ad s 7

Am29027

Arithmetic Accelerator

ADVANCE INFORMATION

DISTINCTIVE CHARACTERISTICS

® High-speed floating-point accelerator for the Am29000
processor

e Comprehensive floating-point and integer instruction
sets

@ Single-, double-, and mixed-precision operations

® Performs conversions between precisions and between
data formats

e Compatible with industry-standard floating-point formats
- |[EEE P754 version 10.1
- DEC F, DEC D, and DEC G formats
- IBM system 370 format

® Exact IEEE compliance for denormalized numbers

® Simple interface requires no glue logic between
Am29000 and Am29027

® Eight-deep register file for intermediate results and on-
chip 64-bit datapath facilitate compound operations,
e.g., Newton-Raphson division, sum-of-products, and
transcendentals

® Supports pipelined or flow-through operation
- Performs single- and double-precision floating-point

operations at 120-ns pipelined rate

® Full compiler and assembier support

® Fabricated with Advanced Micro Devices' 1.2 micron
CMOS process

GENERAL DESCRIPTION

The Am29027 Arithmetic Accelerator is a high-speed
computational unit intended for use with the Am29000
Streamlined Instruction Processor (SIP). When added to a
29000-based system, the Am29027 can improve floating-
point performance by an order of magnitude or more.

The Am29027 implements an extensive floating-point and
integer instruction set, and can perform” operations on
single-, double- or mixed-precision operands. The three
most popular floating-point formats (IEEE, DEC, and I1BM)
are supported. |IEEE operations comply with standard P754,
with direct implementation of special features such as
gradual underflow and trap handling.

The Am29027 consists of a 64-bit ALU, a 64-bit datapath,
and a control unit. The ALU has three data input ports, and
can perform compound operations of the form (A * B) + C.
The datapath comprises two 64-bit input operand registers,
an 8-by-64-bit register file for storage of intermediate

a Nl ,

004980

Y580

results, three operand selection multiplexers that provide
for orthogonal selection of input operands, and an output
multiplexer that allows access to result data, operaticn
status, flags, or accelerator state. The control unit inter-
prets transaction requests from the Am29000, and se-
quences the ALU and datapath.

Operations can be performed in either of two modes: flow-
through or pipelined. In the flow-through mode, the ALU is
completely combinatoriai; this mode is best suited for
scalar operations. Pipelined mode divides the ALU into one
or two pipelined stages for use in vector operations, such
as those found in graphics or signal processing.

The Am29027 connects directly to Am29000 system buses,
and requires no additional interface circuitry.

Fabricated with AMD's 1.2 micron technology, the
Am29027 is housed in a 168-lead pin-grid-array (PGA)
package.

O Ay

Am O

Powered by ICminer.com Eleclronic-LHE;& W%@pp,\gmqg

umant contains information on a product under development al Advanced Micro Devices,
help you to evaiuate this product. AMD reserves

the right ta change or discontinue work on this proposed product withaut notice.

Publication # Rev. Amendment
09114 A /0
Issue Date: February 1987

pu

lZo6Twy

$221A2(O.IDIW P2OURAPY

Address

SIMPLIFIED SYSTEM DIAGRAM

Am29027
Arithmetic
Accelerator

<

/’ 32

Am29000
Streamiined
Instruction
Processor

—-—

instruction
ROM

32

Data

INSTRUCTION

>

Instruction
Memory

>

Data
Memory

<

Data
Transfer
Controller

<=
e —

| 32

System Bus

J

i
[

AFD04740

Powered by ICminer.com Electronic-Library Service CopyRight 2003

RELATED AMD PRODUCTS

Part No.

Description

Am29000

Streamlined Instruction Processor

CONNECTION DIAGRAM
169-Lead PGA*

Bottom View
A B C DEFGH J KL MNZPR RTWU

1(@@@@@@@@@@@@@(9@@@\
3 RONORONONONORONONONONONONORONONONO!
L RCECRORONONONORONONORONONONONONCNO)
L ORONONON IONONO]
5| @ @ ® (ONONO]
6|l ®@ @ @® ® @@
1 ®@®@@® (CONO]
L} MONONO; [ONONO]
L} MORONO; ® @@
1) MONONO, IONONO]
11 ONONO! IONONO]
113 RONONO! IONONO)
B OO (ONONO]
| ® @@ (ONONO]
LI RONONONONONORONONONORONONONONONONO)
L] HORONONONONONONONRONONORONONORONONO)
'7\O©@©©©©©©©©©®©©©@/

CD009761

*Pinout observed from pin side of package.
**Alignment pin (not connected internally).

Powered by ICminer.com Electronic-Library Service CopyRight 2003

PIN DESIGNATIONS
(Sorted by Pin No.)

PIN NO. PIN NAME PIN NO. PIN NAME PIN NO. PIN NAME PIN NO. PIN NAME
A-1 c-9 J-15

A-2 C-10 J-16

A-3 c-11 17

A4 c-12 K-1

A-5 c-13 K-2

A-6 C-14 K-3

A7 C-15 K-15

A-8 c-16 K-16

A-9 c-17 K-17

A-10 D-1 L-1

A-11 D-2 L-2

A-12 D-3 L3

A-13 D-15 L-15

A-14 D-16 L-16

A-15 D-17 L-17

A-16 E-1 M-1

A-17 E-2 M-2 T-9
B-1 E-3 T-10
B-2 E-15 T-11
B-3 E-16 T-12
B-4 E-17 T-13
B-5 F-1 T-14
B-6 F-2 T-15
8-7 F-3 T-16
B-8 Fi8 T-17
B-9 . F-16- N-16 U1
B-10 AT N-17 u-2
B-11 _GA P-1 u-3
B-12 G-2 P-2 u-4
B-13 G-3 P-3 U-5
B-14 G-15 P-15 u-6
B-15 G-16 P-16 V-7
B-16 G-17 P-17 u-8
B-17 H-1 R-1 u-9
c-1 H-2 R-2 U-10
c-2 H-3 R-3 U-11
c3 H-15 R-4 U-12
c-4 H-16 R-§ U-13
c5 H-17 R-6 U-14
c-6 J-1 R-7 u-15
c7 J-2 R-8 u-16
c-8 J-3 R-9 u-17

Powered by ICminer.com Electronic-Library Service CopyRight 2003

LOGIC SYMBOL

— | FESET B .
——— RW DRDY » |\ Transaction
2 Status
Transaction —7’—' DREQT,-DREQT, OERA |——»
Request 32
OPT, -OPT, Ry By Z:>
—— BNV MSERR |——s
a2
Z:> RoR3
32
z:> So-Sa1
32
——»{ OE
——] SLAVE
—> CLK
LS002960

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by
a combination of: A. Device Number

B. Speed Option (if applicable)

C. Package Type

D. Temperature Range

E. Optional Processing

lo
o

AM29027 G

|——E. OPTIONAL PROCESSING

Blank = Standard processing
B = Burn-in

D. TEMPERATURE RANGE
C = Commercial {0 to +70°C}

C. PACKAGE TYPE
G = 169-Terminal Pin Grid Array (CGX169)

B. SPEED OPTION
Not Applicable

A. DEVICE NUMBER/DESCRIPTION
Am29027
Arithmetic Accelerator

Valid Combinations

Valid Combinations list configurations planned to be

Valid Combinations supported in volume for this device. Consult the local AMD
AM29027 | sc Ges sales office to confirm availability of specific valid
combinations, to check on newly released combinations, and
to obtain additional data on AMD's standard military grade
products.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

PIN DESCRIPTION

BINV Bus Invalid (Input; Active LOW)
A logic LOW indicates that the Am29000 address bus is
invalid, and that signals DREQT4 and DREQTy are to be
ignored.

CDA Accelerator Data Accept (Output; Active LOW)
A logic LOW indicates that the Am29027 is ready to accept
operands or operation codes from the Am29000.

CLK Clock (Input)

DERR Data Error (Output; Active LOW)
A logic LOW indicates that one or more unmasked flags
were set by a previous operation.

DRDY Data Ready (Output; Active LOW)
A logic LOW indicates that valid data is available on port F.

DREQTp

Start Instruction/Suppress Errors (Input;
Active HIGH)

This signal, when accompanied by a valid write operand R,
write operand S, write operands R, S, or write
instruction transaction request, commands the Am29027
to begin a new operation. When accompanying a valid read
result LSBs, read result MSBs, read flags, or read status
transaction request, DREQTg suppresses the reporting of
operation erfrors. This signal is considered valid only when
signal BINV is inactive.

DREQT

Accelerator Transaction Request (Input;
Active HIGH)

A logic HIGH indicates that the Am29000 is making an
accelerator transaction request. This signal is considered
valid only when signal BINV is inactive.

F Output Bus (Output)

lop-131 Instruction Word (Input)
Specifies the operation to be performed by the accelerator,
including the opcode, integer/fioating-point select,

Fo-F31

multiplexer selects, register file select and enable, and the
precision of the operands.

MSERR Master/Slave Error (Output)
A logic HIGH indicates that a discrepancy has been
detected between the outputs of the master and slave
accelerators.

OE Output Enable (Input; Active LOW)
A logic HIGH disables all accelerator outputs uncon-
ditionally. When OE is LOW, accelerator outputs are
enabled and disabled by transaction requests. This signal is
provided for test purposes.

OPTp-OPT2 Transaction Type (Input)
These signals, in conjunction with R/W, specify the type of
accelerator transaction, if any, currently being requested by
the Am29000.

Ro-R31 R Input Data Bus (Input)

RESET Reset (input; Asynchronous, Active LOW)
Resets the state of the internal sequencing circuitry. When
RESET is asserted, the state of the instruction and data
registers is undefined; the status register is cleared. RESET
must be connected to the signal line used to reset the
Am29000.

R/W Read/Write (Input)
Determines the direction of a transaction. When R/W is
HIGH, data is being t_ransferred from the Am29027 to the
Am29000. When R/W is LOW, data is being transferred
from the Am29000 to the Am29027.

S0-S31 S Input Data Bus (Input)

SLAVE Master/Slave Mode Select (Input; Active

LOwW)

A logic LOW selects Slave mode; in this mode all outputs

except MSERR are disabled. A logic HIGH selects Master
mode.

FUNCTIONAL DESCRIPTION

Overview

The Am29027 is a high-performance, single-chip arithmetic
accelerator for the Am29000 Streamlined Instruction Proces-
Sor.

Architecture

The Am29027 comprises a high-speed ALU, a 64-bit datapath,
and control circuitry.

The core of the Am29027 is a 64-bit floating-peint/integer
ALU. This ALU takes operands from three 64-bit input ports
and performs the selected operation, placing the result on a
64-bit output port. Seven ALU flags report operation status.
The ALU is completely combinatorial for reduced latency,
optional pipelining is available to boost throughput for array
operations.

The datapath consists of the 64-bit input buses R and S; two
64-bit input operand registers; an 8-by-64-bit register file for
storage of intermediate results; three operand selection multi-
plexears that provide for orthogonal selection of input oper-
ands; an output multiplexer that permits the selection of data,
flags, operation status, or accelerator state; and a 64-bit
output bus F. Input operands enter the floating-point accelera-
tor through the R and S buses, and are then demultiplexed
and buffered for subsequent storage in registers R and S. The
operand selection multiplexers route the operands to the ALU.
Operation results are stored in register F, and leave the device

on the three-state output bus F. The results can also be stored
in the register file for use in subsequent operations.

On-board control circuitry sequences the ALU and datapath
during operations, and manages the transfer of data between
the accelerator and its host.

Instruction Set

The Am29027 implements 58 arithmetic and logical instruc-
tions. Thirty-five instructions operate on floating-point num-
bers; these instructions fall into the following categories:
® Addition/subtraction

Multiplication

Multiplication-accumulation

Comparison

Selecting the larger or smaller of two numbers
Saturation (clipping)

Rounding to integral value

Absolute vaiue, negation

Reciprocal seed generation

Conversion between any of the supported floating-point
formats

Conversion of a floating-point number to an integer format,
with or without a scale factor

® Pass operand

By concatenating these operations, the user can also perform
division, square-root exiraction, polynomial evaluation, and
other functions not impiemented directly.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Twenty-two instructions operate on integers, and belong to the
following general categories:

® Addition/subtraction

Multiplication

Comparison

Selecting the smaller or larger of two numbers
Absolute value, negation, pass operand

Logical operations, e.g., AND, OR, XOR, NOT
Arithmetic, logical, and funnel shifts

Conversion between single- and double-precision integer
formats

Conversion of an integer number to a floating-point format,
with or without a scale factor

One special instruction is provided to move data.
Performance

The Am29027 provides operation speeds several times great-
er than that of conventionai floating-point coprocessors, by
vitue of its extensive use of combinatorial, rather than
sequential, logic. Most floating-point operations, whether sin-
gle-, double-, or mixed-precision, can be performed in as few
as six system clock cycles. Performance is further enhanced
by the presence of the on-board register file, which can be
used to hold intermediate operation results, thus reducing the
amount of time needed to transfer operands between the
Am29027 and its host.

