1 TLB Physical Organization

The physical implementation of the TLB consists of two main parts:

1. A two-entry instruction TLB (iTLB)

2. A 32-entry joint TLB (jTLB) that holds both instruction fetch and data
access page translations

The CP0 can receive virtual address translation requests from both the
ISU (instruction fetch) and the LSU (operand data access) during the
same cycle. For maximum performance, address translations must occur
in parallel. The two-piece TLB structure shown in Figure 5.1 addresses
this problem by creating a separate two-entry TLB to be used for
instruction fetch translations. With this structure, ISU and LSU fetches
can be independently processed.
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Figure 5.1 TLB Block Diagram

The iTLB holds the two most recently used instruction fetch page
translations. If a valid translation cannot be found in the iTLB, the CP0
must stall the pipeline for two cycles and search the jTLB for a valid entry.
If the CP0 finds a valid entry in the jTLB, it copies it into the less recently
used iTLB entry and processing continues. If a valid entry cannot be
found, a TLB exception must be posted (see Chapter 4, “CW4011
Exception Processing,” for details.)

The entries in the iTLB are purged when the EntryHi register is written
(for example, during a task switch). Consequently, the iTLB does not
need to keep an eight-bit ASID for each entry. This reduces storage and
match circuitry. This simplification should cause little or no performance
penalty, because the entries probably need to be replaced anyway.

When no TLB is present in the system, the TE field of the Configuration
and Cache Control (CCC) register is cleared to zero. This is transparent
to the other modules in the CW4011 core. The CP0 modifies its
translation behavior in the following manner:
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♦ Physical Address[31:12] = Virtual Address[31:12]. For kseg0 and
kseg1, Physical Address [31:29] = 0; the same is true with TLB
present.

♦ The caching algorithm used for each access is based on the address
segment being accessed (kuseg, kseg0, and kseg2 = cached;
kseg1 = uncached), and the CCC register fields (IE0, IE1, DE0, DE1,
and WB). Table 5.1 shows the algorithm criteria for the I-cache and
Table 5.2 lists criteria for the D-cache.

Table 5.1 I-Cache Algorithm Criteria

Address
Segment

I-Cache
Enabled

Ifetch Cache
Algorithm

kuseg,
kseg0, or
kseg2

0 Uncached

1 Cached

kseg1 X Uncached

Table 5.2 D-Cache Algorithm Criteria

Address
Segment

D-Cache
Enabled WB D-Cache Algorithm

kuseg,
kseg0, or
kseg2

0 X Uncached

1 0 Cached,
WriteThrough

1 1 Cached, WriteBack

kseg1 X X Uncached
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5.2 Memory Management System

The memory model used for the CW4011 processor is based on the
R3000. To extend the CPU’s address space, the virtual memory
translates addresses composed in a large virtual address space into the
physical memory system.

The CW4011 physical address space is four Gbytes and uses a 32-bit
address. The virtual address is also 32 bits wide, and the maximum user
process size is two Gbytes (231).

The virtual address is extended with an ASID to reduce the frequency of
the TLB flushing when switching context. The size of the ASID is 8 bits.
The ASID is contained in the CP0 EntryHi register and is described in
the subsection entitled “EntryHi Register” on page 5-10.

5.2.1 Operating Modes

This section describes the two modes for 32-bit CW4011 operation:

♦ User mode, where nonsupervisory programs are executed

♦ Kernel mode, which is analogous to the “supervisory” mode provided
by many machines

The CW4011 usually operates in User mode until an exception forces it
into Kernel mode. It remains in Kernel mode until a Restore From
Exception instruction (R3000 mode), or Exception Return (R4000 mode)
instruction is executed to restore the processor to the mode existing prior
to the exception.

Address mapping is different for Kernel and User modes. To simplify the
management of user state from within the Kernel, the user-mode address
space is a subset of the Kernel-mode address space. Figure 5.2 shows
the virtual-to-physical memory map for both the User mode and Kernel
mode segments.
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Figure 5.2 CW4011 Virtual Memory Map

5.2.2 User Mode Virtual Addressing

In User mode, a single, uniform virtual address space (kuseg) of
two Gbytes (231 bytes) is available. The User segment starts at address
0x00000000, and all valid accesses have the most-significant bit cleared
to zero. Referencing an address with the most significant bit set while in
User mode causes an Address Error exception. The TLB maps all
references to kuseg identically for either mode, and controls cache
accessibility. Kuseg is typically used to hold user code and data, as well
as the current user process. The processor state definition of User and
Kernel modes description can be found in Section 4.3.6, “Status
Register.”
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5.2.3 Kernel Mode Virtual Addressing

As shown in Figure 5.2, the virtual address space is divided into regions,
differentiated by the high-order bits of the address:

5.3 Virtual Memory and the TLB

Mapped virtual addresses are translated into physical addresses using
an on-chip TLB. The TLB is a fully-associative memory that holds
32 entries that provide mapping to 32 physical page frames. The address
range mapped by a page can be either 4 Kbytes or 16 Mbytes in size.
When address mapping is indicated, each TLB entry is simultaneously
matched against the virtual address extended by the current ASID stored
in the EntryHi register.

If there is a match (hit), the physical page number is extracted from the
TLB and concatenated with the offset to form the physical address, as
shown in Figure 5.3.

kuseg Starts at virtual address 0x00000000 and is 2 Gbytes long. It allows
selective caching and mapping on a per-page basis, rather than requir-
ing an all or nothing approach. This segment overlaps Kernel memory
accesses with User memory accesses as described previously.

kseg0 Starts at virtual address 0x80000000 and is 512 Mbytes long. CW4011
direct maps references within kseg0 onto the first 512 Mbytes of phys-
ical memory. These references use cache memory, but do not use the
TLB for address translation. Thus, kseg0 is typically used for kernel
executable code and some kernel data.

kseg1 Starts at virtual address 0xA0000000 and is 512 Mbytes long. CW4011
direct maps references within kseg1 onto the first 512 Mbytes of phys-
ical memory. These references do not use cache memory or the TLB
for address translation. Thus, kseg1 is typically used by operating sys-
tems for I/O registers, ROM code and disk buffers.

kseg2 Starts at virtual address 0xC0000000 and is 1024 Mbytes long. Like
kuseg, it uses TLB entries to map virtual addresses to arbitrary phys-
ical ones, with or without caching. An operating system typically uses
kseg2 for stacks and per-process data that must remap on context
switches. The operating system also uses kseg2 for user page tables
and some dynamically allocated data areas.
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Figure 5.3 CW4011 Virtual Address Format

If no match occurs (a page miss), an exception is taken. Typically,
software refills the TLB from a page table maintained by the system.
Software can write over a selected TLB entry or use a hardware
mechanism to write into a random location.

The CW4011 does not support the TLB-shutdown (TS) bit in the Status
register, which indicates that more than one entry in the TLB matches
the virtual address being translated. If more than one TLB entry matches
the virtual address, the virtual address may be translated to an incorrect
physical address. System software must ensure that this situation is
never created.

5.3.1 TLB Entry Format

Figure 5.4 shows the 32-bit addressing TLB entry format the CW4011
uses. Each field of an entry has a corresponding field in the EntryHi,
EntryLo, or PageMask registers described in sections 5.3.2.1, 5.3.2.2,
and 5.3.2.3.
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Figure 5.4 Format of CW4011 TLB Entry

R Reserved [95:78, 76:64, 43:40, 31:26]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure
compatibility with future versions of the software.

M Mask 77
This bit is the Page Mask bit. It is set to one for a
16-Mbyte page and cleared to zero for a 4-Kbyte page.

VPN Virtual Page Number [63:44]
This field contains the Virtual Page Number.

ASID Address Space ID Field [39:32]
This field contains the Address Space ID.

PFN Page Frame Number [25:6]
This field contains the Page Frame Number. This is the
upper bits of the physical address.

C Cache [5:3]
This field contains the Cache algorithm, which specifies
whether references to the page should be cached. If the
references are to be cached, you can select one of two
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algorithms: WriteBack or WriteThrough. The following
table shows how the Cache bits are decoded.

D Dirty 2
If this bit is set to one, it indicates that the page marked
is dirty and writable.

V Valid 1
If this bit is set to one, it indicates that the TLB entry is
valid.

G Global 0
If this bit is set to one, the contents of the ASID field are
ignored during TLB lookup.

5.3.2 TLB Support Registers

Table 5.3 lists the TLB registers used in association with the CP0 TLB.

CBit Settings Value Algorithm

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
2
3
4
5
6
7

Reserved
Reserved
Uncached
Cacheable—WriteThrough
Reserved
Reserved
Reserved
Cacheable—WriteBack

Table 5.3 TLB Support Registers

Name

CP0
Register
Number

Reference
Page

EntryHi Register 10 5-10

EntryLo Register 2 5-11

PageMask Register 5 5-12

Index Register 0 5-13

Random Register 1 5-13

Wired Register 6 5-14
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5.3.2.1 EntryHi Register

The EntryHi register is a read/write register used to access the TLB. In
addition, this register contains the current ASID value for the processor.
The ASID value is used to match the virtual address with a TLB entry
during virtual address translation. Typically, the operating system assigns
a unique ASID value to each known process. In this way, mappings held
in the TLB are made unique to the process whose ASID they match.

The EntryHi register holds the high-order bits of a TLB entry when
performing TLB read and write operations. When either a TLB refill, TLB
invalid, or TLB modified exception occurs, the EntryHi register is loaded
with the Virtual Page Number (VPN) and the ASID of the virtual address
that failed to have a matching TLB entry.

EntryHi is accessed by the TLBP, TLBW, TLBWI, and TLBR instructions.
Figure 5.5 shows the format of this register.

Figure 5.5 EntryHi Register

VPN Virtual Page Number [31:12]
This field contains the Virtual Page Number.

R Reserved [11:8]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure com-
patibility with future versions of the software.

ASID Address Space ID [7:0]
This field contains the Address Space ID.

31 12 11 8 7 0

VPN R ASID
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5.3.2.2 EntryLo Register

The EntryLo register is a read/write register used to access the TLB.
When performing read and write operations, the register contains a
physical page frame number, cache algorithm, page dirty, translation
valid, and global entry information. Figure 5.6 shows the format of this
register.

Figure 5.6 EntryLo Register

R Reserved [31:26]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure com-
patibility with future versions of the software.

PFN Physical Page Frame Number [25:6]
This field contains the Physical Page Frame Number.

C Cache [5:3]
This field contains the Cache algorithm, which specifies
whether references to the page should be cached. If the
references are to be cached, you can select one of two
algorithms: WriteBack or WriteThrough. The following
table shows how the Cache bits are decoded.

D Dirty 2
If this bit is set to one, it indicates that the marked page
is dirty and writable.

31 26 25 6 5 3 2 1 0

R PFN C D V G

CBit Settings Value Algorithm

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
2
3
4
5
6
7

Reserved
Reserved
Uncached
Cacheable—WriteThrough
Reserved
Reserved
Reserved
Cacheable—WriteBack
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V Valid 1
If this bit is set to one, it indicates that the TLB entry is
valid.

G Global 0
If this bit is set to one, the contents of the ASID field are
ignored during TLB lookup. Mapping is globally available
to all ASIDs.

5.3.2.3 PageMask Register

The PageMask register is a read/write register used to access the TLB.
It implements a variable page size by holding a per-entry comparison
mask. When virtual addresses are presented for translation, the
corresponding PageMask bit in the TLB specifies whether or not virtual
address bits [23:12] participate in the comparison. Figure 5.7 shows the
format of the PageMask register.

Figure 5.7 PageMask Register

R Reserved [31:14, 12:0]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure
compatibility with future versions of the software.

M Mask 13
This field contains the PageMask. The following table
shows the page size and the physical and virtual address
bits for each setting of the Mask bit.

31 14 13 12 0

R M R

Mask Bit Page Size
Physical
Address

Virtual
Address

1 16 Mbytes PFN[31:24] [23:0]

0 4 Kbytes PFN[31:12] [11:0]
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5.3.2.4 Index Register

The Index register is a 32-bit, read/write register containing five bits that
are used to index an entry in the TLB. The high-order bit indicates the
success or failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry that is affected by the
TLB Read (TLBR) and TLB Write Index (TLBWI) instructions. Figure 5.8
shows the format of the Index register.

Figure 5.8 Index Register

P Probe 31
If this bit is set to one, it indicates that the last TLBP
instruction failed to find a match.

R Reserved [30:5]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure com-
patibility with future versions of the software.

Index Index [4:0]
This field contains the index to the TLB entry. The TLBR
and TLBWI instructions use this index.

5.3.2.5 Random Register

The Random register is a 32-bit read-only register that contains five bits
that are used to index an entry in the TLB. The register decrements for
each clock cycle. The values range between a lower bound set by the
number of TLB entries reserved for exclusive use by the operating
system (defined in the Wired register), and an upper bound set by the
total number of TLB entries (32 maximum).

The Random register specifies the entry in the TLB affected by the TLB
Write Random (TLBWR) instruction. The register does not need to be
read for this purpose, but the register can be read to verify proper
operation.

31 30 5 4 0

P R Index
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To simplify testing, the Random Register is set to the value of the upper
bound when the system is reset. It is also set to its upper bound when
the Wired register is written. The format of this register is shown in
Figure 5.9.

Figure 5.9 Random Register

R Reserved [31:5]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure
compatibility with future versions of the software.

Random Random [4:0]
This field contains the index to the TLB entry affected by
the TLBWR instruction.

5.3.2.6 Wired Register

The Wired register is a read/write register that specifies the boundary
between the wired (fixed, nonreplaceable entries that cannot be over-
written by a TLBWR operation) and random entries of the TLB.
Figure 5.10 shows the location in the TLB of the wired register.

Figure 5.10 Wired Register Location

31 5 4 0

R Random

TLB

31

0

Wired
Register

Range of
Random Entries

Range of
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When the system is reset, the Wired register is set to zero. Writing the
register also sets the Random register to the value of its upper bound.
Figure 5.11 shows the format of the Wired register.

Figure 5.11 Wired Register

R Reserved [31:5]
These bits are not used and are read as zero. The
CW4011 ignores attempts to set these bits; however,
software should write these bits as zero to ensure
compatibility with future versions of the software.

Wired Wired [4:0]
This field defines the lower boundary of Random TLB
entries.

5.3.3 Virtual Address Translation

During virtual-to-physical address translation, the CP0 compares the
ASID and the highest 7 to 20 bits of the virtual address to the contents
of the TLB. The virtual address bits compared with the ASID depend on
the page size. Figure 5.12 illustrates the TLB address translation
process.

31 5 4 0

R Wired
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Figure 5.12 CW4011 TLB Address Translation Process

A virtual address matches a TLB entry under one of two conditions:

♦ The VPN field of the virtual address equals the VPN field of the entry
and the G bit of the TLB entry is set.

♦ The ASID held in the EntryHi register matches the ASID field in the
TLB entry.

Yes Yes

No
No

Yes

Yes

Yes

Yes

No No

Yes

Yes

Yes

No

No

No

No

No

Output
Physical
Address

Indicates an exception

Input
Virtual

Address

User
Mode? MSB=1?

Address
Error

VPN
Match?

G = 1?
ASID

Match?

V = 1?

Write? D = 1?

TLB
Mod C =

010?

Access
Main

Memory

Access
Cache

TLB
Invalid

TLB
Refill

Bits G, V, D, and C are bits in the TLB entry.
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Although the V bit of the TLB entry must be set for a valid translation to
take place, it is not involved in determining a matching TLB entry.

If a TLB entry matches, the physical address and access control bits (C,
D, and V) are retrieved from the entry. If no match is found, a TLB miss
exception occurs. If the access control bits (D and V) indicate that the
access is not valid, a TLB modification or TLB invalid exception occurs,
respectively. If the C bits equal 0b010, the physical address that is
retrieved is used to access main memory, bypassing the cache.

5.3.4 TLB Instructions

Table 5.4 lists the instructions that the CW4011 provides for working with
the TLB.

Notes:

1. If the TLB is not present or not enabled in the system, the CP0
reflects a Coprocessor Unusable exception if an attempt is made to
execute any of the TLB instructions.

2. TLB instructions (TLBP, TLBR, TLBWI, and TLBWR) cannot be
immediately preceded or followed by a data load instruction that
requires target address translation (that is, kuseg and kseg2).

Table 5.4 TLB Instruction

Instruction Description

TLB Probe (TLBP) The Index register is loaded with the address of the
TLB entry whose contents match the contents of the
EntryHi register. If no TLB entry matches, the high-
est order bit of the Index register is set. Results are
undefined if a TLB reference encounters more than
one matching TLB entry.

TLB Read (TLBR) This instruction loads the EntryHi, EntryLo, and
PageMask registers with the contents of the TLB
entry specified by the Index register.

TLB Write Index
(TLBWI)

This instruction loads the TLB entry specified by the
Index register with the contents of the EntryHi,
EntryLo, and PageMask registers.

TLB Write Random
(TLBWR)

This instruction loads the TLB entry specified by the
Random register with the contents of the EntryHi,
EntryLo, and PageMask registers.
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3. The instruction prior to a TLBW instruction must not generate an
exception. You are recommended to use an NOP to make sure this
restriction is met.

4. Three instructions are needed between MTC0 (EntryHI, EntryLo,
PageMask, or Index) and subsequent TLBWI or TLBWR instructions
to properly reflect the MTC0 operation.
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Chapter 6
CW4011 Caches

This chapter describes the CW4011 caches and cache maintenance. It
contains the following sections:

♦ Section 6.1, “Cache Memory Organization”

♦ Section 6.2, “Cache States”

♦ Section 6.3, “Address and Cache Tag”

♦ Section 6.4, “Cache Scratchpad RAM Mode”

♦ Section 6.5, “External Invalidation”

♦ Section 6.6, “Cache Instructions”

6.1 Cache Memory Organization

The CW4011 has separate caches for instructions and data: the I-cache
and D-cache. The CW4011 I-cache and D-cache are organized as
follows:

1. The I-cache and D-cache can be organized as direct-mapped or two-
way set associative caches. A least recently used (LRU) algorithm is
used in two-way set associative cache replacement for the I-cache;
the D-cache uses a Random algorithm for the same.

2. The cache controllers support configurations of 1, 2, 4 or 8 Kbytes
for each set. Thus, the smallest supported configuration is a 1-Kbyte
direct-mapped cache, and the largest is a 16-Kbytes two-way set
associative cache, with 8 Kbytes per set.

3. The caches are indexed with a virtual address.

4. They are tagged with a physical address tag.
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5. One cache line consists of 8 words (or four doublewords) with a
single word containing four 8-bit bytes. Refill address ordering is
wrap-around from the missing address.

6. The D-cache supports both WriteBack and WriteThrough modes. If
the system has no memory management unit (MMU), the WB bit in
the CCC register defines the mode for all cacheable regions of
memory. When the WB bit is set to zero, the mode is WriteThrough.
When it is set to one, the mode is WriteBack. If the system has an
MMU, the translation lookaside buffer (TLB) entry determines the
mode on a per-page basis.

7. Scratchpad RAM mode is available; it works similarly to the
scratchpad RAM in the LR33300. This is discussed in more detail in
Section 6.4, “Cache Scratchpad RAM Mode.”

6.2 Cache States

This section describes cache states for the I-cache, WriteThrough
D-cache, and WriteBack D-cache.

6.2.1 I-Cache and WriteThrough D-Cache

The I-cache and D-cache (when operating in WriteThrough mode)
require only two states: Invalid and Valid Clean. Initialization sets all
cache lines to the Invalid state. This is done using the Cache Invalidate
mode described in Section 6.6.3, “Cache Maintenance by CCC Register,”
or the Cache Flush instructions described in Section 6.6.1, “Flush (All
Cache Invalidation).”

The first time a cache line is refilled because of a cache miss, its state
goes from Invalid to Valid Clean. The cache remains in the Valid Clean
state until it is forced back to Invalid. This occurs in one of the following
events:

♦ An external invalidate

♦ Execution of a cache flush instruction

The V bit of each cache line indicates the cache state. V = 0 is Invalid
and V = 1 is Valid Clean. Figure 6.1 shows the state diagram for I-cache
and WriteThrough D-cache.
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Figure 6.1 Cache State Diagram—I-Cache and WriteThrough
D-Cache

6.2.2 WriteBack D-Cache

When the D-cache operates in WriteBack mode, three cache line states
are required: Invalid, Valid Clean, and Valid Dirty. Figure 6.2 shows the
state diagram for WriteBack D-cache. The V bit and WB bit of each line
indicate the state, as shown in Table 6.1.

Figure 6.2 Cache State Diagram—D-Cache WriteBack

Valid
CleanInvalid

Load-Miss, then Refill

Invalidation Load-Misrecital
Load-Hit
Store-Miss
Store-Hit

Table 6.1 D-Cache WriteBack Mode

State V Bit WB Bit Condition

Invalid 0 X(0) The cache line does not contain valid
information.

Valid Clean 1 0 The cache line contains valid information
consistent with memory.

Valid Dirty 1 1 The cache line contains valid information,
but it is not consistent with memory.

Valid
Clean

Load-Miss, Refill
Load-Hit
Store-Miss

Load-Miss, then RefillInvalidation

Store-Hit

Load-Miss, then WriteBack and Refill

Invalidation

Store-Hit

Valid
Dirty

Invalid

Load-Hit
Store-Miss
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A store operation is considered to be a D-cache hit when the tag is
coincident with the physical address and the V bit is set. Of course, the
physical address must be in a cached area.

When a Store-Miss occurs, the state condition of the cache line is not
changed, and the store data is not written into D-cache. Instead, the
store data is written to the four-word-deep write buffers, which pass it to
the system’s main memory.

Some lines, known as dirty lines, contain more recent information than
the main memory. Occasionally you may need to force the writing of dirty
lines to main memory. You can do this using the WriteBack Cache
instruction.

In WriteBack mode, data stored in the D-cache may not be passed on to
the External Write Controller immediately. Because of this, the WriteBack
cache instruction writes back each line of both sets in a two-way set
associative configuration. The instruction does not check whether the
address specified by the instruction would hit or miss at the cache line
to which it pages. If the WB bit is set, the line data is written back and
causes several stall cycles to read data from the D-cache. The actual
number of stall cycles depends on the speed of memory access.

Cache lines can be invalidated by an external bus master. A cache line
is invalidated when the Invalidate Address matches the Cache Tag ID,
and the Cache Invalidation signal(s) are asserted.
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6.3 Address and Cache Tag

Figure 6.3 illustrates the relationship between instruction and data
address and cache memory location, for both direct map and two-way
set associative cache configurations. The Word Offset field addresses a
word in a line. The Line Number field addresses a line in the cache
memory. The Cache Tag ID field serves as the tag for the address line.

Figure 6.3 Address to Cache Tag and Line Number

If the system has an MMU, the cache access is indexed by the virtual
address and tagged by the physical address. Because the minimum
memory page size is 4 Kbytes, there is no virtual/physical address issue
if the cache set size is 4 Kbytes or less. If the cache set size is 8 Kbytes
and the page size is 4 Kbytes, address bit 12 of the virtual address must
be coincident with address bit 12 of the physical address.

Table 6.2 shows how the value of n determines different cache sizes.

31 9 + n 8 + n 5 4 2 1 0

Cache Tag ID Line Number Word Offset R

MD96.91

Table 6.2 Setting Cache Size

Setting Cache Size
(Kbytes) Value of n

1 1

2 2

4 3

8 4
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6.4 Cache Scratchpad RAM Mode

Both CW4011 D-cache sets and I-cache Set 1 can be configured as a
scratchpad RAM. This is accomplished by setting the SR0, SR1, or ISR1
bits in the CCC register, as shown in Table 6.3.

A scratchpad RAM must be located in one specific physical address
space like local data memory. If the CW4011 ASIC device has D-cache
or I-cache tag RAMs present, the tag contents must be programmed
before enabling scratchpad mode by setting the CCC register bits as
follows:

♦ Set IsC to one

♦ Set TAG to one

♦ Clear INV to zero

♦ Set DE0, DE1, or IE1 to one (depending on which cache sets are to
be placed in scratchpad mode)

Also, the instructions must be written into the instruction data RAM of
I-cache Set 1 before the CW4011 attempts to fetch an instruction from
this RAM. This is because instructions cannot be written to the
instruction data RAM while scratchpad mode is enabled.

If a D-cache or I-cache RAM is only as a scratchpad RAM in an ASIC
design, the cache tag RAMs can be physically removed from the device
to save costs. In such a case, the D-cache tag inputs of the core must
be set either HIGH or LOW, according to the address of the scratchpad
RAM area. The necessary ISR1, SR0, and SR1 bits should all be always
set to one.

Table 6.3 Scratchpad RAM Enables

CCC Register Bit Setting Scratchpad Mode Enabled

SR0 D-cache Set 0

SR1 D-cache Set 1

ISR1 I-cache Set 1
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When a cache scratchpad RAM is enabled, any accesses to the
scratchpad RAM area are treated as local memory accesses without any
stall cycles.

6.5 External Invalidation

I-cache and D-cache lines can be invalidated by external hardware for
bus snooping. The CW4011 has an invalidate strobe and invalidate
address bus input. WriteBack by external hardware is not supported.
Details are described in Chapter 7, “CW4011 Signals.”

6.6 Cache Instructions

The CW4011 has two types of cache instructions for initialization and
WriteBack. The cache instruction must be followed by three NOP
instructions. Figure 6.4 shows the cache instruction format.

Figure 6.4 Cache Instruction Format

1 0 1 1 1 1
Cache

31 26 25 21

op

 20 16 15 0
Cache op, offset(base)

0 0 0 0 0 Valid for WB only
Base Offset

bit[20:18] 000 Flush (All Cache Invalidation)
001 WriteBack (D-Cache Only)

bit17 D-Cache Effect (1)/Non-effect (0)

bit16 l-Cache Effect (1)/Non-effect (0)

FLUSHI (op = 00001) Flush l-Cache
FLUSHD (op = 00010) Flush D-Cache
FLUSHID (op = 00011) Flush I-Cache and D-Cache
WB, offset(base) (op = 00100) WriteBack D-Cache addressed by offset+[r0]
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6.6.1 Flush (All Cache Invalidation)

One execution of a cache instruction can invalidate all lines of the
D-cache, the I-cache, or both. Bit 17 of the instruction defines effect and
non-effect for the D-cache, and Bit 16 defines effect and non-effect for
the I-cache. If both bits are zero, this is a no operation (NOP), and the
base register and the offset have no meaning.

One cache line of one or more cache sets is invalidated during one clock
cycle. Invalidation starts from the WB stage of the execution pipeline, and
the pipeline stall request signal is asserted during the time that the cache
lines are invalidated. If the pipeline cancel signal is asserted, the
invalidation is not executed. The number of the invalidation clock cycles
is always 256, regardless of the cache size actually implemented. During
this time, the CPU does not respond to interrupts.

6.6.2 WriteBack

WriteBack is effective for the D-cache only, so bits 17 and 16 are ignored.
Bits [12:5] of the effective address, which is offset+GPR[base] , specify
the D-cache line. Cache size is also a factor. For example, if the cache
size is a 1- Kbyte direct-mapped or 2-Kbyte two-way set associative, only
bits [9:5] are used and the upper bits of the effective address are
ignored. Note that the tag is not checked. For more information on Cache
sizing, see Appendix B, “Cache Sizing and Design Concerns.”

One WriteBack instruction writes back both lines of the two-way set
associative cache if the WB bit is set. If WB is cleared, there is no
operation. WB is executed at the WB stage and causes four stall cycles
to read data from a dirty line. WB bits are cleared after the cache lines
are written back.
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6.6.3 Cache Maintenance by CCC Register

Certain CCC register bits support D-cache and I-cache maintenance and
testing. Table 6.4 lists the bits of the CCC register related to the cache.

The CW4011 has three maintenance modes that allow you to maintain
and test the internal I-cache and D-cache. The three modes are Data
Test, Tag Test, and Invalidate. Before entering any of these modes, the
processor must be executing in kseg1 (noncacheable address space0),
interrupts must be disabled, and the caches must be isolated (IsCbit = 1).
When the caches are isolated, load and store instructions access the
I-cache and D-cache. The system’s external main memory is not affected
by these load and store accesses.

