Advance Technical Information

PolarHV ${ }^{\text {TM }}$ HiPerFET Power MOSFET ISOPLUS220 ${ }^{\text {TM }}$

(Electrically Isolated Back Surface)

N-Channel Enhancement Mode
Fast Intrinsic Diode
Avalanche Rated
IXFC 16N80P

G = Gate $\quad D=$ Drain
$S=$ Source

Features

- Silicon chip on Direct-Copper-Bond substrate
- High power dissipation
- Isolated mounting surface
- 2500V electrical isolation
- Low drain to tab capacitance(<35pF)
- Low $\mathrm{R}_{\text {DS (on) }}$ HDMOS $^{\text {тM }}$ process
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- Fast intrinsic Rectifier

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control

Advantages

- Easy assembly: no screws, or isolation foils required
- Space savings
- High power density
- Low collector capacitance to ground (low EMI)

Symbol
Test Conditions
Characteristic Values

		Min.	Typ.	Max.
$\mathrm{gts}_{\text {f }}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=I_{T}$, pulse test	9	16	S
$\left.\begin{array}{l} \mathrm{c}_{\text {iss }} \\ \mathrm{c}_{\text {oss }} \\ \mathrm{c}_{\text {rss }} \end{array}\right\}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 4600 \\ 330 \\ 23 \\ \hline \end{array}$	pF pF pF
$\left.\begin{array}{l} t_{t_{(0 n)}} \\ t_{\mathrm{r}} \\ t_{\mathrm{d}_{\mathrm{l}(\mathrm{ff})}} \\ \mathrm{t}_{\mathrm{f}} \end{array}\right\}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{T}} \\ & \mathrm{R}_{\mathrm{G}}=5 \Omega \text { (External) } \end{aligned}$		$\begin{aligned} & 27 \\ & 32 \\ & 75 \\ & 29 \end{aligned}$	ns ns ns ns
$\left.\begin{array}{l} \mathbf{Q}_{\mathrm{g}(0)} \\ \mathbf{Q}_{\mathrm{gs}} \\ \mathbf{Q}_{\mathrm{gd}} \end{array}\right\}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \mathrm{~V}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{T}}$		$\begin{aligned} & 71 \\ & 21 \\ & 23 \end{aligned}$	nC nC nc
$\begin{aligned} & \mathbf{R}_{\mathrm{thnc}} \\ & \mathbf{R}_{\mathrm{thncs}} \end{aligned}$			0.21	$\begin{array}{r} 0.82 \quad{ }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$

Source-Drain Diode
Characteristic Values

Symbol	($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified)			
	Test Conditions Min.	Typ.	Max.	
$\mathrm{I}_{\text {s }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$		16	A
$\mathrm{I}_{\text {SM }}$	Repetitive		48	A
$\mathrm{V}_{\text {sD }}$	$I_{F}=I_{S}, V_{G S}=0 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\mathrm{d} \leq 2 \%$		1.5	V
$\left.\begin{array}{l} \mathbf{t}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RM}} \\ \mathbf{Q}_{\mathrm{RM}} \end{array}\right\}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{S} \\ & \mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$	7 0.8	250	ns A $\mu \mathrm{C}$

ISOPLUS220 ${ }^{\text {TM }}$ (IXFC) Outline

Note:
Bottom heatsink (Pin 4) is electrically isolated from Pin 1,2 , or 3 .

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	. 157	197	4.00	5.00
A2	. 098	. 118	2.50	3.00
\square	. 035	. 051	0.90	1.30
$\square 2$. 049	. 065	1.25	1.65
b4	. 093	. 100	2.35	2.55
c	. 028	. 039	0.70	1.00
D	. 591	. 630	15.00	16.00
D1	472	. 512	12.00	13.00
E	394	. 433	10.00	11.00
E1	. 295	335	7.50	8.50
e	100 BASIC		2.55 BASIC	
L	. 512	571	13.00	14.50
L1	. 118	. 138	3.00	3.50
T°			$42.5{ }^{\circ}$	47.5'

Ref: IXYS CO 0177 R0

Note 1: Test Current $\mathrm{I}_{\mathrm{T}}=8 \mathrm{~A}$

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated objective result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

