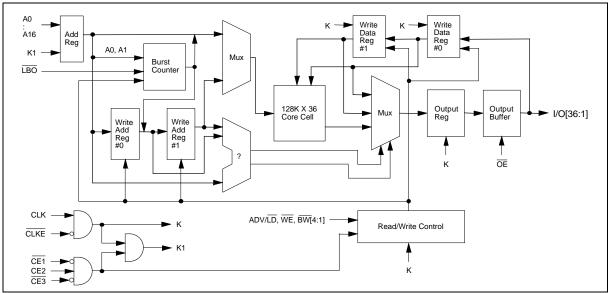


$128K \times 36$ PIPELINED ZWS SRAM

GENERAL DESCRIPTION

The W25Z040A is a high-speed, low-power, Zero-Wait-State (ZWS) Synchronous Pipelined CMOS Static RAM organized as $131,072 \times 36$ bits. A built-in two-bit burst address counter supports both Linear and Interleaved burst mode. The mode to be executed is controlled by the <u>LBO</u> pin. A snooze mode can reduce the power dissipation.

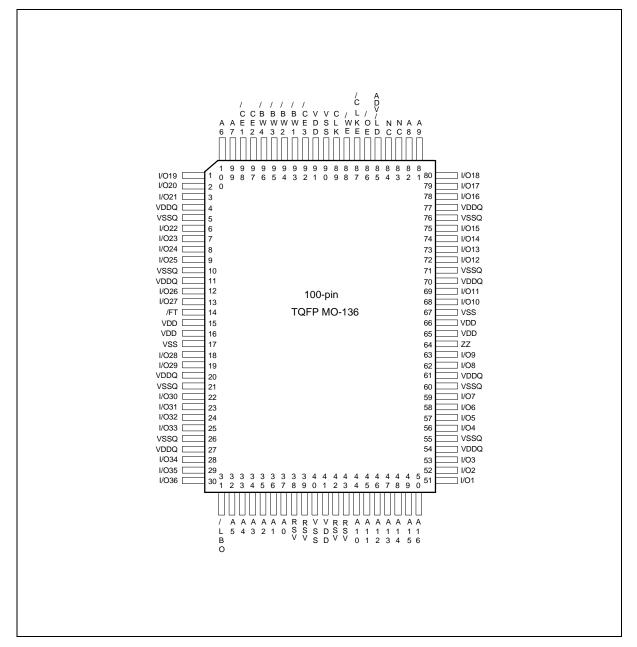
The ZWS SRAM is optimized for 100 percent bus utilization by eliminating wait states when transitioning from read to write, or vice versa. All addresses, data inputs, clock enable (\overline{CLKE}), write enable (\overline{WE}), byte-write enables (\overline{BW} [4:1]) and chip enables ($\overline{CE1}$, CE2 and $\overline{CE3}$ for easy depth expansion) are synchronously sampled with by a positive-edge-triggered clock (CLK). Asynchronous inputs include the output enable (\overline{OE}), clock (CLK) and snooze (ZZ).


To provide 100 percent use of the data bus, the pipelined ZWS SRAM uses the two-stage write address registers. For example, when the address and control signals are applied to the SRAM in clock cycle one, the data associated with the address occurs two cycles later, or the clock cycle three.

The W25Z040A operates on a single 3.3V power supply, with all inputs and outputs compatible with the LVTTL interface. Based on the bus efficiency, the device is ideal for high bandwidth application systems.

FEATURES

- Synchronous operation
- High-speed access time: 3.8/4.2/4.5/5 nS
- Single +3.3V power supply
- Individual byte write capability
- 3.3V LVTTL compatible I/O
- Clock-controlled and registered input
- Asynchronous output enable
- Zero wait states between read/write cycles
- Supports snooze mode (low-power state)
- Internal burst counter supports Interleaved burst mode & linear burst mode
- Packaged in 100-pin TQFP


