Features - High Through-Put Programmable Logic Device - High Speed 83.3 MHz System Clock Rate Operation - Low Power 0.5 mA Typical (ATH3000L) - Fiexible Interconnect Architecture Universal Routing - 56 Logic Celis 56 Flip-Flops 56 I/O Pins - Multiple Flip-Flop Types Synchronous or Asynchronous Registers - Complete Third Party Software Support - No Placement, Routing or Layout Software Required - Proven and Reliable High Speed CMOS EPROM Process 2000 V ESD Protection 200 mA Latchup Immunity - Reprogrammable Tested 100% for Programmability - Commercial, Industrial and Military Temperature Grades ## **Block Diagram** Description The Atmel ATH3000/L is an easy to use, high through-put programmable logic device. Its simple, regular architecture translates into increased utilization and high performance. The Atmel ATH3000/L has one programmable combinatorial logic array. This guarantees easy interconnection of and uniform performance from all podes. Sum terms, which are easy-to-use blocks of gates, provide combinatorial AND-OR logic blocks. Sum terms can be wire-OR'd together to integrate larger logic blocks. To expand the levels of logic, buried sum terms feed back into the logic array. A register or a sum term can drive each of the 56 I/O pins. All 56 registers are configurable as D- or 1-types without using extra logic gates. Individual sum terms and clocks give each flip-flop added flexibility. A direct "clock from pin" option guarantees synchronization and fast clock to output performance. Standard off-the shelf third party software tools and programmers support the ATH3000/L. This minimizes startup investment and improves product support. # Chip Carrier Pin Configuration | Pin Name | Function | |----------|-----------------------| | IN | Logic Inputs | | Clk | Register Clocks 1,2 | | 1/0 | Bidirectional Buffers | | VCC | +5 V Supply | High Throughput UV Erasable Programmable Logic Device Preliminary 7-165 ■ 1074177 0005567 537 ■ # **Absolute Maximum Ratings*** | Temperature Under Bias | 55°C to +125°C | |--|------------------------------| | Storage Temperature | 65°C to +150°C | | Voltage on Any Pin with Respect to Ground | 2.0 V to +7.0 V ¹ | | Voltage on Input Pins
with Respect to Ground
During Programming2 | .0 V to +14.0 V ¹ | | Programming Voltage with Respect to Ground2 | .0 V to +14.0 V ¹ | | Integrated UV Erase Dose | 7258 W-sec/cm ² | *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### Note: Minimum voltage is -0.6 V dc which may undershoot to -2.0 V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC+}0.75 V dc which may overshoot to +7.0 V for pulses of less than 20 ns. # D.C. and A.C. Operating Range | | | ATH3000-15 | ATH3000/L-20 | ATH3000/L-25 | |---------------------------------|------|--------------|---------------|---------------| | | Com. | 0°C - 70°C | 0°C - 70°C | 0°C - 70°C | | Operating
Temperature (Case) | Ind. | -40°C - 85°C | -40°C - 85°C | -40°C - 85°C | | . , | Mil. | | -55°C - 125°C | -55°C - 125°C | | Vcc Power Supply | | 5 V ± 10% | 5 V ± 10% | 5 V ± 10% | #### **D.C. Characteristics** | Symbol | Parameter | Condition | | Min | Тур | Max | Units | |---------|------------------------------|--|-----------|--------|-----|------------------|-------| | lu | Input Load Current | V _{IN} = -0.1 V to V _{CC} +1 V | | | | 10 | μА | | ILO | Output Leakage Current | Vout =- 0.1 V to Vcc+0.1 