To enable the cache maintenance mode, use the following procedure:

1. Set the appropriate bits in the CCC register with IsCbit = 1. The
MTC0 instruction can easily set these bits. The three instructions

Table 6.4 CCC Bits Related to Cache Configuration

Bit(s) Function

IE0 I-Cache Set 0 Enable

IE1 I-Cache Set 1 Enable

IS[1:0] I-Cache Set Size (1, 2, 4, 8 Kbytes)

ISR1 I-Cache Scratchpad RAM Enable

DE0 D-Cache Set 0 Enable

DE1 D-Cache Set 1 Enable

DS[1:0] D-Cache Set Size (1, 2, 4, 8 Kbytes)

WB D-Cache WriteBack/WriteThrough

SR0 D-Cache Set 0 Scratchpad RAM Enable

SR1 D-Cache Set 1 Scratchpad RAM Enable

IsC D-Cache/I-Cache Isolate Cache Mode Enable

TAG D-Cache/I-Cache Tag Test Mode Enable

INV D-Cache/I-Cache Invalidate Mode Enable
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immediately following the MTC0 instruction should not be load or
store instructions.

The IE0, IE1, DE0, and DE1 bits in the CCC register select the
cache set that is to be accessed, as shown in Table 6.5. Only one
cache set should be enabled when performing a load operation.
Multiple caches may be enabled when performing a store operation.

The TAG and INV bits in the CCC register select the Cache
Maintenance function. Table 6.6 shows the encoding for the two bits.

2. Clear the IE bit in the Status register to disable all interrupts. This
operation is usually done automatically because Cache Maintenance
operations are done in an exception handler (most commonly the
reset handler).

– Data Test Mode

In this mode, all loads and stores access the data RAMs
selected by IE0, IE1, DE0, and DE1 bits. Effective lower address
bits specify the cache address. The precise bit field depends on
the cache size and configuration actually implemented.

Table 6.5 TAG and INV Encoding

Bit Set Bit Number Cache Set Accessed

IE0 17 I-cache Set 0

IE1 16 I-cache Set 1

DE0 13 D-cache Set 0

DE1 12 D-cache Set 1

Table 6.6 TAG and INV Encoding

TAG Bit 1 INV Bit 0 Cache Maintenance Mode

0 0 Data Test

1 0 Tag Test

x 1 Invalidate
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– Tag Test Mode

When TAG bit is set to one, the CW4011 is in Tag Test Mode.
Load and store operations access the tag RAMs. The tag bits
available for testing in the Tag Test Mode are the Tag Data, Hit,
WriteBack (D-cache only), and Valid bits. Note that the
WriteBack bit is present only in D-cache. The Hit bit is ignored
during a store operation. For a load operation, the Hit bit is set
if a match occurs.

The Cache tag ID bits are written from or compared to the most
significant bits of the effective address (offset + GPR[base]) .

A load operation from the tag RAM returns the information
shown in Figure 6.5. Bits [31:10] are the tag data; bit 2 is the Hit
bit; bit 1 is the Validate bit which reflects the setting of the INV
bit in the CCC register; bit 0 is the WriteBack bit, which reflects
the setting of the WB bit in the CCC register. You can ignore bits
[9:3].

Figure 6.5 Tag Test Mode Loaded Data Format

– Invalidate Mode

When the INV bit in the CCC register is set to one, the CW4011
is in Invalidate mode. Because the caches contain random data
on both warm and cold starts, software must invalidate all lines
in the I-cache and D-cache. Executing store word instructions
invalidates the addressed cache line in the enabled cache(s).
After reset, zero must be written into all tag s for both sets of
D-cache and I-cache. Cache Flush instructions can be used for
the same purpose.

31 10 9 3 2 1 0

TAG DATA X HIT V WB

MD96.93
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Chapter 7
CW4011 Signals

This chapter describes the CW4011 core I/O signals. You will find this
chapter useful if you are interfacing the CW4011 with other core logic or
external logic. This chapter contains the following sections:

♦ Section 7.1, “CW4011 Core Signal Interfaces”

♦ Section 7.2, “Control Interface”

♦ Section 7.3, “SCbus Interface”

♦ Section 7.4, “OCAbus Interface”

♦ Section 7.5, “Coprocessor Interface”

♦ Section 7.6, “Cache Invalidation Interface”

♦ Section 7.7, “Data Cache Interface”

♦ Section 7.8, “Instruction Cache Interface”

♦ Section 7.9, “WriteBack Buffer Interface”

♦ Section 7.10, “Memory Management Unit (MMU) Interface”

♦ Section 7.11, “MMU to Shell Interface”

♦ Section 7.12, “Multiply/Divide Unit (MDU) Interface”

♦ Section 7.13, “Miscellaneous Signals”

The following signal conventions are used in this chapter:

♦ Active-LOW signals have a lowercase n at the end of the signal
name (for example, RESETn). Active-HIGH signals have a lowercase
p at the end of the signal name (for example, SCAop). Please note
that some of the MDU signals do not follow this convention.

♦ The term assert means to drive a signal TRUE or active. The term
deassert means to drive a signal FALSE or inactive.
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♦ You can use the CW4011 core in a variety of designs and with a
variety of peripheral logic. For this reason, it is not always possible
to identify the agent that asserts and deasserts the I/O signals. The
signal descriptions in this manual indicate the states to which the
core’s I/O signals must be driven. You may then select the design
components needed to meet the signal requirements of the core.

♦ All interface signals are input to or output from the CW4011 core.

All input signals must be synchronized to the rising edge of the system
clock outside the CW4011. Asynchronous signals, such as resets or
interrupts, must be synchronized by at least two sequential flipflops. All
output signals are synchronized to the rising edge of the system clock
inside the CW4011.

7.1 CW4011 Core Signal Interfaces

The core interface signals are divided into the following eleven
categories:

1. Control signals, which interface to the CP0

2. SCbus signals, which interface to the BIU

3. OCAbus signals, which interface with the LSU

4. Coprocessor signals, which interface to the ISU and LSU

5. Cache Invalidation signals, which interface to the ISU and LSU

6. Data Cache signals, which interface to the LSU

7. Instruction Cache signals, which interface to the ISU

8. WriteBack Buffer signals, which interface to the LSU

9. Memory Management Unit signals, which interface with the CP0

10. Multiply/Divide Unit (MDU) signals, which interface with the ALU

11. Miscellaneous signals, such as system clock input and endian input

Figure 7.1 illustrates the interface signal interconnections for the
CW4011.
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Figure 7.1 Core Interface Connections

Figure 7.2 shows the CW4011 core interface signals arranged in
functional groups.
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Figure 7.2 CW4011 Logic Diagram
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Figure 7.2 CW4011 Logic Diagram (Cont.)
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Figure 7.2 CW4011 Logic Diagram (Cont.)

CW4011 Core HiLoBUSYp

iNSTE[31:0]

iNSTo[31:0]

MDBUSYp

MDRESp[31:0]

PSTALLp

REALMADDp

REALMULTp

REGS0[31:0]

REGS1[31:0]

REGT0[31:0]

REGT1[31:0]

RESETn

U1EENSTp

U1oENSTp

Multiply/Divide
Unit Interface

iFNSEQp

iPADDRp[31:12]

iSUSTALLp

iUNCACHEp

iVADDRp[31:0]

iVADDRVp

LSUSTALLp

MMUDATAop[31:0]

MMUENWRp

MMUREGSp[3:0]

MMUSTALLp

PCANCELp

REALMMUp

SELQNSp

STPEFTCHp

TAGMTCH0p

TAGMTCH1p

TLBMiSSp

TLBMoDp

TLBPp

TLBRp

TLBWip

TLBWRp

VLDTLBXp

Memory
Management

Unit
Interface

BADVPNp[31:12]

CACHEWBp

CFGDSp[1:0]

CFGiSCp

CFGTEp

CFGWBp

CPZEXENSp

CPZQENSp

CPZRDENSp

CPZSTALLp

DATTLBXp

DPADDRp[31:12]

DUNCACHEp

DVADDRp[31:0]

DVADDRVp

iFETLBXp

ACCSToREp

Memory
Management
Unit
Interface
(continued)

DC0TAGDop[23:0]

DC1TAGDop[23:0]

CRESETn
WRESETn

CPSREQn[3:1]

MMUDATAip[31:0]

SUSPEXn

SUSPEXn

TESTMp

TESTMp

BRLiKFn

PCANCELp
PCANoDDn



Control Interface 7-7

7.2 Control Interface

This section describes the Reset and Interrupt signals that interface to
the CP0.

CRESETn Cold System Reset Input
Asserting this signal asynchronously resets the CW4011
by initializing all internal states. CRESETn has the
highest priority of all the exception inputs, and must be
deasserted synchronously on the rising edge of SCLKp.
When it is deasserted, the CP0 generates a cold reset
exception (0xBFC00000).

EXVAp[31:2] External Vectored Interrupt Address Input Input
These signals are the interrupt vector address. They are
accepted by the CW4011 when EXVApEn is asserted,
and are written directly into the program counter.
EXVAp[31:2] must remain stable until the EXVApEn
signal is deasserted.

EXVApEn EXVAp Enable Output
The CW4011 asserts EXVApEn to enable the interrupt
vector address signals (EXVAp[31:2]), and deasserts
EXVApEn to disable the address signals.

EXiNTn[5:0] External Interrupts Input
External logic asserting an EXiNTn[5:0] signal causes the
CP0 to generate an interrupt exception. Assertion of
these inputs is indicated in the IP[7:2] field of the Cause
register. Consequently, the interrupting logic should
continue to assert the external interrupt input until the
exception routine has serviced the interrupt.

The interrupt inputs can be individually disabled or
masked by setting the appropriate bits in the Status
register. External interrupts are not recognized if the
interrupt enable bit in the Status register is cleared. How-
ever, the input conditions are reflected in the IP bits of the
Status register. See Section 4.3.6, “Status Register,” for
more information.
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EXViNTn External Vectored Interrupt Input Input
EXViNTn is an external interrupt input that is driven by an
external interrupt controller. See Section 4.4.6.3, “Exter-
nal Vectored Interrupt Exception,” for further information.

NMin Nonmaskable Interrupt Input
NMin is a nonmaskable interrupt. When the CW4011
detects that NMin is asserted, the CP0 generates a
nonmaskable interrupt exception (0xBFC00000).

WRESETn Warm System Reset Input
To perform a warm reset, WRESETn must be asserted
and then deasserted synchronously on the rising edge of
the SCLKp. While asserted, internal states are initialized;
when deasserted, the CP0 generates a warm reset
exception (0xBFC00000).

7.3 SCbus Interface

This section describes the SCbus interface signals, which interface with
the BIU.

SCAoEn Address Output Enable Output
When asserted, SCAoEn indicates that the address
output bus SCAop[31:0] lines are valid. The CW4011
asserts this signal when the BIU is performing an SCbus
transaction, and the signal remains active throughout the
operation. SCAoEn also enables SCTBSTn, SCTBEn,
and SCTPWn.

SCAop[31:0] Address Output Bus Output
SCAop[31:0] is the address output bus for instruction
fetch and data read/write operations. The SCAop[31:0]
bus is valid only when the address output enable signal
(SCAoEn) is asserted. It remains valid throughout the
operation until SCBRDYn, SCBRTYn, or SCBERRn is
asserted.

SCB32n 32-bit Bus Width Sizing Input
When asserted, SCB32n indicates that the external bus
slave on the SCbus needs 32-bit bus sizing. The
CW4011 samples this signal on the rising edge of the
clock that synchronizes SCBRDYn. If the signal is
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asserted for a 64-bit transaction, which is a doubleword
or a part of a burst transaction, the BIU generates a sub-
sequent 32-bit word transaction. The BIU also packs data
to 64 bits for a read transaction or unpacks data to 32 bits
for a write transaction.

SCBERRn Bus Error Input
SCBERRn is asserted to terminate the current transac-
tion when a bus error occurs. If SCBRDYn or SCBRTYn
is asserted at the same time as SCBERRn, SCBERRn
has higher priority. Asserting SCBERRn causes the CP0
to generate an exception.

SCBGEp Bus Grant Enable Output
SCBGEp reflects the value of the BEG bit in the CCC
register. When SCBGEp is LOW, the CW4011 is not
accepting bus hold requests; when HIGH, the core is
accepting requests.

SCBPWAn Bus In-Page Write Accept Input
SCBPWAn indicates that the external bus slave on the
SCbus will accept in-page write transactions. External
logic asserts SCBPWAn and the core samples it on the
rising edge of the clock that synchronizes SCBRDYn. If
the SCTPWn signal is not asserted, asserting or deas-
serting SCBPWAn has no effect.

SCBRDYn Bus Ready Input
The system asserts SCBRDYn for one cycle when the
current transaction is successfully terminated. Asserting
SCBRDYn indicates that the SCbus is available for
another transaction.

SCBRTYn Bus Retry Input
An SCbus slave module (usually an I/O DRAM controller)
asserts this signal for one cycle to abort the current trans-
action before it is complete. Asserting SCBRTYn also
indicates to the core that the unsuccessful transaction
must be retried later. The control state goes back to the
idle state, then all bus requests are arbitrated again. If
there are no other higher priority requests and SCTSEn
is asserted, there is one idle state between the first trans-
action and a retry transaction. If SCBRDYn and
SCBRTYn are asserted at the same time, SCBRTYn has
the higher priority.
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SCDip[63:0] Data Input Bus Input
SCDip[63:0] are data bus input signals for instruction
fetch and data read transactions. The CW4011 samples
SCDip[63:0] on the rising edge of the clock when
SCBRDYn is asserted. Byte ordering is little endian. If
you are designing a big-endian system, the higher order
bits, SCDip[31:0], must be swapped with the lower order
bits, SCDip[63:32], outside of the core.

SCDoEn Data Output Enable Output
SCDoEn indicates that the data output signals
SCDop[63:0] are valid. the CW4011 asserts SCDoEn
throughout the write transaction to indicate that the
current transaction is a write transaction and to enable
data output.

SCDop[63:0] Data Output Bus Output
SCDop[63:0] are the data output bus signals for data
write operations and for data WriteBack from the
D-cache. The signals are valid throughout the write trans-
action. Byte ordering is little endian. If you are designing
a big-endian system, the higher order bits, SCDop[31:0],
must be swapped with the lower order bits,
SCDop[63:32], outside of the core.

SCHGTn Bus Hold Grant Output
The BIU enters the hold state and asserts SCHGTn to
indicate that it is releasing SCbus ownership because of
a bus hold request (SCHRQn).

SCHRQn Bus Hold Request Input
A LOW value on SCHRQn indicates that an external bus
master is requesting ownership of the SCbus. The bus
hold request has the highest priority during bus arbitra-
tion. A bus hold request cannot break continuous trans-
actions of in-page writes and burst read/write
transactions if those transactions are supported by an
asserted SCTSEn signal, but must wait until SCTSEn is
deasserted.

SCiFETn Instruction Fetch Output
SCiFETn indicates that the BIU is fetching instruction
data. While the BIU is fetching, the core drives SCiFETn
LOW and outputs it to external logic.
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SCLoCKn Bus Lock Output
The core asserts SCLoCKn to indicate that it wishes to
lock the SCbus and restrict bus ownership. The core
asserts this signal when an executed LoadLink instruc-
tion starts a read transaction in an uncached area or a
WriteThrough cached area. The core executes a Store-
Conditional instruction just before a write transaction
starts, which deasserts SCLoCKn. During the read and
write transactions, the core asserts SCLoCKn continu-
ously, preventing bus ownership from changing during
one of these transactions.

An incorrect condition can exist if a StoreConditional
transaction hits the D-cache in a WriteBack cached area
while SCLoCKn is asserted. In this case, the core deas-
serts SCLoCKn without completing any bus transactions.

SCTBEn[7:0] Byte Enables Output
SCTBEn[7:0] indicates which byte positions are valid for
a transaction. The core asserts only one of the signals for
a byte read or a byte write transaction. It asserts all the
signals for a doubleword or a burst transaction. The
SCTBEn[7:0] signals are valid when the CW4011 asserts
SCAoEn.

SCTBLn Burst Last Doubleword Output
The core deasserts SCTBLn while the first, second, and
third doubleword of a burst transaction is being read or
written. Otherwise, the core asserts SCTBLn, which is
valid on the rising edge of the system clock.

SCTBEn Signal Valid Byte Positions

0 SCDop[7:0]

1 SCDop[15:8]

2 SCDop[23:16]

3 SCDop[31:24]

4 SCDop[39:32]

5 SCDop[47:40]

6 SCDop[55:48]

7 SCDop[63:56]
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SCTBSTn Burst Transaction Output
The core asserts SCTBSTn when the first doubleword of
a four doubleword transaction is being moved. The core
deasserts this signal after the first doubleword has trans-
ferred, or for a singleword transaction.

SCTPWn Next Transaction Is In-Page Write Output
The core asserts SCTPWn to indicate that the next trans-
action will be in the same DRAM page, as defined in the
CCC register. The LSU write buffer checks to see if the
subsequent write request is in the same page.

When the core asserts this signal, a maximum of four
sequential write transactions can occur, even if an
instruction fetch request or data read request is pending.
If all four write transactions are performed, the core
asserts SCTPWn for the first three transactions and
deasserts it for the fourth transaction. The core asserts
SCTPWn from the beginning of one in-page write trans-
action to the end of that transaction.

SCTRQn Transaction Request Output
The core asserts SCTRQn when it needs to generate a
transaction regardless of the bus hold condition. The core
can use this signal to deassert a bus hold request when
it needs the SCbus for an instruction fetch, data read, or
data write transaction.

SCTSEn Transaction Start Enable Input
SCTSEn enables or disables a new SCbus transaction.
Transaction requests are arbitrated only when SCTSEn is
asserted. If an idle cycle is desired between two transac-
tions, then this signal must be deasserted and then
asserted while SCBRDYn is asserted. During the time
SCTSEn is deasserted, the BIU repeats the idle state.

SCTSSn Transaction Start Strobe Output
The core asserts SCTSSn for one clock cycle at the
beginning of a transaction to indicate that a new transac-
tion has begun. If the transaction lasts through one cycle
and the next transaction begins immediately, the core
asserts SCTSSn continuously.
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7.4 OCAbus Interface

The CW4011 has an on-chip access (OCA) interface that allows on-chip
modules to be accessed at the CR stage of the pipeline without involving
the SCbus. This improves performance and reduces latency by reducing
traffic on the SCbus. The core is the only bus master for the OCAbus,
and instructions cannot be fetched through the OCAbus.

If the module that is the target of the transaction can respond in one
clock cycle, there is no penalty for a read or write transaction. A read
access on the SCbus has at least a four-clock penalty, and a write
access is staged through a four-deep write buffer.

Please note that the OCAbus interface and the coprocessor interface
share the following signals:

♦ CPFRCDp[31:0]

♦ CPToCDp[31:0]

♦ CPFRCEn

♦ CPToCEn

♦ CPSREQn[3:1]

♦ PSTALLn

See Section 7.5, “Coprocessor Interface,” for more information on
coprocessor signals. The remainder of this section describes the OCA
interface signals in detail.

AccSizep[1:0] OCAbus Transaction Size Output
These signals indicate the transaction size of an OCAbus
transaction. These signals are valid at the EX stage of
the pipeline, when the core asserts either EXLoadp or
ACCSToREp.

AccSizep[1:0] Transaction Size

00 One byte

01 Halfword

10 Tribyte

11 One word
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Note that data alignment for byte, halfword, or tribyte
operations must be performed by either customer logic or
software.

ACCSToREp OCAbus EX Stage Store Operation Output
The core asserts this signal when a store instruction is
being executed in the EX stage of the pipeline. The core
asserts ACCSToREp to indicate that DVADDRp[31:0] and
AccSizep[1:0] are valid. DVADDRp[31:0] is decoded
when the core asserts ACCSToREp. If the resulting
address is for a device on the OCAbus, OCAcceptp is
asserted.

CPFRCDp[31:0]
Data from OCA Input
This bus inputs data from an OCA device to a core
general-purpose register. CPFRCDp[31:0] is valid at the
CR stage of the pipeline when the core asserts the data
enable signal (CPFRCEn). If there are several OCA
devices, the data must be externally multiplexed.

CPFRCEn Data from OCA Enable Output
The core asserts this signal at the CR stage of the pipe-
line when data on the input bus (CPFRCDp[31:0]) is
valid. If the pipeline enters a stall condition when there is
a OCA data movement instruction in the CR stage, the
core asserts CPToCEn continuously until the stall condi-
tion is resolved.

CPSREQn3 OCA Stall Request Input
An OCA device can assert this signal input at the CR
stage of the pipeline when it needs to request a pipeline
stall. The OCA shares CPSREQn3 with coprocessor 3, if
coprocessor 3 is installed. The core asserts PSTALLn
immediately when CPSREQn3 is asserted.

CPToCDp[31:0]
Data to OCA Output
This bus outputs data to an OCA device from a general-
purpose register in the core. The CPToCDp[31:0] signals
are valid at the CR stage of the pipeline when the core
asserts the data enable signal (CPToCEn).
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CPToCEn Data to OCA Enable Output
The core asserts this signal at the CR stage of the pipe-
line to indicate when the data output bus
(CPToCDp[31:0]) is valid. If the pipeline enters a stall
condition when there is an OCA data movement
instruction in the CR stage, the core asserts CPToCEn
continuously until the stall condition is resolved.

CRValidp OCAbus CR Stage Valid Output
The core asserts this signal when the CR stage of a load
or store instruction is valid after it has asserted EXLoadp
or ACCSToREp. If the load or store instruction is can-
celled, the core deasserts CRValidp and the load/store
operation must be cancelled.

DVADDRp[31:0]
OCAbus Virtual Address Output
This is the output bus for the OCAbus virtual address.
The bus holds either the source address of a load
instruction in the EX stage, or the destination address of
a store instruction in the EX stage. This bus is valid only
during the EX stage of the pipeline when the core asserts
either EXLoadp or ACCSToREp.

EXLoadp OCAbus EX State Load Operation Output
The core asserts this signal when a load instruction is
being executed in the EX stage of the pipeline. It asserts
EXLoadp at the EX stage of the pipeline to indicate that
DVADDRp[31:0] and AccSizep[1:0] are valid.
DVADDRp[31:0] is decoded when the core asserts
EXLoadp. If the resulting address is for a device on the
OCAbus, OCAcceptp is asserted.

OCAcceptp OCAbus Transaction Accepted Input
The OCA module asserts this signal when it is ready to
accept an OCA transaction. OCAcceptp is an output from
the DVADDRp address decoder and it is asserted at the
CR pipeline stage. When OCAcceptp is asserted for a
read operation, the LSU selects CPFRCDp[31:0] as the
data input. When OCAcceptp is asserted for a write oper-
ation, the data CPToCDp[31:0] sent to the OCA device is
valid during the CR stage. The data is therefore not writ-
ten into the D-cache and an SCbus transaction is not
requested.



7-16 CW4011 Signals

PSTALLn Pipeline Stall Broadcasting Signal Output
The core asserts this signal to indicate that all pipeline
stages are stalled. This signal is valid during any stage
of the pipeline.

7.5 Coprocessor Interface

This section describes the coprocessor interface signals that interface
with the ISU and LSU. Contact LSI Logic if your design requires
additional coprocessors (other than CP0).

BRLiKFn Branch Likely if Even Slot is False Output
The core asserts BRLiKFn when a Branch Likely instruc-
tion is in an even slot and the branch is not taken. If, at
this time, a coprocessor has a valid instruction in the EX
stage, the instruction must be cancelled. It is not neces-
sary to check whether the instruction in the EX stage is
in an even or odd slot, since the core asserts BRLiKFn
only when the Branch Likely instruction is in the even slot.
If the Branch Likely instruction in the even slot is not
taken, the instruction in the odd slot must be nullified,
even if it has started.

CPBUSYn[3:1]
Coprocessor Busy Input
These inputs are asserted when an external coprocessor
is busy and cannot accept a coprocessor operation. The
ISU does not assert the execution strobe signals,
CPXSTBn[3:1], when the related CPBUSYn signal is
asserted, and the core stalls until the busy signal is deas-
serted. Each coprocessor is independent and asserts its
busy signal from the EX stage. The core examines the
CPBUSYn signal at the RD stage of the pipeline, on the
rising edge of the system clock.

CPBUSYn Signal Busy Coprocessor

1 CP1

2 CP2

3 CP3
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CPCoDEp[31:0]
CP Instruction Code Bus Output
This bus outputs the entire instruction bit field at the RD
stage. It is valid when the core asserts one of the
CPXSTBn[3:1] lines. Although the core can execute two
instructions per cycle, only one coprocessor instruction
can be issued in one cycle. CPCoDEp[31:0] are the
selected outputs of the even and odd instruction slots.
External logic must sample the bus on the rising edge of
the system clock when the core asserts the strobe signal
(CPXSTBn).

It is not necessary to decode all bits of an instruction,
because the execution strobe signal is a partial decoding
signal.

CPCoNDp[3:0]
Coprocessor Condition Input
These inputs are used for the coprocessor conditional
branch instruction. The core samples the inputs in the
ISU at the EX stage of a conditional branch instruction.
The four CPCoNDp inputs are associated with the four
possible coprocessors (CP0–CP3). Since CP0 does not
need a conditional input, CPCoNDp0 is used as a
general-purpose condition input.

CPFiXUPn Data Fixup Cycle Strobe for LWCz
Cache Miss Output
The core asserts CPFiXUPn when correct data is output
on CPToCDp[31:0] during a fix-up cycle. It asserts the
signal during stall cycles because LWCz cache misses
cause the pipeline to stall until the data is read.

CPFRCDp[31:0]
Data from Coprocessor Input
This bus inputs data from a coprocessor register to a
general-purpose core register or to memory. Data on the
bus is valid when core asserts the data enable signal

CPCoNDp Signal Coprocessor Condition

0 CP0

1 CP1

2 CP2

3 CP3
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(CPFRCEn). The core samples CPFRCDp[31:0] at the
CR stage of the pipeline. If there are several external
coprocessors, the data bus must be multiplexed outside
the CW4011.

CPFRCEn Data from Coprocessor Enable Output
The core asserts this signal to enable the data input bus
CPFRCDp[31:0]. Coprocessors can generate the same
information from the instruction code (CPCoDEp) by
tracking the pipeline stage. External logic must decode
the coprocessor number from CPCoDEp[31:0]. If the
pipeline enters a stall condition when there is a coproces-
sor data movement instruction in the CR stage, the core
asserts CPToCEn continuously until the stall condition is
resolved.

CPMiSSn Data Cache Miss Strobe for LWCz Output
The core asserts CPMiSSn at the CR stage of an LWCz
instruction when a D-cache miss occurs. Data at the CR
stage is not correct and the correct data is put on
CPToCDp[31:0] during a later fixup cycle. The core
asserts PSTALLn from the WB stage of the LWCz
instruction.

CPRSTn[3:1] Coprocessor Reset Output
These outputs indicate the condition of CU[3:1] bits in the
CP0 status register. If the CU bit is 0, the core asserts
the corresponding CPRSTn[3:1] output. The core asserts
the CPRSTn[3:1] signals when a cold reset is asserted.
At this time, the CU bits are cleared. The CU bits are not
cleared when a warm reset is asserted. The
CPRSTn[3:1] outputs allow the system designer to use
software resets for external coprocessors.

CPSREQn[3:1]
Coprocessor Stall Request Input
The external coprocessors assert these signals when
they need to request a pipeline stall. Coprocessors can
assert CPSREQn[3:1] while a previous coprocessor

CPRSTn Signal CU bit

1 CU[1]

2 CU[2]

3 CU[3]
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instruction is being executed, after decoding a coproces-
sor instruction, and after the RD stage. When one of the
CPSREQn[3:1] signals is asserted, the core asserts
PSTALLn.

CPToCDp[31:0]
Data to Coprocessor Output
This bus outputs data to a coprocessor register from a
general-purpose core register or from memory. Data on
this bus is valid at the CR stage of the pipeline when the
core asserts the data enable signal (CPToCEn).

CPToCEn Data to Coprocessor Enable Output
The core asserts this signal to indicate when the data
output bus, CPToCDp[31:0], is valid at the CR stage of
the pipeline. Coprocessors can generate the same infor-
mation from the instruction code (CPCoDEp) by tracking
the pipeline stage. The coprocessor number must be
decoded from CPCoDEp[31:0]. If the pipeline enters a
stall condition when there is a coprocessor data move-
ment instruction in the CR stage, the CW4011 asserts
CPToCEn continuously until the stall condition is
resolved.

CPXoDDn Coprocessor Instruction at Odd Slot Output
When the core asserts an execution strobe, it also
asserts CPXoDDn at the RD stage of the pipeline to indi-
cate that the coprocessor instruction is in the odd slot.
This information must be kept in the coprocessor pipeline
until the CR stage. It is used to determine whether or not
the instruction should be cancelled when the cancellation
signal is asserted.