BLOCK DIAGRAM

Publication Release Date: April 1999 Revision A2

PIN CONFIGURATION

PIN DESCRIPTION

SYMBOL	ТҮРЕ	DESCRIPTION
A0–A16	Input, Synchronous	Host Address
I/O1–I/O36	I/O, Synchronous	Data Inputs/Outputs
CLK	Input, Clock	Processor Host Bus Clock
CLKE	Input, Synchronous	Clock Enable
$\overline{CE1}$, CE2, $\overline{CE3}$	Input, Synchronous	Chip Enables
WE	Input, Synchronous	Write Enable from System Controller
$\overline{BW1} - \overline{BW4}$	Input, Synchronous	Host Bus Byte Enables used with $\overline{\text{WE}}$
ŌĒ	Input, Asynchronous	Output Enable Input
ADV/LD	Input, Synchronous	Internal Burst Address Counter Advance(Sampled High) / Load External Address (Sampled Low)
ZZ	Input, Asynchronous	Snooze Pin for Low-power State, internally pulled low
FT	Input, Static	This pin should be connected to VDD or unconnected to meet the specification in pipelined mode operation.
LBO	Input, Static	Lower Address Burst Order
		Connected to Vss: Device operates in linear mode. Connected to VDD or unconnected: Device is in non- linear mode.
Vddq		I/O Power Supply
Vssq		I/O Ground
Vdd		Power Supply
Vss		Ground
RSV		Reserved Pin, Don't Use These Pins
NC		No Connection

FUNCTIONAL DESCRIPTION

Read Operation

The address is registered on the rising edge of CLK and the associated output data will be valid after two cycles later.

Write Operation

During the write operation, the input data follows the address by two cycles later. The new incoming address and data are transferred into a two-stage write buffer while the residing address which are received two write cycles earlier are used for actual write operation. Data stored in these two-stage write data registers are used for first two write cycles following the read or unselected cycle. A subsequent read which matches the address in either write buffer allows the corresponding buffer data to be passed directly to output register.

CYCLE	ADDRESS USED	ZZ	CE1	CE2	CE3	CLKE	ADV/LD	WE	BWx	DATA	NOTES
Unselected	No	0	1	Х	Х	0	0	Х	Х	Hi-Z	
Unselected	No	0	Х	0	Х	0	0	Х	Х	Hi-Z	
Unselected	No	0	Х	Х	1	0	0	Х	Х	Hi-Z	
Begin Read	External	0	0	1	0	0	0	1	Х	D-Out	3
Continue Read	Next	0	Х	Х	Х	0	1	Х	Х	D-Out	3
Begin Write	External	0	0	1	0	0	0	0	0	D-In	
Begin Write /NOP	None	0	0	1	0	0	0	0	1	Hi-Z	4
Continue Write	Next	0	Х	Х	Х	0	1	Х	0	D-In	
Continue Write /NOP	Next	0	Х	Х	Х	0	1	Х	1	Hi-Z	4
Stall	Current	0	Х	Х	Х	1	Х	Х	Х	-	5
Snooze	None	1	Х	Х	Х	Х	Х	Х	Х	Hi-Z	

Truth Table

Notes:

1. For a detailed definition of read/write, see the Write Table below.

2. An "X" means don't care, "1" means logic high, and "0" means logic low.

3. The \overline{OE} pin enables the data output and is not sampled with the clock. All signals of the SRAM are sampled synchronously with the bus clock except for the \overline{OE} pin.

- 4. NOP can be seen as No Operation.
- 5. If clock enable sampled high occurs during READ cycle, the bus will remain active (valid data). If clock enable sampled high occurs during WRITE cycle the bus will remain in high-Z state.