V | | | | 10 | μА | | Icc | Power Supply Current | Vcc = MAX, Vin = GND or Vcc | Com. | | 150 | 225 | mA | | icc | ATH3000 | Outputs Open | Ind.,Mil. | | 150 | 270 | mA | | Icc | Power Supply Current | Vcc = MAX, ViN = GND or Vcc | Com. | | 0.5 | 5 | mA | | 100 | ATH3000L | Outputs Open | Ind.,Mil. | | 0.5 | 10 | mA | | Icc2 | Clocked Power Supply | 1 - 1 1011 12, 400 - 101701 | Com. | | 10 | 15 | mA | | 1002 | Current, ATH3000L Only | Outputs Open | Ind.,Mil. | | 10 | 20 | mΑ | | los (1) | Output Short Circuit Current | Vout = 0.5 V | | -10 | | - 9 0 | mA | | VIL | Input Low Voltage | | | -0.6 | | 0.8 | ٧ | | ViH | Input High Voltage | | | 2.0 | | Vcc+0.75 | ٧ | | VoL | Output Low Voltage | $V_{IN} = V_{IH}/V_{IL}$, $I_{OL} = 12$ mA Com, $I_{OL} = 12$ mA Mil. | ind; | | | 0.5 | ٧ | | Voн | Output High Voltage | IOH = -100 µA | Vo | cc-0.3 | | | ٧ | | VOH | Output riigii voltage | IOH = -4.0 mA | | 2.4 | | | ٧ | Note: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 seconds. ATH3000/L i 7-166 1074177 0005568 473 # **Functional Logic Diagram Description** There are 56 identical Input/Ouput logic cells in the ATH3000. Each I/O cell has one flip-flop, six product terms divided into two sum terms, a clock term and one output enable term. Each logic cell drives one signal (56 total) into the logic array. This signal can come from the pin, the flip-flop or the sum term. Each signal is either regional or universal. The ATH3000/L has six regions. The Universal Bus routes signals to all six regions. It contains six Complement Array Buried Logic Extender (CABLE) terms, the true and false signals from ten universal I/O pins and the true and false signals from the two input-only pins. Regional buses route regional true and false signals. Each I/O Logic Cell contains two sum terms, one flip-flop, a feedback buffer and an I/O buffer. Output enable and clock options have one product term each per I/O Cell. The ATH3000/L has six CABLE terms. These terms provide wide-input NAND gate structures or universal routing. Register preload simplifies testing. All registers automatically clear at power up. ## ATH3000/L Block Diagram Figure 2 # Functional Logic Diagram, ATH3000/L Logic Region Figure 1 ## Logic Region Description The ATH3000/L has six regions containing a total of 56 identical input/output logic cells (figure 2). The Universal Bus routes signals from ten universal I/O logic cells, Pins 1 and 35, and the CABLE terms. Regional buses route the remaining regional I/O logic cell signals. #### **CABLE Terms** CABLE terms in each ATH3000/L logic block provide a wideinput NAND function. This function is useful for logic expansion and for universal routing. CABLE terms route any signal or product of signals into the universal bus. Universal bus signals are available to every logic cell in the ATH3000/L. CABLE terms provide two functions: 1) the ability to collect common logical expressions into one gate, and 2) the ability to route this signal to the entire chip. CABLE terms are useful for routing regional signals to the universal bus for use elsewhere. # UNIVERSAL REGIONAL Figure 3 ## **Group Resource Assignments** | Regions
I/O Pins | 1,2,3
2-17 | 1,2,3
52-66 | 4,5,6
18-32 | 4,5,6