Interface

The Am28027 connects directly to the Am29000 system
buses. Am29027 operations are specified by a series of
operand and instruction transactions issued by the Am29000.
Seven input signals specify the transaction requested by the
Am29000; three output signals report transaction status.

Master/Slave

The Am29027 contains special comparison hardware to allow
the operation of two acceierators in parallel, with one proces-
sor (the slave) checking the results produced by the other (the
master). This feature is of particular importance in the design
of high-reliability systems,

Support

The Am29027 is fully supported by those hardware and
software tools available for the Am29000, including:

® Am29000 C, Pascal, and Fortran Compilers

Am29000 Assembler

Am29000 Functional Simulator

Hardware Debug Module that interfaces the target system
to a logic analyzer and a host. The Module permits single-
step operation, breakpoint insertion, and other standard
debugging techniques.

Low Power

The Am29027 has a maximum power dissipation of 1.5 W,
guaranteed over the operating range.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

weJbelg ¥o0|g LZ06ZWY 'L 8.nbiy

0120008
ByISH
L€, 0,
HOLYHYANOD
ETVAS
IAVISHZLSY =
e/
m XN _
» T T 3 s T S
¢ 4 N& 224 m* Nm% \?m m?*
_ o34 OV 13 A _ O3 SNLVIS A _ o34 A so3ke o o
300
¢ 3 vad
MV E3D3LNIdS /
1 [4 d
k¢ 7 k4
XOW L _ — XN O _
SL-.-. 8. 065 ¢C¢ Si.-: 8,955 €2 GL--- 8496
EEEX I [
¥g 2z 160 Xe 2 160 ve e
v
ol
o3 BECES oMY
O 1
g . OumazmhmA ﬁumxmzmhmb
omon ¢ #3348 NV
% E YIXITLIWEA ONVE 3O
2/ zf
—mw.om —ﬂx‘om

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Block Diagram Description

A block diagram of the Am29027 is shown in Figure 1. The
Am29027 comprises input registers, operand selection multi-
plexers, instruction register, ALU, output register/register file,
flag register, status register, output selection multiplexer,
control unit, mode register, and the master/slave comparator.

Input Registers

Operands enter the accelerator through the R and S buses,
and are demultiplexed and buffered for subsequent storage in
64-bit registers R and S. Input operands may be either single-
precision (32-bit) or double-precision (64-bit). Twa single-
precision operands or one double-precision operand may be
loaded in a single system clock cycle. Accompanying the input
registers are two 32-bit temporary registers, R- Temp and S-
Temp, that allow for the overlapping of operand transfers and
ALU operations.

Operand Selection Multiplexers

The operand selection multiplexers route operands to the
ALU. These multiplexers, as well as selecting operands from
input registers R and S and register file locations RFO - RF7,
also have access to a set of constants (0, 0.5, 1, 2, 3, Pi).
These constants are double-precision preprogrammed num-
bers for use in ALU operations, and are automatically provided
in the appropriate floating-point or integer format.

Instruction Register

The instruction register stores a 32-bit word specifying the
current accelerator operation. included in the instruction word
are fields that specify: the core operation to be performed by
the ALU; sign-change selects for ALU input and result
operands; the operands to be selected as ALU inputs; the
register file write location and write enable; and operand
precisions. A detailed description appears in the Accelerator
Instruction Set section.

ALU

The ALU is a combinatorial arithmetic/logic unit that performs
a large repertoire of floating-point and integer operations. The
ALU has three operand inputs, and performs operations of the
form (P*Q) + T. Most ALU operations require only one or two
input operands; for example, addition requires only operands
P and T, multiplication only operands P and Q, and precision
conversion only operand P. Most ALU operations allow the
user to modify cperand signs, thus greatly increasing the
number of arithmetic expressions that can be evaluated in a
single ALU pass. A detailed description of ALU operations
appears in the Accelerator Instruction Set section.

The ALU can be configured in either a flow-through mode, for
which the ALU is completely combinatorial, or a pipelined
mode, for which ALU operations incur one or two pipeline
delays.

Output Register/Register File

The results of the operations performed by the ALU are stored
in the 64-bit output register F. Results can also be stored in
the 8-by-64-bit register file for use in subsequent operations.
Each register file location contains a 65th bit indicating the
precision of the operand stored in that location, thus permitting
the ALU to correctly process the operand in subsequent
operations.

Flag Register

The flag register is a 7-bit register that stores flags pertaining
1o the most recently performed operation. A detailed descrip-
tion of the flag register is provided in the Accelerator Instruc-
tion Set section.

Status Register

The status register stores six operation status bits generated
by the ALU during the course of an operation. These status
bits are individually latched; once a given bit is set, it remains
set until the status register is cleared by the host processor.
The operation status bits indicate conditions of overflow,
underflow, zero result, reserved operand, invalid operation,
and inexact result. A detailed description of the status register
is provided in the Accelerator Instruction Set section.

Mode Register

The mode register contains accelerator parameters that
change infrequently. The 64-bit mode word is loaded into the
register via the R and S buses. A detailed description of the
mode register is provided in the Mode Register Description
section.

Output Multiplexer

The cutput multipiexer routes operation results and accelera-
tor internal state to the Am29000 through the F bus. This
multiplexer selects from the ALU output register (32 LSBs or
32 MSBs); flag register; status register; register file precisions;
instruction register; and the mode register (32 LSBs or 32
MSBs).

Control Unit

The control unit manages the transfer of data between the
Am29000 and the Am29027, as well as the timing of operation
execution.

The Am29000 host processor oversees the operation of the
Am29027 by issuing one of thirteen commands, or transaction
requests, to the control unit via seven signai lines. Each
transaction request specifies an action on the part of the
Am29027, such as loading an operand into an input register or
returning a result to the host. The control unit then sequences
the remainder of the Am29027 to produce the desired action.
Three transaction status lines are generated by the control
unit to indicate whether a transaction has been completed,
and whether returned data contains an error.

A detailed description of transaction requests is given in the
Accelerator Transactions section.

Master/Slave Comparator

Each Am29027 output signal has associated logic that com-
pares that signal with the signal that the accelerator is
providing internally to the output driver; any discrepancies are
indicated by assertion of signal MSERR.

For a single accelerator, this output comparison detects short
circuits in output signals or defective output drivers, but does
not detect open circuits. It is possible to connect a second
accelerator in parallel with the first, with the second accelera-
tor's outputs disabled by assertion of signal SLAVE. The
second accelerator detects open-circuit signals, as well as
providing a check of the outputs of the first accelerator.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

AM28000 RESET Am29027
RESET RESET
RAW RW
DREQT, DREQT,
OPT, OPT,
OPT1 OPT,y
OPTy OPTy
DREQT, DREQT,
BINV BINV
CDA COR
DRDY 4_@: DRDY
DERR DERR
RS
AgAz So-S31
Dy-D. 32 Ry-R
0034 -
L Jo,
07131
az
7 Fo-Fa1
OF l&—
STAVE |&—
MSERR |—»
SYSCLK CLK
INCLK
SYSTEM
CLOCK
AF004720

Figure 2. Am29000/Am29027 Hardware Interface

Mode Register Description

The 64-bit mode register stores twenty-three infrequently
changed parameters pertaining to accelerator operation. The
Am29000 modifies the accelerator parameter set by placing
the desired values on accelerator ports R and S while issuing
a write mode register transaction request; further details on
this transaction are given in the Accelerator Transactions
section. The mode register should be loaded after reset, or
whenever a new mode of accelerator operation is required.

Mode Register Bits M0 - M63
Mode register bits MO —M63 are organized as follows:

MO - M3 — Floating-Point Format Select:

M1 | MO | Primary Format

[o] IEEE

0 1 DEC F (SINGLE), DEC D (DOUBLE)
1 0 DEC F (SINGLE), DEC G (DOUBLE)
1 1 IBM

M3 | M2 | Alternate Format

o] [} IEEE

0 1 DEC F (SINGLE), DEC D (DOUBLE)
1 o} DEC F (SINGLE), DEC G (DOUBLE)
1 1 IBM

Floating-point formats are discussed in further detail in Appen-
dix A.

M4 — Saturate Enable: If M4 is HIGH, overflowed resuits are
replaced by the largest representable value in the selected
format of the same sign as the overflowed result. If M4 is
LOW, the result is not changed. If M6 is HIGH, saturation is
disabied.

M5 — IEEE Affine/Projective Select: If M5 is HIGH, affine
mode is selected. If M5 is LOW, projective mode is selected.
The interpretation of infinities is determined by M5. This bit has
no effect for formats other than IEEE.

M6 — |IEEE Trap Enable: If M6 is HIGH, IEEE trapped
operation is enabled; the saturate (M4) and sudden underflow
(M?) bits are ignored. For an underflowed result, the exponent
is replaced by e = e + 192 (SP), or e = e + 1536 (DP), with the
significand unchanged. For an overflowed result, the exponent
is replaced by e = e - 192 (SP), or e = & - 1536 (DP), with the
significand unchanged. if M6 is LOW, |IEEE trapped operation
is disabled. This bit has no effect for formats other than |EEE.

M7 — IEEE Sudden Underflow Enable: If M7 is HIGH and
IEEE traps are disabled (M6 LOW), all IEEE denormalized
results are replaced by a zero of the same sign. If M7 is LOW,
a valid denormalized number will be produced. This bit has no
effect for formats other than IEEE.

M8 — IBM Significance Mask Enable: If M8 is HIGH, certain
IBM operations having intermediate results of 0 will produce a
final result of O with the biased exponent unchanged. If M8 is
LOW, these operations will produce a final result of true-zero.
This bit has no effect for formats other than IBM.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

M9 — IBM Underflow Mask Enable: If M9 is HIGH, certain
underflowed IBM operations will produce a normalized resuit
with an exponent 128 larger than the correct one. If M9 is
LOW, these operations will produce a final result of true-zero.
This bit has no effect for formats other than IBM.

M10: Reserved for future use (don't care).

M11— Integer Multiplication Signhed/Unsigned Select: If
M11 is HIGH, the input operands are treated as two's-
complement numbers. If M11 is LOW, the input operands are
treated as unsigned numbers. This bit has no effect for
operations other than integer multiplication.

M12, M13 — Integer Multiplication Format Adjust: Selects
the output format for integer multiplications. The user may
select either the MSBs or the LSBs of the result of an integer
multiplication:

M13 | M12 | Output Format
0 0 LSBs
0 1 LSBs, format-adjusted
1 0 MSBs
1 1 MSBs, format adjusted

"Format-adjusted’' indicates that the product is shifted left
one place before the MSBs or LSBs are selected.

M14 - M16 — Round Mode Select: Selects one of six round-
ing modes:

M16 | M15 | M14 | Round Mode
0 0 0 Round to Nearest (unbiased)
0 0 1 Round to Minus Infinity
0 1 0 Round to Plus Infinity
0 1 1 Round to Zero
1 0 0 Round to Nearest (biased)
1 0 1 Round Away From Zero
1 1 X lllegat Value

Additional information on round modes can be found in
Appendix B.

M17 - M19: Unused (don't care).

M20 — Pipeline Mode Select: When M20 is HIGH, pipelined
mode is selected; when M20 is LOW, flow-through (unpipe-
lined) mode is selected.

M21: Logic 0

M22 — Invalid Operation Mask Bit: When M22 is HIGH, the
invalid operation flag will not contribute to signal DERR.

M23 — Reserved Operand Mask Bit: When M23 is HIGH,
the reserved operand flag will not contribute to signal DERR.

M24 — Overflow Mask Bit: When M24 is HIGH, the overflow
flag will not contribute to signal DERR.

M25 — Underflow Mask Bit: When M25 is HIGH, the under-
flow flag will not contribute to signal DERR.

M26 — Inexact Result Mask Bit: When M26 is HIGH, the
inexact result flag will not contribute to signal DERR.

M27 — Zero Mask Bit: When M27 is HIGH, the zero flag will
not contribute to signal DERR.

M28 - M31: Reserved for future use (don't care).

M32 - M35 — Pipeline Timer Count: In flow-through mode,
this parameter specifies the number of clock cycles needed
for data to traverse the ALU when performing any operation
except multiply-accumulate; in pipelined mode, it specifies the
number of cycles needed for data to traverse a single pipeline
stage for any operation. The field can assume values between
3 and 15, inclusive, in flow-through mode; between 2 and 15,
inclusive, in pipelined mode.

M36 - M39 — Timer Count for the Multiply-Accumulate
Operation: In flow-through mode, this parameter specifies the
number of clock cycles needed for data to traverse the ALU
when performing a multiply-accumulate operation. The field
can assume values between 3 and 15, inclusive.

M40 - M43 — Timer Count for the Save State Transaction
Request: This parameter specifies the number of clock cycles
needed to move data through the fioating-point ALU when
performing a save state transaction request. The field can
assume values between 2 and 15, inclusive.

M44 — Advance DRDY: When M44 is HIGH, signal DRDY is
advanced one clock cycle in flow-through mode. This bit has
no effect in pipelined mode.

