Phone: (516) 997-7474 Fax: (516) 997-7479

Website: www.dionics-usa.com

DIH-137 Power MOSFET Dual N/C SPST Photovoltaic AC-DC Relay

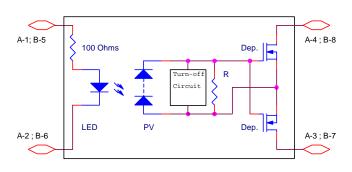
Features:

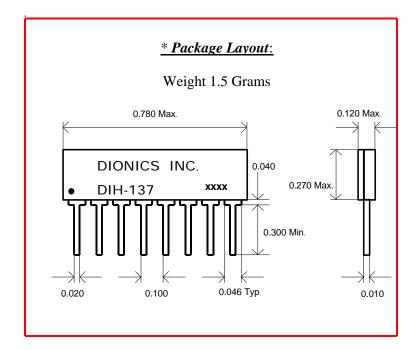
- Package Contains Two N/C AC-DC Relays;
- Fast Switching Speeds
- Optically Isolated to 400V DC.
- Low Level Logic Compatibility
- Immune to False Triggering
- Small size, Hermetic 8-pin SIP Package
- Designed to Meet MIL-R28750 and 28V DC System Surge and Spike Requirement of MIL STD-704.

Applications:

- Replacement of Mechanical Relays
- Motor Control & Power Control
- Aircraft Flight Control Systems
- A.T.E (Automatic Test Equipment)
- Load Control From Processor I/O Ports
- Power Supply Circuits
- Medical Electronics

Description:


The DIH-137 is a State-of-the-Art Photovoltaic Solid State Relay designed for 28V AC-DC Aircraft power applications where package space-efficiency and high reliability are critical.


Each package contains two independent N/C relays, with separate LED inputs and optically isolated power MOSFET outputs. The Normally Closed (N/C) outputs are able to operate AC or DC.

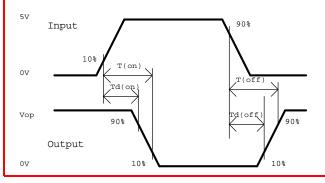
Each relay, A or B, is capable of carrying 150mA DC continuous current and 250mA DC peak current. Each LED optically couples to a Photovoltaic (PV) IC chip which responds by generating a voltage. This voltage is internally connected to the Gate and Source terminals of the output MOSFETs, thus controlling their current. The DIH-137 is also available screened to military specifications, as required.

Pin Designations							
Relay A		Relay B					
1	Input +	5	Input +				
2	Input -	6	Input -				
3	Output	7	Output				
4	Output	8	Output				

* DIH-137 Equivalent Circuit

DIH-137: Power MOSFET SPST Photovoltaic AC-DC Relay

Electrical Characteristics (Per Relay @ 25 ⁰ C unless otherwise specified):


- ❖ Relay A: Normally Closed (N/C)
- Relay B: Normally Closed (N/C)

* I	nput Characteristics				
Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{in}	Input Current	5.0	15.0	24.0	mA
$\mathbf{V_{in}}$	Input Voltage Drop	1.3		1.5	V
$\mathbf{V}_{\mathrm{rev.}}$	Reverse Voltage			10.0	V
$\mathbf{V}_{\mathbf{on}}$	On State Voltage		_	1.2	V
$\mathbf{V}_{ ext{off}}$	Off State Voltage	4.0			V

* Output Characteristics					
Symbol	Parameter	Тур.	Max.	Unit	Condition
I_{load}	Load Current		150 / 250	mA	Continuous / Peak
$\mathbf{R}_{\mathbf{on}}$	On Resistance		18	W	$I_{in}=18 \text{ (mA)}; V_{op}=80 \text{ (V)}$
	$-40 {}^{0}\text{C} \le \text{T}_{c} \le 85 {}^{0}\text{C}$		28	W	$I_{in}=18 \text{ (mA)}; V_{op}=80 \text{ (V)}$
$\mathbf{R}_{\mathbf{iso}}$	Input/Output Resistance	10^{8}		W	
I_{leak}	Leakage Current		100	mA	$I_{in}=18 \text{ (mA)}; V_{op}=80 \text{ (V)}$
$\mathbf{V}_{\mathbf{op}}$	Operating Voltage	30	80	\mathbf{V}	DC
BV	Breakdown Voltage		100	\mathbf{V}	DC
Ton	Turn-On Time	150	300	1113	V_{in} = 4.5V, P.W* = 100 μ s; V_{op} = 30V
T_{off}	Turn-Off Time	150	300	1118	V_{in} = 4.5V, P.W =100 μ s; V_{op} = 30V
$\mathbf{V_{iso}}$	Input-Output Isolation		400	V	DC
P	Maximum Power Dissipation		400	mW	

PW*: Pulse Width.

❖ Timing Diagram

Environmental Ratings:

- Storage Temperature: -25°C to +125°C
- Constant Acceleration: 5000G
- Hermeticity: + Gross 1x10⁻⁵ atm cc/sec + Fine 5 x 10⁻⁸ atm cc/s **

^{**} When screened to MIL-Specs.