User’'s Manual

LSAP703000-B04,
LUSAP70732-B04

ADPCM middleware

NEC

Target device
USAP703000-B04: v850 family ™
USAP70732-B04 : V810 family ™

Documen t No. U11381EJ2VOUMOO (2nd edition)
Date Published July 1998 N CP(K)
Printed in Japan

© NEC Corporation 1996
Printed in Japan

[MEMO]

V810 Family, V850 Family, V810, V821, V850/SA1, V852, V853, and V854 are trademarks of NEC Corp.
Green Hills Software is a trademark of Green Hills Software, Inc.

PC DOS is a trademark of IBM Corp.

Windows and MS-DOS are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries.
SUN4 is a trademark of Sun Microsystems, Inc.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.

M7A 96.10

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

* Device availability
e Ordering information

Product release schedule

Availability of related technical literature

» Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics ltaliana s.r.1.
Milano, Italy

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810

Fax: 011-6465-6829

J98. 2

MAJOR REVISIONS IN THIS EDITION

Page Contents
p.20 Change of 1.3.2 (3) Supported tools
p.21 Change of 1.3.4 Directory configuration
p.43 Change of 3.1.1 V810 family
p.43 Change of 3.1.2 V850 family
p.44 Change of 3.1.3 Directory and file
p.45 Change of 3.2.1 UNIX version
p.46 Change of 3.2.2 MS-DOS/PC DOS version
p.47 Change of 3.3 Creating Sample Program
p.49 Change of APPENDIX SOURCE PROGRAM OF sample.c

The mark * shows major revised points.

[MEMO]

PREFACE

Readers This manual is intended for user engineers who wish to design and develop application
systems using the V810 family/V850 family .

Purpose The purpose of this manual is to help user engineers understand the middleware that
supports the design and development V810 family/V850 family application systems.

Organization This manual contains the following items:

e General

» Library specification
* Installation

e Appendix

How to read this manual It is assumed that the readers of this manual have a general knowledge of electrical
engineering, logic circuits, microcomputers, and the C language.

To understand the hardware functions of the V810 family/V850 family
- Refer to the user’'s manuals (hardware) of each product.

To understand the instruction functions of the V810 family/V850 family
- Refer to the user’'s manuals (architecture) of each product.

Legend Data significance : Most-significant digit on left, least-significant digit on right
Active low : xxx (bar over pin and signal names)
Memory map address: Top-low, bottom-high
Note : Description of N°® in the text
Caution : Important information
Remark : Supplement
Numeric notation : Binary . XXXX OF XXXXB
Decimal s XXXX
Hexadecimal ... xxxxH or 0x xxxx

Prefix indicating power of 2 (address space, memory capacity)
K (kilo) = 210 = 1024
M (mega) = 220 = 10242
G (giga) = 230 = 10243

Related documents Some of the related documents listed below are preliminary versions but not so specified
here.

Documents related to V810 family

Product Name Data Sheet User's Manual
Nickname Device Name Hardware Architecture
v810™ HPD70732 U10691E U10661E U10082E
Vvg821™ uPD70741 U11678E U10077E

Documents related to V850 family

Product Name Data Sheet User’'s Manual
Nickname Device Name Hardware Architecture
Vv852™ HPD703002 U11826E U10038E U10243E
uPD70P3002 U11827E
v853™ UPD703003, 703003A, 703005A| U12261E U10913E
UPD70F3003 U12036E
HPD70F3003A, 70F3025A | U13189E
V854™ uPD703008 Planned U11969E
uPD703008Y Planned
uPD70F3008 U12756E
HPD70F3008Y U12755E
V850/SA1L™ uPD703015 Planned U12768E
uPD703015Y Planned
uPD70F3017 Planned
HUPD70F3017Y Planned

Document related to V810 family development tools (user’s manual)

Document Name

Document Number

CA732 (C compiler) Operation (UNIX™ based) U11013E
Operation (Windows™ based) U11068E
Assembly language U11016E
C language U11010E
RX732 (Real-time OS) Fundamental U10346E
Nucleus installation U10347E
Technical U10490E

Documents related to V850 family development tools (user’s manual)

Document Name

Document Number

IE-703002-MC (In-circuit emulator for V851, V852, V853, V854, V850/SA1)| U11595E
IE-703003-MC-EML1 (In-circuit emulator option board for V853) U11596E
IE-703008-MC-EML1 (In-circuit emulator option board for V854) U12420E
IE-703017-MC-EML1 (In-circuit emulator option board for V850/SA1) U12898E
CAB850 (C compiler) Operation (UNIX based) U12839E
Operation (Windows based) U12827E
C language U12840E
Assembly language U10543E
Project manager (Windows based) U11991E
ID850 (C source debugger) Operation (Windows based) U11196E
Installation (UNIX based) U12210E
RX850 (real-time OS) Fundamental U12861E
Technical U13002E
Nucleus installation U11038E
Installation (UNIX based) U12863E
Installation (Windows based) U12862E
Debugger (Windows based) U11158E
AZ850 (system performance analyzer) — operation U11181E
For inquiries about the tools produced by Green Hills Software ™ “Inc. (GHS),

please contact:
Green Hills Software, Inc.
510 Castillo Street, Santa Barbara,
California 93101
Tel: 805-965-6044
Web site: http://www.ghs.com

[MEMO]

10

CONTENTS

CHAPTER 1 GENERAL ..o e e e et et ettt ettt et ettt bbb bbbt e s e e e e e e e e 2aeaeaaeeas 15
O R V[T [0 | L= = T PP PPROPPPPRRN 15
L1.2 ADP C M oot — b a e e e e e e e e e e aaaae aaaaas 15