M45 - M63: Reserved for future use (don't care).

Accelerator Transactions

The Am28000 controls the Am29027 with 13 transaction
requests. Transaction type is indicated by the state of four
signals: R/W and OPTg - OPT2. Table 1 lists the transaction
types and the corresponding signal states.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

1"

TABLE 1. TRANSACTION REQUESTS

R/W | OPTy | OPT{ | OPTo | Request Type
0 Q 0 0 Write Operand R
0 0 0 1 Write Operand S
0 a 1 0 Write Operands R, S
0 o] 1 1 Write Mode
0 1 0 0 Write Status
0 1 0 1 Write RF Precisions
0 1 1 0 Write Instruction
0 1 1 1 Restore Instruction
1 a 0 0 Read Results MSBs
1 Q 0 1 Read Results LSBs
1 0 1 0 Read Flags
1 0] 1 1 Read Status
1 1 0 0 Save State

Transactions are conditioned by signals DREQTy {(which,
when HIGH, indicates an accelerator transaction) and BINV.
The Am28000 will recognize a transaction only if both
DREQT and BINV are HIGH.

Write Transactions
There are eight available write transactions:

Write Operand R: An operand is written to input register R.
The most significant half of the 64-bit word to be written is
placed on port R, the least significant haif on port S. if signal
DREQT(is HIGH, operation execution will begin on the next
rising edge of CLK.

Write Operand S: An operand is written to input register S.
The most significant half of the 64-bit word to be written is
placed on port R, the least significant half on port S. If signal
DREQT is HIGH, operation execution will begin on the next
rising edge of CLK.

Write Operands R, S: Operands are written to input registers
R and S. If signal DREQTg is LOW, two 32-bit half-operands
are written to registers R-Temp and S-Temp. If DREQTy is
HIGH, two 32-bit half-operands are written to the upper haives
of registers R and S, and the contents of R-Temp and S-Temp
are transferred to the lower halves of R and S; instruction
execution will begin on the next rising edge of CLK.

Write Mode: A 64-bit word is written to the mode register. The
most significant half of the mode word to be written is placed
on port R, the least significant half on port S.

Write Status: A 6-bit word is written to the status register. The
status word to be written is placed on the six LSBs of the R
port as follows:

R5 — Zero

R4 — Inexact Result
R3 — Underflow

R2 — Overflow

R1 — Reserved Operand
RO — Invalid Operation

Write Register File Precisions: An 8-bit word containing the
precisions of register file locations RFQ ~ RF7 is written to the
register file. The precision word to be written is placed on the
eight LSBs of the R port, with bit O representing the precision
of location RFO, bit 1 representing the precision of RF1, etc. A
logic HIGH represents single precision, a logic LOW double
precision.

Write nstruction: An instruction is written to the instruction
register. If signal DREQTy is HIGH, operation execution will
begin on the next rising edge of CLK.

Restore Instruction: An instruction is written to the instruc-
tion register, and the internal timer used to generate signals
DRDY and DERR is restarted. This transaction request is used
to restore an instruction at the end of a state restore
sequence.

When issuing a write operand R; write operand S; write
operands R, S; or write instruction transaction request, the
Am29000 can command the Am29027 to begin an operation
by asserting signal DREQTg; the operation will begin after
receipt of data.

Read Transactions

Five read transactions transfer data from the Am28027 to the

Am29000. When data is to be transferred, the Am28000:

e |ssues the appropriate transaction request on signals
OPTy-OPT, and R/W.

® Places its data bus drivers in a high-impedance state.

The Am29027 then places the requested data on signals

Fo-F3¢, and issues one of two signals:

o DRDY indicates that valid data is available on signals
Fo - F31.

o DERR indicates that an error has occurred during a
previous operation, and that the data on signals Fg - F34
may be erroneous.

If desired, the Am29000 can suppress the reporting of errors
by asserting signal DREQTg when a read transaction request
is issued.

There are five available read transactions:

Read Result LSBs: The 32 LSBs of register F are placed on
port F, followed by the 32 MSBs.

Read Result MSBs: The 32 MSBs of register F are placed on
port F.

Read Flags: The seven flag register bits are placed on port F.
When outputting flags, the Am29027 will place a togic LOW on
the most significant 25 bits of port F.

Read Status: The six status register bits are placed on port F.
When outputting status, the Am29027 will place a logic LOW
on the most significant 26 bits of port F.

Save State: The contents of the instruction register, mode
register, status register, register file, and operand registers R,
R-Temp, S, and S-Temp are transferred to the Am29000. Error
reporting is suppressed for this transaction request. Further
details on the use of this request appear in the Pipelining of
Accelerator Operations section.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Pipelining of Accelerator Operations

The Am29027 can be configured as a pipelined or unpipelined
(flow-through) accelerator. The flow-through mode is normally
selected when performing scalar operations, and is invoked by
setting the mode register's "'pipeline mode select” field (M20)
to a logic LOW. To provide high throughput for vector
operations, the Am293027 is configured as a pipelined acceler-
ator by setting M20 to a logic HIGH.

Operation in Flow-Through Mode
Programmer’'s Model

A programmer's model of the Am29027 in flow-through mode
is shown in Figure 3. Note that register F and the flag register
are made transparent in this mode.

Performing Operations
Operations in flow-through mode are performed by:

1) Storing instruction and data in the Am28027, and starting
the operation.

2) Loading the result.

Storing instruction and data can be done in any of three
different ways:

1) Writing the instruction only, and starting the operation:
This is appropriate when all the necessary operands are
already stored in Am29027, as is sometimes the case when
using on-board constants or the results of previous opera-
tions.

2) Writing the data only, and starting the operation: This is
appropriate when the desired instruction is already present in
Am29027, as is the case when performing the second of two
identical operations.

3) Writing the instruction and data, and starting the
operation: This is appropriate whenever the next operation
requires both new instructions and data.

Opsrands and instructions are written using the write oper-
ands R, S, write operand R, write operand S, and write
instruction requests.

Loading an operation result is performed using the read result
MSBs, read result LSBs, and read flag register transaction
requests. The specific request used depends on whether the
result of an operation is a flag or flags (as is the case with
comparison operations) or data (as is the case with most other
operations). In cases where the result is stored in the register
file, the user may elect not to read the result, but to proceed
with the next operation.

R s
v v
[RiEwe | [stemr | 5 hEo
L ‘ D RF1
b wooe | | MUX]
L CONSTANTS :
- R S > RF?
AB4 ABs R AB4 b4
v
MUX |
484 484 A84
I Q r 6
N rd
3 ALU
F
FLAGS
A64
DE
INSTR REG _PF 6
R A PRECS
Ai:,z 32,1,,1,32 ,{«8 2 o A7 STATUS
[71]
»t/sz
F
BDO007121

Figure 3. Programmer's Model for Flow-Through Mode

Powered by ICminer.com Electronic-Library Service CopyRight 2003

1

3

Error Recovery

Six ALU flags — overflow, underflow, zero, reserved operand,
invalid operation, and inexact result — are used to update the
status register after every operation. The status register
latches each flag individually, such that, once the status
register bit corresponding to a given flag is set, that bit remains
set until the status register is altered by a write status
transaction request.

If a status register bit is set, and if the corresponding mask bit
in the mode register is inactive, the Am29027 will signat an
error to the Am29000 by asserting signal DERR when the
Am29000 performs a read result LSBs, read result MSBs, or
read flags transaction request. The user can determine the
precipitating error or errors by reading the status register with
the read status transaction request. The status register can
then be cleared (thus allowing further data reads) with a write
status transaction request. Note that when the Am29027
asserts DERR, the data requested appears on the F output
bus.

Saving and Restoring State

In flow-through mode, the state of the Am29027 can be saved
and restored. Saving of states is initiated with the save state
transaction request; the first such request will return the
contents of the instruction register. Subsequent save state
transactions will return the contents of registers R, S, R-Temp,
S-Temp, the status register, register file locations RFO - RF7,
and the mode register. The user has the option of saving only
part of the state by issuing only the number of save state
transactions needed to save registers of interest. When
issuing a series of save state requests, data is returned in the
following order:
Request Data Returned

1 Instruction
R LSBs

R MSBs
S LSBs

S MSBs
R-Temp
S-Temp
Status
Register file precisions
RFO LSBs
RFO MSBs

2 QOO NOOODWN

- =

RF7 LSBs

RF7 MSBs
Mode LSBs
Mode MSBs

24
25
26
27

Sequencing for the save state transaction request is reinitial-
ized when the Am23000 issues any transaction request other
than save state. If, for example, the Am29000 issues a write
operand R transaction request, the next save state transac-
tion would return the contents of the instruction register.

It should be noted that the process of saving state alters the
contents of several Am29027 registers.

Error reporting via signal DERR is suppressed for the save
state transaction.

Accelerator state is restored using the transaction requests in
concert with the existing Am29027 '"move operand” opera-
tions. Data is restored in the following order, using the
following transaction requests:

Register To

Be Restored Procedure For Restoring

Mode Write using write mode transaction

request

RFO Write "move R to RFO" instruction
using write instruction transac-
tion request

RFO value to register R using
write operand R transaction

raquest, start operation

Write

"move R to AF7" instruction
using write instruction transac-
tion request

RF7 value to register R using
write operand R transaction
request, start operation

RF7 Write

Write

Register File Write

Precisions
Status

using write register file preci-
sions transaction request

Write using write status transaction

request

R Write using write operand R transac-

tion request

S Write using write operand $ transac-

tion request

R-Temp, S-Temp | Write using write operands R, S

transaction request

Instruction Write using restore instruction trans-

action request

Determining Timer Counts

in order to provide optimum accelerator performance over a
wide range of possible system clock frequencies, the timing of
Am29027 operations has been made programmable. Three
mode register fields — the pipsline timer count, timer count for
the multiply-accumulate operation, and timer count for the
save state transaction request— must be programmed ac-
cording to system clock frequency and accelerator speed.

Pipeline Timer Count: The pipeline timer count, mode regis-
ter field M32 - M35, specifies the number of cycies allotted for
operations other than multiply-accumulate. This count can
assume values between 3 and 15 inclusive, and must be given
a value that satisfies the relationship:

[8] < (pipeline timer count) * [1],
where

[8] = Operation time, flow-through mode, all other
operations

and {1] = CLK period,
as described in the Switching Characteristics table.
Timer Count for the Multiply-Accumulate Operation: The
timer count for the multiply-accumulate operation, mode
register field M36 — M39, specifies the number of cycles
allotted for operations of the form (P*Q) + T. This count can

assume values between 3 and 15 inclusive, and must be given
a value that satisfies the relationship:

{6] < (timer count for mpy-acc. operation) * [1],
where

[6] = Operation time, flow-through mode, multiply-
accumulate
and [1] = CLK period,

as described in the Switching Characteristics table.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Timer Count for the Save State Transaction Request: The
timer count for the save state transaction request, mode
register field M40 - M43, specifies the number of cycles
allotted for the output multipiexer to select the appropriate
data in response to a save state transaction request. This
count can assume values between 2 and 15 inclusive, and
must be given a value that satisfies the relationship:

[7] < (timer count for save state tr. req) * [1],
where

[7] = Operation time, flow-through mode, save state
and [1] CLK period,

as described in the Switching Characteristics table.
Advancing DRDY

Normally, an operation result produced by the Am29027 in
flow-through mode is read by the Am29000 host no sconer
than the clock cycle following operation completion. Depend-
ing on the system clock frequency used, it may be advanta-
geous to overlap the reading of the result with the last cycle of
the operation. Consider, for example, a system with a 50-ns
clock cycle and an accelerator that performs an operation in
240 ns. The pipeline timer count M32 - M35 will have to be set
to a minimum of 5 for such a system; the Am29000 will
therefore read the result no sooner than during the sixth clock
cycle following the start of the operation.

Mode register bit M44, Advance DRDY, can be used in such a
case to advance transaction status signals DRDY and DERR
by a full clock cycle, thus allowing the Am29000 to read the
result a clock cycle earlier than would otherwise be possible.
For the example given above, the pipeline timer count remains
at 5, but the Am29000 can read the result during the fifth cycle
after the operation starts, rather than the sixth, thus saving a
clock cycle.

In order to advance DRDY and DERR, the following system
timing conditions must be met:

{19] < (timer count for mpy-acc. operation) * [1] - [*9]

[20] < ({timer count for save state tr. req.) * [1]) - [*9]
[21] < ((pipeline timer count) * [1]}) - [*9]
where
[19] = Data operation-start-to-output-valid delay,
multiply-accumulate
[20] = Data operation-start-to-output-valid delay,
save state
[21] = Data operation-start-to-output-valid delay, all
other operations
and [1] = CLK period,

as described in the Switching Characteristics table, and
[*9] = Am29000 synchronous input setup time

as described in the Switching Characteristics table of the
Am29000 Advance Information Data Sheet (PID 09075A/0).