Write Table

READ/WRITE FUNCTION	WE	BW4	BW3	BW2	BW1
Read	1	Х	Х	Х	Х
Write/NOP	0	1	1	1	1
Write byte 1 I/O1–I/O9	0	1	1	1	0
Write byte 2 I/O10–I/O18	0	1	1	0	1
Write byte 2, byte 1	0	1	1	0	0
Write byte 3 I/O19–I/O27	0	1	0	1	1
Write byte 3, byte 1	0	1	0	1	0
Write byte 3, byte 2	0	1	0	0	1
Write byte 3, byte 2, byte 1	0	1	0	0	0
Write byte 4 I/O28–I/O36	0	0	1	1	1
Write byte 4, byte 1	0	0	1	1	0
Write byte 4, byte 2	0	0	1	0	1
Write byte 4, byte 2, byte 1	0	0	1	0	0
Write byte 4, byte 3	0	0	0	1	1
Write byte 4, byte 3, byte 1	0	0	0	1	0
Write byte 4, byte 3, byte 2	0	0	0	0	1
Write all bytes I/O1–I/O36	0	0	0	0	0

Read-Write-Read Operation

There is no wait state to be asserted for a read-write-read operation. i.e. there is no extra dead bus cycle for read-write or write-read recovering and the bus utilization is 100%.

Burst Mode Operation

Burst read or write is activated if $ADV/\overline{LD} = HIGH$ at the rising edge of CLK, where the new address is composed of 2 new bits from burst counter and the remaining bits from the previous address. The sequencing of the counter can be either linear if $\overline{LBO} = LOW$ or interleaved if $\overline{LBO} = HIGH$. \overline{CE} [3:1] and \overline{WE} controls are ignored during burst mode.

Burst Address Sequence

	IN	TERLEA		DE	LINEAR MODE				
		(LBO	= Vdd)		(LBO = Vss)				
	A[1:0]	A[1:0]	A[1:0]	A[1:0]	A[1:0]	A[1:0]	A[1:0]	A[1:0]	
External Start Address	00	01	10	11	00	01	10	11	
Second Address	01	00	11	10	01	10	11	00	
Third Address	10	11	00	01	10	11	00	01	
Fourth Address	11	10	01	00	11	00	01	10	

Stall Cycle

Stall cycle occurs when $\overline{\text{CLKE}}$ = HIGH is sampled. No internal clocks are generated. All addresses and control signals are ignored. If the previous cycle is a READ, output remains the same. If the previous cycle is a WRITE, output remains tri-stated. Any stall cycle will be added to increase the latency of output and input data.

Unselect Cycle

When \overline{CE} = HIGH is sampled, a unselect state is entered. Output is tri-stated. By setting ADV/LD = HIGH for the following sampling cycle, the unselect state can be continued.

NOP Cycle

For a WRITE cycle with no asserted Byte-Write select signal, the device achieves a NOP operation. No addresses will be sampled.

Power Down Mode

An asynchronous ZZ pin can be set High to force the device into a power down mode. Outputs will go into High-Z state and the device draws only standby power. Minimum of 2 CLK cycles are required after setting ZZ to High before the device is forced into power down operation. Any operation pending when entering power down mode (read or write) is not guaranteed to successfully complete. Therefore, ZZ mode must not be initiated until valid pending operations are completed. When exiting ZZ mode during TzzR, only the unselect or read cycle should be given while the SRAM will be waken up again.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Core Supply Voltage to Vss	-0.5 to 4.6	V
I/O Supply Voltage to Vss	-0.5 to 4.6	V
Input/Output to Vsso Potential	Vssq -0.5 to Vddq +0.5	V
Allowable Power Dissipation	1.5	W
Storage Temperature	-65 to 150	°C
Operating Temperature	0 to +70	Ο°

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

OPERATING CHARACTERISTICS

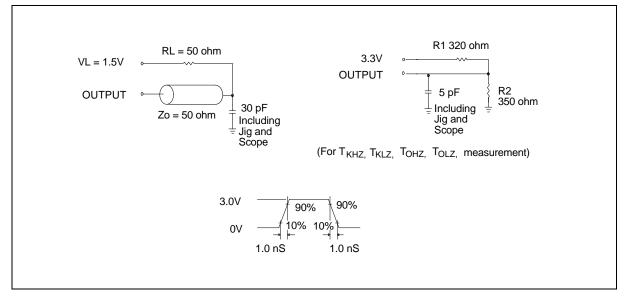
(VDD/VDDQ = 3.3V \pm 5%, VSS/VSSQ = 0V, TA = 0 to 70° C)