36-51 | |---------------------|---------------|----------------|----------------|----------------| | Register Clock Pin | 68 | 68 | 34 | 34 | | Group OE Term | 1 | 4 | 2 | 3 | | Group AR Term | 1 | 4 | 2 | 3 | | Group AP Term | 1 | 4 | 2 | 3 | 7-167 1074177 0005569 307 1 # **Logic Cell Options** The ATH3000/L logic cells contain most of the chip's logic options. The block diagram in figure 4 shows the eight product terms, one array input buffer and an I/O buffer. Figures 6, 7 and 8 show the product term groupings. Each logic cell also contains one flip-flop, two sum terms, and clock and OE options. Combining the two sum terms provides three to six product terms. Combining neighboring sum terms provides up to 12 product terms in a single sum term. The I/O buffer outputs the combinatorial input or registered output of Q1. The array input buffer transmits Q1, the pin or the 'E' node to the array. The flip-flop stores B, E or the pin input. The clock and OE options each have one product term. Each of four group OE terms is OR'ed with blocks of 14 I/O logic cells. Group AR and AP terms each feed one-quarter of all flip-flops. # **Logic Region Structure** #### **Clock Option** 7-168 ATH3000/L #### **Node Feedbacks** #### Registered Output, Separate Terms #### **Combinatorial Output, Combined Terms** #### Combinatorial Output, Separate Terms # **Flip-Flop Clock Options** Each register can be connected to a clock pin to provide fast clock to output timing (see Figure 5). In this "synchronous" mode, the clock is one of two input pins, a unique clock pin for each chip half. One product term defines each flip-flop's clock in the "asynchronous" mode. In the "synchronous" mode, the register clock pin is ANDed with the product term. This provides the fast timing of a synchronous clock with the local control of the product term. # Flip-Flop Types Each flip-flop in the ATH3000/L may be configured as either a T- or D-type flip-flop. A T-type flip-flop can also easily be configured into a JK or SR flip-flop. 1074177 0005570 021 🖿 # Register Feedbacks #### Register Output, Combined Terms #### Combinatorial Output, Combined Terms #### Combinatorial Output, Separate Terms ## **Output Enable Options** Each output of the ATH3000/L functions as a bidirectional buffer. The OE option in each I/O logic cell controls the signal direction. In the default condition, the output driver is controlled by the product term in each I/O cell (OEPT). When selected, the output control is the logical OR of the product term and a product term from each quadrant of the chip (GOE). I/O pins 2-17 in regions 1, 2, and 3 use group OE term 1. I/O pins 52-66 in regions 1, 2, and 3 use group OE term 4. I/O pins 18-32 in regions 4, 5, and 6 use group OE term 2. I/O pins 36-51 in regions 4, 5, and 6 use group OE term 3. #### Pin Feedbacks #### Register Output, Combined Terms Figure 8a #### **Combinatorial Output, Combined Terms** #### Combinatorial Output, Separate Terms #### **OE Option** 7-169 1074177 0005571 T68 ■ # A.C. Waveforms (1) Input Pin Clock # A.C. Waveforms (1) Product Term Clock Notes: 1. Timing measurement reference is 1.5 V. Input AC driving levels are 0.0 V and 3.0 V, unless otherwise specified. # Register A.C. Characteristics, Input Pin Clock | | | ATH3000-15 | | ATH3000/L-20 | | ATH3000/L-25 | | | | |--------|---|------------|------|--------------|------|--------------|-----|-------|--| | Symbol | Parameter | Min | Max | Min | Мах | Min | Max | Units | | | tcos | Clock Pin to Registered Output