Operation in Pipelined Mode
Programmer's Model

A programmer's model of Am29027 in pipelined mode is
shown in Figure 4. In pipelined mode, register F and the flag
register are made non-transparent, thus permitting the overlap
of the current operation(s) with the reading of the results of the
previous operation.

Pipeline Delays

When placed in pipelined mode, the floating-point ALU of
Am29027 incurs two pipeline delays for multiplication-accumu-
lation, and a single pipeline delay for ail other operations. The
number of clock cycles allotted to each pipeline stage is
determined by the pipeline timer count (mode register bits
M32 - M35).

Pipeline Advance Criteria

Pipelined operation in Am29000 accelerator mode is some-
what different than for flow-through mode. For the pipelined
Am29000 accelerator mode, the pipe is advanced only when
one of two events occur:

1) The Am29000 writes operands to registers R or S, or writes
an instruction to the instruction register. Note that writing to R-
Temp or S-Temp does not advance the pipe.

2) The Am29000 commands the Am29027 to begin a new
operation by writing an instruction or operand with signal
DREQTg HIGH.

Should these conditions occur in unison, the pipe is advanced
only once. it is important to note that once the pipe is
advanced, it cannot be advanced again until the next opera-
tion has begun.

One consequence of this conditional advance is that data
does not fall through the pipe but instead is "'pushed’’ through
it. If, for example, an addition is performed in pipelined mode,
the pipe must be advanced twice (by either of the means listed
above) before the result of the addition is loaded into the
register F, the flag register, the status register, and, optionally,
register file locations RFO - RF7.

Performing Operations

Operations in pipelined mode are performed by storing instruc-
tion and operand in the Am29027, and starting the operation.
Optionally, the result of a previous operation may be read by
the Am29000 before or after the current operation is started;
the position of the transaction requests that read the result
relative to transaction requests that advance the pipe will
determine just which result is loaded.

Writing Instructions and/or Operands
Same as for flow-through mode.

Error Recovery

Same as for flow-through mode.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

15

L

A
[rTEmwe | [sTEmP | 5 Rio
1 l y L > RF1
D wmope | [MUX |
L CONSTANTS
- R s b RF7
— Aba -84 o R I N [
A y
MUX J
AB4 AB4 A4
1 —» A 3 A
N N T !1
$ 2 S| -] ALU T
T i - <3 :
‘
' L e =
-84 ’,7 /,6
//6
A
5] brmes] b o]
T2} J% o
[4:1]
42
F
BDO007131

Figure 4. Programmer's Model for Pipelined Mode

Saving and Restoring State

It is not possible to save the complete state of the Am29027
when operating in pipelined mode. Pipelined operations may
therefore be interrupted only under special circumstances,
such as:

1) If the interrupting routine does not use the floating-point
accelerator.

2) If the current series of pipelined operations has been
completed, and any regigter contents needed for future
operations have already been transferred to the Am28000.

The save state and restore instruction transaction requests
cannot be used in pipelined mode.

Determining Timer Counts

As with flow-through mode, the timing of operations in
pipelined mode is programmable, to accommodate variations
in system timing. Operation timing in pipelined mode is

controlled by the pipeline timer count, a field in the mode
register.

The pipeline timer count, mode register field M32 - M35,
specifies the number of cycles allotted for all operations. This
count can assume values between 2 and 15 inclusive, and
must be given a value that satisfies the relationship:

[9] < (pipeline timer count) * [1],
where

[9] = Operation time, pipelined mode, all operations
and [1] CLK period,

as described in the Switching Characteristics table.
Advancing DRDY

Because the Am29027 F register and flag register are non-
transparent in pipelined mode, it not possible (nor advanta-
geous) to advance DRDY. Accordingly, mode register bit M44
has no effect in pipelined mode.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

16

Restrictions on Instruction Ordering

When using the Am29027 in pipelined mode, two conditions
must be observed:

1) The mode register bits are not pipelined: when the mode
register is loaded, any differences between the current mode
and the previous mode take effect immediately. When chang-
ing mode, then, the user must take care to first read the result
of ali operations currently in the pipe, or risk corrupting those
results. The user can read the results of all operations
currently in the pipe by executing the requisite number of "'NO-
OP"" operations needed to push data out of the pipe, a ""NO-
OP"" operation being any operation whose result is not stored
in the register file.

2) A multiplication-accumulation operation cannot be immedi-
ately followed by another type of operation (e.g., an addition or
multiplication). This problem can be avoided by executing an
extra multiplication-accumulation operation at the end of a
series of such operations.

Accelerator Instruction Set
Instruction Word

The 32-bit instruction word (lg - I34) specifies the instructions
to be performed by the ALU, and comprises six distinct
sections: opcode, integer/floating-point control, sign-change
controls, operand selection multiplexer controls, register file
controls, and operand precision controls. The instruction word
is loaded into the instruction register by the Am29000 via the
Instruction bus, using the write instruction or restore in-
struction transaction requests. The format of the instruction
register is shown in Figure 5, and is described below:

10 - 14 — Opcode: Specifies the operation to be performed by
the ALU.

15 — Integer/Floating-Point Select: Specifies whether an
operation is performed in integer or floating-point format.

16, 17 — Sign F: Sign change control for the ALU output.

18, 19 — Sign T: Sign change control for the ALU T input.
110, 111 — Sign Q: Sign change control for the ALU Q input.
112, 113 — Sign P: Sign change control for the ALU P input.

114 - 117 — Select for T Operand Multiplexer: Selects the
data input to the ALU T-port.

118 - 121 — Select for Q Operand Muitiplexer: Selects the
data input to the ALU Q-port.

122 - 125 — Select for P Operand Multiplexer: Selects the
data input to the ALU P-port.

126 -~ 128 — Register File Select: Selscts the register file
location (RFO-RF7) to which the resuit is to be written.

129 — Register File Enable: Enables a write to the register
file at end of operation. When 129 is LOW, the operation resuit
is written to the register file location specified by 126 - 128.
When 129 is HIGH, register file writes are disabled.

130 — Result Precision: Precision of the ALU output; single-
precision when HIGH, double-precision when LOW.

131 — Input Precision: Precision of the input operands load-
ed into registers R and S; single-precision when HIGH, double-
precision when LOW.

Instruction Register Format

The Instruction Register Format is given in Figure 5.

BIT POSITION: 31302928 2625 22 21 1B 17 1413121110 $ 8 7 6 5 4 o]
1T T T T T T T T T T T T T 17T
1l 1 | | 1! 1 11 1 1 ! 1 I 1 () §
P MUX Q MUX T MUX CORE
SELECT SELECT SELECT OPERATION
FUNCTION:

REGISTER FILE SELECT
REGISTER FILE ENABLE
RESULT PRECISION
INPUT PRECISION

INTEGER/F.P. SELECT

SIGN F SELECT

SIGN T SELECT

SIGN Q SELECT

SIGN P SELECT
TB001620

Figure 5. Instruction Register Format

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Floating-Point and Integer Opcodes floating-point or integer format. The core operations and their
! . . corresponding opcodes are listed below:
The opcode field, 14 - 10, specifies the core operation to be

performed by the ALU; instruction bit 15 selects between

5 (141312 1}10 Operation (Floating-Point)

0 [o] 0 0 0 0 P

0 0 0 0 0 1 P+T

0 o] 0 Q 1 o] P*Q

0 0 0 0 1 1 COMPARE P, T

0 0 0 1 0 0 MAX P, T

0 [0} 0 1 0 1 MIN P, T

0 0 0 1 1 0 CONVERT T TO INTEGER

0 0 0 1 1 1 SCALE T TO INTEGER BY Q

0 0 1 0 0 0 P*Q)+T

0 0 1 0 0 1 ROUND T TO INTEGRAL VALUE

0 0 1 0 1 0 RECIPROCAL SEED OF P

0 0 1 0 1 1 CONVERT T TO ALTERNATE F.P. FORMAT
0 0 1 1 0 o CONVERT T FROM ALTERNATE F.P. FORMAT
151413 (12| 11| 10| Operation (Integer)

1 0 0 0 0 0 P

1 0 0 0 0 1 P+T

1 0 0 0 9 0 P*Q

1 0 0 0 1 1 COMPARE P, T

1 0 0 1 0 0 MAX P, T

1 0 0 1 0 1 MIN P, T

1 0 0 1 1] CONVERT T TO FLOATING-POINT

1 0 0 1 1 1 SCALE T TO FLOATING-POINT BY Q

1 1 0 0 0 0 POR T

1 1 0 0 0 1 PAND T

1 1 0 0 1 0 P XOR T

1 1 0 0 1 1 SHIFT P LOGICAL Q PLACES

1 1 0 1 0 0 SHIFT P ARITHMETIC Q PLACES

1 1 0 1 0 1 FUNNEL SHIFT PT LOGICAL Q PLACES

Core operations MOVE P and LOAD MODE REGISTER can bath be performed in either floating-point or integer format:

15|14 | 13 [12 | 11 | 10 | Operation

X 1 1 0|0 0 MOVE P
X 1 1 1 1 1 LOAD MODE REGISTER

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Sign-Change Selects

Each ALU input and output operand has associated hardware
that can be used to modify operand sign {see Figure 6). These
sign-change blocks, when applied to core operations, greatly
increase the number of available operations. A core operation
of P + T, for exampie, can be used to perform operations such
as P-T, ABS(P + T), ABS(P) + ABS(T), and others, simply by
modifying the signs of the input and output operands.

Using the sign-change blocks, the sign of an input operand
may be left unchanged, inverted, set fo zero, or set to one; the
sign of the output operand may be left unchanged, set to zero,
set to one, set to the sign of the P input operand, or set to the
sign of the T input operand. Select decodes for the P, Q, T,
and F operand sign-change blocks are shown in Table 2-1, 2-
2, 2-3, and 2-4, respectively.

[siaNcHanGe |

SIGN-CHANGE

[sion-change |

SIGN-C

HANGE

AF004730

Figure 6. ALU Sign-Change Blocks

TABLE 2-1. SELECT DECODE FOR P OPERAND
SIGN-CHANGE BLOCK

113 112 Sign (P')
0 0 SIGN (P)
0 1 SIGN (P)
1 0 0
1 1 1

TABLE 2-3. SELECT DECODE FOR T OPERAND
SIGN-CHANGE BLOCK

co | cs Sign (T")
0 0 SIGN T
0 1 SGN T
1 0 0
1 1 1

TABLE 2-2. SELECT DECODE FOR Q OPERAND
SIGN-CHANGE BLOCK

11 | 1o Sign (Q')
0 0 SIGN (Q)
0 1 SIGN (Q)
1 0 o
1 1 1

TABLE 2-4, SELECT DECODE FOR F OPERAND
SIGN-CHANGE BLOCK

Care Operation | 111 | 110 17 16 Sign (F)
P, 0 0 X X SIGN (F)
Max P, T 0 1 X X SIGN (F')
or 1 0 X X SIGN (P)
Min P, T 1 1 X X SIGN (T)
X X] 0 SIGN (F')
Other X X 0 1 SIGN (F)
X X 1 0 0
X X 1 1 1

Powered by ICminer.com Electronic-Library Service CopyRight 2003

19

Operand Multiplexer Selects

Instruction fields 122 - 125, 118 - 121, and 114 — 117 specify the
select codes for the P, Q, and T operand multiplexers,
respectively; the codes are summarized in Table 3.

TABLE 3. OPERAND MULTIPLEXER SELECT CODES

126 124 123 122 P

121 120 119 118 Q

117 116 115 114 T

¢ o] o] 0 R

0 0 0 1 S

0 0 1 0 (e}

0 0 1 1 0.5 (Floating Point)

-1 (Integer)

0 1 0 0 1

0 1 0 1 2

0 1 1 0 3

0 1 1 1 Pi (Floating Point)

Max Neg. Two's-Comp. Value (Integer)

1 0 0 0 Register File Location 0 (RF0)
1 0 0 1 Register File Location 1 (RF1)
1 0 1 0 Register File Location 2 (RF2)
1 0 1 1 Register File Location 3 (RF3)
1 1 0 0 Register File Location 4 (RF4)
1 1 0 1 Register File Location 5 (RF5)
1 1 1 0 Register File Location 6 (RF6)
1 1 1 1 Register File Location 7 (RF7)

Operand Precisions

The Am29027 supports mixed-precision operations, so that it
is possible, for example, for an operation to have single-
precision inputs and a double-precision output, or one single-
and one double-precision input, or any other combination.

Precision of the aperands in registers R and S is specified by
instruction bit 131. A logic HIGH indicates a single-precision
operand or operands; a LOW, double precision. Note that the
operands in the R and S registers must have the same
precision. This does not preclude performing an operation with
operands of different precision, as there are no restrictions on
the precisions of operands stored in the register file.

Precision of an operation result is specified by instruction bit
130. A logic HIGH indicates a single-precision operand; a logic
LOW, double-precision.

Operands stored in the register file are each accompanied by
a bit indicating that operand’s precision; this precision informa-
tion is automatically supplied to the ALU when a register file
location is used as an input operand to an operation.

