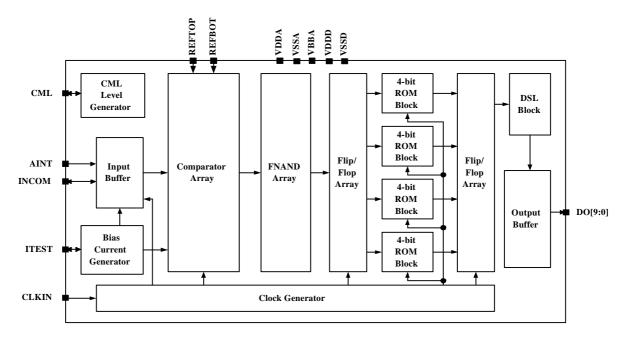
6BIT 120MSPS ADC

GENERAL DESCRIPTION

The AL1212H is a CMOS 6-Bit A/D converter for a digital video disk (DVD) partial-response maximum likelihood (PRML) system. It is a flash type A/D converter which consists of input buffer, comparator array, digital backend encoder, and output buffer. The maximum conversion rate of AL1212H is over 120MSPS and supply voltage is 5V single.

FEATURES

- Resolution: 6Bit


Differential Linearity Error: ±1.0 LSB
 Integral Linearity Error: ±1.0 LSB
 Maximum Conversion Rate: 120MSPS

Digital Output : CMOS LevelPower Consumption : 300mWPower Supply : 5V Single

TYPICAL APPLICATIONS

- Multi-media applications
- Digital video disk (DVD) system
- Digital broadcast satellite (DBS) receiver
- Quadrature phase shift keying (QPSK) demodulator
- Video applications

FUNCTIONAL BLOCK DIAGRAM

Ver 1.0 (Mar. 1999)

No responsibility is assumed by SEC for its use nor for any infringements of patents or other rights of third parties that may result from its use. The content of this datasheet is subject to change without any notice.

CORE PIN DESCRIPTION

NAME	I/O TYPE	I/O PAD	PIN DESCRIPTION
REFTOP	AI	pia_bb	Reference Top Bias (3.0V)
REFBOT	AI	pia_bb	Reference Bottom Bias (2.0V)
CML	AB	pia_bb	Internal Bias Point (open=use internal bias circuit)
VDDA	AP	vdda	Analog Power (5.0V)
VBBA	AG	vbba	Analog Sub Bias
VSSA	AG	vssa	Analog Ground
AINT	AI	piar10_bb	Analog Input Input Span : 1.5~3.5 V
INCOM	AB	pia_bb	Internal Bias Point (open=use internal bias circuit)
ITEST	AB	pia_bb	Internal Bias Point (open=use internal bias circuit)
CLKIN	DI	piar50_bb	Clock Input
DO[5:0]	DO	poa_bb	Digital Output
VSSD	DG	vssd	Digital Ground
VDDD	DP	vddd	Digital Power (5.0V)


I/O TYPE ABBR.

AI: Analog InputDI: Digital InputAO: Analog OutputDO: Digital Output

AB : Analog BidirectionalDB : Digital Bidirectional

AP: Analog PowerDP: Digital PowerAG: Analog GroundDG: Digital Ground

CORE CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit
Supply Voltage	VDD	7.0	V
Analog Input Voltage	AINT	VSS to VDD	V
Digital Input Voltage	CLKIN	VSS to VDD	V
Digital Output Voltage	Voh, Vol	VSS to VDD	V
Reference Voltage	REFTOP/REFBOT	3.0/2.0	V
Storage Temperature Range	Tstg	-45 to 125	°C

NOTES

- ABSOLUTE MAXIMUM RATING specifies the values beyond which the device may be damaged permanently.
 Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect reliability. Each condition value is applied with the other values kept within the following operating conditions and function operation under any of these conditions is not implied.
- 2. All voltages are measured with respect to VSS unless otherwise specified.
- 3. 100pF capacitor is discharged through a 1.5K Ω resistor (Human body model).

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Тур	Max	Unit
Supply Voltage	VDDA - VSSA VDDD - VSSD	4.5	5.0	5.5	V
Supply Voltage Difference	VDDA - VDDD	-0.1	0.0	0.1	V
Reference Input Voltage	REFTOP REFBOT	-	3.0 2.0	-	V
Analog Input Voltage	AINT	1.5	-	3.5	V
Digital Input 'L' Voltage Digital Input 'H' Voltage	V _{IL} V _{IH}	4.5	-	0.5	V
Operating Temperature	Topr	0	-	70	°C

NOTES

1. It is strongly recommended that all the supply pins (VDDA, VDDD, VDDO) be powered from the same source to avoid power latch-up.