CPXSTBn[3:1]
Coprocessor Instruction Execution Strobe Output
These strobe signals indicate the start of a coprocessor
operation that involves data movement. The core asserts
only one of the signals during a clock cycle. The
CPXSTBn[3:1] signals are partial decoding signals for an

CPSREQn Signal Coprocessor Requesting Stall

1 CP1

2 CP2

3 CP3
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instruction. The ISU also uses the signals to check for
resource conflicts, including coprocessor busy signals.
The CPXSTBn[3:1] signals are valid at the RD stage of
the pipeline.

FPEoDDn FPU Error Exception in Odd Slot Input
FPEoDDn indicates whether the instruction that caused
an FPU exception (FPERRXn assertion) is in an even
slot (FPEoDDn is HIGH) or odd slot (FPEoDDn is LOW)
when it started at the RD stage. The core ignores the
FPEoDDn signal when FPERRXn is deasserted.

When the instruction is started at an RD stage, the
CPXoDDn signal informs the coprocessor that the
instruction is in an even or odd slot. To handle a pipeline
cancel correctly, the coprocessor must keep the instruc-
tion in its pipeline registers. To execute an FPU exception
precisely, the coprocessor that asserts FPERRXn at the
EX stage must drive FPEoDDn correctly according to the
even/odd status of the EX pipeline stage.

FPERRXn Floating Point Unit Error Exception Input
FPERRXn is an exception input, used specifically with an
FPU coprocessor. The core samples the signal at any
time in the EX stage and issues a pipeline cancel signal
at the CR stage, in the same way as EXiNTn. In the
Cause register, exception code 15 is shown for the
exception if it is the highest priority. FPERRXn can be
used as a user-defined coprocessor exception input.

FPERRXn must be treated precisely. The FPU asserts
FPERRXn at the EX stage of the instruction with the
FPEoDDn signal assertion/deassertion. The core asserts
the pipeline cancel signal at the CR stage with the correct
even/odd cancel signal.

PCANCRn Pipeline Cancel at CR stage Output
When one or more exceptions occurs, the pipeline is
cancelled at the CR stage and the core asserts
PCANCRn. Coprocessor pipelines must be cancelled to

CPXSTBn Signal Coprocessor

1 CP1

2 CP2

3 CP3
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prevent a second execution of the coprocessor instruction
under either one of the following conditions: when the
coprocessor returns from an exception handler or when
the coprocessor has finished executing an LWCz instruc-
tion that caused a TLB miss. The WB stage is not can-
celled when PCANCRn is asserted. PCANCRn is valid at
the CR stage of the pipeline.

PCANoDDn Pipeline Cancel is for Odd Slot Output
PCANoDDn is valid only when PCANCRn is asserted.
This signal informs coprocessors whether the cancella-
tion is for an odd or even slot. When the core asserts the
signal, cancellation applies to the odd slot. When it is
deasserts the signal, cancellation applies to both even
and odd slots.

The coprocessor must track which slot it is executing in
based on the CPXoDDn signal. When the core asserts
both PCANCRn and PCANoDDn and the coprocessor
instruction is in the odd slot, the instruction must be
cancelled. When the core asserts PCANCRn and deas-
serts PCANoDDn, the coprocessor instruction must be
cancelled regardless of which slot it is operating in.

This signal is valid at the CR stage of the pipeline.

PSTALLn Pipeline Stall Signal Output
The core asserts this signal to indicate that the entire
pipeline is stalled. Coprocessor pipelines must be stalled
if they are executing instructions. The core asserts
PSTALLn for all pipeline stalls and for an LWCz instruc-
tion D-cache miss.

SUSPEXn Suspend EX stage Output
The ISU asserts SUSPEXn request coprocessors to sus-
pend the instruction in the EX stage. The instruction in
the EX stage must be held until the ISU deasserts SUS-
PEXn. Instructions in the CR and WB stages must be
completed.
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7.6 Cache Invalidation Interface

This section describes the cache invalidation interface signals, which
interface to the ISU, LSU, and CP0.

CiNVAp[31:5] Cache Invalidation Address Bus Input
The CiNVAp[31:5] input bus is the address input bus for
D-cache and I-cache invalidation. When an external bus
master writes data into the main memory, the address
must be checked in the D-cache and the I-cache. If the
address is cached, the line must be invalidated. The core
samples this bus when either DCiNVSn or ICiNVSn is
asserted.

DCiNVSn D-Cache Invalidation Strobe Input
When asserted, DCiNVSn indicates the Cache Invalida-
tion Address Bus is valid and that there is need for a
D-cache snooping sequence. If the cache tag is not
coincident with higher address bits, the line is not
invalidated.

ICiNVSn I-Cache Invalidation Strobe Input
When asserted, ICiNVSn indicates the Cache Invalida-
tion Address Bus is valid and that there is need for an
I-cache snooping sequence. If the cache tag is not coin-
cident with higher address bits, the line is not invalidated.

7.7 Data Cache Interface

These signals interface the CW4011 with the D-cache memory. If a
design involves a one-way set associative cache, the signals for the
second cache should be tied either LOW or HIGH, whichever deasserts
the signal. This is also true for a no-cache configuration, where both
signal sets need to be deasserted.

7.7.1 D-Cache Tag RAM Signals

DCTAGADDRp[12:5]
D-Cache Tag Address Output
This bus carries the lower bits (bits [12:5]) of the virtual
address for data load/store operations, and is the
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address offset portion of the cache block. DCTAGAD-
DRp[12:5] addresses the Tag RAM for read, write, or
update operations, and connects to the Tag RAMs of both
D-cache Set 0 and D-cache Set 1. The following table
lists the valid bits for different D-cache RAM sizes.

DCTAGDip[23:0]
D-Cache Tag Data In Output
For both D-cache Set 0 and D-cache Set 1, the core
drives DCTAGDip[23:0] with the upper 22 bits of the
physical address (bits [31:10]) concatenated with the
valid and dirty bits. DCTAGDip[1] contains the valid bit;
DCTAGDip[0] contains the dirty bit, which may be ignored
when using a WriteThrough policy.

DC0TAGDop[23:0]
D-Cache Set 0 Tag Data Out Input
D-cache Set 0 (in a two-way set associative cache) drives
these signals with the appropriate tag contents.

DC0TAGWEp[1:0]
D-Cache Set 0 Tag Write Enable Output
The core asserts DC0TAGWEp1 to signal the D-cache
Set 0 tag RAM to write the Cache Entry Tag and the valid
bit (DC0TAGDip[23:1]) into the location addressed by
DCTAGADDRp[12:5]. Both DCTAGADDRp[12:5] and
DCTAGDip[23:1] are valid at this time.

The core asserts DC0TAGWEp0 to signal the tag RAM to
write the value of DCTAGDip0 (dirty bit) into the location
addressed by DC0TAGADDRp[12:5].

DC1TAGDop[23:0]
D-Cache Set 1 Tag Data Out Input
D-cache Set 1 (in a two-way set associative cache) drives
these signals with the appropriate tag contents.

D-Cache Size (Kbytes)
DCTAGADDRp[12:5]
Valid Bits

8 [12:5]

4 [11:5]

2 [10:5]

1 [9:5]
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DC1TAGWEp[1:0]
D-Cache Set 1 Tag Write Enable Output
When the core asserts DC1TAGWEp1, the D-cache
Set 1 tag RAM writes the Cache Entry Tag and the valid
bit (DC0TAGDip[23:1]) into the location addressed by
DCTAGADDRp[12:5]. Both DCTAGADDRp[12:5] and
DCTAGDip[23:1] are valid at this time.

When the core asserts DC1TAGWEp0, the tag RAM
writes the value of DCTAGDip0 (dirty bit) into the location
addressed by DC0TAGADDRp[12:5].

7.7.2 D-Cache Data RAM Signals

DCADATADip[31:0]
D-Cache Data Bank A RAM Data In Output
These signals output data to the D-cache data Bank A
RAM data bus inputs. DCDATAADDRp[12:3] and
DCADATAADDRp address the Bank A data RAMs.

DCADATADop[31:0]
D-Cache Data Bank A RAM Data Out Input
These signals receive data from the D-cache data
Bank A RAM. DCDATAADDRp[12:3] and DCADATAAD-
DRp address the Bank A data RAMs. The RAM should
continuously output the data for the given address.

DCADATAWEp[3:0]
D-Cache Data Bank A Write Enable Output
These signals control the byte write enables to the
D-cache data Bank A RAM. When the related
DCADATAWEp bit is asserted, the RAM must write that
byte of DCADATADip[31:0] into memory. If all
DCADATAWEp bits are asserted, the RAM must write the
entire word into memory.

For example, if only DCADATAWEp[0] is asserted, the
first byte is written as normal. The other three bytes of



Data Cache Interface 7-25

DCADATADip[31:0] should be ignored and the data RAM
should hold the previous three bytes of data.

DCBDATADip[31:0]
D-Cache Data Bank B RAM Data In Output
These signals output core data to the D-cache data
Bank B RAM data bus inputs. DCDATAADDRp[12:3] and
DCBDATAADDRp address the data within the Bank B
data RAM.

DCBDATADop[31:0]
D-Cache Data Bank B RAM Data Out Input
This data bus transfers signals from the D-cache Set 1
data RAM to the CW4011 core. The RAM should contin-
uously output the data for the given address.

DCBDATAWEp[3:0]
D-Cache Data Bank B Write Enable Output
These signals control the byte write enable inputs to the
D-cache data Bank B RAM. When the related
DCBDATAWEp bit is asserted, the RAM must write that
byte of DCBDATADip[31:0] into memory. If all
DCBDATAWEp bits are asserted, the RAM must write the
entire word into memory.

For example, if only DCBDATAWEp[0] is asserted, the
first byte is written as normal. The other three bytes of
DCBDATADip[31:0] should be ignored and the data RAM
should hold the previous three bytes of data.

DCADATAWEp DCADATADip Byte Bits

0 First [7:0]

1 Second [15:8]

2 Third [23:16]

3 Fourth [31:24]

DCBDATAWEp DCBDATADip Byte Bits

0 First [7:0]

1 Second [15:8]

2 Third [23:16]

3 Fourth [31:24]
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DCDATAADDRp[12:3]
D-Cache Data Address Output
This bus holds the upper 10 bits used to address the
memory location within the D-cache data RAMs. Both
data RAMs are addressed using an 11-bit address.
DCDATAADDRp[12:3] connects to bits [11:1] of the RAM
Address Bus. DCADATAADDRp connects to the least-
significant bit (bit 0) of the data RAM for D-cache Bank A
and DCBDATAADDRp connects to D-cache Bank B bit 0.

DCDATAADDRp[12:3] connects to the data RAM address
lines of both D-cache Bank A and B.

The DCDATAADDRp[12:3] signals are valid along with
DCADATAADDRp, DCBDATAADDRp, DCADATAWEp,
DCBDATAADDRp, and the write enable signals.

Note that the data RAM address bus is up to 11 bits and
the RAM is 32 bits wide.

DCADATAADDRp
D-Cache Data Bank A Address LSB Output
This signal connects to the least-significant bit of the
D-cache data Bank A RAM address bus (bit 0 of the
address input). The concatenation of
DCDATAADDRp[12:3] and DCADATAADDRp selects
which word is brought into the core from the cache.

DCBDATAADDRp
D-Cache Data Bank B Address LSB Output
This signal connects to the least-significant bit of the
address bus of the D-cache data Bank B RAM (bit 0 of
the address input). The concatenation of
DCDATAADDRp[12:3] and DCBDATAADDRp selects
which word is brought into the core from the cache.

7.8 Instruction Cache Interface

The signals described in this section connect the CW4011 with the
I-cache memory. The descriptions assume that the system is using a
two-way set associative cache referred to as I-cache Set 0 and I-cache
Set 1. The correct cache configuration must be set in the CCC register,
and any buses or signals not needed must be deasserted by tying them
either HIGH or LOW.
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The I-cache tag comparators are built into the core, so external tag
comparators are needed only for the D-cache.

7.8.1 I-Cache Tag RAM Signals

iTFENSTp Tag Fetch Enable Strobe Output
The core asserts iTFENSTp to signal that it is performing
a store or a read operation to one of the I-cache Tag
RAMs.

iCTAGDip[22:0]
New Tag to Instruction Tag RAM Output
This bus carries the tag data and a valid bit. Data on this
bus should be written into the location specified by
iTADDRp[7:0]; I-cache Set 0 if iC0TAGWEp is asserted,
and I-cache Set 1 if iC1TAGWEp is asserted.

iCTAGRDp Tag Read Output
CTAGRDp is the read enable signal for both I-cache sets.
The core asserts this signal and iTFENSTp to inform the
I-cache tag RAMs that they should place the data
selected by iTADDRp[7:0] on the iC0TAGDop[22:0] and
iC1TAGDop[22:0] buses.

iC0TAGDop[22:0]
I-Cache Tag Data Out Set 0 Input
The I-cache Set 0 RAM outputs the tag data onto this
input bus. When both the iTFENSTp and ICDATARDp
signals are asserted, the tag RAM outputs the contents
of the location pointed to by iTADDRp[7:0] onto the
iC0TAGDop[22:0] bus.

iC0TAGWEp Tag Write Set 0 Output
If iTFENSTp is asserted and the core asserts
iC0TAGWEp, this informs the I-cache Set 0 tag RAM to
write the data from iCTAGDip into the memory location
specified by iTADDRp[7:0]. Both iCTAGDip and iTAD-
DRp[7:0] are valid during this write transaction.

iC1TAGDop[22:0]
I-Cache Tag Data Out Set 1 Input
The I-cache Set 1 RAM outputs tag data to this input bus.
When both iTFENSTp and ICDATARDp are asserted, the
tag RAM should output the contents of the location
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pointed to by iTADDRp[7:0] onto the iC1TAGDop[22:0]
bus.

iC1TAGWEp Tag Write Set 1 Output
If iTFENSTp is asserted and the core asserts
iC1TAGWEp, this informs the I-cache Set 1 tag RAM to
write the data from iCTAGDip into the memory location
specified by iTADDRp[7:0]. Both iCTAGDip and iTAD-
DRp[7:0] are valid during this write transaction.

iTADDRp[7:0] Tag Address Output
The core drives these signals with the eight lower bits of
the virtual address. iTADDRp[7:0] is used to address the
I-cache tag RAM. If iTFENSTp and iCTAGRDp are
asserted, I-cache Set 0 should output data selected by
this address onto iC0TAGDop[22:0], and I-cache Set 1
should output data addressed by this bus onto
iC1TAGDop[22:0].

iTADDRp[7:0] is also used to address I-cache Set 0 and
I-cache Set 1 tag RAMs for write operations.

7.8.2 I-Cache RAM Signals

iCADDRp[9:0] I-Cache Address Output
The core drives these signals with the addresses for
read/write operations to the I-cache data RAMs.

iCDATADip[63:0]
Data to I-Cache Output
These signals hold instructions to be written into the
I-cache data RAM during a write operation.

iCDATARDp I-Cache Read Indicator Output
The core asserts this signal to indicate that the current
operation to the I-cache data RAM is a read. If
iCDATARDp and iCFENSTp are asserted, or MAiNCYCp
is asserted, instructions from the instruction RAMs of
both I-cache Set 0 and I-cache Set 1 should be placed on
the iC0DATADop[63:0] and iC1DATADop[63:0] buses.

iCFENSTp Cache Fetch Enable Strobe Output
The core asserts this signal to inform the instruction RAM
that a read or write operation is occurring. The RAM or
glue logic should check and perform the read/write oper-
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ation. Data from the core is valid on the signals and
buses while iCFENSTp is asserted.

iC0DATADop[63:0]
I-Cache Data In Set 0 Input
The core reads instructions from I-cache Set 0 on this
bus. The instruction data RAM and glue logic must pro-
vide a valid instruction before the next cycle, or an error
may result.

iC0DATAWEHp
Upper Word I-Cache Write Enable Set 0 Output
The core asserts iC0DATAWEHp to enable the I-cache
Set 0 instruction RAM to write the value on the upper 32
bits of iCDATADip[63:0] to the location selected by
iCADDRp[9:0]. If iC0DATAWEHp is not asserted, the
value of the higher 32 bits (bits [61:32]) of the location
selected by iCADDRp[9:0] of I-cache Set 0 must remain
unchanged. The write transaction occurs only if
iCFENSTp or MAiNCYCp is asserted at the same time as
iC0DATAWEHp.

iC0DATAWELp
Lower Word I-Cache Write Enable Set 0 Output
The core asserts iC0DATAWELp to enable the I-cache
Set 0 instruction RAM to write the value on the lower 32
bits of iCDATADip[63:0] to the location selected by
iCADDRp[9:0]. If iC0DATAWELp is not asserted, the
value of the lower 32 bits (bits [31:0]) of the location
addressed by iCADDRp[9:0] of I-cache Set 0 must
remain unchanged. The write occurs only if iCFENSTp or
MAiNCYCp is asserted at the same time.

iC1DATADop[63:0]
I-Cache Data In Set 1 Input
The core reads instructions from I-cache Set 1 on this
bus. The instruction RAM and glue logic must provide a
valid instruction before the next cycle.

iC1DATAWEHp
Upper Word I-Cache Write Enable Set 1 Output
The core asserts iC1DATAWELp to enable the I-cache
Set 1 instruction RAM to write the value on the lower
32 bits of iCDATADip[63:0] to the location selected by
iCADDRp[9:0]. If iC1DATAWEHp is not asserted, the
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value of the higher 32 bits (bits [61:32]) of the location
addressed by iCADDRp[9:0] must remain unchanged.
The write occurs only if iCFENSTp or MAiNCYCp is
asserted at the same time as iC1DATAWEHp.

iC1DATAWELp
Lower Word I-Cache Write Enable Set 1 Output
The core asserts iC1DATAWELp to enable the I-cache
Set 1 instruction RAM to write the value on the higher
32 bits of iCDATADip[63:0] to the location selected by
iCADDRp[9:0]. If iC1DATAWELp is not asserted, the
value of the lower 32 bits (bits [31:0]) of the location
addressed by iCADDRp[9:0] must remain unchanged.
The write occurs only if iCFENSTp or MAiNCYCp is
asserted at the same time as iC1DATAWELp.

MAiNCYCp I-Cache Data Maintenance Mode Output
The core asserts this signal to inform the Instruction RAM
that the processor is operating in Isolate Cache Mainte-
nance mode.

7.8.3 I-Cache Least Recently Used (LRU) RAM Signals

iCLRURDp I-Cache LRU Read Data Input
The core uses this signal to read data held in LRU mem-
ory during an LRU RAM access. The LRU RAM should
drive the value addressed by LRUADDRp[7:0] onto this
input, if both iCLRUREp and LRUFENSTp are asserted.

iCLRUREp Read Strobe to LRU RAM Output
The core asserts this signal to indicate that the current
LRU RAM operation is a read. If both iCLRUREp and
LRUFENSTp are asserted, the core reads data selected
by address LRUADDRp[7:0] on iCLRURDp.

iCLRUWDp LRU Write Data Output
The core drives this signal with the data that must be
written into the LRU RAM in a store operation. The core
drives the store address on LRUADDRp[7:0]. The core
asserts iCLRUWEp and LRUFENSTp to indicate a store
operation.

iCLRUWEp Write Strobe to LRU RAM Output
The core asserts this signal to indicate that the current
LRU RAM operation is a write. If both iCLRUWEp and
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LRUFENSTp are asserted, data should be written from
iCLRUWDp into the location selected by address
LRUADDRp[7:0].

LRUADDRp[7:0]
LRU Address Output
The core drives these signals with the address for
read/write operations to the LRU RAM.

LRUFENSTp LRU Fetch Enable Strobe Output
The core asserts LRUFENSTp to indicate that a load or
store bit operation to the LRU RAM is occurring. Depend-
ing on the read (iCLRUREp) or write (iCLRUWEp)
enable, the address bus, LRUADDRp[7:0], addresses the
memory location for a read or write transaction.

7.9 WriteBack Buffer Interface

The CW4011 core provides a simple interface to attach a doubleword
WriteBack buffer. To add a WriteBack buffer to the design, a special RAM
needs to be added with glue logic that controls the I/O between the core
and the WriteBack buffer. This RAM should consist of four sets of 64-bit
registers and control logic. The following signals interface the core with
the WriteBack buffer.

REALWBp Real WriteBack Buffer Installed Input
Asserting this signal informs the core that a fully func-
tional WriteBack buffer is installed.

WBBRAp[1:0] WriteBack Buffer Read Address Output
These signals inform the WriteBack buffer from which
buffer slot (out of the four available) it should return data.
The WriteBack buffer returns data on WBBRDp[63:0].

WBBRAp[1:0] WriteBack Buffer Slot

00 0

01 1

10 2

11 3
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WBBRDp[63:0]
WriteBack Buffer Read Data Input
The WriteBack buffer drives these signals with the data
held in the buffer slot indicated by WBBRAp[1:0].

WBBSELABp WriteBack Buffer Order Output
The core asserts this signal to inform the WriteBack
buffer to flip the word order during a write transaction.
The default is to write the words in XY order, with X being
the most significant word, and Y being the
least-significant word. Asserting WBBSELABp reverses
the word order to YX.

WBBWAp[1:0] WriteBack Buffer Write Address Output
These signals inform the WriteBack buffer in which dou-
bleword slot (out of the four available) it should store
data. The WriteBack buffer should write the data into a
slot only if WBBWEp is asserted. Write data arrives from
D-cache Set 0 through DCADATADop and from D-cache
Set 1 through DCBDATADop.

WBBWEp WriteBack Buffer Write Enable Output
The core asserts this signal to inform the WriteBack
buffer that it should write data into the buffer slot indi-
cated by WBBWAp[1:0] at the next SCLKp edge. The
word write order is determined by the WBBSELABp sig-
nal and the slot written to is determined by
WBBWAp[1:0].

7.10 Memory Management Unit (MMU) Interface

The CW4011 core offers a set of signals to interface with either a
user-designed MMU or an LSI Coreware Building Block. The core has a
built-in Coprocessor 0 to handle virtual memory addressing and
exception handling, but the user must provide a TLB and a real MMU to
implement a fully functional MIPS 3000/4000 microprocessor. Please

WBBWAp[1:0] WriteBack Buffer Slot

00 0

01 1

10 2

11 3
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note that exceptions may be generated anytime in the IF, Q, EX, or CR
pipeline stages, but are always serviced in the CR stage.

ACCSToREp Data Access Is a Store Request Output
The core asserts this signal when a store instruction is
being executed in the EX stage of the pipeline.
DVADDRp[31:0], DVADDRVp, and AccSizep[1:0] are
valid at the same time. If ACCSToREp is deasserted, the
data access is a fetch operation.

BADVPNp[31:12]
Failing Virtual Address for TLB Exceptions Output
These signals output the virtual page number stored in
the EntryHI and Context registers that caused a TLB
exception. BADVPNp[31:12] is the upper 20 bits of the
virtual address that caused the exception.

CACHEWBp Data Access WriteBack Mode Input
The MMU asserts this signal to inform the core that the
associated CR stage store transaction should be
completed as WriteBack instead of WriteThrough. The
following table lists typical operation:

CFGDSp[1:0] Configuration D-Cache Set Size Output
These signals output information from the CCC register
indicating the D-cache set size (1, 2, 4, or 8 Kbytes). If
the CCC register indicates that no cache is installed, this
bus is undefined.

CCC Register Memory
Segment ModeTE WB

X 0 kseg0 WriteThrough

X 1 kseg0 WriteBack

0 0 kuseg, kseg2 WriteThrough

0 1 kuseg, kseg2 WriteBack

1 X kuseg, kseg2 From TLB Entry

CFGDSp[1:0] D-Cache Size

00 1

01 2

10 4

11 8
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CFGiSCp Configuration Isolate Cache Mode Output
This signal reflects the Isolate Cache Mode Bit value from
the CCC register. The core asserts CFGiSCp to inform
the MMU that updates to the memory should not extend
past the primary data cache and addresses are not to be
translated. When the MMU receives this information, it
disables the TLB.

CFGTEp Configuration TLB Enable Output
CFGTEp is the TLB Enable Bit from the CCC register.
The core asserts this signal to enable the TLB, if one is
installed.

CFGWBp Configuration Cache WriteBack Mode Output
This signal reflects the WriteBack Mode Bit value from
the CCC register. The core asserts CFGWBp to indicate
that store operations are performed with the WriteBack
policy.

CPSREQn[3:1]
Coprocessor Stall Request Input
The external coprocessors assert these signals when
they need to request a pipeline stall. Coprocessors can
assert CPSREQn[3:1] while a previous coprocessor
instruction is being executed, after decoding a coproces-
sor instruction, and after the RD stage. When one of the
CPSREQn[3:1] signals is asserted, the core asserts the
PSTALLn signal.

CPZEXENSp CR Stage Strobe Enable Output
The core asserts CPZEXENSp to indicate that the
EX stage pipeline clock is enabled.

CPZQENSp Q Stage Strobe Enable Output
The core asserts CPZQENSp to indicate that the Q stage
pipeline clock is enabled.

CPZRDENSp RD Stage Strobe Enable Output
The core asserts CPZRDENSp to indicate that the
RD stage pipeline clock is enabled.

CPZSTALLp Stall Request from CP0 Output
CPZSTALLp indicates that internal pipeline stages have
entered a stall condition by executing a WAITI (Wait Inter-
rupt) instruction. The core asserts CPZSTALLp when the
instruction is at the WB stage of the pipeline, and the
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signal remains active until the core receives an external
exception (enabled external interrupt, NMin, cold reset, or
warm reset).

CRESETn Cold System Reset Input
Asserting this signal asynchronously resets the MMU by
initializing all internal states. CRESETn must be deas-
serted synchronously on the rising edge of SCLKp.

DATTLBXp TLB Exception is for Data Access Input
The MMU asserts this signal during the CR stage to
inform the core that a data load/store operation has
caused a TLB exception. The TLBMiSSp and TLBMoDp
signals must be checked to determine the cause of the
exception:

DC0TAGDop[23:0]
D-Cache Set 0 Tag Data Out Input
The D-cache Set 0 (in a two-way set associative cache)
drives these signals with the appropriate tag contents.

DC1TAGDop[23:0]
D-Cache Set 1 Tag Data Out Input
The D-cache Set 1 (in a two-way set associative cache)
drives these signals with the appropriate tag contents.

DPADDRp[31:12]
Data Access Physical Address Input
The MMU drives these signals with the TLB-translated
physical address. If the TLB is disabled, then the
MMU/TLB passes the core the original data virtual
address.

DUNCACHEp Data Access Request Is Uncached Input
The MMU asserts this signal when it detects accesses to
memory segment kseg1, which is unmapped and
uncached, based on address bits DVADDRp[31:28].
Asserting this signal informs the core D-cache controller

TLBMiSSp TLBMoDp Exception Cause

0 0 TLB Invalid

0 1 TLB Mod

1 0 TLB Miss

1 1 Illegal
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that it should not cache the read/write operations to the
address.

DVADDRp[31:0]
Data Virtual Address Output
The core uses these signals to output the virtual address
of a load or store instruction being executed in the
EX stage. The address is valid when DVADDRVp is
asserted.

DVADDRVp Data Access Request Valid Output
The core asserts this signal to inform the MMU that
DVADDRp[31:0] is valid, and that the MMU should
perform an address translation.

iFETLBXp TLB Exception Is for Instruction Fetch Input
The MMU asserts this signal during the CR stage if a
TLB exception occurs as a result of an Instruction Fetch.
The TLBMiSSp and TLBMoDp signals must be checked
to determine the cause of the exception:

iFNSEQp Ifetch Access Is the Target of a Branch/Jump Output
The core asserts this signal to indicate that the associ-
ated Instruction Fetch (I-Fetch) in the IF Stage of the
pipeline is not word-sequential. When asserted,
iFENSEQp indicates that the previous instruction, now in
the Q or RD Stage, was a branch/jump instruction.

iPADDRp[31:12]
Ifetch Physical Address Input
The MMU drives these signals with the TLB-translated
instruction fetch physical address. If the TLB is disabled,
then the MMU drives back the original fetch address
untranslated.

iSUSTALLp Stall Request from ISU Output
iSUSTALLp is the stall request signal from the ISU. The
core asserts this signal to inform the MMU that it should
halt operations.

TLBMiSSp TLBMoDp Exception Cause

0 0 TLB Invalid

0 1 TLB Mod

1 0 TLB Miss

1 1 Illegal
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iUNCACHEp Instruction Fetch Data is UnCached Input
The MMU asserts this signal when it detects unmapped
accesses to kernel segment kseg1 (uncached memory),
or when TLB cache information so indicates for kuseg
and kseg2. Asserting iUNCACHEp informs the core
I-cache controller that the present IFetch is uncached.

iVADDRp[31:0]
Ifetch Virtual Address Output
These signals hold the virtual address of the instruction
which is to be translated into a physical address.

iVADDRVp Ifetch Request Valid Output
The core asserts this signal to inform the MMU that
iVADDRp[31:0] holds a valid address, and that the MMU
should perform an instruction fetch address translation.