Accelerator Operations

Table 4 illustrates a number of possible ALU instructions
comprising the opcode, integer/floating-point select, and sign-
change fields. Note that the remaining instruction bits — P, Q,
and T operand multiplexer selects; register file selects and
enable; and the input and output operand precisions — can be
specified independently.

The user may create his own instructions using instruction
words other than those listed in Table 4. For some core
operations, sign-change control settings are completely arbi-
trary; for others, only the sign-change field values shown in
Table 4 are valid. Table 5 summarizes permissible sign-
change field values for each core operation.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

20

TABLE 4. INSTRUCTION WORDS
Sign

Operation P Q T F I/F Opcode
FP P 00 00 XX 00 0 00000
FP =P 00 00 XX 01 0 00000
FP ABS (P) 00 00 XX 10 0 00000
FP Sign (T)*ABS (P) 00 11 XX XX 0 00000
FP P+T 00 XX 00 00 0 00001
FP P-T 00 XX 01 00 0 00001
FP T-P 01 XX 00 00 0 00001
FP -P-T 01 XX 01 00 0 00001
FP ABS (P+T) 00 XX 00 10 0 00001
FP ABS (P-T) 00 XX 01 10 0 00001
FP ABS (P)+ ABS (T) 10 XX 10 00 0 00001
FP ABS (P)-ABS (T) 10 XX 11 00 0 00001
FP ABS (ABS (P)~ABS (T)) 10 XX 11 10 0 00001
FP P*Q 00 00 XX 00 0 00010
FP (~P)* Q 01 00 XX 00 0 00010
FP ABS (P * Q) 00 00 XX 10 0 00010
FP Compare P, T 00 XX 01 00 0 00011
FP Max P, T 00 00 01 0 0 00100
FP Max ABS (P), ABS (T) 10 00 11 00 0 00100
FP MinP, T 01 00 00 00 0 00101
FP Min ABS (P), ABS (T) 1 00 10 00 0 00101
FP Limit P to Magnitude T 11 10 10 X 0 00101
FP Convert T to Integer XX XX 00 00 0 00110
FP Scale T to integer by Q XX 00 00 00 0 00111
FP T+P*Q 00 00 00 00 0 01000
FP T-P*Q 01 00 00 00 0 01000
FP -T+P*Q 00 00 o1 00 0 01000
FP -T-P*Q 01 00 01 00 0 01000
FP ABS (T) + ABS (P*Q) 10 10 10 00 0 01000
FP ABS (T)-ABS (P*Q) 11 10 10 00 0 01000
FP ABS (P*Q)-ABS (T) 10 10 1 00 0 01000
FP Round T to Integral Value XX XK 00 00 0 01001
FP Reciprocal Seed (P) 00 XX XX 00 0 01010
FP Convert T to Alternate XX XX 00 00 0 01011

Floating-point Format
FP Convert T from Alternate XX XX 00 a0 0 01100
Floating-point Format

Powered by ICminer.com Electronic-Library Service CopyRight 2003 21

TABLE 4. INSTRUCTION WORDS (Cont'd.)

Sign
Operation P Q T F I/F Opcode
Int P 00 00 o]¢] 00 1 00000
Int -P 00 00 00 01 1 00000
Int ABS (P) 00 00 00 10 1 00000
Int sign (T)*ABS (P) 00 1 00 XX 1 00000
Int P+T 00 XX 00 00 1 00001
Int P-T 00 XX 01 00 1 00001
Int T-P 01 XX 00 00 1 00001
int ABS (P+T) 00 XX 00 10 1 00001
Int ABS (P-T) 00 XX 0t 10 1 00001
Int P*Q 00 00 XX 00 1 00010
Int Compare P, T 00 XX 63} 00 1 00011
Int Max P, T 00 00 01 [l4] 1 00100
Int MinP, T 01 00 00 a0 1 00101
Int Convert T to Float XX XX 00 00 1 00110
Int Scale T to Float by Q XX 00 00 00 1 00111
Int PORT XX XX XX XX 1 10000
Int PANDT XX XX XX XX 1 10001
Int PXORT o't XX XX XX 1 10010
Int NOT T (see Note 1) XX XX XX XX 1 10010
Int Shift P Logical Q Places 00 00 XX 00 1 10011
int Shift P Arithmetic Q Places 00 00 XX 00 1 10100
Int Funnel Shift PT Q Places 00 00 00 00 1 10101
Move P XX XX XX XX X 11000
Load Mode Register XX XX XX XX X 11111

Notes

1. NOT T is performed by XORing T with a word containing all 1s (integer —1). When invoking NOT T the

user must set 122-125 to 0011, thus selecting integer constant — 1.

Powered by ICminer.com Electronic-Library Service CopyRight 2003 22

TABLE 5. ALLOWABLE SIGN-CHANGE/CORE-OPERATION COMBINATIONS

Sign-Change Fields

5§ 43210 Core Operation Sign (P) Sign (Q) Sign (T) Sign (F)
0 00000 | FP P v \ X \
0 00001 |FPP+T \ X v \
0 00010 | FP P*Q \Y \ X \"
0 00011 | FP Compare P, T F X F F
0 00100 | FP Max P, T F F F F
0 00101 | FP Min P, T F F F F
0 00110 |FP Cvt T to Int X X F F
0 00111 | FP Scale T to Int X F F F
0 01000 | FP P*Q+T \4 v v v
0 01001 | FP Round T X X F F
0 01010 | FP Recip Seed P F X X F
0 01011 | FP Cvt T to Alt Fmt X X F F
0 01100 | FP Cvt T fm Alt Fmt X X F F
1 00000 | Int P F F F F
100001 | Int P+T F X F F
1 00010 | Int P*Q F F b F
1 00011 | Int Compare P, T F X F F
1 00100 | Int Max P, T F F F F
100101 | Int Min P, T F F F F
1 00110 | Int Cvt T to f.p. X X F F
1 00111 | Int Scale T to f.p. X F F F
110000 |Int POR T X X X X
1 10001 {Int P AND T X X X X
110010 | Int P XOR T X X X X
1 10011 | Int Shift P Logical F F X F
1 10100 | Int Shift P Arith F F X F
1 10101 | int Funnel Shift PT F F F F
x 11000 Move P X X X X
x 11111 Load Mode Reg X X X X

Key: V = Variable; user can specify arbitrary sign change.
F = Fixed; user is restricted to sign change combinations shown in Table 4.
x = Don't care; this field does not affect the operation or its result.

Descriptions of Operations

P (Floating-Point or Integer): The operand on port P is
passed through the ALU to port F. This operation may be used
to change the precision of an operand, negate an operand,
extract the absolute value of an operand, or transfer the sign
of operand T to operand P.

P + T (Floating-Point or Integer): The addition operation
(P + T) adds the operands on ports P and T, and places the
result on port F.

P*Q (Floating-Point or Integer): The multiplication operation
(P*Q) multiplies the operands on ports P and Q, and places
the result on port F.

COMPARE P, T (Floating-Point or Integer): This operation
compares the operands on ports P and T, and places (P-T)
on port F. One of four comparison flags (=, >, <, #)is set
according to the result of the comparison. Note that the
unordered flag (#) can be set only when the format selected
is IEEE or DEC.

MAX P, T (Floating-Point or Integer): This operation selects
the larger of the two operands on ports P and T, and places
the result on port F.

MIN P, T (Floating-Point or Integer): This operation selects
the smaller of the two operands on ports P and T, and places
the result on port F .

LIMIT P TO MAGNITUDE T (Floating-Point): This operation
imposes a clipping or saturation level on operand P by

comparing the magnitudes of the operands on ports P and T. If
operand P has the smaller magnitude, it is placed on port F; if
operand T has the smaller magnitude, it is placed on port F,
but with its sign modified to agree with that of operand P. This
operation is equivalent to operation SIGN(P) * MIN(ABS(P),
ABS(T)).

CONVERT T TO INTEGER (Floating-Point): The floating-
point-to-integer conversion operation takes a floating-point
operand on port T and places the equivalent two's-comple-
ment integer value on port F.

CONVERT T TO FLOATING-POINT (Integer): The integer-
to-floating-point conversion operation takes a two's-cample-
ment integer operand on port T and places the equivalent
floating-point value on port F.

SCALE T TO INTEGER BY Q (Floating-Point): This opera-
tion converts the floating-point operand T to integer format
using the floating-point operand Q as a scale factor. The true
exponent of Q is added to the true exponent of T before the
value T is converted to integer format. The operation therefore
permits T to be scaled by any multiple of 2 when the source
format is IEEE or DEC; and by any multiple of 16 when the
source format is 1BM.

SCALE T TO FLOATING-POINT BY Q (integer): This opera-
tion converts the integer operand T to floating-point format
using the operand Q as a scale factor, where Q is a floating-
point operand in the destination format. The true exponent of
Q is added to the true exponent of T after T has been
converted from integer to floating-point. The operation

Powered by ICminer.com Electronic-Library Service CopyRight 2003

23

therefore permits T to be scaled by any multiple of two when
the destination format is IEEE or DEC; and by any multiple of
16 when the destination format is IBM.

(P*Q) + T (Floating-Point): This operation multiplies the oper-
ands on port P and Q, adds the product to the operand on port
T, and places the result on port F.

ROUND T TO INTEGRAL VALUE (Floating-Point): This
operation rounds a floating-point operand to an integer-valued
floating-point operand of the same format. A value of 3.5, for
example, would be rounded to either 3.0 or 4.0, the choice
depending on the rounding mode.

RECIPROCAL SEED OF P (Floating-Point): The reciprocal
seed of the floating-point operand on port P is placed on port
F; the result obtained is a crude estimate of the input
operand's reciprocal. This operation can be used as the initial
step in performing Newton-Raphson division; alternately, an
external seed look-up table can be used for faster conver-
gence.

CONVERT T TO ALTERNATE FLOATING-POINT FORMAT
(Floating-Point): This operation converts operand T from the
primary floating-point format to the alternate floating-point
format, thus allowing conversions among the IEEE, DEC, and
IBM floating-point formats.

CONVERT T FROM ALTERNATE FLOATING-POINT FOR-
MAT (Floating-Point): This operation converts operand T
from the alternate floating-point format to the primary floating-
point format, in a manner similar ta that of CONVERT T TO
ALTERNATE FLOATING-POINT FORMAT above.

POR T, P AND T, P XOR T, NOT T (Integer): The logical
operations (OR, AND, EXCLUSIVE OR) are performed on the
operands on ports P and T, and the result is placed on port F.
NOT T is performed by XORing T with a word containing all
ones (integer —1). When invoking NOT T, instruction bits
122 - 125 must be set to 0011, thus selecting integer constant
-1.

SHIFT P LOGICAL Q PLACES (Integer): This operation
logically shifts operand P by Q places. If the shift is Q places to
the right, Q zeros are filled from the left. If the shift is Q places
to the left, Q zeros are filled from the right.

SHIFT P ARITHMETIC Q PLACES (Integer): This operation
arithmetically shifts operand P by Q places. With a right shift,
the result is sign extended Q places. With a left shift, Q zeros
are filled from the right.

FUNNEL SHIFT PT LOGICAL Q PLACES (Integer): The
operands on ports P and T are concatenated to form a doubie-
width operand PT, which is then shifted to the right or left by Q
places; the 32- or 64-bit result is placed on port F.

MOVE P (Floating-Point or Integer): The operand on port P
is moved to port F. The operand is left unchanged, and no
flags are set.

Primary and Alternate Floating-Point Formats

All floating-point operations except format conversions are
performed in the primary format selected by mode register bits
MO and M1. Conversions to the alterpate format convert
floating-point numbers from the primary format to the alternate
format selected by mode register bits M2 and M3. Conver-
sions from the alternate format convert floating-point
data from the alternate format to the primary format.
Conversions and scale operations to and from integer format
operate on floating-point numbers in the primary format.

Operation Flags

For each operation, the ALU produces thirteen flags that
indicate operation status. Of the flags praduced, a maximum
of seven are relevant to any given operation. The relevant
flags are placed in the flag register, and the other flags are
discarded.

The ALU flags are:

C -~ CARRY: Carry-out bit produced by integer addition,
subtraction, or comparison.

I — INVALID OPERATION: Input operands are unsuitable for
the operation specified (e.g., > * 0).

R — RESERVED OPERAND: Reserved operand detected/
generated.

S — SIGN: Result sign.

U — UNDERFLOW: Result underflowed the destination for-
mat.

V — OVERFLOW: Result overflowed the destination format.

W — WINNER: Indicates which of the two arguments is the
larger or the smaller when performing Max/Min operations.

X — INEXACT RESULT: Result had to be rounded to fit the
destination format.

Z — ZERO: Zero result.

>, =, <, # —GREATER THAN, EQUAL, LESS THAN,
UNORDERED: Used to report the result of a comparison
operation.