1.2.1 PCM-to-linear conversion DIOCK ... 17
1.2.2 ADPCM compresSion BIOCKccoiiiiiiiiiiiiiiiie et a e 17
1.2.3 ADPCM exXpansion DIOCKooiiiiiiiiiie ettt e et e e e e eas 18
1.2.4 Linear-to-PCM cONVErsioN DIOCKooiiiiiiiiiei e 18
1.2.5 Synchronous coding correction BIOCKooiiiiiiiiiiiiiiiiis e 18
1.3 ProduCt OULINE ...ttt e e e e e e et e e e e e e e e e e s annnnbaneeeees aa 19
L.3LL FRALUIES .ottt ettt e e e e e e e e oo oo oo e bbb b et et et et e e e e e e e e e e e e e aaa e e e e e e e e 19
1.3.2 Operating ENVIFONMENTcciiuiiitieeiiiieeeeeeeeitreeeeeastrae e e e s st e eeeaesassasreaeeessstaeaeeesssaseeeassasssseeeeas 19
I JRC T = =Y o (o] 1 ' = g ot RS 20
1.3.4 Directory CONFIQUIATIONcooueeiiiiee ittt ettt e e e et e e e et e e e e et e e e e e e nnnsaeeens 21
CHAPTER 2 LIBRARY SPECIFICATIONS ...t 23
P2 R U X 1o o PP 23
2.1.1 COMPIESSION PrOCESSING .eeeeiiutiirieaaaitieeaaeaaueeeeaeaaaateeaeeaasteeeeaaaasaeeeaesaanneseeaeaaansseeaaesannsneeens 23
2.1.2 EXPANSION PrOCESSING -..eeeeeeeiutiieeaaaatieitaaaaautaeeeaeaaatseeeaaeaanseeeaeaaasseeeaaeaansseeaaeaaasaseeaaeaansseeeens 24
2.2 RAM ettt e e e e e e e e e aee s 25
ARG I B = = B Y/ o[TP PP PP PPPUUUPPUP PPN 25
b T R 1| ool 1 0 01 - AR RRUR 25
DA B 10| 4 o o1 1 (I L 1T A O SPTUPRPRR P 25
A T B 1| 0 10T = T = o oSO ER 26
DA B S 1| 10T = Lo (=T oSO 26
2.3.5 Nt AAPCM_B2KDPS it e e e a e e e e nraaaeas 26
AR N G 1| 0= Vo [o Tox 1 S o] o OSSPSR 26
2.4 EXTON PIOCESSING teeeettiieiaiiiie ettt e e e e ettt e e e e e e e e e e e e an bbb be e et e e aaaeeae s e nnnbbnseeeaaaaeens .27
2.5 FUNCLON SPECITICALIONS ...vvvviieiieeiie ittt e s e ennrenaeees 27
2.5.1 INitialization fUNCHONeii ettt e e e e e e et e e e e e e e emnaneeas 27
2.5.2 ComPresSion fUNCHONoii ittt e e et e e e e et e e e e e nbe e e e e e annneeeeeas 28
2.5.3 EXPANSION FUNCHION c.ccciiiiiie ettt e e e e et e e e e et b e e e e s e nntaeeeas 34

CHAPTER 3 INSTALLATION ..ttt e e e e e e e e e e e e e e ettt e et e e eeasebe bbb b e e e e e e e e e e teeeens 43

TR 10 o oV o 1 1 - L PP PPTRT PR 43
3.1 VBLO FAMIIY .tttk 43
312 VBB0 FAMIIY ettt et e e e e e e et e e e e e e e e aaae e e e araaaaas 43
B 70 I B = Tox (o) VA=V g To I 11 = RSP RRURR 44

3.2 File Expansion t0 HOSt MACKhINEuuiiiiiiiiiiiiiiie et 45
3.2 1 UNDX VEISION Lottt ettt etk b et e 45
3.2.2 MS-DOS/PC DOS VEISIONuuieeiieeeeiiiiiie e ettt e e e e ettt e e e e e aatee e e e e e anebeeeaeeaannseeeaeaaanneneaeeeaannaeeas 46

3.3 Creating SampPle PrOgramoooiiiiiiiiieeie ettt e e e e e e e e e e e e s nnbebeeeeaaaaeas 47

11

3.4 Changing Locationcccccceveeennn.
3.5 Symbol Name Convention

APPENDIX SOURCE PROGRAM OF sample.c

12

LIST OF FIGURES

Figure No. Title Page
1-1 RECOMMENTALION G.726eeiiiiiiieiiei ettt ettt e et e st e e sb e e e e anbeeenaes 15
1-2 (7] aTet=T o a o) 12N B = 4 N RS RRR 16
1-3 Organization Of ADPCM PrOCESSINGuvieiiiiiiiiee ittt e e et e e e et e e e st e e e s eeaa e e e e s assraeaeessnnsaneeas 16
1-4 Organization of ADPCM Compression Block 17
1-5 Organization of ADPCM EXPansion BIOCKcooiiiiiiiiii e 18
2-1 COMPIESSION FIOW ittt e et e e e e ettt e e e e e e bbb e e e e e e s bt e e e e e e s aatbeeeeesssbseseaeeessntaneeas 23
2-2 EXPanSIioN ProCeSSING FIOWcoouiiiiiieiiieiiee ettt ettt e e et e e e e et e e e e e ennnneeaeeeaan 24
3-1 Organization Of SAMPIE PrOGraMccuuviiieiiiiiiie ettt e e e e e e s s e e e e e aae e e e e e e sasraeaeessnsaeees a7

13

LIST OF TABLES

Table No. Title Page
1-1 VBLO PEIOIMMEANCE ...ttt ettt h e et e e bt e e bt e e e a kbt e e bt e e bbb e e e nnbe e e nnne s 20
1-2 V853 PEITOIMMANCE ..ottt e ettt e e e e ettt e e e e e e nat e e e e e e ntb e e e e e e ensaeeeaeeeannnsbeeaaeeannens 20
2-1 Compression Functions 23
2-2 o q o T Ta IS To] g I U1 o Tox 1 o] o ISP SRR PRI 24

14

CHAPTER 1 GENERAL

This chapter explains the middleware and ADPCM decoder.

1.1 Middleware

Middleware is a software group tuned to draw out the full performance of a processor.
Because many high-performance RISC processors are available today, the processing conventionally imple-
mented by dedicated hardware can now be realized by a high-performance RISC processor and software. The

software used for this purpose is called middleware.
NEC supplies human-machine interface and signal processing technologies in the form of middleware. It provides

excellent system solutions to satisfy the various needs of users.
This ADPCM middleware is a library that compresses and expands speech code (telephone quality).

Remark RISC: Reduced Instruction Set Computer

1.2 ADPCM

The ADPCM of this middleware codes speech in the analog telephone band (0.3 to 3.4 kHz) stipulated by ITU-

T Recommendation G.726.
Recommendation G.726 was issued in 1990 by adding 40-kbps ADPCM, 24-kbps ADPCM, and 16-kbps ADPCM

to Recommendation G.721 (32-kbps ADPCM) which was adopted as an international standard of telephone quality

coding in 1988.
This middleware supports the 32-kbps ADPCM and 16-kbps ADPCM of Recommendation G.726.

Remark ADPCM: Adaptive Differential Pulse Code Modulation
ITU-T: International Telecommunication Union-Telecommunication standardization sector

Figure 1-1. Recommendation G.726

Recommendation G.726

Recommendation G.721

32-kbps ADPCMMNete 24-kbps ADPCM 16-kbps ADPCMNote

40-kbps ADPCM

Note Supported by this middleware.

15

CHAPTER 1 GENERAL

The interface of ADPCM is based on the 64-kbps PCM code stipulated by ITU-T Recommendation G.711. This
is because the 64-kbps PCM of Recommendation G.721 has been widely used as an international standard telephone

quality coding method, and because ADPCM was developed as a standard to improve the compression rate.