LSUSTALLp Stall Request from LSU Output
LSUSTALLp is the stall request signal from the LSU. The
core asserts this signal to inform the MMU that it should
halt operations.

MMUDATAip[31:0]
MMU Register Data Input Bus Output
This bus transfers data from the core to the MMU (or
CP0). MMUDATAip[31:0] transfers data to the core
registers based on MFC0 instructions.

MMUDATAop[31:0]
MMU Register Data Output Bus Input
This bus transfers data from the MMU (or CP0) to the
core. MMUDATAop[31:0] transfers data to the MMU
registers based on MFC0 instructions.

MMUENWRp MMU Register Write Enable Output
The core asserts this signal to inform the MMU that it
should write the data from CPToCDp into the MMU
register selected by MMUREGSp[3:0]. The MMU should
latch the data into the MMU register at the beginning of
the WB stage.

MMUREGSp[3:0]
MMU Data Register Select (Read/Write) Output
The MMU decodes MMUREGSp[3:0] to determine the
target of a MMU register address read/write operation.
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If the operation is a write into the MMU registers, the
MMU should latch the data into the MMU registers at the
beginning of the WB stage. If the operation is a read, the
MMU should provide valid data during the CR stage. This
signal is valid in the CR pipeline stage.

MMUSTALLp MMU through CP0 Stall Input
The MMU asserts this signal to cause the core to stall
while the MMU is servicing an iTLB translation miss.

PCANCELp Pipeline Cancel Signal from CP0 Output
The core asserts this signal to inform the MMU that it
should clear exception registers and pipeline information.
The core asserts PCANCELp when an instruction that
generates an exception enters the CR pipeline stage.

REALMMUp Real MMU Installed Indication Input
The MMU asserts this signal to inform the core that a
fully functional MMU with a TLB is installed.

SELQNSp Select Q Stage (No Swap) Output
The core asserts this signal to indicate that data from the
Q stage must be fed into the RD stage of the pipeline.
The MMU selects the Ifetch stage data if SELQNSp is
deasserted, or the Q stage data if SELQNSp is asserted.
When SELQNSp is asserted, it also informs the core that
signals from the Q Stage are valid.

STPEFTCHp Stop External Fetch Signal to ISU Input
The MMU asserts this signal to stop the ISU from making
fetch requests to external memory. Assertion of this
signal informs the ISU that the translated physical
address is invalid.

MMUREGSp[3:0] MMU Register Selected

0000 Index

0001 Random

0010 EntryLo

0100 Context

0101 PageMask

0110 Wired

1010 EntryHi
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SUSPEXn Suspend EX stage Output
The ISU asserts SUSPEXn to request that the MMU sus-
pend the instruction in the EX stage. The instruction in
the EX stage must be held until the ISU deasserts
SUSPEXn. Instructions in the CR and WB stages must
be completed.

TAGMTCH0p D-Cache Set 0 Tag Match Input
The MMU asserts this signal to inform the core that a
memory access has hit in the cache because the tag
information matches for D-cache Set 0. A custom MMU
should include comparators that perform this function.
The tag data from DC0TAGDop[23:2] should be taken
from the data out of the tag RAMs and compared to the
translated physical address, DPADDRp[31:12] and
DVADDRp[11:10]. Note that the size of the comparators
depends on the size of the tags. See Chapter 6,
“CW4011 Caches,” for further information.

TAGMTCH1p D-Cache Set 1 Tag Match Input
The MMU asserts this signal to inform the core that a
memory access has hit in the cache because the tag
information matches for D-cache Set 1. A custom MMU
should include comparators that perform this function.
The tag data from DC1TAGDop[23:2] should be taken
from the data out of the tag RAMs and compared to the
translated physical address, DPADDRp[31:12] and
DVADDRp[11:10]. Note that the size of the comparators
depends on the size of the tags. See Chapter 6,
“CW4011 Caches,” for further information.

TESTMp Test Mode Enable Input
TESTMp is used for scan chain testing. It is a static input
and must be tied LOW during normal operation and tied
HIGH for scan chain testing.

TLBMiSSp TLB Miss Exception Input
The MMU asserts TLBMiSSp to inform the core that the
MMU exception was due to a TLB miss.

TLBMoDp TLB Modified Exception Input
The MMU asserts TLBMoDp to inform the core that the
MMU exception is because of a store to a page which is
not marked dirty or writable.
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TLBPp TLB Probe Request Output
The CP0 asserts this signal to probe the TLB (when the
probe TLB for matching entry instruction is valid in the
EX stage). The TLB places probe results in the Index
register.

TLBRp TLB Read Request Output
The CP0 asserts this signal to request a read transaction
from the TLB (when the Read Indexed TLB Entry instruc-
tion is valid in the EX stage). The TLB places the data in
the EntryHi, EntryLo, and PageMask registers.

TLBWip TLB Write Index Request Output
The CP0 asserts this signal to request an indexed write
transaction to the TLB (when the Write Indexed TLB
Entry instruction is valid in the EX stage). Data from the
PageMask, EntryHi, and EntryLo registers is written into
the TLB entry defined by the Index register.

TLBWRp TLB Write Random request Output
The CP0 asserts this signal to request a random write
transaction to the TLB (when the Write Random TLB
Entry instruction is valid in the EX stage). Data from the
PageMask, EntryHi, and EntryLo registers is written into
the TLB entry defined by the Random register.

VLDTLBXp Valid TLB Exception in CR Stage Output
The core asserts this signal to indicate that a TLB excep-
tion occurred and is being reflected to the ISU. Excep-
tions are handled in the CR pipeline stage. The MMU
must then load the EntryHi and Context registers with the
failing virtual page number.

WRESETn Warm System Reset Input
To perform a warm reset, WRESETn must be asserted
and then deasserted synchronously on the rising edge of
the SCLKp. While asserted, MMU internal states are ini-
tialized; when deasserted, the CP0 generates a warm
reset exception.
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7.11 MMU to Shell Interface

These signals interface the MMU unit to external logic, but do not directly
interface with the CW4011 core.

FRCMn Force Cache Miss MMU Input
Asserting FRCMn forces a cache miss for both the
I-cache and D-cache. The core treats the transaction as
an access to an uncached area. FRCMn is useful for
debugging the system. This is a static input, and is tied
LOW for software debugging.

7.12 Multiply/Divide Unit (MDU) Interface

The following signals interface the CW4011 core with a high-performance
MDU. The MDU may be either an LSI Logic building block, or a user-
designed MDU.

BRLiKFn Branch Likely If Even Slot Is False Output
The core asserts BRLiKFn when a Branch Likely instruc-
tion is in an even slot and the branch is not taken. When
BRLiKFn is asserted, the instruction in the odd slot must
be nullified, even if it has started.

HiLoBUSYp HI/LO Register Busy Signal Input
The MDU asserts this signal to inform the core that either
the HI or LO register of the MDU is busy. MTLO/HI
instructions and instructions involving the HI/LO register
cannot be performed in the present cycle. More specifi-
cally, the MDU asserts HiLoBUSYp to prevent these
instructions from entering the EX stage.

iNSTE[31:0] Even Instruction Code Output
The core drives these signals with the instruction code for
the instruction in the RD stage of the even pipeline. The
MDU must decode the instruction to see if it is intended
for the MDU.

iNSTo[31:0] Odd Instruction Code Output
The core drives these signals with the instruction code for
the instruction in the RD stage of the odd pipeline. The
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MDU must decode the instruction to see if it is intended
for the MDU.

MDBUSYp MDU Busy Input
The MDU asserts this signal to inform the ISU that it is
busy and cannot accept any new instructions.

MDRESp[31:0]
Multiply/Divide Instruction Result Input
The MDU drives these signals with the output for an
instruction in the EX stage. Depending on the type of
instruction, and whether the instruction involves the MDU
or not, the value of MDRESp[31:0] is placed back in a
general-purpose core register later in the pipeline.
Instructions that return values into the core general-
purpose register include (but are not limited to): MFHI,
MFLO, MIN, MAX, and some of the extensions for the
CW4011.

PCANCELp Pipeline Cancel Signal from CP0 Output
The core asserts PCANCELp when an instruction that
generates an exception enters the CR pipeline stage.

PCANoDDn Pipeline Cancel is for Odd Slot Output
This signal informs the MDU whether the cancellation is
for an odd or even slot. When the core asserts the signal,
cancellation applies to the odd slot. When it is deasserts
the signal, cancellation applies to both even and odd
slots. PCANoDDn is valid at the CR stage of the pipeline.

PSTALLp Pipeline Stall Signal from ISU Output
The core asserts this signal to indicate that the pipeline
is stalled. The MDU should halt operation until this signal
is deasserted. PSTALLn is also asserted for any pipeline
stalls.

REALMADDp Multiplier Supports Accumulate Operation Input
REALMADDp, tied HIGH, informs the core that the MDU
supports MADD and MSUBB instructions. This signal is
ignored if REALMULTp is deasserted.

REALMULTp High Performance Multiplier is Installed Input
REALMULTp, tied HIGH, informs the core that a MDU is
installed. If the MDU supports MADD and MSUBB
Instructions, then REALMADDp must be asserted. It is
tied LOW if no MDU is installed.
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REGS0[31:0]
S Operand, Even Instruction Output
The core drives these signals with the 32-bit value of the
RS register. This RS value belongs to an instruction in
the EX stage of the even pipeline. The MDU must decode
the instruction from iNSTE[31:0] to check if the instruction
involves the MDU and if it uses the RS register.
REGS0[31:0] is valid only for MDU-specific instructions.

REGS1[31:0]
S Operand, Odd Instruction Output
The core drives these signals with the 32-bit value of the
RS register. This RS value belongs to an instruction in
the EX stage of the odd pipeline. The MDU must decode
the instruction from iNSTo[31:0] to check if the instruction
involves the MDU and if it uses the RS register.
REGS1[31:0] is valid only for MDU-specific instructions.

REGT0[31:0]
T Operand, Even Instruction Output
The core drives these signals with the 32-bit value of the
RT register. This RT value belongs to an instruction in the
EX stage of the even pipeline. The MDU must decode the
instruction from iNSTE[31:0] to check if the instruction
involves the MDU and if it uses the RT register.
REGT0[31:0] is valid only for MDU-specific instructions.

REGT1[31:0]
T Operand, Odd Instruction Output
The core drives these signals with the 32-bit value of the
RT register. This RT value belongs to an instruction in the
EX stage of the odd pipeline. The MDU must decode the
instruction from iNSTo[31:0] to check if the instruction
involves the MDU and if it uses the RT register.
REGT1[31:0] is valid only for MDU-specific instructions.

RESETn Reset Signal Output
The core asserts this signal to indicate that either a warm
reset (WRESETn) or a cold reset (CRESETn) has
occurred. The core resets by jumping to the reset excep-
tion code. Building block modules, such as the MDU,
must also reset.
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SUSPEXn Suspend EX stage Output
The ISU asserts SUSPEXn to request MDU to suspend
the instruction in the EX stage. The instruction in the
EX stage must be held until the ISU deasserts
SUSPEXn. Instructions in the CR and WB stages must
be completed.

TESTMp Test Mode Enable Input
TESTMp is used for scan chain testing. It is a static input
and must be tied LOW during normal operation and tied
HIGH for scan chain testing.

U1EENSTp Even Instruction Targeting U1 Unit Output
The core asserts this signal to inform the MDU that an
even pipeline instruction is targeting the U1 unit. This
instruction is in the RD stage and will move into the
EX stage in the next clock cycle. Instructions targeting
the U1 unit may be Multiply, Divide, or Shift operations.
The building block module must decode the instruction
from the even pipeline to check if it is an instruction tar-
geting the MDU. U1EENSTp serves as a warning signal
for the MDU.

U1oENSTp Odd Instruction Targeting U1 Unit Output
The core asserts this signal to inform the MDU that an
odd pipeline instruction is targeting the U1 unit. This
instruction is in the RD stage and will move into the
EX stage in the next clock cycle. Instructions targeting
the U1 unit may be Multiply, Divide, or Shift operations.
The building block module must decode the instruction
from the even pipe to check if it is an instruction targeting
the MDU. U1oENSTp serves as a warning signal for the
MDU.

7.13 Miscellaneous Signals

This section describes the miscellaneous CW4011 core signals.

BENDn Big Endian Input
BENDn is a static input and must be tied LOW for
big-endian addressing and HIGH for little-endian
addressing. BENDn affects the byte positions for sizing
and Load/Store data alignment.
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For big-endian mode, the upper 32 bits of SCDip must be
swapped with the lower 32 bits, and the upper 32 bits of
SCDop must be swapped with the lower 32 bits outside
the core.

iMPLop[3:0] PRId IMP_LO Bus Input
These signals write to the lower four bits of the Processor
Revision Identifier (PRId) register IMP number. Designers
can choose to place whatever value they wish on this bus
to identify their product revision. Instructions reading from
the PRId register return this value for the lower four bits.
The upper four bits of the IMP number are set to 0b1000
by LSI Logic.

REVLop[3:0] PRId REV_LO Bus Input
These signals write the lower four bits of the PRId regis-
ter REV number. Designers can choose to place what-
ever value they wish on this bus to identify their
production revision. Instructions reading from the PRId
register will return this value for the lower four bits. The
upper four bits of the REV number are set to 0b0000 by
LSI Logic.

SCANREQp Scan Debug Event Output
This signal is not used in this design. You may leave this
signal open (unconnected).

SCLKp System Clock Input
SCLKp is the processor system clock input. It provides
basic timing for the core and determines instruction cycle
times. Internal core logic operates synchronously with the
rising edge of SCLKp. Since the core processor operates
at 90 MHz, you must supply an 90 MHz clock. SCLKp is
used for all core modules.

TESTMp Test Mode Enable Input
TESTMp is used for scan chain testing. It is a static input
and must be tied LOW during normal operation and tied
HIGH for scan chain testing.
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Chapter 8
Interface Operation

This chapter examines various CW4011 functional timing scenarios. It
does not deal with all timing cases, however, but concentrates on the
major CW4011 core timing operations. For details of the operation of any
signals discussed in this chapter, see Chapter 7, “CW4011 Signals.”

This chapter has the following sections:

♦ Section 8.1, “Reset and Exception Signals”

♦ Section 8.2, “SCbus Interface Behavior”

♦ Section 8.3, “OCAbus Interface Behavior”

♦ Section 8.4, “Cache Interface Behavior”

In the timing diagrams shown in this chapter, all inputs and all outputs
must be synchronized to the rising edge of the system clock. All inputs
require setup and hold time and all outputs have valid delay times from
the clock edge to the appearance of a valid level.

8.1 Reset and Exception Signals

The CW4011 has the following reset and exception inputs that connect
to Coprocessor 0:

♦ Cold Reset

♦ Warm Reset

♦ Nonmaskable Interrupt

♦ Bus Error

♦ Floating Point Unit Exception

♦ Interrupts
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The above inputs must be synchronized to the rising edge of the system
clock. The remainder of this section discusses each of these areas in
detail, except the floating point unit exception. For more information on
floating point exceptions, please contact your LSI Logic representative.

8.1.1 Cold Reset (CRESETn)

The primary purpose of a cold reset is to initialize the CW4011 core at
power-up.

When asserted, CRESETn initializes the internal states and control
registers in the core. CRESETn does not initialize general-purpose
registers, I-cache, D-cache, or the MMU TLB.

CRESETn can be asserted asynchronously, but it must be active for at
least two system clock cycles and be deasserted on the rising edge of
the system clock. The CW4011 considers CRESETn a nonmaskable
exception and the core is in idle mode during the period that CRESETn
is asserted. Figure 8.1 shows the timing for a cold reset and the start of
an instruction fetch after CRESETn is deasserted.

Figure 8.1 Cold Reset and Pipeline

8.1.1.1 Handling Cold Resets

The CPU provides a special interrupt vector (0xBFC00000) for the
CRESETn exception. The reset vector resides in unmapped and
uncached CPU virtual address space, so the hardware does not need to
initialize the TLB or the cache to handle the exception. The processor
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can fetch and execute instructions while the caches and virtual memory
are in an undefined state. For further information on this subject refer to
Section 4.4.5.1, “Cold Reset Exception.”

The contents of all registers in the CPU are undefined when the
CRESETn exception occurs except for the following:

♦ In the Status register, the CU[3:0] and SR bits are cleared to zero,
and the ERL and BEV bits are set to one. The other bits in the
register are undefined.

♦ The Random register is initialized to the value of its upper bound.

♦ The Wired register is initialized to zero.

8.1.1.2 Servicing Cold Resets

To service the CRESETn exception, you should initialize all processor
registers, coprocessor registers, caches, and the memory system. You
can do this by performing diagnostic tests and by bootstrapping the
operating system.

8.1.2 Warm Reset (WRESETn)

The primary purpose of the WRESETn exception is to reinitialize the
processor after a fatal error.

When asserted, WRESETn initializes the CW4011 internal states and
control registers. WRESETn does not initialize general purpose registers,
I-cache, D-cache, or the MMU TLB.

WRESETn must be asserted and deasserted on the rising edge of the
system clock. It must remain active for at least two system clock cycles.
WRESETn is a nonmaskable exception and the CW4011 is in idle mode
during the period WRESETn is asserted. The start of the instruction fetch
after WRESETn is deasserted is the same as that of CRESETn, as
shown in Figure 8.1.

8.1.2.1 Handling Warm Resets

The reset exception vector (0xBFC00000) is used for the WRESETn
exception. The reset vector resides in unmapped and uncached CPU
virtual address space, so the hardware does not need to initialize the
TLB or the cache to handle the exception. The SR bit of the Status
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register is set to distinguish the WRESETn exception from the CRESETn
exception.

Unlike a nonmaskable interrupt, WRESETn resets bus state machines.
Like CRESETn, it can be used on the processor in any state.

The contents of all registers are preserved when WRESETn occurs,
except for the following:

♦ ErrorPC register, which contains the restart PC

♦ ERL and BEV bits of the Status register, which are set to one

♦ SR bit of the Status register, which is set to one

Because WRESETn can abort cache and bus operations, cache and
memory contents are undefined after the WRESETn exception occurs.
For further information on this subject refer to Section 4.4.5.2, “Warm
Reset Exception.”

8.1.2.2 Servicing Warm Resets

To service the WRESETn, you should save the current processor state
to use for diagnostic purposes, and also to reinitialize all processor
registers, the coprocessor, and the memory system.

8.1.3 Nonmaskable Interrupt (NMin)

The Nonmaskable Interrupt input NMin must be asserted and deasserted
on the rising edge of the system clock. When NMin is sampled and found
to be active on the rising edge of the clock, the CP0 provides an
nonmaskable exception vector (0xBFC00000). Figure 8.2 shows the
timing diagram for the fastest detected case. Figure 8.3 shows the case
in which NMin is not serviced immediately because of a pipeline stall.
The CW4011 detects the falling edge of NMin and latches the signal until
it is ready to service it.
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Figure 8.2 NMin and Pipeline (Detected Immediately)
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Figure 8.3 NMin and Pipeline (NMin Is Not Detected Immediately Due to Stall)

8.1.3.1 Handling a Nonmaskable Interrupt

The reset exception vector (0xBFC00000) is also used for the NMin
exception. The reset vector resides in unmapped and uncached CPU
address space so that the hardware does not need to initialize the TLB
or the cache to handle NMin. The SR bit of the Status register is set to
differentiate this exception from a CRESETn exception.

Because an NMin could occur in the middle of another exception,
program execution cannot continue after NMin has been serviced.

Unlike a Cold or Warm Reset, but like other exceptions, a Nonmaskable
Interrupt is taken only at instruction boundaries. The NMin exception
preserves the state of the caches and memory system. For further
information on this subject refer to Section 4.4.5.2, “Warm Reset
Exception.”
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The contents of all registers in the CPU are preserved when this
exception occurs, except for the following:

♦ The ErrorPC register, which contains the restart PC

♦ The ERL and BEV bits of the Status register, which are set to one

♦ The SR bit of the Status register, which is set to one

8.1.3.2 Servicing a Nonmaskable Interrupt

To service the NMin exception save the current processor state for
diagnostic purposes, and for reinitializing the system, including all
processor registers, coprocessor registers, caches, and the memory
system.

8.1.4 Bus Error (SCBERRn)

A bus error exception occurs when board-level circuitry detects events
such as bus time-outs, bus parity errors, and invalid physical memory
accesses. The SCBERRn exception is not maskable.

In the CW4011, bus errors are asynchronous events with respect to CPU
instruction processing (much like the NMin interrupt), which means that
there is no attempt to identify the instruction that was the root source of
the error.

The SCBERRn input from the SCbus interface terminates a transaction
and generates an exception to inform the CW4011 that an SCbus
transaction has not been successfully completed. When the CW4011 is
driving the SCbus, it detects the assertion of SCBERRn. SCBERRn
assertion should be a synchronous one clock cycle strobe, which is
latched in the CW4011 until it is serviced. Figure 8.4 shows the timing
diagram in which SCBERRn is serviced immediately and Figure 8.5
shows how the exception is serviced later due to stall cycles.
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Figure 8.4 Bus Error and Pipeline (Detected Immediately)
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Figure 8.5 Bus Error and Pipeline (With Stall Cycles)

8.1.4.1 Handling Bus Errors

The common exception vector, shown in Table 8.1, is used for the
SCBERRn exception. The ExcCode field in the Cause register is set to
Bus.
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Table 8.1 Common Exception Vector

Status Register CCC Register

DEV R3000 Mode R4000 Mode

0 0x80000080 0x80000180

1 0xBFC00180 0xBFC00380
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The EPC register points at the first instruction for which processing was
not completed, unless this instruction is in a branch delay slot. If the
instruction is in a branch delay slot, the EPC register points at the
preceding branch instruction, and the BD bit of the Cause register is set.

8.1.4.2 Servicing Bus Errors

The physical address at which the fault occurred is not available to the
exception handler. The process executing at the time of the exception
must be handed a bus error signal, which is usually fatal.

8.1.5 External Interrupts (EXTiNTn)

The CW4011 has six external interrupt inputs, EXiNTn[5:0], which must
be asserted and deasserted on the rising edge of the system clock. To
mask all six external interrupts at once, you can clear the IE bit of the
Status register. To mask each interrupt individually, program the INT bits
in the Status register. See Section 4.3.6, “Status Register,” for further
information about the Status register. The instruction fetch for the
exception procedure starts two clocks after an external interrupt has
been detected, provided that the pipeline is not in a stall state and there
is no higher priority exception. Figure 8.6 shows the timing diagram
where an interrupt is immediately detected.
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Figure 8.6 Interrupt and Pipeline (Detected Immediately)
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See Section 4.4.6.2, “Interrupt Exception,” for further information on this
subject.

8.1.5.2 Servicing External Interrupts

If one of two software generated exceptions causes the interrupt, clear
the corresponding Cause register bit to zero to clear the interrupt
condition.

If the interrupt is hardware generated, correct the condition that caused
the assertion of the interrupt pin to clear the interrupt condition.

8.1.6 External Vectored Interrupt (EXViNTn)

The CW4011 has an External Vectored Interrupt input, EXViNTn. The
EXVAp[31:2] inputs provide the interrupt vector virtual address, so the
common exception vector base and offset are not used.

EXViNTn must be asserted and deasserted on the rising edge of the
system clock. When the EXViNTn has been sampled and found active
on the rising edge of the clock, CP0 samples an exception vector from
EXVAp[31:2], which is available when the enable bit EVI in the CCC is
set. To mask the EXViNTn interrupt at once, you can clear the IE bit of
the Status register. Figure 8.7 shows the fastest accepted case of
EXViNTn. If the pipeline is stalled, it requires more clock cycles. When
EXVApEn is asserted, the system may drive EXVAp[31:2].
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Figure 8.7 Fastest Accepted Case of External Vectored Interrupt

8.1.6.1 Handling External Vectored Interrupts

The External Vectored Interrupt feature is available when the EVI bit in
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EXViNTn has lower priority than the six external interrupts EXiNTn[5:0],
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anything in the Cause register except the BD bit.
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Refer to Section 4.4.6.3, “External Vectored Interrupt Exception,” for
further information on this subject.

8.1.7 WAITI Instruction and CPZSTALLp

The CW4011 uses the WAITI instruction, which is one of its extended
instructions, to initiate a wait state. This stalls the pipeline and reduces
power consumption during the period that the CW4011 is inactive. The
CW4011 wakes up when it detects an external exception input (enabled
interrupt, NMin, warm reset, or cold reset). Figure 8.8 shows the timing
diagram for the WAITI instruction.

Figure 8.8 WAITI and Pipeline Stall (CPZSTALLp)
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the pipeline stages are cancelled, and the IF stage for the exception is
started from T9.

8.2 SCbus Interface Behavior

The CW4011 generates one or more external data read/write
transactions on the SCbus under any of the following conditions:

♦ Uncached area instruction fetch

♦ I-cache miss

♦ Uncached area data read/write

♦ Load D-cache miss

♦ Any store execution in WriteThrough mode

♦ D-cache WriteBack

The SCbus is a flexible address/data bus. It is demultiplexed and
synchronized to the system clock. It has a data width of 64 bits, but
supports one type of bus sizing from a 64-bit width to a 32-bit width. The
SCbus has the following transaction data sizes: byte, halfword, tribyte,
32-bit word, 64-bit doubleword, or 8-word burst (4-doubleword burst), as
shown in Table 8.2.
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The CW4011 has a four-line-depth write buffer for uncached, D-cache

miss, or WriteThrough store operations. Each line in the buffer contains
32 bits of address and 64 bits of data. If word data is stored to a
continuous same-doubleword alignment address, two words are stored
in one line. The CW4011 then requests a doubleword write transaction
on the SCbus, which the sizing function can separate into two 32-bit write
transactions.

8.2.1 SCbus Basic Transaction

Figure 8.9 shows a basic SCbus transaction for a single read and write
transaction. It is a three-clock-cycle transaction, which means that the
SCBRDYn assertion is sampled on the rising edge of the third clock edge
from the beginning of the transaction. The number of clock cycles for the
fastest transaction is one clock, in which case SCTSSn is asserted
continuously if the next transaction starts just after the current one. There
is no limit to the maximum number of clock cycles for a transaction. A
bus watchdog timer must be designed outside the core to assert the bus
error signal SCBERRn, if necessary, when the transaction length is
longer than the specification.

Table 8.2 SCbus Transaction Types

Cause of SCbus Transaction Transaction Type No. of Bytes

Uncached Instruction Fetch Doubleword 8

Instruction Cache-Miss 8-word burst 32

Data Read by Uncached Load
Instruction

Byte, halfword, tribyte, word 1, 2, 3, 4

Data Read by D-Cache-Miss Load
Instruction

8-word burst 32

Data Write by Uncached Store
Instruction

Byte, halfword, tribyte, word, doubleword 1, 2, 3, 4, 8

Data Write by D-Cache-Miss Store
Instruction

Byte, halfword, tribyte, word, doubleword 1, 2, 3, 4, 8

Data Write by WriteThrough Store
Instruction

Byte, halfword, tribyte, word, doubleword 1, 2, 3, 4, 8

Data Write by WriteBack 8-word burst 32
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Figure 8.9 SCbus Basic Transaction
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If the transaction is a data write, data is output to the SCDop[63:0] lines
and SCDoEn is asserted from the beginning to the end of the
transaction. If the transaction is a data read or instruction fetch, the
SCDip[63:0] signal lines are sampled on the clock edge as the ready
input SCBRDYn is asserted. SCDoEn then indicates the read/write
direction of the transaction and controls the three-state buffers external
to the CW4011.

Asserting SCBRDYn terminates the transaction. At the same time, the
size input bus signal (SCB32n) is sampled. According to the input, the
BIU of the CW4011 determines the valid byte positions for the read
transaction bus sizing. If SCBRDYn is asserted for a doubleword
transaction, the bus interface generates a subsequent transaction for bus
sizing. The bus in-page write accept input (SCBPWAn) is also sampled
in an in-page write transaction. If SCBPWAn is deasserted, the bus
interface arbitrates bus requests even if the next transaction is a write
transaction in the same memory page. If SCBPWAn is asserted, the bus
interface does not arbitrate bus requests and the next transaction must
be a write transaction in the same memory page. If SCBPWAn is
asserted during the in-page write transaction but SCTSEn is deasserted,
the next transaction is a write transaction in the same page.

To perform an instruction fetch transaction, the CW4011 asserts
SCiFETn during the same period as SCAoEn, in order to monitor the
transaction.