PARAMETER	SYM.	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Input Low Voltage	VIL	-	-0.5	-	+0.8	V	
Input High Voltage	Vін	-		+2.0	-	Vdd +0.3	V
Input Leakage Current	ILI	VIN = VSSQ to VDDQ		-1	-	+1	μΑ
Output Leakage Current	Ilo	VI/O = VSSQ to VDDQ, and I/O pins in high-Z state de in truth table	-1	-	+1	μA	
Output Low Voltage	Vol	IOL = +8.0 mA		-	-	0.4	V
Output High Voltage	Vон	Юн = -4.0 mA		2.4	-	-	V
Operating Current	Idd	All inputs \geq VIH or \leq VIL,	All inputs \geq VIH or \leq VIL, -3A		-	420	mA
		Tcyc≥min., I/O = 0 mA	-4	-	-	370	mA
			-4A	-	-	330	mA
			-5	-	-	300	mA
Standby Current	ISB1	Device unselected, $ZZ \le VSS +$ All inputs $\le VSS + 0.2$ or $\ge VDD$ and static I/O = 0 mA , CLK frequency = 0	-	-	10	mA	
Standby Current	ISB2	Device unselected, ZZ = VIL, All inputs ≤ VIL or ≥ I/O = 0 mA, CLK frequency =	-	-	25	mA	
ZZ Mode Current	lzz	$ZZ \ge VIH$, All inputs $\le VIL$ or $\ge I/O = 0$ mA	≥ Vih,	-	-	10	mA

Note: Typical characteristics are measured at VDD = 3.3V, TA = 25° C.

CAPACITANCE

(VDD = 3.3V, TA = 25° C, Freq. = 1 MHz)


PARAMETER	SYM.	CONDITIONS	MAX.	UNIT
Address Input Capacitance	CADD	VIN = 0V	3.5	pF
Clock & Control Input Capacitance	CCLK	VCLK = 0V	4	pF
Input/Output Capacitance	CI/O	VI/O = 0V	5	pF

Note: These parameters are sampled but not 100% tested.

AC TEST CONDITIONS

PARAMETER	CONDITIONS
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	1 nS
Input and Output Timing Reference Level	1.5V
Output Load	CL = 30 pF, IOH/IOL = -4 mA/8 mA

AC TEST LOADS AND WAVEFORM

AC TIMING CHARACTERISTICS

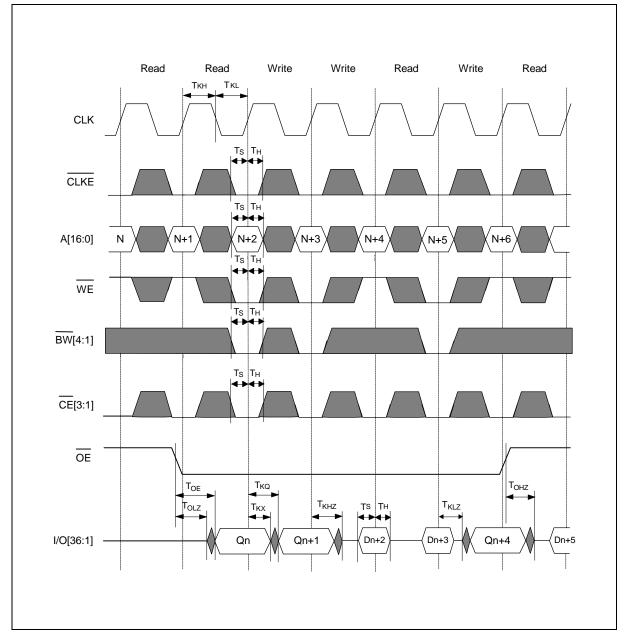
PARAMETER	SYM.		Z040A 3A		2040A 4		Z040A 4A		Z040A 5	UNIT	NOTES
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Clock Cycle Time	Тсүс	6.7	-	7.5	-	8.5	-	10.0	-	nS	
Clock High Pulse Width	Ткн	2.5	-	3.0	-	3.0	-	3.5	-	nS	
Clock Low Pulse Width	Τĸl	2.5	-	3.0	-	3.0	-	3.5	-	nS	
Input Setup Time	Ts	1.5	-	1.5	-	2.0	-	2.0	-	nS	
Input Hold Time	Тн	0.5	-	0.5	-	0.5	-	0.5	-	nS	
Clock Access Time	Τκα	-	3.8	-	4.2	-	4.5	-	5.0	nS	
Output Hold from Clock High	Ткх	1.5	-	1.5	-	1.5	-	1.5	-	nS	
Clock High to Output Low-Z	Tĸlz	1.5	-	1.5	-	1.5	-	1.5	-	nS	1
Clock High to Output High-Z	Ткнz	-	3.0	-	3.5	-	3.5	-	3.5	nS	1
Output Enable to Output Valid	TOE	-	3.8	-	4.2	-	4.5	-	5.0	nS	
Output Enable to Output Low-Z	Tolz	0		0		0		0		nS	1
Output Disable to Output High-Z	Тонz	-	3.0	-	3.5	-	3.5	-	3.5	nS	1
ZZ Standby Time	Tzzs	-	2	-	2	-	2	-	2	Cycle	
ZZ Recover Time	Tzzr	-	20	-	20	-	20	-	20	nS	4