The 64-kbps PCM of ITU-T Recommendation G.711 limits the bandwidth to 0.3 to 3.4 kHz by using a bandpass
filter and codes analog speech signals sampled at 8 kHz into 8-bit digital signals by means of non-linear quantization.
The 64-kbps PCM has two modes: p-law mode (used in Japan and North America) and A-law mode (used in Europe).

ADPCM is a standard for further compressing the speech codes compressed by means of 64-kbps PCM.

Figure 1-2. Concept of ADPCM

64 kbps : 8 kHz x 8 bits

PCM code

Compression

>

Expansion

ADPCM code

32 kbps : 8 kHz x 4 bits
16 kbps : 8 kHz x 2 bits

The compression/expansion processing of ADPCM is described next.

The compression processing of ADPCM is performed by a PCM-to-linear conversion block and an ADPCM

compression block, as shown in Figure 1-3.

The expansion processing of ADPCM is performed by an ADPCM expansion block, linear-to-PCM conversion
block, and synchronous coding correction block, as shown in Figure 1-3. The expansion processing prevents
degradation of the sound quality by repeatedly compressing and expanding speech data, by using the synchronous

coding correction block, when incorporated to an existing digital (64-kbps PCM) communication network.

Figure 1-3. Organization of ADPCM Processing

Compression processing

PCM code

8 bits

PCM-to-linear
conversion block

14 bits

ADPCM

compression block

32 kbps : 4 bits
16 kbps : 2 bits

v

Internal variables

8 bits

Synchronous coding
correction block

8 bits

Linear-to-PCM
conversion block

16 bits

ADPCM

expansion block

ADPCM code

A

Expansion processing

16

CHAPTER 1 GENERAL

1.2.1 PCM-to-linear conversion block

This block converts a 64-kbps PCM code (8 bits) into a linear code (14 bits: expressed as 2’'s complement).
The PCM code in the p-law mode is converted by a PCM decoder conforming to Recommendation G.711.

The PCM code in the A-law mode is converted by a PCM decoder conforming to Recommendation G.711. The

resulting value is doubled and then adjusted to 14 bits.

1.2.2 ADPCM compression block

This block compresses a linear code (14 bits) to an ADPCM code (32 kbps: 4 bits, 16 kbps: 2 bits) in the following

procedure (refer to Figure 1-4):

(1) A predicted signal is subtracted from the input signal (linear code) to calculate a differential signal.

(2) The differential signal is coded by using an adaptive quantization unit.

For 32-kbps ADPCM, the differential signal is coded to 4 bits by using a 15 level adaptive quantization unit.
For 16-kbps ADPCM, the differential signal is coded to 2 bits by using a 4 level adaptive quantization unit.
This coded signal is an ADPCM code and is the output of the compression processing.

(3) Anadaptive reverse quantization unitis used to generate a quantized differential signal from the ADPCM code.

(4) The quantized differential signal is added to the predicted signal to reproduce the input signal.

(5) Anadaptive prediction unitis used to calculated the predicted value of the next input signal from the reproduced

signal and quantized differential signal.

Figure 1-4. Organization of ADPCM Compression Block

Differential Adaptive
Linear code MY signal quantization unit
(14 bits) Y 32 kbps : 15 levels
_ 16 kbps : 4 levels
Predicted
signal
Reproduced | +
signal Adaptive reverse
Adaptive quantization unit

prediction unit + 32 kbps : 15 levels

16 kbps : 4 levels

Quantized

differential signal

ADPCM code
(32 kbps : 4 bits)
(16 kbps : 2 bits)

17

CHAPTER 1 GENERAL

1.2.3 ADPCM expansion block
This block expands an ADPCM code (32 kbps: 4 bits, 16 kbps: 2 bits) to a reproduced linear code (16 bits) in the
following procedure (refer to Figure 1-5):

(1) A quantized differential signal is generated from the ADPCM code by using an adaptive reverse quantization
unit.

(2) The input signal is reproduced by adding the quantized differential signal to a predicted signal. This signal
is the output signal of the ADPCM expansion processing.

(3) An adaptive prediction unitis used to calculate the predicted value of the next input signal from the reproduced
signal and quantized differential signal.

Figure 1-5. Organization of ADPCM Expansion Block

ADPCM code Adaptive reverse d_foua?tllze_d - Repdeulced _
(32 kbps : 4 bits) | guantization unit erential signal = —~ signal Reproduced linear code
(16 kbps o bits) 32 kbps : 15 levels -/ (16 bits)
ps: 16 kbps : 4 levels +
Predicted
signal
Adaptive

prediction unit

1.2.4 Linear-to-PCM conversion block

This block converts a reproduced linear code (16 bits) to a 64-kbps PCM code (8 bits).

The PCM code in the py-law mode is converted by a PCM coder conforming to Recommendation G.711.

The PCM code in the A-law mode is converted by a PCM coder conforming to Recommendation G.711 after the
reproduced linear code has been adjusted (1/2)

1.2.5 Synchronous coding correction block

The synchronous coding block corrects for cumulative distortion that may take place when compression from PCM
to ADPCM and expansion from ADPCM to PCM (synchronous tandem coding) are repeatedly performed.

The value of the reproduced linear code, which is the input signal, is corrected by simulating the ADPCM code
to be compressed next by using the PCM-to-linear conversion block described in 1.2.1 and in steps (1) and (2)
described in 1.2.2 ADPCM compression block, so that the value of the reproduced linear code is the same as that
of the current ADPCM code.

18

CHAPTER 1 GENERAL

1.3 Product Outline

1.3.1 Features
Conforms to the international ADPCM standard (ITU-T Recommendation G.726).

)

)

©)

Bit rate
The following two bit rates are supported:

* 32-kbps ADPCM (compresses 1 sampling data to 4 bits)
e 16-kbps ADPCM (compresses 1 sampling data to 2 bits)

64 kbps PCM code interface
The following two modes conforming to the international 64-kbps PCM standard (ITU-T Recommendation
G.711) are supported:

e pu-law mode
¢ A-law mode

If synchronous tandem coding is not performed for expansion, a mode in which the synchronous coding
correction function is deleted from the ITU-T Recommendation G.726, with increased execution speed, is
supported.

Linear code interface

Aliner code interface that deletes the functions (mutual conversion of 64 kbps PCM code and linear code and
synchronous coding correction) that are related to the 64-kbps PCM code interface and that can be deleted
from the international standard of ADPCM (ITU-T Recommendation G.726) is supported.

Remark The linear code interface does not support synchronous tandem coding.

1.3.2 Operating environment

)

)

Target CPU
* V810 family
» V850 family

Necessary memory

* ROM: total capacity of 9K bytes or less (The capacity varies depending on the functions to be linked.)
* RAM: 80 bytes max.