8.2.2 SCbus Burst Transaction

When an I-cache miss occurs, the ISU requests an 8-word
(4-doubleword) block burst read transaction. When a D-cache miss
occurs, the LSU requests an 8-word block burst read transaction. The
LSU also requests an 8-word block burst write transaction for D-cache
WriteBack.

Figure 8.10 shows an eight-word burst read/write transaction that
consists of four continuous transactions.
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Figure 8.10 SCbus Eight-Word Burst Transaction Timing Chart
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SCTBLn, which indicates whether the last transaction is a burst or a
single transaction, is deasserted (HIGH) at the first, second, and third
transactions of a four doubleword burst transaction.

For a burst read transaction, the first address is the missed address. The
addresses of the subsequent transactions are rotative and wrap around
ordering in the block. For a burst write transaction, the first address is
the beginning of the block and subsequent addresses are incremental.

Bus sizing for a burst transaction is available to allow the SCbus to
accomplish burst transactions to 32-bit width devices. The SCB32n input
must be asserted for each group of burst transactions. If 32-bit sizing is
requested for a burst transaction, eight word transactions are generated.
SCTBLn is deasserted from the first to the sixth transaction. The in-page
write transaction never occurs if the transaction is a burst write.

Figure 8.11 shows a timing diagram for an eight-word burst transaction.
If the bus slave of the transaction is a synchronous DRAM system, there
are some wait cycles for the first data transfer, but not for subsequent
transfers. For a synchronous DRAM system, SCTSSn is asserted
continuously for the second, third, and fourth data transfers. The DRAM
controller generates addresses for these data transfers itself although
SCAop also outputs addresses.
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Figure 8.11 SCbus Eight-Word Burst Transaction

Figure 8.12 shows the first and second transactions of an eight-word
burst read/write. Transactions are suspended when SCTSEn is
deasserted.
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Figure 8.12 SCbus Eight-Word Burst Transaction

If an individual transaction of a burst transaction is terminated with the
deassertion of SCTSEn, this means the next transaction cannot proceed
continuously. In that case, a hold request can be inserted. A hold request
can also be inserted if a retry occurs while SCTSEn is deasserted during
a burst transaction.

8.2.3 SCbus In-Page Write Transaction

An in-page write transaction is one in which continuous write accesses
are made to the same row and page in a given address area. Most types
of DRAM support this type of fast access, which is used to perform burst
read/write transactions.

The SCbus supports continuous write transactions that have the same
upper address. The external write buffer in the LSU compares upper
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address bits of the current write request with those of the next write
transaction in the buffer. It provides the bus interface with the result of
the comparison. The address range is defined in the configuration
register of the CW4011. If the two addresses have the same upper
range, the in-page write output (SCTPWn) is asserted to inform the
external bus slave.

The in-page write accept input (SCBPWAn) must be asserted if the slave
is able to accept in-page write transactions. If SCBPWAn is asserted, the
interface does not arbitrate bus requests and the next transaction must
be a write transaction. If SCBPWAn is deasserted, the bus interface
performs the next transaction according to the arbitration result.
SCBPWAn is sampled when the bus interface samples an assertion of
the SCBRDYn signal. The bus interface performs a write transaction if
SCBPWAn is deasserted and there are no higher requests. The
SCBPWAn input has no meaning if the transaction is not an in-page
write, and it is ignored when SCTPWn is deasserted.

The bus interface does not count the number of continuous in-page write
transactions. It continues in-page writes until the write buffer is empty, a
write transaction is not in the same page address area, or SCBPWAn is
deasserted.

When the BIU deasserts the transaction start enable signal (SCTSEn),
the CW4011 inserts one or more bus idle states between two in-page
write transactions. However, the bus interface does not arbitrate requests
during this idle state if the slave accepts the in-page write transactions.
A hold request is allowed if the BIU deasserts SCTSEn. The bus
interface does not accept the bus hold request during in-page write
transactions if the BIU receives an asserted SCTSEn continuously.

Figure 8.13 shows an example of in-page write transactions.
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Figure 8.13 SCbus In-Page Write Transaction (Four Words)

8.2.4 SCbus Bus Hold

There are two ways to hold SCbus transactions:

♦ External logic asserts the CW4011 bus hold input, SCHRQn. The
CW4011 acknowledges the request by issuing the bus hold grant
signal, SCHGTn.

♦ External logic deasserts the transaction start enable signal,
SCTSEn. Because there is no dedicated acknowledge signal
associated with SCTSEn, the CW4011 deasserts the address output
enable signal, SCAoEn, after the BIU deasserts SCTSEn to show
that the bus interface does not own the bus.

The bus hold request signal, SCHRQn, cannot break in-page write
transactions and read/write burst transactions if SCTSEn is asserted
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continuously. The BIU can break the transactions when it deasserts
SCTSEn.

To avoid a bus deadlock, a bus retry is requested with each hold request.
The current SCbus transaction generated by the BIU is then terminated
by the retry and the hold request must be accepted.

Figure 8.14 shows the timing diagram for a bus hold request and the
associated grant signal, SCHGTn. The CW4011 asserts the grant signal
until the BIU deasserts the request. During the period the bus is held,
the CW4011 does not detect bus errors.

Figure 8.14 SCbus Hold Request and Grant

8.2.5 SCbus Bus Retry

The bus retry signal, SCBRTYn, is an input to the BIU. It is asserted to
abort a transaction and to allow the transaction to be restarted later. The
transaction state control goes to the idle state then restarts a transaction
when SCTSEn is asserted. Bus retry is valid in a burst transaction. If
SCBRDYn and SCBRTYn are asserted at the same time, SCBRTYn has
higher priority. If SCBRTYn is asserted to hold the bus, SCHRQn should
be asserted before or at the same time as SCBRTYn.
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8.2.6 SCbus Bus Error

The external bus controller asserts the BIU bus error signal, SCBERRn,
when the current transaction must be terminated as a bus error. If
SCBRDYn is asserted at the same time, SCBERRn has higher priority.

Assertion of SCBERRn forces the CW4011 to exit the sequential
transactions of in-page write and read/write burst transactions. The
states of service and transaction control go to the idle state. If the
transaction is a burst (cache refill or WriteBack), the CW4011 invalidates
the cache line.

When a bus error occurs, the CP0 issues a bus error exception. See the
Section 8.1.4, “Bus Error (SCBERRn),” for more details. A bus error
exception is a fatal error for the CW4011.

8.2.7 SCbus Bus Sizing

The SCbus supports bus sizing for slaves that need sequential address
access to 32-bit data. When sizing is requested, the SCB32n input to the
CW4011 is asserted to separate a doubleword transaction, including part
of a burst transaction, into two singleword transactions. The bus interface
also selects valid byte positions for a word or a partial word transaction
if SCB32n is asserted. In the case of a word or a partial write transaction,
the bus interface outputs word data to both the upper and lower 32 bits
of the data output bus according to address bit 2. The bus interface then
completely supports a 32-bit bus interface. Although SCB32n is sampled
with the assertion of the ready signal input, the bus interface behaves as
a normal 32-bit data width bus if SCB32n is always asserted.

If 16-bit or 8-bit width bus sizing is needed, it must be supported outside
the CW4011 core.

8.2.7.1 Read Bus Sizing

When sizing occurs at a byte, halfword, tribyte, or word during a read
transaction, the CW4011 BIU can move sampled 32-bit word data to the
valid position according to the setting of address bit 2. If sizing is
requested for a doubleword transaction, the BIU samples 32-bit data at
the first transaction then generates a subsequent transaction and packs
the first 32 bits and the subsequent 32 bits. The packed data is sent to
the ISU or LSU. Figure 8.15 shows the relationship between the valid
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byte positions of the first and subsequent transactions. In the case of a
non-doubleword read, the behavior of a byte, a halfword, and a tribyte
transaction is the same as that of a word transaction because sizing
supports 32-bit mode only. You can assume that the bus interface
samples a doubleword (8 bytes). Figure 8.15 shows an example in which
the bus interface samples a doubleword (8 bytes).

Figure 8.15 Sampled Bytes of First and Second Transaction SCbus
Data

If you are reading a doubleword with 32-bit bus sizing, you will need a
second transaction. Figure 8.16 shows the doubleword data that is sent
to the ISU or LSU.

Figure 8.16 Read Bytes to ISU and LSU with Sizing

1. In Example 1, one transaction is initiated. The eight bytes sampled
are transferred to the ISU and LSU without any change.

2. In Example 2, one transaction is initiated. Four bytes are sampled
(bits [31:0]). They are transferred to bits [63:32] and [31:0] of the ISU
and LSU.

3. In Example 3, two transactions are initiated. Bits [31:0] of the first
transaction are output on bits [31:0], and bits [31:0] of the second
transaction are output on bits [63:32]. This doubleword is transferred
to the ISU or the LSU.

A1 B1 C1 D1 E1 F1 G1 H1

A2 B2 C2 D2 E2 F2 G2 H2

63 31 0
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2nd Transaction

1. The 2nd transaction is generated when the transaction is a doubleword or a part of a
burst with SCB32n = LOW.

H1G1F1E1H1G1F1E1Address Bit 2 = 0, 1

2-1 Type = Byte, Half, Tri, Word
63 0

SCB32n = LOW

H1G1F1E1H2G2F2E2Address Bit 2 = 0

2-2 Type = Doubleword
63 0

SCB32n = LOW

H1G1F1E1D1C1B1A1Address Bit 2 = 0, 1

1-1 Type = any
63 0

SCB32n = HIGH

Example 1

Example 2

Example 3
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8.2.7.2 Write Bus Sizing

In the case of a non-doubleword write transaction, the bus interface
selects the upper or lower 32 bits of data from the LSU and outputs the
same 32-bit word data to the SCbus according to address bit 2. The data
is output to the SCbus before the bus interface detects the sizing input.
In the case of a doubleword write transaction, the bus interface
generates a subsequent sizing transaction if the sizing input is asserted
at the first transaction. Figure 8.17 shows the relationship between the
doubleword data from the LSU and the SCbus. Bytes shown in the
shaded area have no meaning for the SCbus write transaction.

Figure 8.17 Write Bytes to the SCbus with Sizing

1. In Example 1, one transaction is initiated. A doubleword from the
LSU is output on the date bus without any changes.

2. In Example 2, one transaction is initiated. Bits [63:0] from the LSU
are output on bits [63:32] and [31:0] of the data bus.

3. In Example 3, one transaction is initiated. A doubleword from the
LSU is output on the data bus without any change.

4. In Example 4, two transactions are initiated. In the first transaction,
a doubleword from the LSU is output on the data bus without any
change. In the second transaction, bits [63:32] from the first
transaction are output to bits [31:0] of the data bus.
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As shown in Figure 8.18, you can assume that the LSU sends a
doubleword, regardless of the transaction type.

Figure 8.18 Write Data Bytes from LSU

8.2.8 SCbus Bus Lock

The CW4011 SCLoCKn output signal indicates that the SCbus is asking
to lock bus ownership. The CW4011 asserts SCLoCKn when the
CW4011 executes a Load Linked instruction to start a read transaction
in an uncached area or WriteThrough cached area. It deasserts the
signal just before it executes a Store Conditional instruction to start a
write transaction. During the read write transactions, the CW4011
asserts SCLoCKn continuously.

If an effective address for a Load Linked instruction is in the WriteBack
cached area, the CW4011 does not assert SCLoCKn, even if it
experiences a D-cache miss. The subsequent Store Conditional
instruction does not generate a write transaction because it may hit the
D-cache. If a Store Conditional instruction hits the D-cache in a
WriteBack cached area when SCLoCKn is asserted, an incorrect
condition occurs, and SCLoCKn is deasserted without any bus
transactions being executed.

The effective virtual addresses of Load Linked and Store instructions
must be in kseg1. Additionally, a Load Linked instruction and a Store
Conditional instruction must be used as a pair of instructions to the same
address.

While the CW4011 asserts SCLoCKn, the bus interface does not exhibit
any special behavior—for example, it accepts hold requests. If a hold
request is not accepted while the CW4011 is asserting SCLoCKn,
outside user logic must mask the hold request by asserting SCLoCKn.

Figure 8.19 shows the timing behavior for locked transactions. If there
are other transactions between the read transaction of a Load Linked
and write transaction of a Store Conditional, the CW4011 asserts
SCLoCKn continuously.

 A  B  C  D  E  F  G  H

63 31 0
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Figure 8.19 SCbus Locked Transaction

8.2.9 Big-Endian Configuration

The CW4011 can support big-endian address ordering, although the
default configuration is little-endian. To enable big-endian mode, the
BENDn input is strapped LOW. Table 8.3 lists the names arbitrarily used
to describe the off-core address bus, data bus, and byte enable signals
of the big-endian configuration. Since these signals are defined outside
the CW4011 core, the actual names will be determined by the designer’s
choice of off-core logic.

SCLKp
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SCTSSn

SCDoEn

SCLoCKn

SCBRDYn

Load Linked Store Conditional

T1 T2 T3 T4 T5 T6 T7 T8
Clock Cycles

Read Transaction Write Transaction

Table 8.3 Big-Endian Arbitrary Signal Names

Signals Big-Endian Signals

Address Bus BiGE_Aip[31:0], BiGE_Aop[31:0]

Data Bus BiGE_Dip[63:0]1, BiGE_Dop[63:0]

1. BiGE_Dip[63] is the most-significant bit of a doubleword.

Byte Enables BiGE_BEn[7:0]
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Table 8.4 lists the BiGE_BEn[7:0] bits and their corresponding BiGE_Dip
and BiGE_Dop valid bits.

These bit assignments are different from those of the SCDip[63:0],
SCDop[63:0] and SCTBEn[7:0] signals. For big-endian mode, the data
bus and byte enable signals outside the CW4011 need to be redefined,
the most important of which is the definition of the byte enables.
Table 8.5 shows the byte enable and data bus connections. The address
bus bit assignments are not shown, but are direct connections from
BiGE_Aip[31:0] to SCAip[31:0], and from BiGE_Aop[31:0] to
SCAop[31:0].

Table 8.4 Big-Endian Valid Bytes

BiGE_BEn[7:0] Bit Byte Valid

0 BiGE_Dip[7:0] or BiGE_Dop[7:0]

1 BiGE_Dip[15:8] or BiGE_Dop[15:8]

2 BiGE_Dip[23:16] or BiGE_Dop[23:16]

3 BiGE_Dip[31:24] or BiGE_Dop[31:24]

4 BiGE_Dip[39:32] or BiGE_Dop[39:32]

5 BiGE_Dip[47:40] or BiGE_Dop[47:40]

6 BiGE_Dip[55:48] or BiGE_Dop[55:48]

7 BiGE_Dip[63:56] or BiGE_Dop[63:56]
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The above data bus configuration must be defined outside the CW4011
core. Table 8.6 shows different CW4011 data transactions through these
buses.

Table 8.5 Data Bus and Byte Enable Connections

Signal Big-Endian Connection

Data Bus BiGE_Dip[63:32] SCDip[31:0]

BiGE_Dip[31:0] SCDip[63:32]

BiGE_Dop[63:32] SCDop[31:0]

BiGE_Dop[31:0] SCDop[63:32]

Byte Enables BiGE_BEn[0] SCTBEn[7]

BiGE_BEn[1] SCTBEn[6]

BiGE_BEn[2] SCTBEn[5]

BiGE_BEn[3] SCTBEn[4]

BiGE_BEn[4] SCTBEn[3]

BiGE_BEn[5] SCTBEn[2]

BiGE_BEn[6] SCTBEn[1]

BiGE_BEn[7] SCTBEn[0]
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Table 8.6 CW4011 Accesses through Off-Core Buses

Data Type
BiGE_Aop[2:0]
Value

BiGE_BEn[7:0]
Value

Valid Data

BiGE_Dop BiGE_Dip

Byte 000 01111111 [63:56] [63:56]

001 10111111 [55:48] [55:48]

010 11011111 [47:40] [47:40]

011 11101111 [39:32] [39:32]

100 11110111 [31:24] [31:24]

101 11111011 [23:16] [23:16]

110 11111101 [15:8] [15:8]

111 11111110 [7:0] [7:0]

Half-word 000 00111111 [63:48] [63:48]

010 11001111 [47:32] [47:32]

100 11110011 [31:16] [31:16]

110 11111100 [15:0] [15:0]

Tribyte 000 00011111 [63:40] [63:40]

001 10001111 [55:32] [55:32]

100 11110001 [31:8] [31:8]

101 11111000 [23:0] [23:0]

Word 000 00001111 [63:32] [63:32]

100 11110000 [31:0] [31:0]

Doubleword 000 00000000 [63:0] [63:0]
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8.3 OCAbus Interface Behavior

The CW4011 on-chip access (OCA) bus enables access to on-chip
modules at the CR stage without going through the SCbus. Section 7.4,
“OCAbus Interface,” provides additional information about the bus. This
section describes certain OCAbus transactions in detail and provides
appropriate timing diagrams. These OCA transaction descriptions
include:

♦ Basic OCA access

♦ Rejection of OCA access

♦ OCAbus access with stall at the EX pipeline stage

♦ OCAbus access with stall at the CR pipeline stage

♦ OCAbus access with stall request or wait state

♦ OCAbus access with pipeline cancellation

8.3.1 Basic OCAbus Transaction

Regardless of the type of load or store execution, address and size are
output at the EX stage of the CW4011 pipeline, and EXLoadp or
ACCSToREp is asserted. The address bits (DVADDRp[31:0]) need to be
decoded to determine whether or not OCAcceptp is asserted and the
OCA module can accept the OCA transaction.

Typically, OCA module addresses should be located as uncached
devices, so that the virtual address is in kseg1. This is done by setting
address bits [31:29] to 0b101. The address bus must be latched on the
rising edge of the system clock, between the EX and CR stages, as
shown in Figure 8.20. The size information provided by AccSize is also
latched at this time. Refer to the subsection entitled “AccSizep[1:0]
OCAbus Transaction Size Output” on page 7-13 for more information on
this subject.

At the CR stage, write data is output on CPToCDp provided that
CPToCEn is asserted. If a read transaction is being executed, the
CPFRCEn signal is asserted and data on the CPFRCDp bus is sampled
on the rising edge of the system clock between stages CR and WB. The
OCAcceptp signal must be asserted in the CR stage to inform the
CW4011 that an OCA transaction is in progress.
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The CRValidp signal is asserted to indicate that the CR stage is valid. If
it is deasserted, write data must not be written and read data must not
be sampled. The transaction is executed again later.

Figure 8.20 Typical OCAbus Transaction

8.3.2 OCAbus Transaction Rejected

Figure 8.21 shows the timing for an OCAbus transaction that is rejected
because OCAcceptp is deasserted during the CR stage. This occurs
when the virtual address is decoded and found not to be an address for
an OCA module. Under these conditions, the CW4011 reads from the
D-cache, requests an SCbus read transaction, and then writes data to
the D-cache write buffer or to a four-deep external write buffer.
OCAcceptp is the only signal that determines whether an OCA
transaction will take place.
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Figure 8.21 OCAbus Transaction Rejected by Address Decoder

8.3.3 OCAbus Access with Stall at EX Stage

Figure 8.22 shows an example where PSTALLn is asserted at the
EX stage of the CW4011 pipeline, causing all pipeline stages to enter a
stall state. When this happens, DVADDRp[31:0], AccSizep[1:0],
EXLoadp, or ACCSToREp are held during the stall cycles.
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Figure 8.22 OCAbus with Stall at EX Stage

8.3.4 OCAbus Access with Stall at CR Stage

Figure 8.23 shows an example where PSTALLn is asserted at the CR
stage of the CW4011 pipeline causing all pipeline stages to enter a stall
state. When this happens, data on the CPToCDp bus, CRValidp, and
OCAcceptp are held.
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Figure 8.23 OCAbus Access with Stall at CR Stage

8.3.5 OCAbus Access with Stall Request

Figure 8.24 shows an example where the OCA bus device needs to
insert some wait cycles before a read or write operation. To request a
pipeline stall, the processor asserts CPSREQn from the beginning of the
CR stage and this causes PSTALLn to be asserted. CPSREQn must be
asserted and deasserted early in the clock cycle, since it is one of the
critical path signals.
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Figure 8.24 OCAbus Access with Stall Request

8.3.6 OCAbus Access with Pipeline Cancel

Figure 8.25 shows an example where a load or store instruction is
cancelled by an exception. The exception is indicated when CRValidp is
deasserted. When this happens, the write data must not be written into
the OCA module. The read data being transferred to the CW4011 core
is ignored. The cancelled load or store instruction may be executed later.

RD EX CR CR CR WB

RD

WD

VA

RD

SCLKp

CPToCDp[31:0]1

CPFRCDp[31:0]2

CPToCEn or
CPFRCEn

EXLoadp or
ACCSToREp

CRValidp

PSTALLn

OCAcceptp

CPSREQn[3:1]

Stages

DVADDRp[31:0],
AccSizep[1:0]

1. Write cycle.
2. Read cycle.



8-40 Interface Operation

Figure 8.25 OCAbus Access with Pipeline Cancel

8.4 Cache Interface Behavior

When an external bus master writes data into main memory, it can
invalidate the D-cache and I-cache lines to maintain coherency between
the main memory and the caches. The CW4011 has three signals to
support this function:

♦ Cache Invalidate Address Bus bits (CiNVAp[31:5])

♦ D-Cache Invalidate Strobe (DCiNVSn)

♦ I-Cache Invalidate Strobe (ICiNVSn)

When DCiNVSn or ICiNVSn is asserted, the address on the CiNVAp bus
is latched and the CW4011 starts an invalidation process. DCiNVSn or
ICiNVSn should be asserted for only one clock cycle. The D-cache or
I-cache line is invalidated when the cache physical address tag, whose
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line is valid, is coincident with the latched invalidate address. Both the
V bit and the WB bit are cleared.

Figure 8.26 shows the timing diagram for D-cache invalidation
implemented by bus snooping. In the first clock cycle after DCiNVSn is
asserted, the LSU asserts the stall request signal if the EX stage is a
load/store instruction.

In the second cycle, the D-cache tag is read from the D-cache and
compared with the address of the latched DCiNVAp bus. If they match
and the EX stage is a load/store instruction, the pipeline stall request is
asserted. To avoid timing problems, PSTALLn may not be deasserted
during the second cycle.

In the third cycle, the V bit and WB bit of the D-cache line are cleared
and the line is invalidated. If the addresses do not match at the third
cycle, the D-cache is not accessed.

The stall cycle signal (PSTALLn) is asserted at the third clock cycle even
if the address and D-cache tag do not match and the valid bit is not
cleared.



8-42 Interface Operation

Figure 8.26 D-Cache Invalidation by Snooping
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The LSU does not do anything if the external bus master read data from
main memory and the address is dirty-cached by the CW4011. In this
case, you may use WriteThrough mode for the page.

Figure 8.27 shows timing for I-cache invalidation brought about by bus
snooping. It needs a two-cycle stall if the invalidation address hits the tag
or a one-cycle stall if it does not hit the tag.

Figure 8.27 I-Cache Invalidation by Snooping
‘
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Chapter 9
ICEport

This chapter outlines the SerialICE scan interface and describes in detail
the CW4011 ICEport building block. This chapter is divided into the
following sections:

♦ Section 9.1, “Overview”

♦ Section 9.2, “ICEport Features”

♦ Section 9.3, “ICEport Functional Blocks”

♦ Section 9.4, “ICEport Signals”

♦ Section 9.5, “ICEport Registers”

♦ Section 9.6, “ICEport Operations”

♦ Section 9.7, “ICEport Pin Buffers and Drivers”

9.1 Overview

The ICEport is a full-duplex serial UART receive and transmit port
building block available from LSI Logic. The core designer uses the
ICEport both to download core application software and as a CW4011
debugging tool. The ICEport works with an ICEcontroller at baud rates
up to 1 Mbit/s, providing 800 Kbits of data per second.

Figure 9.1 shows a block diagram of a CW4011 system with the ICEport
installed. For LSI Logic’s LR4500 chip, the CW4011 ICEport is integrated
with the SCLC and SDRAMC modules on the core SCbus. If desired, the
ICEport can connect directly to the SCbus without the SCLC module.
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Figure 9.1 CW4011 Design with ICEport

9.2 ICEport Features

The ICEport provides the following features:

♦ Full-duplex operation.

♦ Requires clock support at 16 times the transfer bit rate to define
receiving (Rx) and transmitting (Tx) rates. This clock is common for
Rx and Tx, and may be either an external clock or one generated
internally from the system clock.

♦ Rx ready signal to indicate that a byte of data has been received and
is in the data byte input buffer.

♦ Separate status and data registers for Rx and Tx. The Rx Status
register contains one bit that indicates received data is in the
ICEport, and one bit that indicates an overrun in the Rx input buffer.
The Tx Status register contains one bit that indicates the ICEport is
ready to transmit data.

♦ Serial-receive and clock input do not require an active signal when
the ICEport is unused. During Reset, the Tx UART port defaults to
an idle state and transmits an idle signal.
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9.3 ICEport Functional Blocks

The CW4011 ICEport design has been partitioned into three logical
blocks:

♦ Receive and Transmit Logic block, which sends and receives the
ICETXp and ICERXp signals.

♦ Generic Interface Logic block, common to most core designs that
implement a SerialICE ICEport.

♦ SCbus Interface Logic block, which connects the ICEport with the
rest of the CW4011 core through the SCbus signals.

Figure 9.2 illustrates these blocks, their interactions with each other, and
their interfaces to other cores and external logic.

Figure 9.2 CW4011 ICEport Block Diagram
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9.3.1 Receive and Transmit Interface Logic

The two right-most blocks are the serial interface block, specifically the
receive (Rx) and transmit (Tx) blocks. The Rx block receives the ICERXp
bit stream, and the Tx block transmits the ICETXp bit stream. Both blocks
receive the internal CPU clock (SCLKp) and the external x16 bit rate
clock (ICECLKp). Both blocks synchronize timing between the ICECLKp
and SCLKp timing domains. All interface signals between the Rx and Tx
blocks and the Generic Interface are synchronized to SCLKp, since the
Generic Logic block runs on SCLKp only.

9.3.2 Generic Interface Logic

The center Generic Interface block connects the Tx and Rx blocks to a
specific core bus interface, which is the SCbus for the CW4011. The
ICEport directly outputs only the IRXRDYp signal, which must be enabled
in the Rx Setup register. When enabled, the IRXRDYp signal indicates
that Rx data has been received. IRXRDYp is tied to the processor
interrupt signal (sc_ICEINTp) and may be used for interrupt generation
as described in Section 9.6.4.1, “Receive (Rx).”

9.3.3 SCbus Interface Logic

The left-most block in Figure 9.2 is the SCbus Interface Logic block. This
block connects the Generic Interface to the CW4011 SCbus signals. The
SCbus is the main internal CW4011 bus that allows a bus master to
exchange information with the core. In SCbus transactions, the ICEport
decodes the SCbus address line and checks the transaction start signal
(SCTSSn) to see if the current SCbus transaction involves the ICEport.
If the current transaction involves the ICEport, the SCbus Interface Logic
block either places appropriate data on the data bus or writes data into
an ICEport internal register, depending on whether the current operation
is a read or a write. Once either transaction is complete, the ICEport
asserts the acknowledge signal (sc_ICERDYp) and the SCbus Interface
Logic block begins to monitor SCbus transactions again.

Please be aware that the ICEport follows a different SCbus protocol than
other CW4011 core components. The ICEport uses only a certain subset
of the entire SCbus signals and combines several SCbus acknowledge
signals into a single ICEport signal. See Section 9.4.1, “Monitored SCbus
Signals,” and Section 9.4.2, “Other SCbus Signals,” for more information
on ICEport/SCbus interaction.
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9.4 ICEport Signals

This section describes the signals that comprise the bit-level interface of
the ICEport. The following paragraphs outline the conventions used in
the signal descriptions:

♦ The signals are described in alphabetical order by mnemonic within
each functional group. Each signal definition contains the mnemonic
and the full signal name.

♦ The mnemonics for signals that are active HIGH, or for clock signals
with a positive rising edge, end with a “p”; signals that are active
LOW end with “n”.

♦ The term assert means to drive TRUE or active; deassert means to
drive FALSE or inactive.

♦ Input and Output in the signal headings refer to I/Os with respect to
the ICEport, not with the core. For example, SCTSSn is a core
output, but because it is considered an ICEport input, it is labeled
“Input.”

♦ All input signals, except for ICERXp and ICECLKp, are read on the
positive edge of SCLKp and must therefore be generated
synchronously with SCLKp.