(VDD/VDDQ = $3.3V\pm 5\%$, Vss/Vssq = 0V, TA = 0 to 70° C, all timings measured in pipelined mode)

Notes:

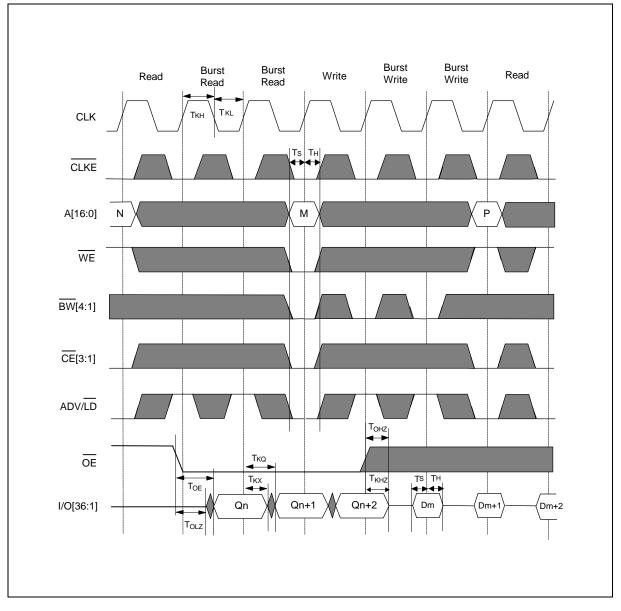
1. These parameters are sampled but not 100% tested.

2. In the ZZ mode, the SRAM will enter a low-power state. In this mode, data retention is guaranteed and the clock is active.

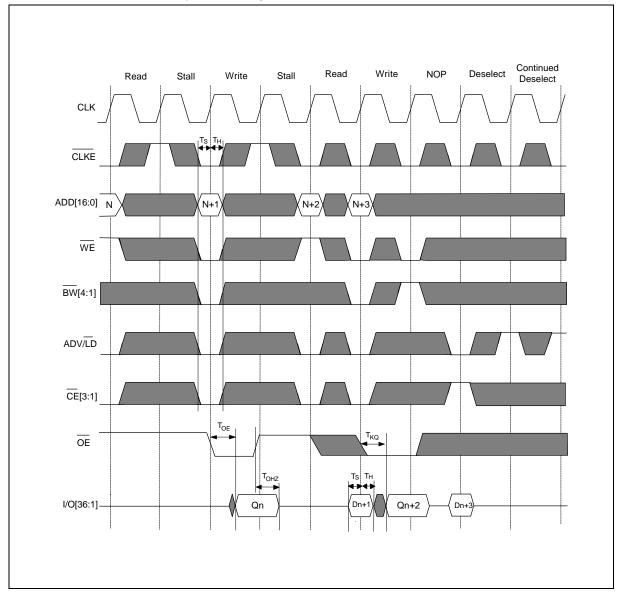

3. Configuration signals $\overline{\text{LBO}}$ and $\overline{\text{FT}}$ are static and should not be changed during operation.