19

CHAPTER 1 GENERAL

* (3) Supported tools

(a) V810 family

* NEC C compiler package: CA732 (Windows 3.1 or above, SUN4™)
* GHS C compiler/assembler: C-V810 (Windows 3.1 or above, SUN4)

(b) V850 family

* NEC C compiler package: CA850 (Windows 3.1 or above, SUN4)

* GHS C compiler/assembler: C-V850 (Windows 3.1 or above, SUN4)

1.3.3 Performance

The processing time per sampling data is shown below.

(1) V810

[Condition] 25 MHz, 32-bit bus, cache OFF, 0 wait ROM/RAM

Table 1-1. V810 Performance

Compression/Expansion

Processing Time

Compression Linear code interface 62 s max.
PCM code interface 63 us max.
Expansion Linear code interface (synchronous tandem coding 59 us max.
not supported)
PCM code interface (synchronous tandem coding 61 us max.
not supported)
PCM code interface 66 us max.
(2) Vv853

[Condition] 33 MHz, internal ROM/RAM, 0 wait, external RAM (speech data)

Table 1-2. V853 Performance

Compression/Expansion

Processing Time

Compression Linear code interface 29 us max.
PCM code interface 30 us max.
Expansion Linear code interface (synchronous tandem coding 28 s max.
not supported)
PCM code interface (synchronous tandem coding 29 us max.
not supported)
PCM code interface 31 us max.

20

CHAPTER 1 GENERAL

1.3.4 Directory configuration

The directory configuration of the middleware library ADPCM is as follows:

(1) V810 family (software version: Ver. 1.00)

J—

—1 nectools

ibg10 |

smp810 |——adpcm

- ghstools

ibg10 |

smp810 —— adpcm

(2) V850 family (software version: Ver. 1.01)

J—

—1 nectools

libg50 |

smp850 |—Jadpcm |——

—| ghstools

ibg50 |

smp850 ——ladpcm |—

libadpcm. a

sample. ¢
makefile
linear o
expect_e.o
expect_d.o

libadpcm.a

sample.c
makefile
linear.o
expect_e.o
expect_d.o

libadpcm. a

sample. ¢
makefile
linear.o
expect_e.o
expect_d.o
startup.s
sample.Ink

libadpcm.a

sample.c
makefile
linear.o
expect_e.o
expect_d.o
startup.s
dfile

21

[MEMO]

22

CHAPTER 2 LIBRARY SPECIFICATIONS

2.1 Function

2.1.1 Compression processing

Speech data is compressed to ADPCM codes of 32 kbps or 16 kbps. The speech data which is input is classified

according to functions corresponding to linear codes and 64-kbps PCM codes (u-law, A-law).

Table 2-1. Compression Functions

Function Classification

Input Data Type — Compressed Data Type

adpcm_132_enc ()

Linear code

—

32-kbps ADPCM

adpcm_pm32_enc ()

64-kbps PCM code (u-law)

—

32-kbps ADPCM

adpcm_pa32_enc ()

64-kbps PCM code (A-law)

—

32-kbps ADPCM

adpcm_I116_enc ()

Linear code

16-kbps ADPCM

adpcm_pm16_enc ()

64-kbps PCM code (u-law)

—

16-kbps ADPCM

adpcm_pal6_enc ()

64-kbps PCM code (A-law)

—

16-kbps ADPCM

Figure 2-1. Compression Flow

ADPCM initialization

Input of speech data

ADPCM compression

Storage of
compressed data

<o >

Yes

End

Library sections

23

CHAPTER 2 LIBRARY SPECIFICATIONS

2.1.2 Expansion processing
Compressed data (ADPCM codes of 32 kbps or 16 kbps) is expanded to speech data. The speech data which
is output is classified according to functions corresponding to linear codes and 64-kbps PCM codes (u-law, A-law).

Table 2-2. Expansion Functions

Function Classification Compressed Data Type — Output Data Type
adpcm_132_dec () 32-kbps ADPCM - linear code
adpcm_pm32_dec () 32-kbps ADPCM - 64-kbps PCM code (u-law)
adpcm_pa32_dec () 32-kbps ADPCM - 64-kbps PCM code (A-law)

adpcm_tpm32_dec ()Note 32-kbps ADPCM - 64-kbps PCM code (u-law)

adpcm_tpa32_dec ()Noe 32-kbps ADPCM - 64-kbps PCM code (A-law)

adpcm_I116_dec () 64-kbps ADPCM - linear code
adpcm_pm16_dec () 16-kbps ADPCM - 64-kbps PCM code (u-law)
adpcm_pal6_dec () 16-kbps ADPCM - 64-kbps PCM code (A-law)

adpcm_tpm16_dec ()Note 16-kbps ADPCM - 64-kbps PCM code (u-law)

adpcm_tpal6_dec ()Noe 16-kbps ADPCM - 64-kbps PCM code (A-law)

Note These functions support tandem synchronous coding.

Figure 2-2. Expansion Processing Flow

ADPCM initialization

Reads compressed data Library sections

ADPCM expansion

Outputs expanded data

o <o >

Yes

End

24

CHAPTER 2 LIBRARY SPECIFICATIONS

2.2 RAM

Be sure to secure the determined memory capacity (resident area) for each of the compression and expansion
processing with this library. To secure the resident area, perform the following in the user application:

int work[16]

Manage the resident area in the user application, and specify a pointer (first address) with the input parameter
of the compression/expansion function. Do not destroy the contents of the resident area until the compression/
expansion processing sequence is completed. The operation is not guaranteed if the resident area is destroyed. This
library also uses the following stack area for the compression/expansion functions:

» V810 family version: 3 words (12 bytes)
» V850 family version: 2 words (8 bytes)

2.3 Data Type

This section describes the data used with this library. Each data type is standardized to int width (32 bits) to increase
the processing speed. Note that the valid range is not checked in each function.