♦ All output signals (except ICETXp) are also generated synchronously
at the rising edge of the SCLKp clock. The ICETXp signal is
synchronous to the rising edge of ICECLKp, except during a reset
where ICETXp is asserted asynchronously to ICECLKp.

♦ In normal serial send and receive through the ICEport, ICECLKp
runs at 16 times the rate of serial bit transmission/receive. This
allows ICECLKp to define the bit width for each UART serial bit. The
ICEport assumes that each serial bit for both receive and transmit is
16x ICECLKp, or 16 ICECLKp cycles.

Figure 9.2 summarizes the ICEport signals. Detailed descriptions follow
the table. Note that the SCbus master can either be the SCLC module
or the CW4011 processor. External logic refers to logic not related to the
CW4011 core, the SCLC, or the ICEport.
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Figure 9.3 ICEport Logic Diagram

9.4.1 Monitored SCbus Signals

This section lists the SCbus signals that the ICEport monitors and
outlines how the ICEport uses these signals. For a more complete
description of these signals, please see Chapter 7, “CW4011 Signals.”

CRESETn Cold Reset Input
Asserting CRESETn asynchronously resets the ICEport
and all ICEport registers. CRESETn and WRESETn are
internally merged in the ICEport.

WRESETn Warm Reset Input
Asserting WRESETn asynchronously resets the ICEport
and all ICEport registers. CRESETn and WRESETn are
internally merged in the ICEport.

SCAop[31:0] SCbus Address Bus Input
SCAop[31:0] is the address bus. The ICEport monitors
this bus and SCTSSn for data read/write operations
involving the ICEport. When an SCbus transaction
involves the ICEport, the ICEport decodes SCAop[31:0]
to decide which internal register the transaction targets.

SCDoEn SCbus Data Output Enable Input
The value of SCDoEn determines whether the present
SCbus transaction is a write or a read. If a write, SCDoEn
is driven LOW; if a read, SCDoEn is driven HIGH. The
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ICEport monitors SCDoEn so that it may perform the cor-
rect action for either a read or a write.

SCTSSn SCbus Transaction Start Signal Input
The core asserts SCTSSn for one clock cycle at the
beginning of a transaction to announce that a new trans-
action has begun. Assertion of SCTSSn and a valid
SCAop[31:2] address will initiate an ICEport read/write
operation.

9.4.2 Other SCbus Signals

These signals enable ICEport read and write operations and transfer
data for these operations.

sc_ICEDip[7:0]
SCbus Input Data Bus Input
This is the SCbus input data bus. For write operations to
the ICEport, data transfers to the ICEport through this
bus. On the same positive edge of SCLKp that asserts
sc_ICERDYp, the core writes data into the ICEport.

sc_ICEDop[31:0]
SCbus Output Data Bus Output
This is the SCbus output data bus. For read operations
from the ICEport, the ICEport will place data onto this
bus. Data on this bus is valid for one clock cycle and only
when the sc_ICEDoEp signal is asserted.

sc_ICEDoEp SCbus Output Data Valid Output
Asserting this signal indicates that the sc_ICEDop[31:0]
bus is valid during the current cycle. sc_ICEDoEp asserts
for read operations only and lasts only one SCLKp cycle.

sc_ICERDYp ICEport Ready Output
Asserting this signal HIGH informs the core or the SCLC
module that the current transaction on the SCbus has fin-
ished. sc_ICERDYp encompasses both the SCB32n and
SCBRDYn SCbus control signals.

sc_ICEINTp ICEport Interrupt Output
If this signal is enabled by the RxRXRDYPe bit in the Rx
Setup register, the ICEport asserts sc_ICEINTp once it
receives a valid byte of off-chip data. In the LR4500, the
sc_ICEINTp output is sent to the SCLC module, which



9-8 ICEport

then generates an interrupt to the core. sc_ICEINTp is
also referred to as IRXRDYp in this document, since
sc_ICEINTp is tied to the ICEport Generic Interface’s
IRXRDYp signal.

9.4.3 ICEport Scan and Clocking Signals

These signals are the clocking and scan I/O signals for the ICEport.

SCLKp System Clock Input
SCLKp is the global system clock input from the CW4011
core.

ICECLKp ICE Serial Bit Clock Rate X16 Input
The ICEport requires that this off-chip signal have a clock
frequency 16 times the serial transmit/receive rate. The
ICEport assumes each serial/transmit bit is 16 ICECLKp
cycles long.

ICERXp Rx Serial Bit Receive Input
This is an off-chip input that holds the UART serial input
data stream. Each received bit is 16 ICECLKp cycles
long.

ICETXp Tx Serial Bit Transmit Output
This is an off-chip output that holds the UART serial data
stream. Each transmit bit is 16 ICECLKp cycles long.

SE Scan Test Mode Enable Input
Asserting this signal HIGH enables the scan chain and
deasserting SE disables scan operation. The TESTMp
signal must also be continuously asserted to enable the
entire scan test.

SI Scan Test Input Input
SI is the scan chain data input signal.

SO Scan Test Output Output
SO is the scan chain data output signal.

TESTMp Scan Test Setup Input
This signal sets up the scan test, so that scan mode is
possible in the SCLKp clock domain. TESTMp must be
asserted continuously to enable the scan test.
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The ICECLKp signal is ignored while TESTMp enables
the scan test mode.

9.5 ICEport Registers

All ICEport registers are memory mapped as shown in Table 9.1. The
default ICEport virtual base address is set to 0xB0FF0000 (0x10FF0000
physical address). Users can customize the ICEport address by altering
the addresses in the HDL models. However, the last nibble (bits [3:0])
must be the kept the same, since these four bits determines which
ICEport register to access. The addresses must also be both unmapped
to prevent an installed MMU from remapping memory addresses and
uncached to maintain data congruency. For these reasons, LSI Logic
suggests using unmapped and uncached memory space kseg1.

All register read transactions return zeroes for bits [31:8], and data for
bits [7:0]. For read operations, the register bits are mapped with
SCDip[31] to sc_ICEDop[31], and so on. For write operations, the
register bits are mapped with SCDop[7] to sc_ICEDip[7], and so on.
During write operations, data on SCDop[31:8] is ignored, write
transactions to read-only registers are ignored, and read transactions
from the write-only registers return undefined data.

All registers must be accessed only using word accesses to avoid conflict
between big-endian and little-endian data structures, and to avoid partial
update problems.

Table 9.1 ICEport Registers

Register Physical Address Virtual Address
Reference
Page

Rx Status 0x10FF0000 0xB0FF0000 9-10

Rx Setup 0x10FF0000 0xB0FF0000 9-11

Rx Data 0x10FF0004 0xB0FF0004 9-11

Tx Status 0x10FF0008 0xB0FF0008 9-12

Tx Data 0x10FF000C 0xB0FF000C 9-12
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Note that each bit field within a register is described by mnemonic in the
register figure, and by mnemonic, full name, bit number, and read/write
status within the following bit field description.

9.5.1 Rx Status Register

The read-only Rx Status register provides status information for ICEport
receive operations and indicates the state of the Rx Data register.
Figure 9.4 shows the Rx Status register.

Figure 9.4 Rx Status Register

R Reserved [31:2]
These bits are reserved for use by LSI Logic and are
read as zeroes.

RxOverrun Rx Overrun 1
This bit is set to one when an Rx overrun error occurs.
An Rx overrun error occurs when a new Rx byte is
received, as indicated by RxRDY, before the previous Rx
byte has been read. For an overrun error, the new byte
is not accepted and the pending byte in the Rx Data
register is not lost.

When the RxOverrun bit is set, it signals that at least one
byte from the serial input stream of the new frame has
been lost. RxOverrun is cleared when the Rx Status reg-
ister is read. This ensures that if another overrun occurs
between the Rx Status register read and the Rx Data
register read that this overrun will set RxOverrun.

RxOverrun clears to zero during an ICEport reset.

RxRDY Rx Byte Ready 0
When the Rx block receives a byte, this bit is set to one.
RxRDY clears to zero when the Rx Data register is read,
and at reset. The IRXRDYp (sc_ICEINTp) output signal,
if enabled, reflects the state of the RxRDY bit.

31 2 1 0

R RxOverrun RxRDY
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9.5.2 Rx Setup Register

The write-only Rx Setup register enables and disables the sc_ICEINTp
interrupt signal when the RxRDY bit in the Rx Status register is set. If
software clears the RxRXRDYPe bit to zero, then the ICEport interrupt
signal sc_ICEINTp is disabled. This feature was added to allow software
to disable the interrupt signal, IRXRDYp (sc_ICEINTp), if the IRXRDYp
signal were tied to a Not Maskable Interrupt (NMI) input.

Figure 9.5 shows the Rx Setup register, with bit field descriptions following
the figure.

Figure 9.5 Rx Setup Register

R Reserved [31:1]
These bits are reserved for LSI Logic, and any writes to
these bits are ignored.

RxRXRDYPe sc_ICEINTp(IRXRDYp) Enable 0
When this bit is set to one, the sc_ICEINTp signal reflects
the state of the RxRDY bit in the Rx Status register.
When software clears RxRXRDYPe to zero, the
sc_ICEINTp signal is continually deasserted.
RXRXRDYPe clears to zero during an ICEport reset.

9.5.3 Rx Data Register

The read-only Rx Data register, shown in Figure 9.6, holds received data
in bits [7:0]. RxData is valid only when the RxRDY bit in the Rx Status
register is set. The Rx Data register is undefined after an ICEport reset.

Figure 9.6 Rx Data Register

R Reserved [31:8]
These bits are reserved for LSI Logic and are read as
zeroes.

31 1 0

R RxRXRDYPe

31 8 7 0

R RxData
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RxData Received Bit Stream [7:0]
This bit field holds data received from the ICERXp serial
input signal. Data held in RxData is valid only when the
RxRDY bit in the Rx Status register is set. RxData is
undefined after an ICEport reset.

9.5.4 Tx Status Register

The read-only Tx Status register, shown in Figure 9.7, provides status
information for Tx operations.

Figure 9.7 Tx Status Register

R Reserved [31:1]
These bits are reserved for LSI Logic and are read as
zeroes.

TxRDY TxRDY Rx Ready 0
This bit is set to one when either the Tx Data register is
ready for the next transmit byte, or after reset. TxRDY
remains set during and after the transmission of Tx data.
TxRDY clears to zero during a write to the Tx Data
register. TxRDY is set to one after an ICEport reset.

9.5.5 Tx Data Register

The write-only Tx Data register, shown in Figure 9.8, holds the serial
transmission data.

Figure 9.8 Tx Data Register

R Reserved [31:8]
These bits are reserved for LSI Logic, and any writes to
these bits are ignored.

31 1 0

R TxRDY

31 8 7 0

R TxData
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TxData Transmitted Bit Stream [7:0]
When the TxRDY bit in the Tx Status register is set, data
for transmit through ICETXP may be written to the
TxData bits. Writes to the TxData bits when the TxRDY
is zero are ignored.

9.6 ICEport Operations

This section describes the different operations of the ICEport, and is
divided into the following sections:

♦ Section 9.6.1, “SCbus Read/Write Transactions”

♦ Section 9.6.2, “Reset”

♦ Section 9.6.3, “Serial Bit Stream”

♦ Section 9.6.4, “ICEport Receive and Transmit”

♦ Section 9.6.5, “Clock Domains and Properties”

9.6.1 SCbus Read/Write Transactions

All read or write operations to the ICEport occur through the SCbus. Both
transactions require two cycles once SCbus arbitration is decided. For
either transaction, the bus master first must win arbitration for SCbus
control and decide to initiate a transaction. The bus master then places
the target address for the transaction on SCAop[31:0] and asserts
SCTSSn for one cycle to indicate the start of a new operation. The
ICEport constantly decodes SCAop[31:0] and monitors SCTSSn for
transactions that target the ICEport. If the ICEport is the target of an
operation, it checks the SCDoEn signal to determine whether this
transaction is a read or a write.

For a read, the ICEport places data on sc_ICEDop output bus, asserts
sc_ICERDYp, and then asserts sc_ICEDoEp at the next clock cycle.

For a write, the ICEport latches data on sc_ICEDip into the proper
register on the next rising edge of the clock and asserts sc_ICERDYp at
the following clock cycle. In order to ensure that information is not lost,
the SCbus master must hold the SCAop[31:0], SCDoEn, and
SCDop[31:0] signals until the ICEport asserts the sc_ICERDYp
acknowledge signal.
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For data transfer, the SCDop[7:0] output bus connects to the ICEport
sc_ICEDip[31:0] input bus. The SCDip[31:0] input bus connects to the
ICEport sc_ICEDop[31:0] output bus. The upper 32 bits of both SCbus
data buses SCDop[63:32] and SCDip[63:32] are not used for ICEport
transactions.

Figure 9.9 shows an ICEport read, and Figure 9.10 shows an ICEport
write. For both figures, the signals CRESETn, WRESETn, SE, and
TESTMp are assumed deasserted throughout the transaction. All
read/write operations are synchronous to the rising edge of the SCLKp.
Detailed descriptions follow the figures.

Figure 9.9 Read Operation
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Figure 9.10 Write Operation

The following comments outline operations during cycles 1 to 4
presented in both figures.

Cycle 1: The bus master wins arbitration of the SCbus.

Cycle 2: The bus master asserts SCTSSn for one cycle to indicate the
start of a new transaction. It also places the target address on
SCAop[31:0] and asserts SCDoEn for a write operation, or
deasserts SCDoEn for a read operation. For a write, the bus
master also drives SCDop[31:0] with the data to be trans-
ferred.

Cycle 3: The ICEport recognizes that it is the transaction target. For a
read, the ICEport places the appropriate data on the
sc_ICEDop[31:0] bus and asserts sc_ICEDoEp. For a write,
the ICEport writes sc_ICEDip[7:0] data into the appropriate
register. The ICEport then asserts sc_ICERDYp to indicate
that the transaction has finished.

Cycle 4: The ICEport deasserts sc_ICERDYp at the rising edge of
SCLKp. For a read transaction, the ICEport also deasserts
sc_ICEDoEp and the SCbus master must latch the data on
the rising edge of SCLKp at the start of this cycle. At the end
of Cycle 4, the ICEport is ready to begin a new transaction.

SCLKP

SCTSSn

SCAop[31:0]

SCDoEn

sc_ICEDip[7:0]

sc_ICERDYp

Cycle 2 Cycle 3Cycle 1 Cycle 4

sc_ICEDoEp



9-16 ICEport

9.6.2 Reset

An ICEport system reset occurs when either CRESETn or WRESETn is
asserted for at least one SCLKp cycle. CRESETn must be asserted
when the system is powered up in order to set the ICEport in a
predefined state. Since the reset signals are synchronous to SCLKp, the
ICEport can be reset even if the ICECLKp clock is not running.

An ICEport system reset performs the following functions:

♦ RxOverrun and RxRDY bits in the Rx Status register are cleared,
indicating that the Rx Data register is undefined.

♦ The RxRXRDYPe bit in the Rx Setup register is cleared. This causes
the IRXRDYp (sc_ICEINTp) signal to be deasserted.

♦ The TxRDY bit in the Tx Status register is set.

9.6.3 Serial Bit Stream

The ICEport receives data on ICERXp and transmits it on ICETXp in
serial bit streams. In the Receive (Rx) block, the ICEport receives data.
When no data is being transferred, the Transmit (Tx) block holds ICETXp
idle HIGH.

Figure 9.11 shows an interpretation of the serial bit stream on the data
line. The data bytes are received in frames, with each frame consisting
of three pieces:

♦ a start bit, always LOW

♦ a byte of data, transmitted true level from LSB (bit 0) to MSB (bit 7)

♦ and a stop bit, always HIGH

All bits in a frame are 16 ICECLKp cycles long. The data line remains
HIGH after the stop bit when the line goes idle, until the next start bit
drives the line LOW.
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Figure 9.11 Serial Bit Stream

9.6.4 ICEport Receive and Transmit

There are two ICEport serial interface blocks, specifically the receive (Rx)
and transmit (Tx) blocks. The Rx block receives the ICERXp bit stream,
and the Tx block transmits the ICETXp bit stream. Both blocks receive
the internal CPU clock (SCLKp) and the external bit rate clock
(ICECLKp). Both blocks synchronize timing between the ICECLKp and
SCLKp timing domains. Figure 9.12 shows a simple block diagram of the
Rx and Tx blocks (shaded) with signals and clocking.

Figure 9.12 Rx and Tx Blocks
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The remainder of this section details both the receive and transmit
ICEport operations.

9.6.4.1 Receive (Rx)

ICERXp is the serial data input to the ICEport. The Rx block receives the
ICERXp signal and reads it on the rising edge of ICECLKp. ICECLKp can
be used to generate both the transmit and receive data clocks, but
usually two different clocks are implemented. This is not a problem, as
long as the difference between the two clock frequencies is below a
certain limit, as outlined in Section 9.6.5, “Clock Domains and
Properties.”

The Rx block is synchronized when ICERXp has been HIGH for nine bit
times (144 ICECLKp cycles) or more, which indicates that the data line
is in an idle state. The Rx block must be synchronized after power on,
reset, serial cable connection, or any other event that would alter Rx
block synchronization.

After synchronization, the Rx block begins sampling ICERXp on each
rising edge of ICECLKp. When it samples a LOW ICERXp value, the Rx
block recognizes this as the start bit of a new data frame and prepares
for the serial data stream. The width of each received bit is assumed to
be 16 ICECLKp cycles, even though the clock that generated the data for
ICERXp may be different from the ICECLKp. The value of ICERXp at the
eighth ICECLKp rising edge is assumed to be the value of the bit, and
the bit is then received. If the start bit is HIGH, the frame is ignored. In
this case, the ICERXp LOW value that indicated the start of the frame
was accidental. Figure 9.13 shows the serial bit clocking relative to
ICECLKp.

Figure 9.13 Received Bit Timing

ICECLKp

16 cycles

ICERXp
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The Rx block places the eight data bits received after the start bit in the
Rx Data register. The first data bit received after the start bit is the LSB
(bit 0), and the eighth data bit received is the MSB (bit 7). The eight data
bits received between the start and stop bits are all true level values.

A valid HIGH stop bit received at the end of the frame sets the RxRDY
bit in the Rx Status register. The IRXRDYp (sc_ICEINTp) output reflects
the state of the RxRDY bit, if enabled by the RxRXRDYPe bit in the Rx
Setup register. IRXRDYp can be used as an interrupt to ensure that the
CPU reads the data received, thus avoiding overruns. If the stop bit is
LOW, the frame is ignored.

A received data byte is not placed in the Rx Data register until a valid
stop bit is received. This data byte will be available throughout the next
data byte (frame) receive, until the next valid stop bit refreshes the Rx
Data register. In other words, a previously received data byte is present
in the Rx Data register for at least nine bit cycles (144 ICECLKp cycles)
after a new start bit (for a new frame) is received.

If a previously received byte has not been read when a new byte is ready
for the Rx Data register, an overrun error occurs. When an overrun error
occurs, the ICEport sets the RxOverrun bit in the Rx Status register, and
the new frame is discarded.

If the ICEport receives an invalid stop bit, the stop bit is not recorded by
the ICEport registers and the frame is still discarded. The ICEport will
not accept a new start bit until the previous frame has been finished by
a valid stop bit or a HIGH value on ICERXp. This ensures that the
ICEport will not indicate a runaway receive if ICERXp is tied LOW in
error. Therefore, the ICEport will not receive a frame after reset if
ICERXp is continuously either HIGH or LOW.

When the Rx block receives the stop bit correctly, a LOW value in the bit
stream immediately following the stop bit will start the next frame. The
start bit must be allowed to begin this quickly, since ICECLKp may be
slower than the clock that generates the data for ICERXp. In such a case,
the next received frame may start on the next sample ICECLKp.

9.6.4.2 Transmit (Tx)

The ICETXp signal is the ICEport serial data output and can carry new
data every 16 ICECLKp cycles. When there is no data for transmission,
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ICETXp is held HIGH in an idle state. During this idle state, the TxRDY
bit in the Tx Status register is set to one, which indicates that
transmission may be initiated by placing data in the Tx Data register.
After data is written to the Tx Data register, the ICEport clears the TxRDY
bit to zero.

Start bit transmission begins on the rising edge of ICECLKp and the first
data bit starts transmitting 16 ICECLKp clock cycles later. Every bit of the
transmitted frame has a width of 16 ICECLKp cycles. The Tx Data
register LSB (bit 0) is transmitted just after the start bit; the MSB (bit 7)
is sent just before the stop bit. All data bits are transmitted true level, with
zeroes sent as LOW values and ones sent as HIGH values.

The ICEport sets the TxRDY bit in the Tx Status register when data bit 7
(the end of the byte) begins transmitting. As soon as TxRDY is set, the
next data byte to transmit can be written to the Tx Data register. Writing
to the Tx Data register while either data bit 7 or the stop bit is transmitting
ensures that the ICETXp signal will not be idle. If the next data byte is
not written to the Tx Data register before the stop bit is transmitted, the
Tx block will idle for a number of ICECLKp cycles, until new data is
available in the Tx Data register.

9.6.5 Clock Domains and Properties

Since data commonly moves between the ICECLKp domain and the Rx
clock domain, these two clocks must have frequencies within certain
limits. The difference between the ICECLKp frequency and the ICERXp
clock frequency may be no more than ±1%, with ICERXp jitter margins
±10% of the bit width. This jitter can originate from transmission cables
or different timing in LOW-to-HIGH and HIGH-to-LOW transitions.

The UART receiving the output from ICETXp may, however, require less
difference between the two frequencies, and this requirement must be
observed.

The ICECLKp signal may be derived from SCLKp by using a divider. This
method frees a pin since ICECLKp no longer requires an external pin.
The operation of the ICEport does not change in any way if ICECLKp is
derived from SCLKp, but the frequency difference of ±1% must be
adhered to regardless of the clock rate.
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The ICEport may also transfer data internally between the two clock
domains (between ICEport and core). For these transactions, the
ICECLKp frequency can be at most one fourth of the SCLKp frequency.
No matter what the frequency difference between ICECLKp and SCLKp,
the bus master must have enough time to read received data before new
data arrives or an overrun error will occur.

9.7 ICEport Pin Buffers and Drivers

The choice of ICEport external pin buffers and drivers will vary with each
design. However, this section provides a few general recommendations
for any design using an ICEport. Please note that the pin reserved for
ICECLKp may be conserved if the ICEport clock is internally derived from
SCLKp, as described in Section 9.6.5, “Clock Domains and Properties.”

♦ The buffer for input pin ICERXp should be a 5-V-–compatible Schmitt
trigger with an internal pull-up resistor, since the incoming signal may
be noisy and driven from a 5-V source. An internal pull-up resistor is
recommended so that ICERXp can be left unconnected if the
ICEport is unused.

♦ The driver for the ICETXp output pin should be a 4-mA driver, with
a reduced slew rate to avoid reflections.
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Chapter 10
Specifications

This chapter specifies the physical and electrical characteristics of the
CW4011 core. It contains the following sections:

♦ Section 10.1, “Physical Specifications”

♦ Section 10.2, “AC Timing and Loading”

10.1 Physical Specifications

The CW4011 has a single 1x clock input. Clock duty cycle may vary from
40 to 60% at maximum frequency. The CW4011 operates at 90 MHz for
worst case process, 3.14 V, 110 ˚C at junction. The CW4011 dissipates
approximately 7.0 mW/MHz. Table 10.1 lists the dimensions of the
CW4011 core in G10 technology.

10.2 AC Timing and Loading

The input setup time is defined from the signal valid to the rising edge
of SCLKp and the input hold time is defined from the rising edge of
SCLKp to the signal valid. For input setup times, the driver must drive
the signal valid before any receivers need it. For input hold times, the
driver must hold the signal valid longer than needed by any receiver.

The output maximum and minimum delay times are defined from the
rising edge of SCLKp to the signal valid.

Table 10.1 CW4011 Physical Layout Size

Core Technology Width Height Total Area

CW4011 G10-p 2.5 mm 3.5 mm 8.75 mm2
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Load is the total load on the net in standard loads visible to the output
driver. The loading values are for internal loading only. The load column
shows the internal loading on each net in the module.

Table 10.2 shows the timing conditions.

Figure 10.1 shows how the AC timing is defined. Table 10.3 and
Table 10.4 list the AC timing values and the loading for the CW4011. The
timing is from Motive Static Timing Analysis.

Note: The conditions used in this timing analysis were chosen to
be representative of a typical CW4011 design and are
intended as a guide to designers. However, the numbers
obtained for individual designs may vary since loading
depends on chip placement and routing. If the loading
exceeds the values given on the previous page, the timing
values may exceed those listed here.

Figure 10.1 AC Specifications

Table 10.2 CW4011 Timing Considerations

AC Timing Process V DD (Volts)

Junction
Temperature
(˚C)

Clock Period
(ns)

BCCOM 0.874 3.46 0 11.0

WC110 1.38 3.14 110 11.0

SCLKp

Output Signal

Max Delay

Min Delay

Clock Period

Input Signal

Setup Hold
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Table 10.3 CW4011 Input AC Timing and Loading

Signal Name

BCCOM WC110
Standard

Loads (pF)Setup (ns) Hold (ns) Setup (ns) Hold (ns)

BENDn1 — — — — 0.75

CiNVAp[31:5] −0.23 0.59 −0.39 1.12 0.75

CPBUSYn[3:1] 3.03 −0.56 5.72 −1.05 0.75

CPCoNDp[3:0] 2.81 −0.54 5.14 −1.04 0.75

CPFRCDp[31:0] 1.30 −0.05 2.51 −0.02 0.75

CPSREQn[3:1] 2.86 −0.79 5.13 −1.41 0.75

CRESETn 4.11 −0.31 7.11 -0.55 0.75

DCiNVSn 0.11 0.24 0.25 0.45 0.75

EXiNTn[5:0] 0.22 0.10 0.37 0.19 0.75

EXVAp[31:2] 1.82 −0.39 3.65 −0.90 0.75

EXViNTn 0.16 −0.05 0.28 −0.10 0.75

FPEoDDn −0.07 0.17 −0.11 0.25 0.75

FPERRXn 0.06 0 0.18 −0.02 0.75

ICiNVSn 0.11 0.24 0.25 0.45 0.75

iMPLop[3:0] 1.58 −0.87 3.19 −1.80 0.75

NMin 0.34 0.21 0.65 0.41 0.75

OCAcceptp 1.98 −0.13 3.75 −0.26 0.75

REVLop[3:0] 1.64 −0.70 3.32 −1.46 0.75

SCB32n 2.66 −0.16 4.80 −0.22 0.75

SCBERRn 2.71 −0.29 4.91 −0.55 0.75

SCBPWAn 0.64 −0.34 1.22 −0.69 0.75

SCBRDYn 2.66 −0.36 4.80 −0.64 0.75

(Sheet 1 of 2)
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SCBRTYn 2.60 −0.33 4.71 −0.55 0.75

SCDip[63:0] 0.28 0.33 0.62 0.60 0.75

SCHRQn 3.01 -0.37 5.0.75 −0.70 0.75

SCTSEn 2.70 −0.27 4.51 −0.56 0.75

TESTMp1 — — — — 0.75

WRESETn 4.08 −0.11 7.06 −0.25 0.75

1. BENDn and TESTMp are strapped input signals and do not change state.

Table 10.4 CW4011 Output AC Timing and Loading

Signal Name

BCCOM WC110
Standard

Loads (pF)MIn (ns) Max (ns) Min (ns) Max (ns)

AccSizep[1:0] 0.87 0.89 1.64 1.68 0.75

ACCSToREp 0.94 0.98 1.76 1.86 0.75

BRLiKFn 0.82 2.74 1.57 5.17 0.75

CPCoDEp[31:0] 1.16 3.70 2.28 6.74 0.75

CPFiXUPn 1.06 1.62 1.96 3.07 0.75

CPFRCEn 1.57 4.27 2.93 7.75 0.75

CPMISSn 1.66 4.11 2.98 7.50 0.75

CPRSTn[3:1] 0.78 0.79 1.46 1.49 0.75

CPToCDp[31:0] 0.94 3.53 1.74 6.87 0.75

CPToCEn 0.98 3.88 1.89 7.13 0.75

CPXoDDn 1.72 2.85 3.24 5.24 0.75

(Sheet 1 of 3)

Table 10.3 CW4011 Input AC Timing and Loading (Cont.)