Table 6 describes the flags reported for each operation.

it should be noted that in fiow-through mode, the flag register
is made transparent, and the selected flags are presented
directly to the output multiplexer; however, flag selection is not
affected.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

24

TABLE 6. ORGANIZATION OF FLAGS

Flag Register
Opcode} LSB MSB

Operations 14-10 0 1 2 3 4 5 6
IEEE Non-arithmetic single-operand 00000 | R{V]U|X]|2Z S
IEEE Operations using add 00001 i R|IV|IU]|X]|Z S
IEEE Operations using muitiply 00010 i R|IV]|IU|[X]| Z S
IEEE Compare 00011 | R #| < > = S
{IEEE Maximum, minimum, limit 0010x | R w 4 s
IEEE Convert/scale to integer 0011x | RV X112z S
IEEE Multiply/accumulate 01000 | R|V|U z S
IEEE Round to integral value 01001 | RV X1 2 S
IEEE Reciprocal seed 01010 | R|V|U b4 S
IEEE Convert to alt f.p. format 01011 | RIV|IU]|X]| 2Z S
IEEE Convert from alt. f.p. format 01100 | R Vv U X Zz S
DEC D Non-arithmetic single-operand 00000 RV X1|Z S
DEC D Operations using add 00001 R|V]|U/|[X 4 S
DEC D Operations using multiply 00010 R V] iugpXx z S
DEC D Compare 00011 R|l#| <] >1|-= S
DEC D Maximum, minimum, limit 0010x R w z S
DEC D Convert/scale to integer 0011x | R |V X |2 S
DEC D Multiply/accumulate 01000 ARV IU z S
DEC D Round to integral value 01001 RV X |2z S
DEC D Reciprocal seed 01010 | R \ U z S
DEC D Convert to alt f.p. format 01011 | R|VIU|X| 2z S
DEC D Convert from alt. f.p. format 01100 | R V| U X z s
DEC G Non-arithmetic single-operand 00000 RV]|U|X 4 S
DEC G Operations using add 00001 R{V]|]U]|X V4 S
DEC G Operations using multiply 00010 R VIU|[X]| Z S
DEC G Compare 00011 R|# | <|[>]|= S
DEC G Maximum, minimum, limit 0010x R w z S
DEC G Convert/scale to integer 0011x i R|V X1z S
DEC G Muitiply/accumulate 01000 R " U V4 S
DEC G Round to integral value 01001 R |V X 1| Z S
DEC G Reciprocal seed 01010 | R \'% V] z S
DEC G Convert to alt f.p. format 01011 | R " U X z S
DEC G Convert from alt. f.p. format 01100 | R|IV]IU}| X| 2 S
I1BM Non-arithmetic single-operand 00000 v X 4 S
1BM Operations using add 00001 viu X i 2 S
1BM Operations using multiply 00010 vV i]u X 2 S
1BM Compare 00011 < > = S
IBM Maximum, minimum, limit 0010x w Z S
IBM Convert/scale to integer 00t1x v X1 2 S
1BM Multiply/accumulate 01000 vi]iu z s
1BM Round to integral value 01001 \ x| 2z S
1BM Reciprocal seed 01010 | vV iu Z S
IBM Convert to alt f.p. format 01011 Vv 9] X z S
IBM Convert from alt. f.p. format 01100 | R v U X Z S
Integer Non-arithmetic single-operand 00000 \' 4 S
integer Sign transfer 00000 v z S
Integer Operations using add 00001 o] \ 4 S
Integer Operations using muHiply 00010 v z S
Integer Compare operations 00011 o] Vi i<]|>| = s
Integer Maximum, minimum, limit 0010x w Zz S
Integer Convert to float 00110 X112z S
Integer Scale to float 00111 R|IV]|U]|X]| 2z S
Integer Logical operations 100xx z S
Integer Arithmetic shift 10100 v z S
Integer Funnel shift 10101 4 S
Move operand 11000
Load mode register 11111

Note:

unused flags assume the LOW state.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

25

Status Register

The status register latches flags over a series of operations,
so that errors occuring during an operation sequence can be
reported after the last operation. This ability is particularly
useful for those applications in which intermediate results are
not read by the Am29000 (at which time an error would be
reported), or for situations where checking each operation
result for errors would be prohibitively time-consuming.

Six of the previously described ALU flags — |, R, U, V, X, and
Z — are fed to corresponding bits in the status register at the
conclusion of each operation. The status register latches each
flag individually, such that, once the status register bit corre-
sponding to a given flag is set, that bit remains set until the
status register is altered by a write status transaction request.

If a status register bit is set, and if the corresponding mask bit
in the mode register is inactive, the Am29027 will signal an
error to the Am29000 by asserting signal DERR when the
Am29000 performs a read transaction request other than
save state; if signal DREQTg is HIGH, error reporting is
suppressed. The user can determine the precipitating error or

errors by reading the status register using the read status
transaction request.

Master/Slave Operation

Two Am29027 accelerators can be tied together in master/
slave configuration, with the slave checking the results pro-
duced by the master. All input and output signals of the slave,
with the exception of SLAVE and MSERR, are tied to the
corresponding signals of the master. The master is selected
by asserting signal SLAVE LOW, the slave, by asserting signal
SLAVE HIGH.

The slave accelerator, by comparing its outputs to the outputs
of the master accelerator, performs a comprehensive check of
the operation of the master accelerator. In addition, if the
slave accelerator is connected at the proper position on the
channel, it may detect open circuits and other faults in the
electrical path between the master accelerator and its host.
Note that the master accelerator still performs the comparison
between its outputs and its own internally generated results,
and is therefore able to detect faults in its output drivers.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

26

Appendices
Appendix A - Data Formats

The following data formats are supported: 32-bit integer, 64-bit
integer, IEEE single-precision, IEEE double-precision, DEC F,
DEC D, DEC G, IBM single-precision, and IBM double-
precision.

The primary and alternate floating-point formats are selected
by mode register bits M0 to M3. The user may select between
tloating-point operations and integer operations by means of
instruction bit 15.

The nine supported formats are described below:

Integer Formats
32-Bit Integer

The 32-bit integer word is arranged as follows:

Bit 31 30 29 28 27 26 25 .

7654321090

231 530 229 5,28 ,27 426 225

.. 27 B025242352,150

The 32-bit word is interpreted as a two's-complement integer.
For integer multiplications, the user has the option of interpret-
ing integers as unsigned. An unsigned single-precision integer

TB001030

has a format similar to that of the two's-complement integer,
but with an MSB weight of 231,

64-Bit Integer
The 64-bit integer word is arranged as follows:

Bit 63 62 61 60 53 58 57

76543210

063 562 561 ;60 ;59 ,58 5,57

. 272825245352 51 50

The 64-bit word is interpreted as a two's-complement integer.
For integer multiplications, the user has the option of interpret-
ing integers as unsigned. An unsigned double-precision inte-

TB001040

ger has a format similar to that of the two's-complement
integer, but with an MSB weight of 253,

IEEE Formats
IEEE Single-Precision

The IEEE single-precision word is 32 bits wide and is arranged
in the format as foliows:

The floating-point word is divided into three fields: a single-bit
sign, an 8-bit biased exponent, and a 23-bit fraction.

The sign bit is 0 for positive numbers and 1 for negative
numbers. Zero may have either sign.

The biased exponent is an 8-bit unsigned integer representing
a multiplicative factor of some power of two. The bias value is
127. If, for example, the multiplicative value for a floating-point

If =255 and f#0
If e=255 and f=0
fOo0<e<255.......coini
If e=0 and f#0
Ife=0and f=0............

value = NaN

. value = (-1)S
value = (-1)528 = 127(1)
value = (- 1)52- 128(0.f)
value = (-1)%0

3t 30 29 28 27 26 25 24 23 22 21 20 19 18 3 2 1 0
s 27 26 25 24 23 22 21 2O éi 2—2 é3 24 2—5 . .. 2«202-21 2-22 2—23
sign biased exponent (e) fraction (f)

TB001050

number is to be 22 the value of the biased exponent is
a+ 127, where "'a" is the true exponent.

The fraction is a 23-bit unsigned fractional fieid containing the
23 least-significant bits of the floating-point number's 24-bit
mantissa. The weight of the fraction's most-significant bit is
2-1. The weight of the least-significant bit is 2~ 23,

An IEEE floating-point number is evaluated or interpreted as
follows:

Not-a-Number

Infinity

Normalized number
Denormalized number
Zero

Powered by ICminer.com Electronic-Library Service CopyRight 2003

27

infinity: Infinity can have either a positive or negative sign.
The interpretation of infinities is determined by the Affine/
Projective select input AFF/PROJ.

NaN: A NaN is interpreted as a signal or symbol. NaNs are
used to indicate invalid operations, and as a means of passing
process status through a series of calculations. They arise in

two ways: either generated by the Am29027 to indicate an
invalid operation, or provided by the user as an input. A
signalling NaN has the MSB of its fraction set to 0 and at
least one of the remaining fraction bits set to 1. A quiet NaN
has the MSB of its fraction set to 1.

The |EEE format is fully described in IEEE Standard P754,

IEEE Double-Precision

The IEEE double-precision word is 64 bits wide and is
arranged in the format shown below:

63 62 61 60 . « 54 53 52 51 50 49 48 47 . e e 3 2 1 0
|s\z‘°2928 L. 22900 [g1 R B s S #9550 551 552

sign biased exponent (e)

The floating-point word is divided into three fields: a single-bit
sign, an 11-bit biased exponent, and a 52-bit fraction.

The sign bit is 0 for positive numbers and 1 for negative
numbers; zero may have either sign.

The biased exponent is an 11-bit unsigned integer represent-
ing a multiplicative factor of some power of two. The bias
value is 1023. If, for example, the multiplicative value for a

If e=2047 and f+0.......
It e=2047 and f=0.......
If 0 <e <2047
If e=0 and f#0 .. .
Ife=0and f=0............

Infinity: Infinity can have either a positive or negative sign.
The interpretation of infinities is determined by the Affine/
Projective select input AFF/PROJ.

NaN: A NaN is interpreted as a signal or symbol. NaNs are
used to indicate invalid operations, and as a means of passing
process status through a series of calculations. They arise in

fraction (f)
TB001060

floating-point number is to be 22, the value of the biased
exponent is a+ 1023, where ''a’’ is the true exponent.

The fraction is a 52-bit unsigned fractional field containing the
52 least-significant bits of the floating-point number's 53-bit
mantissa. The weight of the fraction's most-significant bit is
2-1. The weight of the least-significant bit is 2”52,

An |EEE floating-point number is evaluated or interpreted as
follows:

value = Reserved operand Not-a-Number
value = (- 1)Sce
value = (- 1)522 = 1023(1) Normalized number
. value = (-1)%271022(0
value = (- 1)50

Infinity

Denormalized number
Zero

two ways: either generated by the Am29027 to indicate an
invalid operation, or provided by the user as an input. A
signalling NaN has the MSB of its fraction set to 0 and at
least one of the remaining fraction bits set to 1. A quiet NaN
has the MSB of its fraction set to 1.

The |IEEE format is fully described in JEEE Standard P754.

DEC Formats
DEC F

The DEC F word is 32 bits wide and is arranged in the format
shown below:

The floating-paint word is divided into three fields: a single-bit
sign, an 8-bit biased exponent, and a 23-bit fraction.

The sign bit is 0 for positive numbers and 1 for negative
numbers; zero has a positive sign.

The biased exponent is an 8-bit unsigned integer representing
a multiplicative factor of some power of two. The bias value is
128. If, for example, the multiplicative value for a floating-point
number is to be 22 the value of the biased exponent is
a+ 128, where "'a" is the true exponent.

The fraction is a 23-bit unsigned fractional field containing the
23 Jeast-significant bits of the floating-point number's 24-bit
mantissa. The weight of the fraction's most-significant bit is
2-2 The weight of the least-significant bit is 27 24

31 30 29 28 27 26 25 24 23 2 21 20 19 18 « s . 3 2 1 0
sl o7 B S5 A B 2 S 0 52 53 5 55 B ... 21522 523 524
sign biased exponent (e) fraction (f)

TB001070

A DEC F fioating-point number is evaluated or interpreted as
follows:

value # (-1)528~128ig 1)

. value=0

value = DEC-Reserved Operand

ifs=0ande=0 ..
If s=1and e=0

DEC-Reserved Operand: A Dec-Reserved Operand is inter-
preted as a signal or symbol. DEC-Reserved Operands are
used to indicate invalid operations and operations whose
results have overflowed the destination format. They may aiso
be used to pass symbolic information from one calculation to
another.