2.3.1 int pcm_mlaw
[Contents] 64-kbps PCM code (u-law)
[Description] 8-bit data (Zero-extend up to bit 31.)
[Valid range] 0 to 255

31 2423 1615 8 7 0
[o[0]0o[o]0]ofo[o]o]o[o]o]o[o]o]o]o[o]ofofofofol | T T | [T 1|

Zero extension

2.3.2 int pcm_alaw
[Contents] 64-kbps PCM code (A-law)
[Description] 8-bit data (Zero-extend up to bit 31.)
[Valid range] 0 to 255

31 2423 16 15 8 7 0
[o[o[o]o]ofo[o[o]o]o[o]o]o]o[o[o]o]ofo[o]o]ofofo] [T T | | [T}

Zero extension

25

CHAPTER 2 LIBRARY SPECIFICATIONS

2.3.3 int linear_enc
[Contents] Linear code (compression processing argument)
[Description] 14-bit data (expressed as 2’s complement. Sign-extend up to bit 31.)
[Valid range] —-8192 to 8191

31 2423 16 15 8 7 0
EEEEEECEEEEECEEEECCNNNNNNNNNNNNN

Sign extension

2.3.4 int linear_dec
[Contents] Linear code (expansion processing return value)
[Description] 16-bit data (expressed as 2's complement. Sign-extended up to bit 31)
[Valid range] —-32768 to 32767

31 2423 16 15 8 7 0
EEEEEEEEEECEEEEECNNNNNNNNNNN NN

Sign extension

2.3.5 int adpcm_32kbps
[Contents] 32-kbps ADPCM code
[Description] 4-bit data (Zero-extend up to bit 31.)
[Valid range] 1to 15

31 2423 1615 8 7 0
[o[o[o]o]o[o[o[o]o]o[o]o]o]o]o[o]o]o]o[o]o]o]o[o[o]o]ofo] | | ']

Zero extension

2.3.6 int adpcm_16kbps
[Contents] 16-kbps ADPCM code
[Description] 2-bit data (Zero-extend up to bit 31.)
[Valid range] O to 3

31 2423 16 15 8 7 0
[o[o[o]o]o[o[o[o]o]o[o]o]o]0]o[o]o]0]o[o]0]o]o[o[o]o]ofo[o[o] ']

Zero extension

26

CHAPTER 2 LIBRARY SPECIFICATIONS

2.4 Error Processing

The functions of the ADPCM library do not have an error processing functions like outputting an error code as a
return value. This is because the value outside the valid range in the middle of calculation is limited (saturated) by
the Recommendation and therefore, errors do not exist. However, errors, such as NMI, may occur. If these errors

occur, deal with them in the user application by managing flags before and after function calls.

2.5 Function Specifications

The ADPCM library supplies a total of 17 functions including an initialization function, six compression (encoder)

functions, and 10 expansion (decoder) functions. These functions are described next.

2.5.1 Initialization function

(1) adpcm_init function

This function initializes the encoder and decoder.
Secure a resident area (64 bytes) for the processing of the encoder and decoder in the application program,
and use the addresses of that area as arguments.

Be sure to call the adpcm_init function before performing an encoder/decoder processing sequence.

[Classification] ADPCM initialization (common to encoder and decoder)
[Function name] adpcm_init

[Outline] Initializes the resident area of the ADPCM encoder and decoder.
[Format] void adpcm_init (init *work);
[Argument] Type Argument Description

int work [16] First address of resident area (64 bytes)

[Return value] None

[Feature] Initializes the resident area for the encode and decode processing.

Caution After calling the adpcm_init function, do not destroy the resident RAM area until the encode and decode
processing sequence is completed. If the resident area is destroyed, the operation is not guaranteed.

27

CHAPTER 2 LIBRARY SPECIFICATIONS

2.5.2 Compression function

28

(1) adpcm_l132_enc function
This function performs 32-kbps ADPCM encode processing of the linear code interface.
It encodes a linear code given by the input parameter, and returns a 32-kbps ADPCM code as a return value.

Of the parameters to be passed to the adpcm_132_enc function, specify the same address as that passed

to the adpcm_init function as the address of the resident area for encode processing.

[Classification]
[Function name]
[Outline]
[Format]

[Argument]

[Return value]

[Feature]
[Remark]

32-kbps ADPCM encode processing (linear code interface)
adpcm_I32_enc

Encodes a specified linear code to a 32-kbps ADPCM code.
int adpcm_132_enc (int linear_enc, int *work)

Type Argument Description

int work [16] First address of resident area (64 bytes)
int linear_enc Linear code

Type |Return Value Description

int adpcm_32 32-kbps ADPCM code

Encodes sampling data given by a linear code to a 32-kbps ADPCM code.
The following function is deleted from the 32-kbps ADPCM encoder of ITU-T
Recommendation.

e Conversion from 64-kbps PCM code to linear code

CHAPTER 2 LIBRARY SPECIFICATIONS

(2) adpcm_pm32_enc function
This function performs 32-kbps ADPCM encode processing of the pu-law PCM code interface.
It encodes a 64-kbps p-law PCM code given by the input parameter, and returns a 32-kbps ADPCM code as
a return value.
Of the parameters to be passed to the adpcm_pm32_enc function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for encode processing.

[Classification] 32-kbps ADPCM encode processing (u-law PCM code interface)
[Function name] adpcm_pm32_enc

[Outline] Encodes a specified 64-kbps p-law PCM code to a 32-kbps ADPCM code.
[Format] int adpcm_pm32_enc (int pcm_mlaw, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int pcm_mlaw | 64-kbps u-law PCM
[Return value] Type |Return Value Description
int adpcm_32 32-kbps ADPCM code
[Feature] Encodes sampling data given by a 64-kbps p-law PCM code to a 32-kbps ADPCM code.

29

CHAPTER 2 LIBRARY SPECIFICATIONS

30

(3) adpcm_pa32_enc function
This function performs 32-kbps ADPCM encode processing of the A-law PCM code interface.
It encodes a 64-kbps A-law PCM code given by the input parameter, and returns a 32-kbps ADPCM code as
a return value.
Of the parameters to be passed to the adpcm_pa32_enc function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for encode processing.

[Classification] 32-kbps ADPCM encode processing (A-law PCM code interface)
[Function name] adpcm_pa32_enc

[Outline] Encodes a specified a 64-kbps A-law PCM code to a 32-kbps ADPCM code.
[Format] int adpcm_pa32_enc (int pcm_alaw, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int pcm_alaw 64-kbps A-law PCM code
[Return value] Type |Return Value Description
int adpcm_32 32-kbps ADPCM code
[Feature] Encodes sampling data given by a 64-kbps A-law code to a 32-kbps ADPCM code.

CHAPTER 2 LIBRARY SPECIFICATIONS

(4) adpcm_116_enc function
This function performs 16-kbps ADPCM encode processing of the linear code interface.

It encodes a linear code given by the input parameter, and returns a 16-kbps ADPCM code as a return value.
Of the parameters to be passed to the adpcm_116_enc function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for encode processing.

[Classification]
[Function name]
[Outline]
[Format]

[Argument]

[Return value]

[Feature]
[Remark]

16-kbps ADPCM encode processing (A-law PCM code interface)
adpcm_I16_enc

Encodes a specified linear code to a 32-kbps ADPCM code.

int adpcm_116_enc (int pcm_alaw, int *work)

Type Argument Description

int work [16] First address of resident area (64 bytes)
int linear_enc Linear code

Type |Return Value Description

int adpcm_16 16-kbps ADPCM code

Encodes sampling data given by a linear code to a 16-kbps ADPCM code.
The following function is deleted from the 16-kbps ADPCM encoder of ITU-T
Recommendation.

e Conversion from 64-kbps PCM code to linear code

31

CHAPTER 2 LIBRARY SPECIFICATIONS

32

(5) adpcm_pm16_enc function

This function performs 16-kbps ADPCM encode processing of the pu-law PCM code interface.