Signal Name

BCCOM WC110
Standard

Loads (pF)Setup (ns) Hold (ns) Setup (ns) Hold (ns)

(Sheet 2 of 2)
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CPXSTBn[3:0] 1.31 4.81 2.41 8.69 0.75

CRValidp 1.03 3.38 1.93 6.12 0.75

DVADDRp[31:0] 1.16 2.92 2.07 5.55 0.75

EXLoadp 0.85 0.85 1.60 1.61 0.75

EXVApEn 0.84 0.85 1.60 1.61 0.75

PCANCRn 1.32 2.88 2.43 5.14 0.75

PCANoDDn 1.08 3.19 1.92 5.75 0.75

PSTALLn 1.46 3.76 2.65 6.93 0.75

SCANREQp 0.94 3.64 1.72 6.76 0.75

SCAoEn 0.66 0.76 1.34 1.39 0.75

SCAop[31:0] 0.70 0.82 1.39 1.60 0.75

SCBGEp 0.72 0.79 1.31 1.48 0.75

SCDoEn 0.80 0.96 1.59 1.70 0.75

SCDop[63:0] 0.71 0.80 1.39 1.57 0.75

SCHGTn 0.80 0.85 1.53 1.59 0.75

SCiFETn 0.57 0.69 1.14 1.41 0.75

SCLoCKn 0.58 0.64 1.17 1.31 0.75

SCTBEn[7:0] 0.62 0.74 1.22 1.49 0.75

Table 10.4 CW4011 Output AC Timing and Loading (Cont.)

Signal Name

BCCOM WC110
Standard

Loads (pF)MIn (ns) Max (ns) Min (ns) Max (ns)

(Sheet 2 of 3)
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SCTBLn 1.04 1.23 2.00 2.22 0.75

SCTBSTn 0.57 0.69 1.14 1.41 0.75

SCTPWn 0.57 0.69 1.14 1.41 0.75

SCTRQn 1.23 3.12 2.31 5.85 0.75

SCTSSn 0.57 0.69 1.14 1.41 0.75

SUSPEXn 1.03 1.68 1.91 3.20 0.75

Table 10.4 CW4011 Output AC Timing and Loading (Cont.)

Signal Name

BCCOM WC110
Standard

Loads (pF)MIn (ns) Max (ns) Min (ns) Max (ns)

(Sheet 3 of 3)
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Appendix A
CW4011 Register
Summary

This appendix contains a quick description of all the CW4011 core reg-
isters and a listing of all CW4011-specific registers. This appendix is
divided into two sections:

♦ Section A.1, “CW4011 CPU Registers”

♦ Section A.2, “Register Summary”

A.1 CW4011 CPU Registers

Figure A.1 shows the CW4011 CPU registers. There are 32 general reg-
isters, each consisting of a single word (32 bits). The 32 general registers
are treated symmetrically with two exceptions: r0 is hardwired to a zero
value and r31 is defined as the link register for jump and link instructions.

Figure A.1 CW4011 CPU Registers

31 General Purpose Registers 0

r0

r1

r2

•

r29

r30

r31

•
•

31 Multiply/Divide Registers 0

31 Program Counter 0

PC

HI

LO
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Register r0 may be specified as a target register for any instruction when
the result of the operation is discarded. The register maintains a value of
zero under most conditions when used as a source register.

The two Multiply/Divide registers (HI, LO) store the doubleword, 64-bit
result of multiply and divide operations.

A.2 Register Summary

Table A.1 lists the CW4011-specific registers, their location by either CP0
number or physical address, and the page number where each is
described. All the registers listed in this section are separate from the
general CPU registers listed in Section A.1, “CW4011 CPU Registers.”

Table A.1 CP0 Exception Processing Registers

Register Name

CP0
Register
Number

Physical
Address

Reference
Page

Context 4 — 4-5

Debug Control and Status (DCS) 7 — 4-7

Bad Virtual Address (BadVAddr) 8 — 4-9

Count 9 — 4-9

Compare 11 — 4-9

Status 12 — 4-10

Cause 13 — 4-18

Exception Program Counter (EPC) 14 — 4-20

Processor Revision Identifier
(PRId)

15 — 4-20

Configuration and Cache Control
(CCC)

16 — 4-22

Load Linked Address (LLAdr) 17 — 4-26

Breakpoint Program Counter (BPC) 18 — 4-27

(Sheet 1 of 2)
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Breakpoint Data Address (BDA) 19 — 4-27

Breakpoint PC Mask (BPCM) 20 — 4-27

Breakpoint Data Address Mask
(BDAM)

21 — 4-28

Rotate 23 — 4-28

Circular Mask (CMask) 24 — 4-29

Error Exception Program Counter
(Error EPC)

30 — 4-30

EntryHi 10 — 5-10

EntryLo 2 — 5-11

PageMask 5 — 5-12

Index 0 — 5-13

Random 1 — 5-13

Wired 6 — 5-14

Rx Status — 0x10FF0000 9-10

Rx Setup — 0x10FF0000 9-11

Rx Data — 0x10FF0004 9-11

Tx Status — 0x10FF0008 9-12

Tx Data — 0x10FF000C 9-12

Table A.1 CP0 Exception Processing Registers (Cont.)

Register Name

CP0
Register
Number

Physical
Address

Reference
Page

(Sheet 2 of 2)
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Appendix B
Cache Sizing and
Design Concerns

This appendix describes the I-cache and D-cache sizing and design
considerations in a CW4011 system and is split into the following
sections:

♦ Section B.1, “CW4011 I-Cache Configurations”

♦ Section B.2, “CW4011 I-Cache Interface”

♦ Section B.3, “I-Cache Shell”

♦ Section B.4, “I-Cache Set Associative RAM Hookup”

♦ Section B.5, “I-Cache Direct-Mapped RAM”

♦ Section B.6, “CW4011 D-Cache Configurations”

♦ Section B.7, “CW4011 D-Cache Interface”

♦ Section B.8, “D-Cache Shell”

♦ Section B.9, “D-Cache Set Associative RAM Hookup”

♦ Section B.10, “D-Cache Direct-Mapped RAM Hookup”
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B.1 CW4011 I-Cache Configurations

The CW4011 supports a number of two-way set associative and
direct-mapped I-cache configurations, as shown in Table B.1.

Different physical I-cache configurations require different sizes for tag
RAM and data RAM, as well as different CW4011 core signal
connections, as described in Section B.4, “I-Cache Set Associative RAM
Hookup.”

However, usually a larger I-cache design can emulate any of the smaller
available configurations through the IS[1:0] bits in the CCC register. For
example, a 16-Kbyte I-cache can be configured to emulate all other
possible configurations if the tag memory has enough bit tag width for
small configurations. To test a 1-Kbyte configuration, the I-cache tag
would need 23 bits. This I-cache size flexibility allows bench marking of
various configurations in the simulation model and on the reference
device chip. For more information on dynamic cache sizing, see Section
4.3.10, “Configuration and Cache Control (CCC) Register.”

The following sections describe the physical port interconnects between
the CW4011 and the synchronous RAM models. This connection is
performed in Verilog or VHDL at the shell level. In the CW4011
deliverables database, Verilog and VHDL are available as an example
connection.

Table B.1 CW4011 I-Cache Sizes

Two-Way
Set Associative
I-Cache (Kbytes)

Direct-Mapped
I-Cache (Kbytes)

CCC Register IS[1:0]
Settings

2 1 00

4 2 01

8 4 10

16 8 11
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B.2 CW4011 I-Cache Interface

The CW4011 I-cache interface was designed to implement a two-way set
associative I-cache of varying size. The I-cache uses a least recently
used (LRU) algorithm to determine which set should be replaced when
both cache lines are valid in the case of two-way set associative
configuration. Logically, 256x1 memory is necessary. Since HDRAMs are
not available in formats less than four bits wide, 64x4 memory is used
as the LRU memory for 16-Kbyte systems.

For a list of the I-cache RAM interface signals, see Section 7.8,
“Instruction Cache Interface.”

B.3 I-Cache Shell

In the CW4011 RTL shell model, the deliverables data, tag, and data
memories are gathered in a shell module for the I-cache. The hierarchy
is shown in Figure B.1. There are several glue logic gates in the
icache_shell.

Figure B.1 CW4011 I-Cache Shell RTL

Tag RAM

Tag RAM

Data RAM

Data RAM

Tag RAM

Tag RAM

LRU RAM

Data RAM

Data RAM

CW4011_core

dcache_shellicache_shell

CW4011_shell
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B.4 I-Cache Set Associative RAM Hookup

I-cache set associative implementations require:

♦ two tag RAMs

♦ four data RAMs

♦ one LRU RAM

Table B.2 lists the required RAM size.

The RAMs used should be word write enabled, synchronous RAMs such
as the m10p111hs for the CW4011 (LCBG10P).

The following sections describe the connections from the CW4011 core
I-cache interface ports to the I-cache RAM macros ports, assuming
m10p111hs RAMs are implemented. Unspecified I/O can be considered
unconnected. Unconnected core inputs should be tied deasserted.
Unconnected core outputs may be left open.

For bigger cache sizes, the CW4011 core needs fewer tag inputs.
Unused tag inputs are ignored according to the programming of the CCC
register.

If both or either cache set is used as a RAM where the address is fixed
in the memory address space permanently, the tag memory is not
necessary. The tag inputs must be tied either LOW or HIGH, according
to the specific design address mapping.

Table B.2 Set Associative, I-Cache RAM Requirements

Set Associative
I-Cache Size

(Kbytes)

Tag RAM Data RAM LRU RAM 1

Quantity Size (Bits) Quantity Size (Bits) Quantity Size (Bits)

2 2 32x23 4 128x32 1 32x1

4 2 64x22 4 256x32 1 64x1

8 2 128x21 4 512x32 1 128x1

16 2 256x20 4 1024x32 1 256x1

1. Listed are the logic needs for the LRU RAM. SInce the minimum size for an HDRAM is 64x4, one
64x4 HDRAM can be used for any of the I-cache size configurations. The deliverables database has
an HDL model named “fake256x1,” which renames the names of signals of a 64x4 RAM to those
of a 256x1.
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B.4.1 2-Kbyte I-Cache Set Associative Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made. Connections for LRU
memory “fake256x1” are not shown. Refer the HDL model of the
fake256x1 for more information.

B.4.1.1 Tag RAM Set 0

DO[22:0] ↔ iC0TAGDop[22:0]
DI[22:0] ↔ iCTAGDip[22:0]
A[4:0] ↔ iTADDRp[4:0]
(open) ↔ iTADDRp[7:5]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe0p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.1.2 Tag RAM Set 1

DO[22:0] ↔ iC1TAGDop[22:0]
DI[22:0] ↔ iCTAGDip[22:0]
A[4:0] ↔ iTADDRp[4:0]
(open) ↔ iTADDRp[7:5]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe1p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.1.3 Data RAM Set 0 High Word

DO[31:0] ↔ iC0DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[6:0] ↔ iCADDRp[6:0]
(open) ↔ iCADDRp[9:7]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH
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B.4.1.4 Data RAM Set 0 Low Word

DO[31:0] ↔ iC0DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[6:0] ↔ iCADDRp[6:0]
(open) ↔ iCADDRp[9:7]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.1.5 Data RAM Set 1 High Word

DO[31:0] ↔ iC1DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[6:0] ↔ iCADDRp[6:0]
(open) ↔ iCADDRp[9:7]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe1hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.1.6 Data RAM Set 1 Low Word

DO[31:0] ↔ iC1DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[6:0] ↔ iCADDRp[6:0]
(open) ↔ iCADDRp[9:7]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe1lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH
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B.4.2 4-Kbyte I-Cache Set Associative Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made. Connections for LRU
memory “fake256x1” are not shown.

B.4.2.1 Tag RAM Set 0

DO[21:0] ↔ iC0TAGDop[22:1]
1’b0 ↔ iC0TAGDop[1]
DI[21:0] ↔ iCTAGDip[22:1]
(open) ↔ iCTAGDip[1]
A[5:0] ↔ iTADDRp[5:0]
(open) ↔ iTADDRp[7:6]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe0p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.2.2 Tag RAM Set 1

DO[21:0] ↔ iC1TAGDop[22:1]
1’b0 ↔ iC1TAGDop[1]
DI[21:0] ↔ iCTAGDip[22:1]
(open) ↔ iCTAGDip[1]
A[5:0] ↔ iTADDRp[5:0]
(open) ↔ iTADDRp[7:6]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe1p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.2.3 Data RAM Set 0 High Word

DO[31:0] ↔ iC0DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[7:0] ↔ iCADDRp[7:0]
(open) ↔ iCADDRp[9:8]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
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WE ↔ ICWe0hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.2.4 Data RAM Set 0 Low Word

DO[31:0] ↔ iC0DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[7:0] ↔ iCADDRp[7:0]
(open) ↔ iCADDRp[9:8]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.2.5 Data RAM Set 1 High Word

DO[31:0] ↔ iC1DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[7:0] ↔ iCADDRp[7:0]
(open) ↔ iCADDRp[9:8]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe1hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.2.6 Data RAM Set 1 Low Word

DO[31:0] ↔ iC1DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[7:0] ↔ iCADDRp[7:0]
(open) ↔ iCADDRp[9:8]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe1lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH
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B.4.3 8-Kbyte, Set Associative Cache, Hookup

The following connections between the CW4011 core and the
synchronous RAM modules need to be made. Connections for LRU
memory “fake256x1” are not shown.

B.4.3.1 Tag RAM Set 0

DO[20:0] ↔ iC0TAGDop[22:2]
2’b0↔ iC0TAGDop[2:1]
DI[20:0] ↔ iCTAGDip[22:2]
(open) ↔ iCTAGDip[2:1]
A[6:0] ↔ iTADDRp[6:0]
(open) ↔ iTADDRp[7]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe0p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.3.2 Tag RAM Set 1

DO[20:0] ↔ iC1TAGDop[22:2]
2’b0↔ iC1TAGDop[2:1]
DI[20:0] ↔ iCTAGDip[22:2]
(open) ↔ iCTAGDip[2:1]
A[6:0] ↔ iTADDRp[6:0]
(open) ↔ iTADDRp[7]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe1p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.3.3 Data RAM Set 0 High Word

DO[31:0] ↔ iC0DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[8:0] ↔ iCADDRp[8:0]
(open) ↔ iCADDRp[9]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
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WE ↔ ICWe0hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.3.4 Data RAM Set 0 Low Word

DO[31:0] ↔ iC0DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[8:0] ↔ iCADDRp[8:0]
(open) ↔ iCADDRp[9]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.3.5 Data RAM Set 1 High Word

DO[31:0] ↔ iC1DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[8:0] ↔ iCADDRp[8:0]
(open) ↔ iCADDRp[9]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe1hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.3.6 Data RAM Set 1 Low Word

DO[31:0] ↔ iC1DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[8:0] ↔ iCADDRp[8:0]
(open) ↔ iCADDRp[9]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe1lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH
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B.4.4 16-Kbyte I-Cache Set Associative Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made. Connections for LRU
memory “fake256x1” are not shown. Refer the HDL model of the
fake256x1 for more information.

B.4.4.1 Tag RAM Set 0

DO[19:0] ↔ iC0TAGDop[22:3]
3’b0↔ iC0TAGDop[3:1]
DI[19:0] ↔ iCTAGDip[22:3]
(open) ↔ iCTAGDip[3:1]
A[7:0] ↔ iTADDRp[7:0]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe0p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.4.2 Tag RAM Set 1

DO[19:0] ↔ iC1TAGDop[22:3]
3’b0↔ iC1TAGDop[3:1]
DI[19:0] ↔ iCTAGDip[22:3]
(open) ↔ iCTAGDip[3:1]
A[7:0] ↔ iTADDRp[7:0]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe1p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.4.3 Data RAM Set 0 High Word

DO[31:0] ↔ iC0DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[9:0] ↔ iCADDRp[9:0]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH
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B.4.4.4 Data RAM Set 0 Low Word

DO[31:0] ↔ iC0DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[9:0] ↔ iCADDRp[9:0]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.4.5 Data RAM Set 1 High Word

DO[31:0] ↔ iC1DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[9:0] ↔ iCADDRp[9:0]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe1hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.4.4.6 Data RAM Set 1 Low Word

DO[31:0] ↔ iC1DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[9:0] ↔ iCADDRp[9:0]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe1lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH
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B.5 I-Cache Direct-Mapped RAM

Direct-mapped I-cache implementations require one tag RAMs and two
data RAMs. Table B.3 lists the required RAM sizes.

The RAMs used should be word write enabled, synchronous RAMs such
as the m10p111hs for the CW4011 (LCBG10P).

In the case of direct-mapped cache configuration, inputs of one set are
not used. All unused inputs are ignored internally, but they should be
always be tied deasserted.

The following sections describe the connections from the CW4011 core
I-cache interface ports to the I-cache RAM macros ports, assuming
m10p111hs RAMs. Unspecified I/O can be considered unconnected. Of
course, unconnected core inputs should be tied deasserted.

Table B.3 Direct-Mapped, WriteBack, I-Cache RAM Requirements

Direct-Mapped
I-Cache Size (Kbytes)

Tag RAM Data RAM

Quantity Size (Bits) Quantity Size (Bits)

1 1 32x23 2 128x32

2 1 64x22 2 256x32

4 1 128x21 2 512x32

8 1 256x20 2 1024x32
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B.5.1 1-Kbyte I-Cache Direct-Mapped Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.5.1.1 Tag RAM

DO[22:0] ↔ iC0TAGDop[22:0]
DI[22:0] ↔ iCTAGDip[22:0]
A[4:0] ↔ iTADDRp[4:0]
(open) ↔ iTADDRp[7:5]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe0p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.5.1.2 Data RAM High Word

DO[31:0] ↔ iC0DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[6:0] ↔ iCADDRp[6:0]
(open) ↔ iCADDRp[9:7]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.5.1.3 Data RAM Low Word

DO[31:0] ↔ iC0DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[6:0] ↔ iCADDRp[6:0]
(open) ↔ iCADDRp[9:7]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH
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B.5.2 2-Kbyte I-Cache Direct-Mapped Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.5.2.1 Tag RAM

DO[21:0] ↔ iC0TAGDop[22:1]
1’b0 ↔ iC0TAGDop[1]
DI[21:0] ↔ iCTAGDip[22:1]
(open) ↔ iCTAGDip[1]
A[5:0] ↔ iTADDRp[5:0]
(open) ↔ iTADDRp[7:6]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe0p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.5.2.2 Data RAM High Word

DO[31:0] ↔ iC0DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[7:0] ↔ iCADDRp[7:0]
(open) ↔ iCADDRp[9:8]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.5.2.3 Data RAM Low Word

DO[31:0] ↔ iC0DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[7:0] ↔ iCADDRp[7:0]
(open) ↔ iCADDRp[9:8]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH
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B.5.3 4-Kbyte I-Cache Direct-Mapped Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.5.3.1 Tag RAM

DO[20:0] ↔ iC0TAGDop[22:2]
2’b0↔ iC0TAGDop[2:1]
DI[20:0] ↔ iCTAGDip[22:2]
(open) ↔ iCTAGDip[2:1]
A[6:0] ↔ iTADDRp[6:0]
(open) ↔ iTADDRp[7]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe0p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.5.3.2 Data RAM High Word

DO[31:0] ↔ iC0DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[8:0] ↔ iCADDRp[8:0]
(open) ↔ iCADDRp[9]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.5.3.3 Data RAM Low Word

DO[31:0] ↔ iC0DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[8:0] ↔ iCADDRp[8:0]
(open) ↔ iCADDRp[9]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH
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B.5.4 8-Kbyte I-Cache Direct-Mapped Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.5.4.1 Tag RAM

DO[19:0] ↔ iC0TAGDop[22:3]
3’b0↔ iC0TAGDop[3:1]
DI[19:0] ↔ iCTAGDip[22:3]
(open) ↔ iCTAGDip[3:1]
A[7:0] ↔ iTADDRp[7:0]
CLK ↔ Shell Clock
OE ↔ iCTAGRDp
WE ↔ ITWe0p (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.5.4.2 Data RAM High Word

DO[31:0] ↔ iC0DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[9:0] ↔ iCADDRp[9:0]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.5.4.3 Data RAM Low Word

DO[31:0] ↔ iC0DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[9:0] ↔ iCADDRp[9:0]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe0lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH
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B.5.5 Instruction RAM

I-cache Set 1 can be used as a scratchpad RAM. The I-cache scratch-
pad RAM is enabled 7by setting the ISR1 bit in the CCC register to one.

If the address space is fixed permanently, the tag memory for I-cache
Set 1 is not necessary. The tag inputs must be tied LOW or HIGH,
according to a design’s address mapping.

If the address space should be programmable, the tag memory must be
initialized before I-cache Set 1 is used as an instruction RAM.

For both cases, instruction codes for the instruction RAM must be written
to the instruction data RAM of Set 1 by a cache maintenance function,
which is enabled by Isolate Cache (IsC) and Tag bits of the CCC register.
For more information, see Section 4.3.10, “Configuration and Cache
Control (CCC) Register.”

The following is an example of a 4-Kbyte instruction RAM configuration
without a tag.

B.5.5.1 Tag RAM Set 1

DO[31:12] ↔ iC0TAGDop[21:2]
1’b1 ↔ iC0TAGDop[22]
2’b00 ↔ iC0TAGDop[1:0]
(open)↔ iCTAGDip[22:0]
(open) ↔ iTADDRp[7:0]
(open) ↔ iCTAGRDp
(open) ↔ ITWe0p (Note: Generated by icache_shell glue logic)
CLK ↔ Shell Clock
Enable ↔ HIGH

B.5.5.2 Data RAM High Word

DO[31:0] ↔ iC1DATADohp[31:0]
DI[31:0] ↔ iCDATADip[63:32]
A[8:0] ↔ iCADDRp[8:0]
(open) ↔ iCADDRp[9]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
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WE ↔ ICWe1hp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.5.5.3 Data RAM Low Word

DO[31:0] ↔ iC1DATADolp[31:0]
DI[31:0] ↔ iCDATADip[31:0]
A[8:0] ↔ iCADDRp[8:0]
(open) ↔ iCADDRp[9]
CLK ↔ Shell Clock
OE ↔ iCDATARDp
WE ↔ ICWe1lp (Note: Generated by icache_shell glue logic)
Enable ↔ HIGH

B.6 CW4011 D-Cache Configurations

The CW4011 supports a number of two-way set associative and
direct-mapped D-cache configurations, as shown in Table B.4.

Different physical D-cache configurations require different sizes for tag
RAM and data RAM, as well as different CW4011 core signal
connections, as described in Section B.9, “D-Cache Set Associative
RAM Hookup.”

However, usually a larger D-cache design can emulate any of the smaller
available configurations through the DS[1:0] bits in the CCC register. For
example, a 16-Kbyte D-cache can be configured to emulate all other
possible configurations if the tag memory has enough bit tag width for

Table B.4 CW4011 D-Cache Sizes

Two-way
Set Associative

D-Cache (Kbytes)
Direct-Mapped

D-Cache (Kbytes)
CCC Register

DS[1:0] Settings

2 1 00

4 2 01

8 4 10

16 8 11
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small configurations. To test a 1-Kbyte configuration, the D-cache tag
would need 24 bits. This D-cache size flexibility allows bench marking of
various configurations in the simulation model and on the reference
device chip. For more information on dynamic cache sizing, see Section
4.3.10, “Configuration and Cache Control (CCC) Register.”

The following sections describe the physical port interconnect between
the CW4011 and the synchronous RAM models. This connection is in
Verilog or VHDL at the shell level. In the CW4011 deliverables database,
Verilog and VHDL models are available as an example.

B.7 CW4011 D-Cache Interface

The CW4011 D-cache interface was designed to implement a two-way
set associative D-cache of varying size. In the CW4011, the data
associativities (Set 0 and Set 1) are interleaved across two data RAMs
(Bank A and Bank B). This allows 64 bit reads and writes to the SCbus
on cache refills, while only requiring two banks of 32-bit wide RAMs.
Table B.5 shows this information interleaving.

Table B.5 D-Cache Data Interleaving

Bank A Bank B

Line 0, Set 0, Word 0 Line 0, Set 1 Word 0

Line 0, Set 1, Word 1 Line 0, Set 0 Word 1

Line 0, Set 0, Word 2 Line 0, Set 1 Word 2

Line 0, Set 1, Word 3 Line 0, Set 0 Word 3

Line 0, Set 0, Word 4 Line 0, Set 1 Word 4

Line 0, Set 1, Word 5 Line 0, Set 0 Word 5

Line 0, Set 0, Word 6 Line 0, Set 1 Word 6

Line 0, Set 1, Word 7 Line 0, Set 0 Word 7

Line 1, Set 0, Word 0 Line 1, Set 1 Word 0

Line 1, Set 1, Word 1 Line 1, Set 0 Word 1

Line 1, Set 0, Word 2 Line 1, Set 1 Word 2

Line 1, Set 1, Word 3 Line 1, Set 0 Word 3

Line 1, Set 0, Word 4 Line 1, Set 1 Word 4

(Sheet 1 of 2)
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For more detailed information about the CW4011 D-cache interface
signals, see Section 7.7, “Data Cache Interface.”

B.8 D-Cache Shell

In the CW4011 RTL shell model, the deliverables data, tag, and data
memories are gathered in a shell module for D-cache. Figure B.2 shows
the CW4011_shell hierarchy.

Figure B.2 CW4011 D-Cache Shell RTL

Line 1, Set 1, Word 5 Line 1, Set 0 Word 5

Line 1, Set 0, Word 6 Line 1, Set 1 Word 6

Line 1, Set 1, Word 7 Line 1, Set 0 Word 7

.

.

.

.

.

.

Line n, Set 0, Word 4 Line n, Set 1 Word 4

Line n, Set 1, Word 5 Line n, Set 0 Word 5

Line n, Set 0, Word 6 Line n, Set 1 Word 6

Line n, Set 1, Word 7 Line n, Set 0 Word 7

Table B.5 D-Cache Data Interleaving (Cont.)

Bank A Bank B

(Sheet 2 of 2)

Tag RAM

Tag RAM

Data RAM

Data RAM

Tag RAM

Tag RAM

LRU RAM

Data RAM

Data RAM

CW4011_core

dcache_shellicache_shell

CW4011_shell



B-22 Cache Sizing and Design Concerns

B.9 D-Cache Set Associative RAM Hookup

Set associative implementations require two tag RAMs and two data
RAMs. Table B.6 and Table B.7 list the required RAM sizes.

The RAMs used should be word write enabled, synchronous RAMs such
the m10p111hs for the CW4011 (LCBG10P).

The following sections describe the connections from the CW4011 core
D-cache interface ports to the D-cache RAM macros ports, assuming
m10p111hs RAMs. Unspecified I/O can be considered unconnected. Of
course, unconnected core inputs should be tied deasserted.
Unconnected core outputs may be left open.

For bigger cache size, the CW4011 core needs fewer tag inputs. Unused
tag inputs are ignored, according to the programming of the CCC
register.

If both or either cache set is used as a RAM of which address is fixed in
the memory address space permanently, the tag memory is not

Table B.6 Set Associative, WriteBack, D-Cache RAM Requirements

Set Associative
I-Cache Size (Kbytes)

Tag RAM Data RAM

Quantity Size (Bits) Quantity Size (Bits)

2 2 32x24 2 256x32

4 2 64x23 2 512x32

8 2 128x22 2 1024x32

16 2 256x21 2 2048x32

Table B.7 Set Associative, WriteThrough, D-Cache RAM Requirements

Set Associative
I-Cache Size (Kbytes)

Tag RAM Data RAM

Quantity Size (Bits) Quantity Size (Bits)

2 2 32x23 2 256x32

4 2 64x22 2 512x32

8 2 128x21 2 1024x32

16 2 256x20 2 2048x32
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necessary. The tag inputs must be tied either LOW or HIGH, according
to the address mapping.

Refer the HDL model of the cache shell for details about the connections
to memory macros.

