SCOTTSDALE, AZ For more information call: (602) 941-6300 1N821, A, -1 thru 1N829, A, -1 DO-7 ## 6.2 & 6.55 VOLT TEMPERATURE COMPENSATED ZENER REFERENCE DIODES ## **FEATURES** - ZENER VOLTAGE 6.2 V AND 6.55 V - 1N821, 823, 825, 827 AND 829 HAVE JAN, JANTX, JANTXV, JANS, AND -1 QUALIFICATIONS TO MIL-S-19500/159 - RADIATION HARDENED DEVICES AVAILABLE (SEE NOTE 5) - ALSO AVAILABLE IN DO-35 PACKAGE - JANS EQUIVALENT AVAILABLE VIA SCD ### **MAXIMUM RATINGS** Operating Temperatures: -65°C to +175°C Storage Temperatures: -65°C to +175°C DC Power Dissipation: 475 mW @ 25°C Derating: 3.16 mW/°C above 25°C #### *ELECTRICAL CHARACTERISTICS @ 25°C, unless otherwise specified | JEDEC
TYPE
NUMBER | ZENER
VOLTAGE
(Note 1 and 4)
Vz @ I ₂₁ | ZENER
TEST
CURRENT
Izr | MAXIMUM ZENER IMPEDANCE (Note 3 and 4) Z _{2T} | VOLTAGE TEMPERATURE STABILITY (ΔV _{2T} MAX) -55° to +100° (Note 3 and 4) | EFFECTIVE
TEMPERATURE
COEFFICIENT
$lpha_{ m VZ}$ | |--|--|--|--|---|---| | | VOLTS | mA | OHMS | mV | %/°C | | 1N821
1N821A
1N822†
1N823 | 5.9 - 6.5
5.9 - 6.5
5.9 - 6.5
5.9 - 6.5 | 7.5
7.5
7.5
7.5 | 15
10
15
15 | 96
96
96
48 | 0.01
0.01
0.01
0.005 | | 1N823A
1N824*
1N825
1N825A | 5.9 - 6.5
5.9 - 6.5
5.9 - 6.5
5.9 - 6.5 | 7.5
7.5
7.5
7.5
7.5 | 10
15
15
10 | 48
48
19
19 | 0.005
0.005
0.002
0.002 | | 1N826
1N827
1N827A
1N828
1N829
1N829A | 6.2 - 6.9
5.9 - 6.5
5.9 - 6.5
6.2 - 6.9
5.9 - 6.5
5.9 - 6.5 | 7.5
7.5
7.5
7.5
7.5
7.5 | 15
15
10
15
15
15 | 20
9
9
10
5
5 | 0.002
0.001
0.001
0.001
0.0005
0.0005 | † Double Anode; Electrical Specifications Apply Under Both Bias Polarities. **NOTE 1** When ordering devices with tighter tolerances than specified, use a nominal V_Z voltage of 6.35V. NOTE 2 Measured by superimposing 0.75 mA ac rms on 7.5 mA DC @ 25°C. NOTE 3 The maximum allowable change observed over the entire temperature range i.e., the diode voltage will not exceed the specified mV change at any discrete temperature between the established limits. **NOTE 4** Voltage measurements to be performed 15 seconds after application of DC current. NOTE 5 Designate Radiation Hardened devices with "RH" prefix instead of "1N", i.e., RH829A instead of 1N829A. All dimensions in INCH #### MECHANICAL CHARACTERISTICS CASE: Hermetically sealed glass case. DO-7 (DO-204AA). FINISH: All external surfaces are corrosion resistant and leads solderable. THERMAL RESISTANCE: 300°C/W (Typical) junction to lead at 0.375-inches from body. POLARITY: Diode to be operated with the banded end positive with respect to the opposite end. WEIGHT: 0.2 grams. MOUNTING POSITION: Any ^{*}JEDEC Registered Data # 1N821, A, -1 thru 1N829, A, -1 DO-7 The curve shown in Figure 3 is typical of the diode series and greatly simplifies the estimation of the Temperature Coefficient (TC) when the diode is operated at currents other than 7.5 mA. EXAMPLE: A diode in this series is operated at a current of 7.5mA and has specified Temperature Coefficient (TC) limits of $\pm 0.005\%/^{\circ}$ C. To obtain the typical Temperature Coefficient limits for this same diode operated at a current of 6.0mA, the new TC limits (%/°C) can be estimated using the graph in FIGURE 3. At a test current of 6.0mA the change in Temperature Coefficient (TC) is approximately -0.0006%/°C. The algebraic sum of $\pm 0.005\%$ /°C and -0.0006%/°C gives the new estimated limits of +0.0044%/°C and -0.0056%/°C. FIGURE 2 POWER DERATING CURVE FIGURE 3 TYPICAL CHANGE OF TEMPERATURE COEFFICIENT WITH CHANGE IN OPERATING CURRENT TYPICAL CHANGE OF ZENER VOLTAGE WITH CHANGE IN OPERATING CURRENT This curve in Figure 4 illustrates the change of diode voltage arising from the effect of impedance. It is in effect an exploded view of the zener operating region of the I-V characteristic. In conjunction with Figure 3, this curve can be used to estimate total voltage regulation under conditions of both varying temperature and current.