It encodes a 64-kbps p-law PCM code given by the input parameter, and returns a 16-kbps ADPCM code as
a return value.

Of the parameters to be passed to the adpcm_pm16_enc function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for encode processing.

[Classification] 16-kbps ADPCM encode processing (u-law PCM code interface)
[Function name] adpcm_pm16_enc

[Outline] Encodes a specified a 64-kbps p-law PCM code to a 16-kbps ADPCM code.
[Format] int adpcm_pm16_enc (int pcm_mlaw, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int pcm_mlaw | 64-kbps u-law PCM code
[Return value] Type |Return Value Description
int adpcm_16 16-kbps ADPCM code
[Feature] Encodes sampling data given by a 64-kbps p-law PCM code to a 16-kbps ADPCM code.

CHAPTER 2 LIBRARY SPECIFICATIONS

(6) adpcm_pal6_enc function
This function performs 16-kbps ADPCM encode processing of the A-law PCM code interface.
It encodes a 64-kbps A-law PCM code given by the input parameter, and returns a 16-kbps ADPCM code as
a return value.
Of the parameters to be passed to the adpcm_pal6_enc function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for encode processing.

[Classification] 16-kbps ADPCM encode processing (A-law PCM code interface)
[Function name] adpcm_pal6_enc

[Outline] Encodes a specified a 64-kbps A-law PCM code to a 16-kbps ADPCM code.
[Format] int adpcm_pal6_enc (int pcm_alaw, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int pcm_alaw 64-kbps A-law PCM code
[Return value] Type |Return Value Description
int adpcm_16 16-kbps ADPCM code
[Feature] Encodes sampling data given by a 64-kbps A-law PCM code to a 16-kbps ADPCM code.

33

CHAPTER 2 LIBRARY SPECIFICATIONS

2.5.3 Expansion function

34

(1) adpcm_l132_dec function
This function performs 32-kbps ADPCM decode processing of the linear code interface.
It decodes a 32-kbps ADPCM code given by the input parameter, and returns a linear code as a return value.

Of the parameters to be passed to the adpcm_132_dec function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for decode processing.

[Classification]
[Function name]
[Outline]
[Format]

[Argument]

[Return value]

[Feature]
[Remark]

32-kbps ADPCM decode processing (linear code interface)
adpcm_I132_dec

Decodes a specified 32-kbps ADPCM code to a linear code.
int adpcm_132_dec (int adpcm-32, int *work)

Type Argument Description

int work [16] First address of resident area (64 bytes)
int adpcm-32 32-kbps ADPCM code

Type |Return Value Description

int linear_dec Linear code

Decodes sampling data given by a 32-kbps ADPCM code to a linear code.
The following function is deleted from the 32-kbps ADPCM decoder of ITU-T
Recommendation.

e Conversion from linear code to 64-kbps PCM code

* Synchronous coding correction

CHAPTER 2 LIBRARY SPECIFICATIONS

(2) adpcm_pm32_dec function
This function performs 32-kbps ADPCM decode processing of the pu-law PCM code interface.
It decodes a 32-kbps ADPCM code given by the input parameter, and returns a 64-kbps p-law PCM code as
a return value.
Of the parameters to be passed to the adpcm_pm32_dec function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for decode processing.

[Classification] 32-kbps ADPCM decode processing (u-law PCM code interface)
[Function name] adpcm_pm32_dec

[Outline] Decodes a specified a 32-kbps ADPCM code to a 64-kbps u-law PCM code.
[Format] int adpcm_pm32_dec (int adpcm-32, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int adpcm_32 32-kbps ADPCM code
[Return value] Type |Return Value Description
int pcm_mlaw | 64-kbps p-law PCM code
[Feature] Decodes sampling data given by a 32-kbps ADPCM code to a 64-kbps p-law PCM code.
[Remark] The following function is deleted from the 32-kbps ADPCM decoder of ITU-T

Recommendation.
e Synchronous coding correction.

35

CHAPTER 2 LIBRARY SPECIFICATIONS

(3) adpcm_pa32_dec function
This function performs 32-kbps ADPCM decode processing of the A-law PCM code interface.
It decodes a 32-kbps ADPCM code given by the input parameter, and returns a 64-kbps A-law PCM code as
a return value.
Of the parameters to be passed to the adpcm_pa32_dec function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for decode processing.

[Classification] 32-kbps ADPCM decode processing (A-law PCM code interface)
[Function name] adpcm_pa32_dec

[Outline] Decodes a specified a 32-kbps ADPCM code to a 64-kbps A-law PCM code.
[Format] int adpcm_pa32_dec (int adpcm-32, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int adpcm_32 32-kbps ADPCM code
[Return value] Type |Return Value Description
int pcm_alaw 64-kbps A-law PCM code
[Feature] Decodes sampling data given by a 32-kbps ADPCM code to a 64-kbps A-law PCM code.
[Remark] The following function is deleted from the 32-kbps ADPCM decoder of ITU-T

Recommendation.
* Synchronous coding correction.

CHAPTER 2 LIBRARY SPECIFICATIONS

(4) adpcm_tpm32_dec function
This function performs 32-kbps ADPCM decode processing of the pu-law PCM code interface.
It decodes a 32-kbps ADPCM code given by the input parameter, and returns a 64-kbps p-law PCM code as
a return value.
Of the parameters to be passed to the adpcm_tpm32_dec function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for decode processing.

[Classification] 32-kbps ADPCM decode processing (u-law PCM code interface)
[Function name] adpcm_tpm32_dec

[Outline] Decodes a specified a 32-kbps ADPCM code to a 64-kbps u-law PCM code.
[Format] int adpcm_tpm32_dec (int adpcm-32, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int adpcm_32 32-kbps ADPCM code
[Return value] Type |Return Value Description
int pcm_mlaw | 64-kbps p-law PCM code
[Feature] Decodes sampling data given by a 32-kbps ADPCM code to a 64-kbps p-law PCM code.

37

CHAPTER 2 LIBRARY SPECIFICATIONS

38

(5) adpcm_tpa32_dec function
This function performs 32-kbps ADPCM decode processing of the A-law PCM code interface.
It decodes a 32-kbps ADPCM code given by the input parameter, and returns a 64-kbps A-law PCM code as
a return value.
Of the parameters to be passed to the adpcm_tpa32_dec function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for decode processing.