Pin | 4 | 12 | 4 | 15 | 4 | 20 | ns | | | tcrs | Clock Pin to Registered Feedback | 2 | 6 | 2 | 7 | 2 | 10 | ns | | | tsis | Pin Input Setup Time | 12 | | 15 | | 18 | | ns | | | tsfs | Feedback Setup Time | 6 | | 8 | | 10 | | ns | | | tHS | Hold Time | 0 | | 0 | | 0 | | ns | | | tws | Clock Width | 6 | | 7 | | 9 | | ns | | | tps | Clock Period | 12 | | 15 | | 20 | | ns | | | FMAXS | Maximum Frequency 1/(tcrs+ tsrs) | | 83.3 | | 66.7 | | 50 | MHz | | | tars | Asynchronous Reset/Preset Recovery Time | 15 | | 20 | | 25 | | ns | | # Register A.C. Characteristics, Product Term Clock | | | ATH3000-15 | | ATH3000/L-20 | | ATH3000/L-35 | | | | |--------|---|------------|--------|--------------|-----|--------------|-----|-------|--| | Symbol | Parameter | Min | Max | Min | Max | Min | Max | Units | | | tcoa | Clock Input to Registered Output Pin | 5 | 15 | 5 | 20 | 5 | 25 | ns | | | tcfa | Clock Input to Registered Feedback | 2 | 9 | 5 | 12 | 5 | 15 | ns | | | tsia | Pin Input Setup Time | 10 | | 12 | | - 15 | | ns | | | tsfa | Feedback Setup Time | 5 | | 6 | | 10 | | ns | | | tha | Hold Time | 2 | 7,1111 | 5 | ! | 5 | | ns | | | twa | Clock Width | 7 | | 9 | | 12 | | ns | | | tpa | Clock Period | 14 | | 18 | | 25 | | ns | | | FMAXA | Maximum Frequency 1/(tcFa+ tsFa) | | 71 | | 55 | | 40 | MHz | | | taria | Asynchronous Reset/Preset Recovery Time | 15 | | 20 | | 25 | | ns | | 7-170 ATH3000/L 🖿 1074177 0005572 9T4 🕶 # A.C. Waveforms (1) Notes: 1. Timing measurement reference is 1.5 V. Input AC driving levels are 0.0 V and 3.0 V, unless otherwise specified. #### A.C. Characteristics | • | | ATH3 | 000-15 | ATH30 | 00/L-20 | ATH30 | 00/L-25 | | |--------------|--|------|--------|-------|---------|-------|---------|-------| | Symbol | Parameter | Min | Max | Min | Max | Min | Max | Units | | tPD1 | Input to Non-Registered Output | | 15 | | 20 | | 25 | ns | | tPD2 | Feedback to Non-Registered Output | | 12 | | 15 | | 20 | ns | | tpD3 | Input to Non-Registered Feedback | | 12 | | 15 | | 20 | ns | | tpD4 | Feedback to Non-Registered Feedback | | 10 | | 12 | | 17 | ns | | tEA1 | Input to Output Enable | | 15 | | 20 | | 25 | ns | | ten1 | Input to Output Disable | | 15 | | 20 | | 25 | ns | | 1EA2 | Feedback to Output Enable | | 12 | | 15 | | 20 | ns | | tER2 | Feedback to Output Disable | | 12 | | 15 | | 20 | ns | | ts | Input Latch Setup Time | 5 | | 6 | | 7 | | ns | | tH | Input Latch Hold Time | 5 | | 5 | | 5 | | ns | | tw | Input Latch Clock Width | 6 | | 7 | | 9 | | ns | | tp | Input Latch Clock Period | 12 | | 15 | | 20 | | ns | | FMAX | Maximum Frequency (1/tp) | | 83.3 | | 66.7 | | 50 | MHz | | taw | Asynchronous Reset/Preset Width | 15 | | 20 | | 25 | | ns | | tap | Asynchronous Reset/Preset to Registered Output | | 20 | | 25 | | 30 | ns | | t APF | Asynchronous Reset/Preset to Registered Feedback | | 15 | | 20 | | 25 | ns | # Input Test Waveforms and Measurement Levels # **Output Test Load** <u>AMEL</u> 7-171 **1**074177 0005573 830 **Preload of Registered Outputs** The ATH3000/L's registers are provided with circuitry to allow loading of each register asynchronously with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A V_{II} level on the I/O pin will force the register low; a V_{IL} will force it high, independent of the polarity setting. The PRELOAD state is entered by placing an 11 V to 14 V signal on pin 35 on SMPs. When the clock (pin 1) is pulsed high, the data on the I/O pin is placed into the associated register. | Level forced on registered output pin during PRELOAD cycle. | Register state