DC ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Min	Тур	Max	Unit	Conditions
Resolution	-	-	6	-	Bits	-
Reference Current	IREF	-	0.8	-	mA	REFTOP: 3.0V REFBOT: 2.0V
Differential Linearity Error	DLE	-	-	±1.0	LSB	AINT: 1.5V ~ 3.5V (Ramp Input)
Integral Linearity Error	ILE	-	-	±1.0	LSB	Fs : 120MHz
Bottom Offset Voltage Error	EOB	-	1	3	LSB	EOB = AINT(0,1)-REFBOT
Top Offset Voltage Error	ЕОТ	-	1	3	LSB	EOT = REFTOP-AINT(62,63)

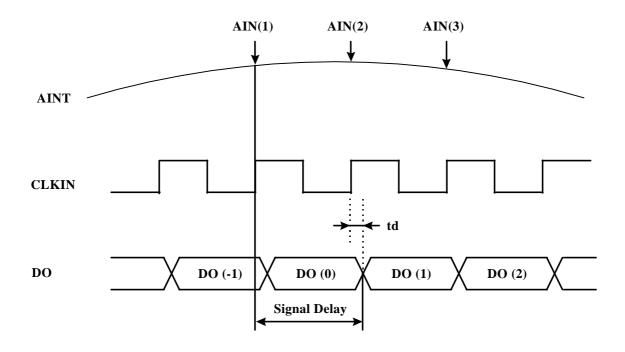
NOTES

1. Converter Specifications (unless otherwise specified)

VDDA=5.0V VDDD=5.0V SUBST=0.0V

VSSA=.0.0V VSSD=0.0V

REFTOP=3.0V REFBOT=2.0V


Ta=25° C

2. TBD: To Be Determined

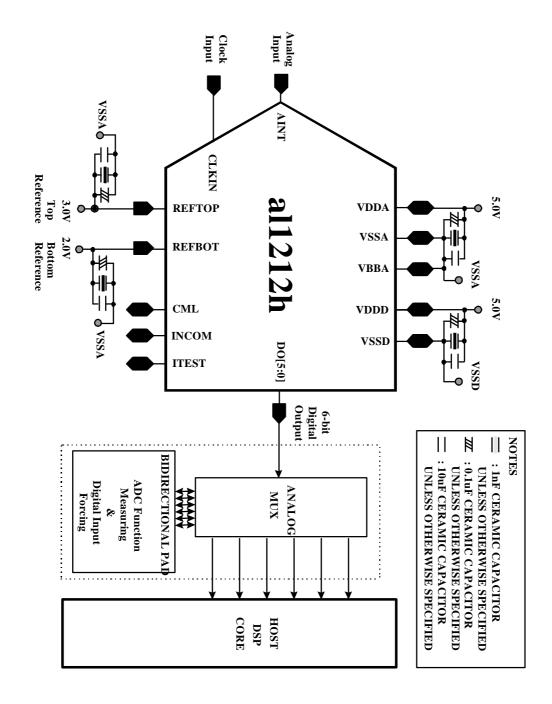
AC ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Min	Тур	Max	Unit	Conditions
Conversion Rate	Fs	-	120	-	MSPS	
Dynamic Supply Current	Is (IREF)	-	60 (0.8)	66	mA	Is = I(VDDA) + I(VDDD) Fs : 120MHz
Digital Output Data Delay	td	-	1.1	-	ns	See "DELAY TIMING DIAGRAM"
Signal to Noise Ratio	SNDR	32	34	-	dB	AINT: 20MHz (Sine Input) Fs: 120MHz

DELAY TIMING DIAGRAM

FUNCTIONAL DESCRIPTION

- 1. AL1212H is a flash A/D converter, which consists of input buffer, comparator array, digital backend encoder, and clock generator.
- 2. The input buffer is used to reduce a relatively large input capacitance of the A/D converter and convert single-ended input to differential output, which is provided to comparator array.
- 3. Comparator array generates a thermometer code from analog input and reference levels. has an interpolation factor of 2, this architecture halves the number of preamplifiers but maintains the same number of latches without extra capacitors and resistors. Each preamplifier amplifies the analog input with performing an auto-zero function simultaneously. Each latch converts analog output of the preamplifier into fully digital signal positive feedback by operation.
- 4. The digital backend part composed of logic gates and ROM blocks converts the comparator outputs into 6-bit binary-coded digital words. FNAND array, which converts a thermometer code of the comparators into a single HIGH level output, consists of 3-input NAND gates for sparkle code suppression. The digital backend encoding block consists of four 4-bit ROMs to achieve fast encoding, low power consumption, and small digital area. Each FROM block encodes 16-bit input code into 4-bit LSB and generates extra 1-bit, named a group selection bit (GSB), which becomes HIGH when the 4-bit output code is valid. DSL block, which consists of some logic gates, generates 2-bit MSB from the 4-bit GSBs. To prevent timing errors, the digital backend part contains two stage flip/flop arrays which synchronize propagated signals with the external clock.