[Classification] 32-kbps ADPCM decode processing (A-law PCM code interface)
[Function name] adpcm_tpa32_dec

[Outline] Decodes a specified a 32-kbps ADPCM code to a 64-kbps A-law PCM code.
[Format] int adpcm_tpa32_dec (int adpcm_32, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int adpcm_32 32-kbps ADPCM code
[Return value] Type |Return Value Description
int pcm_alaw 64-kbps A-law PCM code
[Feature] Decodes sampling data given by a 32-kbps ADPCM code to a 64-kbps A-law PCM code.

CHAPTER 2 LIBRARY SPECIFICATIONS

(6) adpcm_116_dec function
This function performs 16-kbps ADPCM decode processing of the linear code interface.

It decodes a 16-kbps ADPCM code given by the input parameter, and returns a linear code as a return value.

Of the parameters to be passed to the adpcm_116_dec function, specify the same address as that passed

to the adpcm_init function as the address of the resident area for decode processing.

[Classification]
[Function name]
[Outline]
[Format]

[Argument]

[Return value]

[Feature]
[Remark]

16-kbps ADPCM decode processing (linear code interface)
adpcm_I16_dec

Decodes a specified a 16-kbps ADPCM code to a linear code.
int adpcm_116_dec (int adpcm_16, int *work)

Type Argument Description

int work [16] First address of resident area (64 bytes)
int adpcm_16 16-kbps ADPCM code

Type |Return Value Description

int linear_dec Linear code

Decodes sampling data given by a 16-kbps ADPCM code to a linear code.
The following function is deleted from the 32-kbps ADPCM decoder of ITU-T
Recommendation.

e Conversion from linear code to 64-kbps PCM code.

e Synchronous coding correction

39

CHAPTER 2 LIBRARY SPECIFICATIONS

(7) adpcm_pm16_dec function
This function performs 16-kbps ADPCM decode processing of the pu-law PCM code interface.
It decodes a 16-kbps ADPCM code given by the input parameter, and returns a 64-kbps p-law PCM code as
a return value.
Of the parameters to be passed to the adpcm_pm16_dec function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for decode processing.

[Classification] 16-kbps ADPCM decode processing (u-law PCM code interface)
[Function name] adpcm_pm16_dec

[Outline] Decodes a specified 16-kbps ADPCM code to a u-law PCM code.
[Format] int adpcm_pm16_dec (int adpcm_16, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int adpcm_16 16-kbps ADPCM code
[Return value] Type |Return Value Description
int pcm_mlaw | 64-kbps p-law PCM code
[Feature] Decodes sampling data given by a 16-kbps ADPCM code to a 64-kbps p-law PCM code.
[Remark] The following function is deleted from the 16-kbps ADPCM decoder of ITU-T

Recommendation.
e Synchronous coding correction

CHAPTER 2 LIBRARY SPECIFICATIONS

(8) adpcm_pal6_dec function

This function performs 16-kbps ADPCM decode processing of the A-law PCM code interface.

It decodes a 16-kbps ADPCM code given by the input parameter, and returns a 64-kbps A-law PCM code as

a return value.

Of the parameters to be passed to the adpcm_pal6_dec function, specify the same address as that passed

to the adpcm_init function as the address of the resident area for decode processing.

[Classification]
[Function name]
[Outline]
[Format]

[Argument]

[Return value]

[Feature]
[Remark]

16-kbps ADPCM decode processing (A-law PCM code interface)
adpcm_pal6_dec
Decodes a specified 16-kbps ADPCM code to a 64-kbps A-law PCM code.
int adpcm_pal6_dec (int adpcm_16, int *work)

Type Argument Description

int work [16] First address of resident area (64 bytes)
int adpcm_16 16-kbps ADPCM code

Type |Return Value Description

int pcm_alaw 64-kbps A-law PCM code

Decodes sampling data given by a 16-kbps ADPCM code to a 64-kbps A-law PCM code.
The following function is deleted from the 16-kbps ADPCM decoder of ITU-T
Recommendation.

e Synchronous coding correction

41

CHAPTER 2 LIBRARY SPECIFICATIONS

(9) adpcm_tpm16_dec function
This function performs 16-kbps ADPCM decode processing of the pu-law PCM code interface.
It decodes a 16-kbps ADPCM code given by the input parameter, and returns a 64-kbps p-law PCM code as
a return value.
Of the parameters to be passed to the adpcm_tpm16_dec function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for decode processing.

[Classification] 16-kbps ADPCM decode processing (u-law PCM code interface)
[Function name] adpcm_tpm16_dec

[Outline] Decodes a specified 16-kbps ADPCM code to a u-law PCM code.
[Format] int adpcm_tpm16_dec (int adpcm_16, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int adpcm_16 16-kbps ADPCM code
[Return value] Type |Return Value Description
int pcm_mlaw | 64-kbps p-law PCM code
[Feature] Decodes sampling data given by a 16-kbps ADPCM code to a 64-kbps p-law PCM code.

(10) adpcm_tpal6_dec function
This function performs 16-kbps ADPCM decode processing of the A-law PCM code interface.
It decodes a 16-kbps ADPCM code given by the input parameter, and returns a 64-kbps A-law PCM code as
a return value.
Of the parameters to be passed to the adpcm_tpal6_dec function, specify the same address as that passed
to the adpcm_init function as the address of the resident area for decode processing.

[Classification] 16-kbps ADPCM decode processing (A-law PCM code interface)
[Function name] adpcm_tpal6_dec

[Outline] Decodes a specified 16-kbps ADPCM code to a 64-kbps A-law PCM code.
[Format] int adpcm_tpal6_dec (int adpcm_16, int *work)
[Argument] Type Argument Description
int work [16] First address of resident area (64 bytes)
int adpcm_16 16-kbps ADPCM code
[Return value] Type |Return Value Description
int pcm_alaw 64-kbps A-law PCM code

[Feature] Decodes sampling data given by a 16-kbps ADPCM code to a 64-kbps A-law PCM code.

CHAPTER 3 INSTALLATION

3.1 Supply Format

The middleware library ADPCM is a library for developing applications using NEC or GHS tools. Therefore, it is
available in two media, one for NEC tools and the other for GHS tools. The contents of the supply media are as follows:

3.1.1 V810 family

.—— nectools ibg10 | libadpcm.a

smp810 |—|adpcm sample.c
makefile

linear.o
expect_e.o
expect_d.o

——{ ghstools] ibg10 | libadpcm.a

smp810 |—|adpcm sample.c
makefile

linear.o
expect_e.o
expect_d.o

3.1.2 V850 family

.J—— nectools ib850 | libadpcm.a

smp850 —Jadpcm |—— sample.c
— makefile

L linear.o
| expect_e.o
L expect_d.o
— startup.s

—— sample.lnk

—]ghstools libg50 | libadpcm.a

smp850 |—fadpcm |—— sample.c

— makefile

— linear.o
— expect_e.o
— expect_d.o
— startup.s
L— dfile

43

CHAPTER 3 INSTALLATION

3.1.3 Directory and file
The functions of each directory and file are as follows:

* (1) nectools
Contains the ADPCM program used to develop applications using NEC tools.