The DEC formats are fully described in the VAX Architecture
Manual.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

28

DEC D

The DEC D word is 64 bits wide and is arranged in the format
shown below:

63 62 61 60 59 58 57 56 56 54 53 52 51 50 3 2 1t 0

s| 2 Bt 22220 | 22 S S SIH 55 56

sign biased exponent (e) fraction (f)

TBOO1080
The floating-point word is divided into three fields: a single-bit A DEC D floating-point number is evaluated or interpreted as
sign, an 8-bit biased exponent, and a 55-bit fraction. follows:
The sign bit is 0 for positive numbers and 1 for negative He#0. i value = (-1)°2°~128(0.)
numbers; zero has a positive sign. If s=0and e=0........ vaiue=0
Ifs=1and e=0......... value = DEC-Reserved Operand
The biased exponent is an 8-bit unsigned integer representing
a multiplicative factor of some power of two. The bias value is DEC-Reserved Operand: A Dec-Reserved Operand is inter-
128. If, for example, the multiplicative value for a floating-point preted as a signal or symbol. DEC-Reserved Operands are
number is to be 22, the value of the biased exponent is used to indicate invalid operations and operations whose
a+ 128, where '"a'" is the true exponent. results have overflowed the destination format. They may also
b L : ;

The fraction is a 55-bit unsigned fractional field containing the a:ol:z:? to pass symbolic information from one calculation fo
55 least-significant bits of the floating-point number's 56-bit ’
mantissa. The weight of the fraction's most-significant bit is The DEC formats are fully described in the VAX Architecture
2-2 The weight of the least-significant bit is 256, Manual.
DEC G
The DEC G word is 64 bits wide and is arranged in the format
shown below:

63 62 6160 . . 54 53 52 51 50 49 48 47 3 2 1 o0

s 210 29 28 . . 22 PAIPYY 2-2 23 2—4 2—5 2—6 . 250251 2—52 253

sign biased exponent (e)

The floating-point word is divided into three fields: a single-bit
sign, an 11-bit biased exponent, and a 52-bit fraction.

The sign bit is 0 for positive numbers and 1 for negative
numbers; zero has a positive sign.

The biased exponent is an 11-bit unsigned integer represent-
ing a multiplicative factor of some power of two. The bias
value is 1024, If, for example, the multiplicative value for a
floating-point number is to be 29, the value of the biased
exponent is a+ 1024, where ''a'’ is the true exponent.

The fraction is a 52-bit unsigned fractional field containing the
52 least-significant bits of the floating-point number's 53-bit
mantissa. The weight of the fraction's most-significant bit is
272, The weight of the least-significant bit is 2~53,

fraction (f)
TB001090

A DEC G floating-point number is evaluated or interpreted as
follows:

...................... value = (-1)528 - 10240)

If s=0and e=0.. . value=0

ifs=1and e=0......... vaiue = DEC-Reserved Operand

DEC-Reserved Operand: A Dec-Reserved Operand is inter-
preted as a signal or symbol. DEC-Reserved Operands are
used to indicate invalid operations and operations whose
results have overflowed the destination format. They may also
be used to pass symbolic information from one calculation to
another.

The DEC formats are fully described in the VAX Architecture
Manual.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

29

IBM Formats
IBM Single-Precision

The 1BM single-precision word is 32 bits wide and is arranged
in the format shown below:

30 29 28 27 26 25 24

23 2 21 20

19 18 e« 3 2 1 0

31
s| 28 25 2% 28 52 o 0

26 ... 2—21 2—22 2-23 2—24

sign biased exponent (e)

The floating-point word is divided into three fields: a singie-bit
sign, a 7-bit biased exponent, and a 24-bit fraction.

The sign bit is O for positive numbers and 1 for negative
numbers; a True-zerc has a positive sign.

The biased exponent is a 7-bit unsigned integer representing a
multiplicative factor of some power of 16. The bias value is 64.
If, for example, the multiplicative value for a floating-point
number is to be 162, the value of the biased exponent is
a+ 64, where "a'"" is the true exponent.

The fraction is a 24-bit unsigned fractionai field containing the
24 least-significant bits of the floating-point number's 25-bit
mantissa. The weight of the fraction's most-significant bit is
21 The weight of the least-significant bit is 2~ 24,

fraction (f)
TB001100

An IBM ftoating-point number is evaluated or interpreted as
follows:

value = (-1)516° ~84(0.f)

Zero: There are two possible classes of representations for
zero. Since there is no leading bit in the IBM format, the range
of the IBM fraction is equal to or greater than zero and less
than one. If an operation causes the fraction of the result to
cancel exactly, then the result is a floating-point zero. A True-
zero has a positive sign, a biased exponent of zero, and a
fraction of zero.

The IBM format is fully described in the 1BM System/370
Principles of Operation Manual.

IBM Double-Precision

The IBM double-precision word is 64 bits wide and is arranged
in the format shown below:

63

62 61 60 59 58 57 56 55 54 53 52 59

50 e+ » 3 2 1 0

6 5,4 .83 2

s| 2% 2% 2% 23 22 51 50 | 5!

é53 254 2~55 ,‘:,56

sign biased exponent (e}

The floating-point word is divided into three fields: a single-bit
sign, a 7-bit biased exponent, and a 56-bit fraction.

The sign bit is 0 for positive numbers and 1 for negative
numbers; a True-zero has a positive sign.

The biased exponent is a 7-bit unsigned integer representing a
multiplicative factor of some power of 16. The bias value is 64.
if, for example, the multiplicative value for a floating-point
number is to be 162, the value of the biased exponent is
a+ 64, where "a" is the true exponent.

The fraction is a 56-bit unsigned fractional field containing the
56 least-significant bits of the floating-point number's 57-bit
mantissa. The weight of the fraction's most-significant bit is
2-1. The weight of the least-significant bit is 2-96.

fraction (f)
TB0O1110

An iBM floating-point number is evaluated or interpreted as
follows:

value = (-1)%162 ~64(0)

Zero: There are two possible classes of representations for
zero. Since there is no leading bit in the IBM format, the range
of the IBM fraction is equal to or greater than zero and less
than one. If an operation causes the fraction of the result to
cancel exactly, then the result is a floating-point zero. A True-
zero has a positive sign, a biased exponent of zero, and a
fraction of zero.

The IBM format is fully described in the IBM System/370
Principles of Operation Manual.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

30

Appendix B — Rounding Modes

The Am29027 provides six rounding modes for floating-point
operations, and for integer multiplication:

Round to Nearest (Unbiased)

The infinitely precise result of an operation is rounded to the
closest representable vaiue in the destination format. If the
infinitely precise result is exactly halfway between two repre-
sentations, it is rounded to the representation having a least-
significant bit of zero. This round mode conforms to the
""round to nearest” mode described in the IEEE Floating-Point
Standard.

Round to Minus Infinity

The infinitely precise result of an operation is rounded to the
closest representable value in the destination format that is
less than or equal to the infinitely precise result. This round
mode conforms to the "round to minus infinity' mode de-
scribed in the |IEEE Floating-Point Standard.

Round to Plus Infinity

The infinitely precise result of an operation is rounded to the
closest representable value in the destination format that is
greater than or equal to the infinitely precise result. This round
mode conforms to the ""round to plus infinity'” mode described
in the IEEE Floating-Point Standard.

Round to Zero

The infinitely precise result of an operation is rounded to the
closest representable value in the destination format whose
magnitude is less than or equal to the infinitely precise result.
This round mode conforms to the ''round to zero' mode
described in the IEEE Floating Point Standard.

Round to Nearest (Biased)

The infinitely precise result of an operation is rounded to the
closest representable value in the destination format. If the
infinitely precise result is exactly halfway between two repre-
sentations, it is rounded to the representation having the
greater magnitude. This round mode is used by DEC VAX
computers.

Round Away from Zero

The infinitely precise result of an operation is rounded to the
closest representable value in the destination format whose
magnitude is greater than or equal to the infinitely precise
result.

A graphical representation of these round modes are shown in
Figures B1-1 and B1-2.

Round mode is selected with mode register bits M14 - 16, as
described in Mode Register Description section.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

31

sapo Buipunoy Apuiul-snid-0}-punoy pue ‘Ajuipuj-SnuIN-0}-punoy ‘(paselqun) 1saJeaN-0)-punoy Jo uonelasdiaju) jeaydess L-1g ainbig

04¥2004d

bi+d
|

ALINt3INI SNd OL GNNOY

a

bi-d

c..: -d)-

(bi+g)-

Fe

—

N

< Insey pepunoy

. I\

o4+ —p» Lo

™ !

|
|
]
1
d

‘.1—:-/—’: T
7
R

¢ 4_ Insey espeid Aletiuyu)
bi+d bi-d (bi-d)- (bi+d)-
ALINIZNI SONIN O1 ONNOY
bi+d d bi- a 0 (br-g)- - bi+d)-
4] { 1 4, 4 9 :H&
{ i T i T T unssy pepunoy
1 \\\‘ \ 1 \\N‘ \ {] 1 \\\ \ \\\ \ *
t i i f 4 4 i L+ unsey esoag Aeruyul
bi+d d bi-d 0 (bi-d)- d- (br+d)-
(Q3SVIGNN) 1S3HVY3IN OL GNNOY
bi+d ?&.

(brL+d)-
1

¢|_|

I\

——a
o
0.
B)

linsey pepunoy

UF+Q

'--'.._> —4—
O = —p

m A,

? -d)-

N

Iinsey espard Ajluyug
(bL+d)-

Powered by ICminer.com Electronic-Library Service CopyRight 2003

32

sapoyy Bulpunoy 019Z-woi-ABMY-PUNOY PUE ‘1S3IBaN-0}-PUNOY ‘0197-0}-pUnoy jo uopelaidisiu) jesydess 2-1g a4nbig

08+200-4d
OH3Z WOY 4 AVMY GNNOH
bi+d d bi-d 0 (b1-d)- d- a:&
4 4_ “ AV J 4_ “ 1NseY pepunoy
<z, “/v/// “/%1// L2, | 2, 4 \\‘\ \ J \\4‘\ \ b 4, Jnsey 5paKd AIULU
bi+g d by-d 0 {br-d)- d- ??&
(a3svig) 1S3UVAN OL ONNOY
bi+d d bi-d 0 (b1-d)- 4. G_n&.
| } b <, } < 4 } + 45 ynsey pspuncy
h\ “// \\“// \.\“ h\ “ ¢ “// \\“// \\“ h\ P —
bi+d d bi-d) (o1-d>- d- (br+d)-
0437 0L ANNOY
bi+d d S.a 0 (by-d)- A, GJ&.
{ f 4 f e _ t 5 insey pepunoy
1 \\\‘ \ “ \\N; \ L2, b , “v/./v// “/7 L 2, Isoy 6speId AGILYI
bi+d d bi-d 0 (o1-d})- d- (br+d)-

Powered by ICminer.com Electronic-Library Service CopyRight 2003

33

Appendix C — Additional Operation Details

Differences Between IEEE Floating-Point Standard and
Am29027 IEEE Operation

The IEEE floating-point standard recommends that a trapped
overflow on conversion from a binary format return a result in
that or a wider format, rounded to the destination format. The
Am29027 returns an operand in the destination format,

rounded to that format. Note that trapped operation is an
optionat aspect of the IEEE floating-point standard, and as
such, is not necessary for compliance.

Differences Between IBM 370 Floating-Point Arithmetic
and Am29027 IBM Operation

For addition operations, the IBM 370 retains only one guard
digit. The Am29027 retains one or more guard digits, so that

the final result of an addition is the infinitely precise result,
rounded to the destination format.

Differences Between DEC Floating-Point Arithmetic
and Am29027 DEC Operation

The Am29027 and DEC VAX floating-point formats contain
identical information, but the sub-fields of the floating-point
words are arranged differently:

The Am29027 DEC F format is:
sign — bit 31
exponent — bits 30 - 23
mantissa — bits 22-0

The Am29027 DEC D format is:
sign - bit 63
exponent - bits 62 - 55
mantissa — bits 54 -0

The Am29027 DEC G format is:
sign - bit 63
exponent - bits 62 - 52
mantissa — bits 51 -0

The VAX format is:

sign — bit 15
exponent - bits 14 -7
mantissa - bits 6 -0,

bits 31-16

The VAX format is:

sign — bit 15
exponent - bits 14-7
mantissa - bits 6 -0,
bits 31- 16,
bits 47 ~ 32,
bits 63 - 48

The VAX format is:

sign - bit 15
exponent - bits 14 -4
mantissa - bits 3 -0,

bits 31-16,
bits 47 - 42,
bits 63 - 48

Powered by ICminer.com Electronic-Library Service CopyRight 2003

34

ABSOLUTE MAXIMUM RATINGS OPERATING RANGES

Storage Temperaturec.co.eeee. -55 to +150°C Commercial (C) Devices

Voltage on Any Pin Temperature (TA)....c.coovireiiiciinirenienennns 0 to +70°C
with Respect to GNDcoceeee -05to +70 V Supply Voltage (Vcg) -... .+45to +55 V

Stresses above those listed under ABSOLUTE MAXIMUM Operating ranges define those limits between which the

RATINGS may cause permanent device failure. Functionality functionality of the device is guaranteed.

at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

DC CHARACTERISTICS over operating ranges unless otherwise spscified

Parameter Parameter
Symbol Description Test Conditions Min. Max. - Units
ViL Input LOW Voltage k- -
VIH Input HIGH Voltage
ViLe CLK Input LOW Voltage
VIHC CLK Input HIGH Voltage
Output LOW Voltage
VoL Command Outputs,
Control Outputs =
Output HIGH Voltage -
VOH Command Outpads,
Control. Qutputs -
| nput Current (S0, S, i3
IF, and M/ Inputs) . V§=45 V -0.3 mA
3 input Leakage Current v <
il ; (Al Other Inputs) 0 V<ViN<Vco +10 MA
ILo: Output Leakage Current 45 V <Vout <Vee +10 uA
b : Voo =55V,
lccse " { "Standby Power-Supply Current Vin = Ve or GND, A
: Outputs Open
‘] Vec =55V,
lccop Operating Power-Supply Current Outputs Open mA/MHz

Powered by ICminer.com Electronic-Library Service CopyRight 2003 25

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified

Parameter
No. Symbol Parameter Description Test Conditions Min. Max. Units
1 CLK Period (Note 1) 40 DC ns
2 CLK LOW Time ns
3 CLK HIGH Time ns
4 CLK Rise Time ns
5 CLK Fall Time ns
Operation Time, Low-Latency Mode
6 Multiply-Accumulate 360 ns
7 Save State 120 ns
8 All Other Operations 240 ns
Operation Time, Pipelined Mode
9 All Operations 120 ns
10 Transaction Reque: (Note 3) ns
11 Transaction Req {Note 3) 0 ns
12 ns
13 0 ns
14 (Note 4) ns
15 (Note 4) 0 ns
16 ns
17 -to-Output-Valid Delay ns
18 a1 Three-State CLK-to-Qutput-Inactive ns
Data Operation-Start-to-Output
Valid Delay
19 Multiply-Accumulate (Note 5) ns
20 Save State (Note 5) ns
21 All Other Operations (Note 5) ns
22 DRDY, DERR CLK-to-Output-Valid Delay ns
23 MSERR CLK-to-Output-Valid Delay ns

Notes: 1. CLK switching characteristics are made relative to 2.5 V.
2. CLK rise time/fall time measured between 0.8 V and (Vgg -~ 1.0 V).