After Cycle | |---|-------------------------------| | ViH | High | | V _I L | Low | # **Operating Modes** | | 68 Lead LCC Pin | | | | | | | | | | |-------------|-----------------|-----|-----|-----|-----|-------------------|---------------------|----------|--|--| | Mode | 1 | 2 | 36 | 34 | 68 | 35 | Vcc
(3,20,37,54) | i/Os | | | | "EPLD" | X (1) | Х | х | × | Х | Х | 5V | 1/0 | | | | Program | Vpp | VIL | VIL | VIH | ViH | Х | 6V | ADD/DIN | | | | PGM Verify | VPP | ViH | ViH | VIL | VIL | х | 6V | ADD/Dout | | | | PGM Inhibit | Vpp | ViH | V≀H | ViH | VIH | х | 6V | High Z | | | | Preload | | Х | х | х | х | VH ⁽²⁾ | 5V | DIN | | | Notes: 1. X can be V_{IL} or V_{IH}. 2. $V_H = 11.0 \text{ V}$ to 14.0 V **Power Up Reset** The registers in the ATH3000/L are designed to reset during power up. At a point delayed slightly from V_{CC} crossing 3.8 V, all registers will be reset to the low state. The output state will depend on the polarity of the output buffer. This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how Vcc actually rises in the system, the following conditions are required: - The V_{CC} rise must be monotonic, - 2) After reset occurs, all input and feedback setup times must be met before driving the clock term high, and - 3) The signals from which the clock is derived must remain stable during tpg. | Parameter | Description | Min | Тур | Max | Units | |-----------|------------------------|-----|-----|------|-------| | tpn | Power-Up
Reset Time | | 600 | 1000 | ns | 7-172 ATH3000/L 1 1074177 0005574 777 # ATH3000 PLCC/PGA Pin Assignments | PLCC
Pin # | PGA
Pin# | Name | PLCC
Pin # | PGA
Pin# | Name | PLCC
Pin# | PGA
Pin# | Name | PLCC
Pin # | PGA
Pin# | Name | |---------------|-------------|------|---------------|-------------|------|--------------|-------------|------|---------------|-------------|------| | 1 | B6 | IN | 18 | F2 | 1/0 | 35 | K6 | IN | 52 | F10 | 1/0 | | 2 | A 6 | 1/0 | 19 | F1 | 1/0 | 36 | L6 | 1/0 | 53 | F11 | 1/0 | | 3 | B5 | VCC | 20 | G2 | VCC | 37 | K7 | vcc | 54 | E10 | vcc | | 4 | A5 | 1/0 | 21 | G1 | 1/0 | 38 | L7 | 1/0 | 55 | E11 | 1/0 | | 5 | B4 | 1/0 | 22 | H2 | 1/0 | 39 | K8 | 1/0 | 56 | D10 | 1/0 | | 6 | A4 | 1/0 | 23 | H1 | 1/0 | 40 | L8 | I/O | 57 | D11 | 1/0 | | 7 | ВЗ | 1/0 | 24 | J2 | I/O | 41 | K9 | I/O | 58 | C10 | 1/0 | | 8 | A3 | I/O | 25 | J1 | 1/0 | 42 | L9 | 1/0 | 59 | C11 | 0/1 | | 9 | A2 | I/O | 26 | K1 | I/O | 43 | L10 | 1/0 | 60 | B11 | 1/0 | | 10 | B2 | 1/0 | 27 | K2 | 1/0 | 44 | K10 | I/O | 61 | B10 | 1/0 | | 11 | B1 | I/O | 28 | L2 | I/O | 45 | K11 | 1/0 | 62 | A10 | 1/0 | | 12 | C2 | 1/0 | 29 | КЗ | 1/0 | 46 | J10 | 1/0 | 63 | B9 | I/O | | 13 | C1 | I/O | 30 | L3 | 1/0 | 47 | J11 | 1/0 | 64 | A9 | 1/0 | | 14 | D2 | 1/0 | 31 | K4 | I/O | 48 | H10 | 1/0 | 65 | B8 | 1/0 | | 15 | D1 | 1/0 | 32 | L4 | 1/0 | 49 | H11 | 1/0 | 66 | A8 | I/O | | 16 | E2 | GND | 33 | K5 | GND | 50 | G10 | GND | 67 | 87 | GND | | 17 | E1 | 1/0 | 34 | L5 | CLK | 51 | G11 | 1/0 | 68 | A7 | CLK | # Pin Capacitance (f = 1 MHz, T = 25°C) (1) | | Тур | Max | Units | Conditions | |------|-----|-----|-------|------------| | Cin | 6 | 8 | pF | VIN = 0 V | | Cout | 8 | 12 | pF | Vout = 0 V | Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. # **Security Fuse Usage** A single fuse is provided to prevent unauthorized copying of the ATH3000/L fuse patterns. Once programmed, all outputs ap- pear programmed during verify. The security fuse should be programmed last. The security fuse inhibits Preload. ## **Erasure Characteristics** The entire memory array of an ATH3000/L is erased after exposure to ultraviolet light at a wavelength of 2537 Å. Complete erasure is assured after a minimum of 20 minutes exposure using $12,000 \, \mu \text{W/cm}^2$ intensity lamps spaced one inch away from the chip. Minimum erase time for lamps at other intensity ratings can be calculated from the minimum integrated erasure dose of 15 W-sec/cm². To prevent unintentional erasure, an opaque label is recommended to cover the clear window on any UV erasable EPLD which will be subjected to continuous fluorescent indoor lighting or sunlight. 7-173 1074177 0005575 603 ■ # **Ordering Information** | t _{PD}
(ns) | tcos
(ns) | fmaxs
(MHz) | Ordering Code | Package | Operation Range | |-------------------------|--------------|----------------|--|---------------------|---| | 15 | 12 | 83.3 | ATH3000-15JC
ATH3000-15KC
ATH3000-15UC | 68J
68KW
68UW | Commercial
(0°C to 70°C) | | | | | ATH3000-15JI
ATH3000-15KI
ATH3000-15UI | 68J
68KW
68UW | Industrial
(-40°C to 85°C) | | 20 | 15 | 66.7 | ATH3000-20JC
ATH3000-20KC
ATH3000-20UC | 68J
68KW
68UW | Commercial
(0°C to 70°C) | | | | | ATH3000-20JI
ATH3000-20KI
ATH3000-20UI | 68J
68KW
68UW | Industrial
(-40°C to 85°C) | | | | | ATH3000-20KM
ATH3000-20UM | 68KW
68UW | Military
(-55°C to 125°C) | | | | | ATH3000-20KM/883
ATH3000-20UM/883 | 68KW
68UW | Military/883C
Class B, Fully Compliant
(-55°C to 125°C) | | 25 | 20 | 50 | ATH3000-25JC
ATH3000-25KC
ATH3000-25UC | 68J
68KW
68UW | Commercial
(0°C to 70°C) | | | | | ATH3000-25JI
ATH3000-25KI
ATH3000-25UI | 68J
68KW
68UW | Industrial
(-40°C to 85°C) | | | | | ATH3000-25KM
ATH3000-25UM | 68KW
68UW | Military
(-55°C to 125°C) | | | | | ATH3000-25KM/883
ATH3000-25UM/883 | 68KW
68UW | Military/883C
Class B, Fully Compliant
(-55°C to 125°C) | | Package Type | | | | |--------------|---|--|--| | 68J | 68 Lead, Plastic J-Leaded Chip Carrier (PLCC) | | | | 68KW | 68 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC) | | | | 68UW | 68 Pin, Windowed, Ceramic Pin Grid Array (PGA) | | | 7-174 ATH3000/L 💻 1074177 0005576 54T 📟 # **Ordering Information** | tpD
(ns) | tcos
(ns) | fmaxs
(MHz) | Ordering Code | Package | Operation Range | |-------------|--------------|----------------|---|---------------------|-------------------------------| | 20 | 15 | 66.7 | ATH3000L-20JC
ATH3000L-20KC
ATH3000L-20UC | 68J
68KW
68UW | Commercial
(0°C to 70°C) | | | | | ATH3000L-20JI
ATH3000L-20KI
ATH3000L-20UI | 68J
68KW
68UW | Industrial
(-40°C to 85°C) | | 25 | 20 | 50 | ATH3000L-25JC
ATH3000L-25KC
ATH3000L-25UC | 68J
68KW
68UW | Commercial
(0°C to 70°C) | | | | | ATH3000L-25JI
ATH3000L-25KI
ATH3000L-25UI | 68J
68KW
68UW | Industrial
(-40°C to 85°C) | | | | | ATH3000L-25KM
ATH3000L-25UM | 68KW
68UW | Military
(-55°C to 125°C) | | Package Type | | | | |--------------|---|--|--| | 68J | 68 Lead, Plastic J-Leaded Chip Carrier (PLCC) | | | | 68KW | 68 Lead, Windowed, Ceramic J-Leaded Chip Carrier (JLCC) | | | | 68UW | 68 Pin, Windowed, Ceramic Pin Grid Array (PGA) | | | 7-175 1074177 0005577 486 📟