* (2) ghstools
Contains the ADPCM program used to develop applications using GHS tools.

(3) lib850
Contains the library of the ADPCM.

(4) smp8l0/adpcm, smp850/adpcm
Contains a sample program using the ADPCM and sample speech data.

44

CHAPTER 3 INSTALLATION

3.2 File Expansion to Host Machine

This section describes the procedure, for the UNIX version (SUN4) and MS-DOS™/PC DOS™ version, to transfer
the files from the supply media to the host machine.

3.2.1 UNIX version
The UNIX version is available in two media: CGMT and 3.5” FD. The ADPCM files are stored in these media in

the tar format. The procedure for installing ADPCM to the host machine is as follows.

<1> Create a directory to install the ADPCM. In this example, a directory named mw_adpcm is created.

% mkdir mw_adpcm <CR>

<2> Move to the created directory.

% cd mw_adpcm <CR>

<3> Insert the supply media.
e Insert the CGMT in the magnetic tape unit.
e Insert the 3.5” FD in the floppy disk drive.

<4> Execute the tar command to expand the files on disk. The special file name to be specified differs depending
on the host machine.
In this example, only the files for NEC tools are expanded, assuming that the special file name is /dev/rst8.

% tar -xvof /dev/rst8 nectools <CR>

To expand the files for GHS tools, input the following:

% tar -xvof /dev/rst8 ghstools <CR>

<5> Confirm that the files have been installed. For each directory, refer to 3.1 Supply Format .

% Is -CFR <CR>

45

CHAPTER 3 INSTALLATION

3.2.2 MS-DOS/PC DOS version
The MS-DOS/PC DOS version is supplied on a 3.5” FD. Install the ADPCM on the host machine in the following
procedure:

<1>

<2>

<3>

<4>

<5>

46

Create a directory to which the ADPCM is to be installed. In this example, a directory named mw_adpcm
is created in drive A.

A>md mw_adpcm <CR>

Move to the created directory.

A> cd mw_adpcm <CR>

Insert the supply media in the floppy disk drive. In this example, insert the disk in drive C.

Execute the xcopy command to expand the files. In this example, only the files for NEC tools are expanded.

A> xcopy c: \nectools . /s /e /v <CR>

Similarly, expand the files for GHS tools as follows:

A> xcopy c: \ghstools . /s /e Iv <CR>

Confirm that the files have been installed. For each directory, refer to 3.1 Supply Format .

A> dir a: \nectools <CR>

CHAPTER 3

INSTALLATION

3.3 Creating Sample Program

The directory smp810 (V810 family version) or smp850 (V850 family version) stores a sample program using the
compression function and expansion function of 32 kbps ADPCM (linear code interface) and speech data (refer to

APPENDIX for the source program of sample.c).

The sample program compresses a data array called linear_enc stored in the file linear.o, and the result of
compressionis storedinan array called adpcm_32. Next, this compressed data is expanded and the result of decoding
(expansion) is stored in an array called linear_dec.

Figure 3-1. Organization of Sample Program

cnt=1

cnt=2

cnt=3

cnt=4

cnt=5

cnt=6

short linear_enc [cnt]
(linear.o)

Compression
—_—

4 3 0 (Bit)
ent=2 | ent=1 Expansion
cnt=4 cnt=3 —
cnt=6 cnt=5

unsigned char adpcm_32 [cnt]

cnt=1

cnt=2

cnt=3

cnt=4

cnt=5

cnt=6

short linear_dec [cnt]

In the example given below, sample program “make”, NEC tools, and UNIX version are used.

<1> Move to the directory containing the sample program.

<2>

<3>

<4>

<5>

% cd mw_adpcm/nectools/smp810/adpcm <CR>

Change startup.c in accordance with the target, by using an editor. startup.c supplied as a sample describes
only initialization of the stack pointer.

Execute the make command to create sample.elf

% make sample.elf <CR>

Confirm that sample.elf has been created.

% Is - | sample.elf <CR>

Download the sample program to the target using an in-circuit emulator and execute it.

47

CHAPTER 3 INSTALLATION

3.4 Changing Location

The ADPCM library is given the following section name. The location can be changed in accordance with the user’s
target.

Section Name | Type Description
.ad_text text Text (instruction code)
.ad_data .data Table data (constant)

3.5 Symbol Name Convention

The symbol names used in the ADPCM library are in compliance with the following convention. When using the
symbol names in combination with other applications, be careful not to duplicate them.

Classification Convention

Function/symbol “adpcm_" is prefixed.

48

APPENDIX SOURCE PROGRAM OF sample.c

--- sample.c---

extern short linear_enc[0x4000];
unsigned char adpcm_32[0x4000/2];
short linear_dec[0x4000];

int work[16];

void

encoder ()

{

unsigned register int cnt;
adpcm_init(work);
for(cnt=0; cnt<0x4000; cnt++) {
if(cnt & 1){
adpcm_32[cnt>>1]|=((unsigned char)adpcm_132_enc((int)linear_enc[cnt],

work)) << 4;

}
else{
adpcm_32[cnt>>1]=(unsigned char)adpcm_132_enc((int)linear_enc[cnt],
work);
}
}
}
void
decoder ()
{
unsigned register int cnt;
adpcm_init(work);
for(cnt = 0; cnt<0x4000; cnt++){
if(cnt & 1){
linear_dec[cnt] = (short)adpcm_132_dec(((int)jadpcm_32[cnt>>1]) >> 4,
work);
}
else{
linear_dec[cnt] = (short)adpcm_132_dec(((int)adpcm_32[cnt>>1]) & Oxf,
work);
}
}
}
main ()
{
encoder();
decoder();
}

49

[MEMO]

50

Facsimile

NEC

Message

Although NEC hastaken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that

From: .
errors may occur. Despite all the care and
precautions we've taken, you may

Name encounter problemsin the documentation.
Please complete this form whenever

Company you'd like to report errors or suggest
improvements to us.

Tel. FAX

Address

Thank you for your kind support.

North America

NEC Electronics Inc.

Corporate Communications Dept.

Fax: 1-800-729-9288
1-408-588-6130

Europe

NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea

NEC Electronics Hong Kong Ltd.
Seoul Branch

Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number:

Page number:

If possible, please fax the referenced page or drawing.

Document Rating
Clarity

Technical Accuracy
Organization

Excellent Good
a a
a a
a a

Acceptable Poor
a a
a a
a a

CS 98.2