B.9.1 2-Kbyte D-Cache Set Associative, WriteBack Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.9.1.1 Tag RAM Set 0

DO[23:0] ↔ DC0TAGDop[23:0]
DI[23:0] ↔ DC0TAGDip[23:0]
A[4:0] ↔ DCTAGADDRp[9:5]]
(open) ↔ DCTAGADDRp[12:10]
CLK ↔ Shell Clock
OE[23:0] ↔ HIGH
WE[23:0] ↔ {23{DTWeAp[1]},DTWeAp[0]}
Enable ↔ HIGH

B.9.1.2 Tag RAM Set 1

DO[23:0] ↔ DC1TAGDop[23:0]
DI[23:0] ↔ DC1TAGDip[23:0]
A[4:0] ↔ DCTAGADDRp[9:5]
(open) ↔ DCTAGADDRp[12:10]
CLK ↔ Shell Clock
OE[23:0] ↔ HIGH
WE[23:0] ↔ {23{DTWeBp[1]},DTWeBp[0]}
Enable ↔ HIGH
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B.9.1.3 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[7:0] ↔ {DCDATAADDRp[9:3],DCADATAADDRp}
(open) ↔ DCDATAADDRp[12:10]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0]↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.9.1.4 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[7:0] ↔ {DCDATAADDRp[9:3],DCBDATAADDRp}
(open) ↔ DCDATAADDRp[12:10]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH

B.9.2 4-Kbyte D-Cache Set Associative, WriteBack Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.9.2.1 Tag RAM Set 0

DO[22:0] ↔ {DC0TAGDop[23:3],DC0TAGDop[1:0]}
1’b0 ↔ DC0TAGDop[2]
DI[22:0] ↔ {DC0TAGDip[23:3],DC0TAGDip[1:0]}
(open) ↔ DC0TAGDip[2]
A[5:0] ↔ DCTAGADDRp[10:5]
(open) ↔ DCTAGADDRp[12:11]
CLK ↔ Shell Clock
OE[22:0] ↔ HIGH
WE[22:0] ↔ {22{DTWeAp[1]},DTWeAp[0]}
Enable ↔ HIGH
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B.9.2.2 Tag RAM Set 1

DO[22:0] ↔ {DC1TAGDop[23:3],DC1TAGDop[1:0]}
1’b0 ↔ DC1TAGDop[2]
DI[22:0] ↔ {DC1TAGDip[23:3],DC1TAGDip[1:0]}
(open) ↔ DC0TAGDip[2]
A[5:0] ↔ DCTAGADDRp[10:5]
(open) ↔ DCTAGADDRp[12:11]
CLK ↔ Shell Clock
OE[22:0] ↔ HIGH
WE[22:0] ↔ {22{DTWeBp[1]},DTWeBp[0]}
Enable ↔ HIGH

B.9.2.3 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[8:0] ↔ {DCDATAADDRp[10:3],DCADATAADDRp}
(open) ↔ DCDATAADDRp[12:11]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.9.2.4 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[8:0] ↔ {DCDATAADDRp[10:3],DCBDATAADDRp}
(open) ↔ DCDATAADDRp[12:11]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH
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B.9.3 8-Kbyte D-Cache Set Associative, WriteBack Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.9.3.1 Tag RAM Set 0

DO[21:0] ↔ {DC0TAGDop[23:4],DC0TAGDop[1:0]}
2’b0 ↔ DC0TAGDop[3:2]
DI[21:0] ↔ {DC0TAGDip[23:4],DC0TAGDip[1:0]}
(open) ↔ DC0TAGDip[3:2]
A[6:0] ↔ DCTAGADDRp[11:5]
(open) ↔ DCTAGADDRp[12]
CLK ↔ Shell Clock
OE[21:0] ↔ HIGH
WE[21:0] ↔ {21{DTWeAp[1]},DTWeAp[0]}
Enable ↔ HIGH

B.9.3.2 Tag RAM Set 1

DO[21:0] ↔ {DC1TAGDop[23:4],DC1TAGDop[1:0]}
2’b0 ↔ DC1TAGDop[3:2]
DI[21:0] ↔ {DC1TAGDip[23:4],DC1TAGDip[1:0]}
(open) ↔ DC1TAGDip[3:2]
A[6:0] ↔ DCTAGADDRp[11:5]
(open) ↔ DCTAGADDRp[12]
CLK ↔ Shell Clock
OE[21:0] ↔ HIGH
WE[21:0] ↔ {21{DTWeBp[1]},DTWeBp[0]}
Enable ↔ HIGH

B.9.3.3 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[9:0] ↔ {DCDATAADDRp[11:3],DCADATAADDRp}
(open) ↔ DCDATAADDRp[12]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔
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{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.9.3.4 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[9:0] ↔ {DCDATAADDRp[11:3],DCBDATAADDRp}
(open) ↔ DCDATAADDRp[12]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH

B.9.4 16-Kbyte D-Cache Set Associative, WriteBack Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.9.4.1 Tag RAM Set 0

DO[20:0] ↔ {DC0TAGDop[23:5],DC0TAGDop[1:0]}
3’b0 ↔ DC0TAGDop[4:2]
DI[20:0] ↔ {DC0TAGDip[23:5],DC0TAGDip[1:0]}
(open) ↔ DC0TAGDip[4:2]
A[7:0] ↔ DCTAGADDRp[12:5]
CLK ↔ Shell Clock
OE[20:0] ↔ HIGH
WE[20:0] ↔ {20{DTWeAp[1]},DTWeAp[0]}
Enable ↔ HIGH

B.9.4.2 Tag RAM Set 1

DO[20:0] ↔ {DC1TAGDop[23:5],DC1TAGDop[1:0]}
3’b0 ↔ DC1TAGDop[4:2]
DI[20:0] ↔ {DC1TAGDip[23:5],DC1TAGDip[1:0]}
(open) ↔ DC1TAGDip[4:2]
A[7:0] ↔ DCTAGADDRp[12:5]
CLK ↔ Shell Clock
OE[20:0] ↔ HIGH
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WE[20:0] ↔ {20{DTWeBp[1]},DTWeBp[0]}
Enable ↔ HIGH

B.9.4.3 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[10:0] ↔ {DCDATAADDRp[12:3],DCADATAADDRp}
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.9.4.4 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[10:0] ↔ {DCDATAADDRp[12:3],DCBDATAADDRp}
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH

B.9.5 2-Kbyte D-Cache Set Associative, WriteThrough Connections

For write through cache, the WB bit in the tag is unused. The
DC0TAGDop[0] and DC1TAGDop[0] inputs of the core should be tied
LOW. The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.9.5.1 Tag RAM Set 0

DO[22:0] ↔ {DC0TAGDop[23:1]}
1’b0 ↔ DC0TAGDop[0]
DI[22:0] ↔ DC0TAGDip[23:1]
(open) ↔ DC0TAGDip[0]
A[4:0] ↔ DCTAGADDRp[9:5]
(open) ↔ DCTAGADDRp[12:10]
CLK ↔ Shell Clock
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OE[22:0] ↔ HIGH
WE[22:0] ↔ 23{DTWeAp[1]}
Enable ↔ HIGH

B.9.5.2 Tag RAM Set 1

DO[22:0] ↔ {DC1TAGDop[23:1]}
1’b0 ↔ DC1TAGDop[0]
DI[22:0] ↔ DC1TAGDip[23:1]
(open) ↔ DC1TAGDip[0]
A[4:0] ↔ DCTAGADDRp[9:5]
(open) ↔ DCTAGADDRp[12:10]
CLK ↔ Shell Clock
OE[22:0] ↔ HIGH
WE[22:0] ↔ 23{DTWeBp[1]}
Enable ↔ HIGH

B.9.5.3 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[7:0] ↔ {DCDATAADDRp[9:3],DCADATAADDRp}
(open) ↔ DCDATAADDRp[12:10]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.9.5.4 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[7:0] ↔ {DCDATAADDRp[9:3],DCBDATAADDRp}
(open) ↔ DCDATAADDRp[12:10]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH
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B.9.6 4-Kbyte D-Cache Set Associative, WriteThrough Connections

For WriteThrough cache, the WB bit in the tag is unused. The
DC0TAGDop[0] and DC1TAGDop[0] inputs of the core should be tied
LOW. The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.9.6.1 Tag RAM Set 0

DO[21:0] ↔ {DC0TAGDop[23:3],DC0TAGDop[1]}
1’b0 ↔ DC0TAGDop[0]
1’b0 ↔ DC0TAGDop[2]
DI[21:0] ↔ {DC0TAGDip[23:3],DC0TAGDip[1]}
(open) ↔ DC0TAGDip[0]
(open) ↔ DC0TAGDip[2]
A[5:0] ↔ DCTAGADDRp[10:5]
(open) ↔ DCTAGADDRp[12:11]
CLK ↔ Shell Clock
OE[21:0] ↔ HIGH
WE[21:0] ↔ 22{DTWeAp[1]}
Enable ↔ HIGH

B.9.6.2 Tag RAM Set 1

DO[21:0] ↔ {DC1TAGDop[23:3],DC1TAGDop[1]}
1’b0 ↔ DC1TAGDop[0]
1’b0 ↔ DC1TAGDop[2]
DI[21:0] ↔ {DC1TAGDip[23:3],DC1TAGDip[1]}
(open) ↔ DC1TAGDip[0]
(open) ↔ DC1TAGDip[2]
A[5:0] ↔ DCTAGADDRp[10:5]
(open) ↔ DCTAGADDRp[12:11]
CLK ↔ Shell Clock
OE[21:0] ↔ HIGH
WE[21:0] ↔ 22{DTWeBp[1]}
Enable ↔ HIGH
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B.9.6.3 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[8:0] ↔ {DCDATAADDRp[10:3],DCADATAADDRp}
(open) ↔ DCDATAADDRp[12:11]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.9.6.4 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[8:0] ↔ {DCDATAADDRp[10:3],DCBDATAADDRp}
(open) ↔ DCDATAADDRp[12:11]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH

B.9.7 8-Kbyte D-Cache Set Associative, WriteThrough Connections

For WriteThrough cache, the WB bit in the tag is unused. The
DC0TAGDop[0] and DC1TAGDop[0] inputs of the core should be tied
LOW. The following connections between the CW4011 core and the
synchronous RAM modules need to be made.
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B.9.7.1 Tag RAM Set 0

DO[20:0] ↔ {DC0TAGDop[23:4],DC0TAGDop[1]}
1’b0 ↔ DC0TAGDop[0]
2’b0 ↔ DC0TAGDop[3:2]
DI[20:0] ↔ {DC0TAGDip[23:4],DC0TAGDip[1]}
(open) ↔ DC0TAGDip[0]
(open) ↔ DC0TAGDip[3:2]
A[6:0] ↔ DCTAGADDRp[11:5]
(open) ↔ DCTAGADDRp[12]
CLK ↔ Shell Clock
OE[20:0] ↔ HIGH
WE[20:0] ↔ 21{DTWeAp[1]}
Enable ↔ HIGH

B.9.7.2 Tag RAM Set 1

DO[20:0] ↔ {DC1TAGDop[23:4],DC1TAGDop[1]}
1’b0 ↔ DC1TAGDop[0]
2’b0 ↔ DC1TAGDop[3:2]
DI[20:0] ↔ {DC1TAGDip[23:4],DC1TAGDip[1]}
(open) ↔ DC1TAGDip[0]
(open) ↔ DC1TAGDip[3:2]
A[6:0] ↔ DCTAGADDRp[11:5]
(open) ↔ DCTAGADDRp[12]
CLK ↔ Shell Clock
OE[20:0] ↔ HIGH
WE[20:0] ↔ 21{DTWeBp[1]}
Enable ↔ HIGH

B.9.7.3 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[9:0] ↔ {DCDATAADDRp[11:3],DCADATAADDRp}
(open) ↔ DCDATAADDRp[12]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH
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B.9.7.4 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[9:0] ↔ {DCDATAADDRp[11:3],DCBDATAADDRp}
(open) ↔ DCDATAADDRp[12]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH

B.9.8 16-Kbyte D-Cache Set Associative, WriteThrough Connections

For WriteThrough cache, the WB bit in the tag is unused. The
DC0TAGDop[0] and DC1TAGDop[0] inputs of the core should be tied
LOW. The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.9.8.1 Tag RAM Set 0

DO[19:0] ↔ {DC0TAGDop[23:5],DC0TAGDop[1]}
1’b0 ↔ DC0TAGDop[0]
3’b0 ↔ DC0TAGDop[4:2]
DI[19:0] ↔ {DC0TAGDip[23:5],DC0TAGDip[1]}
(open) ↔ DC0TAGDip[0]
(open) ↔ DC0TAGDip[4:2]
A[7:0] ↔ DCTAGADDRp[12:5]
CLK ↔ Shell Clock
OE[19:0] ↔ HIGH
WE[19:0] ↔ 20{DTWeAp[1]}
Enable ↔ HIGH
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B.9.8.2 Tag RAM Set 1

DO[19:0] ↔ {DC1TAGDop[23:5],DC1TAGDop[1]}
1’b0 ↔ DC1TAGDop[0]
3’b0 ↔ DC1TAGDop[4:2]
DI[19:0] ↔ {DC1TAGDip[23:5],DC1TAGDip[1]}
(open) ↔ DC1TAGDip[0]
(open) ↔ DC1TAGDip[4:2]
A[7:0] ↔ DCTAGADDRp[12:5]
CLK ↔ Shell Clock
OE[19:0] ↔ HIGH
WE[19:0] ↔ 20{DTWeBp[1]}
Enable ↔ HIGH

B.9.8.3 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[10:0] ↔ {DCDATAADDRp[12:3],DCADATAADDRp}
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.9.8.4 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[10:0] ↔ {DCDATAADDRp[12:3],DCBDATAADDRp}
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH
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B.10 D-Cache Direct-Mapped RAM Hookup

Direct-mapped D-cache implementations require one tag RAM and two
data RAMs. Table B.8 and Table B.9 list the required RAM sizes.

The RAMs used should be word write enabled, synchronous RAMs such
as the m10p111hs for the CW4011 (LCBG10P).

In the case of direct-mapped cache configuration, inputs of one set are
not used. All unused inputs are ignored internally, but they should be tied
deasserted.

The following sections describe connections from the CW4011 core
D-cache interface ports to the D-cache RAM macros ports assuming
m10p111hs RAMs. Unspecified I/O can be considered unconnected. Of
course, unconnected core inputs should be tied deasserted.

Table B.8 Direct-Mapped, WriteBack, D-Cache RAM Requirements

Direct-Mapped
I-Cache Size (Kbytes)

Tag RAM Data RAM

Quantity Size (Bits) Quantity Size (Bits)

1 1 32x24 2 128x32

2 1 64x23 2 256x32

4 1 128x22 2 512x32

8 1 256x21 2 1024x32

Table B.9 Direct-Mapped, WriteThrough, D-Cache RAM Requirements

Direct-Mapped
I-Cache Size (Kbytes)

Tag RAM Data RAM

Quantity Size (Bits) Quantity Size (Bits)

1 1 32x23 2 128x32

2 1 64x22 2 256x32

4 1 128x21 2 512x32

8 1 256x20 2 1024x32
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B.10.1 1-Kbyte D-Cache Direct-Mapped, WriteBack Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.10.1.1 Tag RAM Set 0

DO[23:0] ↔ DC0TAGDop[23:0]
DI[23:0] ↔ DC0TAGDip[23:0]
A[4:0] ↔ DCTAGADDRp[9:5]
(open) ↔ DCTAGADDRp[12:10]
CLK ↔ Shell Clock
OE[23:0] ↔ HIGH
WE[23:0] ↔ {23{DTWeAp[1]},DTWeAp[0]}
Enable ↔ HIGH

B.10.1.2 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[6:0] ↔ DCDATAADDRp[9:3]
(open) ↔ DCDATAADDRp[12:10]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.10.1.3 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[6:0] ↔ DCDATAADDRp[9:3]
(open) ↔ DCDATAADDRp[12:10]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH
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B.10.2 2-Kbyte D-Cache Direct-Mapped, WriteBack Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.10.2.1 Tag RAM Set 0

DO[22:0] ↔ {DC0TAGDop[23:3],DC0TAGDop[1:0]}
1’b0 ↔ DC0TAGDop[2]
DI[22:0] ↔ {DC0TAGDip[23:3],DC0TAGDip[1:0]}
(open) ↔ DC0TAGDip[2]
A[5:0] ↔ DCTAGADDRp[10:5]
(open) ↔ DCTAGADDRp[12:11]
CLK ↔ Shell Clock
OE[22:0] ↔ HIGH
WE[22:0] ↔ {22{DTWeAp[1]},DTWeAp[0]}
Enable ↔ HIGH

B.10.2.2 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[7:0] ↔ DCDATAADDRp[10:3]
(open) ↔ DCDATAADDRp[12:11]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.10.2.3 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[7:0] ↔ DCDATAADDRp[10:3]
(open) ↔ DCDATAADDRp[12:11]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH
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B.10.3 4-Kbyte D-Cache Direct-Mapped, WriteBack Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.10.3.1 Tag RAM Set 0

DO[21:0] ↔ {DC0TAGDop[23:4],DC0TAGDop[1:0]}
2’b0 ↔ DC0TAGDop[3:2]
DI[21:0] ↔ {DC0TAGDip[23:4],DC0TAGDip[1:0]}
(open) ↔ DC0TAGDip[3:2]
A[6:0] ↔ DCTAGADDRp[11:5]
(open) ↔ DCTAGADDRp[12]
CLK ↔ Shell Clock
OE[21:0] ↔ HIGH
WE[21:0] ↔ {21{DTWeAp[1]},DTWeAp[0]}
Enable ↔ HIGH

B.10.3.2 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[8:0] ↔ DCDATAADDRp[11:3]
(open) ↔ DCDATAADDRp[12]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.10.3.3 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[8:0] ↔ {DCDATAADDRp[11:3]
(open) ↔ DCDATAADDRp[12]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH
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B.10.4 8-Kbyte D-Cache Direct-Mapped, WriteBack Connections

The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.10.4.1 Tag RAM Set 0

DO[20:0] ↔ {DC0TAGDop[23:5],DC0TAGDop[1:0]}
3’b0 ↔ DC0TAGDop[4:2]
DI[20:0] ↔ {DC0TAGDip[23:5],DC0TAGDip[1:0]}
(open) ↔ DC0TAGDip[4:2]
A[7:0] ↔ DCTAGADDRp[12:5]
CLK ↔ Shell Clock
OE[20:0] ↔ HIGH
WE[20:0] ↔ {20{DTWeAp[1]},DTWeAp[0]}
Enable ↔ HIGH

B.10.4.2 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[9:0] ↔ DCDATAADDRp[12:3]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.10.4.3 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[9:0] ↔ DCDATAADDRp[12:3]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH
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B.10.5 1-Kbyte D-Cache Direct-Mapped, WriteThrough Connections

For write through cache, the WB bit in the tag is unused. The
DC0TAGDop[0] and DC1TAGDop[0] inputs of the core should be tied
LOW. The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.10.5.1 Tag RAM Set 0

DO[22:0] ↔ {DC0TAGDop[23:1]}
1’b0 ↔ DC0TAGDop[0]
DI[22:0] ↔ DC0TAGDip[23:1]
(open) ↔ DC0TAGDip[0]
A[4:0] ↔ DCTAGADDRp[9:5]
(open) ↔ DCTAGADDRp[12:10]
CLK ↔ Shell Clock
OE[22:0] ↔ HIGH
WE[22:0] ↔ 23{DTWeAp[1]}
Enable ↔ HIGH

B.10.5.2 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[6:0] ↔ DCDATAADDRp[9:3]
(open) ↔ DCDATAADDRp[12:10]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH
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B.10.5.3 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[6:0] ↔ DCDATAADDRp[9:3]
(open) ↔ DCDATAADDRp[12:10]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH

B.10.6 2-Kbyte D-Cache Direct-Mapped, WriteThrough Connections

For WriteThrough cache, the WB bit in the tag is unused. The
DC0TAGDop[0] and DC1TAGDop[0] inputs of the core should be tied
LOW. The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.10.6.1 Tag RAM Set 0

DO[21:0] ↔ {DC0TAGDop[23:3],DC0TAGDop[1]}
1’b0 ↔ DC0TAGDop[0]
1’b0 ↔ DC0TAGDop[2]
DI[21:0] ↔ {DC0TAGDip[23:3],DC0TAGDip[1]}
(open) ↔ DC0TAGDip[0]
(open) ↔ DC0TAGDip[2]
A[5:0] ↔ DCTAGADDRp[10:5]
(open) ↔ DCTAGADDRp[12:11]
CLK ↔ Shell Clock
OE[21:0] ↔ HIGH
WE[21:0] ↔ 22{DTWeAp[1]}
Enable ↔ HIGH
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B.10.6.2 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[7:0] ↔ DCDATAADDRp[10:3]
(open) ↔ DCDATAADDRp[12:11]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.10.6.3 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[7:0] ↔ DCDATAADDRp[10:3]
(open) ↔ DCDATAADDRp[12:11]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH

B.10.7 4-Kbyte D-Cache Direct-Mapped, WriteThrough Connections

For WriteThrough cache, the WB bit in the tag is unused. The
DC0TAGDop[0] and DC1TAGDop[0] inputs of the core should be tied
LOW. The following connections between the CW4011 core and the
synchronous RAM modules need to be made.
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B.10.7.1 Tag RAM Set 0

DO[20:0] ↔ {DC0TAGDop[23:4],DC0TAGDop[1]}
1’b0 ↔ DC0TAGDop[0]
2’b0 ↔ DC0TAGDop[3:2]
DI[20:0] ↔ {DC0TAGDip[23:4],DC0TAGDip[1]}
(open) ↔ DC0TAGDip[0]
(open) ↔ DC0TAGDip[3:2]
A[6:0] ↔ DCTAGADDRp[11:5]
(open) ↔ DCTAGADDRp[12]
CLK ↔ Shell Clock
OE[20:0] ↔ HIGH
WE[20:0] ↔ 21{DTWeAp[1]}
Enable ↔ HIGH

B.10.7.2 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[8:0] ↔ DCDATAADDRp[11:3]
(open) ↔ DCDATAADDRp[12]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.10.7.3 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[8:0] ↔ DCDATAADDRp[11:3]
(open) ↔ DCDATAADDRp[12]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH
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B.10.8 8-Kbyte D-Cache Direct-Mapped, WriteThrough Connections

For WriteThrough cache, the WB bit in the tag is unused. The
DC0TAGDop[0] and DC1TAGDop[0] inputs of the core should be tied
LOW. The following connections between the CW4011 core and the
synchronous RAM modules need to be made.

B.10.8.1 Tag RAM Set 0

DO[19:0] ↔ {DC0TAGDop[23:5],DC0TAGDop[1]}
1’b0 ↔ DC0TAGDop[0]
3’b0 ↔ DC0TAGDop[4:2]
DI[19:0] ↔ {DC0TAGDip[23:5],DC0TAGDip[1]}
(open) ↔ DC0TAGDip[0]
(open) ↔ DC0TAGDip[4:2]
A[7:0] ↔ DCTAGADDRp[12:5]
CLK ↔ Shell Clock
OE[19:0] ↔ HIGH
WE[19:0] ↔ 20{DTWeAp[1]}
Enable ↔ HIGH

B.10.8.2 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[9:0] ↔ DCDATAADDRp[12:3]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH

B.10.8.3 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[9:0] ↔ DCDATAADDRp[12:3]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔
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{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH

B.10.9 Data Scratchpad RAM

Both or either D-cache set can be used as data scratchpad RAM, where
the address is fixed in the memory address space. It is enabled by
setting either the SR0 bit to one for Set 0, or the SR1 bit to one for Set 1,
Both the SR0 and SR1 bits are in the CCC register.

If the address space is fixed permanently, the tag memory is not
necessary. The tag inputs must be tied either LOW or HIGH according
to the address mapping.

If the address space should be programmable, the tag memory must be
initialized to valid with appropriate address before used as a scratchpad
RAM by a cache maintenance function, which is enabled by Isolate
Cache (IsC) and Tag bits of the CCC register. For more information, see
Section 4.3.10, “Configuration and Cache Control (CCC) Register.”

The following shows an example which has 8 Kbytes of scratchpad RAM
only.

B.10.9.1 Tag RAM Set 0

DO[31:13] ↔ {DC0TAGDop[23:5],DC0TAGDop[1]}
5’b00010 ↔ DC0TAGDop[4:0]
(open) ↔ DC0TAGDip[23:0]
(open) ↔ DTWeAp[1]
Enable ↔ HIGH

B.10.9.2 Data RAM Bank A

DO[31:0] ↔ DCADATADop[31:0]
DI[31:0] ↔ DCADATADip[31:0]
A[9:0] ↔ DCDATAADDRp[12:3]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeAp[3]},8{DCWeAp[2]},8{DCWeAp[1]},8{DCWeAp[0]}}
Enable ↔ HIGH
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B.10.9.3 Data RAM Bank B

DO[31:0] ↔ DCBDATADop[31:0]
DI[31:0] ↔ DCBDATADip[31:0]
A[9:0] ↔ DCDATAADDRp[12:3]
CLK ↔ Shell Clock
OE[31:0] ↔ HIGH
WE[31:0] ↔

{8{DCWeBp[3]},8{DCWeBp[2]},8{DCWeBp[1]},8{DCWeBp[0]}}
Enable ↔ HIGH
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Appendix C
Programmer’s Notes

This appendix contains information that will be useful if you are writing
software for the CW4011 core. The information is arranged in functional
groups: instruction related, CP0 or TLB related, and cache related.

C.1 Instruction-Related Notes
♦ The instruction prior to an ERET must not generate an exception.

You can use a NOP (no operation) to make sure that this restriction
is met.

♦ The WAITI instruction must be followed by at least one NOP.

♦ Trap instructions must not be placed in branch delay slots.

C.2 CP0 or TLB–Related Notes
♦ When the CW4011 is operating in R3000 exception compatibility

mode, the RFE (Restore From Exception) instruction clears the LL
(load linked) bit. This is consistent with R4000 mode ERET
operation.

♦ If a TLB is not present or enabled in the system, CP0 will reflect a
Coprocessor Unusable exception if an attempt is made to execute
any of the TLB maintenance instructions: TLBP, TLBR, TLBWI,
TLBWR.

♦ TLB instructions (TLBP, TLBR, TLBWI, TLBWR) cannot be preceded
or followed by a data access instruction (load or store) that requires
target address translation, that is, kseg, kseg2.

♦ The instruction prior to a TLBWI or TLBWR instruction must not
generate an exception. You can use a NOP to make sure that this
restriction is met.
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♦ Three instructions are required between a MTC0 instruction that
targets any of the TLB support registers (that is, EntryHi, EntryLo,
PageMask, and Index) and a subsequent TLBWI or TLBWR instruc-
tion. This ensures that the results of the prior MTC0 instruction will
be seen by the TLB write operation

♦ Five instructions are required between a MTC0 Status register
operation that updates the coprocessor usability field (Status[31:28])
and a subsequent coprocessor instruction that expects to see the
updated value.

♦ Seven instructions are required between a MTC0 EPC register
operation and a subsequent ERET instruction that expects to see the
updated value.

C.3 Cache-Related Notes
♦ When the CW4011 is operating in Isolate Cache mode, load and

store operations to the cache are not allowed in the delay slot of
Branch Likely instructions.

C.4 CW33300 Compatible Debug Extension Notes
♦ The existing CW33300 has some extensions to the CP0 that provide

enhanced debugging and exception handler support. The CW4011
core remains compatible with these enhancements. Refer to the
CW33300 Enhanced Self-Embedding Processor Core User’s Manual
for further information.
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Glossary

Big-endian This is a method of data formatting in which each field is
addressed by referring to its most-significant byte. This means that if you
are accessing a four-byte, singleword, the most-significant byte is byte
03, and the most-significant bit is bit 31. See also Little-endian.

Bus sizing Refers to the ability of the processor to support and
interface with data buses of different sizes.

Bus snooping This is the method used by the cache controller to
monitor memory accesses performed by other bus masters.

Direct-map caching In a direct-mapped cache, each memory location
is mapped to one position in the cache. Direct mapping is useful if you
are storing small loops and sequential operations. You can use this type
of caching for both the D-cache and the I-cache.

Encrypted Encrypted files are source code files that have been
processed in a language such as HDL or Verilog so that they are only
machine readable. This process enables you to have access to the
behavior of the files but not to the intellectual property associated with
them.

Fixup cycle This is a clock cycle during which the Load Miss data is
funneled back to the instruction that requires it.

Little-endian This is a method of data formatting in which each field is
addressed by referring to its least-significant byte. This means that if you
are accessing a four-byte, singleword, the most-significant byte is
byte 00, and the most-significant bit is bit 00. The CW4011 supports both
little-endian and big-endian formats. See also Big-endian.

Placement algorithms Information is placed in a cache using
placement algorithms. These algorithms define the positions in the cache
where the information from a particular memory location may be stored.
The CW4011 uses two types of algorithm, direct mapping and two-way
set associative mapping.
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Slip condition A slip condition occurs when the pipeline stalls after
the EX stage. In this situation, the previous instruction is executed and
clears the pipeline. However, the earlier stages of the pipeline are stalled.

Two-way set associative caching In a two-way set associative cache,
each memory location is stored in one of two possible positions. Two-way
set associative mapping is well-suited for data references, which tend to
be more scattered than instructions. You can use this type of caching for
both the D-cache and the I-cache.

Unencrypted Files that are unencrypted have not been subjected to
the processing described in the entry Encrypted. These files are human
readable and can be written using a text editor.

Verilog model Verilog is an open standard language. A Verilog model
represents a design in the language. It provides no indication of the level
of abstraction.
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