TANFILM DIP

RESISTOR NETWORKS

 MIL qualified to both MIL-R-83401/01 and MIL-R-83401/02

• MIL spec qualified to .1% Tol, .02% available

• MIL spec qualified to 50 ppm/°C, 25 ppm/°C available

Superior TCR tracking to 2 ppm/°C

Ratios available to 0.01%

Special mechanical and electrical configurations

Lid and ceramic substrate Ceramic lid totally filled with epoxy adhesive Alumina ceramic substrate Copper leads elecroplated Sputtered tantalum nitrde with gold over nickel resistance element, laser trimmed to value, tolerance

Self passivation layer and coating

system provides environmental protection

TaNFilm resistor networks are designed for use in applications requiring a high degree of reliability, stability, tight tolerance, close TCR tracking, and low noise. Our continuous feed, high vacuum sputtering process insures uniform properties from network to network. Precise state-of-the-art laser trimming enables us to easily zero in

the tightest ratios. Gold-plated copper leads are thermal pulse bonded to large-area gold conductor pads on the ceramic substrate assuring the most reliable termination and long-term stability. Passivated Tantalum Nitride resistor material offers performance far superior to military specifications and excellent environmental protection. The versatile nature of our photoetch process makes it readily adaptable to meet special customer requirements. Custom circuit designs and special mechanical configurations can be easily achieved with a modest set up charge. Full military screening is also available with all units.

SPECIFICATIONS:

MIL Qualified Resistance Values: Schematic A: 100Ω to $100K\Omega$ Schematic B: 100Ω to $70K\Omega$ Higher and lower resistance values available

Std Resistance Tolerances: .1%, .25%, .5%, 1%, 2%,

.02% available Temperature Coefficient

of Resistance:

±25 ppm/°C, ±50 ppm/°C, ±100 ppm/°C, ±300 ppm/°C TCR Tracking: 5 ppm/°C, except Models 1987 & 1998 below 500Ω (20 ppm/°C); 2 ppm/°C Temperature Range:

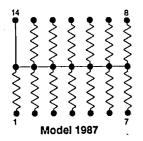
-55°C to +150°C

Power Rating @ 70°C:

	Wattage			
Model	Resistor	Network		
1987	.1	1.3		
1998	.1	1.5		
1989	.2	1.4		
1999	.2	1.6		

Noise: Less than -30 dB Lead Material: Gold plated copper Substrate Material: 99.5% pure

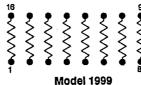
alumina ceramic

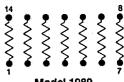

Construction: Ceramic sandwich

epoxy encapsulant


Custom Circuit and Special Testing Available

Contact factory for any special features required

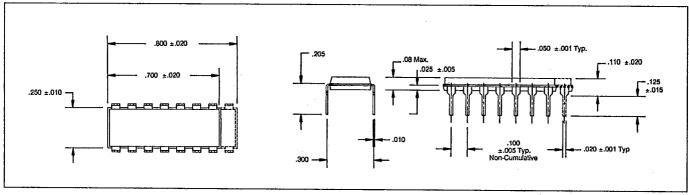

STANDARD CIRCUITS:



Schematic B

Schematic B

Model 1989


Schematic A

Schematic A

TANFILM DIP PERFORMANCE DATA:

	MIL-R-83401 Limits (ΔR%)			TaNFilm Test Data (ΔΠ%)	
Test Per MIL-R-83401	M	ĸ	H =	Maximum	Typical
Thermal Shock and Power Conditioning	0.70	.70	.50	.10	.02
Low Temperature Operation	0.50	.25	.10	.10	.02
Short Time Overload	0.50	.25	.10	.05	.02
Terminal Strength	0.25	.25	.25	.10	.02
Resistance to Soldering Heat	0.25	.25	.10	.10	.02
Moisture Resistance	0.50	.50	.40	.10	.02
Shock	0,25	.25	.25	.10	.02
Vibration	0.25	.25	.25	.10	.02
Life	2.00	.50	.50	.10	.02
High Temperature Exposure	1.00	.50	.20	.10	.02
Low Temperature Storage	0.50	.25	.10	.10	.02
25°C Double Load	2.00	.50	.50	.05	.02

DIMENSIONS - INCHES:

HOW TO ORDER Sample Part No.

Model 1999

Characteristic 06

Resistance 1001

Absolute Tolerance Code В

Ratio Tolerance to Rt (if specified)

1989 7-resistor 14 Pin DIP, straight thru (MIL-R-83401-01, schematic A)

1999 8-resistor 16 Pin DIP, straight thru (MIL-R-83401-02, schematic A)

1987 13-resistor, 14 Pin DIP, one common lead (MIL-R-83401-01, schematic B)

1998 15-resistor, 16 Pin DIP, one common lead (MIL-R-83401-02, schematic B)

Characteristic

Code	Classification	TCR (ppm/°C)
Q1	Commercial Grade	±100
02	Commercial Grade	±50
03	Commercial Grade	±25
04	Military Screening	±300
05	Military Screening	±100
06	Military Screening	±50
07	Military Screening	±25

Absolute/Ratio Resistance Tolerance Code

Standard MiL	Standard MIL
esistance code	tolerance cod
Example: $001 = 1000\Omega$	A ±.05% B ±.1% C ±.25% D ±.50% F ±1.0% G ±2.0% T ±.01% Q ±.02%