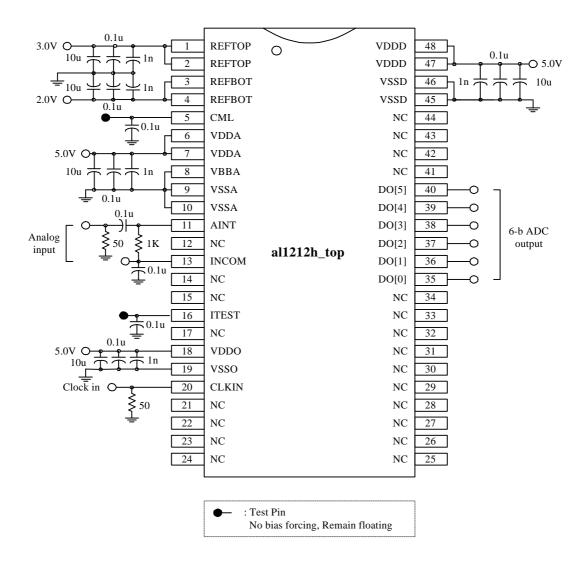

5 Clock generator consists of analog clock generator and digital clock generator. Analog clock

generator generates approximately 1 MHz low frequency clocks, which are supplied to preamplifiers and input buffer while digital clock generator generates a 120 MHz high frequency clock, which is supplied to latches and digital backend encoder.

CORE EVALUATION GUIDE

1. ADC function is evaluated by external check on the bidirectional pads connected to input nodes of HOST DSP back-end circuit.

2. The reference voltages should be biased externally through REFTOP and REFBOT pins.



CORE LAYOUT GUIDE

1. The width of all signal and power lines, which are connected to the ports of AL1212H block, must be same to one of the connected ports.

- 2. The power lines, which have over 20um width, may be designed by the slit form.
- 3. Each power line, which has same label, must be tied in front of the I/O pad block.
- 4. Analog signal lines (AINT, REFTOP, REFBOT, CML, INCOM, and ITEST) must be separated to the digital lines (CLKIN and DO[5:0]).
- 5. The lines of AINT and CLKIN may be designed as a straight line and maintain an enough space (over 10um) with other lines as it possible.

PACKAGE CONFIGURATION

NOTES

1. NC denotes "No Connection".

PACKAGE PIN DESCRIPTION

NAME	PIN NO.	I/O TYPE	PIN DESCRIPTION		
REFTOP	1,2	AI	Reference Top (3V)		
REFBOT	3,4	AI	Reference Bottom (2V)		
CML	5	AB	Internal Bias Point (Open=use internal bias circuit)		
VDDA	6, 7	AP	Analog Power (5V)		
VBBA	8	AG	Analog Sub Bias		
VSSA	9, 10	AG	Analog Ground		
AINT	11	AI	Analog Input +		
INCOM	13	AB	Analog Input - (Open=use internal bias circuit)		
ITEST	16	AB	Internal Bias Point (Open=use internal bias circuit)		
VDDO	18	PP	Output Driving Power		
VSSO	19	PG	Output Driving Ground		
CLKIN	20	DI	Clock Input		
DO[5:0]	35~40	DO	Digital Output		
VSSD	45,46	DG	Digital Ground		
VDDD	47,48	DP	Digital Power		

NOTES

- 1. I/O TYPE PP and PG denote PAD Power and PAD Ground respectively.
- 2. INCOM is the other pin of differential input, which is fixed to 2.5 V internally.
- 3. CML is the bias pin, which is fixed to 2.5 V internally.
- 4. ITEST is the test pin of bias generator. When initial bias function is working normally the pin is fixed to 0.9 V.
- 5. VDDO and VSSO are output driving power pads.

FEEDBACK REQUEST

It should be quite helpful to our ADC core development if you specify your system requirements on ADC in the following characteristic checking table and fill out the additional questions.

We appreciate your interest in our products. Thank you very much.

Characteristic	Min	Тур	Max	Unit	Remarks
Analog Power Supply Voltage				V	
Digital Power Supply Voltage				V	
Bit Resolution				Bit	
Reference Input Voltage				V	
Analog Input Voltage				Vpp	
Analog Input Bandwidth (Maximum Input Frequency)				MHz	
Operating Temperature				°C	
Integral Non-linearity Error				LSB	
Differential Non-linearity Error				LSB	
Bottom Offset Voltage Error				mV	
Top Offset Voltage Error				mV	
Maximum Conversion Rate				MSPS	
Dynamic Supply Current				mA	
Power Dissipation				mW	
Signal-to-noise Ratio				dB	
Pipeline Delay				CLK	
Output Loading Capacitance				pF	
Digital Output Format (Provide detailed description & timing diagram)		,			

- 1. Between single input-output and differential input-output configurations, which one is suitable for your system and why?
- 2. Please comment on the internal/external pin configurations you want our ADC to have, if you have any reason to prefer some type of configuration.
- 3. Freely list those functions you want to be implemented in our ADC, if you have any.