

PN5019 P-CHANNEL JFET

Linear Systems replaces discontinued Siliconix PN5019 The PN5019 is a single P-Channel JFET switch

This p-channel analog switch is designed to provide low on-resistance and fast switching.

The TO-92 provides a low cost option and ease of manufacturing.

(See Packaging Information).

PN5019 Benefits:

- Low Insertion Loss
- No offset or error voltage generated by closed switch
- Purely resistive

PN5019 Applications:

- Analog Switches
- Commutators
- Choppers

FEATURES					
DIRECT REPLACEMENT FOR SILICONIX PN5019					
ZERO OFFSET VOLTAGE					
LOW ON RESISTANCE	r _{DS(on)} ≤ 150Ω				
ABSOLUTE MAXIMUM RATINGS					
@ 25°C (unless otherwise noted)					
Maximum Temperatures					
Storage Temperature	-55°C to +200°C				
Operating Junction Temperature	-55°C to +200°C				
Maximum Power Dissipation					
Continuous Power Dissipation	500mW				
MAXIMUM CURRENT					
Gate Current (Note 1)	I _G = -50mA				
MAXIMUM VOLTAGES					
Gate to Drain Voltage	V _{GDS} = 30V				
Gate to Source Voltage	V _{GSS} = 30V				

PN5019 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
BV_{GSS}	Gate to Source Breakdown Voltage	30				$I_G = 1\mu A$, $V_{DS} = 0V$
$V_{GS(off)}$	Gate to Source Cutoff Voltage			5	V	$V_{DS} = -15V$, $I_{D} = -1\mu A$
$V_{DS(on)}$	Drain to Source On Voltage			-0.5		$V_{GS} = 0V$, $I_D = -3mA$
I _{DSS}	Drain to Source Saturation Current (Note 2)	-5			mA	$V_{DS} = -20V, V_{GS} = 0V$
I _{GSS}	Gate Reverse Current			2	nA	$V_{GS} = 15V, \ V_{DS} = 0V$
I _{D(off)}	Drain Cutoff Current			-10		$V_{DS} = -15V, V_{GS} = 12V$
	' 4 0 7			1 0	μA	V _{DS} = -15V, V _{GS} = 7V
I _{DGO}	D <mark>ra</mark> in Re <mark>v</mark> erse Current			-2	nA	$V_{DG} = -15V, I_S = 0A$
r _{DS(on)}	Drain to Source On Resistance			1 <mark>50</mark>	Ω	$I_{D} = -1 \text{mA}, V_{GS} = 0 \text{V}$

PN5019 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

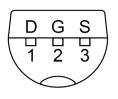
SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
r _{DS(on)}	Drain to Source On Resistance			150	Ω	$I_D = 0A$, $V_{GS} = 0V$, $f = 1kHz$
C_{iss}	Input Capacitance			45	pF	$V_{DS} = -15V$, $V_{GS} = 0V$, $f = 1MHz$
C_{rss}	Reverse Transfer Capacitance			10		$V_{DS} = 0V, V_{GS} = 7V, f = 1MHz$

PN5019 SWITCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

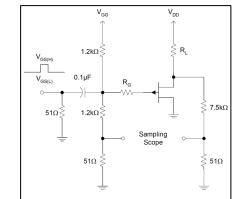
SYMBOL	CHARACTERISTIC		UNITS	CONDITIONS	
t _{d(on)}	Turn On Time	15	ns		$V_{GS}(L) = 7V$
t _r	Turn On Rise Time	75		$V_{GS}(H) = 0V$	
t _{d(off)}	Turn Off Time	25		- 115	See Switching Circuit
t _f	Turn Off Fall Time	100			

Note 1 - Absolute maximum ratings are limiting values above which PN5019 serviceability may be impaired.

PN5019 SWITCHING CIRCUIT PARAMETERS


V _{DD}	-6V
V _{GG}	8V
R _L	1.8kΩ
R _G	390Ω
I _{D(on)}	-3mA

Available Packages:


PN5019 in TO-92 PN5019 in bare die.

Please contact Micross for full package and die dimensions

TO-92 (Bottom View)

SWITCHING TEST CIRCUIT

Micross Components Europe

Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution

Information furnished by Linear Integrated Systems and Micross Components is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Note 2 – Pulse test: PW≤ 300 µs, Duty Cycle ≤ 3%