3. Transaction request signals include R/W, DREQTo - DREQT,, and OPTg - OPTa.
4. Data/instruction signals include Rp-R31, So-S31, and lg~l31.
5. This parameter relevant to flow-through mode only.

B. Al outputs are driving 80 pF unless otherwise noted.
C. All setup, hold, and delay times are measured relative to CLK at Voo/2 volts unless otherwise noted.

Conditions: A. All inputs/outputs except CLK are TTL-compatible for Vi, Vi, and V.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

36

SWITCHING WAVEFORM

S

TRANSACTION
REQUEST

BINV

DATA/INSTRUGTION

KEY TO SWITCHING WAVEFORMS
WAVEFORM INPUTS OUTPUTS
MUST BE WILL BE
STEADY STEADY
WILL BE
MAY CHANGE
CHANGING
m FROMHTOL LoambiToL
WILL BE
MAY CHANGE
CHANGING
M DON'T CARE; CHANGING;
ANY CHANGE STATE
PERMITTED UNKNOWN
CENTER
H DOES NOT LINE IS HIGH
APPLY {MPEDANCE
“OFF* STATE
KS000010
()
\ V%

CLK

\

L ><

Input Signal Timing, CDA Timing

)
IRIRS

WF023850

Powered by ICminer.com Electronic-Library Service CopyRight 2003

37

SWITCHING WAVEFORMS (Cont'd.)

START OF
OPERATION

O,
CLK /_W'\’b/x_/

TRANSACTION

REQUEST > NOTE 2 ><

Fo Far

oY — @ j@ﬁ

WF024000

Operation Timing for Flow-Through Mode, DRDY, DERR Not Advanced
(Mode Register Bit M44 = LOW)

START OF
OPERATION

'
T N AT N NN

TRANSACTION

REQUEST @)(> notez| K
@) e—

Fo Faq -

— — @ —
BRDY
TOERR e

WF024010

Operation Timing for Flow-Through Mode, DRDY, DERR Advanced
(Mode Register Bit M44 = HIGH)

Notes: 1. Transaction request Write Operand R; Write Operand S; Write Operands R, S; or Write
Instruction with Signal DREQT(active.
2. Transaction Request Read Result MSBs, Read Result LSBs, Read Flags, Read Status, or Save
State. If request Read Result LSBs is issued, the Am29027 produces two data outputs in two
consecutive cycles, with DRDY or DERR active for both cycles.

Powered by ICminer.com Electronic-Library Service CopyRight 2003 38

SWITCHING WAVEFORMS (Cont'd.)

START OF
OPERATION

O
T N AT NN

TRANSACTION

— (D [e— —»{(®

Fo Fa1 |
oy —*@‘: j@r—
BERR

WF024020
Operation Timing for Pipelined Mode

Notes: 1. Transaction request Write Operand R; Write Operand S; Write Operands R, S; or Write
Instruction with Signal DREQT(active.
2. Transaction Request Read Result MSBs, Read Result LSBs, Read Flags, Read Status, or Save
State. If request Read Result LSBs is issued, the Am29027 produces two data outputs in two
consecutive cycles, with DRDY or DERR active for both cycles.

T N A A

. -4
——

MASTER/SLAVE DISCREPANCY
DURING THIS CYCLE

—®f— —®

MSERR

WF023890

Master/Slave Timing

Powered by ICminer.com Electronic-Library Service CopyRight 2003
39

PHYSICAL DIMENSIONS*

CGX169

BOTTOM VIEW

1240

1700

075 x 45° REF. i 1500 BSC
(REFERENCE CORNER) eBCOEFGNLKLHNPRTL
— 160000000 HEOEEO 006G
:[000C0EPROCEYPOOOOOE OO
ileeeoo000p0POOE C0OO
s|loeoo® i 600
sleeo ! 000
sjlooe®) O 00
we| 000 | ® 00
sleoo i ogoXe)
st e ee— - -—-—f—-—— i~ — 06
vlooo ' 00
n|leooe | oGe
n|® 00 ! [SNENG]
nlooe t Qee
wloeoe i oo
5l0POOOOOOOOCBOOOOO
-s©©©©©@©©$©©©©©0@©
1714000000009 000000¢
]
|

.030 x 45 REFERENCE

(3 PLACES)

*For reference only.

8
g
I
i

e

83

—

Bl
~

Bls
|

0

W]

#ls

PID & 073228

Powered by ICminer.com Electronic-Library Service CopyRight 2003

40

ALABAMA
ARIZONA,
Tempe
CALIFORNIA,
Culver City
Newport Beach ..

yv

Woodland Hills . . .
COLORADO
CONNECTICUT
FLORIDA,

Clearwater

Ft Lauderdale ...

Melbourne

Qrlando
GEORGIA
ILLINQIS ..
INDIANA ..
KANSAS
MARYLAND

BELGIUM,
Bruxelles

CANADA, Ontario,
Kanata
Willowdale

FRANCE,
Paris

GERMANY,
Hannover area

Miinchen

Stuttgart

HONG KONG,
Kowloon

CALIFORNIA
2 INC

IDAHO

INDIANA
SAI MARKETING CORP
IOW.

LORENZ SALES
MICHIGAN

SAl MARKETING CORP
NEBRASKA

LORENZ SALES

INTERMOUNTAIN TECH MKGT ..

ADVANCED MICRO DEVICES
U.S. SALES OFFICES

(205) 882-9122
(602) 242-4400

(213) B45-1524
(714) 752-6262
(619) 560-7030
(408) 720-8811

.. (312) 773-4422
. (317) 244-7207
(913) 451-3115
(301) 796-9310

MASSACHUSETTS {617) 273-3970
MINNESOTA (612) 938-0001
MISSOURI {314) 275-4415
NEWJERSEY (201) 299-0002
NEW YORK,

Liverpool i (315) 457-5400

Poughkeepsie (914) 471-8180

Woodbury oL (516) 364-8020
NORTH CAROLINA (919) 847-8471
OREGONc.iiiiae. (503) 245-0080
OHIO (614) 891-6455
PENNSYLVANIA,

Allentown o L (215) 398-8006

Willow Grove (215) 657-3101
TEXAS,

Austin ... L (512) 346-7830

Dallas (214) 934-9099

Houstoncoooii. (713) 785-9001
WASHINGTON (206) 455-3600
WISCONSIN (414) 782-7748

INTERNATIONAL SALES OFFICES

TEL: . (02) 771 99 93
FAX: .. (02) 762-3716
TLX: ool 61028
TEL: . (613) 592-0090
TEL: . (416) 224-5193
FAX: . (416) 224-0056
TEL: (01) 4560 00 55
FAX: (01) 46 86 21 85
TLX: ... 202053F
TEL: .. (05143) 50 55 -
FAX: .. (05143) 55 53
TLX: ... 925287
TEL: .. (089) 41 14-0
FAX: ... (089) 406490
TLX: ... 523883
TEL: . (0711)6233 77
FAX: .. (0711) 625187
TLX .. 721882
TEL: 3-695377
FAX: 1234276
TLX: o 50426

NORTH AMERICAN REPRESENTATIVES

. OEM (408) 988-3400
DISTI (408) 496-6868
)

)

______ (208) 888-6071
...... (317) 241-9276
(319) 377-4666
(313) 750-1922

{402) 475-4660

ITALY, Milano TEL: (02) 3390541
: (02) 3498000
TLX: oxei 315286
JAPAN, .o
Tokyo Lo TEL T (03) 345-8241
. H T 3425196
. J24064AMDTKOJ
Oswka TEL:-.. "06-243-3250
...... 06-243-3253
KOREA, Seoul -. . 82-733-1021/7
O I = o 82-733-1028
E W TLX K22652
- LATIN AMERICA,
-Ft. Lauderdale TEL: {305) 484-8600
’ FAX: (305) 485-9736
TLX: .. 5109554261 AMDFTL
SWEDEN, Stockholm TEL: (08) 733 03 50
FAX: .. (08) 733 22 85
TLX: oo 1602
UNITED KINGDOM,
Manchester area TEL: (0925) 828008
FAX: (0925} 827693
TLX: o 628524
tondonarea TEL: (04862) 22121
FAX: (04862) 22179
TLX: o 859103
NEW MEXICO
THORSON DESERT STATES (505) 293-8555
NEW YOR
NYCOM, INC (315) 437-8343
OHIO
Dayton
DOLFUSS ROOT & CO (513) 433-6776
Strongsville

DOLFUSS ROOT & CO

PENNSYLVANIA
DOLFUSS ROOT & CO
TAH

R? MARKETING

(216) 238-0300
(412) 221-4420

(801) 595-0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance
characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and
other practices common fo the industry. For specific testing details, contact your local AMD sales representative. The company
assumes no responsibility for the use of any circuits described herein.

ﬂ ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Bax 3453, Sunnyvale, CA 94088, USA
‘ TEL: (408) 732-2400 @ TWX: 910-339-9280 @ TELEX: 34-6306 @ TOLL FREE: {800} 538-8450

© 1987 Advanced Micro Devices, Inc.
Printed in U.S.A. AIS-WCP-30M-2/87-0

Powered by ICminer.com Electronic-Library Service CopyRight 2003

41

ADVANCED MICRO DEVICES 28E D N 0257525 0033150 5 W@ AMD

—t
" 90-20
General Information
PACKAGE OUTLINES*
CGX169
BOYTOM VIEW
oy
170]
70
ATS x 45" NER 1500 PC
(REFERENCE CORNER) ICD!FOH;‘L-NPR' ._11
(0000000000000 00b) =7 H
2 oo@O@@o@@@@o@@soe Q-
iloeoocvo0po000000C —
loeooo 1 ocoo =1
sfteoo ! occe et
[} KeXeXo) ' ocCco —
zal 71000 | 200 e
1l®o00 i 800 =
a-1te-o-o—-i S-6-6- —— e
w|looe 000 po—
wljeoe 000 - =
2000 [oNeXo] R ==
n{®eo [eXoXo) =
18 NoNoNe] | [OX N >] [—=
M @@@@@@@@3@@@@30@@ - —
0PN OOO000RVEI00e e
1{000NOO00POI0Q0OP) ‘"—:——’i:c_
i T . |-
.w-u-urﬁcl __H__,.. ! A 440 =} i e
{3 FLACES) =
<L
e

M0 & oTI28

*For reference only,

-

*For reference only. All dimensions are measured in inches. BSC is an ANSI standard for Basic Space Centering.

Powered by ICraé - =k ie-Librans-Senvice-CopyRight 2003,

ADVANCED MICRO DEVICES

28E D WM 0257525 0033151 7 WM AMD

-

T-90-2¢0
T Package Outlines
ca164
- 1.665 _
B ' 1.710 >
1.140 o
- 1.165
- 1.000 .
- 8SC .
50 .
“ BSC >
.250
“TMIN
'} = E’Q """"" 2N
1.665 1.140
1.710 1.165
.006 ‘
.010T‘
.025
MAX
Y
y
) ’ !
TOP VIEW
) 004 008
.008 £508
%9 L — e 1 /l 3 é ‘
105
’ — »f|e..:010 oo - ' *
MAX 004
008
13092A
Powered by ICrrires = ieLibrar-Service-CopyRight 2003

4-5