4. Write cycle should not be given for at least 20 nS while the SRAM is transitioning out of ZZ mode.

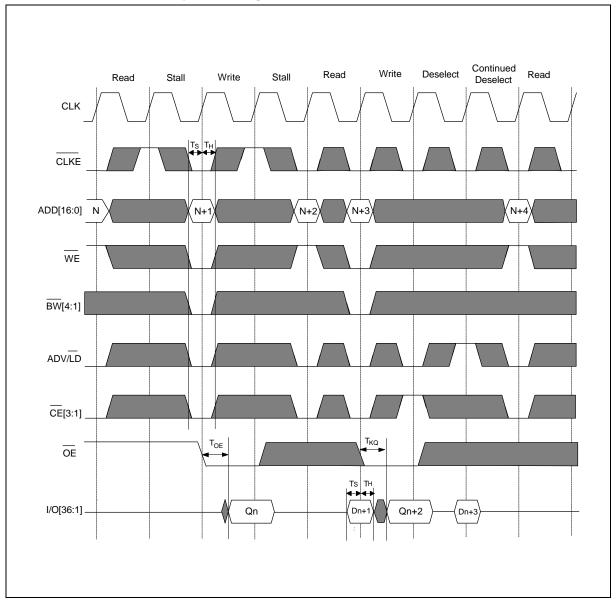
TIMING WAVEFORMS


Read/Write Cycle Timing

Timing Waveforms, continued


Burst Read/Write Cycle Timing

Timing Waveforms, continued


Stall NOP and Unselect Cycle Timing 1

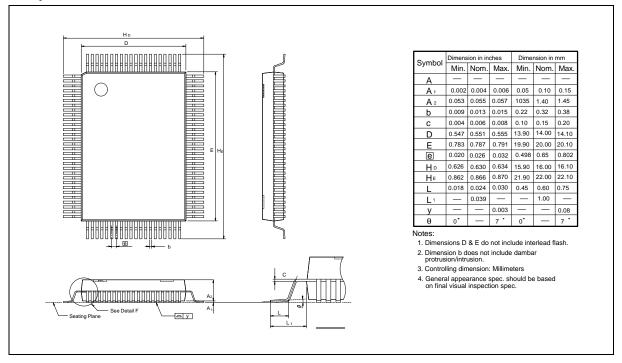
Timing Waveforms, continued

Stall NOP and Unselect Cycle Timing 2

ORDERING INFORMATION

PART NO.	ACCESS TIME (nS)	OPERATING CURRENT MAX. (mA)	STANDBY CURRENT MAX. (mA)	PACKAGE
W25Z040AD-3A	3.8	420	25	100-pin TQFP
W25Z040AD-4	4.2	370	25	100-pin TQFP
W25Z040AD-4A	4.5	330	25	100-pin TQFP
W25Z040AD-5	5.0	300	25	100-pin TQFP

Notes:


1. Winbond reserves the right to make changes to its products without prior notice.

2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.

PACKAGE DIMENSIONS

100-pin TQFP

VERSION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A1	Mar. 1998		Initial Issued
A2	Apr. 1999		Change speed bin from 133 to 150 MHz
		14	Cancel packaged in 100-pin QFP
		3	DC functional pins ($\overline{\text{LBO}}$, $\overline{\text{FT}}$) connect to Vss or VDD
		10~13	Marks the detail specifications in the waveforms

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5796096 http://www.winbond.com.tw/ Voice & Fax-on-demand: 886-2-27197006

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-27190505 FAX: 886-2-27197502

Winbond Electronics (H.K.) Ltd. Rm. 803, World Trade Square, Tower II, 123 Hoi Bun Rd., Kwun Tong, Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064 Winbond Electronics North America Corp. Winbond Memory Lab. Winbond Microelectronics Corp. Winbond Systems Lab. 2727 N. First Street, San Jose, CA 95134, U.S.A. TEL: 408-9436666 FAX: 408-5441798

Note: All data and specifications are subject to change without notice.